Spring Framework Reference Documentation

3.2.1.RELEASE

Rod Johnson , Juergen Hoeller , Keith Donald , Colin Sampaleanu , Rob Harrop , Thomas
Risberg , Alef Arendsen , Darren Davison , Dmitriy Kopylenko , Mark Pollack , Thierry
Templier , Erwin Vervaet , Portia Tung , Ben Hale , Adrian Colyer , John Lewis , Costin Leau ,
Mark Fisher , Sam Brannen , Ramnivas Laddad , Arjen Poutsma , Chris Beams , Tareq
Abedrabbo , Andy Clement , Dave Syer , Oliver Gierke , Rossen Stoyanchev , Phillip Webb

Copyright © 2004-2012

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Framework

Table of Contents

[. Overview Of SPring FrameEWOTKiiiiiiiiii e et e e
1. Introduction to SPring FramMEWOIKccouuiiiiiiiiii e e e e e e 2
1.1. Dependency Injection and Inversion of CoNtrolc.ooiiiiiiiiiiiii e 2
2 /T To L] 2
(Oe] 1= o] g1 r- 1 o[- ST ST PPTPTPTRTSSP 3
Data ACCESS/INTEGIAtiONoeeeiiiieeei ettt e e e e e eens 3
KT o S 4
AOP and INStrUMENTALIONcouvuiiiiiie e 4
=2 PP TPT PP 4
1.3, USAQGE SCENAIIOS ..eeeetniiiiiti ettt e ettt e e e ettt e e e et e et et r et e et e e e aba e eennen 5
Dependency Management and Naming Conventionsccocevveveiiieiinieeiineesnnns 8
Spring Dependencies and Depending 0N SPringcoceeuieeeiiieeiiieeiineeinen. 10
Maven Dependency Managementoveieeuiieieriinieeiiinne et eeeii e eenees 10
Ivy Dependency ManagemeNntc.uiviiiiieiiiieiiiieeee e e e e e e eaanns 11
(oo To 1oV PPN 12
Not Using CommONS LOGQING ...cuuueiiiiinieiiiiiee e e 13
USING SLFAJ oo 13
USING LOGA .ot ettt e et a e e e e e aans 14
[I. What's NEW N SPIING 3 ..ottt e e et e e e et e e eaa e e ennans 16
2. New Features and Enhancements in Spring Framework 3.0cccoooviiiiiiiiiiiiieviieeeies 17
2.0, JAVA O et ea e 17
2.2. Improved dOCUMENTALIONuiiiiii ettt e e e b 17
2.3. New articles and tULOFIAISiiieiiiiiiiii e 17
2.4. New module organization and build Systemccoiiiiiiiiiii e 18
2.5. Overview Of NEW fEALUIESoiiieiiiii e e e eees 19
Core APIs updated fOor JAVA 5oiiviiiiii e 19
Spring EXPression LANQUAGEcieuiiiniiiieeei et e e e e e eees 19
The Inversion of Control (I0C) CONAINETc.couuieiiiiiieiii e 20
Java based bean metadatacouvviiiiiiiiiiii 20
Defining bean metadata within COMPONENtSccooeeiiiiiiiiiiiiiiieeeen, 21
General purpose type conversion system and field formatting system 22
THE DAA TIEI .eiieeeeiiee ettt e et e r e e 22
THe WED Tier oo e 22
Comprehensive REST SUPPOIT ...cccuuuuiiiiiiieieeii ettt e e 22
@MV C AAILIONS ..eveiieeeee ettt 22
Declarative model validation ..o 22
Early support for Java EE 6ooooiiiiiiiii 22
Support for embedded databasescoovvviiiiiii i 23
3. New Features and Enhancements in Spring Framework 3.1coooiiiiiiiiiiiiiiiiiiieeees 24
G0 I @ Tod o LT Y o 1S3 = (o 1o o 24
3.2. Bean Definition Profilesccooiiiiiiiiiiii e 24
3.3. Environment ADSIFACHONiiuiiiii e 24
3.4. PropertySource ADSIFACHIONccuuuuiiiiiii et 24
3.5. Code equivalents for Spring's XML NAMESPACEScc.vevevnieirnieiiieeiieeeiieeaieeannnns 24
3.6. SUPPOrt FOr HIDEINEALE 4.X ... e 25

3.7. TestContext framework support for @Configuration classes and bean definition
L0 11 =1 PPN 25
Spring Framework

3.2.1.RELEASE Reference Documentation i

Spring Framework

3.8. ¢: namespace for more concise constructor iNJeCtioncocceveveiieviiiieeiineeinenn, 25
3.9. Support for injection against non-standard JavaBeans Settersccccoceiveennnnns 25
3.10. Support for Servlet 3 code-based configuration of Servlet Container 26
3.11. Support for Serviet 3 MUltipartRESOIVETveviiiiiiiieic e 26
3.12. JPA EntityManagerFactory bootstrapping without persistence.xml 26
3.13. New HandlerMethod-based Support Classes For Annotated Controller
[(0 T TS o N 26
3.14. "consumes" and "produces" conditions in @Request MApPi NGcoevvveiiiennieennnnes 27
3.15. Flash Attributes and Redi reCt Attri bUut @Sooeiiiiiiiiiii e, 27
3.16. URI Template Variable ENhancementscccoeeviiiiiiiiiiieii e 27
3.17. @/al i d On @equest Body Controller Method Argumentsccoeveiiuieeennnnes 28
3.18. @Request Part Annotation On Controller Method Argumentsc..c.cceeeveveeeens 28
3.19. Uri Conponent sBui | der and Uri CONMPONENt Sivvviiiiiiiiiiiiieii e eeaiees 28
4. New Features and Enhancements in Spring Framework 3.2 ..o 29
4.1. Support for Servlet 3 based asynchronous request processingcc.oeeevveverennnn. 29
4.2. Spring MVC Test frameWorkooieuiiiiiiii e 29
4.3. Content negotiation iIMPrOVEMENTSiiiuiiiii it eana 29
4.4, @ontrol l er Advi Ce annotationooviiiiiiiiiiiiie e 29
4.5, MALIX VAIADIES ...t e e 30
4.6. Abstract base class for code-based Servlet 3+ container initialization 30
4.7. ResponseEnti tyExcepti onHandl er classcccooviiiiiiiiiiiiii e, 30
4.8. Support for generic types in the Rest Tenpl at e and in @Request Body
210010 1= o1 S PP P TP PTPPR P 30
4.9. Jackson JSON 2 and related improvementscooeeeevviiieiiiiinneeeiiine e 30
0 I 1S S PT 31
4.11. @Request Body IMPrOVEMENLSiiuiiiiiiieiii e 31
4.12. HTTP PATCH MEhOT ...covviiiiiieeiiie e 31
4.13. Excluded patterns in mapped iNterCePorsc..ovevuieiiiieiie e e e e 31
4.14. Using meta-annotations for injection points and for bean definition methods 31
4.15. Initial support for JCache 0.5uiiiiii e 31
4.16. Support for @at eTi neFor mat without Joda TiMeccoveviiiiiiiiiceie e 31
4.17. Global date & time fOrmMattingcc.uoeieuiiiiiii e 31
4.18. NeW TeStNG FEALUIESuiiiiiiiieiiii et e et e eeai e eees 32
4.19. Concurrency refinements across the frameworkcocooivviiiiiiiiin s 32
4.20. New Gradle-based build and move to GitHUb ..o 32
4.21. Refined Java SE 7 / OpenJDK 7 SUPPOITuiiiiiiieiiiiie e 32
1B @to T =T =Tl 1 o] [0 To 1T 33
5. The T0C CONLAINETniiiiieii et e e et e et e et e e e e ean s 34
5.1. Introduction to the Spring 1oC container and beansc.cccoovviiieiineii i, 34
I O] o1 r= 1 0 [=T a0 1Y =] AV = PP 34
Configuration MEtAdataoieuuiiiiiiei e 35
INStantiating @ CONTAINETooiiiiiieiie e 36
Composing XML-based configuration metadatacccoveveieviiiiiinennnnn. 37
USING the CONTAINET ...cueiiite e e e ees 38
IR T 1= o I 01V V= P 39
[N F= T] o T 0T U 40
Aliasing a bean outside the bean definitioncoooiiiiiiiiin, 40
INStantiating DEANSociiiii i 41
Instantiation With @ CONSLIUCTOrcc.uuiiiiiiiii e 41
Instantiation with a static factory methodcooiiiiiiiiii e 42

Spring Framework
3.2.1.RELEASE Reference Documentation iii

Spring Framework

Instantiation using an instance factory methodcc..cccoviiiiiiiiienne, 42
5.4, DEPENUEINCIESuiiiiiii ettt e et et et et e e et e et e e e eees 44
Dependency INJECHIONc.uuiiiiii et e e e 44
Constructor-based dependency iNjeCtioncccovvueveiiiieviiiiein e 44
Setter-based dependency INJECHIONcccuiiiiiiiiiiiiiii e, 46
Dependency reSOIUtiON PrOCESSivveiuiueiiiii et e e 47
Examples of dependency inJeCtIONcouieiiiiiiiiieie e 48
Dependencies and configuration in detailocooiiiiiiiiiiii e 50
Straight values (primitives, St ri ngs, and SO 0N)coovvveveveineiiiieiiieeeie, 50
References to other beans (collaborators)c.ccceveviiiiiiiiieiiince e, 52
INNEI DBANS ..o e 53
L0] {1 Tox 1T0] o 1< 53
Null and empty String ValUESccoviiiiiiii e e e e 56
XML shortcut with the p-NameSPACEccuviiiiiiiiii e 56
XML shortcut with the c-Nnamespaceccooveviiiiiiiiiiiii e 58
Compound PropPerty NAMESuveeunieeiieeie e e e e e e e e e e e eannns 58
0L o o [=T oX=T o Lo KT o] o KNP 59
Lazy-initialized DEANSc.uuiiiii e 59
P01 (o)VY/ T g To IR eTo] | F=T o To] = L o) = 60
Limitations and disadvantages of autoOWiringccoovveviiiiineiiinniii e 61
Excluding a bean from autoOWiringcoooiiuiiiiiiiiiii e 61
/=1 1 g To To BT o =3 1 o P 62
Lookup mMethod INJECLIONc.uuiiiieii e 63
Arbitrary method replacementoooiiiiiiiii 64
LR T = 1T g TS 0] o= 65
The SINGIEION SCOPEeuiiiiie et 66
THE ProtOLYPE SCOPE ...euieiiii ettt e et e e s 67
Singleton beans with prototype-bean dependenciesccccoovviiviiiveiiieviineennnnn, 68
Request, session, and global SeSSIoN SCOPESocovviiiiiiiiiiiiiiiec e 68
Initial web configurationcoooiiii i 69
(ST 8 LoE A= o o1 69
SESSION SCOPE ..ttt ee ittt et e e et et e e ta e e et et e et e e e e e 70
GlObal SESSION SCOPE ...cvvtieiiiii ettt e 70
Scoped beans as dependenCIESco.uveviiiiiii i 70
CUSEOIM SCOPES ...ienitieite ittt et e et et et et e ea e e e e e e et e et e et e et e enaeenns 72
Creating & CUSLOM SCOPE ...ccvvuniiiiitieeietii ettt ettt et e e et e e eaa e eeaanns 72
USING @ CUSTIOM SCOPE ..unieiniiiiieeiieeei e e e e e e e e e e e e et e e et e e e e e aa e e eanaeaan s 73
5.6. Customizing the nature of a bean ... 74
Lifecycle CallDackscoouuiiiiii e 74
Initialization CallDACKSooiiiiiiiiei 75
Destruction Callbackscoou i 75
Default initialization and destroy methodscciiiiiiiiiniiiiin e 76
Combining lifecycle mechanismscooveiiiiiiciii e 77
Startup and shutdown callbackscocoiiiiiiiiiii 78

Shutting down the Spring 10C container gracefully in non-web applications
... 79
Appl i cati onCont ext Awar e and BeanNamBAWAr €co.uvveeviiiinieiiineeinean, 80
Other AWAT € INEITACES . ..euuiiii e e e e e e 81
5.7. Bean definition iNNertanCecooooiiiiiiiiii e 82
5.8. Container EXteNSION POINESoiiiiiiiiiiiii e 83

Spring Framework

3.2.1.RELEASE Reference Documentation iv

Spring Framework

Customizing beans using a BeanPost ProCeSSOrcoovvviiviiiieiiiieciiieciiieeeieeeenn 83
Example: Hello World, BeanPost Pr 0cessor -Stylecoovvviiviiiiiiiiinieennnn. 85
Example: The Requi r edAnnot at i onBeanPost Processorcc......... 86
Customizing configuration metadata with a BeanFact or yPost Pr ocessor 87
Example: the Pr opert yPl acehol der Confi gurerccoocoiiiiiiiiiininnnnn. 88
Example: the PropertyQverrideConfi gurercccooovveviiiiniiiiiinnnenennnnn. 89
Customizing instantiation logic with a Fact oryBeanccoovvvviiiviiiiiiineeiins 20
5.9. Annotation-based container configurationcooiiiiiiiiii 91
(@2 ST o LU TN =T o 92
Lo A U011 I = o PP 92
Fine-tuning annotation-based autowiring with qualifiersc.cccooviiiiinn. 95
Cust omAUL OWE I €CONT T QUI B eeiiiii e 100
(@ R T=Y oYU T o of =SSP SPPTSPPIN 101
@ost Construct and @Pr €DESt I Oyoiivuiiiiieii e 102
5.10. Classpath scanning and managed COMPONENESc.uuviereiineeiiiiineeeeiieeeeenennn 102
@conponent and further stereotype annotationscccoceevvviiiveiiiieviin e, 103
Automatically detecting classes and registering bean definitions 103
Using filters to customize SCANNINGuiiiiiiieiiii e 104
Defining bean metadata within COMpPONENtScoeviviiiiiiiiiii e 105
Naming autodetected COMPONENTSoiiuuiiiiiiiiiieii e 106
Providing a scope for autodetected componentsccovevviiiiiiiieii i, 107
Providing qualifier metadata with annotationscccoevviiiiin e, 108
5.11. Using JSR 330 Standard ANNOtatiONScoeuiiiiiiiiiiiiiiieci e 108
Dependency Injection with @ nj ect and @Namedccoeveviiiiiieiineeieeen, 109
@\aned: a standard equivalent to the @onponent annotation 109
Limitations of the standard approachcooooiiiiii e 110
5.12. Java-based container configurationccoooeeuiiiiiiiiiniiiii e 111
Basic concepts: @onfigurati on and @Beanccceeevveviieeiiieiiiiieee e 111
Instantiating the Spring container using
Annot at i onConf i gApplicati onCont eXtcccoovviiiiiiiiiiiiiiiei e 111
SIMPIE CONSIIUCTION ..ovuniiieiei e e e e e e e e 112
Building the container programmatically using r egi st er (Cl ass<?>...)
... 112
Enabling component scanning with scan(String...) .coooviiiiiiiiiinnnnns 112
Support for web applications with
Annot at i onConf i g\WebAppl i cati onContextcccooeeeveviiiiiiineinnnenne, 113
Composing Java-based configurationsccceevuiiiiiiiiiiiicie e 114
Using the @ mport annotationcooceuiiiiiiiiiiie e 114
Combining Java and XML configurationccooeveuiiiniiiiiinneiiiineeceiinnen 117
Using the @Bean annotationccuiiiiiiiiii e e e e s 120
Declaring @ Dean ... 120
Injecting dePeNdENCIESoiieiuiiieiii e 120
Receiving lifecycle callbackscooovviiiiiiiiiii 121
SPEeCifying DEAN SCOPEuiiiiiii e 122
Customizing bean NAaMINGcooeeuiiiiiii e 123
Bean ali@Singcccuuiiiiiiiii e 123
Further information about how Java-based configuration works internally 124
5.13. Registering a LoadTi MEVBAVETuuiiiiiiiiieiii et 125
5.14. Additional Capabilities of the Appl i cati onCont extccocceveviiiiiiiiiiinnennnnn. 125
Internationalization uSiNg MBSSAQESOUN CEuiiviiiiiniiiiiieei e 126
Spring Framework
3.2.1.RELEASE Reference Documentation v

Spring Framework

Standard and CUSIOM EVENLSo.uuiiiiiiiiiiiiii e 128
Convenient access to [ow-level reSOUICESocouviiiiiiiiiiiiee e 131
Convenient Appl i cat i onCont ext instantiation for web applications 132
Deploying a Spring ApplicationContext as a J2EE RARfilec.c.ccovvviiieinns 132
5.15. The BEANFACIONYcuiiiiiiiiiii ettt et e e e e e eaa e ees 133
BeanFact ory or Applicati onCont eXt ? ...cocuviiieiiiiiiiiiiiiieee e 133
Glue code and the evil SINGIETONccouiiiiiiii e 135
B. RESOUICES ...ttt ettt ettt et e et e e e e e e e e e et e ea e enns 136
L0 I [o o [o3 1T o I PP 136
6.2. The RESOUI CE INLEITACE .. .ciiiiii i e 136
6.3. Built-in Resour ce implementationsocoeiiiiiiiiinie e 137
L 1Y o 11 o = 137
Cl @aSSPAt NRESOUN CE ooviiiiiiii et e e 137
Fi | @SYSt @IMRESOUIN CE ..ieiiiiiii e 138
Servl et CoNt EXt RESOUI C& .uuiiiiiiiiii e e e e e 138
I NPUL St EaANMRESOUN CB ouiitiiiie et e e e e e e eenns 138
BYt @A I @Y RESOUI CB .oeeiiiii et e e 138
O B L= Ty o 10 | o = o T o [P 138
6.5. The Resour ceLoader Awar € interfacecooveveeiiieiiiiiiieiiie e 139
6.6. Resour ces as dependencCiesc.uoiiuuiiiiiiiii et 140
6.7. Application contexts and Resour ce pathscccoiviiiiiiiiiii e, 140
Constructing application CONEXLS ...vuvuiiiinieii i e e e e 140
Constructing Cl assPat hXm Appl i cati onCont ext instances -
1] [0 i (o] 1| P 141
Wildcards in application context constructor resource pathscccoevvvvveinnnnns 141
ANE-SYlIE PAttErNS ...oeeiei e 142
The cl asspat h*: PrefiX ..o 142
Other notes relating to wildcardscooeviiiiiiiiiin e, 143
Fi | eSyst emMReSOUr CE CAVEALSuiiviiiiiii i 143
7. Validation, Data Binding, and Type CONVEISIONcoeuuuieiiiiinieieiiiieeeeie e e e 145
4% 1 1o To [1T o K PSP 145
7.2. Validation using Spring's Val i dat or interfacecccooooiiiiiiiiiiiis 145
7.3. ResoIving COAES 10 ITON MESSAGES ...cvvvuneierrineteetinaetetii e tenti e eenni e eenieeeenenns 147
7.4. Bean manipulation and the BeanW appercccccooviviiiiiiiiiiiiieeeeeie e e 148
Setting and getting basic and nested Propertiesccooeveiieeiiniiiiieiiineeeeeenn 148
Built-in Propert yEdi t or implementationscociiviiiiiniiiiii e 150
Registering additional custom PropertyEditorscccoovviiiiiiiiciinennnnn, 152
7.5. SPring 3 TYPE CONVEISIONuiiiiiiiieiii ettt e e et e e eanas 155
CONVEIEE SPI L. e e e aaas 155
L0701)Y =T o (=T = Vo (0] Y 156
GENEIICCONVEITET ...ttt et et e et e et eeaaeas 156
ConditionalGeNEriCCONVEIETcivviiiiiieii e e e 157
CONVEISIONSEIVICE AP ..ot 157
Configuring @ CONVEISIONSEIVICEccuuiiiitiiiii it 158
Using a ConversionService programmaticallyccccoooviiiiiiiiiiniiiiiinin, 159
7.6. Spring 3 Field FOrmMattingccuoiiiuiieii i e e e e e e 159
FOrMAaLter SPI ... e 159
Annotation-driven FOrMAattingocoeuueiiiiiiiiieiii e 161
Format ANNOatioN APiiiii e 162
FOrmatterREQISIIY SPI ... e 163

Spring Framework
3.2.1.RELEASE Reference Documentation vi

Spring Framework

FormatterREQISIIar SPIccuuiiiiiic e e 163
Configuring Formatting in Spring MVC ... 163

7.7. Configuring a global date & time formatcoooeiiiiiiiiii e, 165
7.8. SPring 3 Validationcceuuiiiiiiii e 167
Overview of the JSR-303 Bean Validation APlccooviiiiiiiiiiiiii e 167
Configuring a Bean Validation Implementationcccooveiiiinieiiiiinieiiiinecenen 168
Injecting @ Validatorcoouiiiiiiii e 168
Configuring Custom CONSIFAINTSc.uuiiiiiiiiieeiee e 168

Additional Configuration OPLiONSuiiiiiiiiiieiiiiiee e 169
Configuring @ DataBiNGerccuuiiiiieii e e 169
Spring MVC 3 Validationooiiiiiii e 170
Triggering @Controller Input Validationcccoooeiiiiniiiiiiincec, 170
Configuring a Validator for use by Spring MVCcocoivviiiiiiiievii e, 170
Configuring a JSR-303 Validator for use by Spring MVCccccoceviiennnn. 171

8. Spring Expression Language (SPEL)coouuiiiiiiiiii e 172
ST I [0 11 To [U T 1 o] o I TP 172
8.2. FEALUIE OVEIVIEWiiiiiiieieeii ettt ettt ettt e e e e e e e ennans 172
8.3. Expression Evaluation using Spring's Expression Interfaceccccoevviiiinnnnnn. 173
The EvaluationContext iNterfaCeouuuiiiiiiiiiiiiii e 175
TYPE CONVEISION ..ottt ettt et e e e e et e e e e e et e eanaaee 175

8.4. Expression support for defining bean definitionscccooiiiiiiiiii, 176
XML based configurationcocouuiiiiiiiiiii e e 176
Annotation-based configurationooi i 177

8.5. Language REfEIENCEccouuiiiiiii e 178
Literal EXPrESSIONS ...vvuuiiii i e e 178
Properties, Arrays, Lists, Maps, INEXEIrScc.iiiiiiiiiiiii e 179
] T T 1] P 180

F N g VA oo) 153 1 U] 1 o IR 180
MEENOOS ... et 180

10 01T 1= 1 (0] £ TP UPTPPTR 181
Relational OPEratorsocvvuiiiiiiei e 181

LOGICAl OPEIALOIS .. etiiiei ettt ettt e et e e e 181
MathematiCal OPEIALOrSiiiiiiiiieiiii e 182
ST T [.41 o P 183
[/ 8L T PP UPTPPPPPR 183

1070 0 ES11 B o1 (0] £ PSP 184
VAITADIES ..o 184

The #this and #root variablesccoooiiiii 184

L] o3 T 1PN 185
BeAN FEfEIENCES ... 185
Ternary Operator (If-Then-EIS€)ccouiiiiiii e 186

THE EIVIS OPEIALONiiiiiiiii ettt et e e e e e e 186
Safe Navigation OPEIatOrcouuiiiii i e e e e e e e e e eanaeee 187
COllECtiON SEIECHON ... cceeviiieiiit e e 187
COlleCtion ProjECLIONoiiiiii e 188
EXPression temMPIatingocvuiiiiii e 188

8.6. Classes used in the eXamples ... 189
9. Aspect Oriented Programming With SPringccc.uoviiiiiiiiiiiii e 193
LS8 I [011 Yo [U T (o] o I PP 193
Y @ i olo] o [o1] o] KPP 193

Spring Framework
3.2.1.RELEASE Reference Documentation Vii

Spring Framework

Spring AOP capabilities and goalsccoevuiiiiiiiiii e 195
AOP PIOXIES ..ottt ettt ettt et a e 196

9.2, @ASPECET SUPPOIT ...ttt ettt ettt e e e e et et e e na e eenaas 196
Enabling @ASPECI SUPPOIT ...cvvuiiii e e e e e e e 196
Enabling @AspectJ Support with Java configurationc.c.ccoiviennnen. 196

Enabling @AspectJ Support with XML configurationcc..ccovevinene, 197

DeClaring @an @SPECTcvuviiiii e 197
Declaring @ POINTCULuiieiii e e e et e e e e e ees 198
Supported PointCut DESIGNALOIScceuuuiiiiiiieiieii e e 198
Combining PoINtCUt EXPrESSIONSivvuciiiieiie e e e e e e e e e e eaes 200

Sharing common pointcut definitioNscocoiiiiiiiiii e 200

EXAMPIES o 202

VA% 11T e [o Lo I oo] (o 0 | £ 204

DeClaring @0VICEcoouuiiiiiiei e 205
BefOre @0VICEiieeiiii e 205

AFter returning adViCecouviiiii i 205

After throwing @0VICEccuuiiiiiii e 206

After (finally) AdVICE i 207

F Y (o1 aTo =T Y o R PRSPPI 207

AdVICE PArAMELEIS ...ttt e e e ees 208

ACVICE OFEIING .eeveneieiit et e et e e e e eees 212
INEFOAUCHIONS .oee et e et e e et e e e eeaeaeeees 212
Aspect instantiation MOAEISco..iiiiiiiii 213

B XA e e e 213

9.3. Schema-based AOP SUPPOITcuuuiieeieeei e e e e e e e e e e e e e e eaen 215
DecClaring @n @SPECLc.uuiiiiiei et 215
Declarng @ POINTCULiiiiiiee ettt e e et e e e eeees 216
1= Tod b= T TV =T AV o = 217
BefOre @0VICEoieeiiiiei e 217

AFter returning A0VICEuiiiiiii e 218

After throwing @dVICEcceveiiiii i e 219

After (finally) 0VICEo.uiiii i 219

Y o 10T o =T L o - PN 220

AdVICE PArAMELEIS ..uiiiiiciiii et e e e e e e e e e e e eaen 220

AAVICE OFEIING ..ttt ettt e e e e eans 222

T 10T [0 T 1o] 1P 223
Aspect instantiation MOAEISiiiiiiiiii e 223
AGVISOIS ettt et e e e e ea 223

B XA e e e 224

9.4. Choosing which AOP declaration style t0 US€cccoveviiiiiiiiiiiii e, 226
Spring AOP 0OF fUll ASPECTI? ... 226
@Aspectd or XML for SPring AOP? ...t 227

9.5. MiXING @SPECTE TYPES .vuiiiiiieiii i e et e e e e e e e e e e e e e aans 228
9.6. Proxying MECNANISIMSiiiiiii et e ettt e et e e ea e aeaes 228
Understanding AOP PrOXIEScccuuuieiiiiineiiiiiiee et e e e e eaa e eneans 229

9.7. Programmatic creation of @ASPECt] ProXi€Scveveviiviiiiiiiiieiiieeei e e 231
9.8. Using AspectJ with Spring appliCationscocouiiiiiiiiii e 232
Using AspectJ to dependency inject domain objects with Spring 232

Unit testing @onfi gurabl € 0bJectscovvviiiiiiiii 235

Working with multiple application CONteXIScoeiiiiiiiiiiiiiii e, 235

Spring Framework
3.2.1.RELEASE Reference Documentation viii

Spring Framework

Other Spring aspects for ASPECLIccuuiiiiiiiiii e e 235
Configuring AspectJ aspects using Spring 10Ccoooiiiiiiiiiiii e, 236
Load-time weaving with AspectJ in the Spring Frameworkccccooveveviinnenes 237

A FirSt @XamMPIE .oeeee e 237

A SPDECES .t ea e 240

'WETA- I INF/ @0P. XM " e 241

Required libraries (JARS) ..o e 241

Spring CconfigUIAtioNoiiiii e 241
Environment-specific configurationccocoiiiiiiiiiiii e 244

9.9. FUIMNEr RESOUICES ...ttt et e e e e et e e e eanes 246
10. SPrING AOP APIS ..ot et et eaas 247
00 O 0 T [T o) o 247
10.2. POINtCUL AP IN SPIING ..iveiiiii et e e e e e e e e aaaees 247
1000] g [o7=T o] (= T PP UPTTPTN 247
Operations 0N POINTCULSuiiiiiieeiii ettt ettt e e e e eae s 248
ASpect] eXpression POINICULScvueiiie it e e e e e e e e e e e e e e eees 248
Convenience pointcut implementationscooviiiiiiiniii e 248
StAtiC POINICULS ...eeitiieiiii e e eees 248

DYNaMIC POINTCULS .ivvniii i e e e e e e e e e e e e e e e e eanaees 249

POINTCUL SUPEICIASSES ...niiiieiii it 250
CUSEOM POINICULS ...ieetiei ettt e e e et e e e eaa s 250
10.3. AdVICE API N SPIING tevuiiiiiieei et et e e e e e et e e e e e e e aanaaes 250
AVICE lIFECYCIES ..o e 250
AQVICE LYPES IN SPIING .eeeeiiiieiiiii ettt eeaaens 251
Interception around adVICEcc.iiiiiiiiiiiiei e 251

BefOre @0VICEoieeiiiiei e 251

LI LTS T= Lo 1Y T S 252

After REtUrNiNg adVICEocvvuiiiieii e e e e 253
INErOUCEION AAVICE ...t e 254

10.4. AAVISOr AP N SPFING ..oiiiiieiii et 256
10.5. Using the ProxyFactoryBean to create AOP ProXi€Scccvvevernieeueeeinieranneennn 257
B CS .ttt e 257
JavaBeaNn PrOPEITIEScovuuiiiiiii et e e e 257
JDK- and CGLIB-based ProXIEScccuuieiiiieeiieiiiiieei e ee e e e e e e ean e eeen 258
Proxying INTEITACESc.uuiiii e 259
PrOXYING ClASSES . .ovuiiiiiiiiii e 261
Using 'global’ @0VISOIScccuuiiiii e 262
10.6. Concise proxy defiNitiONScoouuiiiiiiiii e 262
10.7. Creating AOP proxies programmatically with the ProxyFactoryc.......... 263
10.8. Manipulating advised ODJECESccceuiiiiiiiii 264
10.9. Using the "autoproxXy” facility ..o 265
Autoproxy bean definitionNsciiiiiiiiii 266
BeanNameAUtOPIOXYCIEALONcc.uieeieii e e e e e e e e e e eaees 266
DefaultAdViSOrAUtOPIOXYCIEALONuiieiiiiii e 266
AbstractAdViSOrAULOPIOXYCIEALONeiiiiinieeiiiii et 267

Using metadata-driven auto-proXyingeeeeuierrieerineeeieeeieeesneeanneeenneeennns 267
10.10. USING TAIgELISOUITESuietniiiieeii it e et e et e et e et e e et e et e e e e e et e e et e eanaeeees 269
Hot swappable target SOUICESocieiiiiiiiiii e 270
eLoTo] [T To T c= T[] =T o 0o = N 270
Prototype target SOUICESccuuiitiii ittt e e e e e e e eeans 272

Spring Framework
3.2.1.RELEASE Reference Documentation 4

Spring Framework

Thr eadLocal target SOUICESocvvuiiiiiiiie e e e 272
10.11. Defining NeW AQVi CE TYPES ...ceuuiiiii it e e 272
10.12. FUMNEI FESOUICTES .uuiiiiieiiiieei et e ettt e et e e e et e et e e et e e et e e et e eetnaeeanaeeanns 273

5 R 1= 1 Vo 274
11.1. Introduction tO0 SPriNg TESHNG .. .ccuuiieiiiiiii e 274
R O o 1 B =T 1] o PP PPPPT 274

YT Yo Q@ o =T o1 P 274

ENVIFONMENT ...ttt e e e e e eens 274

B | ST 274
SEIVIEE AP oo 274
POrtlet AP L. e 275

Unit Testing SUPPOIT CIASSESciiiiiieiiiiiie ettt 275
General ULIILIES ...oovuiiiii e e 275
SPIING MVC . 275
11.3. INtegration TESHNGuuu ittt e e e 275
OVEIVIEW ...ttt ettt e e ettt e e e e ettt e e ettt e e e e e atreeeett e e e eentnaaaaes 275
Goals of INtegration TESHNGcieuiiiiiei e 276
Context management and Cachingcooooeeuiiiiiiiiiiieiiii e 276
Dependency Injection of test fiXtUresc.coveviiiiiiii i 277
Transaction MAaNAQEMENTccuu i e e e eaaas 277
Support classes for integration teStiNgoovveeviiiiiiiiii e 277
N[=T @ =TS 1] o ST U o] o L] o (PP 278
PN g1 g 0] £= 1[0] o LS ST 278
Spring Testing ANNOLALIONSuiiiiiiiieiii e 278
Standard AnnNotation SUPPOITceeuniiiiieeii e e e e e 283
Spring JUnit Testing ANNOLALIONSviiuiiiiiiaiie e 283
Spring TestContext FramMeWOIKocoiiiiiiiiiiii e 285
KeY @DSIraCtiONSoiiviiiiii i 285
Context MAaNAGEMENT ... e e e e e eneeenns 287
Dependency injection Of teSt fIXIUreSiviiiiiiiiiiii e 298
Testing request and session scoped beansc.ccceveviiviii i 300
Transaction MAaNAQEMENTccuu i e e e e e eaaas 302
TestContext Framework Support ClaSSEScievuiviiiiiiiieiiieece e 305
Spring MVC Test FrameWOrKccuuiiiiiiiiicii e 307
SEIVEI-SIAE TEOSES ..uiiiiiiiiiie ittt et e e eaens 307
Client-Side REST TeSS ..ottt e e s 313

PetCliniC EXAMPIE ... e 313
11.4. FUINEI RESOUICESctuiiii ettt et e et et e e e et e e e e eaa s 315

AV B T = N Y oo L PP 316

12. Transaction ManagEMENTuiiiuiiiiii e e e e e e e e e e e e e e e et e e e eeens 317
12.1. Introduction to Spring Framework transaction managementcc...cccoeeeeenn.. 317
12.2. Advantages of the Spring Framework's transaction support model 317

Global tranSACLIONSoiiiiii e 317

LOCAl traNSACLIONS ...t e 318

Spring Framework's consistent programming modelc.cccoovviiiiiiiiinneeennnn. 318
12.3. Understanding the Spring Framework transaction abstraction 319
12.4. Synchronizing resources with transactionscccoooiiiiiiiiiiinei e, 322

High-level synchronization approachcccovveiiiiiiiiiiini e 323

Low-level synchronization approachcceevuiieiiiiiiii e 323

Transact i onAwar eDat aSOUr CEPI OXY ..o..iiiiiiiiiiiiiieei e 323

Spring Framework
3.2.1.RELEASE Reference Documentation X

Spring Framework

12.5. Declarative transaction Managementc..vevuuieiiiieeiie e e e e e e 324
Understanding the Spring Framework's declarative transaction implementation... 325
Example of declarative transaction implementationcoeviiieiiiiinieeinnnnnn. 326
Rolling back a declarative transactionc.cccoveiiiiiviiieiii e 329
Configuring different transactional semantics for different beans 330
<EX: AAVI CEJ > SEHINGS ..eiiiii et 332
USiNg @7 anNSaCt i ONAl ..uiiieiii e 333

@ransact i onal SEttiNgSocouuiiiiiiiii e 338
Multiple Transaction Managers with @r ansacti onalccccceevevennnnn. 339
Custom shortcut annotationsooveiiiiiiiiiiiii e 340
TranSaction ProPagALIONc..ieuuiiii it e e e e et e e et e a e e e 340
REQUITE ..o 340
L= To [T (=] N =2 PPN 341
NESTEA . e 341
Advising transactional OPErationNsc.uuieiiiiiiieiiii e 341
Using @r ansacti onal with ASPeCtdccoviiiiiiiiiiiii e 345

12.6. Programmatic transaction managementcc.veeuuniiiuniiiineiieeei et eeaeeeennes 345

Using the Transacti onTenpl at @oiiiiiiiiii e 346
Specifying transaction SEthNGSc.vuviviiiiiii e 347
Using the Pl at f or mMTr ansact i ONMANAGErooveuiiiiiiiiii e 348

12.7. Choosing between programmatic and declarative transaction management 348

12.8. Application server-specific integrationccoeviiiiiii i 348
IBM WEDSPRNEIE ..ot e 349
BEA WEDLOGIC SEIVETuiiiiiiiieeeii ettt et e e e e 349
(@ 1= Tex [T @ L @ N PPN 349

12.9. Solutions to cOMMON ProbIEMSiiii e 349
Use of the wrong transaction manager for a specific Dat aSour ce 349

12.20. FUIhEr RESOUICES ...ciiitiieeiiii ettt e e e e 350

ST B N @ (¥ o] o [0] ¢ PP PP PPP 351

R 0 R 0 T [T o) o 351

13.2. Consistent exception hierarChycoooiiiiiiii e 351

13.3. Annotations used for configuring DAO or Repository classesccooveevneeennne. 352

14. Data acCesS WIth JDBCuuiiiiiieiiiieeci et s e e e e e e e et e e et e et e e ean e eeees 354

14.1. Introduction to Spring Framework JDBCc.cc.viiiiiieiiiieiiii e e e e 354
Choosing an approach for JDBC database acCessccovvvviiiiiiiiiiiiieiiieennnns 354
Package hierarChy ... 355

14.2. Using the JDBC core classes to control basic JDBC processing and error

NANAIING e e 356
JADCTENPI G € e e 356

Examples of JdbcTemplate class usagecccoevvviiiiiiiievii i 356

JdbcTenpl at @ best PractiCesooveuiiiiiiiiii e, 358
NarmedPar anmet er JdbecTenpl @t @ ... 360
SiNPl €JABCTENPI At € ovvniei e 362
SQLEXCEepPti ONTr ansl At OF ...oouiiiiiii e 364
EXECULING STATEMENTS ...t 366
[0] T o o 18 1= = 366
Updating the database ... 367
Retrieving auto-generated KeYSccooiuiiiiiiiiiiii e 368

14.3. Controlling database CONNECLIONSuviviiiiiiiiei e e e 368
(D2 = B o U] g o = PP PPTPIN 368

Spring Framework
3.2.1.RELEASE Reference Documentation Xi

Spring Framework

Dat @SOUr CEUL I | S ouniiiiii e 370
SIMAE T DAL BSOUI CE ettt e e e e e e enaens 370
ADST T ACt DAt BSOUI CE .eevtiiiiiii et et e e e 370

Si ngl eConnect i ONDAL @SOUM CE ..ovvuiviiniiiii e e e e e 370
Driver Manager Dat @SOUI C8ccuuiiiuiiiiii i 370
Transact i onAwar eDat aSOUr CEPI OXY ..iiiiiiiiiiiiiiiieceii e 371

Dat aSour ceTransact i ONMANAGETccuuieiiiieiii e 371
NatIVEIADCEXITACTION ...t e 371
14.4. JDBC DAtCh OPEratioNScc.uuiiiiiiiiieiiiii et e e e e 372
Basic batch operations with the JdbcTemplatecccoeviiiiiiiiiiii e 372
Batch operations with @ List Of 0DJECESoiiviiiiiii e, 373
Batch operations with multiple batches ..o 374
14.5. Simplifying JDBC operations with the SimpleJdbc classesccoooevvvevnnnnnnn. 375
Inserting data using SiIMpIeJdbDCINSErt ..o 375
Retrieving auto-generated keys using SimpleJdbcInsertccooovvviiiiiinennnnn. 376
Specifying columns for a SimpleJdbCInsertccooveiiiiiiiiii e 377
Using SqlParameterSource to provide parameter valuescccoveveiiienneennnn. 377
Calling a stored procedure with SimpleJddbcCallcoiiiiiiiiiiiiii, 378
Explicitly declaring parameters to use for a SimpleJdbcCallccceevenneeen. 380

How to define SOIPArameters oot 381
Calling a stored function using SimpleJddbcCalloooooiiiiiiiiiiiiiii e, 382
Returning ResultSet/REF Cursor from a SimpleJdbcCallccoocoiviinnennnnn. 382
14.6. Modeling JDBC operations as Java 0DJEeCtScooviiiiiiiiiiii e 383
S0 | IO U= O PP TPPPTP 384
=T o] o T Lo 1o | U= 384

o | I o Lo = L = PP PPN 385

S oY =T | = o Tod <o [1 = PSRN 385
14.7. Common problems with parameter and data value handlingccc.ccoe.. 389
Providing SQL type information for parameterscoocoviiiiiiiiiiiii e 390
Handling BLOB and CLOB ODJECLSooiiiiiiiiiiii e 390
Passing in lists of values for IN ClauSec.ccuoveiiiiiiiiiiii e, 391
Handling complex types for stored procedure callsccooveeiiiiiiiiiiiiiiineeennn. 392
14.8. Embedded database SUPPOITooveeiiiiiiiiieieei e e 393
Why use an embedded database?cccoooeiiiiiiiiii 393
Creating an embedded database instance using Spring XMLccooeeeunee. 393
Creating an embedded database instance programmaticallycccccooevennenn. 394
Extending the embedded database SUPPOItcc.viviiiiiii i 394
USING HSQL ottt e et e e e e e e et e et e e e e e e eeennnees 394
USING H2 ettt et 394

LU LT o 0= 1 PPN 394
Testing data access logic with an embedded databaseccccoeviiiiiiiis 394
14.9. Initializing 8 DAtASOUICEuiiiiiiiieeiiii et e e e e eenb e eens 395
Initializing a database instance using Spring XMLcccovvviiiiiinieiin e 395
Initialization of Other Components that Depend on the Database 396

15. Object Relational Mapping (ORM) Data ACCESSuuiiiiriinieiiiiiiie e 398
15.1. Introduction to ORM With SPringcccevniiiiii e 398
15.2. General ORM integration coONSIderationsccoceuuieeiniiiiniiiieeei e e 399
Resource and transaction Managementceuuureririieeeiii e 399
EXCEePLioN tranSIationoiiiiiiiii e 399
15.3. HIDEINALE ..o et 400

Spring Framework
3.2.1.RELEASE Reference Documentation Xii

Spring Framework

Sessi onFact ory setup in a Spring CONtAINETccvvviiiiiiiiieiin e 400
Implementing DAOs based on plain Hibernate 3 APlcccooiiiiiiiiiiiinie, 401
Declarative transaction demarCationcooeeeueierieiiieieiie e 403
Programmatic transaction demarCationcc.oviveeeeeiieriiieein e 405
Transaction management SIrategIeScveuuriiuniiiiiiiie e 406
Comparing container-managed and locally defined resourcesccccoeeeeevnnnen. 408
Spurious application server warnings with Hibernatecccoocoeiiiiiivin e, 409
L5.4. IDO ..t e e e e e e aeeeaaraa 410
Per si st enceManager FACt OrY SEIUP ...coevvuiiiiiiiieieii et 410
Implementing DAOs based on the plain JIDO APc.oiviiiiiiieeee e 411
Transaction MAaNAGEMENTcouu i e e e e e e ea e eees 413
JAODE Al BCT e e 414
1D, IR A e 415
Three options for JPA setup in a Spring enviroNMeNtcooceuiveeineiineeenneennn. 415
Local EntityManager Fact or yBeanc.ocoeuviiiiiiiiinieiiiiineeieie e, 415

Obtaining an Ent i t yManager Fact ory from JNDIcccocoeviviiiiinnnnennn. 416

Local Cont ai ner Enti t yManager Fact oryBeanccccccoevvviiiiinnneennn. 416

Dealing with multiple persistence UNItSocoevviiiiiiiiiieieieee e 418
Implementing DAOs based on plain JPA ..o 419
Transaction ManageMENTc...iiuii i e eees 421
JPADE @l BCT e 422
15.6. IBATIS SQL MAPS ... oottt ettt 423
Setting up the Sl MBPC T €NT .o 423
Using Sgl Mapd i ent Tenpl at e and Sgl MapC i ent DaoSupportcc......... 424
Implementing DAOs based on plain iBATIS APlcooviiiiiiei e 425

16. Marshalling XML uSING O/X MAPPEISeeuuiiiiiiiieei et e e eeens 427
G0 10 T [T o) o P 427
16.2. Marshaller and Unmarshallerooiiiiiiiiiiiii e 427
MAFSNAIIET ... et 427

[T = 1= =1L P 428

DS\ F=T o] o1 o | St (o =Y o] o] o 429
16.3. Using Marshaller and Unmarshaller ... 429
16.4. XML Schema-based Configurationccooeiiiiiiiiiiiiiiieiii e 431
16.5. JAXB ittt 431
JaXD2MArSNaller ..o 432
XML Schema-based Configurationcccooviviiiiniiiiiiii e, 432

G G 02] (o | PP UPPTRPPTPPN 433
CastorMarshaller ... e 433
F= o] o1 o R PP TPPPTTR 433
16.7. XIMLBEANS ...ttt ettt et 433
XMIBeaNSMarshallerc.. e e 433
XML Schema-based Configurationcccooviviiiiniiiiiiii e, 434

16.8. JiBX ettt 434
JIDXMAISNAlIEr ... 434
XML Schema-based Configurationcccooviviiiiniiiiiiii e, 435

G 651 1 (== 1 PP UPPTUTPPIN 435
XStreamMarshalleroo. e 435

RV I L= V= o TSP 437
17. WeD MVC fraAmMEWOTKuiiiiiii et e e e e e e e eaanns 438
17.1. Introduction to Spring Web MVC frameworkoooiiiiiiiiiiin, 438

Spring Framework
3.2.1.RELEASE Reference Documentation Xiii

Spring Framework

Features of Spring Web MVC ... 439
Pluggability of other MVC implementationsocoiiiiiiiiiiniiiii e 440
17.2. The Di spat Cher SEr vl @t ... e 440
Special Bean Types In the WebAppl i cati onContextcccoevvviiiviiiievineennnn. 443
Default DispatcherServiet Configurationccoovoeiiiiiiiiiiee e, 444
DispatcherServiet Processing SEQUENCEccovuviieiiiiiieeiie e 444
17.3. Implementing CONtrOIIEIS ... ccuuiiii e e e e e 445
Defining a controller with @ont rol | er ..., 446
Mapping Requests With @Request MAPPI NG co.vviiiiiiiiiiiicce e 447
New Support Classes for @Request Mappi ng methods in Spring MVC 3.1
... 449
URI Template Patternsoioiiiiiiiiiiiieeee et e 450
URI Template Patterns with Regular EXPressionscccooeeeeeviiveviineennnnnns 451
Path Patterns ... e 452
Patterns with Placeholdersoovviiiiiiiii e 452
MaALFiX VArADIES ... 452
Consumable Media TYPES ...ceuuiieieii e 453
Producible Media TYPESiiiiiii e 454
Request Parameters and Header Valuesccooevviiiiiiiiiii i 454
Defining @Request Mappi ng handler methodsooiiiiiiiiiiiiee, 455
Supported method argument tyPESccoevuiiiiiiiiieeiii e 455
Supported method return tyPeSvveeeiiii e 457
Binding request parameters to method parameters with @Request Par am
... 458
Mapping the request body with the @RequestBody annotation 458
Mapping the response body with the @ResponseBody annotation 460
USING HEE PENT i Ty <23 Lo 460
Using @vbdel Attributeonamethodcooiiiiiiiii i, 460
Using @vwdel Attri but e on a method argumentocoiiiiiieinnnn. 461
Using @essi onAtt ri but es to store model attributes in the HTTP
SESSION DEIWEEN FEOUESES ...vuiiiiiieiii e e e e e e e e e e e e e e e e e e eanaees 463
Specifying redirect and flash attributesccooooiiiiiii 464
Working with "appl i cati on/ x- ww f or m ur | encoded" data 464
Mapping cookie values with the @CookieValue annotation 465
Mapping request header attributes with the @RequestHeader annotation.. 465
Method Parameters And Type CONVEISIONcoeuuuieiiiiinieiiiiineeeeiineeeenenn 466
Customizing WebDat aBi nder initializationc.cccceveviiieiiniiiieecieeens 466
Support for the 'Last-Modified' Response Header To Facilitate Content
CACNING et 467
Asynchronous ReqUEst PrOCESSING .. .c.uviuuiiiiieiiieeeii e e e e e e e e eanns 468
Exception Handling for ASync REQUESLESc..viiiuiiiiiiiiiiiieeiece e 469
Intercepting ASYNC REQUESLESoovuiiiiiiiiiiccei e 470
Configuration for Async Request ProCessingccccuuvvveuveiiieiiiieriineennnnnns 470
TeStiNg CONLIOIEISeeneeeee et 471
17.4. HaNdIEr MapPPINGgSuueeeeitneeeiii ettt ettt e e e et e et e e et eeeaaa s 471
Intercepting requests with a Handl erl nterceptorcccoovveiiiiiiiiiii e, 472
17.5. RESOIVING VIBWS ...ttt ettt e et e e et e e e e ean e 474
Resolving views with the Vi ewResol ver interfacecccooevviiiiiiiiiineecennn, 474
Chaining VIEWRESOIVELSuuiiiiiei e e e 476
RedIreCING 10 VIBWSniiiiiit ettt ettt e e e e et e aein s 476

Spring Framework
3.2.1.RELEASE Reference Documentation Xiv

Spring Framework

REi FECT VI BW it 477

The redi rect: PrefiX .o 477

The forwar d: PrefiX ... e 478

Cont ent Negoti ati NgVi @WRESOI VEI .uviiiiiiiiiiiiii e 478
17.6. Using flash attribDULESeoiiii e 480
17.7. BUIIAING URL S ittt ettt e e e e enaes 481
A S T U o T B o o= 482
Accept Header Local EReSOl VeI ... 482
Cooki €LoCal BRESOI VI .. 482
SESSi ONLOCAl ERESOI VEI oot 483
Local eChangel Nt er CEPL OF ... e 483
17.9. USING tNEIMES ...ttt e et e et eees 484
OVEIVIEW Of tNEMES ..oeiiiii e 484
Defining themES ... e e 484
TREME FESOIVEIS ..ot e e e e e e e e e ean e 484
17.10. Spring's multipart (file upload) SUPPOItcovviiiiii e, 485
INEFOAUCTION ..t ettt e e e e et e et eean s 485
Using a Mul ti part Resol ver with Commons FileUploadccccoeevennnnnen. 485
Using a Mul ti part Resol ver with Serviet 3.0ccooovviiiiiiiiii e, 486
Handling a file upload in @ form ... 486
Handling a file upload request from programmatic clientscccceeveevinnnnnnn. 487
A O o - T g T | o = (o =Y o 1 o 488
Handl er EXCept i ONRESOI VEI oouiiiei e 488
@EXCepti ONHANAL B .. 489
Handling Standard Spring MVC EXCEPLIONSccuiviiiiiiiieiii i een e e 490
Annotating Business Exceptions With @ResponseSt at UScccoceviviviinieinnneenn. 490
Customizing the Default Servlet Container Error Pageccoooveveviiieiiiiinnenenn. 491
17.12. Convention over configuration SUPPOITovvvniiiiieriie e e 491
The Controller Contr ol | er O assNanmeHandl er Mappi NQcooveeviiiiiiiiinnneenn. 492

The Model Model Map (Model ANAVi €W) ..oovveiiiiiiiici e 493

The View - Request ToVi ewNanmeTrans!l at Orcccoveviiiiiiiieii e, 494
17.13. ETAQ SUPPOIT ..ttt ettt et et e e e et e et et e e e e e e e e e e e e e eeans 495
17.14. Code-based Servlet container initializationcccoocoiviiiiiiiiniiee, 496
17.15. Configuring SPring MVC ..o e 498
Enabling the MVC Java Config or the MVC XML Namespaceccceveeunnnene. 498
Customizing the Provided Configurationooooeuiiiiiiiinieiii e 499
(©fe] a1 iTo 8 Tg o e I 11 (=T ol=] o] (o] £ 500
Configuring Content Negotiationcoouiiiiiiiiiei e 501
Configuring View CONtrollersoiiiiiiiiiiiii e 502
Configuring Serving of RESOUICEScovvuiiiiiiieiii e 502
mvc:default-serviet-handler ... 505
More Spring Web MVC RESOUICEScciiuiiiieiiiiieeeii e 506
Advanced Customizations with MVC Java Configcccoveviiiiiiiiiiiiniiiiieiieens 506
Advanced Customizations with the MVC Namespacecccoovvevieiiiiniiiineeinnens 507

18. VIEW TECHNOIOGIESuiiiiiii ettt et e et e enes 508
R J00 O [1o To [o 1T I PP 508
18.2. ISP & JSTL ettt ettt 508
RV €20 V=T 508
'Plain-old" JSPS VEIrSUS JSTL .iouuiiiiiiiiee e 509
Additional tags facilitating developmento 509

Spring Framework
3.2.1.RELEASE Reference Documentation XV

Spring Framework

Using Spring's form tag librarycccoooeiiiiiiiiiini e,
ConfIQUIAtIoNoiuiiiiiie e

The FOrmMtag ...ocovieiii e,

I LT 1] 010} S - Vo

The checkboX tagc.oovveiiiiiii e,

The checkboXes tagoooveviiiiiieii e

The radi obutton tagcoooveviviiiiiii e,

The radi obut t ONS tagoooevviiiiiiiiie e,

The PasSWOrd tagcocvvuieiiiiiieeiii e

The sel €Ct tagovvvvi i

The Opti ON tAg ..ovvniiii i

The OPti ONS 1A covviiiiiiieee e

The textarea tag ...ccooveveieieeii e

The hi dden tagccoovviiiii e

THE €rrOrS tAg «ovvvi i
HTTP Method CoNVErsioncccccovieiiiiinieiiiiinieeciineeees
HTMLS TagS oeeeiiiiieeee e
18.3. THlES et
[T 01T o [=T g (o] [
How to integrate TileSooiuuiiiiii e
Ur | BasedVi ewResOl Ver ...oooooiiiiiiiiiiiieci e
Resour ceBundl eVi ewResol vercccoovvvviiiiiiiiiiinnnnns

Si npl eSpri ngPr epar er Fact ory and

SpringBeanPreparerFact orycccccveiieiiiiinieeiinnnnnn.

18.4. Velocity & FreeMarkercccouviviiiiiiiiiiii e
DEPENUENCIES ...eniiiiiiii et
Context coNfigUrationcoeuuiiiiiiiinieii e
Creating tempIatescccvviiiiieii i
Advanced configurationcccooviiiiiiiiii e
VElOCItY. PrOPertiesSccoovuiiiiiii i
FreeMarkercoiiiiiiieee e

Bind support and form handlingcccoooiiiiiiiii

The bind MaCroScocviiiiiii e

Simple binding ..o

Form input generation Macroscccoeeveueeiiieiinneennnes

HTML escaping and XHTML complianceccccoeeeeene

18,5, XSOLT ittt
My First WOTAS ..oovniiiiiei e
Bean definitionsccooviiiiiiii

Standard MVC controller codeccccvveiiiiiiiiiiiiiiin.

Convert the model data to XMLc.ooevvviiiiiiiiiiiiiiiieees

Defining the view propertiescccoeevveviiinieiiiiineecinn.
Document transformationoooeevvveriiiiiinneeeneeennn

SUMIMAEBY ettt e e e e e e e e eaas
18.6. Document views (PDF/EXCEI)ccoouuiiiiiiiiiiiiiiiiiicicii e
INtrOAUCTION ..o e
Configuration and SELUPco.uviiiiiiiiiiieece e
Document view definitionscccoovviiiiiiineii e,

Controller COAEoviiiiiiiiiiiee e
Subclassing for EXcel VIEWScoooeiiiiiiiiiiiiiiiieeeeeen,

Spring Framework
3.2.1.RELEASE Reference Documentation

XVi

Spring Framework

Subclassing fOor PDF VIEWScouuiiiiiiiiiceee e e e 537
18.7. JASPEIREPOIS ...niiiiitie ittt ettt et et e e 538
DEPENUEINCIES ...ttt 538
(@] 01T 8T r=\1 1o o I 538
Configuring the Vi eWReSOl VeI ... 538
Configuring the Vi WSoouuiiiii e 538
ADOUL REPOIM FlES ..eeeiiiiei e 539
Using Jasper Report sMul ti FOrmat Vi @Wocooviiiiiiiiiiiiiieeeeeeen, 539
Populating the Model ANAVI @W ... 540
Working With SUD-REPOISivviiiiiicii e e e e 541
Configuring Sub-Report FIles ... 541
Configuring Sub-Report Data SOUICESccoeviiieiiiiinieeiiiie e 542
Configuring EXpOrter ParameEtersievuuieeiieei e e e e e e e e e e e eeens 542
18.8. FEEA VIBWS ...ttt e e e eeaas 542
18.9. XML Marshalling VIEWccuuuiiiiiiiiiiiii ettt e 543
18.10. JSON MAPPING VIBW ..uuiieiiiii ettt e e e e e e et e e e e e eanas 544
19. Integrating with other web frameworks ..o 545
L TR O 0 T [T o) o P 545
19.2. CommoON CONFIQUIALIONiveiiii e e e e e e e e eees 546
19.3. JavaServer Faces 1.1 and 1.2 ..o 547
DelegatingVariableResolver (JSF 1.1/1.2)c..iiiiiiiiiiiiiii e 547
SpringBeanVariableResolver (JSF 1.1/1.2)ccvuiiiiiiiiiii e 548
SpringBeanFacesELRESOIVEr (JSF 1.24) ..o 548
FaceSCONEXIULIIS ... e e 548
19.4. Apache StrutS 1.X @Nd 2.X ...ceuuuiiiinieiiiieiie e e e e e e e e e e e e e 549
ContextLo@derPIUGIN e 549
DelegatingReqUESIPIOCESSONiiiiiiiieeiiiii et 550
DelegatingACIONPIOXYuuiiiiieee e e e e e e e e aaaeee 550
ACLIONSUPPOIT CIASSES ...ueiiieiiiiei et eeans 551
19.5. WEBWOIK 2.X ettt et e e et e e e e e et e e et e e ean e eees 551
19.6. TAPESITY 3.X AN 4.X ..iiieiieii i ei et e et e e e e e et e e e e e e e e e eaen 552
Injecting Spring-managed DEANSccuuiiiiiiiiiiiii e 553
Dependency Injecting Spring Beans into Tapestry pagescccceevveeennnn. 555
Component definition files ..o 556
Adding abStract BCCESSOISiiuiiiii i 557
Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x
LS Y= 559
19.7. FUINEI RESOUICES .. .ctuiiiiieei ettt et e et e e e e ean s 560
20. Portlet MVC FrameEWOIKiiiiiieiieiiie e e e e e e e et s e et e e e e e et s e e e e eaneee 561
P20 I 1o o [T 1 oo PSP 561
Controllers - The C N MVC ... 562
VIEWS - The V iN MVC ..o 562
WED-SCOPEA DBANSciieiiiiice e e 562
20.2. The Di spat Cher Port] @t ... 562
20.3. The Vi ewRender er SEr vVl €1 .o 564
P20 S o a1 170] | 1=7 = PSPPI 565
Abstract Control l er and Port| et Cont ent Generat orccccoceeviieenneennnn. 566
Other Simple CONIOIIEISvie e 567
Command CONIOIEIS ...t e e e eeaes 567
Portl et Wappi NgCont r ol | er ... 568

Spring Framework
3.2.1.RELEASE Reference Documentation XVii

Spring Framework

20.5. Handler MapPingsSoeeeeeeeeieriieei e ee e e e e e e et e e e e e e e et e e et e e e e e eaneeaens 568
Port | et ModeHandl er MBPPI N coeuieiiiiiie e 569
Par anmet er Handl r MAPPI MO ceeeiiiii e 569
Port| et ModePar anet er Handl er MBpPi NQ ..oovveveviiiiiieeeeeecee e, 570
Adding Handl er 1 Nt @r CePLt OF'S ..uiiuiii e 570
Handl er I nt er cept or Adapt €5 ..o 571
Par amet er Mappi NGl Nt er CEPL OF ovvviiii e 571
20.6. Views and resolving them ... 571
20.7. Multipart (file upload) SUPPOITuniiiii e 572
Using the Portl et Mul tipart ReSOl VEr ...ocoivviiiiiiii e 572
Handling a file upload in @ form ... 573
20.8. HandliNg ©XCEPLIONSceeviieiiiiie ettt ettt e et e e 576
20.9. Annotation-based controller configurationc.cccoeveii i 576
Setting up the dispatcher for annotation SUPPOITvevviiiiiiiiiiiiiieeeeeeen 576
Defining a controller with @ont rol | ercooviiiiiii e 577
Mapping requests with @Request MAPPI NG ..vveeeiriiiieie e 578
Supported handler method arguments ..o 579
Binding request parameters to method parameters with @Request Par am.......... 581
Providing a link to data from the model with @vwbdel Attributeceenenn.. 581
Specifying attributes to store in a Session with @essi onAttri butes 582
Customizing WebDat aBi nder initializationcccccooeeiiiiiiii e 582
Customizing data binding with @ ni t Bi nderc.ccoeveiiiiiiiiiiiieeee, 582
Configuring a custom WebBi ndi nglnitializercccoooiiiiiiiiiinin, 583
20.10. Portlet application deploymeENntcoooieiiiiiiiiii e 583
RV TR [01 (=T = o 584
21. Remoting and web Services USiNg SPriNgocoeuiiiuiiiiiei e 585
20 I T [o1 o o [T 1T o I PP 585
21.2. EXposing Services USING RMI ... oo 586
Exporting the service using the Rm Ser vi CEEXpOrt erc.oocoviviiiiiiineennnena. 586
Linking in the service at the ClIeNt ..., 587
21.3. Using Hessian or Burlap to remotely call services via HTTPcccccevvviiivinnn. 587
Wiring up the Di spat cher Ser vl et for Hessian and co.cccooeiiiiiiiiniennnn. 587
Exposing your beans by using the Hessi anSer vi ceExportercccooeveeeens 588
Linking in the service on the Client ... 589
USING BUITAP e et et 589
Applying HTTP basic authentication to a service exposed through Hessian or
2T T o P 589
21.4. Exposing services using HTTP INVOKEISoiiuuiiiiiiiiiiiiee e 590
EXpPosing the Service ODJECTcoiiii i 590
Linking in the service at the Clientcoooei i 591
21.5. WED SEIVICES ..ot 591
Exposing servlet-based web services using JAX-RPCcooiiiiiiiiiiniiiiiinnenens 592
Accessing web services using JAX-RPC ... 593
Registering JAX-RPC Bean Mappingsccuuveeuuiiiiiiiiiaeiieeei e 595
Registering your own JAX-RPC Handlercccooviiiiiiiiiiiii e 595
Exposing servlet-based web services using JAX-WSc.cocoiviiiiiiiiiieiinenis 596
Exporting standalone web services using JAX-WS ... 597
Exporting web services using the JAX-WS RI's Spring SUPPOrtcccevvueeeenn. 598
Accessing web services Using JAX-WS ... 598
20,8, IMIS ittt e et e e e e e e e e eanraa 599

Spring Framework

3.2.1.RELEASE Reference Documentation XViii

Spring Framework

Server-side ConfigUrationoiiiiiiiiiiic e 600
Client-side confiQUIAtioNcouuiiiiiiii e 601
21.7. Auto-detection is not implemented for remote interfacescccooevvviiiinieinnnnn. 602
21.8. Considerations when choosing a technologyc.ccoeveviiiiiii i, 602
21.9. Accessing RESTful services on the Clientccooooiiiiiiiiiii e 603
RESITEMPIALE ... e e e e 603
Working With the URIo.uii e 605
Dealing with request and response headersccooeveiviiiiiiiiiieiiineeeies 606
HTTP MeSSage CONVEISIONuiiiiiiiieieiti et e ettt e e et e et e e et e e eebe e eenes 606
StringHUPMESSAgECONVEIETiiiiiciii e e e e 607
FOrmHttpMeSSageCONVEITEYc.uieeieii e e e 607
ByteArrayHttpMessageCoONVEITErvuiviiiiiiieiee e 607
MarshallingHttpMeSSageCONVEIETccvveeiiiieeeieee e ee e e e e 607
MappingJackson2HttpMessageConverter (or
MappingJacksonHttpMessageConverter with Jackson 1.X)ccccceeeeees 608
SourceHttpMeSSageCONVEITETv..iie et e e 608
BufferedimageHttpMessageCoNVErterovvveui i 608
22. Enterprise JavaBeans (EJB) INtegrationcoooiiuuiiiiiiiiiieiiii e 609
P22 W 1o o U Tox 1 o o PRSP 609
22.2. ACCESSING EJIBS ...eiiiiiiii e 609
1070] g [o1=T o] 1< PP PP 609
ACCESSING 10CaAl SLSBS ...uiiiiiiiiiici e 609
ACCESSING FEMOLE SLSBS ...iiiiiiiiiiiti ettt e e et e e eaae e 611
Accessing EJB 2.X SLSBS versus EJB 3 SLSBSc..covviiiiiiiiiiiiieeeci e 611
22.3. Using Spring's EJB implementation support Classescccovevveveviiiieiiineinnnenn, 612
EJB 2.X DASE CIASSESuieiiiiiiiiei et 612
EJB 3 iNJECHON INTEICEPION ...t 614
23. IMS (Java MESSAQE SEIVICE) ...ceuueiinieiiieeeie ettt e e e e et e e e e et e e et e e e e et eaat e e eaaaeanees 616
P22 T I [o1 o o (U Tod 1o o R PP UP PP UUPTRUPTRN 616
23.2. USING SPriNG JMS ..ot 616
B8 0 30 =Y 01 01 = L= N 616
1070] o] a1 Tex 1 o] o ST 617
Caching Messaging RESOUICESuiiiiiiiiieiiiiieee et 617
SiNGIeCONNECHIONFACIOIYiiii e e e e e e een 617
CachingConNECHONFACIONYiieuiiiiieiie e 618
Destination ManageMENTuuiiiiiiiiieeeiii e 618
Message Listener CONtAINEISco.viiiiieii e e e e e 619
SimpleMessageListenerCOoNtaiNerccuuiiiiiiiiiiiii e 619
DefaultMessageListenerCONtAINETccoeuuieeiiiiieeiiiie e 619
Transaction MaNAQEMENTiiueiiii e e e e e e e e e e e e e eaaeeees 619
23.3. SENAING @ MBS SAGE ouuuiiiin ittt ettt e et e e e et et e e et e et e e 620
USING MESSAJE CONVEITEIS ...ouuueiiiiiieiiiii e ee et e et ettt e e ettt e e e et eeeabe e eees 621
Sessi onCal | back and Producer Cal | backcccooooviiiiiiiiii, 622
23.4. RECEIVING 8 MESSAQE ...uuieuniiit ettt e e et et et e e e e e et e e e e ean s 622
SYNChroNOUS RECEPLIONceiiiiiiiiii i 622
Asynchronous Reception - Message-Driven POJOScocciviviiiiiiiiiciiiieveeeenn, 622
The Sessi onAwar eMessagelLi st ener interfaceoocooviiiiiiiiiiiiiieineennn, 623
The MessageLi st ener Adapt €5 ... 624
Processing messages within transactionscoveviiieeiiieiiii i 625
23.5. Support for JCA Message ENdPOintsooeeuiiiiiiiiiiieiee e 626

Spring Framework
3.2.1.RELEASE Reference Documentation Xix

Spring Framework

23.6. JIMS NaAMESPACE SUPPOIT .eurieeiei e e e e e e e et e e e e e anaean s 628
22N 1 Y PPN 632
2 T [o1 (o o (U] 1T o I PP 632
24.2. Exporting your beans t0 JMXcoiuiiiiiiii e 632
Creating an MBEANSEI VEIiii ittt e ettt e e e et e e e eaaeees 634
Reusing an existing MBEANSET VBTiiiiiiiieiiii et 634
Lazy-initialized MBEANSccouuiiiiiiieei e e e 635
Automatic registration of MBEANSccouiiiiiiiiiii e 635
Controlling the registration Dehavior ... 636
24.3. Controlling the management interface of your beanscccocceiiiiiiiienennnn, 637
The MBeanl nf 0Assenbl er Interfaceocoooviiiiiiiiii e 637
Using Source-Level Metadata (JDK 5.0 annotations)ccoceevvinveiiiinnencnnnnnn. 637
Source-Level Metadata TYPES ...vvvuievieieii e ee e e e e e e e e e e 639

The Aut odet ect Capabl eMBeanl nf oAssenbl er interfaceccoceeevn. 641
Defining management interfaces using Java interfacesccccoccoeviviinivinennnnn. 641
Using Met hodNaneBasedMBean| nf oAssenbl erccoovviiiiiiiviiiiene 643
24.4. Controlling the Obj ect Names for your beansccoooviiiiiiiiiinii e 643
Reading Qbj ect Nanmes from Properti @Sooooviiiiiiiiiiiiii e 643
Using the Met adat aNam NGStrat €gY ...ooevvviviiieiiii e 644
Configuring annotation based MBean eXportcc.iviiiiiiiiiiiiiineieeeeeee e 645
24.5. JSR-160 CONNECIOISieuiiiniiteiie e e e et e et e e e e et e et e et e an e eneeanns 646
Server-Side CONNECLOISciiuuuieeiii ettt e et e e e e et e e eete e eaees 646
Client-Side CONNECLOISiieeeieiii et e e e e eeaaaees 647
JMX over Burlap/HESSIAN/SOAPciiiiiiiiiii e 647
24.6. Accessing MBEaNS Via PrOXI€Scccuuiiuiiiiiieiii e e e e e e 647
24.7. NOUFICALIONS ...ttt et e e e e e e et e eaaaaees 648
Registering Listeners for NOtIfiCatioNSovveiiiiiiiiiiiiii e 648
Publishing NOtfICAtIONSccuuiiiiiiii e e 652
24.8. FUMNEr RESOUICESuiiiiiii ettt et et e e e e e e eees 654
P2 TN [N O O L TP 655
P2 T I 1o o 0T 1 o] o U RSPP 655
25.2. ConfIQUIING CCl .uniiniii e 655
ConNector CONfIGUIALIONuuiiiiiiiie i e eens 655
Connecti onFact ory configuration in SPringcccovvveiiiiiiieiie e 656
Configuring CCl CONNECTIONSciutiiiiiiei e 656
Using a single CCl CONNECLIONcoiiutiiiiiiiee et 657
25.3. Using Spring's CCl aCCESS SUPPOIT ...vueiineiiieeiiieieieeeiee e e e e e e e e e eanes 658
RECOI CONVEISION ...ttt et e e e e et e eaa e eees 658

The CCi TeMPl Al € oo 659
[0 @ 2=]] Lo] 660
Automatic output record generationco.uoeveuiiein e 660
SUMMATY ettt et ettt e et r et e e e e e et neenneera e 661
Using a CCl Connectionand I nteractiondirectlycccooevviiiviiiieiiinennnnnns 662
Example for Cci Tenpl @t @ USAQEuoievniiiiiiii e 663
25.4. Modeling CCI access as operation ODJECSoovuuiiiiiiiiiiieiiiieeec e, 665
Mappi NGRECOr dOPEr @t i ON ...u.iii e e 665
Mappi NGCOMMAr €a0PET AL T ON .eieiiii e 665
Automatic output record generationooceeveieeieiiine e 666

ST 0 0= T Y 666
Example for Mappi ngRecor dOperati 0N USAQEccuuvvevniieriiiiiineeiiieeeieeeennnn 666

Spring Framework
3.2.1.RELEASE Reference Documentation XX

Spring Framework

Example for Mappi ngCommAr eaQper ati 0N USAQEvevvvnieeinierinieriiieeeieeennn 668
25.5. TrANSACLIONS ...cuiiiiiieiii et et et e et e et e e e e e ea s 670
P2 T =3 1= | PP 671
P2 T I 1 o o U Tox 1 o o PRSP 671
26.2. USBgE ouiiiiiiieii et ettt e aees 671
Basic Mai | Sender and Si npl eMai | MeSSage USAQEuvvvvvvenieiiiiiieieiiieeeenn 672
Using the JavaMai | Sender and the M mreMessagePr eparat or 673
26.3. Using the JavaMail M neMessageHel per ..., 674
Sending attachments and inline reSOUICEScc.uoviiiiiiiiiiiiii e 674
ALBCNMENTS ...t 674
INHINE FESOUICES ..eeiiit et e e e e 674
Creating email content using a templating libraryccoooiiiiiiiiiin. 675
A Velocity-based eXampleooveiiiiii e 675
27. Task Execution and SChedulingccouiiiiiii e 679
b A% T [o1 o o (U1 1T o IR 679
27.2. The Spring TaskExecut or abstractionccccoiiiviiiiiiiii e, 679
TASKEXECUL OF TYPES ouiiiiiiii ettt et e e e et e e e eaa s 679
USING 8 TASKEXECUL OF .iiiiiiiiiiii et enaes 680
27.3. The Spring TaskSchedul er abstractioncccoooviiiiiiii e, 681
The Tri gger INErACEcoou i e 682
Tri gger implementationsoooeeuiiiiii e 682
TaskSchedul er implementationscc.ovviiiiiiii i 683
27.4. Annotation Support for Scheduling and Asynchronous Execution 683
Enable scheduling annotationsooovieiiiiiiiiin e 683
The @Scheduled ANNOLALIONcciivuiiiiii e 684
The @ASYNC ANNOLALIONiiiiii e ea e 685
Executor qualification With @ASYNCooiiiiiiiiiiiiii e 686
27.5. The Task NAMESPACEc.ueiuuiiiiieii et e et e e e e e e e e e et e e e eanees 686
The 'scheduler' lement ... e 686
The 'eXeCULOr EIEMENTiie e e e e ean s 686
The 'scheduled-tasks' €lementooiiiiiiiiiii e 687
27.6. Using the Quartz SChedUIBTccuuiiiiii e 688
Using the JODDEtailBeaANc..uuiiiiiiiiiiiii e 688
Using the Met hodl nvoki ngJobDet ai | Fact oryBeancc.cccevvvvivivinnennnnnn. 689
Wiring up jobs using triggers and the Schedul er Fact oryBean 690
28. DYNamicC [anguage SUPPOITueieeteneteeii ettt e ettt ettt ettt e e e e e e eea e e eaba e eenees 691
P22 I 1o o [T 1 o o PRSP 691
28.2. A fIrSt @XAMPIE ..o 691
28.3. Defining beans that are backed by dynamic languagescccccooveviiieiiiiinnenes 693
1070} 310 0 To] o o0 g od= | K= 693
The <l ang: | anguage/ > element ..o 694
Refreshable beans ..o 694
Inline dynamic language source fileSccooveiiiieiiiiiii e 696
Understanding Constructor Injection in the context of dynamic-language-
backed DEANSiiii e 697
JRUDY DEANS ..o 698
GrOOVY DEANS ... 700
Customising Groovy objects via a callbackccoooviiiiiiiiiiii 701
BeanShell DEANSoouiiiii 702
284, SCENAIOS ...netieiii ettt ettt e e et e ettt et e e aaas 703

Spring Framework
3.2.1.RELEASE Reference Documentation XXi

Spring Framework

Scripted Spring MVC CoNtrollerscoovuiiiiieee e 703
Scripted Validators ... 704
28.5. BitS @Nd DODS ...iiiiiiiici e 705
AOP - advising SCripted DEANSoeiiiiiiiii i 705
Yoo o] o[R PP UPPTUPPN 705
28.6. FUMNEr RESOUICESuiiiiiieiiee ettt e e e et e e e e e e an e aeen 706
29. CaChe ADSIFACHION .. .cieieiiieiii e e e e et et aaa s 707
A I I [o o (U Tod 1o o PSPPSR UPTRN 707
29.2. Understanding the cache abstraCtioncoocoeuviiiiiiiiinneiiii e 707
29.3. Declarative annotation-based cachingccocoiieiiiiiiiici e, 708
@Cacheabl @ anNNOLALIONc..ieiiii e 708
Default Key GENErationc.uuiiiiiiiiiiiiiiie e 708

Custom Key Generation Declarationccooevuieiiiiiiiiiieii e 709
Conditional CacChingc..oiiiiii 709

Available caching SpEL evaluation CONtextccovvvveviiiiiiiiiinneiiiineeeeee, 709
@CaChePut anNOtAtIONiiiiiiiiiie et eeees 710
@TaChEEVI Ct @nNOALIONoeieieieii e e e e e e e aens 710

(@ 0= Tod o I Yo Jr= g LT] 7= L1 T o NSRS 711
Enable caching annotationsc..oioviiiiiiiiiiii e e e e e e e 711
UsiNg CUSTOM ANNOTALIONSieviiiiiiiiit et e e e e eees 714
29.4. Declarative XML-based cachingcooviiiiiiiiiiiiiii e 715
29.5. Configuring the cache Storagec.covvvuiiiiiii i 716
JDK Concurrent Map-based Cacheooooiiiiiiiiiiiiii e 716
Ehcache-based Cache ... 716
Dealing with caches without a backing storec.ccooceviviiiiiiieie e, 716
29.6. Plugging-in different back-end Cachesccoooiiiiiiiiiiii e 717
29.7. How can | set the TTL/TTI/Eviction policy/XXX feature?cccccoveviiiiiieiiiiinnnnnnns 717
RV LR Y o o 1T Lo [T =P 718
A. ClasSIC SPIING USAQEccuuiiiiiiiii ettt e et ettt e e e e e et e e et e eanaeeees 719
AL ClasSIC ORM USAQE ...ccvvuiiiiiiiiieiiiit ettt et et e e et e e e e e e ea e eaaans 719
HIDEINALE ..ot e e 719

The Hibernat eTenpl at @ ... 719
Implementing Spring-based DAOs without callbackscooeiieiiinnnnn. 720

|5 PP 721
JdoTenpl at € and JAODa0SUPPOIrt ..uoeeeniiiiiiiiiei e 721

TP A e e aaa 722
JpaTenpl at € and JPaDaoSUPPOrt ...ooveeiiiiiieee e e 723

A.2. ClassiC SPriNG MVC ...t e e e e e 724
ALB. IMS USAGE .ottt 724
B 141 1= 0 0] o] F= L (= 724
Asynchronous Message ReCeptionooooiiiiiiiiiiiiiiii e 725

L©] o] o T=Tox 1 o] o 725
Transaction ManagemMENTc.uuiiiii e e e e e e e e e eees 725

B. ClassiC SPring AOP USAQJEuiiiuuiiiiiaiii ettt et e e et e e e e et e et e eanaas 726
B.1. Pointcut API iN SPIiNQG .ooovuiiiiiiieiii e 726
L 0] 07T o] £ 726
Operations 0N POINTCULSiietiiii et e e e e e et e e e e eanaeeaes 727
ASpPeCtI eXPresSSioN POINTCULSiiiieieeiiiie et e et 727
Convenience pointcut implementationscovvviiiiiin e 727
StAtIC POINTCULS ...ttt e e e e e e et e e e eees 727

Spring Framework
3.2.1.RELEASE Reference Documentation XXii

Spring Framework

DYNaMIC POINTCULS .ivvniii i e e e e e e e e e e e e e e eanaees 728

POINTCUL SUPEICIASSES ...ttt 729
CUSEOM POINICULS ...ieiiiei ettt e e e et e e e eae s 729

B.2. AAVICE API IN SPIING ..oiiiiiiii e 729
AVICE lIFECYCIES ..o e e 729
AQVICE TYPES IN SPIING .euieeiitieieiii et eaaens 730
Interception around AdVICEcc.uiiiiiiieiiiie e 730

BefOre @0VICEoeeeiiiiiei e 730

LI LTS T= Lo 1Y T S 731

After REtUrNiNg adVICEccvuuiiii e e e e 732
INErOdUCEION AAVICE ...t e e 733

B.3. AdVISOr API N SPIiNG ..eeuiiiiiiieiii et 735
B.4. Using the ProxyFactoryBean to create AOP ProXi€scccoovveviieiiinieiieiiineennnnns 736
B CS ittt 736
JavaBeaNn PrOPEITIESc.vuuiiiiiii et e e e 736
JDK- and CGLIB-based ProXIEScccuuiiiiiiieiieiiiieeei e ee e e e e e ean e een 737
Proxying INTEITACESccuiiiii e e 738
PrOXYING ClASSES . .oviiiiiiiiiii e 740
Using 'global’ @dVISOIScccuuiiiiicee e 741

B.5. Concise proxy definitionNS oo 741
B.6. Creating AOP proxies programmatically with the ProxyFactoryccc....... 742
B.7. Manipulating advised ObJECEScouuiiiiii i 743
B.8. Using the "autoproxy" facility ..o 744
Autoproxy bean definitionsoiiiiiiiii 745
BeanNameAUtOPIOXYCIEALONcc.ueieieee e eei e e e e e e e e 745
DefaultAdViSOrAUtOPIOXYCIEALONuiieiiiiiiieiii e e 745
AbstractAdViSOrAULOPIOXYCIEALONueiiiiiieeiiiii e 746

Using metadata-driven auto-proXyingeeeeeieeriieerineeeineeeieeesneeanneeenneeeenns 746

B.9. USING TArgEISOUITES ... ceuuieiiiii ettt ettt e e et et e e et e e et e e eaeaenns 748
Hot swappable target SOUICESocoeuuiiiiiiiii et 749
LoTo] [T To T c= T[] =T o U od = P 749
Prototype target SOUICESccuuieeiiiiiie ettt e e e e eaeeans 751
ThreadLocal target SOUICESccocuuiiiiiiiiieeiii e 751
B.10. Defining NeW AdVi CE TYPES .oivvniiii e e e e e 751
B.11. FUIMNEI TESOUICES .. .euniitiieit ettt et e et e e e e et e e e e anaeeees 752
C. Migrating to Spring Framework 3.1 ... 753
C.1. Component scanning against the "org" base packagec.ccccoeveviiveviinivinnennnn, 753
D. Migrating to Spring Framework 3.2 ... 754
D.1. Newly optional dependencCiesoviieiiiiiiiiiiiee e e 754
D.2. EHCache support moved to spring-contexXt-SUPPOItcccuvvverrerreeeiniereineeannaens 754
D.3. Inlining Of SPriNG-8SM JAIcoouiiiiiiii e 754
D.4. Explicit CGLIB dependency no longer requiredocoeevenieeeeiinieeeeiinneeeeiineeeeens 754
D.5. FOI OSGI USEIS ..uuuieiiiiiietiitia ettt e et e e e ettt e et e e et e e e e et e e e e et e e e eabnnas 754
D.6. MVC Java Config and MVC NaAMESPACEeeeuriiiiniiiiaaiiieiiiie et eieeeanas 755
D.7. Decoding of URI Variable ValUEScoooiiiiiiiiiiiiiiii e 755
D.8. HTTP PATCH MELNOccoiiiiiiiiiie e 755
D0, TS 3 ittt a e e e 755
D.10. Spring MVC Test standalone Projectooeeuiiiiiiiiiiiiiii e 755
D.11. Spring Test DEPENUENCIEScccvuiiiiiieiii et e e e e e eaaaees 755
D.12. PUDIC API ChANQES ...ttt a s 756

Spring Framework
3.2.1.RELEASE Reference Documentation XXiii

Spring Framework

B |31 = o £ S 756

(BT o] (=Tor= Vi (o] o 1T RPT PP 756

E. XML Schema-based CONfIgUIationcoouuiiiiiiiiiiii e 758
O i o Lo (U1 i o] o PP 758
E.2. XML Schema-based configurationc.cocouiiiiiiiiiiii e 759
Referencing the SChemMAscooiiiiiiii i 759

The Ut i] SChEMA ..o e 759

SUL T2 CONSEANT/ > oo e 760
<util:property-path/ > 761

SULT | ProPerti €S/ > oo 763

SUL T 2 LT S > e 764

ST L0 A 1 - Yo PN 764

T LA =Y = PPN 765

The | €8 SChEMA ... e 766
<jee:jndi -1 ookup/ > (SIMPIE) ..covvvniiiiiiii e 766

<j ee: j ndi - | ookup/ > (with single JNDI environment setting) 767

<j ee:j ndi - | ookup/ > (with multiple JNDI environment settings) 767
<jee:jndi -1 0okup/ > (COMPIEX) ..uiiiiiiieiiiii e 767
<jee:local -sl sb/ > (SIMPIE) ..c.uoiviiiiei i 768

<j ee:l ocal - sl sb/ > (COmMPIEX)oeieuiiiiiiii 768
<jeerrendte-Slshl > 768

The | aNg SCHEMA ...covni e e e e e aen 769
The | IMB SChEMA ..o e 769

The t X (transaction) SCREMAcciiuiiiiiii e 770

THE Q0P SCHEMA ..uiiiie e e e e eaes 771

The cont eXt SCheM@ ..o 771
<property-placehol der/ >cccooiiiiiiiii 771
<annotati on-confi g/ > oo 772
<COMPONENT = SCANT > Lo e 772

<l oad-ti MB- WBAVEI/ > ..ot e e e 772
<SPring-configured/ > . 772

<MDEAN- EXPOT T/ > e 772

The t 001 SCREM@ ...ceeii e e 772

The [dBC SCheM@ .. ccee e 772

The cache SChemMa ... e 773

The Deans SCREMAcouuii e e 773

F. Extensible XML authOriNgGc..uioiiiiii e e e e e e e 775
S O 1 (o To [¥ (o 1 o] o KU PP PTRPPPR 775
F.2. Authoring the SChema ... 775
F.3. Coding a NamespaceHandl €rcoooiiiiiiiiiii e 777
F.4. Coding a BeanDef i Ni 11 ONPAr SEI ..o 777
F.5. Registering the handler and the schemac.ccooiiiiiiiii e, 778
"META- I NF/ spring. handl ers' ... 778
"IVETA- I NF/ SPring. SCREIMAS" ..o e 779

F.6. Using a custom extension in your Spring XML configurationcc....ccceenieees 779
F.7. Meatier EXamPIESccvuiiiiiieiii et e e e e e e e 779
Nesting custom tags Within CUSIOM tAGSoieuuiiiiiiiiiec e 780
Custom attributes on 'normal’ elementscooooeiiiiiiii 784

F.8. FUMNEr RESOUICTES . .couuiiiiiii et e e e 787
LC T o] 110To 11 o HEN PP 788

Spring Framework
3.2.1.RELEASE Reference Documentation XXV

Spring Framework

L 101 10T [¥ o1 1o o TP PTRUPPRPIN 788
LT N o TN oY I T I = o [PP UPPTRUPRN 788
G.3. The €SCAPEBOAY TAQ oivtuuiiiiiii ittt e e e eeees 789
G.4. The hasBi NAEr FOF'S A0 ..cvvuueienieiiiieeie e e e e e e e e e e et e e e eeens 789
G.5. The Nt M ESCAPE TG - .ievuniiiniiiiiiii ettt e e e e eens 790
G.6. TNE MESSAGE TG +.ueeevrnnieiiiti ittt ettt ettt e et e e et e e et e eeenens 790
G.7. The nest edPat h tagccuiiiiiii e 792
G.8. ThE L NEME LAG .tuieeiiiiii e et eeaa s 792
G.9. The transSf OF MEAQ .oocvvniiiii e et eees 794
L0 0 T I 1= 1 O Vo PP 795
G.11. THE @VAl TAQ oeeuiiiiiiii et 796
H. SPrING-TOrMLIIA ..o et 797
H. L. INFOAUCHION ...ttt e e e e e e e e e e ennnes 797
H.2. The CheCKDOX Tag ...ooeeniiiiieii et 797
H.3. The CheCKDOXES tagooiiiiiiiiiii e 799
[I S I g Lo =Y oY = - Vo 801
H.5. THE f OF MEAG ceniiieie e e 802
H.6. The Ni dden A0 ...coeeveiiiiiii e 804
[O I T= S o 01U S - Vo 804
H.8. The [@bl Tag ..occeniiiiii e 806
H.9. The OPLi ON TG ...iieeiiiiiiiii e e 807
[100 O T I o TN o A o T T = Vo 809
H.11. The PASSWOT @ TAG tetuieiiiiiiiaiii ettt e e e e e e e e e aees 810
H.12. The radi 0bUt T ON TAG ..ovvuiiiiiie e 812
H.13. The radi ObULt t ONS TAQ ..uoivvniiii e e e e 814
H.14. THE Sl CT TAQ ..iietiiiiiiiiiii ettt et e e e eens 816
H.15. THe T @XT Ar €8 T80 +. . eevvrniiiiiii e e et e eeeni e e 818

Spring Framework
3.2.1.RELEASE Reference Documentation XXV

Part |I. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that
you need, without having to bring in the rest. You can use the 1oC container, with Struts on top, but you
can also use only the Hibernate integration code or the JDBC abstraction layer. The Spring Framework
supports declarative transaction management, remote access to your logic through RMI or web services,
and various options for persisting your data. It offers a full-featured MVC framework, and enables you
to integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be
easy to isolate these dependencies from the rest of your code base.

This document is a reference guide to Spring Framework features. If you have any requests, comments,
or questions on this document, please post them on the user mailing list or on the support forums at
http://forum.springsource.org/.

http://forum.springsource.org/

Spring Framework

1. Introduction to Spring Framework

Spring Framework is a Java platform that provides comprehensive infrastructure support for developing
Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from “plain old Java objects” (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to
full and partial Java EE.

Examples of how you, as an application developer, can use the Spring platform advantage:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
* Make a local Java method a remote procedure without having to deal with remote APIs.

» Make a local Java method a management operation without having to deal with IMX APIs.

* Make a local Java method a message handler without having to deal with IMS APIs.

1.1 Dependency Injection and Inversion of Control

Background

“The question is, what aspect of control are [they] inverting?” Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency Injection.

For insightinto loC and DI, refer to Fowler's article at http://martinfowler.com/articles/injection.html.

Java applications -- a loose term that runs the gamut from constrained applets to n-tier server-side
enterprise applications -- typically consist of objects that collaborate to form the application proper. Thus
the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks the
means to organize the basic building blocks into a coherent whole, leaving that task to architects and
developers. True, you can use design patterns such as Factory, Abstract Factory, Builder, Decorator,
and Service Locator to compose the various classes and object instances that make up an application.
However, these patterns are simply that: best practices given a name, with a description of what the
pattern does, where to apply it, the problems it addresses, and so forth. Patterns are formalized best
practices that you must implement yourself in your application.

The Spring Framework Inversion of Control (IloC) component addresses this concern by providing a
formalized means of composing disparate components into a fully working application ready for use.
The Spring Framework codifies formalized design patterns as first-class objects that you can integrate
into your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

1.2 Modules

The Spring Framework consists of features organized into about 20 modules. These modules are
grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, and Test, as shown in the following diagram.

Spring Framework
3.2.1.RELEASE Reference Documentation 2

http://martinfowler.com/articles/injection.html

Spring Framework

FSpr:fng Framework Runtime A
Data Access/Integration Web
(MVC / Remaoting)
[Web] { Servlet]
{ Portlet] { Struts]
[Transactions J
N FARN .
s ™y
[AOQP] Aspects] [Instrumentation
e "
Core Container
Expression
Beans Core Context Language
[Test]
L A

Overview of the Spring Framework

Core Container
The Core Container consists of the Core, Beans, Context, and Expression Language modules.

The Core and Beans modules provide the fundamental parts of the framework, including the 1oC and
Dependency Injection features. The BeanFact ory is a sophisticated implementation of the factory
pattern. It removes the need for programmatic singletons and allows you to decouple the configuration
and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a means
to access objects in a framework-style manner that is similar to a JNDI registry. The Context module
inherits its features from the Beans module and adds support for internationalization (using, for example,
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by,
for example, a servlet container. The Context module also supports Java EE features such as EJB,
JMX ,and basic remoting. The Appl i cat i onCont ext interface is the focal point of the Context module.

The Expression Language module provides a powerful expression language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the context of arrays, collections and indexers,
logical and arithmetic operators, named variables, and retrieval of objects by name from Spring's loC
container. It also supports list projection and selection as well as common list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and Transaction modules.

Spring Framework
3.2.1.RELEASE Reference Documentation 3

Spring Framework

The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding
and parsing of database-vendor specific error codes.

The ORM module provides integration layers for popular object-relational mapping APIs, including JPA,
JDO, Hibernate, and iBatis. Using the ORM package you can use all of these O/R-mapping frameworks
in combination with all of the other features Spring offers, such as the simple declarative transaction
management feature mentioned previously.

The OXM module provides an abstraction layer that supports Object/XML mapping implementations for
JAXB, Castor, XMLBeans, JiBX and XStream.

The Java Messaging Service (JMS) module contains features for producing and consuming messages.

The Transaction module supports programmatic and declarative transaction management for classes
that implement special interfaces and for all your POJOs (plain old Java objects).

Web
The Web layer consists of the Web, Web-Servlet, Web-Struts, and Web-Portlet modules.

Spring's Web module provides basic web-oriented integration features such as multipart file-upload
functionality and the initialization of the IoC container using servlet listeners and a web-oriented
application context. It also contains the web-related parts of Spring's remoting support.

The Web-Servlet module contains Spring's model-view-controller (MVC) implementation for web
applications. Spring's MVC framework provides a clean separation between domain model code and
web forms, and integrates with all the other features of the Spring Framework.

The Web-Struts module contains the support classes for integrating a classic Struts web tier within a
Spring application. Note that this support is now deprecated as of Spring 3.0. Consider migrating your
application to Struts 2.0 and its Spring integration or to a Spring MVC solution.

The Web-Portlet module provides the MVC implementation to be used in a portlet environment and
mirrors the functionality of Web-Servlet module.

AOP and Instrumentation

Spring's AOP module provides an AOP Alliance-compliant aspect-oriented programming
implementation allowing you to define, for example, method-interceptors and pointcuts to cleanly
decouple code that implements functionality that should be separated. Using source-level metadata
functionality, you can also incorporate behavioral information into your code, in a manner similar to that
of .NET attributes.

The separate Aspects module provides integration with AspectJ.

The Instrumentation module provides class instrumentation support and classloader implementations
to be used in certain application servers.

Test

The Test module supports the testing of Spring components with JUnit or TestNG. It provides consistent
loading of Spring ApplicationContexts and caching of those contexts. It also provides mock objects that
you can use to test your code in isolation.

Spring Framework
3.2.1.RELEASE Reference Documentation 4

Spring Framework

1.3 Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios, from applets
to full-fledged enterprise applications that use Spring's transaction management functionality and web

framework integration.

- L | Integration
Form Muitipart B?ﬁ;’"‘fo with JSP
Controllers Resolver Domain f, odel Velocity, SLT.
N | || PDF, Excel
WebApplication Context
Sending Remote
Email Access
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomeat serv.l‘et cmts‘ner | c”stam DAO‘)Heposjw.(es

Typical full-fledged Spring web application

Spring's declarative transaction management features make the web application fully transactional, just
as it would be if you used EJB container-managed transactions. All your custom business logic can be
implemented with simple POJOs and managed by Spring's IoC container. Additional services include
support for sending email and validation that is independent of the web layer, which lets you choose
where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-
layer with the domain model, removing the need for Act i onFor ns or other classes that transform HTTP
parameters to values for your domain model.

Spring Framework

3.2.1.RELEASE Reference Documentation 5

Spring Framework

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions
for POJOs

ORM Mappings
Tomcat Serviet Container Custom DAO/Repositories

Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with WebWork, Struts, Tapestry, or other Ul frameworks can be integrated with a Spring-
based middle-tier, which allows you to use Spring transaction features. You simply need to wire up your

business logic using an Appl i cati onCont ext and use a WebAppl i cati onCont ext to integrate
your web layer.

Spring Framework
3.2.1.RELEASE Reference Documentation 6

Spring Framework

JAX RPC Client Hessian Client Burlap Client RAMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Remoting usage scenario

When you need to access existing code through web services, you can use Spring's Hessi an-,
Bur | ap-, Rm - or JaxRpcPr oxyFact ory classes. Enabling remote access to existing applications
is not difficult.

EJB Access Layer
(using Sisbinvokers)

Spring-managed EJBs
(using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WebLogic, JBoss)

EJBs - Wrapping existing POJOs

Spring Framework
3.2.1.RELEASE Reference Documentation 7

Spring Framework

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans,
enabling you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable,
fail-safe web applications that might need declarative security.

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble all the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies
are not virtual components that are injected, but physical resources in a file system (typically). The
process of dependency management involves locating those resources, storing them and adding them
to classpaths. Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect
(e.g. my application depends on conmons- dbcp which depends on conmons- pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify
and manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of
Spring that you need. To make this easier Spring is packaged as a set of modules that separate the
dependencies as much as possible, so for example if you don't want to write a web application you
don't need the spring-web modules. To refer to Spring library modules in this guide we use a shorthand
naming convention spri ng-* orspri ng-*.j ar, where "*" represents the short name for the module
(e.g. spring-core,spring-webnvc, spring-j ns, etc.). The actual jar file name that you use may
be in this form (see below) or it may not, and normally it also has a version number in the file name
(e.g. spring-core-3.0.0. RELEASE. j ar).

In general, Spring publishes its artifacts to four different places:

» On the community download site http://www.springsource.org/download/community. Here you find all
the Spring jars bundled together into a zip file for easy download. The names of the jars here since
version 3.0 are in the form or g. spri ngf ranewor k. *- <ver si on>. j ar.

» Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available
from Maven Central and a large section of the Spring community uses Maven for dependency
management, so this is convenient for them. The names of the jars here are in the form spri ng- *-
<versi on>. j ar and the Maven groupld is or g. spri ngf r amewor k.

» The Enterprise Bundle Repository (EBR), which is run by SpringSource and also hosts all the libraries
that integrate with Spring. Both Maven and Ivy repositories are available here for all Spring jars and
their dependencies, plus a large number of other common libraries that people use in applications with
Spring. Both full releases and also milestones and development snapshots are deployed here. The
names of the jar files are in the same form as the community download (or g. spri ngf r amewor k. * -
<ver si on>. j ar), and the dependencies are also in this "long" form, with external libraries (not from
SpringSource) having the prefix com spri ngsour ce. See the FAQ for more information.

* In a public Maven repository hosted on Amazon S3 for development snapshots and milestone
releases (a copy of the final releases is also held here). The jar file names are in the same form
as Maven Central, so this is a useful place to get development versions of Spring to use with other
libraries deployed in Maven Central.

So the first thing you need to decide is how to manage your dependencies: most people use an
automated system like Maven or Ivy, but you can also do it manually by downloading all the jars yourself.

Spring Framework
3.2.1.RELEASE Reference Documentation 8

http://www.springsource.org/download/community
http://www.springsource.com/repository/app/faq

Spring Framework

When obtaining Spring with Maven or lvy you have then to decide which place you'll get it from. In
general, if you care about OSGi, use the EBR, since it houses OSGi compatible artifacts for all of Spring's
dependencies, such as Hibernate and Freemarker. If OSGi does not matter to you, either place works,
though there are some pros and cons between them. In general, pick one place or the other for your
project; do not mix them. This is particularly important since EBR artifacts necessarily use a different
naming convention than Maven Central artifacts.

Table 1.1. Comparison of Maven Central and SpringSource EBR Repositories

Feature Maven Central EBR
OSGi Compatible Not explicit Yes
Number of Artifacts Tens of thousands; all kinds Hundreds; those that Spring

Consistent Naming Conventions

Naming Convention: Groupld

Naming Convention: Artifactld

No

Varies. Newer artifacts often
use domain name, e.g. org.slf4j.
Older ones often just use the
artifact name, e.g. log4j.

Varies. Generally the project or
module name, using a hyphen
"-" separator, e.g. spring-core,
logj4.

integrates with
Yes

Domain name of origin or
main package root, e.g.
org.springframework

Bundle Symbolic Name, derived
from the main package root, e.g.
org.springframework.beans. If
the jar had to be patched to
ensure OSGi compliance then
com.springsource is appended,
e.g.
com.springsource.org.apache.log4j

Naming Convention: Version

Publishing

Quality Assurance

Hosting

Varies. Many new artifacts
use m.m.m or m.m.m.X (with
m=digit, X=text). Older ones use
m.m. Some neither. Ordering is
defined but not often relied on,
S0 not strictly reliable.

Usually automatic via rsync or
source control updates. Project
authors can upload individual
jars to JIRA.

By policy. Accuracy is
responsibility of authors.

Contegix. Funded by Sonatype
with several mirrors.

OSGi version number m.m.m.X,
e.g. 3.0.0.RC3. The text qualifier
imposes alphabetic ordering on
versions with the same numeric
values.

Manual (JIRA processed by
SpringSource)

Extensive for OSGi manifest,
Maven POM and lvy metadata.
QA performed by Spring team.

S3 funded by SpringSource.

Search Utilities

Various

http://www.springsource.com/
repository

3.2.1.RELEASE

Spring Framework
Reference Documentation

http://www.springsource.com/repository
http://www.springsource.com/repository

Spring Framework

Feature Maven Central EBR

Integration with SpringSource | Integration through STS Extensive integration through
Tools with Maven dependency STS with Maven, Roo,
management CloudFoundry

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn't have to locate
and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is
for logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first
with Maven and then with lvy. In all cases, if anything is unclear, refer to the documentation of your
dependency management system, or look at some sample code - Spring itself uses lvy to manage
dependencies when it is building, and our samples mostly use Maven.

Maven Dependency Management

If you are using Maven for dependency management you don't even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don't need to compile against Spring APls,
which is typically the case for basic dependency injection use cases.

We used the Maven Central naming conventions in the example above, so that works with Maven
Central or the SpringSource S3 Maven repository. To use the S3 Maven repository (e.g. for milestones
or developer snapshots), you need to specify the repository location in your Maven configuration. For
full releases:

<repositories>
<reposi tory>
<i d>com spri ngsource. reposi tory. maven. r el ease</i d>
<url >http://repo.springsource.org/rel ease/ </ url >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

Spring Framework
3.2.1.RELEASE Reference Documentation 10

Spring Framework

<repositories>
<reposi tory>
<i d>com spri ngsource. reposi tory. maven. m | estone</i d>
<url >http://repo.springsource.org/mlestone/</url>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</ repository>
</repositories>

And for snapshots:

<repositories>
<reposi tory>
<i d>com spri ngsource. reposi tory. maven. snapshot </ i d>
<url| >http://repo. springsource. org/snapshot/</url >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

To use the SpringSource EBR you would need to use a different nhaming convention for the
dependencies. The names are usually easy to guess, e.g. in this case it is:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifact!|d>org.springframework.context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

You also need to declare the location of the repository explicitly (only the URL is important):

<repositories>
<reposi tory>
<i d>com spri ngsource. reposi tory. bundl es. rel ease</i d>
<url >http://repository.springsource.con maven/ bundl es/ rel ease/ </ url| >
</ repository>
</repositories>

If you are managing your dependencies by hand, the URL in the repository declaration above is not
browsable, but there is a user interface at http://www.springsource.com/repository that can be used to
search for and download dependencies. It also has handy snippets of Maven and Ivy configuration that
you can copy and paste if you are using those tools.

Ivy Dependency Management
If you prefer to use lvy to manage dependencies then there are similar names and configuration options.

To configure Ivy to point to the SpringSource EBR add the following resolvers to your
i vysettings. xnl:

Spring Framework
3.2.1.RELEASE Reference Documentation 11

http://www.springsource.com/repository
http://ant.apache.org/ivy

Spring Framework

<resol ver s>
<ur| nane="com springsource. repository. bundl es. rel ease" >
<ivy pattern="http://repository.springsource.conlivy/bundles/rel ease/
[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.conlivy/bundles/rel ease/
[organi sation]/[nodul e]/[revision]/[artifact]-[revision].[ext]" />
<lurl>
<ur| nane="com springsource. repository. bundl es. external ">
<ivy pattern="http://repository.springsource.conlivy/bundl es/external/
[organi sation]/[nmodule]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.conlivy/bundl es/external/
[organi sation]/[nodul e]/[revision]/[artifact]-[revision].[ext]" />

</url>

</resol ver s>

The XML above is not valid because the lines are too long - if you copy-paste then remove the extra
line endings in the middle of the url patterns.

Once lvy is configured to look in the EBR adding a dependency is easy. Simply pull up the details page
for the bundle in question in the repository browser and you'll find an Ivy snippet ready for you to include
in your dependencies section. For example (ini vy. xm):

<dependency org="org. spri ngfranewor k"
nane="or g. spri ngf ranewor k. core" rev="3.0.0. RELEASE" conf="conpile->runtime"/>

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates
with lots of other tools all of which have also made a choice of logging dependency. One of the goals
of an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework.
It's important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do this
is to make one of the modules in Spring depend explicitly on conmons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on conmons- | oggi ng,
then it is from Spring and specifically from the central module called spri ng- cor e.

The nice thing about conmons- | oggi ng is that you don't need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging frameworks in well known places
on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to).
If nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL
for short). You should find that your Spring application works and logs happily to the console out of the
box in most situations, and that's important.

Spring Framework
3.2.1.RELEASE Reference Documentation 12

Spring Framework

Not Using Commons Logging

Unfortunately, the runtime discovery algorithm in conmons- | oggi ng, while convenient for the end-
user, is problematic. If we could turn back the clock and start Spring now as a new project it would use
a different logging dependency. The first choice would probably be the Simple Logging Facade for Java
(SLF4J), which is also used by a lot of other tools that people use with Spring inside their applications.

Switching off commons- | oggi ng is easy: just make sure it isn't on the classpath at runtime. In Maven
terms you exclude the dependency, and because of the way that the Spring dependencies are declared,
you only have to do that once.

<dependenci es>
<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
<excl usi ons>
<excl usi on>
<groupl d>commons- | oggi ng</ gr oupl d>
<artifact!|d>comons-1| oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is probably broken because there is no implementation of the JCL API on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an
alternative implementation of JCL using SLF4J as an example.

Using SLF4J

SLF4J is a cleaner dependency and more efficient at runtime than conmons- | oggi ng because it uses
compile-time bindings instead of runtime discovery of the other logging frameworks it integrates. This
also means that you have to be more explicit about what you want to happen at runtime, and declare it
or configure it accordingly. SLF4J provides bindings to many common logging frameworks, so you can
usually choose one that you already use, and bind to that for configuration and management.

SLF4J provides bindings to many common logging frameworks, including JCL, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need
to replace the cormons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that
then logging calls from within Spring will be translated into logging calls to the SLF4J API, so if other
libraries in your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4J. You need to supply 4 dependencies (and exclude the existing conmons- | oggi ng): the bridge,
the SLF4J API, the binding to Log4J, and the Log4J implementation itself. In Maven you would do that
like this

Spring Framework
3.2.1.RELEASE Reference Documentation 13

http://www.slf4j.org

Spring Framework

<dependenci es>
<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
<excl usi ons>
<excl usi on>
<groupl d>commons- | oggi ng</ gr oupl d>
<artifact!|d>comons-1 oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slf4j</artifactld>
<versi on>1. 5. 8</ ver si on>
<scope>runti me</ scope>
</ dependency>
<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>1. 5. 8</ ver si on>
<scope>runti me</ scope>
</ dependency>
<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1o0g4j12</artifactld>
<versi on>1. 5. 8</ ver si on>
<scope>runti me</ scope>
</ dependency>
<dependency>
<gr oupl d>| og4j </ gr oupl d>
<artifactld>l og4j </artifactld>
<version>1. 2. 14</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

That might seem like a lot of dependencies just to get some logging. Well it is, but it is optional, and it
should behave better than the vanilla conmons- | oggi ng with respect to classloader issues, notably if
you are in a strict container like an OSGi platform. Allegedly there is also a performance benefit because
the bindings are at compile-time not runtime.

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the extra binding step because Logback
implements SLF4J directly, so you only need to depend on two libraries not four (j cl - over - sl f 4] and
| ogback). If you do that you might also need to exclude the slf4j-api dependency from other external
dependencies (not Spring), because you only want one version of that API on the classpath.

Using Log4J

Many people use Log4j as a logging framework for configuration and management purposes. It's efficient
and well-established, and in fact it's what we use at runtime when we build and test Spring. Spring
also provides some utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

Spring Framework
3.2.1.RELEASE Reference Documentation 14

http://logback.qos.ch
http://logging.apache.org/log4j

Spring Framework

To make Log4j work with the default JCL dependency (conmons- | oggi ng) all you need to do is put
Log4j on the classpath, and provide it with a configuration file (I og4j . properti es orl og4j . xnl in
the root of the classpath). So for Maven users this is your dependency declaration:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
<dependency>
<gr oupl d>| og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

And here's a sample log4j.properties for logging to the console:

| 0g4j . r oot Cat egor y=I NFO, st dout

| og4j . appender. st dout =or g. apache. | og4j . Consol eAppender

| 0g4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

| 0g4j . appender. stdout. | ayout. Conver si onPat t er n=%I{ ABSOLUTE} %p % %{2}:% - %rm

| 0g4j . cat egory. org. spri ngf ramewor k. beans. f act or y=DEBUG

Runtime Containers with Native JCL

Many people run their Spring applications in a container that itself provides an implementation
of JCL. IBM Websphere Application Server (WAS) is the archetype. This often causes problems,
and unfortunately there is no silver bullet solution; simply excluding conmons- | oggi ng from your
application is not enough in most situations.

To be clear about this: the problems reported are usually not with JCL per se, or even with conmons-
| oggi ng: rather they are to do with binding commons- | oggi ng to another framework (often Log4J).
This can fail because commons- | oggi ng changed the way they do the runtime discovery in between
the older versions (1.0) found in some containers and the modern versions that most people use now
(1.1). Spring does not use any unusual parts of the JCL API, so nothing breaks there, but as soon as
Spring or your application tries to do any logging you can find that the bindings to Log4J are not working.

In such cases with WAS the easiest thing to do is to invert the class loader hierarchy (IBM calls it "parent
last") so that the application controls the JCL dependency, not the container. That option isn't always
open, but there are plenty of other suggestions in the public domain for alternative approaches, and
your mileage may vary depending on the exact version and feature set of the container.

Spring Framework
3.2.1.RELEASE Reference Documentation 15

Part Il. What's New in Spring 3

Spring Framework

2. New Features and Enhancements in Spring
Framework 3.0

If you have been using the Spring Framework for some time, you will be aware that Spring has
undergone two major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in
November 2007. It is now time for a third overhaul resulting in Spring Framework 3.0.

Java SE and Java EE Support
The Spring Framework is now based on Java 5, and Java 6 is fully supported.

Furthermore, Spring is compatible with J2EE 1.4 and Java EE 5, while at the same time introducing
some early support for Java EE 6.

2.1 Java b

The entire framework code has been revised to take advantage of Java 5 features like generics, varargs
and other language improvements. We have done our best to still keep the code backwards compatible.
We now have consistent use of generic Collections and Maps, consistent use of generic FactoryBeans,
and also consistent resolution of bridge methods in the Spring AOP API. Generic ApplicationListeners
automatically receive specific event types only. All callback interfaces such as TransactionCallback and
HibernateCallback declare a generic result value now. Overall, the Spring core codebase is how freshly
revised and optimized for Java 5.

Spring's TaskExecutor abstraction has been updated for close integration with Java 5's
java.util.concurrent facilities. We provide first-class support for Callables and Futures now, as well
as ExecutorService adapters, ThreadFactory integration, etc. This has been aligned with JSR-236
(Concurrency Utilities for Java EE 6) as far as possible. Furthermore, we provide support for
asynchronous method invocations through the use of the new @Async annotation (or EJB 3.1's
@Asynchronous annotation).

2.2 Improved documentation

The Spring reference documentation has also substantially been updated to reflect all of the changes
and new features for Spring Framework 3.0. While every effort has been made to ensure that there are
no errors in this documentation, some errors may nevertheless have crept in. If you do spot any typos
or even more serious errors, and you can spare a few cycles during lunch, please do bring the error to
the attention of the Spring team by raising an issue.

2.3 New articles and tutorials

There are many excellent articles and tutorials that show how to get started with Spring Framework 3
features. Read them at the Spring Documentation page.

The samples have been improved and updated to take advantage of the new features in Spring
Framework 3. Additionally, the samples have been moved out of the source tree into a dedicated SVN
repository available at:

htt ps://anonsvn. spri ngframewor k. or g/ svn/ spri ng- sanpl es/

Spring Framework
3.2.1.RELEASE Reference Documentation 17

http://jira.springframework.org/
http://www.springsource.org/documentation
https://anonsvn.springframework.org/svn/spring-samples/

Spring Framework

As such, the samples are no longer distributed alongside Spring Framework 3 and need to be
downloaded separately from the repository mentioned above. However, this documentation will continue
to refer to some samples (in particular Petclinic) to illustrate various features.

© Note

For more information on Subversion (or in short SVN), see the project homepage at: htt p: //
subver si on. apache. or g/

2.4 New module organization and build system

The framework modules have been revised and are now managed separately with one source-tree per
module jar:

 org.springframework.aop
 org.springframework.beans

* org.springframework.context

* org.springframework.context.support
» org.springframework.expression
* org.springframework.instrument
 org.springframework.jdbc

* org.springframework.jms

* org.springframework.orm
 org.springframework.oxm

* org.springframework.test
 org.springframework.transaction
 org.springframework.web
 org.springframework.web.portlet
 org.springframework.web.servlet

 org.springframework.web.struts

Note:

The spring.jar artifact that contained almost the entire framework is no longer provided.

We are now using a hew Spring build system as known from Spring Web Flow 2.0. This gives us:

* lvy-based "Spring Build" system

Spring Framework
3.2.1.RELEASE Reference Documentation 18

Spring Framework

 consistent deployment procedure
 consistent dependency management

 consistent generation of OSGi manifests

2.5 Overview of new features

This is a list of new features for Spring Framework 3.0. We will cover these features in more detail later
in this section.

» Spring Expression Language

* |oC enhancements/Java based bean metadata

» General-purpose type conversion system and field formatting system

» Object to XML mapping functionality (OXM) moved from Spring Web Services project
e Comprehensive REST support

* @MVC additions

 Declarative model validation

 Early support for Java EE 6

Embedded database support

Core APIs updated for Java 5

BeanFactory interface returns typed bean instances as far as possible:

» T getBean(Class<T> requiredType)

» T getBean(String name, Class<T> requiredType)

» Map<String, T> getBeansOfType(Class<T> type)

Spring's TaskExecutor interface now extends j ava. uti | . concurrent. Execut or:
» extended AsyncTaskExecutor supports standard Callables with Futures
New Java 5 based converter APl and SPI:

+ stateless ConversionService and Converters

 superseding standard JDK PropertyEditors

Typed ApplicationListener<gE>

Spring Expression Language

Spring introduces an expression language which is similar to Unified EL in its syntax but offers
significantly more features. The expression language can be used when defining XML and Annotation

Spring Framework
3.2.1.RELEASE Reference Documentation 19

Spring Framework

based bean definitions and also serves as the foundation for expression language support across the
Spring portfolio. Details of this new functionality can be found in the chapter Spring Expression Language

(SpEL).

The Spring Expression Language was created to provide the Spring community a single, well supported
expression language that can be used across all the products in the Spring portfolio. Its language
features are driven by the requirements of the projects in the Spring portfolio, including tooling
requirements for code completion support within the Eclipse based SpringSource Tool Suite.

The following is an example of how the Expression Language can be used to configure some properties
of a database setup

<bean cl ass="nyconpany. Rewar dsTest Dat abase" >
<property nane="dat abaseNane"
val ue="#{syst enProperties. dat abaseNane}"/ >
<property nane="keyGener at or"
val ue="#{strat egyBean. dat abaseKeyGenerator}"/>

</ bean>

This functionality is also available if you prefer to configure your components using annotations:

@reposi tory
public class RewardsTest Dat abase {

@/al ue("#{syst enProperties. dat abaseNane}")
public voi d setDat abaseNane(String dbNane) { ...}

@/al ue(" #{strat egyBean. dat abaseKeyCenerator}")
public void setKeyGenerator(KeyGenerator kg) { ...}

The Inversion of Control (loC) container
Java based bean metadata

Some core features from the JavaConfig project have been added to the Spring Framework now. This
means that the following annotations are now directly supported:

e @Configuration

* @Bean

» @DependsOn

* @Primary

s @Lazy

* @Import

* @ImportResource
e @Value

Here is an example of a Java class providing basic configuration using the new JavaConfig features:

Spring Framework
3.2.1.RELEASE Reference Documentation 20

http://www.springsource.com/products/sts
http://www.springsource.org/javaconfig

Spring Framework

package org. exanpl e. confi g;

@onfiguration

public class AppConfig {
private @/al ue("#{jdbcProperties.url}") String jdbcUrl;
private @/al ue("#{jdbcProperties.usernane}") String usernane;
private @al ue("#{jdbcProperties. password}") String password;

@ean
publ i c FooService fooService() {
return new FooServi cel npl (f ooRepository());

}

@ean
publ i c FooRepository fooRepository() {
return new Hi ber nat eFooReposi t ory(sessi onFactory());

}

@ean
publ i c SessionFactory sessionFactory() {
/'l wire up a session factory
Annot at i onSessi onFact or yBean asFact oryBean =
new Annot at i onSessi onFact or yBean() ;
asFact or yBean. set Dat aSour ce(dat aSource());
/] additional config
return asFact oryBean. get Obj ect () ;

@ean
publ i c Dat aSource dataSource() ({
return new Driver Manager Dat aSour ce(j dbcUrl, usernane, password);
}
}

To get this to work you need to add the following component scanning entry in your minimal application

context XML file.

<cont ext : conponent - scan base- package="or g. exanpl e. confi g"/>
<util:properties id="jdbcProperties" |ocation="classpath: org/exanple/config/
jdbc. properties"/>

Or you can bootstrap a @configuration class directly using
Annot at i onConf i gAppl i cati onCont ext :
public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (AppConfig.class);
FooServi ce fooService = ctx. get Bean(FooServi ce. cl ass);
f ooServi ce. doSt uff ();
}
See the section called “Instantiating the Spring container using
Annot at i onConfi gAppl i cati onCont ext” for full information on

Annot at i onConf i gAppl i cati onCont ext.

Defining bean metadata within components

@ean annotated methods are also supported inside Spring components. They contribute a factory
bean definition to the container. See Defining bean metadata within components for more information

Spring Framework
3.2.1.RELEASE Reference Documentation

21

Spring Framework

General purpose type conversion system and field formatting system

A general purpose type conversion system has been introduced. The system is currently used by SpEL
for type conversion, and may also be used by a Spring Container and DataBinder when binding bean
property values.

In addition, a formatter SPI has been introduced for formatting field values. This SPI provides a simpler
and more robust alternative to JavaBean PropertyEditors for use in client environments such as Spring
MVC.

The Data Tier

Object to XML mapping functionality (OXM) from the Spring Web Services project has been moved
to the core Spring Framework now. The functionality is found in the or g. spri ngf r amewor k. oxm
package. More information on the use of the OXMmodule can be found in the Marshalling XML using

O/X Mappers chapter.

The Web Tier

The most exciting new feature for the Web Tier is the support for building RESTful web services and
web applications. There are also some new annotations that can be used in any web application.

Comprehensive REST support

Server-side support for building RESTful applications has been provided as an extension of the existing
annotation driven MVC web framework. Client-side support is provided by the Rest Tenpl at e class in
the spirit of other template classes such as JdbcTenpl at e and Jns Tenpl at e. Both server and client
side REST functionality make use of Ht t pConver t er s to facilitate the conversion between objects and
their representation in HTTP requests and responses.

The Mar shal | i ngHt t pMessageConvert er uses the Objectto XML mapping functionality mentioned
earlier.

Refer to the sections on MVC and the RestTemplate for more information.

@MVC additions
A nvc namespace has been introduced that greatly simplifies Spring MVC configuration.

Additional annotations such as @Cooki eVal ue and @Request Header s have been added. See
Mapping cookie values with the @CookieValue annotation and Mapping request header attributes with
the @RequestHeader annotation for more information.

Declarative model validation

Several validation enhancements, including JSR 303 support that uses Hibernate Validator as the
default provider.

Early support for Java EE 6

We provide support for asynchronous method invocations through the use of the new @Async
annotation (or EJB 3.1's @Asynchronous annotation).

JSR 303, JSF 2.0, JPA 2.0, etc

Spring Framework
3.2.1.RELEASE Reference Documentation 22

Spring Framework

Support for embedded databases

Convenient support for embedded Java database engines, including HSQL, H2, and Derby, is now
provided.

Spring Framework
3.2.1.RELEASE Reference Documentation 23

Spring Framework

3. New Features and Enhancements in Spring
Framework 3.1

This is a list of new features for Spring Framework 3.1. A number of features do not have dedicated
reference documentation but do have complete Javadoc. In such cases, fully-qualified class names are
given. See also Appendix C, Migrating to Spring Framework 3.1

3.1 Cache Abstraction

» Chapter 29, Cache Abstraction

» Cache Abstraction (SpringSource team blog)

3.2 Bean Definition Profiles

» XML profiles (SpringSource Team Blog)

* Introducing @Profile (SpringSource Team Blog)

» See org.springframework.context.annotation.Configuration Javadoc

» See org.springframework.context.annotation.Profile Javadoc

3.3 Environment Abstraction

» Environment Abstraction (SpringSource Team Blog)

» See org.springframework.core.env.Environment Javadoc

3.4 PropertySource Abstraction

 Unified Property Management (SpringSource Team Blog)

» See org.springframework.core.env.Environment Javadoc
» See org.springframework.core.env.PropertySource Javadoc

» See org.springframework.context.annotation.PropertySource Javadoc

3.5 Code equivalents for Spring's XML namespaces

Code-based equivalents to popular Spring XML namespace elements <context:component-scan/
>, <tx:annotation-driven/> and <mvc:annotation-driven> have been developed, most in the form of
@nabl e annotations. These are designed for use in conjunction with Spring's @onfi gurati on
classes, which were introduced in Spring Framework 3.0.

» See org.springframework.context.annotation.Configuration Javadoc
» See org.springframework.context.annotation.ComponentScan Javadoc
» See org.springframework.transaction.annotation.EnableTransactionManagement Javadoc

» See org.springframework.cache.annotation.EnableCaching Javadoc

Spring Framework
3.2.1.RELEASE Reference Documentation 24

http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/14/spring-3-1-m1-introducing-profile/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/15/spring-3-1-m1-unified-property-management/

Spring Framework

» See org.springframework.web.servlet.config.annotation.EnableWebMvc Javadoc
» See org.springframework.scheduling.annotation.EnableScheduling Javadoc

» See org.springframework.scheduling.annotation.EnableAsync Javadoc

» See org.springframework.context.annotation.EnableAspectJAutoProxy Javadoc

» See org.springframework.context.annotation.EnableLoadTimeWeaving Javadoc

» See org.springframework.beans.factory.aspectj.EnableSpringConfigured Javadoc

3.6 Support for Hibernate 4.x

» See Javadoc for classes within the new org.springframework.orm.hibernate4 package

3.7 TestContext framework support for @Configuration
classes and bean definition profiles

The @Cont ext Confi gurati on annotation now supports supplying @Confi gurati on classes
for configuring the Spring Test Cont ext. In addition, a new @Acti veProfil es annotation
has been introduced to support declarative configuration of active bean definition profiles in
Appl i cati onCont ext integration tests.

» Spring 3.1 M2: Testing with @Configuration Classes and Profiles (SpringSource Team Blog)
» See the section called “Spring TestContext Framework”

e See the section called “Context configuration with annotated classes” and
org. springframewor k.t est. cont ext. Cont ext Confi gurati on Javadoc

e Seeorg. springfranmework.test.context. ActiveProfil es Javadoc
* Seeorg. springframework.test.context. Smart Cont ext Loader Javadoc

e See org.springfranework.test.context.support.Del egati ngSmart Cont ext Loader
Javadoc

» See org. springframework. test.context.support. Annot ati onConfi gCont ext Loader
Javadoc

3.8 c: namespace for more concise constructor injection

* the section called “XML shortcut with the c-namespace”

3.9 Support for injection against non-standard JavaBeans
setters

Prior to Spring Framework 3.1, in order to inject against a property method it had to conform strictly
to JavaBeans property signature rules, namely that any 'setter' method must be void-returning. It is
now possible in Spring XML to specify setter methods that return any object type. This is useful when
considering designing APIs for method-chaining, where setter methods return a reference to 'this'.

Spring Framework
3.2.1.RELEASE Reference Documentation 25

http://blog.springsource.com/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/

Spring Framework

3.10 Support for Servlet 3 code-based configuration of Servlet
Container

The new WebApplicationlnitializer builds atop Servlet 3.0's
Servl et Contai nerlnitializer supportto provide a programmatic alternative to the traditional
web.xml.

» See org.springframework.web.WebApplicationlnitializer Javadoc

» Diff from Spring's Greenhouse reference application demonstrating migration from web.xml to
WebApplicationlnitializer

3.11 Support for Servilet 3 MultipartResolver

» See org.springframework.web.multipart.support.StandardServiletMultipartResolver Javadoc

3.12 JPA EntityManagerFactory bootstrapping without
persistence.xml

In standard JPA, persistence units get defined through META-| NF/ persi stence. xm files
in specific jar files which will in turn get searched for @ntity classes. In many cases,
persistence.xml does not contain more than a unit name and relies on defaults and/or external
setup for all other concerns (such as the DataSource to use, etc). For that reason, Spring
Framework 3.1 provides an alternative: Local Cont ai ner Ent i t yManager Fact or yBean accepts a
'‘packagesToScan' property, specifying base packages to scan for @nt i t y classes. This is analogous
to Annot at i onSessi onFact or yBean's property of the same name for native Hibernate setup, and
also to Spring's component-scan feature for regular Spring beans. Effectively, this allows for XML-free
JPA setup at the mere expense of specifying a base package for entity scanning: a particularly fine
match for Spring applications which rely on component scanning for Spring beans as well, possibly even
bootstrapped using a code-based Servlet 3.0 initializer.

3.13 New HandlerMethod-based Support Classes For
Annotated Controller Processing

Spring Framework 3.1 introduces a new set of support classes for processing requests with annotated
controllers:

* Request Mappi ngHandl er Mappi ng

* Request Mappi ngHandl er Adapt er

» Excepti onHandl er Excepti onResol ver
These classes are a replacement for the existing:
« Def aul t Annot at i onHandl er Mappi ng

e Annot ati onMet hodHandl er Adapt er

« Annot ati onMet hodHandl er Excepti onResol ver

Spring Framework
3.2.1.RELEASE Reference Documentation 26

http://bit.ly/lrDHja

Spring Framework

The new classes were developed in response to many requests to make annotation controller support
classes more customizable and open for extension. Whereas previously you could configure a custom
annotated controller method argument resolver, with the new support classes you can customize the
processing for any supported method argument or return value type.

» See org.springframework.web.method.support.HandlerMethodArgumentResolver Javadoc
» See org.springframework.web.method.support.HandlerMethodReturnValueHandler Javadoc

A second notable difference is the introduction of a Handl er Met hod abstraction to represent an
@Request Mappi ng method. This abstraction is used throughout by the new support classes as the
handl er instance. For example a Handl er | nt er cept or can cast the handl er from Obj ect to
Handl er Met hod and get access to the target controller method, its annotations, etc.

The new classes are enabled by default by the MVC namespace and by Java-based configuration
via @nabl eWebMvc. The existing classes will continue to be available but use of the new classes is
recommended going forward.

See the section called “New Support Classes for @Request Mappi ng methods in Spring MVC 3.1 for
additional details and a list of features not available with the new support classes.

3.14 "consumes" and "produces" conditions in
@Request Mappi ng

Improved support for specifying media types consumed by a method through the ' Cont ent - Type'
header as well as for producible types specified through the ' Accept' header. See the section called
“Consumable Media Types” and the section called “Producible Media Types”

3.15 Flash Attributes and Redi rect Attri but es

Flash attributes can now be stored in a Fl ashMap and saved in the HTTP session to survive a redirect.
For an overview of the general support for flash attributes in Spring MVC see Section 17.6, “Using flash
attributes”.

In annotated controllers, an @Request Mappi ng method can add flash attributes by declaring a method
argument of type Redi r ect At t ri but es. This method argument can now also be used to get precise
control over the attributes used in a redirect scenario. See the section called “Specifying redirect and
flash attributes” for more details.

3.16 URI Template Variable Enhancements

URI template variables from the current request are used in more places:

* URI template variables are used in addition to request parameters when binding a request to
@bdel Attri but e method arguments.

* @PathVariable method argument values are merged into the model before rendering, except in views
that generate content in an automated fashion such as JSON serialization or XML marshalling.

» A redirect string can contain placeholders for URI variables (e.g. "redi rect: /bl og/ {year}/
{mont h}"). When expanding the placeholders, URI template variables from the current request are
automatically considered.

Spring Framework
3.2.1.RELEASE Reference Documentation 27

Spring Framework

« An @wbdel Attri but e method argument can be instantiated from a URI template variable provided
there is a registered Converter or PropertyEditor to convert from a String to the target object type.

3.17 @/al i d On @Request Body Controller Method Arguments

An @Request Body method argument can be annotated with @alid to invoke automatic
validation similar to the support for @bdel Attri bute method arguments. A resulting
Met hodAr gurent Not Val i dExcept i on is handled in the Def aul t Handl er Except i onResol ver
and results in a 400 response code.

3.18 @equest Part Annotation On Controller Method
Arguments

This new annotation provides access to the content of a "multipart/form-data" request part. See the
section called “Handling a file upload request from programmatic clients” and Section 17.10, “Spring's
multipart (file upload) support”.

3.19 Uri Conponent sBui | der and Uri Conponent s

A new Uri Conponent s class has been added, which is an immutable container of URI components
providing access to all contained URI components. A new Uri Conponent sBui | der class is also
provided to help create Ur i Conponent s instances. Together the two classes give fine-grained control
over all aspects of preparing a URI including construction, expansion from URI template variables, and
encoding.

In most cases the new classes can be used as a more flexible alternative to the existing Ur i Tenpl at e
especially since Uri Tenpl at e relies on those same classes internally.

A Servl et Uri Conmponent sBui | der sub-class provides static factory methods to copy information
from a Servlet request. See Section 17.7, “Building URI s”.

Spring Framework
3.2.1.RELEASE Reference Documentation 28

Spring Framework

4. New Features and Enhancements in Spring
Framework 3.2

This section covers what's new in Spring Framework 3.2. See also Appendix D, Migrating to Spring
Framework 3.2

4.1 Support for Servlet 3 based asynchronous request
processing

The Spring MVC programming model now provides explicit Servlet 3 async support.
@Request Mappi ng methods can return one of:

e java. util.concurrent. Cal |l abl e to complete processing in a separate thread managed by a
task executor within Spring MVC.

e org.springfranework. web. cont ext. request. async. Def erredResul t to complete
processing at a later time from a thread not known to Spring MVC — for example, in response to
some external event (JMS, AMQP, etc.)

e org.springfranework. web. cont ext. request.async. AsyncTask towrapaCal | abl e and
customize the timeout value or the task executor to use.

See the section called “Asynchronous Request Processing”.

4.2 Spring MVC Test framework

First-class support for testing Spring MVC applications with a fluent API and without a Servlet container.
Server-side tests involve use of the Di spat cher Ser vl et while client-side REST tests rely on the
Rest Tenpl at e. See the section called “Spring MVC Test Framework”.

4.3 Content negotiation improvements

A Cont ent Neogti ati onStrat egy is now available for resolving the requested media types from
an incoming request. The available implementations are based on the file extension, query parameter,
the 'Accept’ header, or a fixed content type. Equivalent options were previously available only in the
ContentNegotiatingViewResolver but are now available throughout.

Cont ent Negot i at i onManager is the central class to use when configuring content negotiation
options. For more details see the section called “Configuring Content Negotiation”.

The introduction of Cont ent Negoti ati onManger also enables selective suffix
pattern matching for incoming requests. For more details, see the Javadoc of
RequestMappingHandlerMapping.setUseRegisteredSuffixPatternMatch.

4.4 @ontroll er Advi ce annotation

Classes annotated with @ont r ol | er Advi ce can contain @xcepti onHandl er, @ ni t Bi nder,
and @mbdel Attribute methods and those will apply to @Request Mappi ng methods across
controller hierarchies as opposed to the controller hierarchy within which they are declared.

Spring Framework
3.2.1.RELEASE Reference Documentation 29

http://static.springsource.org/spring-framework/docs/3.2.0.BUILD-SNAPSHOT/api/org/springframework/web/servlet/mvc/method/annotation/RequestMappingHandlerMapping.html#setUseRegisteredSuffixPatternMatch(boolean)

Spring Framework

@cont rol | er Advi ce is a component annotation allowing implementation classes to be auto-detected
through classpath scanning.

4.5 Matrix variables

A new @Mt ri xVari abl e annotation adds support for extracting matrix variables from the request
URI. For more details see the section called “Matrix Variables”.

4.6 Abstract base class for code-based Servilet 3+ container
initialization

An abstract base class implementation of the WebApplicationlnitializer interface is
provided to simplify code-based registration of a DispatcherServlet and filters mapped to
it. The new class is named AbstractDi spatcherServletlnitializer and its sub-class
Abst ract Annot ati onConfi gDi spat cherServletlnitializer can be used with Java-based
Spring configuration. For more details see Section 17.14, “Code-based Servlet container initialization”.

4.7 ResponseEnt i t yExcepti onHandl er class

A convenient base class with an @xceptionHandl er method that handles standard
Spring MVC exceptions and returns a ResponseEntity that allowing customizing and
writing the response with HTTP message converters. This servers as an alternative to the
Def aul t Handl er Excepti onResol ver, which does the same but returns a Model AndVi ewinstead.

See the revised Section 17.11, “Handling exceptions” including information on customizing the default
Servlet container error page.

4.8 Support for generic types in the Rest Tenpl at e and in
@Request Body arguments

The Rest Tenpl at e can now read an HTTP response to a generic type (e.g. Li st <Account >). There
are three new exchange() methods that accept Par anet eri zedTypeRef er ence, a new class that
enables capturing and passing generic type info.

In support of this feature, the Ht t pMessageConvert er is extended
by Generi cHt t pMessageConvert er adding a method for reading content
given a specified parameterized type. The new interface is implemented
by the Mappi ngJacksonHt t pMessageConvert er and also by a new
Jaxb2Col | ecti onHt t pMessageConvert er that can read read a generic Col | ecti on where the
generic type is a JAXB type annotated with @Xm Root El enent or @l Type.

4.9 Jackson JSON 2 and related improvements

The Jackson JSON 2 library is now supported. Due to packaging changes in the Jackson library, there
are separate classes in Spring MVC as well. Those are Mappi hgJackson2Ht t pMessageConvert er
and Mappi ngdackson2JsonVi ew. Other related configuration improvements include support for
pretty printing as well as a JacksonObj ect Mapper Fact or yBean for convenient customization of an
oj ect Mapper in XML configuration.

Spring Framework
3.2.1.RELEASE Reference Documentation 30

Spring Framework

4.10 Tiles 3

Tiles 3 is now supported in addition to Tiles 2.x. Configuring it should be very similar to the Tiles
2 configuration, i.e. the combination of Ti | esConfi gurer, Ti | esVi enResol ver and Ti | esVi ew
except using the t i | es3 instead of the ti | es2 package.

Also note that besides the version number change, the tiles dependencies have also changed. You will
need to have a subsetor allof ti | es-request-api ,til es-api,tiles-core,tiles-servlet,
tiles-jsp,tiles-el.

4.11 @Request Body improvements

An @Request Body or an @Request Part argument can now be followed by an Err or s argument
making it possible to handle validation errors (as a result of an @/al i d annotation) locally within the
@Request Mappi ng method. @equest Body now also supports a required flag.

4.12 HTTP PATCH method

The HTTP request method PATCH may now be used in @Request Mappi ng methods as well as in the
Rest Tenpl at e in conjunction with Apache HttpComponents HttpClient version 4.2 or later. The JDK
Ht t pURLConnect i on does not support the PATCH method.

4.13 Excluded patterns in mapped interceptors

Mapped interceptors now support URL patterns to be excluded. The MVC namespace and the MVC
JavaConfig both expose these options.

4.14 Using meta-annotations for injection points and for bean
definition methods

As of 3.2, Spring allows for @\ut owi r ed and @/al ue to be used as meta-annotations, e.g. to build
custom injection annotations in combination with specific qualifiers. Analogously, you may build custom
@Bean definition annotations for @onf i gur at i on classes, e.g. in combination with specific qualifiers,
@Lazy, @Primary, etc.

4.15 Initial support for JCache 0.5

Spring provides a CacheManager adapter for JCache, building against the JCache 0.5 preview release.
Full JCache support is coming next year, along with Java EE 7 final.

4.16 Support for @at eTi neFor mat without Joda Time

The @at eTi meFor mat annotation can now be used without needing a dependency on the Joda Time
library. If Joda Time is not present the JDK Si npl eDat eFor mat will be used to parse and print date
patterns. When Joda Time is present it will continue to be used in preference to Si npl eDat eFor mat .

4.17 Global date & time formatting

It is now possible to define global formats that will be used when parsing and printing date and time
types. See Section 7.7, “Configuring a global date & time format” for details.

Spring Framework
3.2.1.RELEASE Reference Documentation 31

Spring Framework

4.18 New Testing Features

In addition to the aforementioned inclusion of the Spring MVC Test Framework in the spri ng-t est
module, the Spring TestContext Framework has been revised with support for integration testing web
applications as well as configuring application contexts with context initializers. For further details,
consult the following.

» Configuring and loading a WebApplicationContext in integration tests

e Testing request and session scoped beans

» Improvements to Servlet APl mocks

» Configuring test application contexts with ApplicationContextlInitializers

4.19 Concurrency refinements across the framework

Spring Framework 3.2 includes fine-tuning of concurrent data structures in many parts of the framework,
minimizing locks and generally improving the arrangements for highly concurrent creation of scoped/
prototype beans.

4.20 New Gradle-based build and move to GitHub

Building and contributing to the framework has never been simpler with our move to a Gradle-based
build system and source control at GitHub. See the _building from source section of the README and
the contributor guidelines for complete details.

4.21 Refined Java SE 7/ OpenJDK 7 support

Last but not least, Spring Framework 3.2 comes with refined Java 7 support within the framework as
well as through upgraded third-party dependencies: specifically, CGLIB 3.0, ASM 4.0 (both of which
come as inlined dependencies with Spring now) and AspectJ 1.7 support (next to the existing AspectJ
1.6 support).

Spring Framework
3.2.1.RELEASE Reference Documentation 32

https://github.com/SpringSource/spring-framework#building-from-source
https://github.com/SpringSource/spring-framework/blob/master/CONTRIBUTING.md

Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral
to the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (I1oC) container. A thorough
treatment of the Spring Framework's lI0C container is closely followed by comprehensive coverage of
Spring's Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is
certainly advocated by the Spring team, and so coverage of Spring's support for integration testing is
covered (alongside best practices for unit testing). The Spring team has found that the correct use of
loC certainly does make both unit and integration testing easier (in that the presence of setter methods
and appropriate constructors on classes makes them easier to wire together in a test without having
to set up service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully
convince you of this as well.

» Chapter 5, The IoC container

» Chapter 6, Resources

» Chapter 7, Validation, Data Binding, and Type Conversion
» Chapter 8, Spring Expression Language (SpEL)

» Chapter 9, Aspect Oriented Programming with Spring

» Chapter 10, Spring AOP APIs

» Chapter 11, Testing

Spring Framework

5. The loC container

5.1 Introduction to the Spring loC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) 1principle.
loC is also known as dependency injection (DI). It is a process whereby objects define their
dependencies, that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is constructed or returned
from a factory method. The container then injects those dependencies when it creates the bean. This
process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct construction of classes, or a
mechanism such as the Service Locator pattern.

The org. spri ngf ranewor k. beans and or g. spri ngframewor k. cont ext packages are the
basis for Spring Framework's IoC container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appl i cati onCont ext is a sub-
interface of BeanFact ory. It adds easier integration with Spring's AOP features; message resource
handling (for use in internationalization), event publication; and application-layer specific contexts such
as the WebAppl i cat i onCont ext for use in web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cati onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions
of Spring's IoC container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, referto Section 5.15, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring loC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed
by a Spring loC container. Otherwise, a bean is simply one of many objects in your application. Beans,
and the dependencies among them, are reflected in the configuration metadata used by a container.

5.2 Container overview

The interface or g. spri ngf r amewor k. cont ext . Appl i cat i onCont ext represents the Spring 1oC
container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-
box with Spring. In standalone applications it is common to create an instance of
Cl assPat hXm Appl i cati onCont ext orFi | eSyst emXm Appl i cati onCont ext . While XML has
been the traditional format for defining configuration metadata you can instruct the container to use
Java annotations or code as the metadata format by providing a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances
of a Spring IoC container. For example, in a web application scenario, a simple eight (or so) lines of

'see Background

Spring Framework
3.2.1.RELEASE Reference Documentation 34

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html
http://static.springsource.org/spring/docs/current/api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://static.springsource.org/spring/docs/current/api/org/springframework/context/support/FileSystemXmlApplicationContext.html

Spring Framework

boilerplate J2EE web descriptor XML in the web. xmi file of the application will typically suffice (see the
section called “Convenient Appl i cat i onCont ext instantiation for web applications”). If you are using
the SpringSource Tool Suite Eclipse-powered development environment or Spring Roo this boilerplate
configuration can be easily created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you have
a fully configured and executable system or application.

Your Business Objects (POJOs)

The Sprin
Configuration Cunta[:ilnerg
Metadata
produces

Fully configured system

Ready for Use

The Spring IoC container

Configuration metadata

As the preceding diagram shows, the Spring loC container consumes a form of configuration metadata;
this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most
of this chapter uses to convey key concepts and features of the Spring loC container.

© Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring 1oC
container itself is totally decoupled from the format in which this configuration metadata is actually
written.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@confi gurati on, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata shows these beans configured as <bean/
> elements inside a top-level <beans/ > element.

These bean definitions correspond to the actual objects that make up your application. Typically you
define service layer objects, data access objects (DAOS), presentation objects such as Struts Act i on

Spring Framework
3.2.1.RELEASE Reference Documentation 35

http://www.springsource.com/produts/sts
http://www.springsource.org/roo
http://www.springsource.org/javaconfig
http://www.springsource.org/javaconfig

Spring Framework

instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring's integration with AspectJ to configure objects that have been created outside the control of an
loC container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ scherma/ beans/ spri ng- beans. xsd" >

<bean id="..." class="...">
<l-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions go here -->
</ beans>

The i d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers
to collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring loC container is straightforward. The location path or paths supplied to an
Appl i cati onCont ext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context =
new C assPat hXm Appl i cati onCont ext (new String[] {"services.xm", "daos.xm"});

© Note

After you learn about Spring's IoC container, you may want to know more about Spring's
Resour ce abstraction, as described in Chapter 6, Resources, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 6.7,
“Application contexts and Resour ce paths”.

The following example shows the service layer objects (servi ces. xm) configuration file:

Spring Framework
3.2.1.RELEASE Reference Documentation 36

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http: // wwv. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<l-- services -->

<bean i d="pet St ore"
cl ass="org. spri ngframewor k. sanpl es. j pet st ore. servi ces. Pet St oreServi cel npl ">
<property nanme="account Dao" ref="account Dao"/ >
<property nanme="itenDao" ref="itenDao"/>

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xm file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="account Dao"
cl ass="org. spri ngframewor k. sanpl es. j pet store. dao. i bati s. Sql MapAccount Dao" >
<l-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springframework. sanpl es. j petstore. dao.ibatis. Sql Mapl t enDao" >

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two data
access objects of the type Sql MapAccount Dao and SqlMapltemDao are based on the iBatis Object/
Relational mapping framework. The property nane element refers to the name of the JavaBean
property, and the r ef element refers to the name of another bean definition. This linkage between id
and ref elements expresses the dependency between collaborating objects. For details of configuring
an object's dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration
file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section. Alternatively,
use one or more occurrences of the <i nport /> element to load bean definitions from another file or
files. For example:

Spring Framework
3.2.1.RELEASE Reference Documentation 37

http://ibatis.apache.org/

Spring Framework

<beans>

<i nport resource="services.xm"/>
<i mport resource="resources/ messageSource. xm "/ >
<i nport resource="/resources/thenmeSource. xm "/ >

<bean i d="beanl" class="..."/>
<bean i d="bean2" class="..."/>
</ beans>

In the preceding example, external bean definitions are loaded from three files, servi ces. xm ,
nmessageSour ce. xm , and t hemeSour ce. xnl . All location paths are relative to the definition file
doing the importing, so ser vi ces. xm must be in the same directory or classpath location as the file
doing the importing, while nessageSour ce. xm and t hemeSour ce. xml must be in a r esour ces
location below the location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/ > element, must be valid XML bean definitions according to
the Spring Schema or DTD.

© Note

It is possible, but not recommended, to reference files in parent directories using a relative
".I" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../
services.xml"), where the runtime resolution process chooses the "nearest” classpath root and
then looks into its parent directory. Classpath configuration changes may lead to the choice of
a different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example,
"file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you are
coupling your application's configuration to specific absolute locations. It is generally preferable
to keep an indirection for such absolute locations, for example, through "${...}" placeholders that
are resolved against JVM system properties at runtime.

Using the container

The Appl i cat i onCont ext is the interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T get Bean(Stri ng name, O ass<T>
requi redType) you can retrieve instances of your beans.

The Appl i cati onCont ext enables you to read bean definitions and access them as follows:

/'l create and configure beans
Appl i cati onCont ext context =
new C assPat hXm Appl i cati onCont ext (new String[] {"services.xm", "daos.xm"});

/'l retrieve configured instance
Pet St or eSer vi cel npl service = context.getBean("petStore", PetStoreServicelnpl.class);

/'l use configured instance
Li st userlList = service.getUsernaneList();

You use get Bean() to retrieve instances of your beans. The Appl i cat i onCont ext interface has a
few other methods for retrieving beans, but ideally your application code should never use them. Indeed,

Spring Framework
3.2.1.RELEASE Reference Documentation 38

Spring Framework

your application code should have no calls to the get Bean() method at all, and thus no dependency
on Spring APIs at all. For example, Spring's integration with web frameworks provides for dependency
injection for various web framework classes such as controllers and JSF-managed beans.

5.3 Bean overview

A Spring loC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni t i on objects, which
contain (among other information) the following metadata:

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work; these references are also
called collaborators or dependencies.

» Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 5.1. The bean definition

Property Explained in...

class the section called “Instantiating beans”
name the section called “Naming beans”

scope Section 5.5, “Bean scopes”

constructor arguments the section called “Dependency injection”
properties the section called “Dependency injection”
autowiring mode the section called “Autowiring collaborators”
lazy-initialization mode the section called “Lazy-initialized beans”
initialization method the section called “Initialization callbacks”
destruction method the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's
BeanFactory via the method get BeanFact ory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFact ory. Def aul t Li st abl eBeanFactory supports this registration
through the methods r egi st er Si ngl eton(..) and regi st er BeanDefinition(..). However,
typical applications work solely with beans defined through metadata bean definitions.

Spring Framework
3.2.1.RELEASE Reference Documentation 39

Spring Framework

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can
be considered aliases.

In XML-based configuration metadata, you use the i d and/or nane attributes to specify the bean
identifier(s). The i d attribute allows you to specify exactly one id. Conventionally these names are
alphanumeric ('myBean’, 'fooService', etc), but may special characters as well. If you want to introduce
other aliases to the bean, you can also specify them in the nane attribute, separated by a comma (,),
semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, the i d attribute was
typed as an xsd: | D, which constrained possible characters. As of 3.1, it is now xsd: stri ng. Note
that bean id uniqueness is still enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the container
generates a unique name for that bean. However, if you want to refer to that bean by name, through the
use of the r ef element or Service Locator style lookup, you must provide a name. Motivations for not
supplying a name are related to using inner beans and autowiring collaborators.

Bean naming conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter, and are camel-cased from then on.
Examples of such names would be (without quotes) ' account Manager' ,' account Servi ce',
"userDao',' | ogi nController',and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if you
are using Spring AOP it helps a lot when applying advice to a set of beans related by name.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination
of up to one name specified by the i d attribute, and any number of other names in the nane attribute.
These names can be equivalent aliases to the same bean, and are useful for some situations, such as
allowing each component in an application to refer to a common dependency by using a bean name
that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the
case in large systems where configuration is split amongst each subsystem, each subsystem having its
own set of object definitions. In XML-based configuration metadata, you can use the <al i as/ > element
to accomplish this.

<al i as name="fromNane" alias="toNane"/>

In this case, a bean in the same container which is named f r onNanme, may also after the use of this
alias definition, be referred to as t oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
'subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource
via the name 'subsystemB-dataSource'. When composing the main application that uses both these

Spring Framework
3.2.1.RELEASE Reference Documentation 40

Spring Framework

subsystems the main application refers to the DataSource via the name 'myApp-dataSource’. To have
all three names refer to the same object you add to the MyApp configuration metadata the following
aliases definitions:

<al i as name="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSource"/ >
<al i as name="subsyst emA- dat aSour ce" al i as="nyApp- dat aSource" />

Now each component and the main application can refer to the dataSource through a name that is
unigue and guaranteed not to clash with any other definition (effectively creating a namespace), yet
they refer to the same bean.

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean
definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. This cl ass attribute, which internally is a
C ass property onaBeanDef i ni t i on instance, is usually mandatory. (For exceptions, see the section
called “Instantiation using an instance factory method” and Section 5.7, “Bean definition inheritance”.)
You use the Cl ass property in one of two ways:

» Typically, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the
new operator.

» To specify the actual class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢, factory method on a class
to create the bean. The object type returned from the invocation of the st at i ¢ factory method may
be the same class or another class entirely.

Inner class names

If you want to configure a bean definition for a st at i ¢ nested class, you have to use the binary
name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class
has a stati c inner class called Bar, the value of the ' cl ass' attribute on a bean definition
would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer
class name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible
with Spring. That is, the class being developed does not need to implement any specific interfaces or
to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending
on what type of l1oC you use for that specific bean, you may need a default (empty) constructor.

Spring Framework
3.2.1.RELEASE Reference Documentation 41

Spring Framework

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can
also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it
as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/>

<bean name="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo"/ >

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- met hod to specify
the name of the factory method itself. You should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through
a constructor. One use for such a bean definition is to call st at i ¢ factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, the cr eat el nst ance() method must be a static method.

<bean i d="client Service"
cl ass="exanpl es. d i ent Servi ce"
fact ory-net hod="cr eat el nst ance"/ >

public class CientService {
private static CientService clientService = new dientService();
private dientService() {}

public static CientService createlnstance() {
return clientService;

}

}

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies and
configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leave the cl ass attribute empty, andinthe f act or y- bean attribute, specify the name of a
bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked
to create the object. Set the name of the factory method itself with the f act or y- met hod attribute.

Spring Framework
3.2.1.RELEASE Reference Documentation 42

Spring Framework

<l-- the factory bean, which contains a nethod called createlnstance() -->
<bean i d="servicelLocator" class="exanpl es. Def aul t Servi ceLocat or" >

<I-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean i d="client Service"
factory-bean="servi ceLocator"
factory-nethod="createC i ent Servi cel nstance"/ >

public class DefaultServiceLocator {
private static CientService clientService = new dientServicelnpl();
private DefaultServiceLocator() {}

public CientService createCientServicelnstance() ({
return clientService;

One factory class can also hold more than one factory method as shown here:

<bean i d="serviceLocator" class="exanpl es. Defaul t Servi ceLocat or">
<I-- inject any dependencies required by this |ocator bean -->
</ bean>
<bean id="cli ent Servi ce"
factory-bean="servi ceLocator"
factory-net hod="created i ent Servi cel nstance"/ >

<bean i d="account Servi ce"
factory-bean="servi ceLocator"
factory-net hod="cr eat eAccount Servi cel nst ance"/ >

public class DefaultServiceLocator {
private static CientService clientService = new dientServicelnpl();
private static Account Service account Servi ce = new Account Servi cel npl () ;

private DefaultServiceLocator() {}
public CientService createC ientServicel nstance() {

return clientService;

publ i c Account Servi ce creat eAccount Servi cel nstance() {
return account Servi ce;

This approach shows that the factory bean itself can be managed and configured through dependency
injection (DI). See Dependencies and configuration in detail.

© Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring container
that will create objects through an instance or static factory method. By contrast, Fact or yBean
(notice the capitalization) refers to a Spring-specific _Fact or yBean .

Spring Framework
3.2.1.RELEASE Reference Documentation 43

Spring Framework

5.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand alone to a fully realized application where objects collaborate to achieve a goal.

Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse,
hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of
its dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location
or class of the dependencies. As such, your classes become easier to test, in particular when the
dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations
to be used in unit tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to
a st at i ¢ factory method similarly. The following example shows a class that can only be dependency-
injected with constructor injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMvieLister {

/1 the Sinpl eMvielLister has a dependency on a Myvi eFi nder
private Movi eFi nder novi eFi nder

/1 a constructor so that the Spring container can 'inject' a MyvieFinder
publ i c Si nmpl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
t hi s. nmovi eFi nder = novi eFi nder

}

/1 business |logic that actually 'uses' the injected MyvieFinder is omtted..

Constructor argument resolution

Constructor argument resolution matching occurs using the argument's type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor
arguments are defined in a bean definition is the order in which those arguments are supplied to the
appropriate constructor when the bean is being instantiated. Consider the following class:

Spring Framework
3.2.1.RELEASE Reference Documentation 44

Spring Framework

package Xx.y;
public class Foo {

public Foo(Bar bar, Baz baz) ({
/1
}
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus
the following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly in the <const r uct or - ar g/ > element.

<beans>
<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" cl ass="x.y.Baz"/>

</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <val ue>t r ue<val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es
public class Exanpl eBean {

/1 No. of years to the calculate the Utimte Answer
private int years;

// The Answer to Life, the Universe, and Everything
private String ulti mateAnswer

publ i c Exanpl eBean(int years, String ultinmateAnswer) {
this.years = years
this.ultimteAnswer = ultimateAnswer;

Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using the t ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Constructor argument index

Use the i ndex attribute to specify explicitly the index of constructor arguments. For example:

Spring Framework
3.2.1.RELEASE Reference Documentation 45

Spring Framework

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg i ndex="0" val ue="7500000"/>
<constructor-arg i ndex="1" val ue="42"/>

</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is 0 based.

Constructor argument name

As of Spring 3.0 you can also use the constructor parameter name for value disambiguation:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg name="years" val ue="7500000"/>
<constructor-arg nanme="ul ti mat eanswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can't compile your
code with debug flag (or don't want to) you can use @onst r uct or Properti es JDK annotation to
explicitly name your constructor arguments. The sample class would then have to look as follows:

package exanpl es

public class Exanpl eBean {
[/l Fields omtted
@Construct or Properties({"years", "ultinateAnswer"})
publ i c Exanpl eBean(int years, String ultinmateAnswer) {

this.years = years
this.ultimteAnswer = ulti nmat eAnswer ;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvieLister {

/1 the SinpleMvielLister has a dependency on the MovieFi nder
private Movi eFi nder novi eFi nder

/] a setter method so that the Spring container can 'inject' a MyvieFinder

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder

/] business logic that actually 'uses' the injected MyvieFinder is omtted..

Spring Framework
3.2.1.RELEASE Reference Documentation 46

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework

The Appl i cati onCont ext supports constructor- and setter-based DI for the beans it manages. It
also supports setter-based DI after some dependencies are already injected through the constructor
approach. You configure the dependencies in the form of a BeanDef i ni ti on, which you use with
Pr opert yEdi t or instances to convert properties from one format to another. However, most Spring
users do not work with these classes directly (programmatically), but rather with an XML definition file
that is then converted internally into instances of these classes, and used to load an entire Spring loC
container instance.

Constructor-based or setter-based DI?

Since you can mix both, Constructor- and Setter-based DI, it is a good rule of thumb to use
constructor arguments for mandatory dependencies and setters for optional dependencies. Note
that the use of a @Required annotation on a setter can be used to make setters required
dependencies.

The Spring team generally advocates setter injection, because large numbers of constructor
arguments can get unwieldy, especially when properties are optional. Setter methods also make
objects of that class amenable to reconfiguration or re-injection later. Management through JMX
MBeans is a compelling use case.

Some purists favor constructor-based injection. Supplying all object dependencies means that the
object is always returned to client (calling) code in a totally initialized state. The disadvantage is
that the object becomes less amenable to reconfiguration and re-injection.

Use the DI that makes the most sense for a particular class. Sometimes, when dealing with third-
party classes to which you do not have the source, the choice is made for you. A legacy class may
not expose any setter methods, and so constructor injection is the only available DI.

Dependency resolution process
The container performs bean dependency resolution as follows:

1. The Appl i cati onCont ext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code or annotations.

2. For each bean, its dependencies are expressed in the form of properties, constructor arguments, or
arguments to the static-factory method if you are using that instead of a normal constructor. These
dependencies are provided to the bean, when the bean is actually created.

3. Each property or constructor argument is an actual definition of the value to set, or a reference to
another bean in the container.

4. Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied
in string format to all built-in types, such asi nt, | ong, Stri ng, bool ean, etc.

The Spring container validates the configuration of each bean as the container is created, including
the validation of whether bean reference properties refer to valid beans. However, the bean properties
themselves are not set until the bean is actually created. Beans that are singleton-scoped and set
to be pre-instantiated (the default) are created when the container is created. Scopes are defined in
Section 5.5, “Bean scopes” Otherwise, the bean is created only when it is requested. Creation of a bean
potentially causes a graph of beans to be created, as the bean's dependencies and its dependencies'
dependencies (and so on) are created and assigned.

Spring Framework
3.2.1.RELEASE Reference Documentation 47

Spring Framework

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for classes
A and B to be injected into each other, the Spring 10C container detects this circular reference at
runtime, and throws a BeanCurrent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection only. In
other words, although it is not recommended, you can configure circular dependencies with setter
injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A
and bean B forces one of the beans to be injected into the other prior to being fully initialized itself
(a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request an object if there
is a problem creating that object or one of its dependencies. For example, the bean throws an exception
as aresult of a missing or invalid property. This potentially delayed visibility of some configuration issues
is why Appl i cati onCont ext implementations by default pre-instantiate singleton beans. At the cost
of some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cat i onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring loC container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such
as a configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- setter injection using the nested <ref/> el enent -->
<property nane="beanOne"><ref bean="anot her Exanpl eBean"/></ property>

<l-- setter injection using the neater 'ref' attribute -->
<property nane="beanTwo" ref="yet Anot her Bean"/ >

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

Spring Framework
3.2.1.RELEASE Reference Documentation 48

Spring Framework

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public voi d set BeanOne(Anot her Bean beanOne) ({

t hi s. beanOne = beanOne;

public void set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;

public void setlntegerProperty(int i) {
this.i =i;

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DlI:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- constructor injection using the nested <ref/> el enent -->
<const ruct or - ar g>

<ref bean="anot her Exanpl eBean"/ >
</ constructor-arg>

'

<I-- constructor injection using the neater 'ref' attribute -->

<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
t hi s. beanOne = anot her Bean
thi s. beanTwo = yet Anot her Bean
this.i =i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor
of the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
st ati c factory method to return an instance of the object:

Spring Framework
3.2.1.RELEASE Reference Documentation 49

Spring Framework

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory-net hod="creat el nst ance" >

<constructor-arg ref="anot her Exanpl eBean"/ >

<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/] a private constructor
private ExanpleBean(...) {

}

I/l a static factory nethod; the argunents to this nethod can be
/| considered the dependencies of the bean that is returned
/'l regardl ess of how those argunents are actually used
public static Exanpl eBean creat el nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/'l some other operations..
return eb

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the st at i ¢ factory method,
although in this example it is. An instance (non-static) factory method would be used in an essentially
identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute),
so details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring's XML-based
configuration metadata supports sub-element types within its <pr operty/ > and <const r uct or -
ar g/ > elements for this purpose.

Straight values (primitives, St ri ngs, and so on)

The val ue attribute of the <pr opert y/ > element specifies a property or constructor argument as a
human-readable string representation. As mentioned previously, JavaBeans Pr opert yEdi t or s are
used to convert these string values from a St r i ng to the actual type of the property or argument.

<bean i d="nyDat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-
met hod="cl ose" >

<I-- results in a setDriverC assName(String) call -->

<property nanme="driverC assName" val ue="com nysql .jdbc. Driver"/>
<property nane="url" val ue="j dbc: mysql ://1 ocal host: 3306/ nydb"/ >
<property nanme="usernane" val ue="root"/>

<property nanme="password" val ue="masterkaoli"/>

</ bean>

Spring Framework
3.2.1.RELEASE Reference Documentation 50

Spring Framework

The following example uses the p-namespace for even more succinct XML configuration.

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="nyDat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce"
destroy- nmet hod="cl ose"
p: dri ver Gl assName="com nysql . j dbc. Dri ver"
p: url ="jdbc: nysql :/ /1| ocal host: 3306/ nydb*"
p: user nane="r oot "
p: passwor d="nast er kaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the SpringSource Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure aj ava. uti |l . Properti es instance as:

<bean i d="rmappi ngs"
cl ass="org. springframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc. driver.classNane=com nysql . j dbc. Dri ver
jdbc. url =jdbc: mysql ://1 ocal host: 3306/ mydb
</ val ue>
</ property>
</ bean>

The Spring container converts the text inside the <val ue/ > elementintoaj ava. util . Properties
instance by using the JavaBeans Pr oper t yEdi t or mechanism. This is a nice shortcut, and is one of
a few places where the Spring team do favor the use of the nested <val ue/ > element over the val ue
attribute style.

The i dref element

Thei dr ef elementis simply an error-proof way to pass the id (string value - not a reference) of another
bean in the container to a <const r uct or - ar g/ > or <pr opert y/ > element.

<bean i d="t heTar get Bean" class="..."/>

<bean i d="t heC i ent Bean" class="...">
<property nanme="t ar get Nane">
<i dref bean="theTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

Spring Framework
3.2.1.RELEASE Reference Documentation 51

http://www.jetbrains.com/idea/
http://www.springsource.com/products/sts

Spring Framework

<bean i d="t heTar get Bean" class="..." />
<bean id="client" class="...">

<property nane="tar get Nane" val ue="t heTar get Bean" />
</ bean>

The first form is preferable to the second, because using the i dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation
is performed on the value that is passed to the t ar get Nane property of the cl i ent bean. Typos are
only discovered (with most likely fatal results) when the cl i ent bean is actually instantiated. If the
cl i ent bean is a prototype bean, this typo and the resulting exception may only be discovered long
after the container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean id, you
can use the | ocal attribute, which allows the XML parser itself to validate the bean id earlier, at XML
document parse time.

<property name="t ar get Nane" >

<!-- a bean with id 'theTargetBean' nust exist; otherwi se an exception will be thrown -->
<idref |ocal ="theTarget Bean"/>

</ property>

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings value
is in the configuration of AOP interceptors in a ProxyFact or yBean bean definition. Using <idref/>
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <const ruct or - ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another
bean (a collaborator) managed by the container. The referenced bean is a dependency of the bean
whose property will be set, and it is initialized on demand as needed before the property is set. (If
the collaborator is a singleton bean, it may be initialized already by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the id/
name of the other object through the bean,l ocal , or par ent attributes.

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of
whether it is in the same XML file. The value of the bean attribute may be the same as the i d attribute
of the target bean, or as one of the values in the nane attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean through the | ocal attribute leverages the ability of the XML parser to validate
XML id references within the same file. The value of the | ocal attribute must be the same as the i d
attribute of the target bean. The XML parser issues an error if no matching element is found in the same
file. As such, using the local variant is the best choice (in order to know about errors as early as possible)
if the target bean is in the same XML file.

<ref |ocal ="soneBean"/ >

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d

Spring Framework
3.2.1.RELEASE Reference Documentation 52

Spring Framework

attribute of the target bean, or one of the values in the nane attribute of the target bean, and the target
bean must be in a parent container of the current one. You use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a
proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean i d="account Servi ce" class="com foo. Si npl eAccount Servi ce">
<I-- insert dependencies as required as here -->

</ bean>

<I-- in the child (descendant) context -->

<bean i d="account Service" <-- bean nane is the sane as the parent bean -->
cl ass="org. spri ngf ramewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="account Service"/> <!-- notice how we refer to the parent bean -->
</ property>
<I-- insert other configuration and dependencies as required here -->
</ bean>
Inner beans

A <bean/ > element inside the <pr opert y/ > or <const r uct or - ar g/ > elements defines a so-called
inner bean.

<bean id="outer" class="...">
<I-- instead of using a reference to a target bean, sinply define the target bean inline
oo
<property name="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->
<property nanme="nane" val ue="Fi ona Apple"/>
<property nane="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also
ignores the scope flag. Inner beans are always anonymous and they are always scoped as prototypes.
It is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Collections

Inthe <li st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
the Java Col | ecti on types Li st, Set, Map, and Pr operti es, respectively.

Spring Framework
3.2.1.RELEASE Reference Documentation 53

Spring Framework

<bean i d="nor eConpl exoj ect" cl ass="exanpl e. Conpl exChj ect ">

<!-- results in a set Adm nEmail s(java.util.Properties) call -->
<property nanme="adm nEmai | s" >
<pr ops>

<prop key="adnmi ni strator">adm ni strator @xanpl e. org</ prop>
<prop key="support">support @xanpl e. org</ prop>
<prop key="devel opnent " >devel opnent @xanpl e. or g</ pr op>

</ pr ops>
</ property>
<I-- results in a setSoneList(java.util.List) call -->
<property nane="soneList">

<list>

<val ue>a list elenent followed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a set SonmeMap(java.util.Mp) call -->
<property nane="soneMap">

<n’ap>

<entry key="an entry" val ue="just sone string"/>
<entry key ="a ref" val ue-ref="nyDat aSource"/>

</ map>
</ property>
<I-- results in a setSoneSet(java.util.Set) call -->
<property name="soneSet">

<set >

<val ue>j ust sonme string</val ue>
<ref bean="nyDat aSource" />
</ set >
</ property>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

Collection merging

As of Spring 2.0, the container supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <pr ops/ > element, and have child-style <l i st/ >, <map/
>, <set /> or <props/ > elements inherit and override values from the parent collection. That is, the
child collection's values are the result of merging the elements of the parent and child collections, with
the child's collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent
and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

Spring Framework
3.2.1.RELEASE Reference Documentation 54

Spring Framework

<beans>
<bean id="parent" abstract="true" class="exanpl e. Conpl exChj ect">
<property nanme="adm nEmai | s" >
<pr ops>
<prop key="adnmi ni strator">adm ni strator @xanpl e. com</ prop>
<prop key="support">support @xanpl e. com</ prop>
</ props>
</ property>
</ bean>
<bean id="child" parent="parent">
<property nane="adm nEmail s">
<l-- the nerge is specified on the *child* collection definition -->
<props mnerge="true">
<prop key="sal es">sal es@xanpl e. com</ prop>
<prop key="support">support @xanpl e. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the admi nEmai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance has an adm nEmai | s Properti es collection that contains the result of the merging
of the child's adm nEnmi | s collection with the parent's adni nEnai | s collection.

admi ni strator=adm ni strator @xanpl e. com
sal es=sal es@xanpl e. com
support =suppor t @xanpl e. co. uk

The child Proper ti es collection's value set inherits all property elements from the parent <pr ops/ >,
and the child's value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent's values precede all of the child
list's values. In the case of the Map, Set , and Pr oper ti es collection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Properti es implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a Li st), and if you do attempt to do
S0 an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,
child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging. The merging feature is available only in Spring 2.0 and later.

Strongly-typed collection (Java 5+ only)

In Java 5 and later, you can use strongly typed collections (using generic types). That is, it is possible
to declare a Col | ect i on type such that it can only contain St r i ng elements (for example). If you are
using Spring to dependency-inject a strongly-typed Col | ect i on into a bean, you can take advantage of
Spring's type-conversion support such that the elements of your strongly-typed Col | ect i on instances
are converted to the appropriate type prior to being added to the Col | ecti on.

Spring Framework
3.2.1.RELEASE Reference Documentation 55

Spring Framework

public class Foo {
private Map<String, Float> accounts

public void set Account s(Map<String, Float> accounts) {
this.accounts = accounts
}
}

<beans>
<bean id="foo" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f 00 bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<St ri ng, Fl oat > is available by reflection. Thus Spring's
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the
string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty St ri ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St ri ng value (")

<bean cl ass="Exanpl eBean" >
<property nanme="enmil" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code: exanpl eBean. set Emai | ("") . The
<nul | / > element handles nul | values. For example:

<bean cl ass="Exanpl eBean" >
<property name="enmil"><nul | /></property>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Emai | (nul 1) .
XML shortcut with the p-namespace

The p-namespace enables you to use the bean element's attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring 2.0 and later supports extensible configuration formats with namespaces, which are based on
an XML Schema definition. The beans configuration format discussed in this chapter is defined in an
XML Schema document. However, the p-namespace is not defined in an XSD file and exists only in
the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

Spring Framework
3.2.1.RELEASE Reference Documentation 56

Spring Framework

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http: // ww. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean name="cl assi c" cl ass="com exanpl e. Exanpl eBean" >
<property nane="enmil" val ue="foo@ar.cont/>
</ bean>

<bean nane="p-nanespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | =" f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean nane="j ohn-cl assi c" cl ass="com exanpl e. Person" >
<property nanme="nane" val ue="John Doe"/>
<property nane="spouse" ref="jane"/>

</ bean>

<bean name="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Person" >
<property nanme="nane" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses
a special format to declare property references. Whereas the first bean definition uses <property
name="spouse" ref="jane"/ > to create a reference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-ref ="j ane" as an attribute to do the exact same thing. In this case
spouse is the property name, whereas the - r ef partindicates that this is not a straight value but rather
a reference to another bean.

© Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard XML
format does not. We recommend that you choose your approach carefully and communicate this
to your team members, to avoid producing XML documents that use all three approaches at the
same time.

Spring Framework
3.2.1.RELEASE Reference Documentation 57

Spring Framework

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

Let's review the examples from the section called “Constructor-based dependency injection” with the
C namespace:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns: c="http://ww. springfranmework. org/ schema/c"
xsi : schemaLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ scherma/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

<-- 'traditional' declaration -->

<bean id="fo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="foo@ar.con'/>

</ bean>

<-- 'c-nanespace' declaration -->
<bean id="fo0" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:enmuil ="foo@ar.coni>

</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though
it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<-- 'c-nanespace' index declaration -->
<bean id="foo0" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz">

© Note

Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not nul | . Consider the following bean
definition.

<bean i d="foo" class="foo.Bar">
<property nane="fred. bob. sammy" val ue="123" />
</ bean>

Spring Framework
3.2.1.RELEASE Reference Documentation 58

Spring Framework

The f oo beanhas af r ed property, which has a bob property, which has a samy property, and that final
sammy property is being set to the value 123. In order for this to work, the f r ed property of f 0o, and the
bob property of f r ed must not be nul | after the bean is constructed, or a Nul | Poi nt er Excepti on
is thrown.

Using depends- on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <r ef / > element in XML-based configuration metadata. However,
sometimes dependencies between beans are less direct; for example, a static initializer in a class needs
to be triggered, such as database driver registration. The depends- on attribute can explicitly force one
or more beans to be initialized before the bean using this element is initialized. The following example
uses the depends- on attribute to express a dependency on a single bean:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="nmanager"/>

<bean i d="manager" cl ass="Manager Bean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="nmanager, account Dao" >
<property nanme="manager" ref="nanager" />
</ bean>

<bean i d="nmanager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.]jdbc.JdbcAccount Dao" />

© Note

The depends- on attribute in the bean definition can specify both an initialization time
dependency and, in the case of singleton beans only, a corresponding destroy time dependency.
Dependent beans that define a depends- on relationship with a given bean are destroyed first,
prior to the given bean itself being destroyed. Thus depends- on can also control shutdown
order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even
days later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the 10C container to create a
bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the | azy-i ni t attribute on the <bean/ > element; for example:
<bean id="lazy" class="com foo. Expensi veToCr eat eBean" |azy-init="true"/>

<bean name="not.| azy" cl ass="com f 0o. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cat i onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext is starting up, whereas the not . | azy
bean is eagerly pre-instantiated.

Spring Framework
3.2.1.RELEASE Reference Documentation 59

Spring Framework

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized,
the Appl i cati onCont ext creates the lazy-initialized bean at startup, because it must satisfy the
singleton's dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is
not lazy-initialized.

You can also control lazy-initialization at the container level by using the def aul t - | azy-i ni t attribute
on the <beans/ > element; for example:

<beans default-lazy-init="true">
<l-- no beans will be pre-instantiated... -->

</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring
to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cati onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this

regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especially useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata13, you specify autowire mode for a bean definition

with the aut owi r e attribute of the <bean/ > element. The autowiring functionality has five modes. You

specify autowiring per bean and thus can choose which ones to autowire.

Table 5.2. Autowiring modes

Mode

no

byName

Explanation

(Default) No autowiring. Bean references must be defined via a ref element.
Changing the default setting is not recommended for larger deployments, because
specifying collaborators explicitly gives greater control and clarity. To some extent,
it documents the structure of a system.

Autowiring by property name. Spring looks for a bean with the same name as the
property that needs to be autowired. For example, if a bean definition is set to
autowire by name, and it contains a master property (that is, it has a setMaster(..)
method), Spring looks for a bean definition named mast er, and uses it to set the

property.

byType

Allows a property to be autowired if exactly one bean of the property type exists in the
container. If more than one exists, a fatal exception is thrown, which indicates that
you may not use byType autowiring for that bean. If there are no matching beans,
nothing happens; the property is not set.

constructor

Analogous to byType, but applies to constructor arguments. If there is not exactly
one bean of the constructor argument type in the container, a fatal error is raised.

133ee the section called “Dependency injection”

3.2.1.RELEASE

Spring Framework
Reference Documentation 60

Spring Framework

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases
all autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general,
it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and C asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful
to avoid guessing in case of ambiguity that might have unexpected results, the relationships between
your Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

* Multiple bean definitions within the container may match the type specified by the setter method
or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily
a problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:
» Abandon autowiring in favor of explicit wiring.

» Avoid autowiring for a bean definition by setting its aut owi r e- candi dat e attributes to f al se as
described in the next section.

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementto t r ue.

* If you are using Java 5 or later, implement the more fine-grained control available with annotation-
based configuration, as described in Section 5.9, “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring's XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that specific
bean definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @A\ut owi r ed).

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/ > element accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,

Spring Framework
3.2.1.RELEASE Reference Documentation 61

Spring Framework

provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring.
It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean
itself is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs
to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the
other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cati onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

/'l a class that uses a stateful Command-style class to perform sone processing
package fi ona. appl e

/1 Spring-APl inports

i mport org.springframework. beans. BeansExcepti on

i nport org.springfranmework. cont ext. Appl i cati onCont ext;

i mport org. springframework. cont ext. Appl i cati onCont ext Awar e;

public class CommandManager inplenments Applicati onCont ext Anare {
private ApplicationContext applicationContext;

public Object process(Map comrandState) {
/1 grab a new instance of the appropriate Comrand
Command conmand = creat eComrand() ;
/] set the state on the (hopefully brand new) Command i nstance
conmand. set St at e(comrandSt at e) ;
return command. execute();

}

protect ed Conmand creat eConmand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("comuand", Conmand. cl ass);

}

public void setApplicationContext (ApplicationContext applicationContext)
t hrows BeansException {
thi s. applicationContext = applicationContext;

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring loC container, allows this
use case to be handled in a clean fashion.

Spring Framework
3.2.1.RELEASE Reference Documentation 62

Spring Framework

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typically involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a
subclass that overrides the method.

© Note

For this dynamic subclassing to work, the class that the Spring container will subclass cannot
be fi nal , and the method to be overridden cannot be f i nal either. Also, testing a class that
has an abstract method requires you to subclass the class yourself and to supply a stub
implementation of the abst r act method. Finally, objects that have been the target of method
injection cannot be serialized. As of Spring 3.2 it is no longer necessary to add CGLIB to your
classpath, because CGLIB classes are repackaged under org.springframework and distributed
within the spring-core JAR. This is done both for convenience as well as to avoid potential
conflicts with other projects that use differing versions of CGLIB.

Looking at the ConmandManager class in the previous code snippet, you see that the Spring
container will dynamically override the implementation of the creat eComrand() method. Your
ConmmandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e;
/! no nmore Spring inports!
public abstract class ConmandManager {

public Object process(Object conmandState) {
/1 grab a new instance of the appropriate Comand interface
Command conmand = creat eComrand() ;
/'l set the state on the (hopefully brand new) Command i nstance
conmand. set St at e(comrandSt at e) ;
return command. execute();

/1 okay... but where is the inplenentation of this nmethod?
protected abstract Command creat eComrand();

}

In the client class containing the method to be injected (the ConmmandManager in this case), the method
to be injected requires a signature of the following form:

<public| protected> [abstract] <return-type> theMethodNane(no-argunents);

If the method is abst r act, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class. For
example:

Spring Framework
3.2.1.RELEASE Reference Documentation 63

http://blog.springsource.com/2004/08/06/method-injection/

Spring Framework

<I-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="conmand" class="fiona. appl e. AsyncConmand" scope="prototype">
<I'-- inject dependencies here as required -->

</ bean>

<!'-- commandProcessor uses stateful CommandHel per -->

<bean i d="conmandManager" cl ass="fi ona. appl e. CommandManager " >
<l ookup- net hod nanme="cr eat eCommand" bean="command"/ >
</ bean>

The bean identified as commandManager calls its own method cr eat eCommand() whenever it needs
a new instance of the command bean. You must be careful to deploy the conmmand bean as a prototype,
if that is actually what is needed. If it is deployed as a singleton, the same instance of the conmand
bean is returned each time.

@ Tip

The interested reader may also find the ServicelLocatorFactoryBean (in the
org. spri ngframewor k. beans. factory. confi g package) to be of use. The approach
used in ServiceLocatorFactoryBean is similar to that of another utility class,
hj ect Fact or yCreati ngFact or yBean, but it allows you to specify your own lookup
interface as opposed to a Spring-specific lookup interface. Consult the JavaDocs for these
classes as well as this blog entry for additional information ServiceLocatorFactoryBean.

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of
this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- met hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with
a method computeValue, which we want to override:

public class MyVal ueCal cul ator {
public String conputeValue(String input) {
/'l some real code..

}

/'l some other nethods..

A class implementing the or g. spri ngf ramewor k. beans. fact ory. support. Met hodRepl acer
interface provides the new method definition.

Spring Framework
3.2.1.RELEASE Reference Documentation 64

http://blog.arendsen.net/index.php/2006/10/05/on-the-servicelocatorfactorybean-dlas-and-the-sustainability-of-code-and-design/

Spring Framework

/** meant to be used to override the existing conputeVal ue(String)
i npl enentation in MyVal ueCal cul at or
*/
public class Repl acement Comput eVal ue i npl enents Met hodRepl acer {
public Object reinplenent(Object o, Method m bject[] args) throws Throwabl e {
/1 get the input value, work with it, and return a conputed result

String input = (String) args[O0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean i d="nyVal ueCal cul ator" class="x.y.z. My/Val ueCal cul at or" >

<I-- arbitrary nmethod repl acemrent -->

<repl aced- net hod name="conput eVal ue" repl acer="repl acement Conput eVal ue" >
<arg-type>String</arg-type>

</ r epl aced- net hod>

</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

You can use one or more contained <ar g-type/ > elements within the <r epl aced- net hod/ >
element to indicate the method signature of the method being overridden. The signature for the
arguments is necessary only if the method is overloaded and multiple variants exist within the class.
For convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match j ava. | ang. Stri ng:

java. lang. String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

5.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined
by that bean definition. The idea that a bean definition is a recipe is important, because it means that,
as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into
an object that is created from a particular bean definition, but also the scope of the objects created from
a particular bean definition. This approach is powerful and flexible in that you can choose the scope
of the objects you create through configuration instead of having to bake in the scope of an object at
the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the
box, the Spring Framework supports five scopes, three of which are available only if you use a web-
aware Appl i cat i onCont ext .

The following scopes are supported out of the box. You can also create a custom scope.

Spring Framework
3.2.1.RELEASE Reference Documentation 65

Spring Framework

Table 5.3. Bean scopes

Scope Description

singleton (Default) Scopes a single bean definition to a
single object instance per Spring 1oC container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; that is, each HTTP request
has its own instance of a bean created off the back
of a single bean definition. Only valid in the context
of a web-aware Spring Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of

global session

an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

Scopes a single bean definition to the lifecycle of a
global HTTP Sessi on. Typically only valid when
used in a portlet context. Only valid in the context
of a web-aware Spring Appl i cati onCont ext .

@ Thread-scoped beans

As of Spring 3.0, athread scope is available, but is not registered by default. For more information,
see the documentation for SimpleThreadScope. For instructions on how to register this or any

other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or
ids matching that bean definition result in that one specific bean instance being returned by the Spring

container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring 1oC
container creates exactly one instance of the object defined by that bean definition. This single instance
is stored in a cache of such singleton beans, and all subsequent requests and references for that named

bean return the cached object.

Spring Framework

3.2.1.RELEASE Reference Documentation 66

http://static.springsource.org/spring/docs/current/api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework

‘ Only one instance is ever created...

1

<bean id="accountDao" =lass="..." />

... and this same shared instance is injected into each collaborating object

Spring's concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only one
instance of a particular class is created per O assLoader . The scope of the Spring singleton is best
described as per container and per bean. This means that if you define one bean for a particular class
in a single Spring container, then the Spring container creates one and only one instance of the class
defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
a singleton in XML, you would write, for example:

<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce"/>

<!-- the follow ng is equival ent, though redundant (singleton scope is the default) -->
<bean i d="account Servi ce" cl ass="com fo00. Def aul t Account Servi ce" scope="si ngl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time a request for that specific bean is made. That is, the bean is injected into another bean or
you request it through a get Bean() method call on the container. As a rule, use the prototype scope
for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for this author to reuse the core of the singleton diagram.

Spring Framework
3.2.1.RELEASE Reference Documentation 67

Spring Framework

A brand new bean instance is created...

<bean id="accountDao" class="..."
,{'; scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

The following example defines a bean as a prototype in XML:

<!-- using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" cl ass="com fo00. Def aul t Account Servi ce" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held
by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans
that need to be cleaned up.

In some respects, the Spring container's role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client. (For
details on the lifecycle of a bean in the Spring container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean
into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into
the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-
scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your
singleton bean, because that injection occurs only once, when the Spring container is instantiating the
singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype
bean at runtime more than once, see the section called “Method injection”

Request, session, and global session scopes

The request, sessi on, and gl obal sessi on scopes are only available if you use a web-aware
Spring Appl i cat i onCont ext implementation (such as Xm WebAppl i cat i onCont ext). If you use

Spring Framework
3.2.1.RELEASE Reference Documentation 68

Spring Framework

these scopes with regular Spring loC containers such as the Cl assPat hXnl Appl i cati onCont ext,
yougetanl || egal St at eExcept i on complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans atthe r equest , sessi on, and gl obal sessi on levels (web-scoped
beans), some minor initial configuration is required before you define your beans. (This initial setup is
not required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed
by the Spring Di spat cher Ser vl et, or Di spat cher Port | et, then no special setup is necessary:
Di spat cher Servl et and Di spat cher Port| et already expose all relevant state.

If you use a Servlet 2.4+ web container, with requests processed outside of Spring's
DispatcherServlet (for example, when using JSF or Struts), you need to add the following
javax. servl et. Servl et Request Li st ener to the declarations in your web applications web. xm
file:

<web- app>

<li stener>
<listener-class>
org. springframewor k. web. cont ext. request . Request Cont ext Li st ener
</listener-class>
</l|istener>

</ web- app>

If you use an older web container (Servlet 2.3), use the provided javax.servlet.Filter
implementation. The following snippet of XML configuration must be included in the web. xm file
of your web application if you want to access web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web
application configuration, so you must change it as appropriate.)

<web- app>

<filter>
<filter-nane>requestContextFilter</filter-nanme>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-nmppi ng>
<filter-nanme>requestContextFilter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

</ web- app>

Di spat cher Servl et, Request Cont ext Li stener and Request Context Fi |l ter all do exactly
the same thing, namely bind the HTTP request object to the Thr ead that is servicing that request. This
makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

Spring Framework
3.2.1.RELEASE Reference Documentation 69

Spring Framework

<bean i d="I ogi nAction" class="com foo.Logi nAction" scope="request"/>

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nAct i on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. You can change the internal state of the instance that is created as much as you
want, because other instances created from the same | ogi nAct i on bean definition will not see these
changes in state; they are particular to an individual request. When the request completes processing,
the bean that is scoped to the request is discarded.

Session scope
Consider the following bean definition:

<bean i d="user Preferences" class="com foo. User Preferences" scope="session"/>

The Spring container creates a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Pr ef er ences bean is effectively scoped at the HTTP Sessi on level. As with r equest - scoped
beans, you can change the internal state of the instance that is created as much as you want,
knowing that other HTTP Sessi on instances that are also using instances created from the same
user Pr ef er ences bean definition do not see these changes in state, because they are particular to an
individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is scoped
to that particular HTTP Sessi on is also discarded.

Global session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. User Preferences" scope="gl obal Sessi on"/>

The gl obal sessi on scope is similar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal sessi on scope, the standard HTTP Sessi on scope is used, and no error is raised.

Scoped beans as dependencies

The Spring loC container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject
a proxy object that exposes the same public interface as the scoped object but that can also retrieve
the real, target object from the relevant scope (for example, an HTTP request) and delegate method
calls onto the real object.

© Note

You do not need to use the <aop: scoped- pr oxy/ > in conjunction with beans that are scoped
as si ngl et ons or pr ot ot ypes.

Spring Framework
3.2.1.RELEASE Reference Documentation 70

Spring Framework

The configuration in the following example is only one line, but it is important to understand the “why”
as well as the “how” behind it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframework. or g/ schema/ aop"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ aop
http://ww. spri ngfranewor k. or g/ schema/ aop/ spri ng- aop. xsd" >

<l-- an HTTP Sessi on-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. User Pref erences" scope="session">

<I-- instructs the container to proxy the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<!-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo.Si npl eUser Servi ce">

<!-- a reference to the proxi ed userPreferences bean -->
<property nanme="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create such a proxy, you insert a child <aop: scoped- pr oxy/ > element into a scoped bean
definition. See the section called “Choosing the type of proxy to create” and Appendix E, XML Schema-
based configuration.) Why do definitions of beans scoped at the r equest , sessi on, gl obal Sessi on
and custom-scope levels require the <aop: scoped- pr oxy/ > element ? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes.
(The following user Pr ef er ences bean definition as it stands is incomplete.)

<bean i d="user Preferences" class="com foo. User Preferences" scope="session"/>

<bean i d="user Manager" cl ass="com f00. User Manager" >
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The salient point here is that the user Manager beanis a
singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-
lived scoped bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a
dependency into singleton bean. Rather, you need a single user Manager object, and for the
lifetime of an HTTP Sessi on, you need a user Pr ef er ences object that is specific to said HTTP
Sessi on. Thus the container creates an object that exposes the exact same public interface as
the User Pr ef erences class (ideally an object that is a User Pr ef er ences instance) which can
fetch the real User Pr ef er ences object from the scoping mechanism (HTTP request, Sessi on,
etc.). The container injects this proxy object into the user Manager bean, which is unaware that this

Spring Framework
3.2.1.RELEASE Reference Documentation 71

Spring Framework

User Pr ef er ences reference is a proxy. In this example, when a User Manager instance invokes
a method on the dependency-injected User Pr ef er ences object, it actually is invoking a method on
the proxy. The proxy then fetches the real User Pr ef er ences object from (in this case) the HTTP
Sessi on, and delegates the method invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beans into collaborating objects:

<bean i d="user Preferences" class="com foo. User Pref erences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean i d="user Manager" cl ass="com f 0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created.

Note: CGLIB proxies only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies
for such scoped beans, by specifying f al se for the value of the pr oxy-t ar get - cl ass attribute of
the <aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean is injected must reference the bean through one of its interfaces.

<I-- Defaul tUserPreferences inplements the UserPreferences interface -->

<bean i d="user Preferences" class="com foo. Defaul t User Pref erences" scope="sessi on">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com foo. User Manager " >
<property nane="user Preferences" ref="userPreferences"/>
</ bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 9.6,
“Proxying mechanisms”.

Custom scopes

As of Spring 2.0, the bean scoping mechanism is extensible. You can define your own scopes, or even
redefine existing scopes, although the latter is considered bad practice and you cannot override the
built-in si ngl et on and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org. spri ngfranmewor k. beans. factory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope Javadoc, which explains the methods you
need to implement in more detail.

Spring Framework
3.2.1.RELEASE Reference Documentation 72

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

Chj ect get(String name, ObjectFactory object Factory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

Obj ect renove(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when
the specified object in the scope is destroyed. Refer to the Javadoc or a Spring scope implementation
for more information on destruction callbacks.

voi d regi sterDestructionCal | back(String name, Runnabl e destructionCal | back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session
identifier.

String get Conversationld()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact ory interface, which is available on most
of the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory

property.

The first argument to the regi ster Scope(..) method is the unigue name associated with a
scope; examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The
second argument to the regi st er Scope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

© Note

The example below uses Si npl eThr eadScope which is included with Spring, but not registered
by default. The instructions would be the same for your own custom Scope implementations.

Scope t hreadScope = new Si npl eThr eadScope() ;
beanFact ory. regi st er Scope("t hread", threadScope);

Spring Framework
3.2.1.RELEASE Reference Documentation 73

Spring Framework

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schema/ aop"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://www. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ aop
http://ww. springframework. or g/ schema/ aop/ spri ng- aop. xsd" >

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread">
<bean cl ass="org. spri ngframewor k. cont ext . support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="t hread">
<property nane="nane" val ue="Ri ck"/>
<aop: scoped- proxy/ >

</ bean>

<bean id="foo" class="x.y.Foo">
<property name="bar" ref="bar"/>

</ bean>

</ beans>

© Note

When you place <aop:scoped-proxy/> in a Fact or yBean implementation, it is the factory bean
itself that is scoped, not the object returned from get Cbj ect () .

5.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement
the Spring InitializingBean and Disposabl eBean interfaces. The container calls
after PropertiesSet () for the former and dest roy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans. You can also achieve the same
integration with the container without coupling your classes to Spring interfaces through the use of init-
method and destroy method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 5.8, “Container Extension Points”.

Spring Framework
3.2.1.RELEASE Reference Documentation 74

Spring Framework

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container's own lifecycle.

The lifecycle callback interfaces are described in this section.
Initialization callbacks

The org. spri ngframewor k. beans. factory. I nitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container.
The I ni tializi ngBean interface specifies a single method:

void afterPropertiesSet() throws Exception

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, specify a POJO initialization method. In the case of XML-
based configuration metadata, you use the i ni t - met hod attribute to specify the name of the method
that has a void no-argument signature. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>

public class Exanpl eBean {

public void init() {
/! do sone initialization work

}

}

...Is exactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/] do sone initialization work

}
}

... but does not couple the code to Spring.
Destruction callbacks

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface allows a
bean to get a callback when the container containing it is destroyed. The Di sposabl eBean interface
specifies a single method:

voi d destroy() throws Exception

It is recommended that you do not use the Di sposabl eBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, specify a generic method that is supported by
bean definitions. With XML-based configuration metadata, you use the dest r oy- net hod attribute on
the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy-net hod="cl eanup"/ >

Spring Framework
3.2.1.RELEASE Reference Documentation 75

Spring Framework

public class Exanpl eBean {

public void cleanup() {
/1 do sone destruction work (like releasing pooled connections)
}
}

...Is exactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like releasing pooled connections)
}
}

... but does not couple the code to Spring.
Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and D sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),dispose(),andsoon.Ideally, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names
and ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application
classes and use an initialization callback called i ni t (), without having to configure an init-
nmet hod="ini t" attribute with each bean definition. The Spring 10C container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your class will resemble the class in the following example.

public class DefaultBl ogService inmplenents Bl ogService {
private Bl ogDao bl ogDao;

public voi d setBl ogDao(Bl ogDao bl ogDao) {
this. bl ogbao = bl ogDao;
}

/1 this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbDao == null) {
throw new || | egal St at eExcepti on("The [bl ogDao] property nust be set.");

}

Spring Framework
3.2.1.RELEASE Reference Documentation 76

Spring Framework

<beans default-init-nmethod="init">
<bean i d="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property nane="bl ogDao" ref="bl ogDao" />

</ bean>

</ beans>

The presence of the def aul t -i ni t - net hod attribute on the top-level <beans/ > element attribute
causes the Spring IoC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked
at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the def aul t - dest r oy-
nmet hod attribute on the top-level <beans/ > element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name using the
i ni t-method and destroy-net hod attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the
target bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces; custom init() and destroy() methods; and the
@Post Const ruct and @r eDest r oy annotations. You can combine these mechanisms to control a
given bean.

© Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured
with a different method name, then each configured method is executed in the order listed below.
However, if the same method name is configured - for example, i ni t () for an initialization
method - for more than one of these lifecycle mechanisms, that method is executed once, as
explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called as follows:

* Methods annotated with @ost Const r uct
« afterPropertiesSet() asdefinedbythelnitializingBean callback interface
» A custom configured i ni t () method

Destroy methods are called in the same order:

Spring Framework
3.2.1.RELEASE Reference Documentation 77

Spring Framework

» Methods annotated with @°r eDest r oy

» destroy() as defined by the Di sposabl eBean callback interface
» A custom configured dest r oy() method

Startup and shutdown callbacks

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {
void start();
void stop();

bool ean i sRunni ng();

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself
starts and stops, it will cascade those calls to all Lifecycle implementations defined within that context.
It does this by delegating to a Li f ecycl eProcessor:

public interface Lifecycl eProcessor extends Lifecycle {
voi d onRefresh();

voi d ond ose();

Notice that the Li f ecycl ePr ocessor is itself an extension of the Li f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. You may only know that objects
of a certain type should start prior to objects of another type. In those cases, the Smart Li f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

public interface Phased {

int getPhase();

public interface SmartLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

Spring Framework
3.2.1.RELEASE Reference Documentation 78

Spring Framework

When starting, the objects with the lowest phase start first, and when stopping, the reverse order
is followed. Therefore, an object that implements Smart Li f ecycl e and whose getPhase() method
returns | nt eger . M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering
the phase value, it's also important to know that the default phase for any "normal" Li f ecycl e object
that does not implement Smart Li f ecycl e would be 0. Therefore, any negative phase value would
indicate that an object should start before those standard components (and stop after them), and vice
versa for any positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback’s run() method after that implementation's shutdown process is complete.
That enables asynchronous shutdown where necessary since the default implementation of the
Li fecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout value
for the group of objects within each phase to invoke that callback. The default per-phase timeout
is 30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following
would be sufficient:

<bean id="lifecycl eProcessor" class="org.springfranework. context.support. DefaultLifecycl eProcessor">
<l-- timeout value in mlliseconds -->
<property nane="ti nmeout Per Shut downPhase" val ue="10000"/ >

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if stop() had been
called explicitly, but it will happen when the context is closing. The 'refresh’ callback on the other
hand enables another feature of SmartLi f ecycl e beans. When the context is refreshed (after all
objects have been instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each Smart Li f ecycl e object's
i sAut oSt art up() method. If "true", then that object will be started at that point rather than waiting for
an explicit invocation of the context's or its own start() method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well
as any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring loC container gracefully in non-web applications

© Note

This section applies only to non-web applications. Spring's web-based Appl i cat i onCont ext
implementations already have code in place to shut down the Spring IoC container gracefully
when the relevant web application is shut down.

If you are using Spring's IoC container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the r egi st er Shut downHook() method that is declared on the
Abst ract Appl i cati onCont ext class:

Spring Framework
3.2.1.RELEASE Reference Documentation 79

Spring Framework

i mport org.springframework. cont ext. support. Abstract Appl i cati onCont ext ;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;

public final class Boot ({
public static void main(final String[] args) throws Exception {
Abst ract Appl i cati onCont ext ctx

= new Cl assPat hXm Appl i cati onContext(new String []{"beans.xm "});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/'l app runs here...

// main nmethod exits, hook is called prior to the app shutting down...

Appl i cati onCont ext Awar e and BeanNaneAwar e

When an Appl i cati onCont ext creates a class that implements the
org. springframewor k. cont ext. Appl i cat i onCont ext Awar e interface, the class is provided
with a reference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set Appli cati onCont ext (Applicati onCont ext applicationContext) throws BeansExcepti on;
}

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Confi gurabl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful, however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion
of Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a
MessageSource. These additional features are described in Section 5.14, “Additional Capabilities of the
Appl i cati onCont ext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cat i onCont ext .
The "traditional" construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators”) can provide a dependency of type Appl i cat i onCont ext for a constructor
argument or setter method parameter, respectively. For more flexibility, including the ability to autowire
fields and multiple parameter methods, use the new annotation-based autowiring features. If you do,
the Appl i cati onCont ext is autowired into a field, constructor argument, or method parameter that
is expecting the Appl i cat i onCont ext type if the field, constructor, or method in question carries the
@\ut owi r ed annotation. For more information, see the section called “@wut ow r ed”.

When an ApplicationContext creates a class that implements the
org. springfranmewor k. beans. f act ory. BeanNanmeAwar e interface, the class is provided with a
reference to the name defined in its associated object definition.

public interface BeanNaneAware {

voi d set BeanNane(string nane) throws BeansException;

}

Spring Framework
3.2.1.RELEASE Reference Documentation 80

Spring Framework

The callback is invoked after population of normal bean properties but before an initialization callback
such as I nitializi ngBeans afterPropertiesSet or a custom init-method.

Other Awar e interfaces

Besides Appl i cat i onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers a range
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the name
is a good indication of the dependency type:

Table 5.4. Awar e interfaces

Name

Injected Dependency

Explained in...

Appl i cati onCont ext Awar e

Declaring
Appl i cat i onCont ext

the section called
“Appl i cat i onCont ext Awar e
and BeanNaneAwar e”

Appl i cati onEvent Publ i she

BeanCl assLoader Awar e

BEwanepublisher of the enclosing
Appl i cati onCont ext

Class loader used to load the
bean classes.

“Additional
the

Section
Capabilities of
Appl i cati onCont ext”

5.14,

the section called “Instantiating
beans”

BeanFact or yAwar e

Declaring BeanFact ory

the section called
“Appl i cat i onCont ext Awar e
and BeanNaneAwar e”

BeanNaneAwar e

Boot st r apCont ext Awar e

Name of the declaring bean

Resource adapter
Boot st r apCont ext the
container runs in. Typically

available only in JCA aware
Appl i cationCont exts

the section called
“Appl i cat i onCont ext Awar e
and BeanNaneAwar e”

Chapter 25, JCA CCI

LoadTi neWeaver Awar e

MessageSour ceAwar e

Defined weaver for processing
class definition at load time

Configured strategy for
resolving messages (with
support for parametrization and
internationalization)

the section called “Load-time
weaving with Aspect] in the
Spring Framework”

“Additional
the

Section
Capabilities of
Appl i cati onCont ext”

5.14,

Noti fi cati onPubl i sher Awar &pring JMX notification Section 24.7, “Notifications”
publisher
Port| et Confi gAwar e Current Portl et Config the Chapter 20, Portlet MVC
container runs in. Valid Framework
only in a web-aware Spring
Appl i cati onCont ext
Spring Framework
3.2.1.RELEASE Reference Documentation 81

Spring Framework

Name Injected Dependency Explained in...

Port| et Cont ext Awar e Current Portl et Cont ext the Chapter 20, Portlet MVC
container runs in. Valid Framework

only in a web-aware Spring

Appl i cati onCont ext

Resour ceLoader Awar e Configured loader for low-level Chapter 6, Resources
access to resources

Servl et Conf i gAwar e Current Servl et Config the Chapter 17, Web MVC
container runs in. Valid framework

only in a web-aware Spring

Appl i cati onCont ext

Ser vl et Cont ext Awar e Current Servl et Cont ext the Chapter 17, Web MVC
container runs in. Valid framework

only in a web-aware Spring

Appl i cati onCont ext

Note again that usage of these interfaces ties your code to the Spring APl and does not follow
the Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

5.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property
values, and container-specific information such as initialization method, static factory method name,
and so on. A child bean definition inherits configuration data from a parent definition. The child definition
can override some values, or add others, as needed. Using parent and child bean definitions can save
a lot of typing. Effectively, this is a form of templating.

If you work with an Applicati onCont ext interface programmatically, child bean definitions
are represented by the Chil dBeanDefinition class. Most users do not work with
them on this level, instead configuring bean definitions declaratively in something like the
Cl assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value
of this attribute.

<bean id="inheritedTest Bean" abstract="true"
cl ass="org. spri ngframewor k. beans. Test Bean" >
<property name="nane" val ue="parent"/>
<property nanme="age" val ue="1"/>
</ bean>

<bean id="inheritsWthbDifferentd ass"
cl ass="org. spri ngframewor k. beans. Deri vedTest Bean"

parent ="i nheritedTest Bean" init-method="initialize">

<property nane="nane" val ue="override"/>
<!-- the age property value of 1 will be inherited from parent -->

</ bean>

Spring Framework
3.2.1.RELEASE Reference Documentation 82

Spring Framework

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent's property values.

A child bean definition inherits constructor argument values, property values, and method overrides
from the parent, with the option to add new values. Any initialization method, destroy method, and/or
st at i ¢ factory method settings that you specify will override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, scope, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition
as abstract is required, as follows:

<bean i d="inheritedTest BeanWt hout Cl ass" abstract="true">
<property nane="nane" val ue="parent"/>
<property nanme="age" val ue="1"/>

</ bean>

<bean i d="inheritsWthd ass" class="org.springfranmework. beans. Deri vedTest Bean"
parent ="inheritedTest BeanWt hout Cl ass" init-nethod="initialize">
<property name="nane" val ue="override"/>
<l-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abstract. When a definition is abst r act like this, it is usable only as a pure template
bean definition that serves as a parent definition for child definitions. Trying to use such an
abstract parent bean on its own, by referring to it as a ref property of another bean or doing an
explicit get Bean() call with the parent bean id, returns an error. Similarly, the container's internal
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

© Note

Appl i cati onCont ext pre-instantiates all singletons by default. Therefore, it is important (at
least for singleton beans) that if you have a (parent) bean definition which you intend to use
only as a template, and this definition specifies a class, you must make sure to set the abstract
attribute to true, otherwise the application context will actually (attempt to) pre-instantiate the
abst ract bean.

5.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 1oC container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPost Pr ocessor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container's default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

Spring Framework
3.2.1.RELEASE Reference Documentation 83

Spring Framework

You can configure multiple BeanPost Processor instances, and you can control the order in
which these BeanPost Processors execute by setting the order property. You can set this
property only if the BeanPost Processor implements the Or der ed interface; if you write your own
BeanPost Processor you should consider implementing the Or der ed interface too. For further
details, consult the Javadoc for the BeanPost Pr ocessor and Or der ed interfaces. See also the note
below on programmatic registration of BeanPost Pr ocessor s

© Note

BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring loC
container instantiates a bean instance and then BeanPost Pr ocessor s do their work.

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using container
hierarchies. If you define a BeanPost Pr ocessor in one container, it will only post-process the
beans in that container. In other words, beans that are defined in one container are not post-
processed by a BeanPost Pr ocessor defined in another container, even if both containers are
part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Pr ocessor as described in the section called “Customizing
configuration metadata with a BeanFact or yPost Pr ocessor ”.

The or g. spri ngf ranewor k. beans. fact ory. confi g. BeanPost Pr ocessor interface consists
of exactly two callback methods. When such a class is registered as a post-processor with the container,
for each bean instance that is created by the container, the post-processor gets a callback from the
container both before container initialization methods (such as InitializingBean's afterPropertiesSet()
and any declared init method) are called as well as after any bean initialization callbacks. The post-
processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-
wrapping logic.

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Pr ocessor interface. The Appl i cat i onCont ext registers
these beans as post-processors so that they can be called later upon bean creation. Bean post-
processors can be deployed in the container just like any other beans.

©@ Programmatically registering BeanPost Pr ocessor s

While the recommended approach for BeanPost Processor registration is through
Appl i cati onCont ext auto-detection (as described above), it is also possible
to register them programmatically against a Confi gurabl eBeanFactory using the
addBeanPost Processor method. This can be useful when needing to evaluate conditional
logic before registration, or even for copying bean post processors across contexts in a hierarchy.
Note however that BeanPost Pr ocessor s added programmatically do not respect the Or der ed
interface. Here it is the order of registration that dictates the order of execution. Note also
that BeanPost Processor s registered programmatically are always processed before those
registered through auto-detection, regardless of any explicit ordering.

Spring Framework
3.2.1.RELEASE Reference Documentation 84

Spring Framework

© BeanPost Processors and AOP auto-proxying

Classes that implement the BeanPost Processor interface are special and are treated
differently by the container. All BeanPost Pr ocessor s and beans that they reference directly
are instantiated on startup, as part of the special startup phase of the Appl i cat i onCont ext .
Next, all BeanPost Processor s are registered in a sorted fashion and applied to all further
beans in the container. Because AOP auto-proxying is implemented as a BeanPost Pr ocessor
itself, neither BeanPost Pr ocessor s nor the beans they reference directly are eligible for auto-
proxying, and thus do not have aspects woven into them.

For any such bean, you should see an informational log message: “Bean foo is not eligible
for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-

proxying)”.

The following examples show how to write, register, and use BeanPost Processors in an
Appl i cati onCont ext .

Example: Hello World, BeanPost Pr ocessor -style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokes the t oSt ri ng() method of each bean as it is created by the container
and prints the resulting string to the system console.

Find below the custom BeanPost Pr ocessor implementation class definition:

package scri pting;

i mport org.springframework. beans. factory. confi g. BeanPost Processor ;
i nport org.springfranmework. beans. BeansExcept i on;

public class InstantiationTraci ngBeanPost Processor i npl enents BeanPost Processor {

/1 sinmply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean, String beanNane)
t hrows BeansException

return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean, String beanNane)
t hrows BeansException

Systemout.println("Bean '" + beanName + "' created : " + bean.toString());
return bean;

Spring Framework
3.2.1.RELEASE Reference Documentation 85

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: | ang="http://ww. spri ngframewor k. or g/ schena/ | ang"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ scherma/ | ang
http://ww. spri ngfranewor k. or g/ schema/ | ang/ spri ng-1 ang. xsd" >

<l ang: groovy i d="nessenger"
scri pt-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger . gr oovy" >
<l ang: property nane="nessage" val ue="Fiona Apple Is Just So Dreany."/>
</l ang: gr oovy>

<I--
when the above bean (nessenger) is instantiated, this custom
BeanPost Processor i nplenentation will output the fact to the system consol e
-->
<bean cl ass="scripting.|nstantiationTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst anti ati onTr aci ngBeanPost Processor is simply defined. It does not even
have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring 2.0 dynamic
language support is detailed in the chapter entitled Chapter 28, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

i nport org.springfranmework. context. Appl i cati onCont ext;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
i nport org.springframework. scripting. Messenger;

public final class Boot ({

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new C assPat hXnl Appl i cati onCont ext ("scripting/beans.xm");
Messenger nessenger = (Messenger) ctx.getBean("nessenger");
System out. printl n(messenger);

The output of the preceding application resembles the following:

Bean 'nmessenger' created : org.springframework.scripting.groovy. G oovyMessenger @72961
org. springframewor k. scri pting. groovy. G oovyMessenger @72961

Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring IoC container. An example is Spring's
Requi r edAnnot at i onBeanPost Processor # a BeanPost Processor implementation that ships
with the Spring distribution which ensures that JavaBean properties on beans that are marked with an
(arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Spring Framework
3.2.1.RELEASE Reference Documentation 86

Spring Framework

Customizing configuration metadata with a BeanFact or yPost Processor

The next extension point that we will look at is
the org.springfranework. beans. factory. confi g. BeanFact or yPost Processor. The
semantics of this interface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Pr ocessor s operate on the bean configuration metadata; that is, the Spring loC
container allows BeanFact or yPost Processor s to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Processors.

You can configure multiple BeanFact or yPost Pr ocessor s, and you can control the order in which
these BeanFact or yPost Pr ocessor s execute by setting the or der property. However, you can only
set this property if the BeanFact or yPost Pr ocessor implements the Or der ed interface. If you write
your own BeanFact or yPost Pr ocessor, you should consider implementing the Or der ed interface
too. Consult the Javadoc for the BeanFact or yPost Processor and Or der ed interfaces for more
details.

© Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Processor (described
above in the section called “Customizing beans using a BeanPost Pr ocessor ”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor (e.g.,
using BeanFact ory. get Bean()), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing bean post
processing.

Also, BeanFact or yPost Pr ocessor s are scoped per-container. This is only relevant if you are
using container hierarchies. If you define a BeanFact or yPost Pr ocessor in one container, it
will only be applied to the bean definitions in that container. Bean definitions in one container will
not be post-processed by BeanFact or yPost Pr ocessor s in another container, even if both
containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory post-processors,
such as PropertyQverrideConfigurer and PropertyPl acehol der Confi gurer. A custom
BeanFact or yPost Pr ocessor can also be used, for example, to register custom property editors.

An Appl i cati onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Pr ocessor interface. It uses these beans as bean factory post-processors, at
the appropriate time. You can deploy these post-processor beans as you would any other bean.

© Note

As with BeanPost Processors, you typically do not want to configure
BeanFact or yPost Processors for lazy initialization. If no other bean references a
Bean(Fact ory) Post Processor, that post-processor will not get instantiated at all. Thus,
marking it for lazy initialization will be ignored, and the Bean(Fact ory) Post Processor will
be instantiated eagerly even if you set the defaul t -1 azy-i ni t attribute to true on the
declaration of your <beans /> element.

Spring Framework
3.2.1.RELEASE Reference Documentation 87

Spring Framework

Example: the Propert yPl acehol der Confi gurer

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr operti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and
passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, a PropertyPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
${property-name} which follows the Ant/log4j/ JSP EL style.

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nane="| ocati ons" val ue="cl asspat h: conl f oo/ j dbc. properties"/>
</ bean>

<bean i d="dat aSource" destroy-nethod="cl ose"
cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" >
<property nane="driverC assNane" val ue="${j dbc. driverC assNane}"/ >
<property nanme="url" val ue="${jdbc.url}"/>
<property nane="usernane" val ue="${j dbc. usernane}"/>
<property nane="password" val ue="${jdbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr operti es format:

jdbc. driverC assNane=or g. hsql db. j dbcDri ver
jdbc. url =jdbc: hsqgl db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. user nane} is replaced at runtime with the value 'sa’, and
the same applies for other placeholder values that match keys in the properties file. The
Pr opert yPl acehol der Conf i gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a comma-separated
listin the | ocat i on attribute.

<cont ext: property-pl acehol der | ocati on="cl asspat h: conl f oo/ j dbc. properties"/>

The Propert yPl acehol der Confi gur er not only looks for properties in the Pr operti es file you
specify. By default it also checks against the Java Syst emproperties if it cannot find a property in the
specified properties files. You can customize this behavior by setting the syst enPr operti esMbde
property of the configurer with one of the following three supported integer values:

» never (0): Never check system properties

+ fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

» override (2): Check system properties first, before trying the specified properties files. This allows
system properties to override any other property source.

Spring Framework
3.2.1.RELEASE Reference Documentation 88

Spring Framework

Consult the Javadoc for the Pr oper t yPlI acehol der Confi gur er for more information.

& Class name substitution

You can use the PropertyPl acehol der Confi gurer to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. spri ngframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="|ocations">
<val ue>cl asspat h: conl f oo/ strat egy. properti es</val ue>
</ property>
<property name="properties">
<val ue>cust om strat egy. cl ass=com f 0o. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when
it is about to be created, which is during the prel nstanti at eSi ngl et ons() phase of an
Appl i cati onCont ext for a non-lazy-init bean.

Example: the PropertyOverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPl acehol der Confi gur er, but unlike the latter, the original definitions can have default
values or no values at all for bean properties. If an overriding Pr operti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanNane. property=val ue

For example:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: mysql : mydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

Compound property names are also supported, as long as every component of the path except the
final property being overridden is already non-null (presumably initialized by the constructors). In this
example...

f oo. fred. bob. sanmy=123

... the sammy property of the bob property of the f r ed property of the f oo bean is set to the scalar
value 123.

Spring Framework
3.2.1.RELEASE Reference Documentation 89

Spring Framework

© Note

Specified override values are always literal values; they are not translated into bean references.
This convention also applies when the original value in the XML bean definition specifies a bean
reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<cont ext: property-override | ocation="cl asspath: override. properties"/>

Customizing instantiation logic with a Fact or yBean

Implement the or g. spri ngf ramewor k. beans. f act ory. Fact or yBean interface for objects that
are themselves factories.

The Fact or yBean interface is a point of pluggability into the Spring I0C container's instantiation logic.
If you have complex initialization code that is better expressed in Java as opposed to a (potentially)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization inside
that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

 (bj ect getbject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

* bool ean i sSi ngl et on() :returnst r ue if this Fact or yBean returns singletons, f al se otherwise.

» Class get Obj ect Type() : returns the object type returned by the get Cbj ect () method or nul |
if the type is not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean
it produces, preface the bean's id with the ampersand symbol (&) when calling the get Bean()
method of the Appl i cati onCont ext . So for a given Fact or yBean with an id of nyBean, invoking
get Bean(" nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean(" &ryBean") returns the Fact or yBean instance itself.

Spring Framework
3.2.1.RELEASE Reference Documentation 90

Spring Framework

5.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach
is 'better' than XML. The short answer is it depends. The long answer is that each approach has
its pros and cons, and usually it is up to the developer to decide which strategy suits her better.
Due to the way they are defined, annotations provide a lot of context in their declaration, leading
to shorter and more concise configuration. However, XML excels at wiring up components without
touching their source code or recompiling them. Some developers prefer having the wiring close
to the source while others argue that annotated classes are no longer POJOs and, furthermore,
that the configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring allows annotations to be used in a non-
invasive way, without touching the target components source code and that in terms of tooling, all
configuration styles are supported by the SpringSource Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by
using annotations on the relevant class, method, or field declaration. As mentioned in the section
called “Example: The Requi r edAnnot at i onBeanPost Pr ocessor ", using a BeanPost Pr ocessor
in conjunction with annotations is a common means of extending the Spring 1oC container. For example,
Spring 2.0 introduced the possibility of enforcing required properties with the @Required annotation.
Spring 2.5 made it possible to follow that same general approach to drive Spring's dependency injection.
Essentially, the @\wut owi r ed annotation provides the same capabilities as described in the section
called “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5
also added support for JISR-250 annotations such as @Post Const r uct, and @°r eDest r oy. Spring
3.0 added support for ISR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @\aned. Details about those annotations can be found in the relevant
section.

© Note

Annotation injection is performed before XML injection, thus the latter configuration will override
the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered
by including the following tag in an XML-based Spring configuration (notice the inclusion of the cont ext
namespace):

Spring Framework
3.2.1.RELEASE Reference Documentation 91

http://www.springsource.com/products/sts

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: context="http://wmv spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schenma/ beans
http://ww. springfranmework. org/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ scherma/ cont ext
htt p: // ww. spri ngf ranmewor k. or g/ schema/ cont ext / spri ng- cont ext . xsd" >

<cont ext : annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Processor, Persi st enceAnnot at i onBeanPost Pr ocessor, as
well as the aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

© Note

<cont ext:annotati on-confi g/ > only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put <cont ext : annot at i on-
config/>in a WebAppl i cati onCont ext for a Di spat cher Servl et, it only checks for
@\t owi red beans in your controllers, and not your services. See Section 17.2, “The
Di spat cher Ser vl et ” for more information.

@Requi r ed

The @Requi r ed annotation applies to bean property setter methods, as in the following example:
public class SinpleMvieLister {

private Movi eFi nder novi eFi nder

@Requi red

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder

}

/1

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. It is still recommended that you put assertions
into the bean class itself, for example, into an init method. Doing so enforces those required references
and values even when you use the class outside of a container.

@\ut ow r ed

As expected, you can apply the @A\ut owi r ed annotation to "traditional” setter methods:

Spring Framework
3.2.1.RELEASE Reference Documentation 92

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;
@\ut owi r ed

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

/1

© Note

JSR 330's @Inject annotation can be used in place of Spring's @\ut owi r ed annotation in the
examples below. See here for more details

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecomender {
private MovieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;
@\ut owi r ed
public void prepare(MyvieCatal og novi eCat al og,
Cust omrer Pr ef er enceDao cust orer Pr ef er enceDao) {

thi s. movi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pref er enceDao;

/1

You can apply @\ut owi r ed to constructors and fields:

public class Mvi eRecommender {

@\ut owi r ed
private MovieCatal og novi eCat al og;

private CustomerPreferenceDao cust oner Pref er encebDao;
@\ut owi r ed

publ i ¢ Movi eRecommender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t his. cust oner Pref erencebDao = cust oner Pref er enceDao;

/1

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding
the annotation to a field or method that expects an array of that type:

Spring Framework
3.2.1.RELEASE Reference Documentation 93

Spring Framework

public class Myvi eRecormender {

@\ut owi r ed
private MovieCatal og[] novi eCat al ogs;

/1

The same applies for typed collections:

public class Myvi eRecomender {
private Set<Mpvi eCatal og> novi eCat al ogs;

@\ut owi r ed
public void setMvieCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {
t hi s. movi eCat al ogs = novi eCat al ogs;

}

/1

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class Myvi eRecommender {
private Map<String, MvieCatal og> novi eCat al ogs;
@\ut owi r ed

public voi d setMvieCatal ogs(Map<String, MovieCatal og> novi eCat al ogs) {
t hi s. movi eCat al ogs = novi eCat al ogs;

}

/1

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior
can be changed as demonstrated below.

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;
@\ut owi red(requi red=f al se)

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

}

/1

© Note

Only one annotated constructor per-class can be marked as required, but multiple non-required
constructors can be annotated. In that case, each is considered among the candidates and Spring

Spring Framework
3.2.1.RELEASE Reference Documentation 94

Spring Framework

uses the greediest constructor whose dependencies can be satisfied, that is the constructor that
has the largest number of arguments.

@\ut owi r ed's required attribute is recommended over the @Requi r ed annotation. The required
attribute indicates that the property is not required for autowiring purposes, the property is
ignored if it cannot be autowired. @Requi r ed, on the other hand, is stronger in that it enforces
the property that was set by any means supported by the container. If no value is injected, a
corresponding exception is raised.

You <can also wuse @\utow red for interfaces that are well-known resolvable
dependencies: BeanFactory, ApplicationContext, Environnent, ResourcelLoader,
Appl i cati onEvent Publ i sher, and MessageSource. These interfaces and their extended
interfaces, such as Confi gur abl eAppl i cati onCont ext or ResourcePatt ernResol ver, are
automatically resolved, with no special setup necessary.

public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i c Movi eRecommender () {
}

1.

© Note

@\ut owi red, @ nj ect, @esource, and @/al ue annotations are handled by a Spring
BeanPost Pr ocessor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or BeanFact or yPost Pr ocessor types (if
any). These types must be 'wired up' explicitly via XML or using a Spring @ean method.

Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control
over the selection process. One way to accomplish this is with Spring's @ual i f i er annotation. You
can associate qualifier values with specific arguments, narrowing the set of type matches so that a
specific bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class Myvi eRecormender {
@\ut owi r ed
@ualifier("min")
private MovieCatal og novi eCat al og;

...

The @ual i fi er annotation can also be specified on individual constructor arguments or method
parameters:

Spring Framework
3.2.1.RELEASE Reference Documentation 95

Spring Framework

public class Myvi eRecormender {
private MovieCatal og novi eCat al og;
private CustomerPreferenceDao cust oner Pref er encebDao;
@\ut owi r ed
public void prepare(@ualifier("min") MyvieCatal og novi eCat al og,
Cust omer Pref erenceDao cust orer Pr ef er enceDao) {

thi s. movi eCat al og = novi eCat al og;
thi s. cust onmer Pref erenceDao = cust oner Pref er enceDao;

/1

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://wwmv. springframewor k. or g/ schema/ cont ext"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww:. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual ifier value="main"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qual i fier value="action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eReconmender" cl ass="exanpl e. Movi eReconmender"/ >

</ beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @\ut owi r ed is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main" or "EMEA" or
"persistent”, expressing characteristics of a specific component that are independent from the bean id,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al og>. In
this case, all matching beans according to the declared qualifiers are injected as a collection. This implies
that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, you

Spring Framework
3.2.1.RELEASE Reference Documentation 96

Spring Framework

can define multiple Movi eCat al og beans with the same qualifier value "action”; all of which would be
injected into a Set <Movi eCat al og> annotated with @ual i fi er ("action").

o

Tip

If you intend to express annotation-driven injection by name, do not primarily use @A\ut ow r ed,
even if is technically capable of referring to a bean name through @ual i fi er values. Instead,
use the JSR-250 @Resour ce annotation, which is semantically defined to identify a specific
target component by its unique name, with the declared type being irrelevant for the matching
process.

As a specific consequence of this semantic difference, beans that are themselves defined as a
collection or map type cannot be injected through @\ut owi r ed, because type matching is not
properly applicable to them. Use @Resour ce for such beans, referring to the specific collection
or map bean by unique name.

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for narrowing
through qualifier annotations at the parameter level. By contrast, @Resour ce is supported only
for fields and bean property setter methods with a single argument. As a consequence, stick with
qualifiers if your injection target is a constructor or a multi-argument method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

}

}

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@ret enti on(Ret ent i onPol i cy. RUNTI MVE)

@ualifier

public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Mvi eRecommender {
@\ut owi r ed
@enre("Action")
private MovieCatal og actionCatal og;

private MovieCatal og conedyCat al og;

@\ut owi r ed
public voi d set ConedyCat al og(@enre(" Comedy") Movi eCat al og conmedyCat al og) {

t hi s. conedyCat al og = conedyCat al og;

...

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify the t ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches
are demonstrated in the following example.

Spring Framework

3.2.1.RELEASE Reference Documentation 97

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: context ="http://wwmv spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http: //ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual i fier type="Genre" val ue="Action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qual i fier type="exanple.Genre" val ue="Conedy"/>
<I-- inject any dependencies required by this bean -->

</ bean>

<bean i d="novi eReconmender" cl ass="exanpl e. Movi eReconmender "/ >

</ beans>

In Section 5.10, “Classpath scanning and managed components”, you will see an annotation-based
alternative to providing the qualifier metadata in XML. Specifically, see the section called “Providing
qualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when
the annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet
connection is available. First define the simple annotation:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@ret ent i on(Ret ent i onPol i cy. RUNTI MVE)

@ualifier

public @nterface Ofline {

Then add the annotation to the field or property to be autowired:

public class Myvi eRecommender {
@\ut owi r ed
@fline
private MovieCatal og of flineCatal og

/1

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Ofline"/>

<I-- inject any dependencies required by this bean -->
</ bean>

Spring Framework
3.2.1.RELEASE Reference Documentation 98

Spring Framework

You can also define custom qualifier annotations that accept named attributes in addition to or instead
of the simple val ue attribute. If multiple attribute values are then specified on a field or parameter
to be autowired, a bean definition must match all such attribute values to be considered an autowire
candidate. As an example, consider the following annotation definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@ret enti on(Ret ent i onPol i cy. RUNTI MVE)

@ualifier
public @nterface MvieQualifier {

String genre();

Format format();

}

n this case For mat is an enum:

public enum Format {

VHS, DVD, BLURAY

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre and f or mat .

public class Mvi eRecommender {

@\ut owi r ed
@bvi eQual i fier(format=Format.VHS, genre="Action")
private MovieCatal og actionVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier (fornmat=Format.VHS, genre="Conedy")
private Mvi eCatal og conedyVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier (fornmat=Format.DVD, genre="Action")
private MovieCatal og acti onDvdCat al og;

@\ut owi r ed
@bvi eQual i fier(format=For mat. BLURAY, genre="Conedy")
private Movi eCatal og conedyBl uRayCat al og;

/1

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i f i er/ > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <net a/ > tags if no such qualifier is present, as in the last two bean definitions
in the following example.

Spring Framework
3.2.1.RELEASE Reference Documentation 99

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: context ="http://wwmv spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http: //ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qual ifier type="MyvieQalifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<neta key="format" val ue="DVD'/ >

<neta key="genre" val ue="Action"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<neta key="format" val ue="BLURAY"/ >

<neta key="genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

</ beans>

Cust omAut owi r eConf i gur er

The Cust omAut owi r eConfi gur er is a BeanFact or yPost Processor that enables you to register
your own custom qualifier annotation types even if they are not annotated with Spring's @ual i fi er
annotation.

<bean i d="cust omAut owi r eConfi gurer"
cl ass="org. spri ngframewor k. beans. f act ory. annot at i on. Cust omAut owi r eConfi gurer" >
<property nane="custonmQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set>
</ property>
</ bean>

The particular implementation of Aut owi r eCandi dat eResol ver that is activated for the application
context depends on the Java version. In versions earlier than Java 5, the qualifier annotations are not
supported, and therefore autowire candidates are solely determined by the aut owi r e- candi dat e

Spring Framework
3.2.1.RELEASE Reference Documentation 100

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework

value of each bean definition as well as by any def aul t - aut owi r e- candi dat es pattern(s) available
on the <beans/ > element. In Java 5 or later, the presence of @ual i f i er annotations and any custom
annotations registered with the Cust omAut owi r eConf i gur er will also play a role.

Regardless of the Java version, when multiple beans qualify as autowire candidates, the determination
of a "primary" candidate is the same: if exactly one bean definition among the candidates hasapri mary
attribute setto t r ue, it will be selected.

@resour ce

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans
or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SinpleMvieLister {
private MvieFi nder novi eFi nder;

@Resour ce(nane="nmyMvi eFi nder")
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;
}
}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So
the following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;

@Rresour ce
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder;
}
}

© Note

The name provided with the annotation is resolved as a bean name by the
Appl i cati onCont ext of which the ConmonAnnot at i onBeanPost Processor is aware.
The names can be resolved through JNDI if you configure Spring's Si npl eJndi BeanFact ory
explicitly. However, it is recommended that you rely on the default behavior and simply use
Spring's JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resour ce usage with no explicit name specified, and similar to @\ut owi r ed,
@resour ce finds a primary type match instead of a specific named bean and resolves well-
known resolvable dependencies: the BeanFact ory, Applicati onContext, ResourcelLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce interfaces.

Thus in the following example, the cust oner Pref erenceDao field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type

Spring Framework
3.2.1.RELEASE Reference Documentation 101

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework

Cust oner Pr ef er enceDao. The "context" field is injected based on the known resolvable dependency
type Appl i cati onCont ext .

public class Myvi eRecormmender {

@Resour ce
private CustomnerPreferenceDao cust oner Pref er encebDao;

@Resour ce
private ApplicationContext context;

publ i c Movi eRecommender () {

}

...

@ost Const ruct and @°r eDestr oy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these
annotations offers yet another alternative to those described in initialization callbacks and destruction
callbacks. Provided that the ConmonAnnot at i onBeanPost Pr ocessor is registered within the Spring
Appl i cati onCont ext , a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method.
In the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class Cachi ngWbvi eLi ster {

@ost Const ruct
public void popul at eMdovi eCache() {
/| popul ates the novie cache upon initialization...

}

@r eDest r oy
public void clearMvieCache() {
/] clears the novie cache upon destruction...

}

}

© Note

For details about the effects of combining various lifecycle mechanisms, see the section called
“Combining lifecycle mechanisms”.

5.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 5.9, “Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base” bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration, instead

Spring Framework
3.2.1.RELEASE Reference Documentation 102

Spring Framework

you can use annotations (for example @Component), Aspect] type expressions, or your own custom
filter criteria to select which classes will have bean definitions registered with the container.

© Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @Conf i gur ati on, @ean, @ nport , and @ependsOn
annotations for examples of how to use these new features.

@Conponent and further stereotype annotations

In Spring 2.0 and later, the @Reposi t ory annotation is a marker for any class that fulfills the role or
stereotype (also known as Data Access Object or DAO) of a repository. Among the uses of this marker
is the automatic translation of exceptions as described in the section called “Exception translation”.

Spring 2.5 introduces further stereotype annotations: @onponent , @er vi ce, and @ontrol | er.
@conponent is a generic stereotype for any Spring-managed component. @Reposi t ory, @ser vi ce,
and @ontrol | er are specializations of @onponent for more specific use cases, for example,
in the persistence, service, and presentation layers, respectively. Therefore, you can annotate your
component classes with @onponent, but by annotating them with @eposi tory, @ervi ce, or
@ontrol | er instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also
possible that @Reposi t ory, @er vi ce, and @ont rol | er may carry additional semantics in future
releases of the Spring Framewaork. Thus, if you are choosing between using @onponent or @er vi ce
for your service layer, @er vi ce is clearly the better choice. Similarly, as stated above, @Reposi t ory
is already supported as a marker for automatic exception translation in your persistence layer.

Automatically detecting classes and registering bean definitions
Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni ti ons

with the Appl i cati onCont ext. For example, the following two classes are eligible for such
autodetection:

@er vi ce
public class SinpleMyvieLister {

private MvieFi nder novi eFi nder;

@\ut owi r ed
publ i c Si npl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;
}
}

@Reposi tory
public class JpaMovi eFi nder inplenments Myvi eFi nder {
[/ inplenmentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to include the following
element in XML, where the base-package element is a common parent package for the two classes.
(Alternatively, you can specify a comma-separated list that includes the parent package of each class.)

Spring Framework
3.2.1.RELEASE Reference Documentation 103

http://www.springsource.org/javaconfig

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p://ww. spri ngfranewor k. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http: //ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : conponent - scan base- package="or g. exanpl e"/ >

</ beans>

@ Tip

The use of <context:conponent-scan> implicitly enables the functionality of
<context:annotation-config> There is wusually no need to include the
<cont ext : annot at i on- conf i g> element when using <cont ext : conponent - scan>.

© Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the files-
only switch of the JAR task.

Furthermore, the Aut owi r edAnnot at i onBeanPost Pr ocessor and
CommonAnnot at i onBeanPost Pr ocessor are both included implicitly when you use the component-
scan element. That means that the two components are autodetected and wired together - all without
any bean configuration metadata provided in XML.

© Note

You can disable the registration of Aut owi r edAnnot ati onBeanPost Processor and
ConmmonAnnot at i onBeanPost Processor by including the annotation-config attribute with a
value of false.

Using filters to customize scanning

By default, classes annotated with @onponent, @Repository, @ervi ce, @ontroller, or
a custom annotation that itself is annotated with @onponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters.
Add them as include-filter or exclude-filter sub-elements of the conponent - scan element. Each filter
element requires the t ype and expr essi on attributes. The following table describes the filtering
options.

Table 5.5. Filter Types

Filter Example Expression Description
Type

annotation or g. exanpl e. SomeAnnot ati on An annotation to be present at the type level in
target components.

assignable org. exanpl e. Somed ass A class (or interface) that the target components
are assignable to (extend/implement).

Spring Framework
3.2.1.RELEASE Reference Documentation 104

Spring Framework

Filter Example Expression Description
Type
aspectj org. exanpl e. . *Servi ce+ An AspectJ type expression to be matched by the

target components.

regex org\.exanple\.Default.* A regex expression to be matched by the target
components class names.

custom org. exanpl e. MyTypeFi |l ter A custom implementation of the
org. springframework. core. tyiypeFil ter
interface.

The following example shows the XML configuration ignoring all @Reposi t or y annotations and using
"stub" repositories instead.

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex" expression=".*Stub.*Repository"/>
<cont ext: exclude-filter type="annotation"
expressi on="org. spri ngframewor k. st er eot ype. Reposi tory"/>
</ cont ext : conponent - scan>

</ beans>

© Note

You can also disable the default filters by providing use-default-filters="false" as an attribute of the
<component-scan/> element. This will in effect disable automatic detection of classes annotated
with @Conponent , @Reposi t ory, @er vi ce, or @ontrol | er.

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur at i on annotated classes.
Here is a simple example:

@Conponent
public class FactoryMet hodConponent {

@ean @ualifier("public")
publ i c TestBean publiclnstance() {
return new Test Bean(" publicl nstance");

}

public void dowrk() {
/'l Component nethod inplenmentation onmtted
}
}

This class is a Spring component that has application-specific code contained in its doWr k()
method. However, it also contributes a bean definition that has a factory method referring to the
method publ i cl nst ance(). The @ean annotation identifies the factory method and other bean
definition properties, such as a qualifier value through the @al i fi er annotation. Other method level
annotations that can be specified are @cope, @Q.azy, and custom qualifier annotations. Autowired

Spring Framework
3.2.1.RELEASE Reference Documentation 105

Spring Framework

fields and methods are supported as previously discussed, with additional support for autowiring of
@ean methods:

@Conponent
public class FactoryMet hodConponent {

private static int i;

@ean @ualifier("public")
publ i c TestBean publiclnstance() {
return new Test Bean("publiclnstance");

}

/'l use of a custom qualifier and autow ring of nethod paraneters

@Bean
protect ed Test Bean protectedl nstance(@ual ifier("public") TestBean spouse,
@/al ue("#{privatel nstance. age}") String country) {
TestBean tb = new Test Bean("prot ect edl nstance", 1);
tb. set Spouse(tb);
tb. set Country(country);
return tb;

}

@Bean @scope(BeanDefi niti on. SCOPE_SI NGLETON)
private TestBean privatel nstance() {
return new TestBean("privatel nstance", i++);

}

@ean @cope(val ue = WebAppl i cati onCont ext. SCOPE_SESSI ON,
proxyMode = ScopedPr oxyMode. TARGET _CLASS)
publ i c Test Bean request Scopedl nst ance() {
return new Test Bean("request Scopedl nst ance", 3);

}

}

The example autowires the St ri ng method parameter count ry to the value of the Age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value
of the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

The @ean methods in a Spring component are processed differently than their counterparts inside a
Spring @onfi gur ati on class. The difference is that @onponent classes are not enhanced with
CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which invoking
methods or fields within @Conf i gur at i on classes @ean methods create bean metadata references
to collaborating objects. Methods are not invoked with normal Java semantics. In contrast, calling a
method or field within a @onponent classes @ean method has standard Java semantics.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNaneGener at or strategy known to that scanner. By default, any Spring stereotype annotation
(@Conponent , @Reposi t ory, @er vi ce, and @ont r ol | er) that contains a nane value will thereby
provide that name to the corresponding bean definition.

If such an annotation contains no namne value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified

Spring Framework
3.2.1.RELEASE Reference Documentation 106

Spring Framework

class name. For example, if the following two components were detected, the names would be
myMovieLister and movieFinderimpl:

@er vi ce("myMvi eLi ster")
public class SinpleMvielLister {
...

}

@Reposi tory
public class MyvieFinderlnpl inplenments MvieFinder {
...

}

© Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom bean-
naming strategy. First, implement the BeanNaneGener at or interface, and be sure to include
a default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
name- gener at or =" or g. exanpl e. MyNaneGenerator" />

</ beans>

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever
the container is responsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected
components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with
a new @-cope annotation. Simply provide the name of the scope within the annotation:

@cope(" prot otype")

@Reposi tory

public class MvieFinderlnpl inplenents MvieFinder {
...

}

© Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResoal ver interface, and be sure to include a default
no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. MyScopeResol ver" />

</ beans>

Spring Framework
3.2.1.RELEASE Reference Documentation 107

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html
http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped
objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this
purpose, a scoped-proxy attribute is available on the component-scan element. The three possible
values are: no, interfaces, and targetClass. For example, the following configuration will result in
standard JDK dynamic proxies:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
scoped- proxy="i nterfaces" />

</ beans>

Providing qualifier metadata with annotations

The @ualifier annotation is discussed in the section called “Fine-tuning annotation-based
autowiring with qualifiers”. The examples in that section demonstrate the use of the @ual i fi er
annotation and custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier metadata was
provided on the candidate bean definitions using the qual i fi er or met a sub-elements of the bean
element in the XML. When relying upon classpath scanning for autodetection of components, you
provide the qualifier metadata with type-level annotations on the candidate class. The following three
examples demonstrate this technigue:

@Conponent

@ualifier("Action")

public class ActionMyvieCatal og i npl enents Mvi eCat al og {
...

}

@Conponent

@zenre("Action")

public class ActionMyvieCatal og i npl enents Mvi eCat al og {
...

}

@Conponent

@ fline

public class Cachi ngWbvi eCat al og i npl enents Muvi eCat al og {
...

}

© Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is bound
to the class definition itself, while the use of XML allows for multiple beans of the same type
to provide variations in their qualifier metadata, because that metadata is provided per-instance
rather than per-class.

5.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency
Injection). Those annotations are scanned in the same way as the Spring annotations. You just need
to have the relevant jars in your classpath.

Spring Framework
3.2.1.RELEASE Reference Documentation 108

Spring Framework

© Note

If you are using Maven, the javax.inject artifact is available in the standard
Maven repository (http://repol.maven.org/maven2/javax/inject/javax.inject/1/). You can add the
following dependency to your file pom.xmil:

<dependency>
<gr oupl d>j avax. i nj ect </ gr oupl d>
<artifactld>javax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

Dependency Injection with @ nj ect and @\aned

Instead of @Aut owi r ed, @ avax. i nj ect. | nj ect may be used as follows:

i mport javax.inject.|nject;

public class SinpleMvieLister {
private Movi eFi nder novi eFi nder
@ nj ect

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder

As with @\ut owi r ed, it is possible to use @ nj ect at the class-level, field-level, method-level and
constructor-argument level. If you would like to use a qualified name for the dependency that should be
injected, you should use the @Naned annotation as follows:

i nport javax.inject.!|nject;
i mport javax.inject.Nanmed

public class SinpleMyvieLister {
private Movi eFi nder novi eFi nder
@ nj ect

public void set Mvi eFi nder (@aned("nai n") Mvi eFi nder novi eFi nder) {
t his. nmovi eFi nder = novi eFi nder

@\aned: a standard equivalent to the @Conponent annotation

Instead of @onponent , @ avax. i nj ect . Nanmed may be used as follows:

Spring Framework
3.2.1.RELEASE Reference Documentation 109

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework

i mport javax.inject.|nject;
i nport javax.inject.Naned

@Naned(" novi eLi st ener ")
public class SinpleMvielLister {

private Movi eFi nder novi eFi nder
@ nj ect

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in a similar fashion:

i nport javax.inject.|nject;
i nport javax.inject. Nanmed;

@aned
public class SinpleMvielLister {

private MvieFi nder novi eFi nder
@ nj ect

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder

When using @Naned, it is possible to use component-scanning in the exact same way as when using
Spring annotations:

<beans>

<cont ext : conponent - scan base- package="org. exampl e"/ >
</ beans>

Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

Table 5.6. Spring annotations vs. standard annotations

Spring javax.inject.* javax.inject restrictions / comments

@Autowired @Inject @Inject has no 'required' attribute

@Component @Named #

@Scope("singleton™) @Singleton The JSR-330 default scope is like Spring's

pr ot ot ype. However, in order to keep it consistent
with Spring's general defaults, a JSR-330 bean
declared in the Spring container is a si ngl et on
by default. In order to use a scope other than

Spring Framework
3.2.1.RELEASE Reference Documentation 110

Spring Framework

Spring javax.inject.* javax.inject restrictions / comments

singl eton, you should use Spring's @cope
annotation.

j avax. i nj ect also provides a @Scope annotation.
Nevertheless, this one is only intended to be used for
creating your own annotations.

@Qualifier @Named #

@Value # no equivalent
@Required # no equivalent
@Lazy # no equivalent

5.12 Java-based container configuration

Basic concepts: @onfi gurati on and @ean

The central artifact in Spring's new Java-configuration support is the @onf i gur at i on-annotated
class. These classes consist principally of @ean-annotated methods that define instantiation,
configuration, and initialization logic for objects to be managed by the Spring 1oC container.

Annotating a class with the @onf i gur at i on indicates that the class can be used by the Spring loC
container as a source of bean definitions. The simplest possible @onf i gur ati on class would read
as follows:

@Configuration
public class AppConfig {
@Bean
public MyService nyService() {
return new MyServicel npl ();
}
}

For those more familiar with Spring <beans/ > XML, the AppConf i g class above would be equivalent
to:

<beans>
<bean id="nyService" class="com acne. servi ces. MyServicel npl"/>
</ beans>
As you can see, the @ean annotation plays the same role as the <bean/ > element. The @ean
annotation will be discussed in depth in the sections below. First, however, we'll cover the various ways
of creating a spring container using Java-based configuration.

Instantiating the Spring container using
Annot at i onConf i gAppl i cat i onCont ext

The sections below document Spring's Annot at i onConfi gAppl i cati onCont ext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@Conf i gur ati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

Spring Framework
3.2.1.RELEASE Reference Documentation 111

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework

When @Conf i gur at i on classes are provided as input, the @onf i gur at i on class itself is registered
as a bean definition, and all declared @ean methods within the class are also registered as bean
definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it
is assumed that DI metadata such as @\ut owi r ed or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
C assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when
instantiating an Annot ati onConfi gAppl i cati onCont ext. This allows for completely XML-free
usage of the Spring container:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppli cati onContext (AppConfig.class);
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
mySer vi ce. doSt uf f () ;

}

As mentioned above, Annot at i onConfi gAppl i cati onCont ext is not limited to working only with
@confi gurati on classes. Any @onponent or JSR-330 annotated class may be supplied as input
to the constructor. For example:

public static void main(String[] args) {
Appl i cati onContext ctx = new Annotati onConfi gAppl i cati onCont ext (MyServicel npl.cl ass
Dependencyl. cl ass, Dependency?2. cl ass);
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nyServi ce. doSt uff ();
}

The above assumes that MySer vi cel npl , Dependency1 and Dependency?2 use Spring dependency
injection annotations such as @\ut owi r ed.

Building the container programmatically using r egi ster (d ass<?>...)

An Annot ati onConfi gAppl i cati onCont ext may be instantiated using a no-arg constructor
and then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConf i gAppl i cati onCont ext .

public static void main(String[] args) {
Annot ati onConfi gAppl i cati onContext ctx = new Annot ati onConfi gAppli cationContext();
ctx. regi ster(AppConfig.class, QherConfig.class);
ctx. regi ster(Addi tional Config.class);
ctx.refresh();
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nyServi ce. doSt uf f ();

Enabling component scanning with scan(String...)

Experienced Spring users will be familiar with the following commonly-used XML declaration from
Spring's cont ext : namespace

<beans>
<cont ext : conponent - scan base- package="com acne"/ >
</ beans>

Spring Framework
3.2.1.RELEASE Reference Documentation 112

Spring Framework

In the example above, the com acne package will be scanned, looking for any @onponent -
annotated classes, and those classes will be registered as Spring bean definitions within the container.
Annot at i onConf i gAppl i cati onCont ext exposesthescan(String...) methodto allow for the
same component-scanning functionality:

public static void main(String[] args) {
Annot ati onConfi gAppl i cati onContext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.scan("com acne");
ctx.refresh();
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);

}

@ Note

Remember that @onfi gur ati on classes are meta-annotated with @onponent, so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acne package (or any package underneath), it will be picked up during
the calltoscan(),anduponr ef r esh() allits @ean methods will be processed and registered
as bean definitions within the container.

Support for web applications with Annot at i onConf i gWebAppl i cat i onCont ext

A WebAppl i cati onCont ext variant of Annot at i onConfi gAppl i cati onCont ext is available
with Annot at i onConf i g\WebAppl i cati onContext. This implementation may be used
when configuring the Spring Cont ext LoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What follows is a web. xm snippet that configures a typical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

Spring Framework
3.2.1.RELEASE Reference Documentation 113

Spring Framework

<web- app>
<I-- Configure ContextLoaderListener to use AnnotationConfi gWebApplicati onCont ext
instead of the default Xnl WebApplicationContext -->

<cont ext - par anm>
<par am nane>cont ext Cl ass</ par am nane>
<par am val ue>

or g. springf ramewor k. web. cont ext . support. Annot at i onConf i g\WWebAppl i cat i onCont ext

</ par am val ue>

</ cont ext - par an»

<!-- Configuration |ocations nust consist of one or nore comma- or space-delimted
fully-qualified @onfiguration classes. Fully-qualified packages nay al so be
speci fied for conponent-scanning -->

<cont ext - par an»
<par am name>cont ext Conf i gLocat i on</ par am nanme>
<par am val ue>com acne. AppConf i g</ par am val ue>

</ cont ext - par an>

<I-- Bootstrap the root application context as usual using ContextLoaderListener -->
<li stener>
<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li stener</1|i st ener -
cl ass>
</listener>

<I-- Declare a Spring M/C Di spatcherServl et as usual -->
<servl et >
<servl et - name>di spat cher </ ser vl et - name>
<servl et -cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<I-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<i nit-paranr
<par am nane>cont ext Cl ass</ par am nane>
<par am val ue>

org. spri ngframewor k. web. cont ext . support. Annot at i onConf i gWebAppl i cat i onCont ext
</ par am val ue>
</init-paran>
<l-- Again, config locations nust consist of one or nore comma- or space-delimted
and fully-qualified @onfiguration classes -->
<i nit-paranr
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>com acme. web. MrcConf i g</ par am val ue>
</init-paran>
</ servl et>

<I-- map all requests for /app/* to the dispatcher servlet -->
<servl et - mappi ng>
<servl et - name>di spat cher </ ser vl et - name>
<url -pattern>/app/*</url -pattern>
</ servl et - mappi ng>
</ web- app>

Composing Java-based configurations
Using the @ nport annotation

Much as the <i npor t / > element is used within Spring XML files to aid in modularizing configurations,
the @ nport annotation allows for loading @ean definitions from another configuration class:

Spring Framework
3.2.1.RELEASE Reference Documentation 114

Spring Framework

@Configuration
public class ConfigA {

public @ean A a() { return new A(); }
}

@onfiguration
@ npor t (Confi gA. cl ass)
public class ConfigB {
public @ean B b() { return new B(); }

}

Now, rather than needing to specify both Confi gA. cl ass and Confi gB. cl ass when instantiating
the context, only Conf i gB needs to be supplied explicitly:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (Confi gB. cl ass);

/1 now both beans A and B will be available...
A a = ctx.getBean(A. class);
B b ct x. get Bean(B. cl ass);

}

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onf i gur ati on classes during
construction.

Injecting dependencies on imported @ean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies
on one another across configuration classes. When using XML, this is not an issue, per se, because
there is no compiler involved, and one can simply declare r ef =" sonmeBean" and trust that Spring will
work it out during container initialization. Of course, when using @onf i gur ati on classes, the Java
compiler places constraints on the configuration model, in that references to other beans must be valid
Java syntax.

Fortunately, solving this problem is simple. Remember that @onf i gur ati on classes are ultimately
just another bean in the container - this means that they can take advantage of @A\ut owi r ed injection
metadata just like any other bean!

Let's consider a more real-world scenario with several @onf i gur at i on classes, each depending on
beans declared in the others:

Spring Framework
3.2.1.RELEASE Reference Documentation 115

Spring Framework

@onfiguration
public class ServiceConfig {
private @wutow red Account Repository account Repository;

public @ean TransferService transferService() {
return new Transfer Servi cel npl (account Repository);

}
}

@onfiguration
public class RepositoryConfig {
private @\wtow red DataSource dataSource;

publ i c @Bean Account Repository account Repository() {
return new JdbcAccount Reposi t or y(dat aSource) ;

}
}

@onfiguration
@ nport ({Servi ceConfig.cl ass, RepositoryConfig.class})
public class Systeniest Config {
publ i c @ean DataSource dataSource() { /* return new DataSource */ }

}

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
/] everything wires up across configuration classes...
TransferService transferService = ctx. getBean(Transfer Service. cl ass);
transferService. transfer(100. 00, "A123", "C456");

Fully-qualifying imported beans for ease of navigation

In the scenario above, using @\ut owi red works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Ser vi ceConf i g, how do you know exactly where the @\ut owi r ed
Account Reposi tory bean is declared? It's not explicit in the code, and this may be just fine.
Remember that the SpringSource Tool Suite provides tooling that can render graphs showing how
everything is wired up - that may be all you need. Also, your Java IDE can easily find all declarations
and uses of the Account Reposi t ory type, and will quickly show you the location of @ean methods
that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within
your IDE from one @Conf i gur ati on class to another, consider autowiring the configuration classes
themselves:

@Configuration
public class ServiceConfig {
private @\wutow red RepositoryConfig repositoryConfig;

public @ean TransferService transferService() {
/'l navigate 'through' the config class to the @ean nethod!
return new Transfer Servi cel npl (repositoryConfig.account Repository());
}
}

In the situation above, it is completely explicit where Account Reposi tory is defined. However,
Ser vi ceConf i g is now tightly coupled to Reposi t or yConf i g; that's the tradeoff. This tight coupling

Spring Framework
3.2.1.RELEASE Reference Documentation 116

http://www.springsource.com/products/sts

Spring Framework

can be somewhat mitigated by using interface-based or abstract class-based @Confi gurati on
classes. Consider the following:

@Configuration
public class ServiceConfig {
private @\utow red RepositoryConfig repositoryConfig;

public @ean TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.account Repository());
}
}

@Configuration
public interface RepositoryConfig {
@ean Account Reposi tory account Repository();

}

@onfiguration
public class DefaultRepositoryConfig inplenments RepositoryConfig {
publ i c @Bean Account Repository account Repository() {
return new JdbcAccount Repository(...);
}
}

@Configuration
@ npor t ({ Servi ceConfi g.cl ass, DefaultRepositoryConfig.class}) // inport the concrete
config!
public class SysteniestConfig {
publ i c @Bean Dat aSource dataSource() { /* return DataSource */ }
}

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (Systenilest Confi g. cl ass);
TransferService transferService = ctx. getBean(Transfer Service. cl ass);
transferService. transfer(100. 00, "A123", "C456");

}

Now Ser vi ceConf i g is loosely coupled with respect to the concrete Def aul t Reposi t or yConfi g,
and built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of
Reposi t or yConfi g implementations. In this way, navigating @Conf i gur ati on classes and their
dependencies becomes no different than the usual process of navigating interface-based code.

Combining Java and XML configuration

Spring's @onf i gur at i on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container.
In cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, Cl assPat hXxm Appl i cati onCont ext, or in a "Java-centric"
fashion using Annot at i onConf i gAppl i cati onCont ext and the @ npor t Resour ce annotation to
import XML as needed.

XML-centric use of @onfi gurati on classes

It may be preferable to bootstrap the Spring container from XML and include @onf i gur at i on classes
in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be easier to
create @onf i gur at i on classes on an as-needed basis and include them from the existing XML files.
Below you'll find the options for using @onf i gur at i on classes in this kind of "XML-centric" situation.

Spring Framework
3.2.1.RELEASE Reference Documentation 117

Spring Framework

Declaring @onf i gurati on classes as plain Spring <bean/ > elements

Remember that @onf i gur at i on classes are ultimately just bean definitions in the container. In this
example, we create a @onf i gur at i on class named AppConf i g andinclude itwithinsyst em t est -
confi g. xm as a <bean/ >definition. Because <cont ext : annot at i on- confi g/ > is switched on,
the container will recognize the @Confi gurati on annotation, and process the @ean methods
declared in AppConf i g properly.

@onfiguration
public class AppConfig {
private @\utow red DataSource dataSource

public @ean Account Repository account Repository() ({
return new JdbcAccount Reposi t ory(dat aSour ce);

}

public @ean TransferService transferService() {
return new Transfer Servi ce(account Repository());
}
}

systemtest-config.xm

<beans>
<l-- enabl e processing of annotations such as @wutow red and @onfiguration -->
<cont ext : annot ati on- confi g/ >
<cont ext: property-pl acehol der | ocati on="cl asspath:/conf acne/j dbc. properties"/>

<bean cl ass="com acne. AppConfi g"/>

<bean cl ass="org. spri ngfranmework. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nane="user name" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

j dbc. properties

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host / xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {

Appl i cationContext ctx = new C assPat hXml Appli cati onCont ext ("cl asspat h: / conl acne/ syst em
test-config.xm");

TransferService transferService = ctx. getBean(TransferService. cl ass);

/1

© Note

In systemtest-config.xnm above, the AppConfi g<bean/ > does not declare an i d
element. While it would be acceptable to do so, it is unnecessary given that no other bean will
ever refer to it, and it is unlikely that it will be explicitly fetched from the container by name.
Likewise with the Dat aSour ce bean - it is only ever autowired by type, so an explicit bean id
is not strictly required.

Spring Framework
3.2.1.RELEASE Reference Documentation 118

Spring Framework

Using <cont ext : conponent - scan/ >to pick up @onfi gurati on classes

Because @onfi guration is meta-annotated with @onponent, @Confi gur ati on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above,
we can redefine systemt est -confi g. xnl to take advantage of component-scanning. Note that
in this case, we don't need to explicitly declare <cont ext: annot ati on-confi g/ >, because
<cont ext : conponent - scan/ > enables all the same functionality.

systemtest-config. xn
<beans>
<I-- picks up and registers AppConfig as a bean definition -->
<cont ext : conponent - scan base- package="com acne"/ >
<cont ext: property-pl acehol der | ocati on="cl asspat h:/conf acne/j dbc. properties"/>

<bean cl ass="org. spri ngfranework. jdbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nanme="url" val ue="${jdbc.url}"/>
<property nane="usernane" val ue="${j dbc. usernane}"/>
<property nane="password" val ue="${jdbc. password}"/>
</ bean>
</ beans>

@Confi gurati on class-centric use of XML with @ nport Resour ce

In applications where @Confi gurati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ npor t Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@Configuration
@ npor t Resour ce("cl asspat h: / com acne/ properties-config.xm")
public class AppConfig {
private @/al ue("${jdbc.url}") String url
private @al ue("${jdbc.usernane}") String usernaneg;
private @al ue("${jdbc. password}") String password;

publ i c @ean DataSource dataSource() {
return new Driver Manager Dat aSour ce(url, username, password);

properties-config.xm
<beans>

<cont ext: property-pl acehol der | ocati on="cl asspath:/conf acne/j dbc. properties"/>
</ beans>

j dbc. properties

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host / xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (AppConfig.cl ass);
TransferService transferService = ctx. getBean(TransferService. cl ass);
I

Spring Framework
3.2.1.RELEASE Reference Documentation 119

Spring Framework

Using the @ean annotation

@ean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: i ni t - net hod, dest r oy- net hod,

aut owi ri ng and narre.

You can use the @ean annotation in a @onf i gur ati on-annotated or in a @onponent -annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. You use this method to register
a bean definition within an Appl i cat i onCont ext of the type specified as the method's return value.
By default, the bean name will be the same as the method name. The following is a simple example
of a @ean method declaration:

@onfiguration
public class AppConfig {

@ean
public TransferService transferService() {
return new Transfer Servicel npl ();

}

The preceding configuration is exactly equivalent to the following Spring XML:
<beans>

<bean id="transferService" class="com acne. Transf er Servi cel npl "/ >
</ beans>

Both declarations make a bean named t r ansf er Ser vi ce available in the Appl i cat i onCont ext ,

bound to an object instance of type Tr ansf er Ser vi cel npl :

transferService -> com acne. Transf er Ser vi cel npl

Injecting dependencies

When @eans have dependencies on one another, expressing that dependency is as simple as having
one bean method call another:

@Configuration
public class AppConfig {

@Bean
public Foo foo() {
return new Foo(bar());

}

@Bean
public Bar bar() {
return new Bar ();

}

Spring Framework
3.2.1.RELEASE Reference Documentation 120

Spring Framework

In the example above, the f 00 bean receives a reference to bar via constructor injection.
Receiving lifecycle callbacks

Beans declared in a @onfi gur ati on-annotated class support the regular lifecycle callbacks. Any
classes defined with the @ean annotation can use the @Post Construct and @reDestroy
annotations from JSR-250, see JSR-250 annotations for further details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, Di sposabl eBean, or Li f ecycl e, their respective methods are called by the
container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNaneAwar e,
MessageSour ceAwar e, Appl i cat i onCont ext Awar e, and so on are also fully supported.

The @ean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML's i ni t - met hod and dest r oy- et hod attributes on the bean element:

public class Foo {
public void init() {
/1 initialization |ogic
}
}

public class Bar {
public void cleanup() {
/| destruction |ogic
}
}

@onfiguration
public class AppConfig {
@ean(initMethod = "init")
public Foo foo() {
return new Foo();
}
@ean(destroyMet hod = "cl eanup")
public Bar bar() {
return new Bar ();

}

}

Of course, in the case of Foo above, it would be equally as valid to call the i ni t () method directly
during construction:

@Configuration
public class AppConfig {
@Bean
public Foo foo() {
Foo foo = new Foo();
foo.init();
return foo;

...

Spring Framework
3.2.1.RELEASE Reference Documentation 121

Spring Framework

@ Tip

When you work directly in Java, you can do anything you like with your objects and do not always
need to rely on the container lifecycle!

Specifying bean scope
Using the @cope annotation

You can specify that your beans defined with the @ean annotation should have a specific scope. You
can use any of the standard scopes specified in the Bean Scopes section.

The default scope is si ngl et on, but you can override this with the @cope annotation:

@Configuration
public class MyConfiguration {
@ean
@scope(" prototype")
public Encryptor encryptor() {
...
}
}

@scope and scoped- proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The
easiest way to create such a proxy when using the XML configuration is the <aop: scoped- pr oxy/
> element. Configuring your beans in Java with a @Scope annotation offers equivalent support
with the proxyMode attribute. The default is no proxy (ScopedPr oxyMode. NO), but you can specify
ScopedPr oxyMode. TARGET CLASS or ScopedPr oxyMde. | NTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to
our @ean using Java, it would look like the following:

/1 an HTTP Sessi on-scoped bean exposed as a proxy

@ean

@cope(val ue = "session", proxyMbde = ScopedProxyMde. TARGET CLASS)
publ i c UserPreferences userPreferences() {

return new User Preferences();

}

@ean

public Service userService() {
User Servi ce service = new Sinpl eUser Servi ce();

/'l a reference to the proxied userPreferences bean
servi ce. set User Pref erences(user Preferences());
return service;

}
Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful
in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java
for this type of configuration provides a natural means for implementing this pattern.

Spring Framework
3.2.1.RELEASE Reference Documentation 122

Spring Framework

public abstract class ConmandManager {
public Object process(Object conmandState) {
/'l grab a new instance of the appropriate Command interface
Command conmand = creat eCommand() ;

/] set the state on the (hopefully brand new) Command i nstance
command. set St at e(comrandSt at e) ;
return conmand. execut e();

/'l okay... but where is the inplenmentation of this method?
protected abstract Conmand creat eConmand();

Using Java-configuration support , you can create a subclass of CormandManager where the abstract
creat eCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

@Bean

@scope(" prot ot ype")

publ i ¢ AsyncConmmand asyncConmand() {
AsyncCommand conmmand = new AsyncConmand() ;
/'l inject dependencies here as required
return conmand;

@Bean
publ i ¢ CommandManager commandManager () {
/1 return new anonynous inplenmentati on of CommandManager with command() overridden
/1l to return a new prototype Command obj ect
return new CommandManager () {
protected Conmand creat eConmand() {
return asyncConmmand() ;

Customizing bean naming

By default, configuration classes use a @ean method's name as the name of the resulting bean. This
functionality can be overridden, however, with the nane attribute.

@Configuration
public class AppConfig {

@ean(nanme = "myFoo")
public Foo foo() {
return new Foo();

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The nane attribute of the @ean annotation accepts
a String array for this purpose.

Spring Framework
3.2.1.RELEASE Reference Documentation 123

Spring Framework

@Configuration
public class AppConfig {

@ean(nanme = { "dataSource", "subsystemA-dataSource", "subsystenB-dataSource" })
publ i c Dat aSour ce dataSource() {
/'l instantiate, configure and return DataSource bean...

}

Further information about how Java-based configuration works internally

The following example shows a @ean annotated method being called twice:

@onfiguration
public class AppConfig {

@Bean

public CientService clientServicel() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setClientDao(clientDao());
return clientService;

}

@Bean

public CientService clientService2() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setClientDao(clientDao());
return clientService;

}

@ean
public dientDao clientDao() {
return new d i ent Daol npl () ;
}
}

cl i ent Dao() has beencalled onceincli ent Servi cel() andonceinclient Servi ce2() . Since
this method creates a new instance of Cl i ent Daol npl and returns it, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a si ngl et on scope by default. This is where the magic comes in: All @onfi gurati on
classes are subclassed at startup-time with CGLI B. In the subclass, the child method checks the
container first for any cached (scoped) beans before it calls the parent method and creates a new
instance. Note that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under org.springframework and included directly within the
spring-core JAR.

© Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

@ Note

There are a few restrictions due to the fact that CGLIB dynamically adds features at startup-time:

Spring Framework
3.2.1.RELEASE Reference Documentation 124

Spring Framework

» Configuration classes should not be final

« They should have a constructor with no arguments

5.13 Registering a LoadTi ne\WWeaver

The LoadTi mneWeaver is used by Spring to dynamically transform classes as they are loaded into the
Java virtual machine (JVM).

To enable load-time weaving add the @nabl eLoadTi meWeavi ng to one of your @onf i gur ati on
classes:

@Configuration
@nabl eLoadTi neWeavi ng
public class AppConfig {

}

Alternatively for XML configuration use the cont ext : | oad-ti nme- weaver element:

<beans>
<cont ext: | oad-ti me- weaver/ >
</ beans>

Once configured for the Appli cati onCont ext. Any bean within that Appli cati onCont ext
may implement LoadTi meWeaver Awar e, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring's JPA support
where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Ent i t yManager Fact or yBean Javadoc for more detail. For more on AspectJ load-
time weaving, see the section called “Load-time weaving with AspectJ in the Spring Framework”.

5.14 Additional Capabilities of the Appl i cat i onCont ext

As was discussed in the chapter introduction, the or g. spr i ngf r anmewor k. beans. f act or y package
provides basic functionality for managing and manipulating beans, including in a programmatic
way. The or g. spri ngfranmewor k. cont ext package adds the Appl i cati onCont ext interface,
which extends the BeanFact ory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
Appl i cati onCont ext in a completely declarative fashion, not even creating it programmatically,
but instead relying on support classes such as Cont ext Loader to automatically instantiate an
Appl i cati onCont ext as part of the normal startup process of a J2EE web application.

To enhance BeanFact or y functionality in a more framework-oriented style the context package also
provides the following functionality:

» Access to messages in i18n-style, through the MessageSour ce interface.
» Access to resources, such as URLs and files, through the Resour ceLoader interface.

» Event publication to beans implementing the Appl i cati onLi st ener interface, through the use of
the Appl i cati onEvent Publ i sher interface.

» Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
as the web layer of an application, through the Hi er ar chi cal BeanFact ory interface.

Spring Framework
3.2.1.RELEASE Reference Documentation 125

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework

Internationalization using MessageSour ce

The ApplicationContext interface extends an interface called MessageSource, and
therefore provides internationalization (i18n) functionality. Spring also provides the interface
Hi er ar chi cal MessageSour ce, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined
on these interfaces include:

e« String getMessage(String code, Object[] args, String default, Locale |oc):
The basic method used to retrieve a message from the MessageSour ce. When no message is found
for the specified locale, the default message is used. Any arguments passed in become replacement
values, using the MessageFor mat functionality provided by the standard library.

e String get Message(String code, Object[] args, Local e |oc): Essentially the same
as the previous method, but with one difference: no default message can be specified; if the message
cannot be found, a NoSuchMessageExcept i on is thrown.

e String getMessage(MessageSourceResol vable resolvable, Locale locale):
All properties used in the preceding methods are also wrapped in a class named
MessageSour ceResol vabl e, which you can use with this method.

When an Appl i cati onCont ext is loaded, it automatically searches for a MessageSour ce bean
defined in the context. The bean must have the name nessageSour ce. If such a bean is found, all
calls to the preceding methods are delegated to the message source. If no message source is found,
the Appl i cat i onCont ext attempts to find a parent containing a bean with the same name. If it does,
it uses that bean as the MessageSour ce. If the Appl i cati onCont ext cannot find any source for
messages, an empty Del egat i ngMessageSour ce is instantiated in order to be able to accept calls
to the methods defined above.

Spring provides two MessageSour ce implementations, Resour ceBundl eMessageSour ce and
St ati cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested
messaging. The St ati cMessageSour ce is rarely used but provides programmatic ways to add
messages to the source. The Resour ceBundl eMessageSour ce is shown in the following example:

<beans>
<bean i d="messageSour ce"
cl ass="org. spri ngfranmewor k. cont ext . support. Resour ceBundl eMessageSour ce" >
<property nanme="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

In the example it is assumed you have three resource bundles defined in your classpath called f or mat ,
excepti ons and wi ndows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundle files are...

in format. properties
message=Al | i gators rock

Spring Framework
3.2.1.RELEASE Reference Documentation 126

Spring Framework

in exceptions.properties
argunent . requi red=The '{0}' argunment is required

A program to execute the MessageSour ce functionality is shown in the next example. Remember that
all Appl i cat i onCont ext implementations are also MessageSour ce implementations and so can be
cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String message = resources. get Message(" nmessage”, null, "Default", null)
System out . printl n(message) ;

The resulting output from the above program will be...

Al ligators rock

So to summarize, the MessageSour ce is defined in a file called beans. xm , which exists at the root of
your classpath. The messageSour ce bean definition refers to a number of resource bundles through
its basenanes property. The three files that are passed in the list to the basenanes property exist as
files at the root of your classpath and are called f or mat . properti es, excepti ons. properties,
and wi ndows. properti es respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted
into Strings and inserted into placeholders in the lookup message.

<beans>

<!-- this MessageSource is being used in a web application -->

<bean i d="nessageSource" class="org. springframework. context. support.ResourceBundl eMessageSour ce" >
<property nane="basenane" val ue="exceptions"/>

</ bean>

<l-- lets inject the above MessageSource into this PQJO -->
<bean i d="exanpl e" cl ass="com f 0o. Exanpl e" >

<property nanme="messages" ref="nessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nessages

public void set Messages(MessageSour ce nessages) {
this. messages = nessages

}

public void execute() {
String message = this.nessages. get Message("argunent. requi red"
new Cbject [] {"userDao"}, "Required", null);
System out. printl n(message) ;

The resulting output from the invocation of the execut e() method will be...

Spring Framework
3.2.1.RELEASE Reference Documentation 127

Spring Framework

The userDao argunent is required.

With regard to internationalization (i18n), Spring's various MessageResour ce implementations follow
the same locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and
continuing with the example messageSour ce defined previously, if you want to resolve messages
against the British (en-GB) locale, you would create files called f ormat _en_GB. properti es,
exceptions_en_GB. properties,andw ndows_en_GB. properti es respectively.

Typically, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

in exceptions_en_GB. properties
argunent . requi red=Ebagum | ad, the '{0}' argunment is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String message = resources. get Message("argunent.required",
new Cbject [] {"userDao"}, "Required", Locale.UK);
System out. printl n(message) ;

}

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao’ argunent is required, | say, required.

You can also use the MessageSour ceAwar e interface to acquire a reference to any MessageSour ce
that has been defined. Any bean that is defined in an Appl i cati onCont ext that implements the
MessageSour ceAwar e interface is injected with the application context's MessageSour ce when the
bean is created and configured.

© Note

As an alternative to ResourceBundl eMessageSource, Spring provides a
Rel oadabl eResour ceBundl eMessageSour ce class. This variant supports the same bundle
file format but is more flexible than the standard JDK based Resour ceBundl eMessageSour ce
implementation. In particular, it allows for reading files from any Spring resource location (not just
from the classpath) and supports hot reloading of bundle property files (while efficiently caching
them in between). Check out the Rel oadabl eResour ceBundl eMessageSour ce javadoc for
details.

Standard and Custom Events

Event handling in the Appl i cati onCont ext is provided through the Appli cati onEvent class
and ApplicationLi st ener interface. If a bean that implements the Appli cati onLi st ener
interface is deployed into the context, every time an Appl i cati onEvent gets published to the
Appl i cati onCont ext , that bean is notified. Essentially, this is the standard Observer design pattern.
Spring provides the following standard events:

Table 5.7. Built-in Events
Event Explanation

Cont ext Ref r eshedEvent Published when the ApplicationContext s initialized or
refreshed, for example, using the refresh() method on the
Confi gur abl eAppl i cati onCont ext interface. "Initialized" here

Spring Framework
3.2.1.RELEASE Reference Documentation 128

Spring Framework

Event Explanation

means that all beans are loaded, post-processor beans are
detected and activated, singletons are pre-instantiated, and the
Appl i cati onCont ext object is ready for use. As long as the context
has not been closed, a refresh can be triggered multiple times, provided
that the chosen Appl i cati onCont ext actually supports such "hot"
refreshes. For example, Xm WebAppl i cat i onCont ext supports hot
refreshes, but Generi cAppl i cati onCont ext does not.

Cont ext St art edEvent Published when the Applicati onCont ext is started, using the
start() method on the Confi gurabl eApplicationCont ext
interface. "Started" here means that all Li f ecycl e beans receive an
explicit start signal. Typically this signal is used to restart beans after an
explicit stop, but it may also be used to start components that have not
been configured for autostart , for example, components that have not
already started on initialization.

Cont ext St oppedEvent Published when the ApplicationContext is stopped, using
the st op() method on the Confi gurabl eAppl i cati onCont ext
interface. "Stopped" here means that all Li f ecycl e beans receive
an explicit stop signal. A stopped context may be restarted through a
start() call

Cont ext Cl osedEvent Published when the ApplicationContext is closed, using the
cl ose() method on the Confi gurabl eAppli cati onCont ext
interface. "Closed" here means that all singleton beans are destroyed. A
closed context reaches its end of life; it cannot be refreshed or restarted.

Request Handl edEvent A web-specific event telling all beans that an HTTP request has
been serviced. This event is published after the request is complete.
This event is only applicable to web applications using Spring's
Di spat cher Servl et.

You can also create and publish your own custom events. This example demonstrates a simple class
that extends Spring's Appl i cat i onEvent base class:

public class Bl ackLi st Event extends ApplicationEvent {
private final String address;
private final String test;

publ i c Bl ackLi st Event (Cbj ect source, String address, String test) {
super (source);
this.address = address;
this.test = test;

}

/'l accessor and ot her nethods...

To publish a custom ApplicationEvent, call the publishEvent() method on an
Appl i cati onEvent Publ i sher. Typically this is done by creating a class that implements
Appl i cati onEvent Publ i sher Awar e and registering it as a Spring bean. The following example
demonstrates such a class:

Spring Framework
3.2.1.RELEASE Reference Documentation 129

Spring Framework

public class Email Service inplenents ApplicationEvent Publ i sher Aware {

private List<String> bl ackLi st;
private Applicati onEvent Publisher publisher;

public void setBl ackLi st (List<String> bl ackList) {
this. bl ackLi st = bl ackLi st ;

}

public void setApplicati onEvent Publi sher (Applicati onEvent Publisher publisher) {
this. publisher = publisher;
}

public void sendEnmil (String address, String text) {
i f (bl ackList.contains(address)) {
Bl ackLi st Event event = new Bl ackLi st Event (thi s, address, text);
publ i sher. publ i shEvent (event);

return;
}
// send enmil...
}
}
At configuration time, the Spring container will detect that Email Service
implements Appl i cati onEvent Publ i sher Awar e and will automatically call

set Appl i cat i onEvent Publ i sher () . Inreality, the parameter passed in will be the Spring container
itself; you're simply interacting with the application context via its Appl i cati onEvent Publ i sher
interface.

To receive the custom Appl i cat i onEvent , create a class that implements Appl i cati onLi st ener
and register it as a Spring bean. The following example demonstrates such a class:

public class BlackListNotifier inplenments ApplicationListener<Bl ackLi st Event> {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) ({
this.notificati onAddress = notificati onAddress;

}

public void onApplicati onEvent (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...
}
}

Notice that Appl i cat i onLi st ener is generically parameterized with the type of your custom event,
Bl ackLi st Event . This means that the onAppl i cati onEvent () method can remain type-safe,
avoiding any need for downcasting. You may register as many event listeners as you wish, but note that
by default event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event. One advantage of this synchronous and
single-threaded approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event publication
becomes necessary, refer to the JavaDoc for Spring's Appl i cati onEvent Mul ti cast er interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

Spring Framework
3.2.1.RELEASE Reference Documentation 130

Spring Framework

<bean i d="enmil Servi ce" class="exanpl e. Emai | Servi ce">
<property nanme="bl ackLi st">
<list>
<val ue>known. spamer @xanpl e. or g</ val ue>
<val ue>known. hacker @xanpl e. or g</ val ue>
<val ue>j ohn. doe@xanpl e. or g</ val ue>

</list>
</ property>
</ bean>

<bean i d="bl ackLi st Notifier" class="exanple. Bl ackLi stNotifier">
<property nane="notificati onAddress" val ue="bl ackl i st @xanpl e. org"/>
</ bean>

Putting it all together, when the sendEnai | () method of the enmai | Ser vi ce bean is called, if there
are any emails that should be blacklisted, a custom event of type Bl ackLi st Event is published.
The bl ackLi st Noti fi er bean is registered as an Appl i cat i onLi st ener and thus receives the
Bl ackLi st Event , at which point it can notify appropriate parties.

© Note

Spring's eventing mechanism is designed for simple communication between Spring beans within
the same application context. However, for more sophisticated enterprise integration needs,
the separately-maintained Spring Integration project provides complete support for building
lightweight, pattern-oriented, event-driven architectures that build upon the well-known Spring
programming model.

Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize
themselves with Spring's Resour ce abstraction, as described in the chapter Chapter 6, Resources.

An application context is a Resour ceLoader , which can be used to load Resour ces. A Resour ce is
essentially a more feature rich version of the JDK class j ava. net . URL, in fact, the implementations
of the Resour ce wrap an instance of j ava. net . URL where appropriate. A Resour ce can obtain
low-level resources from almost any location in a transparent fashion, including from the classpath,
a filesystem location, anywhere describable with a standard URL, and some other variations. If the
resource location string is a simple path without any special prefixes, where those resources come from
is specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, Resour ceLoader Awar e, to be automatically called back at initialization time with the
application context itself passed in as the Resour ceLoader . You can also expose properties of type
Resour ce, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resour ce properties as simple String paths, and rely on a special JavaBean
Pr opert yEdi t or that is automatically registered by the context, to convert those text strings to actual
Resour ce objects when the bean is deployed.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
Cl assPat hXm Appl i cati onCont ext treats a simple location path as a classpath location. You can
also use location paths (resource strings) with special prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

Spring Framework
3.2.1.RELEASE Reference Documentation 131

http://springsource.org/spring-integration
http://www.enterpriseintegrationpatterns.com

Spring Framework

Convenient Appl i cat i onCont ext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a
Cont ext Loader . Of course you can also create Appl i cati onCont ext instances programmatically
by using one of the Appl i cat i onCont ext implementations.

The Cont ext Loader mechanism comes in two flavors: the Cont ext Loader Li st ener and the
Cont ext Loader Ser vl et . They have the same functionality but differ in that the listener version is not
reliable in Servlet 2.3 containers. In the Servlet 2.4 specification, Servlet context listeners must execute
immediately after the Servlet context for the web application is created and is available to service the
first request (and also when the Servlet context is about to be shut down). As such a Servlet context
listener is an ideal place to initialize the Spring Appl i cati onCont ext . All things being equal, you
should probably prefer Cont ext Loader Li st ener ; for more information on compatibility, have a look
at the Javadoc for the Cont ext Loader Ser vl et .

You can register an Appl i cati onCont ext using the Cont ext Loader Li st ener as follows:

<cont ext - par anp

<par am name>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ \EB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-cl ass>org. spri ngfranmewor k. web. cont ext. Cont ext Loader Li stener</|istener-class>
</listener>

<l-- or use the ContextlLoaderServlet instead of the above |istener

<servl et>

<ser vl et - name>cont ext </ ser vl et - nanme>

<servl et - cl ass>or g. spri ngf ranewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et - cl ass>
<| oad- on- st art up>1</| oad- on- st art up>

</servl et>

co >

The listener inspects the cont ext Conf i gLocat i on parameter. If the parameter does not exist, the
listener uses / VEEB- | NF/ appl i cat i onCont ext . xml as a default. When the parameter does exist,
the listener separates the String by using predefined delimiters (comma, semicolon and whitespace)
and uses the values as locations where application contexts will be searched. Ant-style path patterns
are supported as well. Examples are / WEB- | NF/ * Cont ext . xm for all files with names ending with
"Context.xml", residing in the "WEB-INF" directory, and / VVEB- | NF/ **/ * Cont ext . xm , for all such
files in any subdirectory of "WEB-INF".

You can use Cont ext Loader Ser vl et instead of Cont ext Loader Li st ener . The Servlet uses the
cont ext Confi gLocat i on parameter just as the listener does.

Deploying a Spring ApplicationContext as a J2EE RAR file

In Spring 2.5 and later, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating
the context and all of its required bean classes and library JARs in a J2EE RAR deployment unit. This is
the equivalent of bootstrapping a standalone ApplicationContext, just hosted in J2EE environment, being
able to access the J2EE servers facilities. RAR deployment is a more natural alternative to scenario of
deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for
bootstrapping a Spring ApplicationContext in a J2EE environment.

Spring Framework
3.2.1.RELEASE Reference Documentation 132

Spring Framework

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather
consist only of message endpoints and scheduled jobs. Beans in such a context can use application
server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may also register with the platform's JMX server - all through Spring's
standard transaction management and JNDI and JMX support facilities. Application components
can also interact with the application server's JCA WorkManager through Spring's TaskExecut or
abstraction.

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details
involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a J2EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as
shown in Spri ngCont ext Resour ceAdapt er s JavaDoc) and the corresponding Spring XML bean
definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server's deployment directory.

© Note

Such RAR deployment units are usually self-contained; they do not expose components to the
outside world, not even to other modules of the same application. Interaction with a RAR-based
ApplicationContext usually occurs through JMS destinations that it shares with other modules. A
RAR-based ApplicationContext may also, for example, schedule some jobs, reacting to new files
in the file system (or the like). If it needs to allow synchronous access from the outside, it could
for example export RMI endpoints, which of course may be used by other application modules
on the same machine.

5.15 The BeanFactory

The BeanFact ory provides the underlying basis for Spring's 1oC functionality but it is only used
directly in integration with other third-party frameworks and is now largely historical in nature for
most users of Spring. The BeanFact ory and related interfaces, such as BeanFact or yAwar e,
InitializingBean, Di sposabl eBean, are still present in Spring for the purposes of backward
compatibility with the large number of third-party frameworks that integrate with Spring. Often third-party
components that can not use more modern equivalents such as @ost Construct or @r eDest r oy
in order to remain compatible with JDK 1.4 or to avoid a dependency on JSR-250.

This section provides additional background into the differences between the BeanFact ory and
Appl i cati onCont ext and how one might access the lIoC container directly through a classic singleton
lookup.

BeanFact ory or Appl i cati onCont ext ?

Use an Appl i cati onCont ext unless you have a good reason for not doing so.

Because the Appl i cati onCont ext includes all functionality of the BeanFact ory, it is generally
recommended over the BeanFact or y, except for a few situations such as in an Appl et where memory
consumption might be critical and a few extra kilobytes might make a difference. However, for most
typical enterprise applications and systems, the Appl i cati onCont ext is what you will want to use.
Spring 2.0 and later makes heavy use of the BeanPost Pr ocessor _extension point (to effect proxying

Spring Framework
3.2.1.RELEASE Reference Documentation 133

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

Spring Framework

and so on). If you use only a plain BeanFact ory, a fair amount of support such as transactions and
AOP will not take effect, at least not without some extra steps on your part. This situation could be
confusing because nothing is actually wrong with the configuration.

The following table lists features provided by the BeanFact or y and Appl i cat i onCont ext interfaces
and implementations.

Table 5.8. Feature Matrix

Feature BeanFact ory Appl i cati onCont ext
Bean instantiation/wiring Yes Yes
Automatic No Yes

BeanPost Pr ocessor
registration

Automatic No Yes
BeanFact or yPost Pr ocessor
registration

Convenient MessageSour ce No Yes
access (for i18n)

Appl i cati onEvent No Yes
publication

To explicitly register a bean post-processor with a BeanFact or y implementation, you must write code
like this:

Confi gur abl eBeanFactory factory = new Xm BeanFactory(...);
/'l now regi ster any needed BeanPost Processor instances
MyBeanPost Pr ocessor post Processor = new MyBeanPost Processor () ;

fact ory. addBeanPost Processor (post Processor);

// now start using the factory

To explicitly register a BeanFact or yPost Pr ocessor when using a BeanFact ory implementation,
you must write code like this:

Xm BeanFactory factory = new Xnl BeanFact ory(new Fi | eSyst enResour ce("beans. xm ")) ;

// bring in sonme property values froma Properties file
Pr opert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setLocation(new Fil eSyst enResource("j dbc. properties"));

/1 now actual ly do the repl acenent
cf g. post ProcessBeanFact ory(factory);

In both cases, the explicit registration step is inconvenient, which is one reason why
the various Appli cati onCont ext implementations are preferred above plain BeanFact ory
implementations in the vast majority of Spring-backed applications, especially when using
BeanFact or yPost Processors and BeanPost Processors. These mechanisms implement
important functionality such as property placeholder replacement and AOP.

Spring Framework
3.2.1.RELEASE Reference Documentation 134

Spring Framework

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served
out of a Spring loC container, has its own dependencies supplied by the container when it is created, and
is completely unaware of the container. However, for the small glue layers of code that are sometimes
needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access
to a Spring loC container. For example, third-party code may try to construct new objects directly
(A ass. for Nane() style), without the ability to get these objects out of a Spring IoC container. If the
object constructed by the third-party code is a small stub or proxy, which then uses a singleton style
access to a Spring loC container to get a real object to delegate to, then inversion of control has still been
achieved for the majority of the code (the object coming out of the container). Thus most code is still
unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing
benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object,
retrieved from a Spring loC container. While the Spring 10C container itself ideally does not have to be
a singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in
the Spring loC container such as a Hibernate Sessi onFact or y) for each bean to use its own, non-
singleton Spring IoC container.

Looking up the application context in a service locator style is sometimes the only option for accessing
shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share
a single ApplicationContext as a parent to WebApplicationContexts across WAR files. In this case
you should look into using the utility class Cont ext Si ngl et onBeanFact or yLocat or locator that is
described in this SpringSource team blog entry.

Spring Framework
3.2.1.RELEASE Reference Documentation 135

http://static.springsource.org/spring/docs/current/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://blog.springsource.com/2007/06/11/using-a-shared-parent-application-context-in-a-multi-war-spring-application/

Spring Framework

6. Resources

6.1 Introduction

Java's standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are
not quite adequate enough for all access to low-level resources. For example, there is no standardized
URL implementation that may be used to access a resource that needs to be obtained from the classpath,
or relative to a Ser vl et Cont ext . While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as ht t p:), this is generally quite complicated, and
the URL interface still lacks some desirable functionality, such as a method to check for the existence
of the resource being pointed to.

6.2 The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting access to low-
level resources.

public interface Resource extends | nput StreanSource {
bool ean exists();
bool ean i sQpen();
URL get URL() throws | OException;
File getFile() throws | COExcepti on;
Resource createRel ative(String relativePath) throws | OException;
String getFilenane();

String getDescription();

public interface |nputStreanSource {

I nput Stream get | nput Strean{) throws | CExcepti on;

Some of the most important methods from the Resour ce interface are:

» get I nput Strean() : locates and opens the resource, returning an | nput St r eamfor reading from
the resource. It is expected that each invocation returns a fresh | nput St r eam It is the responsibility
of the caller to close the stream.

* exi sts():returns a bool ean indicating whether this resource actually exists in physical form.

e i sOpen() : returns a bool ean indicating whether this resource represents a handle with an open
stream. If t r ue, the | nput St r eamcannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be f al se for all usual resource implementations, with the
exception of | nput St r eanResour ce.

» get Descri pti on() :returns a description for this resource, to be used for error output when working
with the resource. This is often the fully qualified file name or the actual URL of the resource.

Spring Framework
3.2.1.RELEASE Reference Documentation 136

Spring Framework

Other methods allow you to obtain an actual URL or Fi | e object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors to
various Appl i cat i onCont ext implementations), take a St r i ng which in unadorned or simple form
is used to create a Resour ce appropriate to that context implementation, or via special prefixes on
the St ri ng path, allow the caller to specify that a specific Resour ce implementation must be created
and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as
a general utility class by itself in your own code, for access to resources, even when your code doesn't
know or care about any other parts of Spring. While this couples your code to Spring, it really only
couples it to this small set of utility classes, which are serving as a more capable replacement for URL,
and can be considered equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where
possible. For example, a Ur | Resour ce wraps a URL, and uses the wrapped URL to do its work.

6.3 Built-in Resour ce implementations

There are a number of Resour ce implementations that come supplied straight out of the box in Spring:
Ur | Resour ce

The Ur | Resour ce wraps a j ava. net . URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized
St ri ng representation, such that appropriate standardized prefixes are used to indicate one URL type
from another. This includes fi | e: for accessing filesystem paths, ht t p: for accessing resources via
the HTTP protocol, f t p: for accessing resources via FTP, etc.

A Ur | Resour ce is created by Java code explicitly using the Ur | Resour ce constructor, but will often
be created implicitly when you call an API method which takes a St ri ng argument which is meant
to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will ultimately decide which
type of Resour ce to create. If the path string contains a few well-known (to it, that is) prefixes such as
cl asspat h: , it will create an appropriate specialized Resour ce for that prefix. However, if it doesn't
recognize the prefix, it will assume the this is just a standard URL string, and will create a Ur | Resour ce.

Cl assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the
thread context class loader, a given class loader, or a given class for loading resources.

This Resour ce implementation supports resolution as j ava.i o. Fi |l e if the class path resource
resides in the file system, but not for classpath resources which reside in a jar and have not been
expanded (by the servlet engine, or whatever the environment is) to the filesystem. To address this the
various Resour ce implementations always support resolution as aj ava. net . URL.

A d assPat hResource is created by Java code explicitly using the C assPat hResource
constructor, but will often be created implicitly when you call an APl method which takes a Stri ng
argument which is meant to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will

Spring Framework
3.2.1.RELEASE Reference Documentation 137

Spring Framework

recognize the special prefix cl asspat h: on the string path, and create a O assPat hResour ce in that
case.

Fi | eSyst enResour ce

This is a Resour ce implementation for j ava. i 0. Fi | e handles. It obviously supports resolution as a
Fi |l e, and as a URL.

Ser vl et Cont ext Resour ce

This is a Resour ce implementation for Ser vl et Cont ext resources, interpreting relative paths within
the relevant web application's root directory.

This always supports stream access and URL access, but only allows j ava. i o. Fi | e access when
the web application archive is expanded and the resource is physically on the filesystem. Whether or
not it's expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else
like a DB (it's conceivable) is actually dependent on the Servlet container.

| nput St r eanResour ce

A Resour ce implementation for a given | nput Stream This should only be used if no specific
Resour ce implementation is applicable. In particular, prefer Byt eAr r ayResour ce or any of the file-
based Resour ce implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource -
therefore returning t r ue from i sQpen() . Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

Byt eArr ayResour ce

This is a Resour ce implementation for a given byte array. It creates a Byt eAr r ayl nput St r eamfor
the given byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nput St reanResour ce.

6.4 The Resour ceLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resour ce instances.

public interface ResourceLoader {
Resource get Resource(String | ocation);

}

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn't have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
Cl assPat hXm Appl i cati onCont ext instance:

Resource tenplate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt");

Spring Framework
3.2.1.RELEASE Reference Documentation 138

Spring Framework

What would be returned would be a C assPat hResour ce; if the same method was executed against
aFil eSystemXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For a
WebAppl i cati onCont ext , you'd get back a Ser vl et Cont ext Resour ce, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

‘ Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. txt");

Similarly, one can force a Ur | Resour ce to be used by specifying any of the standard j ava. net . URL
prefixes:

‘ Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenplate.txt");

‘ Resource tenplate = ctx.getResource("http://nyhost.conlresource/ path/ nyTenpl ate.txt");

The following table summarizes the strategy for converting St ri ngs to Resour ces:

Table 6.1. Resource strings

Prefix Example Explanation
classpath: cl asspat h: cont nyapp/ Loaded from the classpath.
config.xm
file: file:/datal/config.xm Loaded as a URL, from the
filesystem. !
http: http://nyserver/ Loaded as a URL.
| ogo. png
(none) / dat a/ confi g. xm Depends on the underlying
Appl i cati onCont ext .

But see also the section called “Fi | eSyst emResour ce caveats”.

6.5 The Resour ceLoader Awar e interface

The Resour ceLoader Awar e interface is a special marker interface, identifying objects that expect to
be provided with a Resour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour ceLoader (Resour ceLoader resourcelLoader);

When a class implements Resour ceLoader Awar e and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour ceLoader Awar e by the application context. The
application context will then invoke the set Resour ceLoader (Resour ceLoader), supplying itself as
the argument (remember, all application contexts in Spring implement the Resour ceLoader interface).

Of course, since an Appl i cati onCont ext is a Resour ceLoader, the bean could also implement
the Appl i cati onCont ext Awar e interface and use the supplied application context directly to load

Spring Framework
3.2.1.RELEASE Reference Documentation 139

Spring Framework

resources, but in general, it's better to use the specialized Resour ceLoader interface if that's all that's
needed. The code would just be coupled to the resource loading interface, which can be considered a
utility interface, and not the whole Spring Appl i cati onCont ext interface.

As of Spring 2.5, you can rely upon autowiring of the ResourcelLoader as an alternative to
implementing the Resour ceLoader Awar e interface. The "traditional" const ruct or and byType
autowiring modes (as described in the section called “Autowiring collaborators”) are now capable
of providing a dependency of type Resour ceLoader for either a constructor argument or setter
method parameter respectively. For more flexibility (including the ability to autowire fields and multiple
parameter methods), consider using the new annotation-based autowiring features. In that case, the
Resour ceLoader will be autowired into a field, constructor argument, or method parameter that is
expecting the Resour ceLoader type as long as the field, constructor, or method in question carries
the @\ut owi r ed annotation. For more information, see the section called “@\ut owi r ed”.

6.6 Resour ces as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the Resour ceLoader interface to load resources.
Consider as an example the loading of a template of some sort, where the specific resource that is
needed depends on the role of the user. If the resources are static, it makes sense to eliminate the use
of the Resour ceLoader interface completely, and just have the bean expose the Resour ce properties
it needs, and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a
special JavaBeans Propert yEdi t or which can convert St ri ng paths to Resour ce objects. So if
nmyBean has a template property of type Resour ce, it can be configured with a simple string for that
resource, as follows:

<bean i d="nyBean" class="...">
<property nane="tenpl ate" val ue="sone/resource/ path/ nyTenpl ate.txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to
be used as the Resour ceLoader, the resource itself will be loaded via a Cl assPat hResour ce,
Fi | eSyst emResour ce, or Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type
of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following
two examples show how to force a Cl assPat hResour ce and a Ur | Resour ce (the latter being used
to access a filesystem file).

<property nane="tenpl ate" val ue="cl asspat h: some/ resour ce/ pat h/ nyTenpl ate. t xt">

<property nane="tenpl ate" value="file:/some/resource/path/nyTenplate.txt"/>

6.7 Application contexts and Resour ce paths

Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or
array of strings as the location path(s) of the resource(s) such as XML files that make up the definition
of the context.

Spring Framework
3.2.1.RELEASE Reference Documentation 140

Spring Framework

When such a location path doesn't have a prefix, the specific Resour ce type built from that path and
used to load the bean definitions, depends on and is appropriate to the specific application context. For
example, if you create a Cl assPat hXm Appl i cati onCont ext as follows:

‘ ApplicationContext ctx = new C assPat hXml Appl i cati onCont ext ("conf/appContext.xm ");

The bean definitions will be loaded from the classpath, as a Cl assPat hResour ce will be used. But if
you create a Fi | eSyst enXm Appl i cat i onCont ext as follows:

Appl i cati onContext ctx =
new Fi |l eSyst emXm Appl i cati onCont ext (" conf/appCont ext.xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location
path will override the default type of Resource created to load the definition. So this
Fi | eSyst enXml Appl i cati onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" cl asspat h: conf/appCont ext. xm ");

will actually load its bean definitons from the classpath. However, it is still a
Fi | eSyst emXm Appl i cati onCont ext. If it is subsequently used as a Resour ceLoader, any
unprefixed paths will still be treated as filesystem paths.

Constructing Cl assPat hXm Appl i cat i onCont ext instances - shortcuts

The Cl assPat hXnl Appl i cati onCont ext exposes a number of constructors to enable convenient
instantiation. The basic idea is that one supplies merely a string array containing just the filenames of
the XML files themselves (without the leading path information), and one also supplies a O ass; the
Cl assPat hXm Appl i cati onCont ext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
services. xm
daos. xm
Messenger Servi ce. cl ass

A C assPat hXm Appl i cati onCont ext instance composed of the beans defined in the
"services.xm ' and' daos. xm ' could be instantiated like so...

Appl i cationContext ctx = new O assPat hXm Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Service. cl ass);

Please do consult the Javadocs for the Cl assPat hXm Appl i cat i onCont ext class for details of the
various constructors.

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown
above) which has a one-to-one mapping to a target Resource, or alternately may contain the special

Spring Framework
3.2.1.RELEASE Reference Documentation 141

Spring Framework

"classpath*:" prefix and/or internal Ant-style regular expressions (matched using Spring's Pat hivat cher
utility). Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can
'publish’ context definition fragments to a well-known location path, and when the final application context
is created using the same path prefixed via cl asspat h*: , all component fragments will be picked up
automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or
when using the Pat hivat cher ultility class hierarchy directly), and is resolved at construction time. It
has nothing to do with the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to
construct an actual Resour ce, as a resource points to just one resource at a time.

Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/ VEB- | NF/ * - cont ext . xm

com nyconpany/ **/ appl i cati onCont ext . xm

file:C /sonel/path/*-context.xnl

cl asspat h: conf myconpany/ **/ appl i cati onCont ext . xm

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces
a Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL is not
a "jar:" URL or container-specific variant (e.g. "zi p: " in WebLogic, "wsj ar " in WebSphere, etc.), then
ajava.io. Fil e is obtained from it and used to resolve the wildcard by traversing the filesystem. In
the case of a jar URL, the resolver either gets a j ava. net . Jar URLConnect i on from it or manually
parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicity because the base
Resour ceLoader is a filesystem one, then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL via a Cl assl oader. get Resour ce() call. Since this is just a node of the path (not the
file at the end) it is actually undefined (in the C assLoader Javadocs) exactly what sort of a URL is
returned in this case. In practice, it is always a j ava. i 0. Fi | e representing the directory, where the
classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath
resource resolves to a jar location. Still, there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents
of the jar, and resolve the wildcard. This will work in most environments, but will fail in others, and it is
strongly recommended that the wildcard resolution of resources coming from jars be thoroughly tested
in your specific environment before you rely on it.

The cl asspat h*: prefix

When constructing an XML-based application context, a location string may use the special
cl asspat h*: prefix:

Appl i cationContext ctx =
new C assPat hXm Appl i cati onCont ext ("cl asspat h*: conf/appCont ext.xm ");

Spring Framework
3.2.1.RELEASE Reference Documentation 142

Spring Framework

This special prefix specifies that all classpath resources that match the given name must be obtained
(internally, this essentially happens via a Cl assLoader . get Resour ces(. ..) call), and then merged
to form the final application context definition.

@ Classpath*: portability

The wildcard classpath relies on the get Resour ces() method of the underlying classloader.
As most application servers nowadays supply their own classloader implementation, the
behavior might differ especially when dealing with jar files. A simple test to check if
cl asspat h* works is to use the classloader to load a file from within a jar on the classpath:
get O ass() . get d assLoader (). get Resour ces("<soneFi |l el nsi deTheJar>"). Try
this test with files that have the same name but are placed inside two different locations. In case
an inappropriate result is returned, check the application server documentation for settings that
might affect the classloader behavior.

The "cl asspat h*: " prefix can also be combined with a Pat hivat cher patternin the rest of the location
path, for example "cl asspat h*: META- | NF/ *- beans. xnl ". In this case, the resolution strategy is
fairly simple: a ClassLoader.getResources() call is used on the last non-wildcard path segment to get all
the matching resources in the class loader hierarchy, and then off each resource the same PathMatcher
resolution strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that "cl asspat h*: " when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file system.
This means that a pattern like "cl asspat h*: *. xm " will not retrieve files from the root of jar files
but rather only from the root of expanded directories. This originates from a limitation in the JDK's
Cl assLoader . get Resour ces() method which only returns file system locations for a passed-in
empty string (indicating potential roots to search).

Ant-style patterns with "cl asspat h: " resources are not guaranteed to find matching resources if the
root package to search is available in multiple class path locations. This is because a resource such as

‘ com nyconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

‘ cl asspat h: conf myconpany/ **/ servi ce- cont ext . xm

is used to try to resolve it, the resolver will work off the (first) URL returned by get Resour ce(" com
nyconpany") ;. If this base package node exists in multiple classloader locations, the actual end
resource may not be underneath. Therefore, preferably, use "cl asspat h*: " with the same Ant-style
pattern in such a case, which will search all class path locations that contain the root package.

Fi | eSyst enResour ce caveats

A Fi | eSyst enmResour ce that is not attached to a Fi | eSyst emAppl i cati onCont ext (that is,
a Fil eSyst emAppl i cati onCont ext is not the actual Resour ceLoader) will treat absolute vs.
relative paths as you would expect. Relative paths are relative to the current working directory, while
absolute paths are relative to the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes
when the Fi | eSyst emAppl i cat i onCont ext is the Resour ceLoader . The

Spring Framework
3.2.1.RELEASE Reference Documentation 143

Spring Framework

Fi | eSyst emAppl i cati onCont ext simply forces all attached Fi | eSyst emResour ce instances to
treat all location paths as relative, whether they start with a leading slash or not. In practice, this means
the following are equivalent:

ApplicationContext ctx =
new Fi | eSyst emXm Appl i cati onCont ext ("conf/context.xm ");

ApplicationContext ctx =
new Fi | eSyst emXm Appl i cati onCont ext ("/conf/context.xm");

As are the following: (Even though it would make sense for them to be different, as one case is relative
and the other absolute.)

Fi | eSyst emXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("somne/ resour ce/ pat h/ nyTenpl ate. txt");

Fi | eSyst emXm Appl i cati onContext ctx = ...;
ct x. get Resour ce("/ sone/ resour ce/ pat h/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths
with Fi | eSyst enResour ce / Fi | eSyst emXmi Appl i cati onCont ext, and just force the use of a
Ur | Resour ce, by using the fi | e: URL prefix.

/'l actual context type doesn't matter, the Resource will always be Url Resource
ct x. get Resource("file:/sonme/resource/ path/ nyTenpl ate. txt");

/] force this FileSystenmXm ApplicationContext to load its definition via a Ul Resource
ApplicationContext ctx =
new Fi |l eSyst emXm Appl i cationContext("file:/conf/context.xm");

Spring Framework
3.2.1.RELEASE Reference Documentation 144

Spring Framework

7. Validation, Data Binding, and Type Conversion

7.1 Introduction

JSR-303 Bean Validation

The Spring Framework supports JSR-303 Bean Validation adapting it to Spring's Val i dat or
interface.

An application can choose to enable JSR-303 Bean Validation once globally, as described in
Section 7.8, “Spring 3 Validation”, and use it exclusively for all validation needs.

An application can also register additional Spring Val i dat or instances per Dat aBi nder
instance, as described in the section called “Configuring a DataBinder”. This may be useful for
plugging in validation logic without the use of annotations.

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation should
not be tied to the web tier, should be easy to localize and it should be possible to plug in any validator
available. Considering the above, Spring has come up with a Val i dat or interface that is both basic
ands eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of
an application (or whatever objects you use to process user input). Spring provides the so-called
Dat aBi nder to do exactly that. The Val i dat or and the Dat aBi nder make up the val i dati on
package, which is primarily used in but not limited to the MVC framework.

The BeanW apper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanW apper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will explain the
BeanW apper in this chapter since, if you were going to use it at all, you would most likely do so when
trying to bind data to objects.

Spring's DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format
property values. The PropertyEdi t or concept is part of the JavaBeans specification, and is also
explained in this chapter. Spring 3 introduces a "core.convert" package that provides a general type
conversion facility, as well as a higher-level "format" package for formatting Ul field values. These new
packages may be used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.

7.2 Validation using Spring's Val i dat or interface

Spring features a Val i dat or interface that you can use to validate objects. The Val i dat or interface
works using an Er r or s object so that while validating, validators can report validation failures to the
Err or s object.

Let's consider a small data object:

Spring Framework
3.2.1.RELEASE Reference Documentation 145

Spring Framework

public class Person {

private String nane;
private int age

/'l the usual getters and setters..

We're going to provide validation behavior for the Per son class by implementing the following two

methods of the or g. spri ngfranewor k. val i dati on. Val i dat or interface:

» supports(d ass) - Canthis Val i dat or validate instances of the supplied Cl ass?

» validate(Ohject, org.springfranmework.validation.Errors) - validates the given
object and in case of validation errors, registers those with the given Er r or s object

Implementing a Validator is fairly straightforward, especially when you know of the
Val i dati onUt i | s helper class that the Spring Framework also provides.

public class PersonValidator inplenments Validator {

/**
* This Validator validates *just* Person instances
*/
publ i c bool ean supports(d ass clazz) {
return Person. cl ass. equal s(cl azz);

}

public void validate(Qbject obj, Errors e) {
ValidationUils.rejectlfEnpty(e, "nane", "nane.enpty");
Person p = (Person) obj
it (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rej ect Val ue("age", "too.darn.old");

}

As you can see, thestaticrejectlfEnpty(..) method onthe ValidationUils classis used
to reject the ' nane' property if it is nul | or the empty string. Have a look at the Javadoc for the
Val i dati onUti | s class to see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Val i dat or class to validate each of the nested
objects in a rich object, it may be better to encapsulate the validation logic for each nested class
of object in its own Val i dat or implementation. A simple example of a 'rich’ object would be a
Cust oner that is composed of two Stri ng properties (a first and second name) and a complex
Addr ess object. Addr ess objects may be used independently of Cust oner objects, and so a distinct
Addr essVal i dat or has been implemented. If you want your Cust oner Val i dat or to reuse the
logic contained within the Addr essVal i dat or class without resorting to copy-and-paste, you can
dependency-inject or instantiate an Addr essVal i dat or within your Cust oner Val i dat or, and use
it like so:

Spring Framework
3.2.1.RELEASE Reference Documentation 146

Spring Framework

public class CustonerValidator inplenents Validator {
private final Validator addressVali dator;

publ i c CustonerValidator(Validator addressValidator) {

if (addressValidator == null) {
throw new |11 egal Argunent Excepti on(
"The supplied [Validator] is required and nust not be null.");
}
if (!addressValidator. supports(Address.class)) {
throw new Il | egal Argument Excepti on(

"The supplied [Validator] nust support the validation of [Address]
i nstances.");

}

thi s. addressVal i dat or = addressVal i dator;

}

/**
* This Validator validates Custoner instances, and any subcl asses of Customer too
*/
publ i c bool ean supports(d ass clazz) {
return Custoner.cl ass. i sAssi gnabl eFron{cl azz);

}

public void validate(Object target, Errors errors) {
Val i dationUtils.rejectlfEnptyO Wiitespace(errors, "firstNane", “"field.required");

Val idationUils.rejectlfEnmptyO Wiitespace(errors, "surnanme", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("address") ;
Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(),
errors);
} finally {
errors. popNest edPat h() ;
}

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MVC
you can use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect
the errors object yourself. More information about the methods it offers can be found from the Javadoc.

7.3 Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors
is the last thing we need to discuss. In the example we've shown above, we rejected the nanme and
the age field. If we're going to output the error messages by using a MessageSour ce, we will do
so using the error code we've given when rejecting the field (‘'name' and 'age’ in this case). When
you call (either directly, or indirectly, using for example the Val i dati onUt i | s class) r ej ect Val ue
or one of the other r ej ect methods from the Err or s interface, the underlying implementation will
not only register the code you've passed in, but also a number of additional error codes. What
error codes it registers is determined by the MessageCodesResol ver that is used. By default, the
Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method.
So in case you reject a field using rej ect Val ue("age", "too.darn.old"), apart from the
t 0o. dar n. ol d code, Spring will also register t 0o. dar n. ol d. age and t oo. dar n. ol d. age. i nt

Spring Framework
3.2.1.RELEASE Reference Documentation 147

Spring Framework

(so the first will include the field name and the second will include the type of the field); this is done as
a convenience to aid developers in targeting error messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online with
the Javadocs for MessageCodesResolver and DefaultMessageCodesResolver respectively.

7.4 Bean manipulation and the BeanW apper

The or g. spri ngf r amewor k. beans package adheres to the JavaBeans standard provided by Sun. A
JavaBean is simply a class with a default no-argument constructor, which follows a naming convention
where (by way of an example) a property named bi ngoMadness would have a setter method
set Bi ngoMadness(..) and a getter method get Bi ngoMadness() . For more information about
JavaBeans and the specification, please refer to Sun's website (java.sun.com/products/javabeans).

One quite important class in the beans package is the BeanW apper interface and its corresponding
implementation (BeanW apper | npl). As quoted from the Javadoc, the BeanW apper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and to
guery properties to determine if they are readable or writable. Also, the BeanW apper offers support
for nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then,
the BeanW apper supports the ability to add standard JavaBeans Pr oper t yChangelLi st ener s and
Vet oabl eChangeli st ener s, without the need for supporting code in the target class. Last but not
least, the BeanW apper provides support for the setting of indexed properties. The BeanW apper
usually isn't used by application code directly, but by the Dat aBi nder and the BeanFact ory.

The way the BeanW apper works is partly indicated by its name: it wraps a bean to perform actions
on that bean, like setting and retrieving properties.

Setting and getting basic and nested properties
Setting and getting properties is done using the setPropertyValue(s) and
get PropertyVal ue(s) methods that both come with a couple of overloaded variants. They're all

described in more detail in the Javadoc Spring comes with. What's important to know is that there are
a couple of conventions for indicating properties of an object. A couple of examples:

Table 7.1. Examples of properties

Expression Explanation

nane Indicates the property name corresponding to the methods get Nane() or
i sName() and set Nane(. .)

account . nane Indicates the nested property nane of the property account
corresponding e.g. to the methods get Account (). set Name() or
get Account (). get Name()

account[2] Indicates the third element of the indexed property account. Indexed
properties can be of type arr ay, | i st or other naturally ordered collection

account [COVPANYNAMHIndicates the value of the map entry indexed by the key COMPANYNAME
of the Map property account

Below you'll find some examples of working with the BeanW apper to get and set properties.

Spring Framework
3.2.1.RELEASE Reference Documentation 148

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/validation/MessageCodesResolver.html
http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html
http://java.sun.com/products/javabeans/

Spring Framework

(This next section is not vitally important to you if you're not planning to work with the BeanW apper
directly. If you're just using the Dat aBi nder and the BeanFactory and their out-of-the-box

implementation, you should skip ahead to the section about Pr opert yEdi t ors.)

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee nmanagi ngDi rector;

public String get Name() ({
return this.nane;

}

public void setNane(String nanme) {
this. nane = nane;

}

publ i ¢ Enpl oyee get Managi ngDirector () {
return this.nmanagi ngDirector;

}

public voi d set Managi ngDirect or (Enpl oyee managi ngDirector) {
t hi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String nane;
private float salary;

public String get Name() ({
return this.name;

}

public void setNane(String nanme) {
thi s. nane = nane;

}

public float getSalary() {
return sal ary;

}

public void setSalary(float salary) {
this.salary = salary;

}

The following code snippets show some examples of how to retrieve and manipulate some of the

properties of instantiated Conpani es and Enpl oyees:

BeanW apper conpany = BeanW apper | npl (new Conpany());
/|l setting the conpany nane..

conpany. set PropertyVal ue("nane", "Sone Conpany Inc.");
/1 ... can also be done like this:
PropertyVal ue val ue = new PropertyVal ue("nane", "Sone Conpany Inc.");

conpany. set PropertyVal ue(val ue);

I/l ok, let's create the director and tie it to the conpany:

BeanW apper ji m = BeanW apper | npl (new Enpl oyee());

jimsetPropertyVal ue("nane", "Jim Stravinsky");

conpany. set PropertyVal ue("managi nghDi rector”, jim get Wappedl nstance());

/1 retrieving the salary of the managi ngDirector through the conpany

Fl oat salary = (Float) conpany.get PropertyVal ue("nanagi ngDi rector. sal ary");

Spring Framework
3.2.1.RELEASE Reference Documentation

149

Spring Framework

Built-in Propert yEdi t or implementations

Spring uses the concept of Pr opert yEdi t or s to effect the conversion between an Cbj ect and a
String. If you think about it, it sometimes might be handy to be able to represent properties in a
different way than the object itself. For example, a Dat e can be represented in a human readable way
(as the String '2007- 14- 09'), while we're still able to convert the human readable form back to the
original date (or even better: convert any date entered in a human readable form, back to Dat e objects).
This behavior can be achieved by registering custom editors, of type j ava. beans. Propert yEdi t or.
Registering custom editors on a BeanW apper or alternately in a specific loC container as mentioned
in the previous chapter, gives it the knowledge of how to convert properties to the desired type. Read
more about Pr opert yEdi t or s in the Javadoc of the j ava. beans package provided by Sun.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done wusing PropertyEditors. When mentioning
java. |l ang. Stri ng as the value of a property of some bean you're declaring in XML file, Spring
will (if the setter of the corresponding property has a Cl ass-parameter) use the Cl assEdi t or to try
to resolve the parameter to a Cl ass object.

e parsing HTTP request parameters in Spring's MVC framework is done using all kinds of
Pr opert yEdi t or s that you can manually bind in all subclasses of the ConrandCont r ol | er.

Spring has a number of built-in Propert yEdi t or s to make life easy. Each of those is listed below
and they are all located in the or g. spri ngf r amewor k. beans. propertyedit or s package. Most,
but not all (as indicated below), are registered by default by BeanW apper | npl . Where the property
editor is configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 7.2. Built-in Propert yEdi tors

Class Explanation

Byt eArr ayPr opert yEdi t or Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanW apper | nmpl .

Cl assEdi tor Parses Strings representing classes to actual classes and
the other way around. When a class is not found, an
I'I'l egal Argunent Exception is thrown. Registered by
default by BeanW apper | npl .

Cust onBool eanEdi t or Customizable property editor for Bool ean properties.
Registered by default by BeanW apper | npl, but, can be
overridden by registering custom instance of it as custom
editor.

Cust onmCol | ecti onEdi t or Property editor for Collections, converting any source
Col I ecti on to a given target Col | ect i on type.

Cust onDat eEdi t or Customizable property editor for java.util.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Cust omNumber Edi t or Customizable property editor for any Number subclass like
I nt eger, Long, Fl oat, Doubl e. Registered by default by

Spring Framework
3.2.1.RELEASE Reference Documentation 150

Spring Framework

Class Explanation
BeanW apper | npl , but can be overridden by registering
custom instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Strings to java.io. Fil e objects.

| nput St reanEdi t or

Registered by default by BeanW apper | npl .

One-way property editor, capable of taking a text string
and producing (via an intermediate Resour ceEditor and
Resour ce) an | nput St ream so | nput St r eam properties
may be directly set as Strings. Note that the default usage will
not close the | nput St r eamfor you! Registered by default by
BeanW apper | npl .

Local eEdi t or

Capable of resolving Strings to Local e objects and vice versa
(the String format is [language] [country] [variant], which is
the same thing the toString() method of Locale provides).
Registered by default by BeanW apper | npl .

Pat t er nEdi t or

Properti esEditor

StringTri mrer Editor

URLEdi t or

Capable of resolving Strings to JDK 1.5 Pat t er n objects and
vice versa.

Capable of converting Strings (formatted using the format
as defined in the Javadoc for the java.lang.Properties
class) to Properties objects. Registered by default by
BeanW apper | mpl .

Property editor that trims Strings. Optionally allows
transforming an empty string into anul | value. NOT registered
by default; must be user registered as needed.

Capable of resolving a String representation of a URL
to an actual URL object. Registered by default by
BeanW apper | npl .

Spring uses the java. beans. PropertyEdi t or Manager to set the search path for property
editors that might be needed. The search path also includes sun. bean. edi t or s, which includes
Propert yEdi t or implementations for types such as Font, Col or, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover Pr opert yEdi t or
classes (without you having to register them explicitly) if they are in the same package as the class
they handle, and have the same name as that class, with ' Edi t or' appended; for example, one could
have the following class and package structure, which would be sufficient for the FooEdi t or class to
be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank
pop

Foo

FooEdi t or /1 the PropertyEditor for the Foo class

Note that you can also use the standard Beanl nf o JavaBeans mechanism here as well (described
in_not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly

registering one or more Pr opert yEdi t or instances with the properties of an associated class.

3.2.1.RELEASE

Spring Framework
Reference Documentation 151

http://docs.oracle.com/javase/tutorial/javabeans/advanced/customization.html

Spring Framework

com
chank
pop
Foo
FooBeanl nf o /1 the Beanlnfo for the Foo class

Here is the Java source code for the referenced FooBeanl nf o class. This would associate a
Cust omNunber Edi t or with the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {
final PropertyEditor nunber PE = new CustonNunber Edi tor (I nteger.cl ass, true);
PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(Cbject bean) {
return nunber PE;
0%
b
return new PropertyDescriptor[] { ageDescriptor };
}
catch (I ntrospectionException ex) {
throw new Error(ex.toString());

}

Registering additional custom Pr opert yEdi t ors

When setting bean properties as a string value, a Spring 1oC container ultimately uses standard
JavaBeans Pr oper t yEdi t or s to convert these Strings to the complex type of the property. Spring pre-
registers a number of custom Pr oper t yEdi t or s (for example, to convert a classname expressed as
a string into a real Cl ass object). Additionally, Java's standard JavaBeans Pr oper t yEdi t or lookup
mechanism allows a Pr oper t yEdi t or for a class simply to be named appropriately and placed in the
same package as the class it provides support for, to be found automatically.

If there is a need to register other custom Pr oper t yEdi t or s, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use the
regi st er Cust ontdi t or () method of the Confi gur abl eBeanFact ory interface, assuming you
have a BeanFact or y reference. Another, slightly more convenient, mechanism is to use a special bean
factory post-processor called Cust onEdi t or Conf i gur er . Although bean factory post-processors can
be used with BeanFact or y implementations, the Cust onEdi t or Conf i gur er has a nested property
setup, so it is strongly recommended that it is used with the Appl i cat i onCont ext , where it may be
deployed in similar fashion to any other bean, and automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a BeanW apper to handle property conversions. The
standard property editors that the BeanW apper registers are listed in the previous section. Additionally,
Appl i cati onCont exts also override or add an additional number of editors to handle resource
lookups in a manner appropriate to the specific application context type.

Standard JavaBeans Pr opert yEdi t or instances are used to convert property values expressed as
strings to the actual complex type of the property. Cust onEdi t or Conf i gur er, a bean factory post-
processor, may be used to conveniently add support for additional Pr oper t yEdi t or instances to an
Appl i cati onCont ext.

Spring Framework
3.2.1.RELEASE Reference Documentation 152

Spring Framework

Consider a user class Exoti cType, and another class DependsOnExoti cType which needs
Exoti cType set as a property:

package exanpl e
public class ExoticType {
private String name
public ExoticType(String nanme) {

thi s. name = nane

}
}

public class DependsOnExoti cType {
private ExoticType type
public void set Type(ExoticType type) {

this.type = type
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Pr opert yEdi t or will behind the scenes convert into an actual Exot i cType instance:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property nanme="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

The Pr opert yEdi t or implementation could look similar to this:

/] converts string representation to ExoticType object
package exanpl e

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText(String text) {
set Val ue(new Exoti cType(text.toUpperCase()));

}

Finally, we use CustonEditor Configurer to register the new PropertyEditor with the
Appl i cati onCont ext , which will then be able to use it as needed:

<bean cl ass="org. spri ngframework. beans. factory. confi g. Cust onEdi t or Conf i gurer">
<property nane="cust onEditors">
<n’ap>
<entry key="exanpl e. Exoti cType" val ue="exanpl e. Exoti cTypeEditor"/>
</ map>
</ property>
</ bean>

Using PropertyEdi tor Regi strars

Another mechanism for registering property editors with the Spring container is to create and
use a PropertyEditorRegistrar. This interface is particularly useful when you need to
use the same set of property editors in several different situations: write a corresponding

Spring Framework
3.2.1.RELEASE Reference Documentation 153

Spring Framework

registrar and reuse that in each case. PropertyEdit or Regi strars work in conjunction with
an interface called PropertyEditorRegi stry, an interface that is implemented by the Spring
BeanW apper (and Dat aBi nder). Propert yEdi t or Regi st rar s are particularly convenient when
used in conjunction with the Cust ontdit or Confi gurer (introduced here), which exposes a
property called set PropertyEdi t or Regi strars(..): PropertyEditorRegi strars added to
a Cust onEdi t or Confi gur er in this fashion can easily be shared with Dat aBi nder and Spring
MVC Control | ers. Furthermore, it avoids the need for synchronization on custom editors: a
Propert yEdi t or Regi st rar is expected to create fresh Pr opert yEdi t or instances for each bean
creation attempt.

Using a Pr opert yEdi t or Regi st rar is perhaps best illustrated with an example. First off, you need
to create your own Pr opert yEdi t or Regi st r ar implementation:

package com foo. editors. spring;
public final class CustonPropertyEditorRegistrar inplenments PropertyEditorRegistrar {
public void registerCustontditors(PropertyEditorRegistry registry) {

/] it is expected that new PropertyEditor instances are created
regi stry. regi sterCustontdi t or (Exoti cType. cl ass, new ExoticTypeEditor());

/] you could register as many custom property editors as are required here...

See also the org. springfranmework. beans. support. ResourceEdi t or Regi strar for an
example PropertyEditorRegi strar implementation. Notice how in its implementation of the
regi st er Cust ontdi t or s(. .) method it creates new instances of each property editor.

Next we configure a CustonEditorConfigurer and inject an instance of our
Cust onPr opert yEdi t or Regi strar intoit:

<bean cl ass="org. spri ngframework. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property nane="propertyEditorRegistrars">
<list>
<ref bean="cust onPropertyEditorRegistrar"/>
</list>
</ property>
</ bean>

<bean i d="cust onPropertyEdi t or Regi strar"
cl ass="com fo00. edi tors. spring. Cust onPropertyEdi t or Regi strar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC
web framework, using Pr oper t yEdi t or Regi st r ar s in conjunction with data-binding Control | er s
(such as Si npl eFornControl | er) can be very convenient. Find below an example of using a
Propert yEdi t or Regi strar inthe implementation of ani ni t Bi nder (. .) method:

Spring Framework
3.2.1.RELEASE Reference Documentation 154

Spring Framework

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;

publ i c Regi sterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
thi s. custonPropertyEditorRegistrar = propertyEditorRegistrar;
}

protected void initBinder(HttpServl et Request request, ServletRequest DataBi nder bi nder)
throws Exception {
t hi s. cust onPropertyEditorRegi strar.registerCustonkditors(binder);
}

/1 other methods to do with registering a User

This style of PropertyEditor registration can lead to concise code (the implementation of
i ni tBi nder(..) isjustone line long!), and allows common Pr opert yEdi t or registration code to
be encapsulated in a class and then shared amongst as many Cont r ol | er s as needed.

7.5 Spring 3 Type Conversion

Spring 3 introduces a cor e. convert package that provides a general type conversion system. The
system defines an SPIto implement type conversion logic, as well as an API to execute type conversions
at runtime. Within a Spring container, this system can be used as an alternative to PropertyEditors to
convert externalized bean property value strings to required property types. The public APl may also be
used anywhere in your application where type conversion is heeded.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org. springframework. core. convert. converter;
public interface Converter<S, T> {

T convert (S source);

To create your own Converter, simply implement the interface above. Parameterize S as the type you
are converting from, and T as the type you are converting to. For each call to convert(S), the source
argument is guaranteed to be NOT null. Your Converter may throw any Exception if conversion fails.
An lllegalArgumentException should be thrown to report an invalid source value. Take care to ensure
your Converter implementation is thread-safe.

Several converter implementations are provided in the core. convert. support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringTol nt eger as an example Converter implementation:

Spring Framework
3.2.1.RELEASE Reference Documentation 155

Spring Framework

package org. springframework. core. convert. support;
final class StringTolnteger inplenments Converter<String, |Integer> {

public Integer convert(String source) {
return | nteger.val ueO (source);

}

ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy, for example, when
converting from String to java.lang.Enum objects, implement Convert er Fact ory:

package org. springframework. core. convert. converter;
public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(C ass<T> targetType);

Parameterize S to be the type you are converting from and R to be the base type defining the range of
classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the St ri ngToEnumConverterFactory as an example:

package org. springframework. core. convert. support;
final class StringToEnunConverterFactory inplenents ConverterFactory<String, Enunk {

public <T extends Enum> Converter<String, T> getConverter(C ass<T> targetType) {
return new StringToEnunmConverter (targetType);

}

private final class StringToEnunConverter<T extends Enun® inplenents Converter<String,
T> {

private C ass<T> enuniype;

public StringToEnunConverter (C ass<T> enuniype) {
t hi s. enunfType = enuniype;

}

public T convert(String source) {
return (T) Enum val ueOf (this. enunilype, source.trin());

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter interface.
With a more flexible but less strongly typed signature, a GenericConverter supports converting between
multiple source and target types. In addition, a GenericConverter makes available source and target field
context you can use when implementing your conversion logic. Such context allows a type conversion
to be driven by a field annotation, or generic information declared on a field signature.

Spring Framework
3.2.1.RELEASE Reference Documentation 156

Spring Framework

package org. springframework. core. convert. converter;
public interface GenericConverter {
publ i c Set<Converti bl ePair> get Converti bl eTypes();

hj ect convert (Cbject source, TypeDescriptor sourceType, TypeDescriptor targetType);

To implement a GenericConverter, have getConvertibleTypes() return the supported source->target
type pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your
conversion logic. The source TypeDescriptor provides access to the source field holding the value being
converted. The target TypeDescriptor provides access to the target field where the converted value will
be set.

A good example of a GenericConverter is a converter that converts between a Java Array and a
Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection
type to resolve the Collection's element type. This allows each element in the source array to be
converted to the Collection element type before the Collection is set on the target field.

© Note

Because GenericConverter is a more complex SPI interface, only use it when you need it. Favor
Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Converter to execute if a specific condition holds true. For example, you
might only want to execute a Converter if a specific annotation is present on the target field. Or you
might only want to execute a Converter if a specific method, such as static valueOf method, is defined
on the target class. ConditionalGenericConverter is an subinterface of GenericConverter that allows you
to define such custom matching criteria:

public interface Conditional GenericConverter extends GenericConverter {

bool ean mat ches(TypeDescri pt or sourceType, TypeDescriptor targetType);

A good example of a ConditionalGenericConverter is an EntityConverter that converts between an
persistent entity identifier and an entity reference. Such a EntityConverter might only match if the target
entity type declares a static finder method e.g. findAccount(Long). You would perform such a finder
method check in the implementation of matches(TypeDescriptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime. Converters
are often executed behind this facade interface:

Spring Framework
3.2.1.RELEASE Reference Documentation 157

Spring Framework

package org.springframework. core. convert;
public interface ConversionService {
bool ean canConvert (C ass<?> sourceType, C ass<?> target Type);
<T> T convert (Cbject source, C ass<T> targetType);
bool ean canConvert (TypeDescri ptor sourceType, TypeDescriptor targetType);

Obj ect convert (Ohject source, TypeDescriptor sourceType, TypeDescriptor targetType);

Most ConversionService implementations also implement Convert er Regi st ry, which provides an
SPI for registering converters. Internally, a ConversionService implementation delegates to its registered
converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core. convert. support package.
CGeneri cConver si onServi ce is the general-purpose implementation suitable for use in most
environments. Conver si onSer vi ceFact ory provides a convenient factory for creating common
ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then shared
between multiple threads. In a Spring application, you typically configure a ConversionService instance
per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and
then used whenever a type conversion needs to be performed by the framework. You may also inject
this ConversionService into any of your beans and invoke it directly.

© Note

If no ConversionService is registered with Spring, the original PropertyEditor-based system is
used.

To register a default ConversionService with Spring, add the following bean definition with id
conver si onSer vi ce:

<bean i d="conver si onServi ce"
cl ass="org. spri ngframewor k. cont ext. support . Conver si onSer vi ceFact or yBean"/ >

A default ConversionService can convert between strings, numbers, enums, collections, maps, and
other common types. To supplement or override the default converters with your own custom
converter(s), set the convert ers property. Property values may implement either of the Converter,
ConverterFactory, or GenericConverter interfaces.

<bean i d="conversi onServi ce"
cl ass="org. spri ngframewor k. cont ext. support. Conver si onSer vi ceFact or yBean" >
<property nane="converters">
<list>
<bean cl ass="exanpl e. MyCust omConverter"/>
</list>
</ property>
</ bean>

Spring Framework
3.2.1.RELEASE Reference Documentation 158

Spring Framework

It is also common to use a ConversionService within a Spring MVC application. See the section called
“Configuring Formatting in Spring MVC” for details on use with <mvc: annot ati on-driven/ >.

In certain situations you may wish to apply formatting during conversion. See the section called
“FormatterRegistry SPI” for details on using For mat t i ngConver si onSer vi ceFact or yBean.

Using a ConversionService programmatically

To work with a ConversionService instance programmatically, simply inject a reference to it like you
would for any other bean:

@ervi ce
public class MyService {

@\ut owi r ed
public MyServi ce(Conversi onService conversionService) {
t hi s. conver si onServi ce = conver si onServi ce

}

public void dolt() {
t hi s. conversionService.convert(...)

}

7.6 Spring 3 Field Formatting

As discussed in the previous section, cor e. convert is a general-purpose type conversion system. It
provides a unified ConversionService API as well as a strongly-typed Converter SPI for implementing
conversion logic from one type to another. A Spring Container uses this system to bind bean property
values. In addition, both the Spring Expression Language (SpEL) and DataBinder use this system
to bind field values. For example, when SpEL needs to coerce a Short to a Long to complete
an expressi on. set Val ue(Gbj ect bean, bject val ue) attempt, the core.convert system
performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a web or desktop
application. In such environments, you typically convert from String to support the client postback
process, as well as back to String to support the view rendering process. In addition, you often need to
localize String values. The more general core.convert Converter SPI does not address such formatting
requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPI when you need to implement general-purpose type conversion logic;
for example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI
when you're working in a client environment, such as a web application, and need to parse and print
localized field values. The ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI
The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org. springfranmework. f or mat ;

public interface Formatter<T> extends Printer<T> Parser<T> {

}

Spring Framework
3.2.1.RELEASE Reference Documentation 159

Spring Framework

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {
String print(T fieldValue, Locale |ocale);

}

i nport java.text.ParseException;

public interface Parser<T> {
T parse(String clientValue, Locale |ocale) throws ParseException;

To create your own Formatter, simply implement the Formatter interface above. Parameterize T to be the
type of object you wish to format, for example, j ava. uti | . Dat e. Implement the pri nt () operation
to print an instance of T for display in the client locale. Implement the par se() operation to parse an
instance of T from the formatted representation returned from the client locale. Your Formatter should
throw a ParseException or lllegalArgumentException if a parse attempt fails. Take care to ensure your
Formatter implementation is thread-safe.

Several Formatter implementations are provided in f or mat subpackages as a convenience. The
nunber package provides a NumberFormatter, CurrencyFormatter, and PercentFormatter to format
java.lang.Number objects using a java.text.NumberFormat. The dat eti me package provides a
DateFormatter to format java.util.Date objects with a java.text.DateFormat. The dat eti ne. j oda
package provides comprehensive datetime formatting support based on the Joda Time library.

Consider Dat eFor mat t er as an example For mat t er implementation:

package org. springfranmework. format. datetine;
public final class DateFormatter inplenents Formatter<Date> {
private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;

}

public String print(Date date, Locale |ocale) {
if (date == null) {
return "";

}

return get Dat eFornat (| ocal e) . format (date);

public Date parse(String formatted, Locale |ocale) throws ParseException {
if (formatted.length() == 0) {
return null;
}
return get Dat eFor mat (| ocal e) . parse(formatted);

}

protect ed Dat eFormat get Dat eFor mat (Local e | ocal e) {
Dat eFor mat dat eFor mat = new Si npl eDat eFor mat (t hi s. pattern, |ocale);
dat eFor mat . set Leni ent (f al se);
return dateFor mat;

Spring Framework
3.2.1.RELEASE Reference Documentation 160

http://joda-time.sourceforge.net

Spring Framework

The Spring team welcomes community-driven Formatter contributions; see http:/
jira.springframework.org to contribute.

Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind an Annotation to
a formatter, implement AnnotationFormatterFactory:

package org. spri ngfranmework. f or mat;

public interface AnnotationFornatterFactory<A extends Annotation> {
Set <Cl ass<?>> get Fi el dTypes();
Printer<?> getPrinter(A annotation, C ass<?> fieldType);

Par ser <?> get Parser (A annotati on, C ass<?> fiel dType);

Parameterize A to be the field annotationType you wish to associate formatting logic
with, for example org. springfranmework. format. annot ati on. Dat eTi neFormat. Have
get Fi el dTypes() return the types of fields the annotation may be used on. Have get Pri nt er ()
return a Printer to print the value of an annotated field. Have get Par ser () return a Parser to parse
a clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat Annotation
to a formatter. This annotation allows either a number style or pattern to be specified:

Spring Framework
3.2.1.RELEASE Reference Documentation 161

http://jira.springframework.org
http://jira.springframework.org

Spring Framework

public final class NumberFormat Annot ati onFor matt er Factory
i npl enent's Annot at i onFor nat t er Fact or y<Nunber For mat > {

public Set<d ass<?>> get Fi el dTypes() {
return new HashSet <O ass<?>>(asLi st (new O ass<?>[] {
Short.class, Integer.class, Long.class, Float.class,
Doubl e. cl ass, Bi gDeci mal .class, Biglnteger.class }));

public Printer<Nunber> getPrinter(Nunber Format annotati on, C ass<?> fiel dType) {
return configureFormatterFron{annotation, fieldType);

publ i ¢ Parser <Nunber > get Par ser (Nunber For mat annot ati on, C ass<?> fiel dType) ({
return configureFormatterFromannot ation, fieldType);

private Formatter<Nunmber> confi gureFor matter Fr on(Nunber For mat annot ati on,
G ass<?> fiel dType) {
if ('annotation.pattern().isEnpty()) {
return new Nunber For matter (annotation. pattern());
} else {
Style style = annotation.style();
if (style == Style. PERCENT) ({
return new Percent Formatter();
} else if (style == Styl e. CURRENCY) {
return new CurrencyFormatter();
} else {
return new Nunber Formatter();

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyMdel {

@unber For mat (styl e=St yl e. CURRENCY)
private Bi gDeci mal deci nal;

Format Annotation API

A portable format annotation API exists in the org. spri ngfranmework. f or mat . annot ati on
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to format
java.util.Date, java.util.Calendar, java.util.Long, or Joda Time fields.

The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date (yyyy-MM-dd):

public class MyMdel {

@pat eTi meFor mat (i so=I SO. DATE)
private Date date;

Spring Framework
3.2.1.RELEASE Reference Documentation 162

Spring Framework

FormatterRegistry SPI

The FormatterRegistry is an SPlI for registering formatters and converters.
For mat ti ngConver si onServi ce is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programmatically or declaratively as a Spring
bean using For matti ngConver si onServi ceFact or yBean. Because this implementation also
implements Conver si onSer vi ce, it can be directly configured for use with Spring's DataBinder and
the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:
package org. springfranmework. f or mat;
public interface FormatterRegi stry extends ConverterRegistry {

voi d addFormatter For Fi el dType(C ass<?> fiel dType, Printer<?> printer, Parser<?>
parser);

voi d addFormatt er ForFi el dType(Cd ass<?> fiel dType, Formatter<?> formatter);
voi d addFormatter ForFi el dType(Fornmatter<?> formatter);

voi d addFor mat t er For Annot at i on(Annot ati onFor nat t er Fact ory<?, ?> factory);

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating such
configuration across your Controllers. For example, you might want to enforce that all Date fields are
formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared
FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the
FormatterRegistry:

package org. springframework. f or mat ;
public interface FormatterRegi strar {

voi d registerFormatters(FormatterRegistry registry);

A FormatterRegistrar is useful when registering multiple related converters and formatters for a given
formatting category, such as Date formatting. It can also be useful where declarative registration is
insufficient. For example when a formatter needs to be indexed under a specific field type different from
its own <T> or when registering a Printer/Parser pair. The next section provides more information on
converter and formatter registration.

Configuring Formatting in Spring MVC

In a Spring MVC application, you may configure a custom ConversionService instance explicitly as an
attribute of the annot ati on-dri ven element of the MVC namespace. This ConversionService will

Spring Framework
3.2.1.RELEASE Reference Documentation 163

Spring Framework

then be used anytime a type conversion is required during Controller model binding. If not configured
explicitly, Spring MVC will automatically register default formatters and converters for common types
such as numbers and dates.

To rely on default formatting rules, no custom configuration is required in your Spring MVC config XML:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: mve="http://ww. spri ngframewor k. org/ schena/ mvc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocat i on="
http://ww. springframewor k. or g/ schema/ beans
http: // ww. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranework. org/ schema/ m/c
http://ww. springframework. org/ schema/ mvc/ spring-mvc. xsd" >

<mvc: annot ati on-driven/ >

</ beans>

With this one-line of configuration, default formatters for Numbers and Date types will be installed,
including support for the @NumberFormat and @DateTimeFormat annotations. Full support for the
Joda Time formatting library is also installed if Joda Time is present on the classpath.

To inject a ConversionService instance with custom formatters and converters registered, set the
conversion-service attribute and then specify custom converters, formatters, or FormatterRegistrars as
properties of the FormattingConversionServiceFactoryBean:

Spring Framework
3.2.1.RELEASE Reference Documentation 164

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: mvc="http://ww. springfranmewor k. or g/ schema/ mvc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="
http://ww. springfranework. org/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schema/ m/c
http://ww. springfranework. org/ schema/ mvc/ spring-mvc. xsd" >

<mvc: annot ati on-driven conversion-servi ce="conversi onService"/>
<bean i d="conver si onServi ce"

cl ass="org. springframewor k. f or mat. support. Formatti ngConver si onSer vi ceFact or yBean" >
<property nanme="converters">
<set >
<bean cl ass="org. exanpl e. M\yConverter"/>
</ set>
</ property>
<property name="formatters">
<set >
<bean cl ass="org. exanpl e. \yFormatter"/>
<bean cl ass="org. exanpl e. M\yAnnot ati onFor matt er Factory"/>
</ set>
</ property>
<property nane="formatterRegi strars">

<set >
<bean cl ass="org. exanpl e. M\yFor matt er Regi strar"/ >
</ set>
</ property>
</ bean>
</ beans>
@ Note
See the section called “FormatterRegistrar SPI” and the

Format t i ngConver si onSer vi ceFact or yBean for more information on when to use
FormatterRegistrars.

7.7 Configuring a global date & time format

By default, date and time fields that are not annotated with @Dat eTi meFor mat are converted from
strings using the the Dat eFor mat . SHORT style. If you prefer, you can change this by defining your
own global format.

You will need to ensure that Spring does not register default
formatters, and instead you should register all formatters manually. Use
the org.springfranework. format. datetine.joda.JodaTi meFormatter Regi strar or
org. springfranmework. format. dat eti ne. Dat eFor matt er Regi strar class depending on
whether you use the Joda Time library.

For example, the following Java configuration will register a global 'yyyyMwdd' format. This example
does not depend on the Joda Time library:

Spring Framework
3.2.1.RELEASE Reference Documentation 165

Spring Framework

@onfiguration
public class AppConfig {

@ean
publ i ¢ FormattingConversionService conversionService() {

/] Use the DefaultFormatti ngConversionService but do not register defaults
Def aul t For mat t i ngConver si onSer vi ce conversi onServi ce = new
Def aul t For mat t i ngConver si onSer vi ce(fal se);

/'l Ensure @\unberFormat is still supported
conver si onServi ce. addFor mat t er For Fi el dAnnot ati on(new
Nunber For mat Annot at i onFor matt er Factory());

/'l Register date conversion with a specific global format

Dat eFor matt er Regi strar regi strar = new Dat eFormatterRegi strar();
regi strar.set Formatter (new DateFormatter ("yyyyMdd"));

regi strar.regi sterFormatters(conversionService);

return conversi onServi ce;

If you prefer XML based configuration you can use a
For mat t i ngConver si onSer vi ceFact or yBean. Here is the same example, this time using Joda
Time:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd>

<bean
i d="conversi onServi ce" class="org. springfranmework. format.support.Formatti ngConversi onServi ceFact or yBean" >
<property nanme="regi sterDefault Formatters" val ue="fal se" />
<property name="formatters">
<set >

<bean cl ass="org. spri ngframework. f or mat . nunmber . Nunber For nat Annot at i onFor mat t er Fact ory" /

</ set>

</ property>

<property nane="formatterRegi strars">
<set >

<bean cl ass="org. spri ngframework. fornmat. dateti ne.joda. JodaTi meFor mat t er Regi strar">
<property nanme="dat eFormatter">

<bean cl ass="org. spri ngframework. fornmat. dateti ne.j oda. Dat eTi meFor mat t er Fact or yBean" >
<property nanme="pattern" val ue="yyyywMwd"/>
</ bean>
</ property>
</ bean>
</set>
</ property>
</ bean>
</ beans>

Spring Framework
3.2.1.RELEASE Reference Documentation 166

Spring Framework

© Note

Joda Time provides separate distinct types to represent date, time and date-tine
values. The dat eFormatter, ti meFormatter and dat eTi neFor mat t er properties of the
JodaTi neFor mat t er Regi st rar should be used to configure the different formats for each
type. The Dat eTi neFor nat t er Fact or yBean provides a convenient way to create formatters.

If you are using Spring MVC remember to explicitly configure the conversion service that is used. For
Java based @onf i gur at i on this means extending the WebMscConf i gur at i onSupport class and
overriding the mvcConver si onSer vi ce() method. For XML you should use the ' conver si on-
servi ce' attribute of the mvc: annot ati on-dri ven element. See the section called “Configuring
Formatting in Spring MVC” for details.

7.8 Spring 3 Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean Validation
APl is now fully supported. Second, when used programmatically, Spring's DataBinder can now validate
objects as well as bind to them. Third, Spring MVC now has support for declaratively validating
@Controller inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this
API, you annotate domain model properties with declarative validation constraints and the runtime
enforces them. There are a number of built-in constraints you can take advantage of. You may also
define your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:

public class PersonForm {
private String nane;
private int age;

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

@\ot Nul |
@i ze(max=64)
private String nane;

@ n(0)
private int age;

When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.

For general information on JSR-303, see the Bean Validation Specification. For information on the
specific capabilities of the default reference implementation, see the Hibernate Validator documentation.
To learn how to setup a JSR-303 implementation as a Spring bean, keep reading.

Spring Framework
3.2.1.RELEASE Reference Documentation 167

http://jcp.org/en/jsr/detail?id=303
https://www.hibernate.org/412.html

Spring Framework

Configuring a Bean Validation Implementation

Spring provides full support for the JSR-303 Bean Validation API. This includes convenient
support for bootstrapping a JSR-303 implementation as a Spring bean. This allows for a
javax.val idation. ValidatorFactory or javax.validation.Validator to be injected
wherever validation is needed in your application.

Use the Local Val i dat or Fact or yBean to configure a default JSR-303 Validator as a Spring bean:

<bean id="validator"
cl ass="org. spri ngframewor k. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

The basic configuration above will trigger JSR-303 to initialize using its default bootstrap mechanism.
A JSR-303 provider, such as Hibernate Validator, is expected to be present in the classpath and will
be detected automatically.

Injecting a Validator

Local Val i dat or Fact or yBean implements both j avax. val i dati on. Val i dat or Fact ory and
j avax. val i dati on. Val i dat or, as well as Spring's
org. springframework. val i dati on. Val i dat or. You may inject a reference to either of these
interfaces into beans that need to invoke validation logic.

Inject a reference to j avax. val i dati on. Val i dat or if you prefer to work with the JSR-303 API
directly:

i nport javax.validation. Validator;

@er vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Inject a reference to or g. spri ngfranmewor k. val i dati on. Val i dat or if your bean requires the
Spring Validation API:

i nport org.springfranmework. validation. Validator;

@er vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Configuring Custom Constraints

Each JSR-303 validation constraint consists of two parts. First, a @Constraint annotation
that declares the constraint and its configurable properties. Second, an implementation of
the javax.validation. ConstraintValidator interface that implements the constraint's
behavior. To associate a declaration with an implementation, each @Constraint annotation
references a corresponding ValidationConstraint implementation class. At runtime, a
Constrai nt Val i dat or Fact ory instantiates the referenced implementation when the constraint
annotation is encountered in your domain model.

Spring Framework
3.2.1.RELEASE Reference Documentation 168

Spring Framework

By default, the Local Val i dat or Fact or yBean configures a
Spri ngConst rai nt Val i dat or Fact ory that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring
bean.

Shown below is an example of a custom @Constraint declaration, followed by an associated
Const rai nt Val i dat or implementation that uses Spring for dependency injection:

@arget ({ El enent Type. METHOD, El enent Type. Fl ELD})
@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)

@onstraint (val i dat edBy=MyConstrai nt Val i dat or . cl ass)
public @nterface MyConstraint {

}

i nport javax.validation. ConstraintValidator;
public class MyConstraintValidator inplenments ConstraintValidator {

@\ut owi r ed;
private Foo aDependency;

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any
other Spring bean.

Additional Configuration Options

The default Local Val i dat or Fact or yBean configuration should prove sufficient for most cases.
There are a number of other configuration options for various JSR-303 constructs, from message
interpolation to traversal resolution. See the JavaDocs of Local Val i dat or Fact or yBean for more
information on these options.

Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the Validator
may be invoked by calling bi nder . val i dat e() . Any validation Errors are automatically added to the
binder's BindingResult.

When working with the DataBinder programmatically, this can be used to invoke validation logic after
binding to a target object:

Foo target = new Foo();
Dat aBi nder bi nder = new Dat aBi nder (target);
bi nder . set Val i dat or (new FooVal i dator());

/1 bind to the target object
bi nder. bi nd(propertyVal ues);

// validate the target object
bi nder. val i date();

/1 get BindingResult that includes any validation errors
Bi ndi ngResult results = binder. getBi ndi ngResul t ();

Spring Framework
3.2.1.RELEASE Reference Documentation 169

Spring Framework

A DataBinder can also be configured with multiple Validator instances via
dat aBi nder. addVal i dat ors and dat aBi nder. repl aceVal i dators. This is useful when
combining globally configured JSR-303 Bean Validation with a Spring Val i dat or configured locally
on a DataBinder instance. See the section called “Configuring a Validator for use by Spring MVC”.

Spring MVC 3 Validation

Beginning with Spring 3, Spring MVC has the ability to automatically validate @Controller inputs. In
previous versions it was up to the developer to manually invoke validation logic.

Triggering @Controller Input Validation

To trigger validation of a @Controller input, simply annotate the input argument as @Valid:

@ontroll er
public class MyController {

@Request Mappi ng("/foo", method=Request Met hod. POST)
public void processFoo(@/alid Foo foo) { /* ... */ }

Spring MVC will validate a @Valid object after binding so-long as an appropriate Validator has been
configured.

© Note

The @Valid annotation is part of the standard JSR-303 Bean Validation API, and is not a Spring-
specific construct.

Configuring a Validator for use by Spring MVC

The Validator instance invoked when a @Valid method argument is encountered may be configured in
two ways. First, you may call binder.setValidator(Validator) within a @Controller's @InitBinder callback.
This allows you to configure a Validator instance per @Controller class:

@ontrol ler
public class MyController {

@ ni t Bi nder
protected void initBinder(WbbDat aBi nder bi nder) {
bi nder . set Val i dat or (new FooVal i dator ());

}

@request Mappi ng("/foo", method=Request Met hod. POST)
public void processFoo(@alid Foo foo) { ... }

Second, you may call setValidator(Validator) on the global WebBindinglnitializer. This allows you to
configure a Validator instance across all @Controllers. This can be achieved easily by using the Spring
MVC namespace:

Spring Framework
3.2.1.RELEASE Reference Documentation 170

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: mvc="http://ww. springfranmewor k. or g/ schema/ mvc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="
http://ww. springfranework. org/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schema/ m/c
http://ww. springfranework. org/ schema/ mvc/ spring-mvc. xsd" >

<nvc: annot ati on-driven val i dat or ="gl obal Val i dator"/ >

</ beans>

To combine a global and a local validator, configure the global validator as shown above and then add
a local validator:

@ontrol | er
public class MyController {

@ ni t Bi nder
protected void initBinder(WbDat aBi nder bi nder) {
bi nder. addVal i dat or s(new FooVal i dator());

}

Configuring a JSR-303 Validator for use by Spring MVC

With JSR-303, asinglej avax. val i dati on. Val i dat or instance typically validates all model objects
that declare validation constraints. To configure a JSR-303-backed Validator with Spring MVC, simply
add a JSR-303 Provider, such as Hibernate Validator, to your classpath. Spring MVC will detect it and
automatically enable JSR-303 support across all Controllers.

The Spring MVC configuration required to enable JSR-303 support is shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: mvc="http://ww. springfranmewor k. or g/ schema/ mvc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocat i on="
http://ww. springfranework. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ m/c
http://ww. springfranework. org/ schema/ mvc/ spring-mvc. xsd" >

<I-- JSR-303 support will be detected on classpath and enabl ed automatically -->
<mvc: annot ati on-driven/ >

</ beans>

With this minimal configuration, anytime a @Valid @Controller input is encountered, it will be validated
by the JSR-303 provider. JSR-303, in turn, will enforce any constraints declared against the input. Any
ConstraintViolations will automatically be exposed as errors in the BindingResult renderable by standard
Spring MVC form tags.

Spring Framework
3.2.1.RELEASE Reference Documentation 171

Spring Framework

8. Spring Expression Language (SpEL)

8.1 Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
guerying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but
offers additional features, most notably method invocation and basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to
name a few, the Spring Expression Language was created to provide the Spring community with a single
well supported expression language that can be used across all the products in the Spring portfolio. Its
language features are driven by the requirements of the projects in the Spring portfolio, including tooling
requirements for code completion support within the eclipse based SpringSource Tool Suite. That said,
SpEL is based on a technology agnostic API allowing other expression language implementations to
be integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, itis not directly
tied to Spring and can be used independently. In order to be self contained, many of the examples in
this chapter use SpEL as if it were an independent expression language. This requires creating a few
bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this
infrastructure and will instead only author expression strings for evaluation. An example of this typical
use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the
section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In several
places an Inventor and Inventor's Society class are used as the target objects for expression evaluation.
These class declarations and the data used to populate them are listed at the end of the chapter.

8.2 Feature Overview

The expression language supports the following functionality
« Literal expressions

» Boolean and relational operators

» Regular expressions

» Class expressions

» Accessing properties, arrays, lists, maps
* Method invocation

» Relational operators

« Assignment

 Calling constructors

» Bean references

« Array construction

Spring Framework
3.2.1.RELEASE Reference Documentation 172

Spring Framework

* Inline lists

e Ternary operator

» Variables

» User defined functions
 Collection projection

» Collection selection

» Templated expressions

8.3 Expression Evaluation using Spring's Expression Interface

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression 'Hello World'.

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("'Hello Wrld ");
String message = (String) exp.getVal ue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org.springframework.expression and its sub packages and spel.support.

The interface Expr essi onPar ser is responsible for parsing an expression string. In this example
the expression string is a string literal denoted by the surrounding single quotes. The interface
Expr essi on is responsible for evaluating the previously defined expression string. There are
two exceptions that can be thrown, Par seExcepti on and Eval uati onExcepti on when calling
'‘par ser . par seExpr essi on' and 'exp. get Val ue' respectively.

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the 'concat’ method on the string literal.

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("'Hello Wrld'.concat('!"')");
String message = (String) exp.getVal ue();

The value of message is now 'Hello World!".

As an example of calling a JavaBean property, the String property 'Bytes' can be called as shown below.

Expr essi onPar ser parser = new Spel Expressi onParser ();

/'l invokes 'getBytes()'
Expressi on exp = parser. parseExpression("' Hello World'.bytes");

byte[] bytes = (byte[]) exp.getVal ue();

SpEL also supports nested properties using standard 'dot' notation, i.e. propl.prop2.prop3 and the
setting of property values

Spring Framework
3.2.1.RELEASE Reference Documentation 173

Spring Framework

Public fields may also be accessed.

Expressi onPar ser parser = new Spel Expressi onParser () ;

/'l invokes 'getBytes().length'
Expressi on exp = parser. parseExpression("'Hello Wrld'.bytes.length");

int length = (Integer) exp.getValue();

The String's constructor can be called instead of using a string literal.

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("new String('hello world').toUpperCase()");
String message = exp.getVal ue(String. cl ass);

Note the use of the generic method publ i ¢ <T> T get Val ue(d ass<T> desi redResul t Type).
Using this method removes the need to cast the value of the expression to the desired result type. An
Eval uati onExcepti on will be thrown if the value cannot be cast to the type T or converted using
the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a specific
object instance (called the root object). There are two options here and which to choose depends on
whether the object against which the expression is being evaluated will be changing with each call to
evaluate the expression. In the following example we retrieve the name property from an instance of
the Inventor class.

/] Create and set a cal endar
GregorianCal endar ¢ = new Gregori anCal endar () ;
c.set (1856, 7, 9);

/1 The constructor arguments are nane, birthday, and nationality.
Inventor tesla = new Inventor ("N kola Tesla", c.getTine(), "Serbian");

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("nane");

Eval uati onCont ext context = new Standar dEval uati onCont ext (tesl a);

String nane = (String) exp.getVal ue(context);

In the last line, the value of the string variable 'name’ will be set to "Nikola Tesla". The class
StandardEvaluationContext is where you can specify which object the "name" property will be evaluated
against. This is the mechanism to use if the root object is unlikely to change, it can simply be set once
in the evaluation context. If the root object is likely to change repeatedly, it can be supplied on each call
to get Val ue, as this next example shows:

/| Create and set a cal endar
Gregori anCal endar ¢ = new G egori anCal endar () ;
c.set (1856, 7, 9);

/1l The constructor arguments are name, birthday, and nationality.
Inventor tesla = new I nventor("Ni kola Tesla", c.getTine(), "Serbian");

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. par seExpressi on("nane");

String nane = (String) exp.getValue(tesla);

Spring Framework
3.2.1.RELEASE Reference Documentation 174

Spring Framework

In this case the inventor t esl a has been supplied directly to get Val ue and the expression evaluation
infrastructure creates and manages a default evaluation context internally - it did not require one to be
supplied.

The StandardEvaluationContext is relatively expensive to construct and during repeated usage it builds
up cached state that enables subsequent expression evaluations to be performed more quickly. For
this reason it is better to cache and reuse them where possible, rather than construct a new one for
each expression evaluation.

In some cases it can be desirable to use a configured evaluation context and yet still supply a different
root object on each call to get Val ue. get Val ue allows both to be specified on the same call. In these
situations the root object passed on the call is considered to override any (which maybe null) specified
on the evaluation context.

© Note

In standalone usage of SpEL there is a need to create the parser, parse expressions and perhaps
provide evaluation contexts and a root context object. However, more common usage is to
provide only the SpEL expression string as part of a configuration file, for example for Spring
bean or Spring Web Flow definitions. In this case, the parser, evaluation context, root object and
any predefined variables are all set up implicitly, requiring the user to specify nothing other than
the expressions.

As a final introductory example, the use of a boolean operator is shown using the Inventor object in
the previous example.

Expressi on exp = parser. parseExpression("nane == 'Ni kola Tesla'");
bool ean result = exp. getVal ue(context, Bool ean.class); // evaluates to true

The EvaluationContext interface

The interface Eval uati onCont ext is used when evaluating an expression to resolve properties,
methods, fields, and to help perform type conversion. The out-of-the-box implementation,
St andar dEval uat i onCont ext , uses reflection to manipulate the object, caching java.lang.reflect's
Met hod, Fi el d, and Const r uct or instances for increased performance.

The St andar dEval uat i onCont ext is where you may specify the root object to evaluate against via
the method set Root Cbj ect () or passing the root object into the constructor. You can also specify
variables and functions that will be used in the expression using the methods set Vari abl e() and
regi st er Functi on() . The use of variables and functions are described in the language reference
sections Variables and Functions. The St andar dEval uat i onCont ext is also where you can register
custom Construct or Resol ver s, Met hodResol vers, and PropertyAccessors to extend how
SpEL evaluates expressions. Please refer to the JavaDoc of these classes for more details.

Type Conversion

By default SpEL uses the conversion service available in Spring core
(org. spri ngframewor k. core. convert. Conver si onSer vi ce). This conversion service comes
with many converters built in for common conversions but is also fully extensible so custom conversions
between types can be added. Additionally it has the key capability that it is generics aware. This means
that when working with generic types in expressions, SpEL will attempt conversions to maintain type
correctness for any objects it encounters.

Spring Framework
3.2.1.RELEASE Reference Documentation 175

Spring Framework

What does this mean in practice? Suppose assignment, using set Val ue() , is beingusedtosetali st
property. The type of the property is actually Li st <Bool ean>. SpEL will recognize that the elements
of the list need to be converted to Bool ean before being placed in it. A simple example:

class Sinple {
publ i c List<Bool ean> bool eanLi st = new ArrayLi st <Bool ean>();

}
Si npl e sinple = new Sinple();

si npl e. bool eanLi st. add(true);

St andar dEval uat i onCont ext si npl eCont ext = new St andar dEval uati onCont ext (si npl e) ;
/] false is passed in here as a string. SpEL and the conversion service will

/'l correctly recognize that it needs to be a Bool ean and convert it

par ser. par seExpr essi on(" bool eanLi st[0]"). set Val ue(si npl eContext, "false");

Il b will be fal se
Bool ean b = si npl e. bool eanLi st. get (0);

8.4 Expression support for defining bean definitions

SpEL expressions can be used with XML or annotation based configuration metadata for defining
BeanDefinitions. In both cases the syntax to define the expression is of the form #{ <expressi on
string> }.

XML based configuration

A property or constructor-arg value can be set using expressions as shown below

<bean i d="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property nane="randonNunber" val ue="#{ T(java.lang. Math).randon{) * 100.0 }"/>

<l-- other properties -->
</ bean>

The variable 'systemProperties’ is predefined, so you can use it in your expressions as shown below.
Note that you do not have to prefix the predefined variable with the '#' symbol in this context.

<bean id="taxCal cul ator" class="org.spring.sanpl es. TaxCal cul ator" >
<property nane="defaul t Local e" val ue="#{ systenProperties['user.region'] }"/>

<l-- other properties -->
</ bean>

You can also refer to other bean properties by name, for example.

Spring Framework
3.2.1.RELEASE Reference Documentation 176

Spring Framework

<bean i d="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property nane="randonNunber" val ue="#{ T(java. | ang. Math).randon{) * 100.0 }"/>

<l-- other properties -->
</ bean>
<bean i d="shapeGuess" cl ass="org. spring. sanpl es. ShapeGuess" >

<property nane="initial ShapeSeed" val ue="#{ nunber Guess.randomNunber }"/>

<l-- other properties -->
</ bean>

Annotation-based configuration

The @/al ue annotation can be placed on fields, methods and method/constructor parameters to specify
a default value.

Here is an example to set the default value of a field variable.

public static class FieldVal ueTest Bean

@/al ue("#{ systenProperties['user.region'] }")
private String defaultlocal e;

public void setDefaultLocal e(String defaultLocal e)

{

this.defaultLocal e = defaultLocal e;

public String getDefaul tLocal e()
{

return this.defaultLocal e;

The equivalent but on a property setter method is shown below.

public static class PropertyVal ueTest Bean
private String defaultLocal e;

@/al ue("#{ systenProperties['user.region'] }")
public void setDefaultLocal e(String defaultLocal e)
{

this.defaul t Local e = defaul tLocal e;

public String getDefaultLocal e()
{

return this.defaultLocal e;

Autowired methods and constructors can also use the @/al ue annotation.

Spring Framework
3.2.1.RELEASE Reference Documentation 177

Spring Framework

public class SinpleMvieLister {

private MovieFi nder novi eFi nder;
private String defaultLocal e;

@\ut owi r ed
public void configure(MvieFi nder novi eFi nder,
@/al ue("#{ systenProperties['user.region'] }"} String
def aul t Local e) {
t hi s. movi eFi nder = novi eFi nder;
this.defaul tLocal e = defaul t Local €;

Il

public class Myvi eRecommender {

private String defaultlocal e;

private CustomerPreferenceDao cust oner Pref er encebDao;

@\ut owi r ed
publ i ¢ Movi eRecommender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao,
@/al ue("#{systenProperties['user.country']}"} String
def aul t Local e) {
t his. cust omer Pref erencebDao = cust oner Pref er enceDao;
this.defaul tLocal e = defaul tLocal e;

Il

8.5 Language Reference

Literal expressions

The types of literal expressions supported are strings, dates, numeric values (int, real, and hex), boolean
and null. Strings are delimited by single quotes. To put a single quote itself in a string use two single
guote characters. The following listing shows simple usage of literals. Typically they would not be used
in isolation like this, but as part of a more complex expression, for example using a literal on one side
of a logical comparison operator.

Expressi onPar ser parser = new Spel Expressi onParser();

/] evals to "Hello Wrld"
String helloWwrld = (String) parser.parseExpression("'Hello Wrld ").getVal ue();

doubl e avogadr osNunmber = (Doubl e) parser. parseExpression("6.0221415E+23") . get Val ue();

/] evals to 2147483647
int maxVal ue = (I nteger) parser. parseExpression("O0x7FFFFFFF") . get Val ue();

bool ean trueVal ue = (Bool ean) parser. parseExpression("true"). getVal ue();

bj ect null Val ue = parser. parseExpression("null"). getVal ue();

Spring Framework
3.2.1.RELEASE Reference Documentation 178

Spring Framework

Numbers support the use of the negative sign, exponential notation, and decimal points. By default real
numbers are parsed using Double.parseDouble().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy, just use a period to indicate a nested property value. The
instances of Inventor class, pupin and tesla, were populated with data listed in the section Classes used
in the examples. To navigate "down" and get Tesla's year of birth and Pupin's city of birth the following
expressions are used.

/] evals to 1856
int year = (Integer) parser.parseExpression("Birthdate. Year + 1900"). get Val ue(context);

String city = (String) parser.parseExpression("placeOBirth.City").getVal ue(context);

Case insensitivity is allowed for the first letter of property names. The contents of arrays and lists are
obtained using square bracket notation.

Expressi onPar ser parser = new Spel Expressi onParser();

/'l lnventions Array
St andar dEval uat i onCont ext tesl aContext = new Standar dEval uati onCont ext (tesl a);

/'l evaluates to "Induction notor"
String invention = parser.parseExpression("inventions[3]").getVal ue(tesl aCont ext,
String. cl ass);

/'l Menbers List
St andar dEval uat i onCont ext soci et yCont ext = new St andar dEval uati onCont ext (i eee) ;

/'l evaluates to "N kola Tesl a"
String nane = parser. par seExpressi on("Menber s[0] . Nane") . get Val ue(soci et yCont ext,
String. cl ass);

/1 List and Array navigation
/'l evaluates to "Wrel ess communicati on”
String invention =
par ser. par seExpr essi on(" Menbers[0] . | nventi ons[6] ") . get Val ue(soci et yCont ext,

String. cl ass);

The contents of maps are obtained by specifying the literal key value within the brackets. In this case,
because keys for the Officers map are strings, we can specify string literals.

Spring Framework
3.2.1.RELEASE Reference Documentation 179

Spring Framework

/1 Oficer's Dictionary

I nventor pupin = parser. parseExpression("Oficers['president']").getVal ue(soci etyContext,
I nventor. cl ass);

/! evaluates to "ldvor"
String city =

par ser. par seExpression(" O ficers[' president'].PlaceOBirth. City"). getVal ue(soci etyCont ext,
String.cl ass);

/] setting val ues

par ser. par seExpressi on("O ficers[' advi sors']

[0].PlaceOBirth. Country"). set Val ue(soci et yCont ext,

"Croatia");

Inline lists

Lists can be expressed directly in an expression using {} notation.

/'l evaluates to a Java |ist containing the four nunbers
Li st nunmbers = (List) parser.parseExpression("{1,2,3,4}").getVal ue(context);

List listOLists = (List) parser.parseExpression("{{"a','b'},
{"x","y"}}").getVal ue(context);

{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of fixed
literals then a constant list is created to represent the expression, rather than building a new list on
each evaluation.

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the array
populated at construction time.

int[] numbersl = (int[]) parser.parseExpression("new int[4]").getVal ue(context);

/1l Array with initializer
int[] numbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getVal ue(context);

/1 Multi dinmensional array
int[][] nunbers3 = (int[][]) parser.parseExpression("new int[4][5]").getVal ue(context);

It is not currently allowed to supply an initializer when constructing a multi-dimensional array.
Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods on literals.
Varargs are also supported.

Spring Framework
3.2.1.RELEASE Reference Documentation 180

Spring Framework

/] string literal, evaluates to "bc"
String c¢c = parser.parseExpression("'abc'.substring(2, 3)").getValue(String.class);

/] evaluates to true
bool ean i sMenber = parser. parseExpression("i sMenber (' M haj | o
Pupin')"). get Val ue(soci et yCont ext,

Bool ean. cl ass);

Operators
Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than
or equal are supported using standard operator notation.

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("2 == 2"). get Val ue(Bool ean. cl ass);

/] evaluates to false
bool ean fal seVal ue = parser. parseExpression("2 < -5.0"). get Val ue(Bool ean. cl ass);

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("'black' < 'block'").getVal ue(Bool ean. cl ass);

In addition to standard relational operators SpEL supports the ‘instanceof' and regular expression based
'matches' operator.

/| evaluates to false
bool ean fal seVal ue = parser. parseExpressi on("' xyz' instanceof
T(int)").getVal ue(Bool ean. cl ass);

/| evaluates to true
bool ean trueVal ue =

parser. parseExpression("'5.00" matches '~-?2\\d+(\\.\\d{2})?
$' ") . get Val ue(Bool ean. cl ass) ;

//eval uates to false
bool ean fal seVal ue =

par ser. par seExpressi on("'5.0067" matches '~-?2\\d+(\\.\\d{2})?
$' ") . get Val ue(Bool ean. cl ass) ;

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids problems
where the symbols used have special meaning for the document type in which the expression is
embedded (eg. an XML document). The textual equivalents are shown here: It ('<), gt ('>), le ('<="), ge
(>=", eq ('==", ne ("=, div ('), mod ('%"), not ('I'). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

Spring Framework
3.2.1.RELEASE Reference Documentation 181

Spring Framework

/[l -- AND --

/'l evaluates to fal se
bool ean fal seVal ue = parser. parseExpression("true and fal se"). get Val ue(Bool ean. cl ass);

/] evaluates to true

String expression = "isMenber (' N kola Tesla') and isMenber('M hajlo Pupin')";

bool ean trueVal ue = parser. parseExpressi on(expressi on). get Val ue(soci et yCont ext,
Bool ean. cl ass) ;

/{ -- OR--

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("true or false").getVal ue(Bool ean. cl ass);

/] evaluates to true

String expression = "isMenber(' N kola Tesla') or isMenber('Albert Einstein')";

bool ean trueVal ue = parser. par seExpressi on(expressi on). get Val ue(soci et yCont ext,
Bool ean. cl ass) ;

/I -- NOT --

/'l evaluates to fal se
bool ean fal seVal ue = parser. parseExpressi on("!true"). get Val ue(Bool ean. cl ass);

/1 -- AND and NOT --

String expression = "isMenber(' N kola Tesla') and !isMenber(' M hajlo Pupin')";

bool ean fal seVal ue = parser. parseExpressi on(expressi on). get Val ue(soci et yCont ext,
Bool ean. cl ass) ;

Mathematical operators

The addition operator can be used on numbers, strings and dates. Subtraction can be used on numbers
and dates. Multiplication and division can be used only on numbers. Other mathematical operators
supported are modulus (%) and exponential power (*). Standard operator precedence is enforced.
These operators are demonstrated below.

Spring Framework
3.2.1.RELEASE Reference Documentation 182

Spring Framework

/] Addition
int two = parser.parseExpression("1 + 1").getVal ue(lnteger.class); // 2

String testString =
par ser. par seExpression("'test' + ' ' + 'string' ").getValue(String.class); // 'test

string'

/'l Subtraction
int four = parser.parseExpression("1l - -3").getValue(lnteger.class); // 4

doubl e d = parser. parseExpressi on("1000. 00 - 1e4"). get Val ue(Doubl e. cl ass); // -9000

/1 Multiplication
int six = parser.parseExpression("-2 * -3").getValue(lnteger.class); // 6

doubl e twentyFour = parser.parseExpression("2.0 * 3e0 * 4").getVal ue(Doubl e.class); //
24.0

/1 Division
int mnusTwo = parser.parseExpression("6 / -3").getValue(lnteger.class); // -2

doubl e one = parser. parseExpression("8.0 / 4e0 / 2").getVal ue(Double.class); // 1.0

/1 NMbdul us
int three = parser. parseExpression("7 % 4").getVal ue(lnteger.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(lnteger.class); // 1

/'l Operator precedence
int mnusTwentyOne = parser. parseExpression("1+2-3*8").getVal ue(lnteger.class); // -21

Assignment

Setting of a property is done by using the assignment operator. This would typically be done within a
call to set Val ue but can also be done inside a call to get Val ue.

I nventor inventor = new I nventor();
St andar dEval uati onCont ext i nvent or Cont ext = new St andar dEval uati onCont ext (i nventor);

par ser . par seExpr essi on(" Name") . set Val ue(i nvent or Cont ext, "Al exander Seovic2");
/] alternatively

String al eks = parser. parseExpressi on("Nane = ' Al exandar
Seovi c' ") . get Val ue(i nvent or Cont ext,

String. cl ass);

Types

The special 'T' operator can be used to specify an instance of java.lang.Class (the 'type"). Static methods
are invoked using this operator as well. The St andar dEval uat i onCont ext uses a TypelLocat or
to find types and the St andar dTypeLocat or (which can be replaced) is built with an understanding
of the java.lang package. This means T() references to types within java.lang do not need to be fully
qualified, but all other type references must be.

Spring Framework
3.2.1.RELEASE Reference Documentation 183

Spring Framework

Cl ass dateC ass = parser. parseExpression("T(java.util.Date)").getVal ue(C ass. cl ass);
Cl ass stringC ass = parser. parseExpression("T(String)").getVal ue(d ass. cl ass);

bool ean trueVal ue =
par ser. par seExpressi on("T(j ava. mat h. Roundi nghbde) . CEl LI NG <
T(j ava. nat h. Roundi nghbde) . FLOOR")
. get Val ue(Bool ean. cl ass);

Constructors

Constructors can be invoked using the new operator. The fully qualified class hame should be used for
all but the primitive type and String (where int, float, etc, can be used).

I nventor einstein =
p. par seExpressi on("new org. spring. sanpl es. spel .inventor.|nventor('Al bert Ei nstein',
"CGerman')")

.get Val ue(l nventor. cl ass);

//create new inventor instance within add nmethod of List

p. par seExpr essi on(" Menber s. add(new org. spri ng. sanpl es. spel . i nventor. I nventor('Al bert
Einstein',

"CGerman'))")

. get Val ue(soci et yCont ext) ;

Variables

Variables can be referenced in the expression using the syntax #variableName. Variables are set using
the method setVariable on the StandardEvaluationContext.

Inventor tesla = new Inventor ("N kola Tesla", "Serbian");
St andar dEval uat i onCont ext context = new Standar dEval uati onCont ext (tesl a);
cont ext . set Vari abl e("newNane", "M ke Tesl a");

par ser. par seExpressi on(" Nane = #newNane"). get Val ue(cont ext);

Systemout.printin(tesla.getName()) // "M ke Tesla"

The #this and #root variables

The variable #this is always defined and refers to the current evaluation object (against which unqualified
references are resolved). The variable #root is always defined and refers to the root context object.
Although #this may vary as components of an expression are evaluated, #root always refers to the root.

Spring Framework
3.2.1.RELEASE Reference Documentation 184

Spring Framework

/] create an array of integers
Li st<lInteger> prines = new Arrayli st <l nteger>();
prines. addAl | (Arrays. asList(2,3,5,7,11,13,17));

/] create parser and set variable 'prines' as the array of integers
Expressi onPar ser parser = new Spel Expressi onParser();

St andar dEval uati onCont ext context = new Standar dEval uati onCont ext () ;
cont ext.setVariabl e("prinmes", prines);

/1 all prime nunbers > 10 fromthe list (using selection ?{...})
/] evaluates to [11, 13, 17]
Li st <l nteger> pri nesG eat er ThanTen =
(Li st<lnteger>) parser.parseExpression("#prines.?
[#t hi s>10] ") . get Val ue(cont ext);

Functions

You can extend SpEL by registering user defined functions that can be called within the expression
string. The function is registered with the St andar dEval uat i onCont ext using the method.

public void registerFunction(String nane, Method m

A reference to a Java Method provides the implementation of the function. For example, a utility method
to reverse a string is shown below.

public abstract class StringUils {

public static String reverseString(String input) {
StringBuil der backwards = new StringBuil der();
for (int i =0; i < input.length(); i++)
backwar ds. append(i nput.charAt (i nput.length() - 1 - i));
}

return backwards.toString();

This method is then registered with the evaluation context and can be used within an expression string.

Expr essi onPar ser parser = new Spel Expressi onParser();
St andar dEval uat i onCont ext context = new Standar dEval uati onCont ext ();

context.regi sterFunction("reverseString",
StringWils. cl ass. get Decl ar edMet hod("reverseString",
new Class[] { String.class

)

String hell oWwr!l dReversed =
par ser. par seExpressi on("#reverseString(' hello')").getVal ue(context,
String. cl ass);

Bean references

If the evaluation context has been configured with a bean resolver it is possible to lookup beans from
an expression using the (@) symbol.

Spring Framework
3.2.1.RELEASE Reference Documentation 185

Spring Framework

Expressi onPar ser parser = new Spel Expressi onParser();
St andar dEval uati onCont ext context = new Standar dEval uati onCont ext () ;
cont ext . set BeanResol ver (new MyBeanResol ver());

/1 This will end up calling resolve(context,"foo") on My/BeanResol ver during eval uation
bj ect bean = parser. par seExpressi on(" @o0"). get Val ue(cont ext);

Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression. A
minimal example is:

String falseString =
par ser. par seExpression("fal se ? 'trueExp'
‘fal seExp' ") . get Val ue(String.cl ass);

In this case, the boolean false results in returning the string value ‘falseExp’. A more realistic example
is shown below.

par ser. par seExpr essi on(" Nane") . set Val ue(soci etyContext, "I|EEE");
soci et yCont ext . set Vari abl e("queryNane", "Ni kola Tesla");
expression = "i sMenber (#queryNanme) ? #queryName + ' is a nenber of the ' " +
"+ Name + ' Society' : #queryName + ' is not a menber of the ' + Nane + '
Society'";

String queryResultString =
par ser . par seExpr essi on(expr essi on) . get Val ue(soci et yCont ext,
String. cl ass);
/'l queryResultString = "N kola Tesla is a menber of the | EEE Soci ety"

Also see the next section on the Elvis operator for an even shorter syntax for the ternary operator.
The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the Groovy language.
With the ternary operator syntax you usually have to repeat a variable twice, for example:

String nane = "Elvis Presley";
String displayNanme = nane != null ? nanme : "Unknown";

Instead you can use the Elvis operator, named for the resemblance to Elvis' hair style.
Expressi onPar ser parser = new Spel Expressi onParser();
String name = parser.parseExpression("null ?:' Unknown'"). get Val ue(String. cl ass);

System out. println(nane); // 'Unknown'

Here is a more complex example.

Spring Framework
3.2.1.RELEASE Reference Documentation 186

http://groovy.codehaus.org/Operators#Operators-ElvisOperator(%3F%3A)

Spring Framework

Expressi onPar ser parser = new Spel Expressi onParser();

Inventor tesla = new I nventor("Ni kola Tesla", "Serbian");
St andar dEval uati onCont ext context = new Standar dEval uati onCont ext (tesl a);

String name = parser.parseExpression("Nanme?:'Elvis Presley'"). getVal ue(context,
String. cl ass);

Systemout.println(nanme); // Mke Tesla
tesl a. set Nanme(nul I');
name = parser. parseExpression("Nanme?:'Elvis Presley'").getVal ue(context, String.class);

Systemout.println(nanme); // Elvis Presley

Safe Navigation operator

The Safe Navigation operator is used to avoid a Nul | Poi nt er Except i on and comes from the Groovy
language. Typically when you have a reference to an object you might need to verify that it is not null
before accessing methods or properties of the object. To avoid this, the safe navigation operator will
simply return null instead of throwing an exception.

Expressi onPar ser parser = new Spel Expressi onParser();

Inventor tesla = new I nventor("Ni kola Tesla", "Serbian");
tesla.setPlaceOBirth(new PlaceOBirth("Sniljan"));

St andar dEval uati onCont ext context = new Standar dEval uati onCont ext (tesl a);

String city = parser. parseExpression("PlaceOBirth?. Cty").getVal ue(context,
String. cl ass);

Systemout.printin(city); // Smljan

tesla.setPlaceOBirth(null);

city = parser. parseExpression("PlaceOBirth?. City"). getValue(context, String.class);

Systemout.printin(city); // null - does not throw Nul | Poi nterException!!!

© Note

The Elvis operator can be used to apply default values in expressions, e.g. in an @/al ue
expression:

@/al ue("#{systenProperties[' pop3.port'] ?2: 25}")
This will inject a system property pop3. port ifit is defined or 25 if not.

Collection Selection

Selection is a powerful expression language feature that allows you to transform some source collection
into another by selecting from its entries.

Selection uses the syntax ?[sel ect i onExpr essi on] . This will filter the collection and return a new
collection containing a subset of the original elements. For example, selection would allow us to easily
get a list of Serbian inventors:

Spring Framework
3.2.1.RELEASE Reference Documentation 187

http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(%3F.)

Spring Framework

Li st<lnventor> list = (List<lnventor>)
par ser. par seExpressi on(" Menbers. ?[National ity ==
"Serbian']"). get Val ue(soci et yCont ext) ;

Selection is possible upon both lists and maps. In the former case the selection criteria is evaluated
against each individual list element whilst against a map the selection criteria is evaluated against each
map entry (objects of the Java type Map. Ent ry). Map entries have their key and value accessible as
properties for use in the selection.

This expression will return a new map consisting of those elements of the original map where the entry
value is less than 27.

Map newMap = parser. par seExpressi on(" map. ?[val ue<27]"). get Val ue() ;

In addition to returning all the selected elements, it is possible to retrieve just the first or the last value.
To obtain the first entry matching the selection the syntax is *[. . .] whilst to obtain the last matching
selection the syntaxis $[. ..] .

Collection Projection

Projection allows a collection to drive the evaluation of a sub-expression and the result is a new
collection. The syntax for projection is ! [proj ecti onExpr essi on]. Most easily understood by
example, suppose we have a list of inventors but want the list of cities where they were born. Effectively
we want to evaluate 'placeOfBirth.city' for every entry in the inventor list. Using projection:

/1 returns ['Smiljan', 'ldvor']
Li st placesOBirth = (List)parser.parseExpression("Mnbers.![placeOBirth.city]");

A map can also be used to drive projection and in this case the projection expression is evaluated
against each entry in the map (represented as a Java Map. Ent r y). The result of a projection across a
map is a list consisting of the evaluation of the projection expression against each map entry.

Expression templating
Expression templates allow a mixing of literal text with one or more evaluation blocks. Each evaluation

block is delimited with prefix and suffix characters that you can define, a common choice is to use #{ }
as the delimiters. For example,

String randonPhrase =
par ser. par seExpr essi on("random nunber is #{T(java.lang. Math).randon()}",
new Tenpl at ePar ser Cont ext ()). get Val ue(Stri ng. cl ass);

/'l evaluates to "random nunber is 0.7038186818312008"

The string is evaluated by concatenating the literal text ‘random number is ' with the result of evaluating
the expression inside the #{} delimiter, in this case the result of calling that random() method. The second
argument to the method par seExpr essi on() is of the type Par ser Cont ext . The Par ser Cont ext
interface is used to influence how the expression is parsed in order to support the expression templating
functionality. The definition of Tenpl at ePar ser Cont ext is shown below.

Spring Framework
3.2.1.RELEASE Reference Documentation 188

Spring Framework

public class Tenpl at ePar ser Cont ext inplements Parser Cont ext {

public String get ExpressionPrefix() {
return "#{";

}

public String get ExpressionSuffix() {
return "}";

}

publ i c bool ean isTenpl ate() {
return true;
}
}

8.6 Classes used in the examples

Inventor.java

Spring Framework
3.2.1.RELEASE Reference Documentation 189

Spring Framework

{

t hi
t hi
thi

}

publ i
thi
t hi
t hi

publ i
}

publ i

}
publ i
thi

}
publ i

}
publ i
thi

}
publ i

}
publ i
thi

}
publ i

}

publ i
t hi

}

publ i
t hi

}
publ i

S
S

SE

nw nu u o

c

c

S

c

c

S

c

c

S

c

c

c

c

package org.spring.sanpl es. spel . i nventor;

inport java.util.Date;
import java.util.G egorianCal endar;

public class Inventor {
private String nane;
private String nationality;
private String[] inventions;
private Date birthdate;
private PlaceOBirth placeOBirth;

public Inventor(String name, String nationality)

Gregori anCal endar c= new Gregori anCal endar () ;

. hame = nane;
.hationality = nationality;
birthdate = c.getTi me();

Inventor(String name, Date birthdate, String nationality) {
name = nane;

.nationality = nationality;
.birthdate = birthdate;

I nventor () {

String getName() {

return nane;

voi d set Name(String nanme) {
. hame = nane;

String getNationality() {

return nationality;

void setNationality(String nationality) {
.nationality = nationality;

Date getBirthdate() {

return birthdate;

voi d setBirthdate(Date birthdate) {
.birthdate = birthdate;

PlaceO Birth getPlaceOBirth() {

return placeO Birth;

voi d setPlaceOBirth(PlaceOBirth placeOBirth) {
.placeOBirth = placeOBirth;

voi d setlnventions(String[] inventions) {
.inventions = inventions;

String[] getlnventions() {

return inventions;

Spring Framework

3.2.1.RELEASE Reference Documentation

190

Spring Framework

PlaceOfBirth.java

package org. spring.sanpl es. spel . i nventor;
public class PlaceOBirth {

private String city;
private String country;

public PlaceOBirth(String city) {
this.city=city;

}
public PlaceOBirth(String city, String country)
{
this(city);
this.country = country;
}

public String getGity() {
return city;

}

public void setCity(String s) {
this.city = s;

}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

Society.java

Spring Framework
3.2.1.RELEASE Reference Documentation 191

Spring Framework

package org.spring.sanpl es. spel . i nventor;
import java.util.*;
public class Society {

private String nane;

public static String Advisors = "advi sors";
public static String President = "president";

private List<lnventor> nenbers = new Arrayli st<lnventor>();
private Map officers = new HashMap();

public List getMenbers() {

return menbers;

public Map getOficers() {
return officers;

public String getNane() {
return name;

public void setNane(String nane) {
this. nane = nane;

}
publ i c bool ean i sMenber(String nane)
{
bool ean found = fal se;
for (Inventor inventor : menbers) {
if (inventor.getNanme().equal s(nane))
{
found = true;
br eak;
}
}
return found;
}

Spring Framework
3.2.1.RELEASE Reference Documentation 192

Spring Framework

9. Aspect Oriented Programming with Spring

9.1 Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas
in AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as
transaction management that cut across multiple types and objects. (Such concerns are often termed
crosscutting concerns in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC container does not
depend on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring
loC to provide a very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schema-based approach or the @AspectJ annotation style. Both of these styles offer fully typed
advice and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @AspectJ-based AOP supportis discussed in this chapter. Spring 2.0
AOP remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support
offered by the Spring 1.2 APIs is discussed in the following chapter.

AORP is used in the Spring Framework to...

» ... provide declarative enterprise services, especially as a replacement for EJB declarative services.
The most important such service is declarative transaction management.

« ... allow users to implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you do not need to work directly with Spring AOP, and can skip most of this
chapter.

AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-
specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even more
confusing if Spring used its own terminology.

» Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is
a good example of a crosscutting concern in enterprise Java applications. In Spring AOP, aspects
are implemented using regular classes (the schema-based approach) or regular classes annotated
with the @Aspect annotation (the @\spect J style).

 Join point: a point during the execution of a program, such as the execution of a method or the handling
of an exception. In Spring AOP, a join point always represents a method execution.

» Advice: action taken by an aspect at a particular join point. Different types of advice include "around,”
"before” and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including
Spring, model an advice as an interceptor, maintaining a chain of interceptors around the join point.

Spring Framework
3.2.1.RELEASE Reference Documentation 193

Spring Framework

» Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and
runs at any join point matched by the pointcut (for example, the execution of a method with a certain
name). The concept of join points as matched by pointcut expressions is central to AOP, and Spring
uses the AspectJ pointcut expression language by default.

« Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you to
introduce new interfaces (and a corresponding implementation) to any advised object. For example,
you could use an introduction to make a bean implement an | sModi fi ed interface, to simplify
caching. (An introduction is known as an inter-type declaration in the AspectJ community.)

» Target object: object being advised by one or more aspects. Also referred to as the advised object.
Since Spring AOP is implemented using runtime proxies, this object will always be a proxied object.

» AOP proxy: an object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic
proxy or a CGLIB proxy.

« Weaving: linking aspects with other application types or objects to create an advised object. This can
be done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring
AOP, like other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

» Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unless it throws an exception).

 After returning advice: Advice to be executed after a join point completes normally: for example, if a
method returns without throwing an exception.

* After throwing advice: Advice to be executed if a method exits by throwing an exception.

« After (finally) advice: Advice to be executed regardless of the means by which a join point exits (normal
or exceptional return).

» Around advice: Advice that surrounds a join point such as a method invocation. This is the most
powerful kind of advice. Around advice can perform custom behavior before and after the method
invocation. It is also responsible for choosing whether to proceed to the join point or to shortcut the
advised method execution by returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range
of advice types, we recommend that you use the least powerful advice type that can implement the
required behavior. For example, if you need only to update a cache with the return value of a method, you
are better off implementing an after returning advice than an around advice, although an around advice
can accomplish the same thing. Using the most specific advice type provides a simpler programming
model with less potential for errors. For example, you do not need to invoke the pr oceed() method on
the Joi nPoi nt used for around advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of
the appropriate type (the type of the return value from a method execution for example) rather than
hj ect arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from
older technologies offering only interception. Pointcuts enable advice to be targeted independently
of the Object-Oriented hierarchy. For example, an around advice providing declarative transaction

Spring Framework
3.2.1.RELEASE Reference Documentation 194

Spring Framework

management can be applied to a set of methods spanning multiple objects (such as all business
operations in the service layer).

Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP
does not need to control the class loader hierarchy, and is thus suitable for use in a Servlet container
or application server.

Spring AOP currently supports only method execution join points (advising the execution of methods
on Spring beans). Field interception is not implemented, although support for field interception could be
added without breaking the core Spring AOP APIs. If you need to advise field access and update join
points, consider a language such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide
the most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide
a close integration between AOP implementation and Spring 1oC to help solve common problems in
enterprise applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the
Spring 1oC container. Aspects are configured using normal bean definition syntax (although this allows
powerful "autoproxying" capabilities): this is a crucial difference from other AOP implementations. There
are some things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained
objects (such as domain objects typically): AspectJ is the best choice in such cases. However, our
experience is that Spring AOP provides an excellent solution to most problems in enterprise Java
applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We
believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ
are valuable, and that they are complementary, rather than in competition. Spring 2.0 seamlessly
integrates Spring AOP and 1oC with AspectJ, to enable all uses of AOP to be catered for within a
consistent Spring-based application architecture. This integration does not affect the Spring AOP API
or the AOP Alliance API: Spring AOP remains backward-compatible. See the following chapter for a
discussion of the Spring AOP APIs.

© Note

One of the central tenets of the Spring Framework is that of non-invasiveness; this is the idea
that you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the
option to introduce Spring Framework-specific dependencies into your codebase: the rationale
in giving you such options is because in certain scenarios it might be just plain easier to read or
code some specific piece of functionality in such a way. The Spring Framework (almost) always
offers you the choice though: you have the freedom to make an informed decision as to which
option best suits your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which
AOP style) to choose. You have the choice of AspectJ and/or Spring AOP, and you also have
the choice of either the @AspectJ annotation-style approach or the Spring XML configuration-
style approach. The fact that this chapter chooses to introduce the @AspectJ-style approach first
should not be taken as an indication that the Spring team favors the @AspectJ annotation-style
approach over the Spring XML configuration-style.

Spring Framework
3.2.1.RELEASE Reference Documentation 195

Spring Framework

See Section 9.4, “Choosing which AOP declaration style to use” for a more complete discussion
of the whys and wherefores of each style.

AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any
interface (or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces.
CGLIB is used by default if a business object does not implement an interface. As it is good practice
to program to interfaces rather than classes, business classes normally will implement one or more
business interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where you
need to advise a method that is not declared on an interface, or where you need to pass a proxied object
to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section called “Understanding
AOP proxies” for a thorough examination of exactly what this implementation detail actually means.

9.2 @AspectJ support

@AspectJ refers to a style of declaring aspects as regular Java classes annotated with Java 5
annotations. The @AspectJ style was introduced by the AspectJ project as part of the Aspect] 5 release.
Spring 2.0 interprets the same annotations as AspectJ 5, using a library supplied by AspectJ for pointcut
parsing and matching. The AOP runtime is still pure Spring AOP though, and there is no dependency
on the AspectJ compiler or weaver.

Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is discussed in
Section 9.8, “Using AspectJ with Spring applications”.

Enabling @AspectJ Support

To use @AspectJ aspects in a Spring configuration you need to enable Spring support for configuring
Spring AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are
advised by those aspects. By autoproxying we mean that if Spring determines that a bean is advised by
one or more aspects, it will automatically generate a proxy for that bean to intercept method invocations
and ensure that advice is executed as needed.

The @AspectJ support can be enabled with XML or Java style configuration. In either case you will
also need to ensure that Aspect)'s aspect j weaver . j ar library is on the classpath of your application
(version 1.6.8 or later). This library is available in the ' [i b' directory of an AspectJ distribution or via
the Maven Central repository.

Enabling @AspectJ Support with Java configuration

To enable @AspectJ support with Java @Confi gur ati on add the @nabl eAspect JAut oPr oxy
annotation:

@onfiguration
@nabl eAspect JAut oPr oxy
public class AppConfig {

}

Spring Framework
3.2.1.RELEASE Reference Documentation 196

http://www.eclipse.org/aspectj

Spring Framework

Enabling @AspectJ Support with XML configuration

To enable @AspectJ support with XML based configuration use the aop: aspectj - aut opr oxy
element:

<aop: aspectj - aut opr oxy/ >

This assumes that you are using schema support as described in Appendix E, XML Schema-based
configuration. See the section called “The aop schema” for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @AspectJ support by adding the following definition
to your application context:

<bean cl ass="org. spri ngframewor k. aop. aspectj . annot at i on. Annot at i onAwar eAspect JAut oPr oxyCr eat or "
/>

Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is
an @AspectJ aspect (has the @Aspect annotation) will be automatically detected by Spring and used
to configure Spring AOP. The following example shows the minimal definition required for a not-very-
useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @\spect
annotation:

<bean i d="myAspect" class="org.xyz. Not VeryUsef ul Aspect" >
<I-- configure properties of aspect here as normal -->
</ bean>

And the Not Ver yUsef ul Aspect class definition, annotated with
org. aspectj .l ang. annot ati on. Aspect annotation;

package org. xyz;
i nport org.aspectj.|ang.annotation. Aspect;

@\spect
public class Not VeryUsef ul Aspect {

}

Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They
may also contain pointcut, advice, and introduction (inter-type) declarations.

@ Autodetecting aspects through component scanning

You may register aspect classes as regular beans in your Spring XML configuration, or autodetect
them through classpath scanning - just like any other Spring-managed bean. However, note that
the @Aspect annotation is not sufficient for autodetection in the classpath: For that purpose, you
need to add a separate @Component annotation (or alternatively a custom stereotype annotation
that qualifies, as per the rules of Spring's component scanner).

Spring Framework
3.2.1.RELEASE Reference Documentation 197

Spring Framework

@ Advising aspects with other aspects?

In Spring AOP, it is not possible to have aspects themselves be the target of advice from other
aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
auto-proxying.

Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice
executes. Spring AOP only supports method execution join points for Spring beans, so you can think of
a pointcut as matching the execution of methods on Spring beans. A pointcut declaration has two parts:
a signature comprising a name and any parameters, and a pointcut expression that determines exactly
which method executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut
signature is provided by a regular method definition, and the pointcut expression is indicated using the
@?oi nt cut annotation (the method serving as the pointcut signature must have a voi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear.
The following example defines a pointcut named ' anyd dTr ansf er' that will match the execution of
any method named ' transfer' :

@oi ntcut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @oi nt cut annotation is a regular AspectJ 5
pointcut expression. For a full discussion of AspectJ's pointcut language, see the AspectJ Programming
Guide (and for Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on
AspectJ such as “Eclipse AspectJ” by Colyer et. al. or “AspectJ in Action” by Ramnivas Laddad.

Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full AspectJ pointcut language supports additional pointcut designators that are not supported
in Spring. These are:cal |, get, set, preinitialization, staticinitialization,
initialization, handl er, adviceexecution, wthincode, cflow cflowbel ow,
if, @his, and @v t hi ncode. Use of these pointcut designators in pointcut expressions
interpreted by Spring AOP will result in an I | | egal Ar gunment Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases to
support more of the AspectJ pointcut designators.

» execution - for matching method execution join points, this is the primary pointcut designator you will
use when working with Spring AOP

« within - limits matching to join points within certain types (simply the execution of a method declared
within a matching type when using Spring AOP)

« this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

Spring Framework
3.2.1.RELEASE Reference Documentation 198

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Spring Framework

« target - limits matching to join points (the execution of methods when using Spring AOP) where the
target object (application object being proxied) is an instance of the given type

 args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

e @ ar get - limits matching to join points (the execution of methods when using Spring AOP) where
the class of the executing object has an annotation of the given type

» @r gs - limits matching to join points (the execution of methods when using Spring AOP) where the
runtime type of the actual arguments passed have annotations of the given type(s)

e @\ t hi n - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

» @annotation - limits matching to join points where the subject of the join point (method being executed
in Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives a narrower definition than you will find in the AspectJ programming guide.
In addition, Aspect] itself has type-based semantics and at an execution join point both 't hi s' and
't ar get ' refer to the same object - the object executing the method. Spring AOP is a proxy-based
system and differentiates between the proxy object itself (bound to 't hi s") and the target object behind
the proxy (bound to 't ar get).

© Note

Due to the proxy-based nature of Spring's AOP framework, protected methods are by definition
not intercepted, neither for JDK proxies (where this isn't applicable) nor for CGLIB proxies (where
this is technically possible but not recommendable for AOP purposes). As a consequence, any
given pointcut will be matched against public methods only!

If your interception needs include protected/private methods or even constructors, consider the
use of Spring-driven native AspectJ weaving instead of Spring's proxy-based AOP framework.
This constitutes a different mode of AOP usage with different characteristics, so be sure to make
yourself familiar with weaving first before making a decision.

Spring AOP also supports an additional PCD named 'bean’. This PCD allows you to limit the matching of
join points to a particular named Spring bean, or to a set of named Spring beans (when using wildcards).
The 'bean' PCD has the following form:

bean(i dO NaneOf Bean)

The 'i dOr NanmeOf Bean' token can be the name of any Spring bean: limited wildcard support using
the *' character is provided, so if you establish some naming conventions for your Spring beans you
can quite easily write a 'bean' PCD expression to pick them out. As is the case with other pointcut
designators, the 'bean’' PCD can be &&'ed, ||'ed, and ! (negated) too.

© Note

Please note that the 'bean' PCD is only supported in Spring AOP - and not in native AspectJ
weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines.

Spring Framework
3.2.1.RELEASE Reference Documentation 199

Spring Framework

The 'bean' PCD operates at the instance level (building on the Spring bean name concept) rather
than at the type level only (which is what weaving-based AOP is limited to). Instance-based
pointcut designators are a special capability of Spring's proxy-based AOP framework and its
close integration with the Spring bean factory, where it is natural and straightforward to identify
specific beans by name.

Combining pointcut expressions

Pointcut expressions can be combined using '&&', '||' and "'. It is also possible to refer
to pointcut expressions by name. The following example shows three pointcut expressions:
anyPubl i cOper at i on (which matches if a method execution join point represents the execution of
any public method); i nTr adi ng (which matches if a method execution is in the trading module), and
t radi ngQper at i on (which matches if a method execution represents any public method in the trading
module).

@Poi nt cut ("execution(public * *(..))")
private void anyPublicQOperation() {}

@Poi ntcut ("W t hi n(com xyz. soneapp. trading..*)")
private void inTradi ng() {}

@Poi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as
shown above. When referring to pointcuts by name, normal Java visibility rules apply (you can see
private pointcuts in the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and
so on). Visibility does not affect pointcut matching.

Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application
and particular sets of operations from within several aspects. We recommend defining a
"SystemArchitecture" aspect that captures common pointcut expressions for this purpose. A typical such
aspect would look as follows:

Spring Framework
3.2.1.RELEASE Reference Documentation 200

Spring Framework

package com xyz. soneapp

i nport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annotation. Pointcut;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the method is defined

* in a type in the com xyz. soneapp. web package or any sub-package
* under that.

*/

@Poi ntcut ("wi t hi n(com xyz. soneapp. web. . *)")

public void i nWebLayer() {}

/**

* Ajoin point is in the service layer if the nethod is defined

* in a type in the comxyz. someapp. servi ce package or any sub-package
* under that.

*/

@Poi ntcut ("W t hi n(com xyz. soneapp. service..*)")

public void inServiceLayer() {}

/**

* Ajoin point is in the data access layer if the nethod is defined
* in a type in the com xyz. soneapp. dao package or any sub-package

* under that.

*/

@Poi ntcut ("wi t hi n(com xyz. soneapp. dao. . *)")

public void inDataAccessLayer() {}

/**

* A business service is the execution of any nethod defined on a service
* interface. This definition assunes that interfaces are placed in the

* "service" package, and that inplenmentation types are in sub-packages

* |f you group service interfaces by functional area (for exanple

* in packages com xyz.soneapp. abc. servi ce and com xyz. def. service) then

* the pointcut expression "execution(* com xyz.someapp..service.*.*(..))"
* coul d be used instead

* Alternatively, you can wite the expression using the 'bean

* PCD, |ike so "bean(*Service)". (This assunes that you have
* named your Spring service beans in a consistent fashion.)
&/

@Poi nt cut ("execution(* com xyz. sonmeapp. service.*.*(..))")
public voi d businessService() {}

/**

* A data access operation is the execution of any nmethod defined on a

* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that inplenentation types are in sub-packages

*/

@Poi nt cut ("execution(* com xyz. soneapp.dao. *.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut
expression. For example, to make the service layer transactional, you could write:

Spring Framework
3.2.1.RELEASE Reference Documentation 201

Spring Framework

<aop: confi g>
<aop: advi sor
poi nt cut =" com xyz. someapp. Syst emAr chi t ect ur e. busi nessService()"
advi ce-ref ="t x-advi ce"/ >
</ aop: confi g>

<t x:advi ce id="tx-advice">
<tx:attributes>
<t x: net hod nane="*" propagati on="REQUI RED"'/ >
</[tx:attributes>
</t x: advi ce>

The <aop: confi g> and <aop: advi sor > elements are discussed in Section 9.3, “Schema-based
AOP support”. The transaction elements are discussed in Chapter 12, Transaction Management.

Examples

Spring AOP users are likely to use the execut i on pointcut designator the most often. The format of
an execution expression is:

execution(nodifiers-pattern? ret-type-pattern declaring-type-pattern? nane-pattern(param
pattern)
t hrows- patt ern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and
parameters pattern are optional. The returning type pattern determines what the return type of the
method must be in order for a join point to be matched. Most frequently you will use * as the returning
type pattern, which matches any return type. A fully-qualified type name will match only when the method
returns the given type. The name pattern matches the method name. You can use the * wildcard as all
or part of a name pattern. The parameters pattern is slightly more complex: () matches a method that
takes no parameters, whereas (. .) matches any number of parameters (zero or more). The pattern
(*) matches a method taking one parameter of any type, (*, St ri ng) matches a method taking two
parameters, the first can be of any type, the second must be a String. Consult the Language Semantics
section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

« the execution of any public method:

execution(public * *(..))
* the execution of any method with a name beginning with "set":
execution(* set*(..))

* the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. service. Account Service.*(..))

* the execution of any method defined in the service package:

execution(* com xyz.service.*.*(..))

the execution of any method defined in the service package or a sub-package:

execution(* comxyz.service..*.*(..))

Spring Framework
3.2.1.RELEASE Reference Documentation 202

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Spring Framework

any join point (method execution only in Spring AOP) within the service package:

wi t hi n(com xyz. servi ce. *)

any join point (method execution only in Spring AOP) within the service package or a sub-package:

wi t hi n(com xyz. service..*)

any join point (method execution only in Spring AOP) where the proxy implements the
Account Ser vi ce interface:

thi s(com xyz. servi ce. Account Servi ce)

'this' is more commonly used in a binding form :- see the following section on advice for how to make
the proxy object available in the advice body.

any join point (method execution only in Spring AOP) where the target object implements the
Account Ser vi ce interface:

target (com xyz. servi ce. Account Servi ce)

'target' is more commonly used in a binding form :- see the following section on advice for how to
make the target object available in the advice body.

any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtime is Seri al i zabl e:

args(java.io. Serializable)

‘args' is more commonly used in a binding form :- see the following section on advice for how to make
the method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(*
*(java.io. Serializabl e)): the args version matches if the argument passed at runtime is
Serializable, the execution version matches if the method signature declares a single parameter of
type Seri al i zabl e.

any join point (method execution only in Spring AOP) where the target object has an
@r ansact i onal annotation:

@ ar get (org. springfranework.transaction. annotati on. Transacti onal)

‘@target' can also be used in a binding form :- see the following section on advice for how to make
the annotation object available in the advice body.

any join point (method execution only in Spring AOP) where the declared type of the target object
has an @r ansacti onal annotation:

@ t hin(org. springframework.transacti on. annotati on. Transacti onal)

‘@within' can also be used in a binding form :- see the following section on advice for how to make
the annotation object available in the advice body.

any join point (method execution only in Spring AOP) where the executing method has an
@r ansact i onal annotation:

@nnot ati on(org. springfranmework. transacti on. annot ati on. Transacti onal)

Spring Framework

3.2.1.RELEASE Reference Documentation 203

Spring Framework

‘@annotation' can also be used in a binding form :- see the following section on advice for how to
make the annotation object available in the advice body.

 any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed has the @ assi f i ed annotation:

@rgs(com xyz.security. d assified)

'‘@args' can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

 any join point (method execution only in Spring AOP) on a Spring bean named 't r adeSer vi ce"

bean(tradeService)

» any join point (method execution only in Spring AOP) on Spring beans having names that match the
wildcard expression * Ser vi ce".

bean(*Servi ce)

Writing good pointcuts

During compilation, AspectJ processes pointcuts in order to try and optimize matching performance.
Examining code and determining if each join point matches (statically or dynamically) a given pointcut
is a costly process. (A dynamic match means the match cannot be fully determined from static analysis
and a test will be placed in the code to determine if there is an actual match when the code is running).
On first encountering a pointcut declaration, AspectJ will rewrite it into an optimal form for the matching
process. What does this mean? Basically pointcuts are rewritten in DNF (Disjunctive Normal Form) and
the components of the pointcut are sorted such that those components that are cheaper to evaluate are
checked first. This means you do not have to worry about understanding the performance of various
pointcut designators and may supply them in any order in a pointcut declaration.

However, Aspect] can only work with what it is told, and for optimal performance of matching you
should think about what they are trying to achieve and narrow the search space for matches as much
as possible in the definition. The existing designators naturally fall into one of three groups: kinded,
scoping and context:

 Kinded designators are those which select a particular kind of join point. For example: execution, get,
set, call, handler

» Scoping designators are those which select a group of join points of interest (of probably many kinds).
For example: within, withincode

» Contextual designators are those that match (and optionally bind) based on context. For example:
this, target, @annotation

A well written pointcut should try and include at least the first two types (kinded and scoping), whilst
the contextual designators may be included if wishing to match based on join point context, or bind that
context for use in the advice. Supplying either just a kinded designator or just a contextual designator will
work but could affect weaving performance (time and memory used) due to all the extra processing and
analysis. Scoping designators are very fast to match and their usage means AspectJ can very quickly
dismiss groups of join points that should not be further processed - that is why a good pointcut should
always include one if possible.

Spring Framework
3.2.1.RELEASE Reference Documentation 204

Spring Framework

Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions
matched by the pointcut. The pointcut expression may be either a simple reference to a named pointcut,
or a pointcut expression declared in place.

Before advice
Before advice is declared in an aspect using the @ef or e annotation:

i nport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.lang.annotation.Before

@\spect
public class BeforeExanple {

@ef ore("com xyz. myapp. Syst emAr chi t ect ure. dat aAccessOperation()")
public void doAccessCheck() {
/1

}

If using an in-place pointcut expression we could rewrite the above example as:

i nport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.l|ang.annotation.Before

@\spect
public cl ass BeforeExanple {

@ef ore("execution(* com xyz. myapp.dao.*.*(..))")
public void doAccessCheck() {
/1

}

After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@\f t er Ret ur ni ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang.annotation. After Ret urni ng

@\spect
public class AfterReturningExanple {

@Af t er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public voi d doAccessCheck() {
I/

}
Note: it is of course possible to have multiple advice declarations, and other members as well, all inside
the same aspect. We're just showing a single advice declaration in these examples to focus on the issue
under discussion at the time.

Spring Framework
3.2.1.RELEASE Reference Documentation 205

Spring Framework

Sometimes you need access in the advice body to the actual value that was returned. You can use the
form of @Af t er Ret ur ni ng that binds the return value for this:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang.annotation. After Returning;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng(
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()",
returning="retVal")

public void doAccessCheck(Object retVal) {
I/

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice
method. When a method execution returns, the return value will be passed to the advice method as
the corresponding argument value. A r et ur ni ng clause also restricts matching to only those method
executions that return a value of the specified type (Obj ect in this case, which will match any return
value).

Please note that it is not possible to return a totally different reference when using after-returning advice.
After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is
declared using the @\f t er Thr owi ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang.annot ation. Af t er Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Throwi ng("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doRecoveryActions() {
I/

}

Often you want the advice to run only when exceptions of a given type are thrown, and you also often
need access to the thrown exception in the advice body. Use the t hr owi ng attribute to both restrict
matching (if desired, use Thr owabl e as the exception type otherwise) and bind the thrown exception
to an advice parameter.

Spring Framework
3.2.1.RELEASE Reference Documentation 206

Spring Framework

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang.annotation. After Throw ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()",
t hr owi ng="ex")

public voi d doRecoveryActi ons(Dat aAccessException ex) {
...

}

The name used in the t hr owi ng attribute must correspond to the name of a parameter in the advice
method. When a method execution exits by throwing an exception, the exception will be passed to the
advice method as the corresponding argument value. A t hr owi ng clause also restricts matching to
only those method executions that throw an exception of the specified type (Dat aAccessExcepti on
in this case).

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @Af t er
annotation. After advice must be prepared to handle both normal and exception return conditions. It is
typically used for releasing resources, etc.

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.l|ang.annotation. After;

@\spect
public class AfterFinallyExanple {

@\fter("com xyz. myapp. Syst emAr chi t ect ure. dat aAccessOperation()")
public void doRel easeLock() {
...

}

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution.
It has the opportunity to do work both before and after the method executes, and to determine when,
how, and even if, the method actually gets to execute at all. Around advice is often used if you need to
share state before and after a method execution in a thread-safe manner (starting and stopping a timer
for example). Always use the least powerful form of advice that meets your requirements (i.e. don't use
around advice if simple before advice would do).

Around advice is declared using the @\r ound annotation. The first parameter of the advice method
must be of type Pr oceedi ngJoi nPoi nt . Within the body of the advice, calling pr oceed() on the
Pr oceedi ngJoi nPoi nt causes the underlying method to execute. The pr oceed method may also
be called passing in an Qbj ect [] - the values in the array will be used as the arguments to the method
execution when it proceeds.

The behavior of proceed when called with an Object]] is a little different than the behavior of proceed
for around advice compiled by the Aspectd compiler. For around advice written using the traditional
AspectJ language, the number of arguments passed to proceed must match the number of arguments

Spring Framework
3.2.1.RELEASE Reference Documentation 207

Spring Framework

passed to the around advice (not the number of arguments taken by the underlying join point), and the
value passed to proceed in a given argument position supplants the original value at the join point for
the entity the value was bound to (Don't worry if this doesn't make sense right now!). The approach
taken by Spring is simpler and a better match to its proxy-based, execution only semantics. You only
need to be aware of this difference if you are compiling @AspectJ aspects written for Spring and using
proceed with arguments with the AspectJ compiler and weaver. There is a way to write such aspects
that is 100% compatible across both Spring AOP and AspectJ, and this is discussed in the following
section on advice parameters.

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang. annot ati on. Around;
i nport org.aspectj.|ang. Proceedi ngJoi nPoi nt;

@\spect
public class AroundExanpl e {

@\r ound(" com xyz. myapp. Syst emAr chi t ect ur e. busi nessService()")
publ i c Object doBasicProfiling(Proceedi ngJoi nPoint pjp) throws Throwabl e {
/] start stopwatch
Obj ect retVal = pjp.proceed();
/| stop stopwatch
return retVal;

The value returned by the around advice will be the return value seen by the caller of the method. A
simple caching aspect for example could return a value from a cache if it has one, and invoke proceed()
if it does not. Note that proceed may be invoked once, many times, or not at all within the body of the
around advice, all of these are quite legal.

Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice
signature (as we saw for the returning and throwing examples above) rather than work with Cbj ect []
arrays all the time. We'll see how to make argument and other contextual values available to the advice
body in a moment. First let's take a look at how to write generic advice that can find out about the method
the advice is currently advising.

Access to the current Joi nPoi nt

Any advice method may declare as its first parameter, a parameter of type
org. aspectj .l ang. Joi nPoi nt (please note that around advice is required to declare a first
parameter of type Pr oceedi ngJoi nPoi nt, which is a subclass of Joi nPoi nt. The Joi nPoi nt
interface provides a number of useful methods such as get Ar gs() (returns the method arguments),
get Thi s() (returns the proxy object), get Tar get () (returns the target object), get Si gnat ur e()
(returns a description of the method that is being advised) and t oSt ri ng() (prints a useful description
of the method being advised). Please do consult the Javadocs for full details.

Passing parameters to advice

We've already seen how to bind the returned value or exception value (using after returning and after
throwing advice). To make argument values available to the advice body, you can use the binding form
of ar gs. If a parameter name is used in place of a type name in an args expression, then the value
of the corresponding argument will be passed as the parameter value when the advice is invoked. An
example should make this clearer. Suppose you want to advise the execution of dao operations that

Spring Framework
3.2.1.RELEASE Reference Documentation 208

Spring Framework

take an Account object as the first parameter, and you need access to the account in the advice body.
You could write the following:

@ef ore("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation() &&" +
"args(account,..)")
public void validateAccount (Account account) {
...

}

The args(account, ..) part of the pointcut expression serves two purposes: firstly, it restricts
matching to only those method executions where the method takes at least one parameter, and the
argument passed to that parameter is an instance of Account ; secondly, it makes the actual Account
object available to the advice via the account parameter.

Another way of writing this is to declare a pointcut that "provides" the Account object value when it
matches a join point, and then just refer to the named pointcut from the advice. This would look as
follows:

@oi nt cut ("com xyz. nyapp. Syst emAr chi t ect ure. dat aAccessOperation() &&' +
"args(account,..)")
private voi d account Dat aAccessOper ati on(Account account) {}

@Bef or e("account Dat aAccessOper ati on(account) ")
public void validateAccount (Account account) {
1.

}

The interested reader is once more referred to the Aspectd programming guide for more details.

The proxy object (this), target object (target), and annotations (@nithin, @ ar get
@nnot ati on, @r gs) can all be bound in a similar fashion. The following example shows how you
could match the execution of methods annotated with an @udi t abl e annotation, and extract the audit
code.

First the definition of the @\udi t abl e annotation:

@Ret enti on(Ret enti onPol i cy. RUNTI MVE)
@rar get (El emrent Type. METHOD)
public @nterface Auditable {

Audi t Code val ue();

}

And then the advice that matches the execution of @\udi t abl e methods:

@ef ore("com xyz. lib. Poi ntcuts.anyPublicMethod() && " +
"@nnot ati on(audi tabl e)")
public void audit(Auditable auditable) {
Audi t Code code = auditabl e.val ue();
...

Advice parameters and generics

Spring AOP can handle generics used in class declarations and method parameters. Suppose you have
a generic type like this:

Spring Framework
3.2.1.RELEASE Reference Documentation 209

Spring Framework

public interface Sanpl e<T> {

voi d sanpl eGeneri cMet hod(T param;

voi d sanpl eCGeneri cCol | ecti onMet hod(Col | ecti on>T> paran) ;
}

You can restrict interception of method types to certain parameter types by simply typing the advice
parameter to the parameter type you want to intercept the method for:

@Bef ore("execution(* ..Sanpl e+. sanpl eGeneri cMet hod(*)) && args(param")
public void beforeSanpl eMet hod(My Type param {
/] Advice inplenmentation

}

That this works is pretty obvious as we already discussed above. However, it's worth pointing out that
this won't work for generic collections. So you cannot define a pointcut like this:

@Bef ore("execution(* ..Sanpl e+. sanpl eCGeneri cCol | ecti onMet hod(*)) && args(param")
public voi d beforeSanpl eMet hod(Col | ecti on<MyType> param {
/1 Advice inplenmentation

}

To make this work we would have to inspect every element of the collection, which is not reasonable
as we also cannot decide how to treat nul | values in general. To achieve something similar to this you
have to type the parameter to Col | ect i on<?> and manually check the type of the elements.

Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions
to declared parameter names in (advice and pointcut) method signatures. Parameter names are not
available through Java reflection, so Spring AOP uses the following strategies to determine parameter
names:

1. If the parameter names have been specified by the user explicitly, then the specified parameter
names are used: both the advice and the pointcut annotations have an optional "argNames" attribute
which can be used to specify the argument names of the annotated method - these argument names
are available at runtime. For example:

@Bef or e(
val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target (bean) &&
@nnot ati on(audi table)",
ar gNanes="bean, audi t abl e")
public void audit(Object bean, Auditable auditable) {
Audi t Code code = auditable.val ue();
/1 ... use code and bean

If the first parameter is of the Joi nPoi nt , Pr oceedi ngJoi nPoi nt, or Joi nPoi nt. St ati cPart
type, you may leave out the name of the parameter from the value of the "argNames" attribute. For
example, if you modify the preceding advice to receive the join point object, the "argNames" attribute
need not include it:

Spring Framework
3.2.1.RELEASE Reference Documentation 210

Spring Framework

@Bef or e(
val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target (bean) &&
@nnot ati on(audi table)",
ar gNanes="bean, audi t abl e")
public void audit(JoinPoint jp, Object bean, Auditable auditable) {
Audi t Code code = auditable.val ue();
/1 ... use code, bean, and jp

The special treatment given to the first parameter of the Joi nPoi nt , Pr oceedi ngJoi nPoi nt , and
Joi nPoi nt . Stati cPart types is particularly convenient for advice that do not collect any other
join point context. In such situations, you may simply omit the "argNames" attribute. For example,
the following advice need not declare the "argNames" attribute:

@Bef or e(
"“com xyz. | i b. Poi ntcuts.anyPubl i cMet hod()")
public void audit(JoinPoint jp) {
/Il ... use jp
}

2. Using the ' argNanes' attribute is a little clumsy, so if the ' ar gNanmes' attribute has not been
specified, then Spring AOP will look at the debug information for the class and try to determine
the parameter names from the local variable table. This information will be present as long as the
classes have been compiled with debug information (* - g: var s' ata minimum). The consequences
of compiling with this flag on are: (1) your code will be slightly easier to understand (reverse engineer),
(2) the class file sizes will be very slightly bigger (typically inconsequential), (3) the optimization
to remove unused local variables will not be applied by your compiler. In other words, you should
encounter no difficulties building with this flag on.

If an @Aspect] aspect has been compiled by the AspectJ compiler (ajc) even without the debug
information then there is no need to add the argNames attribute as the compiler will retain the needed
information.

3. If the code has been compiled without the necessary debug information, then Spring AOP will
attempt to deduce the pairing of binding variables to parameters (for example, if only one variable
is bound in the pointcut expression, and the advice method only takes one parameter, the pairing
is obvious!). If the binding of variables is ambiguous given the available information, then an
Anbi guousBi ndi ngExcept i on will be thrown.

4. If all of the above strategies fail then an | | | egal Ar gunrent Except i on will be thrown.
Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works
consistently across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature
binds each of the method parameters in order. For example:

@ ound(" execution(List<Account> find*(..)) &&" +
"com Xxyz. myapp. Syst emAr chi t ecture. i nDat aAccessLayer() && " +
"ar gs(account Hol der NanePattern)")
public Object preProcessQueryPattern(Proceedi ngJoi nPoint pjp, String
account Hol der NanePat t er n)
throws Throwabl e {
String newPattern = preProcess(account Hol der NanePat t ern) ;
return pjp.proceed(new Object[] {newPattern});
}

Spring Framework
3.2.1.RELEASE Reference Documentation 211

Spring Framework

In many cases you will be doing this binding anyway (as in the example above).
Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP
follows the same precedence rules as AspectJ to determine the order of advice execution. The highest
precedence advice runs first "on the way in" (so given two pieces of before advice, the one with highest
precedence runs first). "On the way out" from a join point, the highest precedence advice runs last (so
given two pieces of after advice, the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point,
unless you specify otherwise the order of execution is undefined. You can control the order of
execution by specifying precedence. This is done in the normal Spring way by either implementing the
or g. spri ngframewor k. core. O der ed interface in the aspect class or annotating it with the Or der
annotation. Given two aspects, the aspect returning the lower value from Or der ed. get Val ue() (or
the annotation value) has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the
ordering is undefined (since there is no way to retrieve the declaration order via reflection for javac-
compiled classes). Consider collapsing such advice methods into one advice method per join point in
each aspect class, or refactor the pieces of advice into separate aspect classes - which can be ordered
at the aspect level.

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of
those objects.

An introduction is made using the @Pecl arePar ents annotation. This annotation is used to
declare that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface Def aul t UsageTr acked, the following
aspect declares that all implementors of service interfaces also implement the UsageTr acked interface.
(In order to expose statistics via JMX for example.)

@\spect
public class UsageTracki ng {

@ecl ar ePar ent s(val ue="com xzy. myapp. servi ce. *+",
def aul t | npl =Def aul t UsageTr acked. cl ass)
public static UsageTracked mi xin;

@ef ore("com xyz. myapp. Syst emAr chi t ect ure. busi nessService() &&" +
"t hi s(usageTracked) ")
public void recordUsage(UsageTracked usageTracked) ({
usageTr acked. i ncrenent UseCount () ;

}

The interface to be implemented is determined by the type of the annotated field. The val ue attribute
of the @ecl ar ePar ent s annotation is an AspectJ type pattern :- any bean of a matching type will
implement the UsageTracked interface. Note that in the before advice of the above example, service
beans can be directly used as implementations of the UsageTr acked interface. If accessing a bean
programmatically you would write the following:

Spring Framework
3.2.1.RELEASE Reference Documentation 212

Spring Framework

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models
(This is an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. AspectJ calls
this the singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring
supports AspectJ's pert hi s and pert ar get instantiation models (per cf | ow, percfl owbel ow,
and pert ypewi t hi n are not currently supported).

A "perthis" aspect is declared by specifying a pert hi s clause in the @Aspect annotation. Let's look
at an example, and then we'll explain how it works.

@\spect (" perthi s(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())")
public class MyAspect {

private int soneState

@Bef ore(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce())
public void recordServiceUsage() {
...

}

The effect of the ' pert hi s' clause is that one aspect instance will be created for each unique service
object executing a business service (each unigue object bound to 'this' at join points matched by the
pointcut expression). The aspect instance is created the first time that a method is invoked on the service
object. The aspect goes out of scope when the service object goes out of scope. Before the aspect
instance is created, none of the advice within it executes. As soon as the aspect instance has been
created, the advice declared within it will execute at matched join points, but only when the service object
is the one this aspect is associated with. See the AspectJ programming guide for more information on
per-clauses.

The' pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect
instance for each unique target object at matched join points.

Example

Now that you have seen how all the constituent parts work, let's put them together to do something
usefull

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely to succeed next time round. For business services
where it is appropriate to retry in such conditions (idempotent operations that don't need to go back to
the user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing
a Pessim sticlLocki ngFai | ureExcepti on. This is a requirement that clearly cuts across multiple
services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed
multiple times. Here's how the basic aspect implementation looks:

Spring Framework
3.2.1.RELEASE Reference Documentation 213

Spring Framework

@\spect
public class Concurrent Operati onExecutor inplenents O dered {

private static final int DEFAULT_MAX RETRIES = 2;

private int nmaxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void set MaxRetries(int maxRetries) {
this. maxRetries = maxRetri es;

public int getOrder() {
return this.order;

public void setOder(int order) {
this.order = order;

@\ ound(" com xyz. myapp. Syst emAr chi t ect ur e. busi nessService()")
public Obj ect doConcurrent Operation(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi m sti cLocki ngFai | ureException | ockFail ureExcepti on;
do {
numAt t enpt s++;
try {
return pjp.proceed();
}
cat ch(Pessi m sticLocki ngFai | ureException ex) {
| ockFai | ureException = ex;

}
whi | e(numAttenpts <= this.naxRetries);

throw | ockFai | ur eExcepti on;

Note that the aspect implements the Ordered interface so we can set the precedence of the
aspect higher than the transaction advice (we want a fresh transaction each time we retry).
The maxRetries and order properties will both be configured by Spring. The main action
happens in the doConcurrent Operati on around advice. Notice that for the moment we're
applying the retry logic to all busi nessServi ce()s. We try to proceed, and if we fail with an
Pessi m sti cLocki ngFai | ur eExcept i on we simply try again unless we have exhausted all of our
retry attempts.

The corresponding Spring configuration is:

<aop: aspectj - aut opr oxy/ >

<bean i d="concurrent Operati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurrent Oper at i onExecut or ">
<property nane="maxRetries" val ue="3"/>
<property nane="order" val ue="100"/>
</ bean>

To refine the aspect so that it only retries idempotent operations, we might define an | denpot ent
annotation:

Spring Framework
3.2.1.RELEASE Reference Documentation 214

Spring Framework

@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)
public @nterface |denpotent {
/1 marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the
aspect to only retry idempotent operations simply involves refining the pointcut expression so that only
@ denpot ent operations match:

@\r ound(" com xyz. myapp. Syst emAr chi t ect ure. busi nessService() &% " +
"@nnot ati on(com xyz. nyapp. servi ce. | denpotent)")
publ i c Obj ect doConcurrent Operation(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {

}

9.3 Schema-based AOP support

If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers
support for defining aspects using the new "aop" namespace tags. The exact same pointcut expressions
and advice kinds are supported as when using the @AspectJ style, hence in this section we will focus
on the new syntax and refer the reader to the discussion in the previous section (Section 9.2, “@Aspect]
support”) for an understanding of writing pointcut expressions and the binding of advice parameters.

To use the aop hamespace tags described in this section, you need to import the spring-aop schema as
described in Appendix E, XML Schema-based configuration. See the section called “The aop schema”
for how to import the tags in the aop namespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an
<aop: confi g> element (you can have more than one <aop: confi g> element in an application
context configuration). An <aop: conf i g> element can contain pointcut, advisor, and aspect elements
(note these must be declared in that order).

© Warning

The <aop: config> style of configuration makes heavy use of Spring's auto-proxying
mechanism. This can cause issues (such as advice not being woven) if you are already
using explicit auto-proxying via the use of BeanNameAut oPr oxyCr eat or or suchlike. The
recommended usage pattern is to use either just the <aop: confi g> style, or just the
Aut oPr oxyCr eat or style.

Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in your Spring
application context. The state and behavior is captured in the fields and methods of the object, and the
pointcut and advice information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the
ref attribute:

Spring Framework
3.2.1.RELEASE Reference Documentation 215

Spring Framework

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">

</ aop: aspect >
</ aop: confi g>

<bean id="aBean" class="...">

</ bean>

The bean backing the aspect ("aBean" in this case) can of course be configured and dependency
injected just like any other Spring bean.

Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to
be shared across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as
follows:

<aop: confi g>

<aop: poi nt cut i d="busi nessServi ce"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: confi g>

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as
described in Section 9.2, “@AspectJ support”. If you are using the schema based declaration style with
Java 5, you can refer to named pointcuts defined in types (@Aspects) within the pointcut expression,
but this feature is not available on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection
APIs). On JDK 1.5 therefore, another way of defining the above pointcut would be:

<aop: confi g>

<aop: poi nt cut i d="busi nessServi ce"
expressi on="com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()"/ >

</ aop: confi g>

Assuming you have a Syst emAr chi t ect ure aspect as described in the section called “Sharing
common pointcut definitions”.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:
<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

<aop: poi nt cut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: aspect >

</ aop: confi g>

Spring Framework
3.2.1.RELEASE Reference Documentation 216

Spring Framework

Much the same way in an @AspectJ aspect, pointcuts declared using the schema based definition style
may collect join point context. For example, the following pointcut collects the 'this' object as the join
point context and passes it to advice:

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">
<aop: poi nt cut i d="busi nessService"
expressi on="executi on(* com xyz. myapp.service.*.*(..)) &anp; &np
this(service)"/>
<aop: bef ore poi ntcut - ref ="busi nessServi ce" nethod="nonitor"/>

</ aop: aspect >

</ aop: confi g>

The advice must be declared to receive the collected join point context by including parameters of the
matching names:

public void nonitor(Object service) {

}

When combining pointcut sub-expressions, '&&' is awkward within an XML document, and so the
keywords 'and’, 'or' and 'not' can be used in place of '&&', '||' and "' respectively. For example, the
previous pointcut may be better written as:

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">
<aop: poi nt cut i d="busi nessServi ce"
expressi on="execution(* com xyz. myapp.service.*.*(..)) and this(service)"/>
<aop: bef ore poi ntcut-ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named
pointcuts to form composite pointcuts. The named pointcut support in the schema based definition style
is thus more limited than that offered by the @AspectJ style.

Declaring advice

The same five advice kinds are supported as for the @AspectJ style, and they have exactly the same
semantics.

Before advice

Before advice runs before a matched method execution. It is declared inside an <aop: aspect > using
the <aop:before> element.

Spring Framework
3.2.1.RELEASE Reference Documentation 217

Spring Framework

<aop: aspect id="beforeExanpl e" ref="aBean">

<aop: before
poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doAccessCheck"/ >

</ aop: aspect >

Here dat aAccessQper at i on is the id of a pointcut defined at the top (<aop: confi g>) level. To
define the pointcut inline instead, replace the poi nt cut - r ef attribute with a poi nt cut attribute:

<aop: aspect id="beforeExanpl e" ref="aBean">
<aop: bef ore

poi nt cut =" executi on(* com xyz. nyapp.dao.*.*(..))"
net hod="doAccessCheck" />

</ aop: aspect >

As we noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve
the readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This
method must be defined for the bean referenced by the aspect element containing the advice. Before a
data access operation is executed (a method execution join point matched by the pointcut expression),
the "doAccessCheck" method on the aspect bean will be invoked.

After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside
an <aop: aspect > in the same way as before advice. For example:

<aop: aspect id="afterReturni ngExanpl e" ref="aBean">
<aop: after-returning

poi nt cut - r ef =" dat aAccessOper at i on"
nmet hod="doAccessCheck"/ >

</ aop: aspect >

Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use
the returning attribute to specify the name of the parameter to which the return value should be passed:

Spring Framework
3.2.1.RELEASE Reference Documentation 218

Spring Framework

<aop: aspect id="afterReturni ngExanpl e" ref="aBean">

<aop: after-returning
poi nt cut - r ef =" dat aAccessOper ati on"
returni ng="retVal"
nmet hod="doAccessCheck"/ >

</ aop: aspect >

The doAccessCheck method must declare a parameter named r et Val . The type of this parameter
constrains matching in the same way as described for @AfterReturning. For example, the method
signature may be declared as:

public void doAccessCheck(Object retVal) {...

After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop: aspect > using the after-throwing element:

<aop: aspect id="afterThrow ngExanpl e" ref="aBean">
<aop: after-throw ng

poi nt cut - r ef =" dat aAccessOper ati on"
met hod="doRecover yActi ons"/ >

</ aop: aspect >

Just as in the @Aspect] style, it is possible to get hold of the thrown exception within the advice body.
Use the throwing attribute to specify the name of the parameter to which the exception should be passed:

<aop: aspect id="afterThrow ngExanpl e" ref="aBean">
<aop: after-throw ng
poi nt cut - r ef =" dat aAccessOper ati on"

t hr owi ng="dat aAccessEx"
met hod="doRecover yActi ons"/ >

</ aop: aspect >

The doRecoveryActions method must declare a parameter named dat aAccessEx. The type of this
parameter constrains matching in the same way as described for @AfterThrowing. For example, the
method signature may be declared as:

public void doRecoveryActi ons(Dat aAccessExcepti on dataAccessEx) {...

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the af t er
element:

Spring Framework
3.2.1.RELEASE Reference Documentation 219

Spring Framework

<aop: aspect id="afterFinallyExanple" ref="aBean">
<aop: after

poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doRel easeLock" />

</ aop: aspect >

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution.
It has the opportunity to do work both before and after the method executes, and to determine when,
how, and even if, the method actually gets to execute at all. Around advice is often used if you need
to share state before and after a method execution in a thread-safe manner (starting and stopping a
timer for example). Always use the least powerful form of advice that meets your requirements; don't
use around advice if simple before advice would do.

Around advice is declared using the aop: ar ound element. The first parameter of the advice method
must be of type Pr oceedi ngJoi nPoi nt . Within the body of the advice, calling pr oceed() on the
Pr oceedi ngJoi nPoi nt causes the underlying method to execute. The pr oceed method may also
be calling passing in an Obj ect [] - the values in the array will be used as the arguments to the method
execution when it proceeds. See the section called “Around advice” for notes on calling proceed with
an Qbj ect[].

<aop: aspect id="aroundExanpl e" ref="aBean">
<aop: ar ound

poi nt cut - r ef =" busi nessServi ce"
met hod="doBasi cProfiling"/>

</ aop: aspect >

The implementation of the doBasi cPr of i | i ng advice would be exactly the same as in the @AspectJ
example (minus the annotation of course):

publ i c Obj ect doBasi cProfiling(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
/] start stopwatch
bj ect retVal = pjp.proceed();
/] stop stopwatch
return retVal

Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the
@AspectJ support - by matching pointcut parameters by name against advice method parameters. See
the section called “Advice parameters” for details. If you wish to explicitly specify argument names for
the advice methods (not relying on the detection strategies previously described) then this is done using
the ar g- names attribute of the advice element, which is treated in the same manner to the "argNames"
attribute in an advice annotation as described in the section called “Determining argument names”. For
example:

Spring Framework
3.2.1.RELEASE Reference Documentation 220

Spring Framework

<aop: before
poi nt cut ="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() and @nnot ati on(auditable)"
nmet hod="audi t "
ar g- names="audi t abl e"/ >

The ar g- nanes attribute accepts a comma-delimited list of parameter names.

Find below a slightly more involved example of the XSD-based approach that illustrates some around
advice used in conjunction with a number of strongly typed parameters.

package x.y.service
public interface FooService {

Foo get Foo(String fooNanme, int age);
}

public class DefaultFooService inplenments FooService {

public Foo getFoo(String name, int age) {
return new Foo(nane, age);

}

Next up is the aspect. Notice the fact that the profil e(..) method accepts a number of strongly-
typed parameters, the first of which happens to be the join point used to proceed with the method call:
the presence of this parameter is an indication that the prof i | e(. .) isto be used as ar ound advice:

package Xx.y;

i nport org.aspectj .| ang. Proceedi ngJoi nPoi nt;
i mport org.springframework. util.StopWatch

public class SinpleProfiler {

public Object profil e(Proceedi ngloinPoint call, String nane, int age) throws Throwabl e
{
St opWat ch cl ock = new St opWat ch(
"Profiling for '" + pane + "' and '" + age + "'");
try {
clock.start(call.toShortString());
return call.proceed();
} finally {
cl ock. stop();
System out . println(clock.prettyPrint());

Finally, here is the XML configuration that is required to effect the execution of the above advice for
a particular join point:

Spring Framework
3.2.1.RELEASE Reference Documentation 221

Spring Framework

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: aop="http://ww. springfranmework. or g/ schema/ aop"

xsi : schemalLocat i on="
http: //ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngfranmewor k. or g/ schema/ beans/
spri ng- beans. xsd
http://ww. springframework. org/ schema/ aop http://ww. springfranmewor k. org/ schena/ aop/
spring- aop. xsd" >

<I-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean i d="fooService" class="x.y.service. Defaul t FooService"/>

<I-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SinpleProfiler"/>

<aop: confi g>
<aop: aspect ref="profiler">

<aop: poi ntcut id="t heExecuti onCf SomeFooSer vi ceMet hod"
expressi on="execution(* x.y.service.FooService.getFoo(String,int))

and args(nane, age)"/>

<aop: around poi nt cut -ref ="t heExecut i onOf SoneFooSer vi ceMet hod"
met hod="profile"/>

</ aop: aspect >
</ aop: confi g>

</ beans>

If we had the following driver script, we would get output something like this on standard output:

i nport org.springfranmework. beans. fact ory. BeanFact ory;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
i mport x.y.service. FooService

public final class Boot ({

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new C assPat hXm Appl i cati onContext ("x/y/plain.xm");
FooServi ce foo = (FooService) ctx.getBean("fooService");
f 0o. get Foo(" Pengo", 12);

StopWatch 'Profiling for 'Pengo’ and '12'': running time (mllis) =0

00000 ? execution(getFoo)

Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are
as described in the section called “Advice ordering”. The precedence between aspects is determined
by either adding the O der annotation to the bean backing the aspect or by having the bean implement
the Or der ed interface.

Spring Framework
3.2.1.RELEASE Reference Documentation 222

Spring Framework

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of
those objects.

An introduction is made using the aop: decl ar e- parent s element inside an aop: aspect This
element is used to declare that matching types have a new parent (hence the name). For example, given
an interface UsageTr acked, and an implementation of that interface Def aul t UsageTr acked, the
following aspect declares that all implementors of service interfaces also implement the UsageTr acked
interface. (In order to expose statistics via JMX for example.)

<aop: aspect id="usageTrackerAspect" ref="usageTracki ng">

<aop: decl ar e- parent s
types- mat chi ng="com xzy. myapp. servi ce. *+"
i mpl enent -i nt erface="com xyz. myapp. servi ce. tracki ng. UsageTr acked"
def aul t -i npl =" com xyz. nyapp. servi ce. t racki ng. Def aul t UsageTr acked"/ >

<aop: bef ore
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce()
and thi s(usageTracked)"
met hod="r ecor dUsage"/ >

</ aop: aspect >

The class backing the usageTr acki ng bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTr acked. i ncrenent UseCount () ;

}

The interface to be implemented is determined by i npl enent - i nt er f ace attribute. The value of the
t ypes- mat chi ng attribute is an AspectJ type pattern :- any bean of a matching type will implement the
UsageTr acked interface. Note that in the before advice of the above example, service beans can be
directly used as implementations of the UsageTr acked interface. If accessing a bean programmatically
you would write the following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other
instantiation models may be supported in future releases.

Advisors

The concept of "advisors" is brought forward from the AOP support defined in Spring 1.2 and does not
have a direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single
piece of advice. The advice itself is represented by a bean, and must implement one of the advice
interfaces described in the section called “Advice types in Spring”. Advisors can take advantage of
AspectJ pointcut expressions though.

Spring 2.0 supports the advisor concept with the <aop: advi sor > element. You will most commonly
see it used in conjunction with transactional advice, which also has its own namespace support in Spring
2.0. Here's how it looks:

Spring Framework
3.2.1.RELEASE Reference Documentation 223

Spring Framework

<aop: confi g>

<aop: poi nt cut i d="busi nessServi ce"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: advi sor
poi nt cut - r ef =" busi nessServi ce"
advi ce-ref ="t x-advi ce"/>

</ aop: confi g>

<t x: advi ce id="t x-advice">
<tx:attributes>
<t x: net hod name="*" propagati on="REQUI RED"'/ >
</[tx:attributes>
</t x:advi ce>

As well as the poi nt cut - r ef attribute used in the above example, you can also use the poi nt cut
attribute to define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering, use the or der
attribute to define the Or der ed value of the advisor.

Example

Let's see how the concurrent locking failure retry example from the section called “Example” looks when
rewritten using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely it will succeed next time round. For business services
where it is appropriate to retry in such conditions (idempotent operations that don't need to go back to
the user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing
a Pessi m sticLocki ngFai | ur eExcepti on. This is a requirement that clearly cuts across multiple
services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we'll need to use around advice so that we can call proceed

multiple times. Here's how the basic aspect implementation looks (it's just a regular Java class using
the schema support):

Spring Framework
3.2.1.RELEASE Reference Documentation 224

Spring Framework

public class Concurrent Operati onExecutor inplenments O dered {
private static final int DEFAULT_MAX RETRI ES = 2;

private int maxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void set MaxRetries(int naxRetries) {
this. maxRetries = naxRetries;

}

public int getOder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

publ i c Object doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numittenpts = O;
Pessi mi sti cLocki ngFai | ureException | ockFail ureExcepti on;
do {
numAt t enpt s++;
try {
return pjp.proceed();
}
cat ch(Pessi m sticLocki ngFai | ureException ex) {
| ockFai | ureException = ex;
}

}
whi | e(numAttenpts <= this. maxRetries);

throw | ockFai | ureExcepti on;

Note that the aspect implements the O dered interface so we can set the precedence of the
aspect higher than the transaction advice (we want a fresh transaction each time we retry). The
maxRet ri es and or der properties will both be configured by Spring. The main action happens
in the doConcurr ent Oper ati on around advice method. We try to proceed, and if we fail with a
Pessi m st i cLocki ngFai | ur eExcepti on we simply try again unless we have exhausted all of our
retry attempts.

This class is identical to the one used in the @AspectJ example, but with the annotations removed.

The corresponding Spring configuration is:

Spring Framework
3.2.1.RELEASE Reference Documentation 225

Spring Framework

<aop: confi g>
<aop: aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

<aop: poi nt cut i d="i denpot ent Oper at i on"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: ar ound
poi nt cut - ref ="i denpot ent Oper ati on"
met hod="doConcurr ent Operati on"/>

</ aop: aspect >
</ aop: confi g>

<bean i d="concurrent Operati onExecut or"
cl ass="com xyz. myapp. servi ce. i npl . Concurr ent Oper ati onExecut or" >
<property name="nmaxRetries" val ue="3"/>
<property nane="order" val ue="100"/>
</ bean>

Notice that for the time being we assume that all business services are idempotent. If this is not the
case we can refine the aspect so that it only retries genuinely idempotent operations, by introducing
an | denpot ent annotation:

@Ret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface |denpotent {
/1 marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the
aspect to retry only idempotent operations simply involves refining the pointcut expression so that only
@ denpot ent operations match:

<aop: poi ntcut i d="idenpot ent Oper ati on"
expressi on="executi on(* com xyz. myapp.service.*.*(..)) and
@nnot ati on(com xyz. myapp. service. | denpotent)"/>

9.4 Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how
do you decide between using Spring AOP or AspectJ, and between the Aspect language (code) style,
@AspectJ annotation style, or the Spring XML style? These decisions are influenced by a number of
factors including application requirements, development tools, and team familiarity with AOP.

Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full Aspect] as there is no
requirement to introduce the AspectJ compiler / weaver into your development and build processes.
If you only need to advise the execution of operations on Spring beans, then Spring AOP is the right
choice. If you need to advise objects not managed by the Spring container (such as domain objects
typically), then you will need to use AspectJ. You will also need to use Aspect] if you wish to advise join
points other than simple method executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the AspectJ language syntax (also known as the "code
style") or the @AspectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been

Spring Framework
3.2.1.RELEASE Reference Documentation 226

Spring Framework

made for you... use the code style. If aspects play a large role in your design, and you are able to use
the AspectJ Development Tools (AJDT) plugin for Eclipse, then the AspectJ language syntax is the
preferred option: it is cleaner and simpler because the language was purposefully designed for writing
aspects. If you are not using Eclipse, or have only a few aspects that do not play a major role in your
application, then you may want to consider using the @AspectJ style and sticking with a regular Java
compilation in your IDE, and adding an aspect weaving phase to your build script.

@Aspectd or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @AspectJ or XML style. Clearly if
you are not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there
are various tradeoffs to consider.

The XML style will be most familiar to existing Spring users. It can be used with any JDK level (referring
to named pointcuts from within pointcut expressions does still require Java 5+ though) and is backed by
genuine POJOs. When using AOP as a tool to configure enterprise services then XML can be a good
choice (a good test is whether you consider the pointcut expression to be a part of your configuration you
might want to change independently). With the XML style arguably it is clearer from your configuration
what aspects are present in the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single,
unambiguous, authoritative representation of any piece of knowledge within a system. When using the
XML style, the knowledge of how a requirement is implemented is split across the declaration of the
backing bean class, and the XML in the configuration file. When using the @AspectJ style there is a
single module - the aspect - in which this information is encapsulated. Secondly, the XML style is slightly
more limited in what it can express than the @AspectJ style: only the "singleton" aspect instantiation
model is supported, and it is not possible to combine named pointcuts declared in XML. For example,
in the @AspectJ style you can write something like:

@Poi nt cut (execution(* get*()))
public void propertyAccess() {}

@oi nt cut (executi on(org. xyz. Account+ *(..))
public void operationReturni ngAnAccount () {}

@Poi nt cut (propertyAccess() && operati onReturni ngAnAccount ())
public void account PropertyAccess() {}

In the XML style | can declare the first two pointcuts:

<aop: poi ntcut id="propertyAccess"
expressi on="execution(* get*())"/>

<aop: poi ntcut id="operationReturni ngAnAccount"
expressi on="execution(org. xyz. Account+ *(..))"/>

The downside of the XML approach is that you cannot define the 'account Pr oper t yAccess' pointcut
by combining these definitions.

The @Aspect] style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects
can be understood (and thus consumed) both by Spring AOP and by Aspect] - so if you later decide
you need the capabilities of AspectJ to implement additional requirements then it is very easy to migrate

Spring Framework
3.2.1.RELEASE Reference Documentation 227

http://www.eclipse.org/ajdt/

Spring Framework

to an AspectJ-based approach. On balance the Spring team prefer the @AspectJ style whenever you
have aspects that do more than simple "configuration" of enterprise services.

9.5 Mixing aspect types

It is perfectly possible to mix @AspectJ style aspects using the autoproxying support, schema-defined
<aop: aspect > aspects, <aop: advi sor > declared advisors and even proxies and interceptors
defined using the Spring 1.2 style in the same configuration. All of these are implemented using the
same underlying support mechanism and will co-exist without any difficulty.

9.6 Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object.
(JDK dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be
used. All of the interfaces implemented by the target type will be proxied. If the target object does not
implement any interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the
target object, not just those implemented by its interfaces) you can do so. However, there are some
issues to consider:

» final methods cannot be advised, as they cannot be overridden.

» As of Spring 3.2, it is no longer necessary to add CGLIB to your project classpath, as CGLIB classes
are repackaged under org.springframework and included directly in the spring-core JAR. This means
that CGLIB-based proxy support ‘just works' in the same way that JDK dynamic proxies always have.

» The constructor of your proxied object will be called twice. This is a natural consequence of the CGLIB
proxy model whereby a subclass is generated for each proxied object. For each proxied instance, two
objects are created: the actual proxied object and an instance of the subclass that implements the
advice. This behavior is not exhibited when using JDK proxies. Usually, calling the constructor of the
proxied type twice, is not an issue, as there are usually only assignments taking place and no real
logic is implemented in the constructor.

To force the use of CGLIB proxies set the value of the proxy-target-cl ass attribute of the
<aop: confi g> element to true:

<aop: config proxy-target-class="true">
<!-- other beans defined here... -->
</ aop: confi g>

To force CGLIB proxying when using the @AspectJ autoproxy support, set the ' proxy-t arget -
cl ass' attribute of the <aop: aspectj - aut opr oxy> elementtot r ue:

<aop: aspectj - aut opr oxy proxy-target-class="true"/>

© Note

Multiple <aop: confi g/ > sections are collapsed into a single unified auto-proxy creator
at runtime, which applies the strongest proxy settings that any of the <aop: confi g/ >

Spring Framework
3.2.1.RELEASE Reference Documentation 228

Spring Framework

sections (typically from different XML bean definition files) specified. This also applies to the
<t x: annot ati on-driven/ > and <aop: aspect j - aut opr oxy/ > elements.

To be clear: using 'proxy-target-class="true"' on <tx:annotation-driven/>,
<aop: aspect | - aut opr oxy/ > or <aop: confi g/ > elements will force the use of CGLIB
proxies for all three of them.

Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement
actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied
with the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight
object reference, as illustrated by the following code snippet.

public class SinplePojo inplements Pojo {

public void foo() {
/1 this next nethod invocation is a direct
call on the "this' reference
this.bar();

}

public void bar() {
/'l sone |ogic..

}

If you invoke a method on an object reference, the method is invoked directly on that object reference,
as can be seen below.

Calling code pojo.foo ()
F

4

Plain Object b foo() on the object

public class Main {
public static void main(String[] args) {
Poj o pojo = new Si npl ePoj o();

/'l this is a direct nethod call on the 'pojo' reference
poj 0. foo();

Spring Framework
3.2.1.RELEASE Reference Documentation 229

Spring Framework

Things change slightly when the reference that client code has is a proxy. Consider the following diagram
and code snippet.

pojo. foo ()
foo() on the proxy

Flain Object then foo() on the cbject
public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. addl nterface(Pojo.cl ass);
factory. addAdvi ce(new RetryAdvice());

Poj o pojo = (Pojo) factory.getProxy();

/1 this is a method call on the proxy!
poj 0. foo();

The key thing to understand here is that the client code inside the mai n(..) of the Mai n class
has a reference to the proxy. This means that method calls on that object reference will be calls on
the proxy, and as such the proxy will be able to delegate to all of the interceptors (advice) that are
relevant to that particular method call. However, once the call has finally reached the target object, the
Si npl ePoj o reference in this case, any method calls that it may make on itself, such as t hi s. bar ()
or t his.foo(), are going to be invoked against the t hi s reference, and not the proxy. This has
important implications. It means that self-invocation is not going to result in the advice associated with
a method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to
refactor your code such that the self-invocation does not happen. For sure, this does entail some work
on your part, but it is the best, least-invasive approach. The next approach is absolutely horrendous,
and | am almost reticent to point it out precisely because it is so horrendous. You can (choke!) totally
tie the logic within your class to Spring AOP by doing this:

Spring Framework
3.2.1.RELEASE Reference Documentation 230

Spring Framework

public class SinplePojo inplements Pojo {

public void foo() {
/1 this works, but... gah!
((Poj o) AopContext.currentProxy()).bar();

}

public void bar() {
// sonme logic...

}

This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is being
used in an AOP context, which flies in the face of AOP. It also requires some additional configuration
when the proxy is being created:

public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. adddl nt er f ace(Poj o. cl ass);
factory. addAdvi ce(new RetryAdvice());
factory. set ExposeProxy(true);

Poj o pojo = (Pojo) factory.getProxy();

/] this is a nmethod call on the proxy!
poj o. foo();

Finally, it must be noted that AspectJ does not have this self-invocation issue because it is not a proxy-
based AOP framework.

9.7 Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop: conf i g> or <aop: aspectj -
aut opr oxy>, itis also possible programmatically to create proxies that advise target objects. For the full
details of Spring's AOP API, see the next chapter. Here we want to focus on the ability to automatically
create proxies using @AspectJ aspects.

The class or g. spri ngf ramewor k. aop. aspectj . annot at i on. Aspect JPr oxyFact ory can be
used to create a proxy for a target object that is advised by one or more @AspectJ aspects. Basic usage
for this class is very simple, as illustrated below. See the Javadocs for full information.

Spring Framework
3.2.1.RELEASE Reference Documentation 231

Spring Framework

/] create a factory that can generate a proxy for the given target object
Aspect JProxyFactory factory = new Aspect JProxyFactory(target Cbject);

/] add an aspect, the class nust be an @\spectJ aspect
/1 you can call this as many tinmes as you need with different aspects
factory. addAspect (Securi t yManager. cl ass);

/1 you can al so add existing aspect instances, the type of the object supplied nust be an
@\spectJ aspect
factory. addAspect (usageTracker);

/1 now get the proxy object...
M/l nterfaceType proxy = factory. getProxy();

9.8 Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look
at how you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs
go beyond the facilities offered by Spring AOP alone.

Spring ships with a small AspectJ aspect library, which is available standalone in your distribution as
spring-aspects. j ar; you'll need to add this to your classpath in order to use the aspects in it. the
section called “Using AspectJ to dependency inject domain objects with Spring” and the section called
“Other Spring aspects for AspectJ” discuss the content of this library and how you can use it. the section
called “Configuring AspectJ aspects using Spring loC” discusses how to dependency inject Aspect]
aspects that are woven using the Aspectd compiler. Finally, the section called “Load-time weaving with
AspectJ in the Spring Framework” provides an introduction to load-time weaving for Spring applications
using AspectJ.

Using AspectJ to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application context. It is also
possible to ask a bean factory to configure a pre-existing object given the name of a bean definition
containing the configuration to be applied. The spri ng- aspect s. j ar contains an annotation-driven
aspect that exploits this capability to allow dependency injection of any object. The support is intended
to be used for objects created outside of the control of any container. Domain objects often fall into this
category because they are often created programmatically using the new operator, or by an ORM tool
as a result of a database query.

The @onfi gur abl e annotation marks a class as eligible for Spring-driven configuration. In the
simplest case it can be used just as a marker annotation:

package com xyz. nyapp. domai n;
i mport org.springframework. beans. factory. annot ati on. Confi gur abl e;

@confi gur abl e
public class Account {
...

}

When used as a marker interface in this way, Spring will configure new instances of the annotated
type (Account in this case) using a prototype-scoped bean definition with the same name as the fully-
qualified type name (com xyz. myapp. domai n. Account). Since the default name for a bean is the

Spring Framework
3.2.1.RELEASE Reference Documentation 232

Spring Framework

fully-qualified name of its type, a convenient way to declare the prototype definition is simply to omit
the i d attribute:

<bean cl ass="com xyz. myapp. domai n. Account" scope="pr ot ot ype">
<property nanme="fundsTransfer Servi ce" ref="fundsTransfer Service"/>
</ bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly
in the annotation:

package com xyz. nyapp. domai n;
i mport org. springframework. beans. factory. annot ati on. Confi gur abl e;

@confi gur abl e("account™)
public class Account {
A

}

Spring will now look for a bean definition named "account " and use that as the definition to configure
new Account instances.

You can also use autowiring to avoid having to specify a prototype-scoped bean
definition at all. To have Spring apply autowiring use the ‘'autow re' property of the
@conf i gur abl e annotation: specify either @onf i gur abl e(aut owi r e=Aut owi re. BY_TYPE) or
@confi gur abl e(aut owi r e=Aut owi r e. BY_NAME for autowiring by type or by name respectively. As
an alternative, as of Spring 2.5 it is preferable to specify explicit, annotation-driven dependency injection
for your @onf i gur abl e beans by using @\ut owi r ed or @ nj ect at the field or method level (see
Section 5.9, “Annotation-based container configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the
newly created and configured object by using the dependencyCheck attribute (for example:
@confi gur abl e(aut owi r e=Aut owi r e. BY_NAME, dependencyCheck=t r ue)). If this attribute is
set to true, then Spring will validate after configuration that all properties (which are not primitives or
collections) have been set.

Using the annotation on its own does nothing of course. It is the
Annot at i onBeanConfi gur er Aspect in spri ng-aspects.jar that acts on the presence of the
annotation. In essence the aspect says "after returning from the initialization of a new object of a type
annotated with @onf i gur abl e, configure the newly created object using Spring in accordance with
the properties of the annotation”. In this context, initialization refers to newly instantiated objects (e.g.,
objects instantiated with the 'new operator) as well as to Seri al i zabl e objects that are undergoing

deserialization (e.g., via readResolve()).

© Note

One of the key phrases in the above paragraph is 'in essence'. For most cases, the exact
semantics of 'after returning from the initialization of a new object’ will be fine... in this context,
‘after initialization' means that the dependencies will be injected after the object has been
constructed - this means that the dependencies will not be available for use in the constructor
bodies of the class. If you want the dependencies to be injected before the constructor bodies
execute, and thus be available for use in the body of the constructors, then you need to define
this on the @onf i gur abl e declaration like so:

Spring Framework
3.2.1.RELEASE Reference Documentation 233

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

Spring Framework

@conf i gur abl e(preConstructi on=true)

You can find out more information about the language semantics of the various pointcut types in
AspectJ in this appendix of the Aspect] Programming Guide.

For this to work the annotated types must be woven with the AspectJ weaver - you can either use a build-
time Ant or Maven task to do this (see for example the AspectJ Development Environment Guide) or
load-time weaving (see the section called “Load-time weaving with AspectJ in the Spring Framework”).
The Annot at i onBeanConf i gur er Aspect itself needs configuring by Spring (in order to obtain a
reference to the bean factory that is to be used to configure new objects). If you are using Java based
configuration simply add @nabl eSpri ngConfi gur ed to any @onfi gur ati on class.

@Configuration
@nabl eSpri ngConfi gured
public class AppConfig {

}

If you prefer XML based configuration, the Spring cont ext namespace defines a convenient
cont ext : spri ng- confi gured element:

<cont ext: spri ng-confi gured/ >

If you are using the DTD instead of schema, the equivalent definition is:

<bean
cl ass="org. spri ngframewor k. beans. f act ory. aspectj . Annot at i onBeanConf i gur er Aspect "
factory-net hod="aspect Of "/ >

Instances of @onfi gur abl e objects created before the aspect has been configured will result in a
warning being issued to the log and no configuration of the object taking place. An example might be
a bean in the Spring configuration that creates domain objects when it is initialized by Spring. In this
case you can use the "depends-on" bean attribute to manually specify that the bean depends on the
configuration aspect.

<bean i d="nyService"
cl ass="com xzy. nyapp. servi ce. MyServi ce"
depends- on="or g. spri ngframewor k. beans. f act ory. aspectj . Annot at i onBeanConfi gur er Aspect " >

<l-- .. -->

</ bean>

@ Note

Do not activate @Conf i gur abl e processing through the bean configurer aspect unless you
really mean to rely on its semantics at runtime. In particular, make sure that you do not use
@confi gur abl e on bean classes which are registered as regular Spring beans with the
container: You would get double initialization otherwise, once through the container and once
through the aspect.

Spring Framework
3.2.1.RELEASE Reference Documentation 234

http://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

Spring Framework

Unit testing @onf i gur abl e objects

One of the goals of the @onf i gur abl e support is to enable independent unit testing of domain objects
without the difficulties associated with hard-coded lookups. If @Confi gur abl e types have not been
woven by AspectJ then the annotation has no affect during unit testing, and you can simply set mock
or stub property references in the object under test and proceed as normal. If @onfi gur abl e types
have been woven by AspectJ then you can still unit test outside of the container as normal, but you will
see a warning message each time that you construct an @onf i gur abl e object indicating that it has
not been configured by Spring.

Working with multiple application contexts

The Annot ati onBeanConfi gur er Aspect used to implement the @onfi gur abl e support is an
AspectJ singleton aspect. The scope of a singleton aspect is the same as the scope of static
members, that is to say there is one aspect instance per classloader that defines the type. This
means that if you define multiple application contexts within the same classloader hierarchy you need
to consider where to define the @nabl eSpri ngConfi gur ed bean and where to place spri ng-
aspect s. j ar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining
common business services and everything needed to support them, and one child application context
per servlet containing definitions particular to that servlet. All of these contexts will co-exist within
the same classloader hierarchy, and so the Annot at i onBeanConf i gur er Aspect can only hold a
reference to one of them. In this case we recommend defining the @nabl eSpri ngConfi gur ed bean
in the shared (parent) application context: this defines the services that you are likely to want to inject
into domain objects. A consequence is that you cannot configure domain objects with references to
beans defined in the child (servlet-specific) contexts using the @Configurable mechanism (probably not
something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads
the types in spri ng-aspects.jar using its own classloader (for example, by placing spri ng-
aspects.jar in"WEB-INF/1ib'). If spring-aspects.jar is only added to the container wide
classpath (and hence loaded by the shared parent classloader), all web applications will share the same
aspect instance which is probably not what you want.

Other Spring aspects for AspectJ

In addition to the @Confi gurabl e aspect, spri ng-aspects.jar contains an Aspect] aspect
that can be used to drive Spring's transaction management for types and methods annotated with
the @r ansacti onal annotation. This is primarily intended for users who want to use the Spring
Framework's transaction support outside of the Spring container.

The aspect that interprets @tr ansact i onal annotations is the Annot ati onTr ansacti onAspect.
When using this aspect, you must annotate the implementation class (and/or methods within that class),
not the interface (if any) that the class implements. AspectJ follows Java's rule that annotations on
interfaces are not inherited.

A @r ansacti onal annotation on a class specifies the default transaction semantics for the execution
of any public operation in the class.

A @ransacti onal annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Methods with publ i ¢, pr ot ect ed, and default

Spring Framework
3.2.1.RELEASE Reference Documentation 235

Spring Framework

visibility may all be annotated. Annotating pr ot ect ed and default visibility methods directly is the only
way to get transaction demarcation for the execution of such methods.

For AspectJ programmers that want to use the Spring configuration and transaction management
support but don't want to (or cannot) use annotations, spri ng-aspects.jar also contains
abstract aspects you can extend to provide your own pointcut definitions. See the sources for
the Abstract BeanConfi gurer Aspect and Abstract Transacti onAspect aspects for more
information. As an example, the following excerpt shows how you could write an aspect to configure
all instances of objects defined in the domain model using prototype bean definitions that match the
fully-qualified class names:

publ i c aspect Domai nObj ect Confi gurati on extends Abstract BeanConfi gurerAspect {

publ i ¢ Domai nObj ect Confi guration() {
set BeanW ri ngl nf oResol ver (new Cl assNameBeanW ri ngl nf oResol ver());

}

/1 the creation of a new bean (any object in the domain nodel)
protected pointcut beanCreation(CObject beanlnstance) :
initialization(new..)) &&
Syst emAr chi t ect ure. i nDomai nhvodel () &&
t hi s(beanl nst ance) ;

Configuring AspectJ aspects using Spring loC

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and
the means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation
model (the 'per - xxx' clause) used by the aspect.

The majority of AspectJ aspects are singleton aspects. Configuration of these aspects is very easy:
simply create a bean definition referencing the aspect type as normal, and include the bean attribute
'factory-nmet hod="aspect O "' . This ensures that Spring obtains the aspect instance by asking
AspectJ for it rather than trying to create an instance itself. For example:

<bean id="profiler" class="comxyz.profiler.Profiler"
factory-net hod="aspect O " >
<property nanme="profilingStrategy" ref="janmonProfilingStrategy"/>
</ bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype
bean definitions and using the @onf i gur abl e support from spri ng- aspect s. j ar to configure the
aspect instances once they have bean created by the AspectJ runtime.

If you have some @AspectJ aspects that you want to weave with AspectJ (for example, using load-time
weaving for domain model types) and other @AspectJ aspects that you want to use with Spring AOP,
and these aspects are all configured using Spring, then you will need to tell the Spring AOP @AspectJ
autoproxying support which exact subset of the @AspectJ aspects defined in the configuration should
be used for autoproxying. You can do this by using one or more <i ncl ude/ > elements inside the
<aop: aspectj - aut opr oxy/ > declaration. Each <i ncl ude/ > element specifies a name pattern, and
only beans with names matched by at least one of the patterns will be used for Spring AOP autoproxy
configuration:

Spring Framework
3.2.1.RELEASE Reference Documentation 236

Spring Framework

<aop: aspect j - aut opr oxy>
<aop: i ncl ude name="t hi sBean"/>
<aop: i ncl ude nanme="t hat Bean"/ >
</ aop: aspect j - aut opr oxy>

© Note

Do not be misled by the name of the <aop: aspect j - aut opr oxy/ > element: using it will result
in the creation of Spring AOP proxies. The @AspectJ style of aspect declaration is just being
used here, but the AspectJ runtime is not involved.

Load-time weaving with AspectJ in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an application's class
files as they are being loaded into the Java virtual machine (JVM). The focus of this section is on
configuring and using LTW in the specific context of the Spring Framework: this section is not an
introduction to LTW though. For full details on the specifics of LTW and configuring LTW with just AspectJ
(with Spring not being involved at all), see the LTW section of the AspectJ Development Environment
Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained
control over the weaving process. 'Vanilla' Aspect] LTW is effected using a Java (5+) agent, which is
switched on by specifying a VM argument when starting up a JVM. It is thus a JVM-wide setting, which
may be fine in some situations, but often is a little too coarse. Spring-enabled LTW enables you to switch
on LTW on a per-C assLoader basis, which obviously is more fine-grained and which can make more
sense in a 'single-JVM-multiple-application' environment (such as is found in a typical application server
environment).

Further, in_certain _environments, this support enables load-time weaving without making any
modifications to the application server's launch script that will be needed to add - j avaagent : pat h/
t o/ aspectjweaver.jar or (as we describe later in this section) -javaagent: path/to/
org. springframework. instrunent-{version}.jar (previously namedspri ng-agent.jar).
Developers simply modify one or more files that form the application context to enable load-time weaving
instead of relying on administrators who typically are in charge of the deployment configuration such
as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of AspectJ LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete
example, please see the Petclinic sample application.

A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of
some performance problems in a system. Rather than break out a profiling tool, what we are going to do
is switch on a simple profiling aspect that will enable us to very quickly get some performance metrics,
so that we can then apply a finer-grained profiling tool to that specific area immediately afterwards.

© Note

The example presented here uses XML style configuration, it is also possible to configure and use
@Aspectd with Java Configuration. Specifically the @nabl eLoadTi mneWeavi ng annotation
can be used as an alternative to <cont ext : | oad-ti ne- weaver/ > (see below for details).

Spring Framework
3.2.1.RELEASE Reference Documentation 237

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html
http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Spring Framework

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@AspectJ-style of aspect declaration.

package foo;

i nport org.aspectj.|ang. Proceedi ngJoi nPoi nt;

i mport org.aspectj.|ang.annotation. Aspect;

i nport org.aspectj.|ang. annot ati on. Around;

i nport org.aspectj.|ang.annotation. Poi ntcut;

i mport org.springframework. util.StopWatch;

i nport org.springfranmework. core. annot ati on. O der;

@\spect
public class ProfilingAspect {

@ ound(" net hodsToBeProfiled()")
public Object profile(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
St opWat ch sw = new St opWat ch(get O ass(). get Si npl eNane()) ;
try {
sw. start (pjp.getSignature().getName());
return pjp.proceed();
} finally {
sw. stop();
System out. println(sw. prettyPrint());

}

@Poi nt cut ("execution(public * foo..*.*(..))")
public void nethodsToBeProfiled(){}

We will also need to create an 'META- | NF/ aop. xn ' file, to inform the Aspect] weaver that we want
to weave our Prof i | i ngAspect into our classes. This file convention, namely the presence of a file
(or files) on the Java classpath called ' META- | NF/ aop. xml ' is standard AspectJ.

<! DOCTYPE aspectj PUBLIC
"-//AspectJ//DTD// EN' "http://ww. ecli pse. org/aspectj/dtd/ aspectj.dtd">
<aspectj >

<weaver >

<l-- only weave classes in our application-specific packages -->
<i nclude w thin="foo.*"/>

</ weaver >
<aspect s>

<!-- weave in just this aspect -->
<aspect name="foo. ProfilingAspect"/>

</ aspect s>

</ aspectj >

Now to the Spring-specific portion of the configuration. We need to configure a LoadTi neWWaver
(all explained later, just take it on trust for now). This load-time weaver is the essential component
responsible for weaving the aspect configuration in one or more 'META- | NF/ aop. xm ' files into the

Spring Framework
3.2.1.RELEASE Reference Documentation 238

Spring Framework

classes in your application. The good thing is that it does not require a lot of configuration, as can be
seen below (there are some more options that you can specify, but these are detailed later).

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schema/ cont ext "
xsi : schemaLocat i on="
http://ww. springfranework. org/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springfranewor k. or g/ schema/ cont ext/spri ng-cont ext.xsd">

<l-- a service object; we will be profiling its nmethods -->
<bean id="entitl| enent Cal cul ati onServi ce"

cl ass="fo0o0. St ubEntitl ement Cal cul ati onServi ce"/>

<I-- this switches on the | oad-time weaving -->
<cont ext : | oad-ti me-weaver/ >

</ beans>

Now that all the required artifacts are in place - the aspect, the '"META- | NF/ aop. xri ' file, and the
Spring configuration -, let us create a simple driver class with a mai n(. .) method to demonstrate the
LTW in action.

package foo;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
public final class Main {

public static void main(String[] args) {

Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext (" beans. xm ",
Mai n. cl ass) ;

Entitl enment Cal cul ati onServi ce entitl enent Cal cul ati onService
= (Entitl enentCal cul ati onServi ce)
ct x. get Bean("entitl ement Cal cul ati onServi ce");

/1 the profiling aspect is 'woven' around this nethod execution
entitlement Cal cul ati onServi ce. cal cul ateEntitlenment();

There is one last thing to do. The introduction to this section did say that one could switch on LTW
selectively on a per-Cl assLoader basis with Spring, and this is true. However, just for this example,
we are going to use a Java agent (supplied with Spring) to switch on the LTW. This is the command
line we will use to run the above Mai n class:

java -javaagent: C /projects/fool/lib/global/spring-instrument.jar foo.Min

The - j avaagent 'is a Java 5+ flag for specifying and enabling agents to instrument programs running
on the JVM. The Spring Framework ships with such an agent, the | nst r unent at i onSavi ngAgent ,
which is packaged in the spring-instrunment.jar that was supplied as the value of the -
j avaagent argument in the above example.

Spring Framework
3.2.1.RELEASE Reference Documentation 239

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html

Spring Framework

The output from the execution of the Mai n program will look something like that below. (I have introduced
a Thread. sl eep(..) statement into the cal cul at eEnti t| enent () implementation so that the
profiler actually captures something other than O milliseconds - the 01234 milliseconds is not an
overhead introduced by the AOP :))

Cal cul ating entitlenent

St opWatch ' ProfilingAspect': running time (millis) = 1234

01234 100% cal cul ateEntitl enent

Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans;
the following slight variation on the Mai n program will yield the same result.

package foo;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
new Cl assPat hXm Appl i cati onCont ext ("beans. xm ", Min. cl ass);

Entitl ement Cal cul ati onService entitlenentCal cul ati onService =
new St ubEntitl| ement Cal cul ati onService();

/'l the profiling aspect will be 'woven' around this nethod execution
entitlement Cal cul ati onServi ce. cal cul ateEntitlement();

Notice how in the above program we are simply bootstrapping the Spring container, and then creating a
new instance of the St ubEnt i t | enent Cal cul at i onSer vi ce totally outside the context of Spring...
the profiling advice still gets woven in.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the ‘why' behind each bit of
configuration and usage in detail.

© Note

The ProfilingAspect used in this example may be basic, but it is quite useful. It is a
nice example of a development-time aspect that developers can use during development (of
course), and then quite easily exclude from builds of the application being deployed into UAT
or production.

Aspects

The aspects that you use in LTW have to be Aspect] aspects. They can be written in either the AspectJ
language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only
an option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and
Spring AOP aspects. Furthermore, the compiled aspect classes need to be available on the classpath.

Spring Framework
3.2.1.RELEASE Reference Documentation 240

Spring Framework

'META- | NF/ aop. xmi '

The Aspect] LTW infrastructure is configured using one or more 'META- | NF/ aop. xm ' files, that are
on the Java classpath (either directly, or more typically in jar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader is referred to that resource. (I appreciate that this section is brief, but the 'aop. xm '
file is 100% AspectJ - there is no Spring-specific information or semantics that apply to it, and so there
is no extra value that | can contribute either as a result), so rather than rehash the quite satisfactory
section that the AspectJ developers wrote, | am just directing you there.)

Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework's support for AspectJ
LTW:

1. spring-aop. | ar (version 2.5 or later, plus all mandatory dependencies)
2. aspectj weaver.j ar (version 1.6.8 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

1. spring-instrunent.jar
Spring configuration

The key component in Spring's LTW support is the LoadTi meWaver interface (in
the org.springframework.instrument.cl assl oadi ng package), and the numerous
implementations of it that ship with the Spring distribution. A LoadTi mneWeaver is responsible for adding
one or more j ava. |l ang. i nstrunent. C assFi | eTransf orners to a d assLoader at runtime,
which opens the door to all manner of interesting applications, one of which happens to be the LTW
of aspects.

@ Tip

If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to read
the Javadoc API documentation for the j ava. | ang. i nstrument package before continuing.
This is not a huge chore because there is - rather annoyingly - precious little documentation
there... the key interfaces and classes will at least be laid out in front of you for reference as you
read through this section.

Configuring a LoadTi meWeaver for a particular Appl i cat i onCont ext can be as easy as adding one
line. (Please note that you almost certainly will need to be using an Appl i cati onCont ext as your
Spring container - typically a BeanFact or y will not be enough because the LTW support makes use
of BeanFact or yPost Processors.)

To enable the Spring Framework's LTW support, you need to configure a LoadTi mneWeaver , which
typically is done using the @nabl eLoadTi neWavi ng annotation.

@Configuration
@nabl eLoadTi neWeavi ng
public class AppConfig {

}

Spring Framework
3.2.1.RELEASE Reference Documentation 241

http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

Spring Framework

Alternatively, if you prefer XML based configuration, use the <cont ext: | oad-ti ne- weaver/ >
element. Note that the element is defined in the ‘cont ext ' namespace.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schema/ cont ext "
xsi : schemaLocat i on="
http://ww. springfranework. org/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. springfranewor k. or g/ schema/ cont ext/spri ng-cont ext.xsd">

<cont ext: | oad-ti ne- weaver/ >

</ beans>

The above configuration will define and register a number of LTW-specific infrastructure beans for
you automatically, such as a LoadTi neWeaver and an Aspect JWeavi ngEnabl er. The default
LoadTi mreWeaver is the Def aul t Cont ext LoadTi meWaver class, which attempts to decorate
an automatically detected LoadTi neWeaver: the exact type of LoadTi neWeaver that will be
‘automatically detected' is dependent upon your runtime environment (summarized in the following
table).

Table 9.1. Def aul t Cont ext LoadTi reWeaver LoadTi neWaver s

Runtime Environment LoadTi mreWeaver implementation

Running in BEA's Weblogic 10 WebLogi cLoadTi meWeaver

Running in IBM WebSphere Application Server 7 WebSpher eLoadTi neWeaver

Running in Oracle's OC4J OC4JLoadTi mreWaver

Running in GlassFish d assFi shLoadTi nreWeaver
Running in JBoss AS JBossLoadTi neWaver

JVM started with Spring I nst runent at i onLoadTi neWaver

I nst runent at i onSavi ngAgent

(java -javaagent: path/to/ spring-
instrunment.jar)

Fallback, expecting the underlying ClassLoader Ref | ecti veLoadTi nreWaver
to follow common conventions (e.g. applicable to

Tontat | nstrunent abl eCl assLoader and

Resin)

Note that these are just the LoadTi neWeavers that are autodetected when using
the Defaul t Cont ext LoadTi meWeaver: it is of course possible to specify exactly which
LoadTi meWeaver implementation that you wish to use.

To specify a specific LoadTi neWeaver with Java configuration implement the
LoadTi meWeavi ngConfi gur er interface and override the get LoadTi mreWeaver () method:

Spring Framework
3.2.1.RELEASE Reference Documentation 242

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/server
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.oracle.com/technology/products/oc4j/index.html
http://glassfish.dev.java.net/
http://www.jboss.org/jbossas/
http://www.caucho.com/

Spring Framework

@Configuration
@Enabl eLoadTi neWeavi ng
public class AppConfig inplenments LoadTi meWeavi ngConfi gurer {
@verride
publ i c LoadTi neWeaver get LoadTi neWeaver () {
return new Refl ectivelLoadTi nreWeaver () ;

}

If you are using XML based configuration you can specify the fully-qualified classname as the value of
the 'weaver - cl ass' attribute on the <cont ext : | oad-ti me- weaver/ > element:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://wmv springfranmewor k. or g/ schema/ cont ext "
xsi : schemalLocat i on="
http://ww. springframewor k. or g/ schema/ beans
http: //ww. spri ngfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext . xsd" >

<cont ext : | oad-ti nme- weaver
weaver -

cl ass="org. springframework. i nstrunent. cl assl oadi ng. Ref | ecti veLoadTi reWaver"/ >

</ beans>

The LoadTi nreWeaver that is defined and registered by the configuration can be later retrieved
from the Spring container using the well-known name 'l oadTi neWeaver'. Remember that the
LoadTi meVeaver exists just as a mechanism for Spring's LTW infrastructure to add one or
more Cl assFi |l eTransformers. The actual G assFi | eTr ansf or ner that does the LTW is the
Cl assPreProcessor Agent Adapt er (fromthe or g. aspect . weaver. | oadt i me package) class.
See the class-level Javadoc for the Cl assPr ePr ocessor Agent Adapt er class for further details,
because the specifics of how the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the configuration left to discuss: the 'aspect j Weavi ng' attribute (or
‘aspectj - weavi ng' if you are using XML). This is a simple attribute that controls whether LTW is
enabled or not, it is as simple as that. It accepts one of three possible values, summarized below, with
the default value if the attribute is not present being ‘aut odet ect’

Table 9.2. AspectJ weaving attribute values
Annotation Value XML Value Explanation

ENABLED on AspectJ weaving is on, and
aspects will be woven at load-
time as appropriate.

DI SABLED of f LTW is off... no aspect will be
woven at load-time.

AUTODETECT aut odet ect If the Spring LTW infrastructure
can find at least one
'META- | NF/ aop. xm ' file, then
AspectJ weaving is on, else it is
off. This is the default value.

Spring Framework
3.2.1.RELEASE Reference Documentation 243

Spring Framework

Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using Spring's
LTW support in environments such as application servers and web containers.

Tomcat

Apache Tomcat's default class loader does not support class transformation which is
why Spring provides an enhanced implementation that addresses this need. Named
Tontat | nstrunent abl ed assLoader, the loader works on Tomcat 5.0 and above and can be
registered individually for each web application as follows:

» Tomcat 6.0.x or higher

1. Copyorg. springframework. i nstrunent.tonctat.jar into SCATALINA HOME/lib, where
$CATALINA_HOME represents the root of the Tomcat installation)

2. Instruct Tomcat to use the custom class loader (instead of the default) by editing the web application
context file:

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader

| oader Cl ass="org. spri ngframewor k. i nstrunent. cl assl oadi ng. t ontat . Tontat | nst runent abl eCl assLoader "/
>
</ Cont ext >

Apache Tomcat 6.0.x (similar to 5.0.x/5.5.X) series supports several context locations:
« server configuration file - $CATALINA_HOME/conf/server.xml

« default context configuration - SCATALINA_HOME/conf/context.xml - that affects all deployed
web applications

« per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded inside
the web-app archive at META-INF/context.xml

For efficiency, the embedded per-web-app configuration style is recommended because it will
impact only applications that use the custom class loader and does not require any changes to the
server configuration. See the Tomcat 6.0.x documentation for more details about available context
locations.

 Tomcat 5.0.x/5.5.x

1. Copyorg. springframework. i nstrunment.tontat.jar into SCATALINA_ HOME/serverl/lib,
where $CATALINA_HOME represents the root of the Tomcat installation.

2. Instruct Tomcat to use the custom class loader instead of the default one by editing the web
application context file:

Spring Framework
3.2.1.RELEASE Reference Documentation 244

http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

Spring Framework

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader

| oader C ass="org. spri ngframewor k. i nstrunent. cl assl oadi ng. t ontat . Tontat | nst runent abl eCl assLoader "/
>

</ Cont ext >

Tomcat 5.0.x and 5.5.x series supports several context locations:
« server configuration file - $CATALINA_HOME/conf/server.xml

« default context configuration - SCATALINA_HOME/conf/context.xml - that affects all deployed
web applications

» per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded inside
the web-app archive at META-INF/context.xml

For efficiency, the embedded web-app configuration style is recommended recommended because
it will impact only applications that use the class loader. See the Tomcat 5.x documentation for
more details about available context locations.

Tomcat versions prior to 5.5.20 contained a bug in the XML configuration parsing that prevented
usage of the Loader tag inside server.xml configuration, regardless of whether a class loader is
specified or whether it is the official or a custom one. See Tomcat's bugzilla for more details.

In Tomcat 5.5.x, versions 5.5.20 or later, you should set useSystemClassLoaderAsParenttof al se
to fix this problem:

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader

| oader Cl ass="or g. spri ngframewor k. i nstrunent . cl assl oadi ng. t ontat . Tontat | nst runent abl eCl assLoader "
useSyst enCl assLoader AsParent ="f al se"/ >
</ Cont ext >

This setting is not needed on Tomcat 6 or higher.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's
launch script (see above). This will make instrumentation available to all deployed web applications, no
matter what ClassLoader they happen to run on.

WebLogic, WebSphere, OC4J, Resin, GlassFish, JBoss

Recent versions of BEA WebLogic (version 10 and above), IBM WebSphere Application Server (version
7 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and above), Resin (3.1 and above) and
JBoss (5.x or above) provide a ClassLoader that is capable of local instrumentation. Spring's native LTW
leverages such ClassLoaders to enable Aspect] weaving. You can enable LTW by simply activating
load-time weaving as described earlier. Specifically, you do not need to modify the launch script to add
-j avaagent : path/to/ spring-instrunment.jar.

Note that GlassFish instrumentation-capable ClassLoader is available only in its EAR environment. For
GlassFish web applications, follow the Tomcat setup instructions as outlined above.

Spring Framework
3.2.1.RELEASE Reference Documentation 245

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://issues.apache.org/bugzilla/show_bug.cgi?id=39704

Spring Framework

Note that on JBoss 6.X, the app server scanning needs to be disabled to prevent it from loading the
classes before the application actually starts. A quick workaround is to add to your artifact a file named
VEB- | NF/ j boss-scanni ng. xm with the following content:

<scanni ng xm ns="urn:j boss: scanni ng: 1. 0"/ >

Generic Java applications

When class instrumentation is required in environments that do not support or are not supported
by the existing LoadTi mreWeaver implementations, a JDK agent can be the only solution. For
such cases, Spring provides | nst r ument at i onLoadTi neWeaver , which requires a Spring-specific
(but very general) VM agent, or g. spri ngf ranmewor k. i nstrunent -{versi on}.jar (previously
named spri ng-agent . j ar).

To use it, you must start the virtual machine with the Spring agent, by supplying the following JVM
options:

-javaagent :/ path/to/ org. spri ngframework. i nstrunment-{version}.jar

Note that this requires modification of the VM launch script which may prevent you from using this in
application server environments (depending on your operation policies). Additionally, the JDK agent will
instrument the entire VM which can prove expensive.

For performance reasons, it is recommended to use this configuration only if your target environment
(such as Jetty) does not have (or does not support) a dedicated LTW.

9.9 Further Resources

More information on AspectJ can be found on the AspectJ website.

The book Eclipse AspectJ by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book AspectJ in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the
focus of the book is on AspectJ, but a lot of general AOP themes are explored (in some depth).

Spring Framework
3.2.1.RELEASE Reference Documentation 246

http://www.eclipse.org/jetty/
http://www.eclipse.org/aspectj

Spring Framework

10. Spring AOP APIs

10.1 Introduction

The previous chapter described the Spring 2.0 and later version's support for AOP using @AspectJ
and schema-based aspect definitions. In this chapter we discuss the lower-level Spring AOP APIs and
the AOP support used in Spring 1.2 applications. For new applications, we recommend the use of the
Spring 2.0 and later AOP support described in the previous chapter, but when working with existing
applications, or when reading books and articles, you may come across Spring 1.2 style examples.
Spring 3.0 is backwards compatible with Spring 1.2 and everything described in this chapter is fully
supported in Spring 3.0.

10.2 Pointcut APl in Spring

Let's look at how Spring handles the crucial pointcut concept.

Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target
different advice using the same pointcut.

The or g. spri ngf ramewor k. aop. Poi nt cut interface is the central interface, used to target advices
to particular classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getCassFilter();

Met hodMat cher get Met hodMat cher () ;

Splitting the Poi nt cut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The C assFil ter interface is used to restrict the pointcut to a given set of target classes. If the
mat ches() method always returns true, all target classes will be matched:

public interface dassFilter {

bool ean mat ches(d ass cl azz);

The Met hodMat cher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {
bool ean mat ches(Method m Cl ass targetd ass);
bool ean i sRuntime();

bool ean mat ches(Method m Class targetd ass, Object[] args);

Spring Framework
3.2.1.RELEASE Reference Documentation 247

Spring Framework

The mat ches(Met hod, C ass) method is used to test whether this pointcut will ever match a given
method on a target class. This evaluation can be performed when an AOP proxy is created, to avoid the
need for a test on every method invocation. If the 2-argument matches method returns true for a given
method, and the i sRunt i ne() method for the MethodMatcher returns true, the 3-argument matches
method will be invoked on every method invocation. This enables a pointcut to look at the arguments
passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i sRunt i me() method returns false. In this case,
the 3-argument matches method will never be invoked.

@ Tip

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.
» Union means the methods that either pointcut matches.

* Intersection means the methods that both pointcuts match.

* Union is usually more useful.

» Pointcuts can be composed using the static methods in the
org.springframework.aop.support.Pointcuts class, or using the ComposablePointcut class in the same
package. However, using AspectJ pointcut expressions is usually a simpler approach.

AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
or g. spri ngframewor k. aop. aspectj . Aspect JExpr essi onPoi nt cut . This is a pointcut that
uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.
Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others
are intended to be subclassed in application-specific pointcuts.

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's
arguments. Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate
a static pointcut only once, when a method is first invoked: after that, there is no need to evaluate the
pointcut again with each method invocation.

Let's consider some static pointcut implementations included with Spring.
Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible. or g. spri ngf r amewor k. aop. support . JdkRegexpMet hodPoi nt cut
is a generic regular expression pointcut, using the regular expression support in JDK 1.4+,

Spring Framework
3.2.1.RELEASE Reference Documentation 248

Spring Framework

Using the JdkRegexpMet hodPoi nt cut class, you can provide a list of pattern Strings. If any of these
is a match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean i d="settersAndAbsquat ul at ePoi nt cut"
cl ass="org. spri ngframewor k. aop. support. JdkRegexpMet hodPoi nt cut ">
<property nane="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor, that allows us to
also reference an Advice (remember that an Advice can be an interceptor, before advice,
throws advice etc.). Behind the scenes, Spring will use a JdkRegexpMet hodPoi nt cut. Using
RegexpMet hodPoi nt cut Advi sor simplifies wiring, as the one bean encapsulates both pointcut and
advice, as shown below:

<bean i d="settersAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngframewor k. aop. support. RegexpMet hodPoi nt cut Advi sor ">
<property nanme="advi ce">
<ref | ocal ="beanNaneOf AopAl | i ancel nterceptor"/>
</ property>
<property nane="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.
Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method
arguments, as well as static information. This means that they must be evaluated with every method
invocation; the result cannot be cached, as arguments will vary.

The main example is the control f| ow pointcut.
Control flow pointcuts

Spring control flow pointcuts are conceptually similar to Aspectd cflow pointcuts, although less
powerful. (There is currently no way to specify that a pointcut executes below a join point
matched by another pointcut.) A control flow pointcut matches the current call stack. For
example, it might fire if the join point was invoked by a method in the com myconpany. web
package, or by the SoneCaller class. Control flow pointcuts are specified using the
org. spri ngfranmewor k. aop. support. Control Fl owPoi nt cut class.

Spring Framework
3.2.1.RELEASE Reference Documentation 249

Spring Framework

© Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts.

Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it's possible to override
other methods to customize behavior):

class TestStaticPointcut extends StaticMet hodMat cher Poi ntcut {

publ i c bool ean mat ches(Method m C ass targetC ass) {
/] return true if customcriteria match

}
}

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.
Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ)
it's possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can
be arbitrarily complex. However, using the AspectJ pointcut expression language is recommended if
possible.

© Note

Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC: for
example, "all methods that change instance variables in the target object.”

10.3 Advice APl in Spring

Let's now look at how Spring AOP handles advice.
Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique
to each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the method
and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds
state to the proxied object.

It's possible to use a mix of shared and per-instance advice in the same AOP proxy.

Spring Framework
3.2.1.RELEASE Reference Documentation 250

Spring Framework

Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types.
Let us look at the basic concepts and standard advice types.

Interception around advice
The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
Methodinterceptors implementing around advice should implement the following interface:

public interface Methodlnterceptor extends Interceptor {

bj ect i nvoke(Met hodl nvocati on invocation) throws Throwabl e;

The Met hodl nvocat i on argument to the i nvoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. The i nvoke() method should return
the invocation's result: the return value of the join point.

A simple Met hodl nt er cept or implementation looks as follows:

public class Debuglnterceptor inplenments Methodl nterceptor {

publ i c Object invoke(Methodl nvocation invocation) throws Throwabl e {
Systemout. println("Before: invocation=[" + invocation + "]");
Obj ect rval = invocation. proceed();
System out. println("Invocation returned");
return rval;

Note the call to the MethodInvocation's pr oceed() method. This proceeds down the interceptor chain
towards the join point. Most interceptors will invoke this method, and return its return value. However,
a MethodInterceptor, like any around advice, can return a different value or throw an exception rather
than invoke the proceed method. However, you don't want to do this without good reason!

© Note

Methodinterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using the
most specific advice type, stick with MethodInterceptor around advice if you are likely to want
to run the aspect in another AOP framework. Note that pointcuts are not currently interoperable
between frameworks, and the AOP Alliance does not currently define pointcut interfaces.

Before advice

A simpler advice type is a before advice. This does not need a Met hodl nvocat i on object, since it
will only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the pr oceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

Spring Framework
3.2.1.RELEASE Reference Documentation 251

Spring Framework

The Met hodBef or eAdvi ce interface is shown below. (Spring's API design would allow for field before
advice, although the usual objects apply to field interception and it's unlikely that Spring will ever
implement it).

public interface MethodBeforeAdvi ce extends BeforeAdvice {

voi d before(Method m Object[] args, Object target) throws Throwabl e;

Note the return type is voi d. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution
of the interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked,
or on the signature of the invoked method, it will be passed directly to the client; otherwise it will be
wrapped in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class Counti ngBeforeAdvi ce inpl enents MethodBefor eAdvi ce {
private int count;

public void before(Method m Object[] args, Object target) throws Throwabl e {
++count ;

}

public int getCount() {
return count;

}

@ Tip
Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw
an exception. Spring offers typed throws advice. Note that this means that the
org. spri ngfranmewor k. aop. Thr owsAdvi ce interface does not contain any methods: It is a tag
interface identifying that the given object implements one or more typed throws advice methods. These
should be in the form of:

af t er Throwi ng([Met hod, args, target], subclassO Throwabl e)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

The advice below is invoked if a Renot eExcept i on is thrown (including subclasses):
public class RenoteThrowsAdvi ce i npl enents ThrowsAdvi ce {
public void afterThrow ng(Renpt eException ex) throws Throwabl e {

/1 Do sonething with renpote exception

}

Spring Framework
3.2.1.RELEASE Reference Documentation 252

Spring Framework

The following advice is invoked if a Ser vl et Except i on is thrown. Unlike the above advice, it declares
4 arguments, so that it has access to the invoked method, method arguments and target object:

public class Servl et ThrowsAdvi ceW t hArgunents i npl enents ThrowsAdvi ce {
public void afterThrow ng(Method m Cbject[] args, Object target, ServletException ex)

/] Do sonmething with all argunents

The final example illustrates how these two methods could be used in a single class, which handles
both Renpt eExcepti on and Ser vl et Excepti on. Any number of throws advice methods can be
combined in a single class.

public static class Conbi nedThrowsAdvi ce inplenments ThrowsAdvi ce {

public void afterThrow ng(Renot eException ex) throws Throwabl e {
/1 Do sonething with renpote exception

}

public void afterThrow ng(Method m Object[] args, Object target, ServletException ex)

/1 Do sonething with all argunents

Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e.
change the exception thrown to the user). The overriding exception will typically be a RuntimeException;
this is compatible with any method signature. However, if a throws-advice method throws a checked
exception, it will have to match the declared exceptions of the target method and is hence to some
degree coupled to specific target method signatures. Do not throw an undeclared checked exception
that is incompatible with the target method's signature!

Q@ Tip
Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice
interface, shown below:

public interface AfterReturningAdvi ce extends Advice {

voi d afterReturni ng(Object returnValue, Method m bject[] args, Object target)
t hrows Throwabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method,
methods arguments and target.

The following after returning advice counts all successful method invocations that have not thrown
exceptions:

Spring Framework
3.2.1.RELEASE Reference Documentation 253

Spring Framework

public class CountingAfterReturni ngAdvi ce inpl ements AfterReturni ngAdvi ce {
private int count;

public void afterReturni ng(Object returnValue, Method m Object[] args, Object target)
throws Throwabl e {
++count ;

}

public int getCount() {
return count;

}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

@ Tip

After returning advice can be used with any pointcut.
Introduction advice
Spring treats introduction advice as a special kind of interception advice.

Introduction requires an Introducti onAdvisor, and an |Introductionlnterceptor,
implementing the following interface:

public interface Introductionlnterceptor extends Methodlnterceptor {

bool ean i nmpl ementsinterface(Cd ass intf);

The i nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must
implement the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method,
level. You can only use introduction advice with the | nt r oduct i onAdvi sor, which has the following
methods:

public interface |ntroductionAdvi sor extends Advisor, Introductionlnfo {
ClassFilter getdassFilter();

voi d validatelnterfaces() throws |11 egal Argument Excepti on;

}

public interface Introductionlnfo {

C ass[] getlnterfaces();

Thereis no Met hodMat cher , and hence no Poi nt cut , associated with introduction advice. Only class
filtering is logical.

The get | nt er f aces() method returns the interfaces introduced by this advisor.

Spring Framework
3.2.1.RELEASE Reference Documentation 254

Spring Framework

Theval i dat el nt er f aces() method is used internally to see whether or not the introduced interfaces
can be implemented by the configured | nt r oduct i onl nt er cept or.

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following
interface to one or more objects:

public interface Lockable {
voi d | ock();
voi d unl ock();
bool ean | ocked();

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type,
and call lock and unlock methods. If we call the lock() method, we want all setter methods to throw a
LockedExcepti on. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, we'll need an | ntroducti onl nt ercept or that does the heavy lifting. In this case, we
extend the org. springframework. aop. support. Del egati ngl ntroducti onl nt ercept or
convenience class. We could implement Introductioninterceptor directly, but using
Del egati ngl ntroducti onl nt er cept or is best for most cases.

The Del egat i ngl ntroducti onl nt er cept or is designed to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The
delegate can be set to any object using a constructor argument; the default delegate (when the
no-arg constructor is used) is this. Thus in the example below, the delegate is the LockM xi n
subclass of Del egati ngl ntroductionlnterceptor. Given a delegate (by default itself), a
Del egati ngl ntroducti onl nt er cept or instance looks for all interfaces implemented by the
delegate (other than Introductioninterceptor), and will support introductions against any of them. It's
possible for subclasses such as LockM xi n to call the suppressinterface(d ass i ntf) method
to suppress interfaces that should not be exposed. However, no matter how many interfaces an
I nt roducti onl nt er cept or is prepared to support, the | nt r oduct i onAdvi sor used will control
which interfaces are actually exposed. An introduced interface will conceal any implementation of the
same interface by the target.

Thus LockMixin subclasses Del egat i ngl ntroducti onl nt er cept or and implements Lockable
itself. The superclass automatically picks up that Lockable can be supported for introduction, so we
don't need to specify that. We could introduce any number of interfaces in this way.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the
target object.

Spring Framework
3.2.1.RELEASE Reference Documentation 255

Spring Framework

public class LockM xi n extends Del egati ngl ntroducti onl nterceptor
i npl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;

}

public void unlock() {
this.locked = fal se;

}

publ i c bool ean | ocked() {
return this.|ocked;

}

publ i c Object invoke(Methodl nvocation invocation) throws Throwabl e {
if (locked() && invocation.getMthod().getName().indexO("set") == 0)
throw new LockedException();
return super.invoke(invocation);

Often it isn't necessary to override the i nvoke() method: the
Del egati ngl ntroducti onl nt er cept or implementation - which calls the delegate method if the
method is introduced, otherwise proceeds towards the join point - is usually sufficient. In the present
case, we need to add a check: no setter method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockM xi n instance, and
specify the introduced interfaces - in this case, just Lockabl e. A more complex example might take a
reference to the introduction interceptor (which would be defined as a prototype): in this case, there's
no configuration relevant for a LockM xi n, so we simply create it using new.

public class LockM xi nAdvi sor ext ends Defaul t|ntroductionAdvi sor {

publ i c LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e.cl ass);

}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's
impossible to use an | nt roducti onl nt er cept or without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockM xi nAdvi sor, and hence LockM xi n, for each advised object. The advisor comprises part of
the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the
recommended way) in XML configuration, like any other advisor. All proxy creation choices discussed
below, including "auto proxy creators," correctly handle introductions and stateful mixins.

10.4 Advisor APl in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Spring Framework
3.2.1.RELEASE Reference Documentation 256

Spring Framework

Apart from the special case of introductions, any advisor can be used with any advice.
or g. spri ngframewor k. aop. support . Def aul t Poi nt cut Advi sor is the most commonly used
advisor class. For example, it can be used with a Met hodl nt er cept or, Bef oreAdvi ce or
Thr owsAdvi ce.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could
use a interception around advice, throws advice and before advice in one proxy configuration: Spring
will automatically create the necessary interceptor chain.

10.5 Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring loC container (an ApplicationContext or BeanFactory) for your business objects
- and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory
bean introduces a layer of indirection, enabling it to create objects of a different type.)

© Note

The Spring 2.0 AOP support also uses factory beans under the covers.

The basic way to «create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts
and advice that will apply, and their ordering. However, there are simpler options that are preferable if
you don't need such control.

Basics

The ProxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of
indirection. If you define a Pr oxyFact or yBean with name f 0o, what objects referencing f oo see
is not the Pr oxyFact or yBean instance itself, but an object created by the Pr oxyFact or yBean's
implementation of the get Obj ect () method. This method will create an AOP proxy wrapping a target
object.

One of the most important benefits of using a Pr oxyFact or yBean or another loC-aware class to create
AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a powerful
feature, enabling certain approaches that are hard to achieve with other AOP frameworks. For example,
an advice may itself reference application objects (besides the target, which should be available in any
AOP framework), benefiting from all the pluggability provided by Dependency Injection.

JavaBean properties

In common with most Fact or yBean implementations provided with Spring, the Pr oxyFact or yBean
class is itself a JavaBean. Its properties are used to:

» Specify the target you want to proxy.

» Specify whether to use CGLIB (see below and also the section called “JDK- and CGLIB-based
proxies”).

Some key properties are inherited from or g. spri ngf r amewor k. aop. f ramewor k. ProxyConfi g
(the superclass for all AOP proxy factories in Spring). These key properties include:

* proxyTarget C ass:trueifthe target class is to be proxied, rather than the target class' interfaces.
If this property value is set to t r ue, then CGLIB proxies will be created (but see also the section
called “JDK- and CGLIB-based proxies”).

Spring Framework
3.2.1.RELEASE Reference Documentation 257

Spring Framework

e opti m ze:controls whether or not aggressive optimizations are applied to proxies created via CGLIB.
One should not blithely use this setting unless one fully understands how the relevant AOP proxy
handles optimization. This is currently used only for CGLIB proxies; it has no effect with IDK dynamic
proxies.

» frozen:ifa proxy configuration is f r ozen, then changes to the configuration are no longer allowed.
This is useful both as a slight optimization and for those cases when you don't want callers to be able
to manipulate the proxy (via the Advi sed interface) after the proxy has been created. The default
value of this property is f al se, so changes such as adding additional advice are allowed.

» exposePr oxy: determines whether or not the current proxy should be exposed in a Thr eadLocal
so that it can be accessed by the target. If a target needs to obtain the proxy and the exposePr oxy
property is setto t r ue, the target can use the AopCont ext . curr ent Proxy() method.

Other properties specific to Pr oxyFact or yBean include:

» proxyl nt erfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the target
class will be used (but see also the section called “JDK- and CGLIB-based proxies”).

e i ntercept or Nanes: String array of Advi sor, interceptor or other advice names to apply. Ordering
is significant, on a first come-first served basis. That is to say that the first interceptor in the list will
be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You
can't mention bean references here since doing so would result in the Pr oxyFact or yBean ignoring
the singleton setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all
advisor beans with names starting with the part before the asterisk to be applied. An example of using
this feature can be found in the section called “Using 'global’ advisors”.

* singleton: whether or not the factory should return a single object, no matter how often the
get Obj ect () method is called. Several Fact or yBean implementations offer such a method. The
defaultvalueist r ue. If you want to use stateful advice - for example, for stateful mixins - use prototype
advices along with a singleton value of f al se.

JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the Pr oxyFact or yBean chooses to create
one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

© Note

The behavior of the ProxyFact oryBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean
now exhibits similar semantics with regard to auto-detecting interfaces as those of the
Transact i onPr oxyFact or yBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest scenario,
because JDK proxies are interface based, and no interfaces means JDK proxying isn't even possible.
One simply plugs in the target bean, and specifies the list of interceptors via the i nt er cept or Nanes
property. Note that a CGLIB-based proxy will be created even if the pr oxyTar get C ass property of

Spring Framework
3.2.1.RELEASE Reference Documentation 258

Spring Framework

the Pr oxyFact or yBean has been setto f al se. (Obviously this makes no sense, and is best removed
from the bean definition because it is at best redundant, and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends
on the configuration of the Pr oxyFact or yBean.

If the pr oxyTar get Cl ass property of the Pr oxyFact or yBean has been settot r ue, then a CGLIB-
based proxy will be created. This makes sense, and is in keeping with the principle of least surprise.
Even if the pr oxyl nt er f aces property of the Pr oxyFact or yBean has been set to one or more fully
qualified interface names, the fact that the pr oxyTar get C ass property is set to t r ue will cause
CGLIB-based proxying to be in effect.

If the proxyl nterfaces property of the ProxyFact or yBean has been set to one or more fully
qualified interface names, then a JDK-based proxy will be created. The created proxy will implement all
of the interfaces that were specified in the pr oxyl nt er f aces property; if the target class happens to
implement a whole lot more interfaces than those specified in the pr oxyl nt er f aces property, that is
all well and good but those additional interfaces will not be implemented by the returned proxy.

If the pr oxyl nt er f aces property of the Pr oxyFact or yBean has not been set, but the target class
does implement one (or more) interfaces, then the Pr oxyFact or yBean will auto-detect the fact that the
target class does actually implement at least one interface, and a JDK-based proxy will be created. The
interfaces that are actually proxied will be all of the interfaces that the target class implements; in effect,
this is the same as simply supplying a list of each and every interface that the target class implements
to the pr oxyl nt er f aces property. However, it is significantly less work, and less prone to typos.

Proxying interfaces

Let's look at a simple example of Pr oxyFact or yBean in action. This example involves:

» Atarget bean that will be proxied. This is the "personTarget" bean definition in the example below.
* An Advisor and an Interceptor used to provide advice.

» An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces
to proxy, along with the advices to apply.

Spring Framework
3.2.1.RELEASE Reference Documentation 259

Spring Framework

<bean i d="personTarget" class="com myconpany. Personl npl ">
<property nane="nane" val ue="Tony"/>
<property nanme="age" val ue="51"/>

</ bean>

<bean i d="nyAdvi sor" cl ass="com nyconpany. MyAdvi sor" >
<property nane="soneProperty" val ue="Custom string property val ue"/>
</ bean>

<bean i d="debugl nterceptor" class="org.springframework. aop. i nterceptor.Debugl nterceptor">
</ bean>

<bean i d="person"
cl ass="org. spri ngf ramewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property nane="proxyl nterfaces" val ue="com nyconpany. Person"/>

<property nane="target" ref="personTarget"/>
<property nanme="interceptor Names" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</[list>
</ property>
</ bean>

Note that the i nt er cept or Nanes property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice objects
can be used. The ordering of advisors is significant.

© Note

You might be wondering why the list doesn't hold bean references. The reason for this is that if
the ProxyFactoryBean's singleton property is set to false, it must be able to return independent
proxy instances. If any of the advisors is itself a prototype, an independent instance would need
to be returned, so it's necessary to be able to obtain an instance of the prototype from the factory;
holding a reference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory. getBean("person");

Other beans in the same I0C context can express a strongly typed dependency on it, as with an ordinary
Java object:

<bean i d="personUser" cl ass="com myconpany. PersonUser" >
<property nanme="person"><ref | ocal ="person"/></property>
</ bean>

The Per sonUser class in this example would expose a property of type Person. As far as it's concerned,
the AOP proxy can be used transparently in place of a "real" person implementation. However, its class
would be a dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed
below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean,
as follows. Only the ProxyFact or yBean definition is different; the advice is included only for
completeness:

Spring Framework
3.2.1.RELEASE Reference Documentation 260

Spring Framework

<bean i d="nyAdvi sor" cl ass="com nyconpany. MyAdvi sor" >
<property nane="soneProperty" val ue="Custom string property val ue"/>
</ bean>

<bean i d="debugl nterceptor" class="org. springfranework. aop. i nterceptor. Debugl nterceptor"/>

<bean i d="person" class="org.springfranework. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="proxyl nterfaces" val ue="com nyconpany. Person"/>
<l-- Use inner bean, not local reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Per sonl npl ">
<property nanme="nanme" val ue="Tony"/>
<property nane="age" val ue="51"/>
</ bean>
</ property>
<property nanme="i nterceptor Names" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</[list>
</ property>
</ bean>

This has the advantage that there's only one object of type Per son: useful if we want to prevent users
of the application context from obtaining a reference to the un-advised object, or need to avoid any
ambiguity with Spring loC autowiring. There's also arguably an advantage in that the ProxyFactoryBean
definition is self-contained. However, there are times when being able to obtain the un-advised target
from the factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise a class called
Per son that didn't implement any business interface. In this case, you can configure Spring to use
CGLIB proxying, rather than dynamic proxies. Simply set the pr oxyTar get Cl ass property on the
ProxyFactoryBean above to true. While it's best to program to interfaces, rather than classes, the ability
to advise classes that don't implement interfaces can be useful when working with legacy code. (In
general, Spring isn't prescriptive. While it makes it easy to apply good practices, it avoids forcing a
particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement
the Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:
* Fi nal methods can't be advised, as they can't be overridden.

e Thereis no need to add CGLIB to your classpath. As of Spring 3.2, CGLIB is repackaged and included
in the spring-core JAR. In other words, CGLIB-based AOP will work "out of the box" just as do JDK
dynamic proxies.

Spring Framework
3.2.1.RELEASE Reference Documentation 261

Spring Framework

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are slightly faster. However, this may change in the future. Performance should not be
a decisive consideration in this case.

Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before
the asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard
set of 'global' advisors:

<bean i d="proxy" class="org.springfranework. aop. franewor k. ProxyFact or yBean" >
<property name="target" ref="service"/>
<property nanme="interceptor Names" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean i d="gl obal _debug" cl ass="org. springfranework. aop. i nterceptor. Debugl nterceptor"/>
<bean i d="gl obal _perfornance" class="org.springfranework. aop. i nterceptor.PerfornmanceMnitorlnterceptor"/
>

10.6 Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The
use of parent and child bean definitions, along with inner bean definitions, can result in much cleaner
and more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean i d="txProxyTenpl ate" abstract="true"
cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property nane="transacti onManager" ref="transacti onManager"/>
<property nanme="transactionAttri butes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be
created is just a child bean definition, which wraps the target of the proxy as an inner bean definition,
since the target will never be used on its own anyway.

<bean i d="nyService" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

It is of course possible to override properties from the parent template, such as in this case, the
transaction propagation settings:

Spring Framework
3.2.1.RELEASE Reference Documentation 262

Spring Framework

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property nane="transactionAttributes">
<pr ops>
<prop key="get*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="fi nd*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="I oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="store*">PROPAGATI ON_REQUI RED</ pr op>
</ pr ops>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by
using the abstract attribute, as described previously, so that it may not actually ever be instantiated.
Application contexts (but not simple bean factories) will by default pre-instantiate all singletons. It is
therefore important (at least for singleton beans) that if you have a (parent) bean definition which you
intend to use only as a template, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actually try to pre-instantiate it.

10.7 Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring loC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor.
The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusi nesslnterfacel npl);
factory. addAdvi ce(myMet hodl nt er cept or) ;

factory. addAdvi sor (myAdvi sor) ;

M/Busi nesslinterface tb = (M/Busi nesslnterface) factory.getProxy();

The first step is to construct an object of type
org. spri ngfranmewor k. aop. framewor k. ProxyFact or y. You can create this with a target object,
as in the above example, or specify the interfaces to be proxied in an alternate constructor.

You can add advices (with interceptors as a specialized kind of advice) and/or advisors, and manipulate
them for the life of the ProxyFactory. If you add an IntroductioninterceptionAroundAdvisor, you can
cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from Advi sedSuppor t) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of
both ProxyFactory and ProxyFactoryBean.

@ Tip

Integrating AOP proxy creation with the 10C framework is best practice in most applications. We
recommend that you externalize configuration from Java code with AOP, as in general.

Spring Framework
3.2.1.RELEASE Reference Documentation 263

Spring Framework

10.8 Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org. springf ramewor k. aop. franewor k. Advi sed interface. Any AOP proxy can be cast to this
interface, whichever other interfaces it implements. This interface includes the following methods:

Advi sor[] getAdvisors();
voi d addAdvi ce(Advi ce advi ce) throws AopConfi gExcepti on;

voi d addAdvi ce(i nt pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gExcepti on;
int i ndexCF (Advi sor advi sor);

bool ean renpveAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d renpveAdvi sor (int index) throws AopConfi gExcepti on;

bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gException;

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice
type that has been added to the factory. If you added an Advisor, the returned advisor at this
index will be the object that you added. If you added an interceptor or other advice type, Spring
will have wrapped this in an advisor with a pointcut that always returns true. Thus if you added a
Met hodl nt er cept or, the advisor returned for this index will be an Def aul t Poi nt cut Advi sor
returning your Met hodl nt er cept or and a pointcut that matches all classes and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic Def aul t Poi nt cut Advi sor, which can be used with any advice or pointcut
(but not for introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created.
The only restriction is that it's impossible to add or remove an introduction advisor, as existing proxies
from the factory will not show the interface change. (You can obtain a new proxy from the factory to
avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating
its advice:

Spring Framework
3.2.1.RELEASE Reference Documentation 264

Spring Framework

Advi sed advi sed = (Advi sed) myQbj ect;

Advi sor[] advisors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | engt h;

System out . println(ol dAdvi sor Count + " advi sors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WIIl match all proxied nethods

/'l Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

/'l Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s("Added two advi sors",
ol dAdvi sor Count + 2, advi sed. get Advi sors().length);

© Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business object
in production, although there are no doubt legitimate usage cases. However, it can be very useful
in development: for example, in tests. | have sometimes found it very useful to be able to add test
code in the form of an interceptor or other advice, getting inside a method invocation | want to
test. (For example, the advice can get inside a transaction created for that method: for example,
to run SQL to check that a database was correctly updated, before marking the transaction for
roll back.)

Depending on how you created the proxy, you can usually setaf r ozen flag, in which case the Advi sed
i sFrozen() method will return true, and any attempts to modify advice through addition or removal
will result in an AopConf i gExcept i on. The ability to freeze the state of an advised object is useful in
some cases, for example, to prevent calling code removing a security interceptor. It may also be used
in Spring 1.1 to allow aggressive optimization if runtime advice modification is known not to be required.

10.9 Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean or similar factory
bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of
any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to configure the
auto proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't
need to use Pr oxyFact or yBean.

There are two ways to do this:
» Using an autoproxy creator that refers to specific beans in the current context.

» A special case of autoproxy creation that deserves to be considered separately; autoproxy creation
driven by source-level metadata attributes.

Spring Framework
3.2.1.RELEASE Reference Documentation 265

Spring Framework

Autoproxy bean definitions

The org. springframework. aop. framewor k. aut opr oxy package provides the following
standard autoproxy creators.

BeanNameAutoProxyCreator

The BeanNaneAut oPr oxyCr eat or class is a BeanPost Pr ocessor that automatically creates AOP
proxies for beans with names matching literal values or wildcards.

<bean cl ass="org. spri ngframewor k. aop. f r amewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property nane="beanNanmes" val ue="j dk*, onl yJdk"/>
<property nanme="i nterceptor Names" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

As with ProxyFact oryBean, there is an i nterceptor Names property rather than a list of
interceptors, to allow correct behavior for prototype advisors. Named "interceptors" can be advisors or
any advice type.

As with auto proxying in general, the main point of using BeanNameAut oPr oxyCr eat or isto apply the
same configuration consistently to multiple objects, with minimal volume of configuration. It is a popular
choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are
plain old bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNaneAut oPr oxyCr eat or . The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply differently
to different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or .
This will automagically apply eligible advisors in the current context, without the need to include
specific bean names in the autoproxy advisor's bean definition. It offers the same merit of consistent
configuration and avoidance of duplication as BeanNarmeAut oPr oxyCr eat or .

Using this mechanism involves:
» Specifying a Def aul t Advi sor Aut oPr oxyCr eat or bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors,
not just interceptors or other advices. This is necessary because there must be a pointcut to evaluate,
to check the eligibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or will automatically evaluate the pointcut contained in each
advisor, to see what (if any) advice it should apply to each business object (such as "businessObjectl"”
and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be proxied.
As bean definitions are added for new business objects, they will automatically be proxied if necessary.

Spring Framework
3.2.1.RELEASE Reference Documentation 266

Spring Framework

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain
an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP
proxy, not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean cl ass="org. spri ngfranewor k. aop. f ranewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >

<bean cl ass="org. springframework.transacti on.interceptor. Transacti onAttri buteSourceAdvi sor">
<property nane="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="customAdvi sor" cl ass="com nyconpany. M/Advi sor"/>
<bean i d="busi nessObj ect 1" cl ass="com nyconpany. Busi nessChj ect 1" >

<!-- Properties omtted -->
</ bean>

<bean i d="busi nessObj ect 2" cl ass="com nyconpany. Busi nessCbj ect 2"/ >

The Def aul t Advi sor Aut oPr oxyCr eat or is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place, you can simply
add new business objects without including specific proxy configuration. You can also drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change to
configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention
so that only certain advisors are evaluated, allowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
org. springframewor k. core. O der ed interface to ensure correct ordering if this is an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the
default setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators
by subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to
the behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET Servi cedConponents. Instead of using XML deployment descriptors as in EJB,
configuration for transaction management and other enterprise services is held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or, in combination with Advisors that
understand metadata attributes. The metadata specifics are held in the pointcut part of the candidate
advisors, rather than in the autoproxy creation class itself.

This is really a special case of the Def aul t Advi sor Aut oPr oxyCr eat or , but deserves consideration
on its own. (The metadata-aware code is in the pointcuts contained in the advisors, not the AOP
framework itself.)

The /attributes directory of the JPetStore sample application shows the use of attribute-
driven autoproxying. In this case, there's no need to use the Transacti onProxyFact or yBean.
Simply defining transactional attributes on business objects is sufficient, because of the use

Spring Framework
3.2.1.RELEASE Reference Documentation 267

Spring Framework

of metadata-aware pointcuts. The bean definitions include the following code, in /WEB- | NF/
decl arati veServi ces. xm . Note that this is generic, and can be used outside the JPetStore:

<bean cl ass="org. spri ngfranewor k. aop. f ranewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property nane="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean id="transactionl nterceptor"
cl ass="org. springframewor k. transaction.interceptor. Transacti onl nterceptor">
<property nane="transacti onManager" ref="transacti onManager"/>
<property nane="transactionAttri buteSource">

<bean cl ass="org. springframework.transaction.interceptor.AttributesTransactionAttributeSource">
<property nane="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springframework. met adat a. conmons. CommonsAttri butes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it
can even be omitted) will pick up all eligible pointcuts in the current application context. In this
case, the "transactionAdvisor" bean definition, of type Tr ansact i onAt t r i but eSour ceAdvi sor , will
apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor
depends on a Transactioninterceptor, via constructor dependency. The example resolves this via
autowiring. The At t ri but esTransacti onAtt ri but eSour ce depends on an implementation of the
org. springframewor k. met adat a. Att ri but es interface. In this fragment, the "attributes" bean
satisfies this, using the Jakarta Commons Attributes API to obtain attribute information. (The application
code must have been compiled using the Commons Attributes compilation task.)

The / annot at i on directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection
of Spring's Tr ansact i onal annotation, leading to implicit proxies for beans containing that annotation:

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or "/ >

<bean cl ass="org. spri ngfranmework.transaction.interceptor. TransactionAttri buteSourceAdvi sor">
<property nane="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="transactionlnterceptor"
cl ass="org. springframewor k. transaction.interceptor. Transacti onl nterceptor"”>
<property nanme="transacti onManager" ref="transacti onManager"/>
<property nane="transactionAttri buteSource">

<bean cl ass="org. spri ngfranmework.transaction. annotation. Annotati onTransacti onAttri buteSource"/

</ property>
</ bean>

The Transacti onl nterceptor defined here depends on a Pl atf or milr ansacti onManager
definition, which is not included in this generic file (although it could be) because it will be specific to the
application's transaction requirements (typically JTA, as in this example, or Hibernate, JDO or JDBC):

Spring Framework
3.2.1.RELEASE Reference Documentation 268

Spring Framework

<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/>

@ Tip

If you require only declarative transaction management, using these generic XML definitions will
result in Spring automatically proxying all classes or methods with transaction attributes. You
won't need to work directly with AOP, and the programming model is similar to that of .NET
ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. You need to:
 Define your custom attribute.

» Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence
of the custom attribute on a class or method. You may be able to use an existing advice, merely
implementing a static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they
simply need to be defined as prototype, rather than singleton, bean definitions. For example, the
LockM xi n introduction interceptor from the Spring test suite, shown above, could be used in
conjunction with an attribute-driven pointcut to target a mixin, as shown here. We use the generic
Def aul t Poi nt cut Advi sor, configured using JavaBean properties:

<bean id="lockM xi n" cl ass="org. spri ngframewor k. aop. LockM xi n"
scope="prototype"/>

<bean i d="I ockabl eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support . Def aul t Poi nt cut Advi sor"
scope="pr ot ot ype" >
<property nane="pointcut" ref="nyAttributeAwarePointcut"/>
<property nanme="advi ce" ref="|ockM xin"/>
</ bean>

<bean i d="anyBean" class="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the
mixin will be applied. Note that both | ockM xi n and | ockabl eAdvi sor definitions are prototypes.
The nyAt t ri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for
individual advised objects.

10.10 Using TargetSources

Spring offers the concept of a TargetSource, expressed in the
org. spri ngfranmewor k. aop. Tar get Sour ce interface. This interface is responsible for returning
the "target object” implementing the join point. The Tar get Sour ce implementation is asked for a target
instance each time the AOP proxy handles a method invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides
a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a
pooling TargetSource can return a different target instance for each invocation, using a pool to manage
instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The
same target is returned for each invocation (as you would expect).

Spring Framework
3.2.1.RELEASE Reference Documentation 269

Spring Framework

Let's look at the standard target sources provided with Spring, and how you can use them.
@ Tip

When using a custom target source, your target will usually need to be a prototype rather than a
singleton bean definition. This allows Spring to create a new target instance when required.

Hot swappable target sources

The org. springfranmewor k. aop. t ar get . Hot Smappabl eTar get Sour ce exists to allow the
target of an AOP proxy to be switched while allowing callers to keep their references to it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce is
threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean(" swapper");
bj ect ol dTarget = swapper. swap(newTar get)

The XML definitions required look as follows:

<bean id="initial Target" class="myconpany.d dTarget"/>

<bean id="swapper" class="org.springframework. aop.target. Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean i d="swappabl e" cl ass="org. spri ngfranmework. aop. f ranewor k. Pr oxyFact or yBean" >
<property nane="t arget Source" ref="swapper"/>
</ bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that
bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a
Tar get Sour ce - of course any Tar get Sour ce can be used in conjunction with arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which
a pool of identical instances is maintained, with method invocations going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to
any POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides
a fairly efficient pooling implementation. You'll need the commons-pool Jar on
your application's classpath to wuse this feature. It's also possible to subclass
org. spri ngframewor k. aop. t arget . Abstract Pool i ngTar get Sour ce to support any other
pooling API.

Sample configuration is shown below:

Spring Framework
3.2.1.RELEASE Reference Documentation 270

Spring Framework

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. M/Busi nessObj ect "
scope="pr ot ot ype" >
properties onmtted
</ bean>

<bean i d="pool Tar get Source" cl ass="org. spri ngframework. aop. target. CormonsPool Tar get Sour ce" >
<property nane="t ar get BeanNanme" val ue="busi nessObj ect Target"/ >
<property nane="maxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessOhj ect" class="org. springfranework. aop. f ranmewor k. ProxyFact or yBean" >
<property nane="t arget Source" ref="pool Target Source"/ >
<property nanme="interceptorNames" val ue="nyl nterceptor"/>

</ bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows
the Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool
as necessary. See the javadoc for Abst r act Pool i ngTar get Sour ce and the concrete subclass you
wish to use for information about its properties: "maxSize" is the most basic, and always guaranteed
to be present.

In this case, "mylnterceptor" is the name of an interceptor that would need to be defined in the same
loC context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling,
and no other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org. springframewor k. aop. target. Pool i ngConfi g interface, which exposes information
about the configuration and current size of the pool through an introduction. You'll need to define an
advisor like this:

<bean i d="pool Confi gAdvi sor" cl ass="org. spri ngfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property nane="t arget Obj ect" ref="pool Target Source"/>
<property nane="tar get Met hod" val ue="get Pool i ngConfi gM xi n"/ >

</ bean>

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce
class, hence the use of MethodInvokingFactoryBean. This advisor's name ("poolConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

Pool i ngConfig conf = (PoolingConfig) beanFactory.getBean("busi nessObject");
System out. println("Max pool size is " + conf.getMaxSize());

© Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the
default choice, as most stateless objects are naturally thread safe, and instance pooling is
problematic if resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any
autoproxy creator.

Spring Framework
3.2.1.RELEASE Reference Documentation 271

Spring Framework

Prototype target sources

Setting up a "prototype” target source is similar to a pooling TargetSource. In this case, a new instance
of the target will be created on every method invocation. Although the cost of creating a new object isn't
high in a modern JVM, the cost of wiring up the new object (satisfying its loC dependencies) may be
more expensive. Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've also
changed the name, for clarity.)

<bean i d="prototypeTarget Source" class="org. springfranmework. aop.target.PrototypeTarget Source" >
<property nane="t ar get BeanNane" ref="busi nessCbj ect Target"/>
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean must
be a prototype bean definition.

Thr eadLocal target sources

Thr eadLocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a Thr eadLocal provide a JDK-wide facility to transparently store
resource alongside a thread. Setting up a Thr eadLocal Tar get Sour ce is pretty much the same as
was explained for the other types of target source:

<bean i d="t hreadl ocal Tar get Source" cl ass="org. spri ngframewor k. aop.target. ThreadLocal Tar get Sour ce" >
<property nanme="t ar get BeanNane" val ue="busi nessQbj ect Target"/ >
</ bean>

© Note

ThreadLocals come with serious issues (potentially resulting in memory leaks) when incorrectly
using them in a multi-threaded and multi-classloader environments. One should always consider
wrapping a threadlocal in some other class and never directly use the Thr eadLocal itself
(except of course in the wrapper class). Also, one should always remember to correctly set and
unset (where the latter simply involved a call to Thr eadLocal . set (nul |)) the resource local to
the thread. Unsetting should be done in any case since not unsetting it might result in problematic
behavior. Spring's ThreadLocal support does this for you and should always be considered in
favor of using ThreadLocals without other proper handling code.

10.11 Defining new Advi ce types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently
used internally, it is possible to support arbitrary advice types in addition to the out-of-the-box
interception around advice, before, throws advice and after returning advice.

The org. springframewor k. aop. framewor k. adapt er package is an SPl package allowing
support for new custom advice types to be added without changing the core framework. The only
constraint on a custom Advi ce type is that it must implement the or g. aopal | i ance. aop. Advi ce
tag interface.

Please refer to the org. spri ngframewor k. aop. f ranmewor k. adapt er package's Javadocs for
further information.

Spring Framework
3.2.1.RELEASE Reference Documentation 272

Spring Framework

10.12 Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

» The JPetStore's default configuration illustrates the use of the Tr ansact i onPr oxyFact or yBean
for declarative transaction management.

* The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative
transaction management.

Spring Framework
3.2.1.RELEASE Reference Documentation 273

Spring Framework

11. Testing

11.1 Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on the value-add
of the 10C principle to unit testing and on the benefits of the Spring Framework's support for integration
testing. (A thorough treatment of testing in the enterprise is beyond the scope of this reference manual.)

11.2 Unit Testing

Dependency Injection should make your code less dependent on the container than it would be with
traditional Java EE development. The POJOs that make up your application should be testable in JUnit
or TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. You can use mock objects (in conjunction with other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations for Spring, the resulting clean layering
and componentization of your codebase will facilitate easier unit testing. For example, you can test
service layer objects by stubbing or mocking DAO or Repository interfaces, without needing to access
persistent data while running unit tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure to set up. Emphasizing
true unit tests as part of your development methodology will boost your productivity. You may not need
this section of the testing chapter to help you write effective unit tests for your loC-based applications.
For certain unit testing scenarios, however, the Spring Framework provides the following mock objects
and testing support classes.

Mock Objects

Environment

The org. springframework. mock. env package contains mock implementations of the
Envi ronnent and PropertySource abstractions introduced in Spring 3.1 (see Section 3.3,
“Environment Abstraction” and Section 3.4, “PropertySource Abstraction”). MockEnvi r onnent and
MockPr opert ySour ce are useful for developing out-of-container tests for code that depends on
environment-specific properties.

JNDI

The org. spri ngf ramewor k. nock. j ndi package contains an implementation of the JNDI SPI,
which you can use to set up a simple JNDI environment for test suites or stand-alone applications.
If, for example, JDBC Dat aSour ces get bound to the same JNDI names in test code as within a
Java EE container, you can reuse both application code and configuration in testing scenarios without
modification.

Servlet API

The or g. spri ngf ramewor k. nock. web package contains a comprehensive set of Serviet APl mock
objects, targeted at usage with Spring's Web MVC framework, which are useful for testing web contexts
and controllers. These mock objects are generally more convenient to use than dynamic mock objects
such as EasyMock or existing Servlet APl mock objects such as MockObjects.

Spring Framework
3.2.1.RELEASE Reference Documentation 274

http://www.easymock.org
http://www.mockobjects.com

Spring Framework

Portlet API

The org. spri ngfranmewor k. nock. web. portl et package contains a set of Portlet APl mock
objects, targeted at usage with Spring's Portlet MVC framework.

Unit Testing support Classes
General utilities

The org. springframewor k. test.util package contains Refl ecti onTest Util s, which is a
collection of reflection-based utility methods. Developers use these methods in unit and integration
testing scenarios in which they need to set a non-publ i ¢ field or invoke a non-publ i ¢ setter method
when testing application code involving, for example:

» ORM frameworks such as JPA and Hibernate that condone pri vat e or pr ot ect ed field access as
opposed to publ i ¢ setter methods for properties in a domain entity.

» Spring's support for annotations such as @\ut owi r ed, @ nj ect , and @Resour ce, which provides
dependency injection for pri vat e or pr ot ect ed fields, setter methods, and configuration methods.

Spring MVC

The or g. spri ngfranmewor k. t est. web package contains Model AndVi ewAssert, which you can
use in combination with JUnit, TestNG, or any other testing framework for unit tests dealing with Spring
MVC Mbdel AndVi ew objects.

@ Unit testing Spring MVC Controllers

To test your Spring MVC Controllers, use Model AndVi ewAssert combined
with MockHtt pServl et Request, MckH tpSession, and so on from the
or g. spri ngf ramewor k. nock. web package.

11.3 Integration Testing

Overview

It is important to be able to perform some integration testing without requiring deployment to your
application server or connecting to other enterprise infrastructure. This will enable you to test things
such as:

» The correct wiring of your Spring loC container contexts.

» Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first-class support for integration testing in the spring-test
module. The name of the actual JAR file might include the release version and might also
be in the long org.springfranework.test form, depending on where you get it from
(see the section on Dependency Management for an explanation). This library includes the
org. spri ngfranmework. t est package, which contains valuable classes for integration testing with
a Spring container. This testing does not rely on an application server or other deployment environment.
Such tests are slower to run than unit tests but much faster than the equivalent Cactus tests or remote
tests that rely on deployment to an application server.

Spring Framework
3.2.1.RELEASE Reference Documentation 275

Spring Framework

In Spring 2.5 and later, unit and integration testing support is provided in the form of the annotation-driven
Spring TestContext Framework. The TestContext framework is agnostic of the actual testing framework
in use, thus allowing instrumentation of tests in various environments including JUnit, TestNG, and so on.

© JUnit 3.8 support is deprecated

As of Spring 3.0, the legacy JUnit 3.8 base class hierarchy (i.e.,
Abst ract Dependencyl nj ecti onSpri ngCont ext Test s,

Abst ract Tr ansact i onal Dat aSour ceSpri ngCont ext Test s, etc.) is officially deprecated
and will be removed in a later release. Any test classes based on this code should be migrated
to the Spring TestContext Framework.

As of Spring 3.1, the JUnit 3.8 base classes in the Spring
TestContext Framework (i.e., Abst ract JUni t 38Spri ngCont ext Test s and
Abstract Transacti onal JUni t 38Spri ngCont ext Tests) and @Expect edException
have been officially deprecated and will be removed in a later release. Any test classes based
on this code should be migrated to the JUnit 4 or TestNG support provided by the Spring
TestContext Framework. Similarly, any test methods annotated with @xpect edExcepti on
should be modified to use the built-in support for expected exceptions in JUnit and TestNG.

Goals of Integration Testing
Spring's integration testing support has the following primary goals:

» To manage Spring 1oC container caching between test execution.

» To provide Dependency Injection of test fixture instances.

» To provide transaction management appropriate to integration testing.

To supply Spring-specific base classes that assist developers in writing integration tests.

The next few sections describe each goal and provide links to implementation and configuration details.
Context management and caching

The Spring TestContext Framework provides consistent loading of Spring Appl i cat i onCont ext sand
WebAppl i cati onCont ext s as well as caching of those contexts. Support for the caching of loaded
contexts is important, because startup time can become an issue — not because of the overhead of
Spring itself, but because the objects instantiated by the Spring container take time to instantiate. For
example, a project with 50 to 100 Hibernate mapping files might take 10 to 20 seconds to load the
mapping files, and incurring that cost before running every test in every test fixture leads to slower
overall test runs that reduce developer productivity.

Test classes typically declare either an array of resource locations for XML configuration metadata —
often in the classpath — or an array of annotated classes that is used to configure the application. These
locations or classes are the same as or similar to those specified in web. xnm or other deployment
configuration files.

By default, once loaded, the configured Appl i cat i onCont ext is reused for each test. Thus the setup
costisincurred only once per test suite, and subsequent test execution is much faster. In this context, the
term test suite means all tests run in the same JVM — for example, all tests run from an Ant, Maven, or
Gradle build for a given project or module. In the unlikely case that a test corrupts the application context
and requires reloading — for example, by modifying a bean definition or the state of an application object

Spring Framework
3.2.1.RELEASE Reference Documentation 276

Spring Framework

— the TestContext framework can be configured to reload the configuration and rebuild the application
context before executing the next test.

See context management and caching with the TestContext framework.

Dependency Injection of test fixtures

When the TestContext framework loads your application context, it can optionally configure instances
of your test classes via Dependency Injection. This provides a convenient mechanism for setting up
test fixtures using preconfigured beans from your application context. A strong benefit here is that you
can reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed
object graphs, transactional proxies, Dat aSour ces, etc.), thus avoiding the need to duplicate complex
test fixture setup for individual test cases.

As an example, consider the scenario where we have a class, Hi ber nat eTi t | eReposi t ory, that
implements data access logic for a Ti t | e domain entity. We want to write integration tests that test
the following areas:

* The Spring configuration: basically, is everything related to the configuration of the
Hi ber nat eTi t | eReposi t ory bean correct and present?

» The Hibernate mapping file configuration: is everything mapped correctly, and are the correct lazy-
loading settings in place?

e The logic of the Hi ber nat eTi t | eReposi t or y: does the configured instance of this class perform
as anticipated?

See dependency injection of test fixtures with the TestContext framework.

Transaction management

One common issue in tests that access a real database is their effect on the state of the persistence
store. Even when you're using a development database, changes to the state may affect future tests.
Also, many operations — such as inserting or modifying persistent data — cannot be performed (or
verified) outside a transaction.

The TestContext framework addresses this issue. By default, the framework will create and roll back a
transaction for each test. You simply write code that can assume the existence of a transaction. If you
call transactionally proxied objects in your tests, they will behave correctly, according to their configured
transactional semantics. In addition, if a test method deletes the contents of selected tables while running
within the transaction managed for the test, the transaction will roll back by default, and the database
will return to its state prior to execution of the test. Transactional support is provided to a test via a
Pl at f or nTr ansact i onManager bean defined in the test's application context.

If you want a transaction to commit — unusual, but occasionally useful when you want a particular
test to populate or modify the database — the TestContext framework can be instructed to cause the
transaction to commit instead of roll back via the @r ansacti onConfi gurati on and @Rol | back
annotations.

See transaction management with the TestContext framework.
Support classes for integration testing

The Spring TestContext Framework provides several abst r act support classes that simplify the writing
of integration tests. These base test classes provide well-defined hooks into the testing framework as
well as convenient instance variables and methods, which enable you to access:

Spring Framework
3.2.1.RELEASE Reference Documentation 277

Spring Framework

e The Appl i cat i onCont ext , for performing explicit bean lookups or testing the state of the context
as a whole.

 AJdbcTenpl at e, for executing SQL statements to query the database. Such queries can be used
to confirm database state both prior to and after execution of database-related application code, and
Spring ensures that such queries run in the scope of the same transaction as the application code.
When used in conjunction with an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with instance
variables and methods specific to your project.

See support classes for the TestContext framework.

JDBC Testing Support

The org.springframework.test.jdbc package contains JdbcTestUtils, which is a
collection of JDBC related utility functions intended to simplify standard database
testing scenarios. Note that Abstract Transacti onal JUnit4Spri ngCont ext Tests and
Abst ract Transact i onal Test NGSpr i ngCont ext Test s provide convenience methods which
delegate to JdbcTest Uti | s internally.

The spri ng-j dbc module provides support for configuring and launching an embedded database
which can be used in integration tests that interact with a database. For details, see Section 14.8,
“Embedded database support” and the section called “Testing data access logic with an embedded
database”.

Annotations
Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that you can use in
your unit and integration tests in conjunction with the TestContext framework. Refer to the respective
Javadoc for further information, including default attribute values, attribute aliases, and so on.

e @Cont ext Configuration

Defines class-level metadata that is used to determine how to load and configure an
Appl i cati onCont ext for integration tests. Specifically, @ont ext Confi gurati on declares
either the application context resource | ocat i ons or the annotated cl asses that will be used to
load the context.

Resource locations are typically XML configuration files located in the classpath; whereas, annotated
classes are typically @onfi gur ati on classes. However, resource locations can also refer to files
in the file system, and annotated classes can be component classes, etc.

@ont ext Configuration("/test-config.xm")

public class Xnml ApplicationCont ext Tests {
/'l class body...

}

@Cont ext Confi guration(cl asses=Test Confi g. cl ass)

public class ConfigC assApplicationCont extTests {
/1 class body...

}

Spring Framework
3.2.1.RELEASE Reference Documentation 278

Spring Framework

As an alternative or in addition to declaring resource locations or annotated -classes,
@ont ext Configuration may be used to declare ApplicationContextlnitializer
classes.

@Cont ext Configuration(initializers=CustonContextlntializer.class)
public class ContextlnitializerTests {

/1 class body. ..
}

@Cont ext Confi gur at i on may optionally be used to declare the Cont ext Loader strategy as well.
Note, however, that you typically do not need to explicitly configure the loader since the default loader
supports either resource | ocat i ons or annotated cl asses aswellasinitializers.

@Cont ext Confi guration(l ocations="/test-context.xm", | oader=CustonContextLoader. cl ass)
public class CustonloaderXm Appl i cati onCont ext Tests {

/1 class body. ..
}

© Note

@cont ext Confi gur at i on provides support for inheriting resource locations or configuration
classes as well as context initializers declared by superclasses by default.

See Context management and caching and the Javadoc for @ont ext Conf i gur at i on for further
details.

« @\ébAppConfi guration

A class-level annotation that is used to declare that the ApplicationContext loaded
for an integration test should be a WebApplicationContext. The mere presence of
@\ebAppConfi gur ati on on atest class ensures that a WebAppl i cat i onCont ext will be loaded
for the test, using the default value of "fil e: src/ mai n/ webapp" for the path to the root of
the web application (i.e., the resource base path). The resource base path is used behind the
scenes to create a MockSer vl et Cont ext which serves as the Ser vl et Cont ext for the test's
WebAppl i cati onCont ext .

@ont ext Conf i gurati on

@\ebAppConfi guration
public class WbAppTests {
/'l class body...

}

To override the default, specify a different base resource path via the implicit val ue attribute. Both
classpath: andfil e: resource prefixes are supported. If no resource prefix is supplied the path
is assumed to be a file system resource.

@Cont ext Confi guration
@\ebAppConfi guration("cl asspat h: t est - web-resources")
public class WbAppTests {
/'l class body...
}

Spring Framework
3.2.1.RELEASE Reference Documentation 279

Spring Framework

Note that @\ébAppConf i gur at i on must be used in conjunction with @ont ext Confi gur ati on,
either within a single test class or within a test class hierarchy. See the Javadoc for
@\ebAppConfi gur at i on for further details.

e @\xctiveProfiles

A class-level annotation that is used to declare which bean definition profiles should be active when
loading an Appl i cat i onCont ext for test classes.

@ont ext Confi gurati on

@\ctiveProfil es("dev")

public class Devel oper Tests {
/'l class body...

}

@Cont ext Confi guration

@\ctiveProfiles({"dev", "integration"})

public cl ass Devel oper | ntegrationTests {
/'l class body...

}

© Note

@\cti veProfi | es provides support for inheriting active bean definition profiles declared by
superclasses by default.

See Context configuration with environment profiles and the Javadoc for @\cti vePr ofi | es for
examples and further details.

e @irtiesContext

Indicates that the underlying Spring Appl i cati onCont ext has been dirtied (i.e., modified or
corrupted in some manner) during the execution of a test and should be closed, regardless of whether
the test passed. @i rti esCont ext is supported in the following scenarios:

« After the current test class, when declared on a class with class mode set to AFTER_CLASS, which
is the default class mode.

« After each test method in the current test class, when declared on a class with class mode set to
AFTER_EACH TEST_ METHOD.

« After the current test, when declared on a method.

Use this annotation if a test has modified the context (for example, by replacing a bean definition).
Subsequent tests are supplied a new context.

With JUnit 4.5+ or TestNG you can use @i rt i esCont ext as both a class-level and method-level
annotation within the same test class. In such scenarios, the Appl i cati onCont ext is marked as
dirty after any such annotated method as well as after the entire class. If the C assMode is set to
AFTER_EACH TEST_METHOD, the context is marked dirty after each test method in the class.

Spring Framework
3.2.1.RELEASE Reference Documentation 280

Spring Framework

@i rti esCont ext
public class ContextDirtyingTests {
/] sonme tests that result in the Spring container being dirtied

}

@i rtiesContext(classMde = C assMbde. AFTER _EACH TEST METHOD)
public class ContextDirtyingTests {
/] sonme tests that result in the Spring container being dirtied

}

@irtiesCont ext
@est
public void testProcessWichDirtiesAppCx() {
/1 some logic that results in the Spring container being dirtied

}

When an application context is marked dirty, it is removed from the testing framework's cache and
closed; thus the underlying Spring container is rebuilt for any subsequent test that requires a context
with the same set of resource locations.

e @est ExecutionLi steners

Defines class-level metadata for configuring which Test Execut i onLi st ener s should be registered
with the Test Cont ext Manager . Typically, @est Executi onLi st ener s is used in conjunction
with @ont ext Confi gur ati on.

@Cont ext Conf i guration
@est Execut i onLi st ener s({Cust oniTest Execut i onLi st ener. cl ass,
Anot her Test Execut i onLi st ener. cl ass})
public class Custonfest Executi onLi stener Tests {
/1 class body...
}

@est Executi onLi st eners supports inherited listeners by default. See the Javadoc for an
example and further details.

e @ransactionConfiguration

Defines class-level metadata for configuring transactional tests. Specifically, the bean name of
the Pl at f or nilr ansact i onManager that should be used to drive transactions can be explicitly
specified if there are multiple beans of type Pl atfornransacti onManager in the test's
Appl i cati onCont ext and if the bean name of the desired Pl at f or nifr ansact i onManager
is not "transactionManager". In addition, you can change the def aul t Rol | back flag to f al se.
Typically, @r ansact i onConf i gur ati on is used in conjunction with @ont ext Conf i gur ati on.

@ont ext Conf i gur ati on
@ransacti onConfiguration(transacti onManager="txMyr", defaul t Rol | back=fal se)
public class CustonConfiguredTransactional Tests {
/1 class body. ..
}

© Note

If the default conventions are sufficient for your test configuration, you can avoid using
@r ansact i onConf i gur at i on altogether. In other words, if you have only one transaction

Spring Framework
3.2.1.RELEASE Reference Documentation 281

Spring Framework

manger — or if you have multiple transaction mangers but the transaction manager for tests is
named "transactionManager" or specified via a Tr ansact i onManagemnent Conf i gurer —
and if you want transactions to roll back automatically, then there is no need to annotate your
test class with @r ansacti onConfi gurati on.

« @Rol | back

Indicates whether the transaction for the annotated test method should be rolled back after the test
method has completed. Ift r ue, the transaction is rolled back; otherwise, the transaction is committed.
Use @Rol | back to override the default rollback flag configured at the class level.

@Rol | back(fal se)

@est
public void testProcessWthoutRollback() {
1.

}

e @eforeTransacti on

Indicates that the annotated publ i ¢ voi d method should be executed before a transaction is started
for test methods configured to run within a transaction via the @r ansact i onal annotation.

@Bef oreTr ansact i on
public void beforeTransaction() {
/1 logic to be executed before a transaction is started

}

e @\MterTransaction

Indicates that the annotated publ i ¢ voi d method should be executed after a transaction has ended
for test methods configured to run within a transaction via the @r ansact i onal annotation.

@\ft er Transacti on
public void afterTransaction() {
/1l logic to be executed after a transaction has ended

}

e @Not Tr ansact i onal

The presence of this annotation indicates that the annotated test method must not execute in a
transactional context.

@Not Tr ansact i onal

@est
public void testProcessWthoutTransaction() {
...

}

@ ©@NotTransactional is deprecated

As of Spring 3.0, @\ot Tr ansact i onal is deprecated in favor of moving the non-transactional
test method to a separate (non-transactional) test class or to a @ef or eTransacti on
or @\fterTransacti on method. As an alternative to annotating an entire class with
@r ansact i onal , consider annotating individual methods with @r ansact i onal ; doing so
allows a mix of transactional and non-transactional methods in the same test class without the
need for using @\ot Tr ansact i onal .

Spring Framework
3.2.1.RELEASE Reference Documentation 282

Spring Framework

Standard Annotation Support

The following annotations are supported with standard semantics for all configurations of the Spring
TestContext Framework. Note that these annotations are not specific to tests and can be used anywhere
in the Spring Framework.

* @\utow red

e @ualifier

* @Resour ce (javax.annotation) if JSR-250 is present
 @nject (javax.inject) if JISR-330 is present

o @\aned (javax.inject) if JSR-330 is present

» @ersi stenceCont ext (javax.persistence) if JPA is present
» @ersistenceUnit (javax.persistence) if JPA is present

* @Required

e @ransacti onal

@ JSR-250 Lifecycle Annotations

In the Spring TestContext Framework @ost Const ruct and @r eDest r oy may be used with
standard semantics on any application components configured in the Appl i cat i onCont ext ;
however, these lifecycle annotations have limited usage within an actual test class.

If a method within a test class is annotated with @Post Const r uct , that method will be executed
before any before methods of the underlying test framework (e.g., methods annotated with JUnit's
@ef or e), and that will apply for every test method in the test class. On the other hand, if a
method within a test class is annotated with @r eDest r oy, that method will never be executed.
Within a test class it is therefore recommended to use test lifecycle callbacks from the underlying
test framework instead of @ost Const ruct and @'r eDest r oy.

Spring JUnit Testing Annotations

The following annotations are only supported when wused in conjunction with the
SpringJUnit4ClassRunner or the JUnit support classes.

e @fProfil eval ue

Indicates that the annotated test is enabled for a specific testing environment. If the configured
Pr of i | eVal ueSour ce returns a matching val ue for the provided nane, the test is enabled. This
annotation can be applied to an entire class or to individual methods. Class-level usage overrides
method-level usage.

@ f Profil eval ue(nane="j ava. vendor", val ue="Sun M crosystens Inc.")
@est
public void testProcessWi chRunsOnl yOnSunJdvn() {
/1 some logic that should run only on Java VMs from Sun M crosystens

}

Spring Framework
3.2.1.RELEASE Reference Documentation 283

Spring Framework

Alternatively, you can configure @ f Pr of i | eVal ue with a list of val ues (with OR semantics) to
achieve TestNG-like support for test groups in a JUnit environment. Consider the following example:

@fProfil eVal ue(nane="t est-groups", values={"unit-tests", "integration-tests"})

@est
public void testProcessWi chRunsFor Unit Ol ntegrationTest Goups() {
// some logic that should run only for unit and integration test groups

}

o @rofil eVal ueSour ceConfi guration

Class-level annotation that specifies what type of ProfileValueSource to
use when retrieving profile values configured through the @ fProfileValue
annotation. If @rofileVal ueSourceConfiguration is not declared for a test,
Syst enProf i | eVal ueSour ce is used by default.

@r of i | eVal ueSour ceConfi gurati on(Cust onPr of i | eVal ueSour ce. cl ass)
public class CustonProfileVal ueSourceTests {

/1 class body. ..
}

s @ined

Indicates that the annotated test method must finish execution in a specified time period (in
milliseconds). If the text execution time exceeds the specified time period, the test fails.

The time period includes execution of the test method itself, any repetitions of the test (see @Repeat),
as well as any set up or tear down of the test fixture.

@i nmed(m | lis=1000)
public void testProcessWthOneSecondTi neout () {
/'l some |logic that should not take |onger than 1 second to execute

}

Spring's @i med annotation has different semantics than JUnit's @est (ti meout =...) support.
Specifically, due to the manner in which JUnit handles test execution timeouts (that is, by executing
the test method in a separate Thr ead), @est (ti meout =. ..) applies to each iteration in the case
of repetitions and preemptively fails the test if the test takes too long. Spring's @i ned, on the other
hand, times the total test execution time (including all repetitions) and does not preemptively fail the
test but rather waits for the test to complete before failing.

e @Repeat

Indicates that the annotated test method must be executed repeatedly. The number of times that the
test method is to be executed is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as well as any set
up or tear down of the test fixture.

@Repeat (10)

@est

public void testProcessRepeatedl y() {
...

}

Spring Framework
3.2.1.RELEASE Reference Documentation 284

Spring Framework

Spring TestContext Framework

The Spring Test Cont ext Framework (located in the org. spri ngfranmework. t est. cont ext
package) provides generic, annotation-driven unit and integration testing support that is agnostic of
the testing framework in use. The TestContext framework also places a great deal of importance on
convention over configuration with reasonable defaults that can be overridden through annotation-based
configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for JUnit
and TestNG in the form of abst r act support classes. For JUnit, Spring also provides a custom JUnit
Runner that allows one to write so-called POJO test classes. POJO test classes are not required to
extend a particular class hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are
only interested in using the framework and not necessarily interested in extending it with your own
custom listeners or custom loaders, feel free to go directly to the configuration (context management,
dependency injection, transaction management), support classes, and annotation support sections.

Key abstractions

The core of the framework consists of the Test Cont ext and Test Cont ext Manager classes
and the Test Executi onLi st ener, Cont ext Loader, and Smart Cont ext Loader interfaces. A
Test Cont ext Manager is created on a per-test basis (e.g., for the execution of a single test method
in JUnit). The Test Cont ext Manager in turn manages a Test Cont ext that holds the context of
the current test. The Test Cont ext Manager also updates the state of the Test Cont ext as the
test progresses and delegates to Test Executi onLi st eners, which instrument the actual test
execution by providing dependency injection, managing transactions, and so on. A Cont ext Loader
(or Smart Cont ext Loader) is responsible for loading an Appl i cati onCont ext for a given test
class. Consult the Javadoc and the Spring test suite for further information and examples of various
implementations.

» Test Cont ext: Encapsulates the context in which a test is executed, agnostic of the actual
testing framework in use, and provides context management and caching support for the test
instance for which it is responsible. The Test Cont ext also delegates to a Cont ext Loader (or
Smar t Cont ext Loader) to load an Appl i cat i onCont ext if requested.

» Test Cont ext Manager: The main entry point into the Spring TestContext Framework, which
manages a single Test Cont ext and signals events to all registered Test Execut i onLi st eners
at well-defined test execution points:

 prior to any before class methods of a particular testing framework
* testinstance preparation

« prior to any before methods of a particular testing framework

L]

after any after methods of a particular testing framework

after any after class methods of a particular testing framework

e Test Executi onLi st ener: Defines a listener API for reacting to test execution events published
by the Test Cont ext Manager with which the listener is registered.

Spring Framework
3.2.1.RELEASE Reference Documentation 285

Spring Framework

Spring provides four Test Executi onLi st ener implementations that are configured by default:
Ser vl et Test Execut i onLi st ener, Dependencyl nj ecti onTest Execut i onLi st ener,
Dirti esCont ext Test Executi onLi st ener, and Transact i onal Test Executi onLi st ener.
Respectively, they support Servlet APl mocks for a WebAppl i cati onCont ext, dependency
injection of the test instance, handling of the @i rti esCont ext annotation, and transactional test
execution with default rollback semantics.

» Cont ext Loader : Strategy interface introduced in Spring 2.5 for loading an Appl i cat i onCont ext
for an integration test managed by the Spring TestContext Framework.

As of Spring 3.1, implement Smart Cont ext Loader instead of this interface in order to provide
support for annotated classes and active bean definition profiles.

» Smart Cont ext Loader : Extension of the Cont ext Loader interface introduced in Spring 3.1.

The Smar t Cont ext Loader SPIsupersedesthe Cont ext Loader SPIthat was introduced in Spring
2.5. Specifically, a Smar t Cont ext Loader can choose to process resource | ocat i ons, annotated
cl asses, orcontextinitializers. Furthermore, a Smar t Cont ext Loader can set active bean
definition profiles in the context that it loads.

Spring provides the following implementations:

« Del egati ngSmar t Cont ext Loader : one of two default loaders which delegates internally to an
Annot at i onConf i gCont ext Loader or a Generi cXml Cont ext Loader depending either on
the configuration declared for the test class or on the presence of default locations or default
configuration classes.

« WebDel egat i ngSrar t Cont ext Loader : one of two default loaders which delegates internally to
an Annot at i onConf i g\WebCont ext Loader ora Generi cXm WebCont ext Loader depending
either on the configuration declared for the test class or on the presence of default
locations or default configuration classes. A web Cont ext Loader will only be used if
@\ebAppConfi gur ati on is present on the test class.

« Annot at i onConf i gCont ext Loader : loads a standard Appl i cati onCont ext from annotated
classes.

e Annot ati onConfi gWebCont ext Loader : loads a WebAppl i cat i onCont ext from annotated
classes.

e Generi cXm Cont ext Loader: loads a standard Appl i cati onCont ext from XML resource
locations.

e GenericXm WebCont ext Loader : loads a WebAppl i cati onCont ext from XML resource
locations.

e Generi cProperti esCont ext Loader: loads a standard Appl i cati onCont ext from Java
Properties files.

The following sections explain how to configure the Test Cont ext framework through annotations and
provide working examples of how to write unit and integration tests with the framework.

Spring Framework
3.2.1.RELEASE Reference Documentation 286

Spring Framework

Context management

Each Test Cont ext provides context management and caching support for the test instance
it is responsible for. Test instances do not automatically receive access to the configured
Appl i cati onCont ext. However, if a test class implements the Appl i cati onCont ext Anar e
interface, a reference to the ApplicationContext is supplied to the test instance.
Note that Abst ract JUni t 4Spri ngCont ext Test s and Abst r act Test NGSpri ngCont ext Test s
implement Appl i cat i onCont ext Awar e and therefore provide access to the Appl i cat i onCont ext
automatically.

@ ©@Autowired ApplicationContext

As an alternative to implementing the Appl i cat i onCont ext Awar e interface, you can inject
the application context for your test class through the @\ut owi r ed annotation on either a field
or setter method. For example:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@cont ext Confi gurati on
public class MyTest {

@\t owi r ed
private ApplicationContext applicationContext;

/] class body. ..

Similarly, if your test is configured to load a WebAppl i cat i onCont ext , you can inject the web
application context into your test as follows:

@unW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@\ebAppConfi guration
@Cont ext Confi guration
public class M/WbAppTest {

@\t owi r ed
private WebAppli cati onCont ext wac;

/1 class body. ..

Dependency injection via @\ut owi r ed is provided by the
Dependencyl nj ecti onTest Execut i onLi st ener which is configured by default (see the
section called “Dependency injection of test fixtures”).

Test classes that use the TestContext framework do not need to extend any particular class or implement
a specific interface to configure their application context. Instead, configuration is achieved simply
by declaring the @ont ext Confi gur ati on annotation at the class level. If your test class does
not explicitly declare application context resource | ocat i ons or annotated cl asses, the configured
Cont ext Loader determines how to load a context from a default location or default configuration
classes. In addition to context resource | ocat i ons and annotated cl asses, an application context
can also be configured via application contextiniti ali zers.

The following sections explain how to configure an Appl i cati onCont ext via XML configuration
files, annotated classes (typically @onfi gur ati on classes), or context initializers using Spring's

Spring Framework
3.2.1.RELEASE Reference Documentation 287

Spring Framework

@cont ext Confi gurati on annotation. Alternatively, you can implement and configure your own
custom Snart Cont ext Loader for advanced use cases.

Context configuration with XML resources

To load an Appl i cati onCont ext for your tests using XML configuration files, annotate your test
class with @ont ext Confi gurati on and configure the | ocati ons attribute with an array that
contains the resource locations of XML configuration metadata. A plain or relative path — for example
"context.xm " — will be treated as a classpath resource that is relative to the package in which the
test class is defined. A path starting with a slash is treated as an absolute classpath location, for example
"/ orgl/ exanpl e/ confi g. xm ". A path which represents a resource URL (i.e., a path prefixed with
classpath:,file:,http:,etc.) will be used as is.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be | oaded from"/app-config.xm" and
/1 "/test-config.xm" in the root of the classpath
@ont ext Confi guration(l ocati ons={"/app-config.xm", "/test-config.xm"})
public class MyTest {
/'l class body. ..

}

@Cont ext Conf i gur at i on supports an alias for the | ocat i ons attribute through the standard Java
val ue attribute. Thus, if you do not need to declare additional attributes in @ont ext Confi gurati on,
you can omit the declaration of the | ocat i ons attribute name and declare the resource locations by
using the shorthand format demonstrated in the following example.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@ont ext Confi guration({"/app-config.xm", "/test-config.xm"})
public class MyTest {

/'l class body. ..

}

If you omit both the | ocat i ons and val ue attributes from the @ont ext Conf i gur at i on annotation,
the TestContext framework will attempt to detect a default XML resource location. Specifically,
CGeneri cXm Cont ext Loader detects a default location based on the name of the test class. If your
class is named com exanpl e. MyTest, Gener i cXm Cont ext Loader loads your application context
from " cl asspat h: / conf exanpl e/ MyTest - cont ext . xmi .

package com exanpl e;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be | oaded from
/'l "cl asspat h:/con exanpl e/ MyTest - cont ext . xm "
@Cont ext Confi gurati on
public class MyTest {
/'l class body...

}

Context configuration with annotated classes

To load an ApplicationContext for your tests using annotated classes (see Section 5.12,
“Java-based container configuration”), annotate your test class with @ont ext Confi gur ati on and
configure the cl asses attribute with an array that contains references to annotated classes.

Spring Framework
3.2.1.RELEASE Reference Documentation 288

Spring Framework

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/'l ApplicationContext will be | oaded from AppConfig and Test Config
@Cont ext Confi guration(classes = {AppConfi g.cl ass, TestConfig.class})
public class MyTest {

/1 class body. ..
}

If you omit the cl asses attribute from the @ont ext Confi gur ati on annotation, the TestContext
framework will attempt to detect the presence of default configuration classes. Specifically,
Annot at i onConf i gCont ext Loader will detect all static inner classes of the test class that meet the
requirements for configuration class implementations as specified in the Javadoc for @onf i gur at i on.
In the following example, the Or der Ser vi ceTest class declares a static inner configuration class
named Conf i g that will be automatically used to load the Appl i cati onCont ext for the test class.
Note that the name of the configuration class is arbitrary. In addition, a test class can contain more than
one static inner configuration class if desired.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/1 ApplicationContext will be |oaded fromthe
/] static inner Config class

@Cont ext Confi guration

public class OrderServiceTest {

@Configuration
static class Config {

/1 this bean will be injected into the OrderServiceTest class
@Bean
public OrderService orderService() {

Order Service orderService = new O der Servicel npl ();

/] set properties, etc.

return order Service;

}

@\ut owi r ed
private OrderService orderService;

@est
public void testOderService() {
/'l test the orderService

}

Mixing XML resources and annotated classes

It may sometimes be desirable to mix XML resources and annotated classes (i.e., typically
@confi gur ati on classes) to configure an Appl i cat i onCont ext for your tests. For example, if you
use XML configuration in production, you may decide that you want to use @onf i gur at i on classes
to configure specific Spring-managed components for your tests, or vice versa. As mentioned in the
section called “Spring Testing Annotations” the TestContext framework does not allow you to declare
both via @ont ext Conf i gur at i on, but this does not mean that you cannot use both.

If you want to use XML and @onf i gur ati on classes to configure your tests, you will have to pick
one as the entry point, and that one will have to include or import the other. For example, in XML
you can include @onf i gur at i on classes via component scanning or define them as normal Spring
beans in XML; whereas, in a @onfi gurati on class you can use @ nport Resour ce to import

Spring Framework
3.2.1.RELEASE Reference Documentation 289

Spring Framework

XML configuration files. Note that this behavior is semantically equivalent to how you configure your
application in production: in production configuration you will define either a set of XML resource
locations or a set of @onfi gurati on classes that your production Appl i cati onCont ext will be
loaded from, but you still have the freedom to include or import the other type of configuration.

Context configuration with context initializers

To configure an Appl i cati onCont ext for your tests using context initializers, annotate your test
class with @ont ext Conf i gur at i on and configure the i ni ti al i zer s attribute with an array that
contains references to classes that implement Appl i cati onContextlnitializer. The declared
context initializers will then be used to initialize the Confi gur abl eAppl i cati onCont ext that is
loaded for your tests. Note that the concrete Confi gur abl eAppl i cati onCont ext type supported
by each declared initializer must be compatible with the type of Appl i cat i onCont ext created by
the Smart Cont ext Loader in use (i.e., typically a Generi cAppl i cati onCont ext). Furthermore,
the order in which the initializers are invoked depends on whether they implement Spring's Or der ed
interface or are annotated with Spring's @ der annotation.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be | oaded from Test Config
/1 and initialized by Test AppCtxInitializer
@ont ext Confi gurati on(

cl asses = Test Confi g. cl ass,

initializers = TestAppCixlnitializer.class)
public class MyTest {

/'l class body. ..

}

It is also possible to omit the declaration of XML configuration files or annotated classes in
@cont ext Confi gur ati on entirely and instead declare only Appl i cati onContextlInitializer
classes which are then responsible for registering beans in the context — for example, by
programmatically loading bean definitions from XML files or configuration classes.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be initialized by EntireApplnitializer
/1 which presumably registers beans in the context
@Cont ext Configuration(initializers = EntireApplnitializer.class)
public class MyTest {

/'l class body. ..

}

Context configuration inheritance

@cont ext Confi gurati on supports boolean i nheritlLocations and inheritlnitializers
attributes that denote whether resource locations or annotated classes and context initializers declared
by superclasses should be inherited. The default value for both flags is t r ue. This means that a test
class inherits the resource locations or annotated classes as well as the context initializers declared by
any superclasses. Specifically, the resource locations or annotated classes for a test class are appended
to the list of resource locations or annotated classes declared by superclasses. Similarly, the initializers
for a given test class will be added to the set of initializers defined by test superclasses. Thus, subclasses
have the option of extending the resource locations, annotated classes, or context initializers.

If @Cont ext Confi guration'sinheritlLocations orinheritlnitializers attribute is set to
f al se, the resource locations or annotated classes and the context initializers, respectively, for the test
class shadow and effectively replace the configuration defined by superclasses.

Spring Framework
3.2.1.RELEASE Reference Documentation 290

Spring Framework

In the following example that uses XML resource locations, the ApplicationContext for
Ext endedTest will be loaded from "base-config.xml" and “extended-config.xml", in that order.
Beans defined in "extended-config.xml" may therefore override (i.e., replace) those defined in "base-
config.xml".

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be |oaded from"/base-config.xm"
/1 in the root of the classpath
@Cont ext Confi guration("/base-config.xm")
public class BaseTest {
/'l class body. ..

}

/1 ApplicationContext will be | oaded from"/base-config.xm" and
/1 "/extended-config.xm" in the root of the classpath
@Cont ext Confi guration("/extended-config.xm")
public class ExtendedTest extends BaseTest ({
/] class body. ..

}

Similarly, in the following example that uses annotated classes, the Appli cati onCont ext for
Ext endedTest will be loaded from the BaseConfi g and ExtendedConfi g classes, in that
order. Beans defined in Ext endedConfi g may therefore override (i.e., replace) those defined in
BaseConfi g.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be | oaded from BaseConfig
@ont ext Confi guration(cl asses = BaseConfi g. cl ass)
public class BaseTest {

/'l class body...

}

/1 ApplicationContext will be | oaded from BaseConfi g and ExtendedConfig
@ont ext Confi guration(classes = ExtendedConfig.cl ass)
public class ExtendedTest extends BaseTest ({

/'l class body...

}

In the following example that uses context initializers, the Appl i cat i onCont ext for Ext endedTest
will be initialized using Basel nitializer and Extendedl nitializer. Note, however, that the
order in which the initializers are invoked depends on whether they implement Spring's Or der ed
interface or are annotated with Spring's @ der annotation.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be initialized by Baselnitializer
@ont ext Configuration(initializers=Baselnitializer.class)
public class BaseTest {

/'l class body. ..

}

/1 ApplicationContext will be initialized by Baselnitializer
/1 and Extendedlnitializer
@Cont ext Configuration(initializers=Extendedlnitializer.class)
public class ExtendedTest extends BaseTest ({

/'l class body. ..

}

Spring Framework
3.2.1.RELEASE Reference Documentation 291

Spring Framework

Context configuration with environment profiles

Spring 3.1 introduced first-class support in the framework for the notion of environments and profiles
(a.k.a., bean definition profiles), and integration tests can be configured to activate particular bean
definition profiles for various testing scenarios. This is achieved by annotating a test class with the
@\ct i veProfi | es annotation and supplying a list of profiles that should be activated when loading
the Appl i cati onCont ext for the test.

o

Note

@\cti veProfil es may be used with any implementation of the new Snar t Cont ext Loader
SPI, but @ActiveProfiles is not supported with implementations of the older
Cont ext Loader SPI.

Let's take a look at some examples with XML configuration and @onf i gur at i on classes.

<l--

app-config.xm -->

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:j dbc="http://ww. spri ngfranmewor k. or g/ schena/j dbc"
xm ns:jee="http://ww. springframework. org/ schema/ j ee"
Xxsi : schemaLocation="...">

<bean i d="transf er Servi ce"
cl ass="com bank. servi ce. i nternal . Def aul t Transf er Servi ce" >
<constructor-arg ref="account Repository"/>
<constructor-arg ref="feePolicy"/>

</ bean>

<bean i d="account Reposi tory"
cl ass="com bank. reposi tory.internal . JdbcAccount Reposi tory" >
<constructor-arg ref="dataSource"/>

</ bean>

<bean i d="feePolicy"
cl ass="com bank. servi ce. i nternal . Zer oFeePol i cy"/ >

<beans profil e="dev">
<j dbc: enbedded- dat abase i d="dat aSour ce" >
<j dbc: scri pt
| ocati on="cl asspat h: com bank/ confi g/ sql / schema. sql "/ >
<j dbc: scri pt
| ocati on="cl asspat h: com bank/ confi g/ sql /test-data.sql"/>
</ j dbc: enbedded- dat abase>
</ beans>

<beans profil e="production">
<j ee:jndi -1 ookup i d="dat aSour ce"
j ndi - name="j ava: conp/ env/ j dbc/ dat asour ce"/ >
</ beans>

</ beans>

Spring Framework

3.2.1.RELEASE Reference Documentation 292

Spring Framework

package com bank. servi ce;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/'l ApplicationContext will be | oaded from "cl asspath:/app-config.xm"
@cont ext Confi gurati on("/app-config.xm")

@\ctiveProfil es("dev")

public class TransferServiceTest {

@\ut owi r ed
private TransferService transferService;

@est
public void testTransferService() {
/] test the transferService

}

When Transf er Servi ceTest is run, its Appli cati onCont ext will be loaded from the app-
confi g. xm configuration file in the root of the classpath. If you inspect app- confi g. xm you'll
notice that the account Reposi t ory bean has a dependency on a dat aSour ce bean; however,
dat aSour ce is not defined as a top-level bean. Instead, dat aSour ce is defined twice: once in the
production profile and once in the dev profile.

By annotating Tr ansf er Servi ceTest with @A\ctiveProfil es("dev") we instruct the Spring
TestContext Framework to load the Appl i cati onCont ext with the active profiles set to {"dev"}.
As a result, an embedded database will be created, and the account Reposi t or y bean will be wired
with a reference to the development Dat aSour ce. And that's likely what we want in an integration test.

The following code listings demonstrate how to implement the same configuration and integration test
but using @onf i gur at i on classes instead of XML.

@Configuration
@rofile("dev")
public class Standal oneDat aConfig {

@ean
publ i c DataSource dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: com bank/ confi g/ sql / schena. sql ")
.addScri pt ("cl asspat h: com bank/ confi g/ sql /test-data. sql")
Cbuild();

@onfiguration
@rofile("production")
public class Jndi DataConfig {

@ean
publ i c DataSource dataSource() throws Exception {
Context ctx = new I nitial Context();
return (DataSource) ctx.|ookup("java: conp/env/jdbc/datasource");

Spring Framework
3.2.1.RELEASE Reference Documentation 293

Spring Framework

@onfiguration
public class TransferServiceConfig {

@wutow red DataSource dataSource;

@ean
public TransferService transferService() {
return new Def aul t Tr ansf er Servi ce(account Repository(),
feePolicy());

@Bean
publ i ¢ Account Repository account Repository() {
return new JdbcAccount Reposi t ory(dat aSour ce) ;

}

@ean
public FeePolicy feePolicy() {
return new Zer oFeePolicy();

}

package com bank. servi ce;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Cont ext Conf i gurati on(
cl asses = {
Tr ansf er Servi ceConfi g. cl ass,
St andal oneDat aConfi g. cl ass,
Jndi Dat aConfi g. cl ass})
@\ctiveProfil es("dev")
public class TransferServiceTest {

@\ut owi r ed
private TransferService transferService;

@est
public void testTransferService() {
/'l test the transferService

}

In this variation, we have split the XML configuration into three independent @onf i gur at i on classes:
» Transf er Servi ceConf i g: acquires a dat aSour ce via dependency injection using @\ut owi r ed

» St andal oneDat aConf i g: defines adat aSour ce for an embedded database suitable for developer
tests

» Jndi Dat aConf i g: defines a dat aSour ce that is retrieved from JNDI in a production environment

As with the XML-based configuration example, we still annotate Tr ansf er Servi ceTest with
@\ctiveProfiles("dev"), but this time we specify all three configuration classes via the
@ont ext Confi gurati on annotation. The body of the test class itself remains completely
unchanged.

Spring Framework
3.2.1.RELEASE Reference Documentation 294

Spring Framework

Loading a WebApplicationContext

Spring 3.2 introduces support for loading a WebAppl i cati onCont ext in integration tests. To
instruct the TestContext framework to load a WebAppl i cati onCont ext instead of a standard
Appl i cati onCont ext , simply annotate the respective test class with @¥bAppConfi gur ati on.

The presence of @\bAppConfi gurati on on your test class instructs the TestContext framework
(TCF) that a WebAppl i cati onCont ext (WAC) should be loaded for your integration tests. In the
background the TCF makes sure that a MbckSer vl et Cont ext is created and supplied to your test's
WAC. By default the base resource path for your MockSer vl et Cont ext will be set to "src/main/
webapp". This is interpreted as a path relative to the root of your JVM (i.e., normally the path to
your project). If you're familiar with the directory structure of a web application in a Maven project,
you'll know that "src/main/webapp"” is the default location for the root of your WAR. If you need to
override this default, simply provide an alternate path to the @\&bAppConf i gur at i on annotation (e.g.,
@\ebAppConfiguration("src/test/webapp")). If you wish to reference a base resource path
from the classpath instead of the file system, just use Spring's classpath: prefix.

Please note that Spring's testing support for WebAppl i cat i onCont ext s is on par with its support for
standard Appl i cati onCont ext s. When testing with a WebAppl i cat i onCont ext you are free to
declare either XML configuration files or @onf i gur ati on classes via @ont ext Conf i gur ati on.
You are of course also free to use any other test annotations such as @est Executi onLi st eners,
@ransactionConfiguration, @ctiveProfil es, etc.

The following examples demonstrate some of the various configuration options for loading a
WebAppl i cati onCont ext .

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/'l defaults to "“file:src/ min/webapp"
@\ébAppConfiguration

/| detects "WacTests-context.xm " in sane package
/'l or static nested @onfiguration class
@ont ext Confi gurati on

public class WacTests {
/...

}
Example 11.1 Conventions

The above example demonstrates the TestContext framework's support for convention over
configuration. If you annotate a test class with @W¥bAppConfi gurati on without specifying a
resource base path, the resource path will effectively default to "file:src/main/webapp”. Similarly, if
you declare @ont ext Conf i gur at i on without specifying resource | ocat i ons, annotated cl asses,
or context i nitializers, Spring will attempt to detect the presence of your configuration using
conventions (i.e., "WacTests-context.xml" in the same package as the WAc Test s class or static nested
@confi gur ati on classes).

Spring Framework
3.2.1.RELEASE Reference Documentation 295

Spring Framework

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/'l file systemresource
@\ebAppConfi gurati on("webapp")

/'l classpath resource
@ont ext Configuration("/spring/test-servlet-config.xm")

public class WacTests {
/...

}
Example 11.2 Default Resource Semantics

This example demonstrates how to explicity declare a resource base path with
@ebAppConfiguration and an XML resource location with @Cont ext Confi gurati on.
The important thing to note here is the different semantics for paths with these two
annotations. By default, @\bAppConf i gur ati on resource paths are file system based; whereas,
@cont ext Confi gur at i on resource locations are classpath based.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/'l classpath resource
@\ebAppConfi gurati on("cl asspat h: t est - web-resour ces")

/'l file systemresource
@ont ext Confi guration("file:src/nai n/ webapp/ VEB- | NF/ ser vl et -config. xm ")

public class WacTests {
/...

}
Example 11.3 Explicit Resource Semantics

In this third example, we see that we can override the default resource semantics for both annotations by
specifying a Spring resource prefix. Contrast the comments in this example with the previous example.

Working with Web Mocks

To provide comprehensive web testing support, Spring 3.2 introduces a new
Servl et Test Executi onLi stener that is enabled by default. When testing against a
WebAppl i cati onCont ext this TestExecutionListener sets up default thread-local state
via Spring Web's Request Cont ext Hol der before each test method and creates
a MockHttpServl et Request, MckHttpServl et Response, and ServletWbRequest
based on the base resource path configured via @W¥bAppConfi guration.
Servl et Test Executi onLi st ener also ensures that the MockHtt pServl et Response and
Ser vl et WebRequest can be injected into the test instance, and once the test is complete it cleans
up thread-local state.

Once you have a WebAppl i cat i onCont ext loaded for your test you might find that you need to
interact with the web mocks — for example, to set up your test fixture or to perform assertions after
invoking your web component. The following example demonstrates which mocks can be autowired
into your test instance. Note that the WebAppl i cati onCont ext and MockSer vl et Cont ext are
both cached across the test suite; whereas, the other mocks are managed per test method by the
Ser vl et Test Execut i onLi st ener.

Spring Framework
3.2.1.RELEASE Reference Documentation 296

Spring Framework

@\ebAppConfiguration
@Cont ext Confi gurati on
public class WacTests {
@\ut owi red WebApplicationContext wac; // cached
@\t ow red MockServl et Context servletContext; // cached
@\ut owi red MockHtt pSessi on sessi on;
@\ut owi red MockHtt pServl et Request request;
@\ut owi red MockHtt pServl et Response response;

@\ut owi red Servl et WebRequest webRequest ;

...
}

Example 11.4 Injecting Mocks

Context caching

Once the TestContext framework loads an Appl i cat i onCont ext (or WebAppl i cat i onCont ext)
for a test, that context will be cached and reused for all subsequent tests that declare the same unique
context configuration within the same test suite. To understand how caching works, it is important to
understand what is meant by unique and test suite.

An Appl i cat i onCont ext can be uniquely identified by the combination of configuration parameters
that are used to load it. Consequently, the unique combination of configuration parameters are used
to generate a key under which the context is cached. The TestContext framework uses the following
configuration parameters to build the context cache key:

* | ocati ons (from @ContextConfiguration)

e cl asses (from @ContextConfiguration)

« contextlnitializerd asses (from @ContextConfiguration)
» cont ext Loader (from @ContextConfiguration)

e activeProfil es (from @ActiveProfiles)

* resour ceBasePat h (from @WebAppConfiguration)

For example, if Test Cl assA specifies {"app-config.xm", "test-config.xm"} for the
| ocati ons (or val ue) attribute of @Cont ext Confi gur ati on, the TestContext framework will load
the corresponding Appl i cat i onCont ext and store it in a st ati ¢ context cache under a key that
is based solely on those locations. So if Test C assB also defines {"app-config. xm ", "test-
config.xm "} for its locations (either explicitly or implicitly through inheritance) but does not define
@\ebAppConf i gurati on, a different Cont ext Loader , different active profiles, or different context
initializers, then the same Appl i cat i onCont ext will be shared by both test classes. This means that
the setup cost for loading an application context is incurred only once (per test suite), and subsequent
test execution is much faster.

Spring Framework
3.2.1.RELEASE Reference Documentation 297

Spring Framework

@ Test suites and forked processes

The Spring TestContext framework stores application contexts in a static cache. This means that
the context is literally stored in a st ati ¢ variable. In other words, if tests execute in separate
processes the static cache will be cleared between each test execution, and this will effectively
disable the caching mechanism.

To benefit from the caching mechanism, all tests must run within the same process or test suite.
This can be achieved by executing all tests as a group within an IDE. Similarly, when executing
tests with a build framework such as Ant, Maven, or Gradle it is important to make sure that
the build framework does not fork between tests. For example, if the forkMode for the Maven
Surefire plug-in is set to al ways or pert est, the TestContext framework will not be able to
cache application contexts between test classes and the build process will run significantly slower
as a result.

In the unlikely case that a test corrupts the application context and requires reloading — for example, by
modifying a bean definition or the state of an application object — you can annotate your test class or
test method with @i rti esCont ext (see the discussion of @i rti esCont ext in the section called
“Spring Testing Annotations”). This instructs Spring to remove the context from the cache and rebuild
the application context before executing the next test. Note that support for the @i rti esCont ext
annotation is provided by the Dirti esCont ext Test Executi onLi st ener which is enabled by
default.

Dependency injection of test fixtures

When you use the Dependencyl nj ecti onTest Execut i onLi st ener — which is configured by
default — the dependencies of your test instances are injected from beans in the application context that
you configured with @ont ext Confi gur ati on. You may use setter injection, field injection, or both,
depending on which annotations you choose and whether you place them on setter methods or fields.
For consistency with the annotation support introduced in Spring 2.5 and 3.0, you can use Spring's
@\ut owi r ed annotation or the @ nj ect annotation from JSR 300.

Q@ Tip

The TestContext framework does not instrument the manner in which a test instance is
instantiated. Thus the use of @\ut owi r ed or @ nj ect for constructors has no effect for test
classes.

Because @\wut owi red is used to perform _autowiring by type , if you have multiple bean definitions
of the same type, you cannot rely on this approach for those particular beans. In that case, you
can use @A\utow red in conjunction with @ual i fier. As of Spring 3.0 you may also choose
to use @nj ect in conjunction with @lamed. Alternatively, if your test class has access to its
Appl i cati onCont ext, you can perform an explicit lookup by using (for example) a call to
appl i cati onCont ext.getBean("titl eRepository").

If you do not want dependency injection applied to your test instances, simply do not annotate
fields or setter methods with @\ut owi r ed or @ nj ect . Alternatively, you can disable dependency
injection altogether by explicitly configuring your class with @est Execut i onLi st ener s and omitting
Dependencyl nj ecti onTest Execut i onLi st ener. cl ass from the list of listeners.

Consider the scenario of testing a Hi ber nat eTi t| eReposi t ory class, as outlined in the Goals
section. The next two code listings demonstrate the use of @A\ut owi r ed on fields and setter methods.
The application context configuration is presented after all sample code listings.

Spring Framework
3.2.1.RELEASE Reference Documentation 298

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode

Spring Framework

© Note

The dependency injection behavior in the following code listings is not specific to JUnit. The same
DI techniques can be used in conjunction with any testing framework.

The following examples make calls to static assertion methods such as assert Not Nul | () but
without prepending the call with Assert . In such cases, assume that the method was properly
imported through ani nport st ati ¢ declaration that is not shown in the example.

The first code listing shows a JUnit-based implementation of the test class that uses @\ut owi r ed for
field injection.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/'l specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration("repository-config.xm")

public class HibernateTitl eRepositoryTests {

/'l this instance will be dependency injected by type
@\ut owi r ed
private H bernateTitl eRepository titleRepository;

@est

public void findByld() {
Title title = titleRepository.findByld(new Long(10));
assertNot Nul | (title);

Alternatively, you can configure the class to use @\ut owi r ed for setter injection as seen below.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/'l specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration("repository-config.xm")

public class HibernateTitl eRepositoryTests {

/1 this instance will be dependency injected by type
private H bernateTitl eRepository titleRepository;

@\ut owi r ed

public void setTitleRepository(Hi bernateTitl eRepository titleRepository) {
this.titleRepository = titl eRepository;

}

@est

public void findByld() {
Title title = titleRepository.findByld(new Long(10));
assertNotNul | (title);

The preceding code listings use the same XML context file referenced by the
@cont ext Confi gur at i on annotation (that is, r eposi t or y- conf i g. xm), which looks like this:

Spring Framework
3.2.1.RELEASE Reference Documentation 299

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http: // wwv. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<I-- this bean will be injected into the Hi bernateTitl eRepositoryTests class -->
<bean id="titl eRepository"

cl ass="com f o0o. reposi tory. hi bernate. H bernateTi tl eRepository">

<property nane="sessi onFactory" ref="sessionFactory"/>
</ bean>

<bean i d="sessi onFactory"
cl ass="org. spri ngfranmewor k. orm hi ber nat e3. Local Sessi onFact or yBean" >

<!-- configuration elided for brevity -->
</ bean>
</ beans>
© Note

If you are extending from a Spring-provided test base class that happens to use @\ut ow r ed
on one of its setter methods, you might have multiple beans of the affected type defined in your
application context: for example, multiple Dat aSour ce beans. In such a case, you can override
the setter method and use the @ual i fi er annotation to indicate a specific target bean as
follows, but make sure to delegate to the overridden method in the superclass as well.

/1

@\ut owi red

@verride

public void setDat aSource(@ualifier("nyDataSource") DataSource dataSource) {
super . set Dat aSour ce(dat aSour ce) ;

}

/1

The specified qualifier value indicates the specific Dat aSour ce bean to inject, narrowing the
set of type matches to a specific bean. Its value is matched against <qual i f i er > declarations
within the corresponding <bean> definitions. The bean name is used as a fallback qualifier value,
so you may effectively also point to a specific bean by name there (as shown above, assuming
that "myDataSource" is the bean id).

Testing request and session scoped beans

Request and session scoped beans have been supported by Spring for several years now, but it's

always been a bit non-trivial to test them. As of Spring 3.2 it's now a breeze to test your request-scoped
and session-scoped beans by following these steps.

» Ensure that a WebAppl i cat i onCont ext is loaded for your test by annotating your test class with
@\ébAppConfi gurati on.

« Inject the mock request or session into your test instance and prepare your test fixture as appropriate.

* Invoke your web component that you retrieved from the configured WebAppl i cat i onCont ext (i.e.,
via dependency injection).

Spring Framework

3.2.1.RELEASE Reference Documentation 300

Spring Framework

» Perform assertions against the mocks.

The following code snippet displays the XML configuration for a login use case. Note that the
user Servi ce bean has a dependency on a request-scoped | ogi nActi on bean. Also, the
Logi nActi on is instantiated using SpEL expressions that retrieve the username and password from
the current HTTP request. In our test, we will want to configure these request parameters via the mock
managed by the TestContext framework.

<beans>

<bean i d="user Ser vi ce"
cl ass="com exanpl e. Si npl eUser Servi ce"
c: |l ogi nAction-ref="1o0ginAction" />

<bean i d="1ogi nAction" cl ass="com exanpl e. Logi nActi on"
c: usernane="#{request . get Paraneter (' user')}"
c: passwor d="#{request. get Paraneter (' pswd') }"
scope="request" >
<aop: scoped- proxy />
</ bean>

</ beans>

Example 11.5 Request-scoped bean configuration

In Request ScopedBeanTest s we inject both the User Ser vi ce (i.e., the subject under test) and the
MockHt t pSer vl et Request into our test instance. Within our r equest Scope() test method we set
up our test fixture by setting request parameters in the provided MockHt t pSer vl et Request . When
the | ogi nUser () method is invoked on our user Ser vi ce we are assured that the user service has
access to the request-scoped | ogi nAct i on for the current MockHt t pSer vl et Request (i.e., the one
we just set parameters in). We can then perform assertions against the results based on the known
inputs for the username and password.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Cont ext Confi gurati on
@\ébAppConfiguration

public class Request ScopedBeanTests {

@wutow red UserService userService
@\ut owi red MockHtt pServl et Request request;

@est
public void request Scope() {

request. set Paranmeter ("user", "enigm");
request . set Paranet er ("pswd", "$pr!ng");

Logi nResul ts results = userService. | oginUser();

/'l assert results

}
Example 11.6 Request-scoped bean test

The following code snippet is similar to the one we saw above for a request-scoped bean; however, this
time the user Ser vi ce bean has a dependency on a session-scoped user Pr ef er ences bean. Note
thatthe User Pr ef er ences bean is instantiated using a SpEL expression that retrieves the theme from

Spring Framework
3.2.1.RELEASE Reference Documentation 301

Spring Framework

the current HTTP session. In our test, we will need to configure a theme in the mock session managed
by the TestContext framework.

<beans>

<bean i d="user Servi ce"
cl ass="com exanpl e. Si npl eUser Ser vi ce"
c: user Preferences-ref="userPreferences" />

<bean i d="user Pr ef er ences"
cl ass="com exanpl e. User Pr ef er ences"
c:theme="#{session.getAttri bute('theme')}"
scope="sessi on" >
<aop: scoped- proxy />
</ bean>

</ beans>

Example 11.7 Session-scoped bean configuration

In Sessi onScopedBeanTest s we inject the User Ser vi ce and the MockHt t pSessi on into our test
instance. Within our sessi onScope() test method we set up our test fixture by setting the expected
"theme" attribute in the provided MockHt t pSessi on. When the processUser Pref erences()
method is invoked on our user Ser vi ce we are assured that the user service has access to the session-
scoped user Pr ef er ences for the current MockHt t pSessi on, and we can perform assertions against
the results based on the configured theme.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Cont ext Confi gurati on
@\ébAppConfiguration

public class Sessi onScopedBeanTests {

@\ut owi red User Servi ce user Service
@\ut owi red MockHtt pSessi on session

@est
public voi d sessionScope() throws Exception {

session.set Attribute("thenme", "blue");
Results results = userService. processUser Preferences();

/| assert results

}
}

Example 11.8 Session-scoped bean test

Transaction management

In the TestContext framework, transactions are managed by the
Transacti onal Test Execut i onLi st ener. Note that
Transacti onal Test Executi onLi st ener is configured by default, even if you do not explicitly
declare @est Execut i onLi st ener s on your test class. To enable support for transactions, however,
you must provide a Pl at f or mlr ansacti onManager bean in the application context loaded by
@cont ext Confi gur at i on semantics. In addition, you must declare @r ansact i onal either at the
class or method level for your tests.

Spring Framework
3.2.1.RELEASE Reference Documentation 302

Spring Framework

For class-level transaction configuration (i.e., setting an explicit bean name for the transaction manager
and the default rollback flag), see the @r ansact i onConf i gur ati on entry in the annotation support
section.

If transactions are not enabled for the entire test class, you can annotate methods explicitly with
@r ansact i onal . To control whether a transaction should commit for a particular test method, you
can use the @Rol | back annotation to override the class-level default rollback setting.

Abstract Transacti onal JUni t 4Spri ngCont ext Test s and
Abstract Tr ansact i onal Test NGSpri ngCont ext Tests are preconfigured for transactional
support at the class level.

Occasionally you need to execute certain code before or after a transactional test method but
outside the transactional context, for example, to verify the initial database state prior to execution
of your test or to verify expected transactional commit behavior after test execution (if the test was
configured not to roll back the transaction). Tr ansact i onal Test Execut i onLi st ener supports the
@ef oreTransacti on and @\ft er Transact i on annotations exactly for such scenarios. Simply
annotate any public void method in your test class with one of these annotations, and the
Transacti onal Test Executi onLi st ener ensures that your before transaction method or after
transaction method is executed at the appropriate time.

@ Tip

Any before methods (such as methods annotated with JUnit's @ef or e) and any after methods
(such as methods annotated with JUnit's @Af t er) are executed within a transaction. In addition,
methods annotated with @ef or eTr ansacti on or @Aft er Transacti on are naturally not
executed for tests annotated with @Not Tr ansact i onal . However, @Not Tr ansacti onal is
deprecated as of Spring 3.0.

The following JUnit-based example displays a fictitious integration testing scenario highlighting several
transaction-related annotations. Consult the annotation support section for further information and
configuration examples.

Spring Framework
3.2.1.RELEASE Reference Documentation 303

Spring Framework

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@Cont ext Confi gurati on

@ransacti onConfi gurati on(transacti onManager="txMyr", defaul tRol | back=fal se)
@r ansacti onal

public class FictitiousTransactional Test {

@Bef or eTr ansact i on
public void verifylnitial Dat abaseState() {
I/l logic to verify the initial state before a transaction is started

}

@efore
public void setUpTest Dat aW t hi nTransacti on() {
/] set up test data within the transaction

}

@est
/] overrides the class-level defaultRollback setting
@Rol | back(true)
public void nodifyDat abaseWt hi nTransaction() {
/1 1ogic which uses the test data and nodifi es database state

}

@fter
public void tearDownW thinTransaction() {
/] execute "tear down" logic within the transaction

}

@A\fterTransaction
public void verifyFi nal Dat abaseState() {
/1 logic to verify the final state after transaction has rolled back

}

@ Avoid false positives when testing ORM code

When you test application code that manipulates the state of the Hibernate session, make sure
to flush the underlying session within test methods that execute that code. Failing to flush the
underlying session can produce false positives: your test may pass, but the same code throws
an exception in a live, production environment. In the following Hibernate-based example test
case, one method demonstrates a false positive, and the other method correctly exposes the
results of flushing the session. Note that this applies to JPA and any other ORM frameworks that

maintain an in-memory unit of work.

Spring Framework
3.2.1.RELEASE Reference Documentation

304

Spring Framework

...

@\ut owi r ed
private SessionFactory sessi onFactory;

@est // no expected exception!

public void fal sePositive() {
updat eEnti tyl nHi ber nat eSessi on() ;
/| Fal se positive: an exception will be thrown once the session is
/1 finally flushed (i.e., in production code)

}

@est (expected = Generi cJDBCExcepti on. cl ass)

public void updat eWthSessi onFl ush() {
updat eEnti tyl nHi ber nat eSessi on();
/1 Manual flush is required to avoid fal se positive in test
sessi onFact ory. get Current Sessi on(). flush();

}

1.

TestContext Framework support classes
JUnit support classes

The or g. spri ngframework. t est. cont ext. j unit4 package provides support classes for JUnit
4.5+ based test cases.

« Abstract JUni t 4Spri ngCont ext Tests: Abstract base test class that integrates the Spring
TestContext Framework with explicit Appl i cati onCont ext testing support in a JUnit 4.5+
environment.

When you extend AbstractJUnit4SpringContextTests, you can access the following
pr ot ect ed instance variable:

e appl i cati onCont ext : Use this variable to perform explicit bean lookups or to test the state of
the context as a whole.

» Abstract Transacti onal JUni t 4Spri ngCont ext Tests: Abstract transactional extension
of AbstractJUnit4SpringContextTests that also adds some convenience
functionality for JDBC access. Expects a javax.sql.DataSource bean and a
Pl at f or mMIr ansact i onManager bean to be defined in the Appl i cati onCont ext . When you
extend Abstract Transacti onal JUni t 4Spri ngCont ext Test s you can access the following
pr ot ect ed instance variables:

e applicationContext: Inherited from the AbstractJUnit4SpringContextTests
superclass. Use this variable to perform explicit bean lookups or to test the state of the context
as a whole.

« j dbcTenpl at e: Use this variable to execute SQL statements to query the database. Such queries
can be used to confirm database state both prior to and after execution of database-related
application code, and Spring ensures that such queries run in the scope of the same transaction as
the application code. When used in conjunction with an ORM tool, be sure to avoid false positives.

Spring Framework
3.2.1.RELEASE Reference Documentation 305

Spring Framework

@ Tip

These classes are a convenience for extension. If you do not want your test classes
to be tied to a Spring-specific class hierarchy — for example, if you want to directly
extend the class you are testing — you can configure your own custom test classes
by using @unW t h(SpringJUnit4d assRunner. cl ass), @ontext Confi gurati on,
@est Execut i onLi st ener s, and so on.

Spring JUnit Runner

The Spring TestContext Framework offers full integration with JUnit 4.5+ through
a custom runner (tested on JUnit 45 - 4.10). By annotating test classes with
@unWt h(SpringJUnit4C assRunner. cl ass) , developers can implement standard JUnit-based
unit and integration tests and simultaneously reap the benefits of the TestContext framework such
as support for loading application contexts, dependency injection of test instances, transactional
test method execution, and so on. The following code listing displays the minimal requirements for
configuring a test class to run with the custom Spring Runner. @est Executi onLi st eners is
configured with an empty list in order to disable the default listeners, which otherwise would require an
ApplicationContext to be configured through @ont ext Conf i gur ati on.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@est Executi onLi steners({})
public class SinpleTest {

@est
public void testMthod() {
/] execute test logic..
}
}

TestNG support classes

The org.springfranework.test.context.testng package provides support classes for
TestNG based test cases.

» Abstract Test NGSpri ngCont ext Tests: Abstract base test class that integrates the Spring
TestContext Framework with explicit Appli cati onCont ext testing support in a TestNG
environment.

When you extend Abstract Test NGSpri ngCont ext Tests, you can access the following
pr ot ect ed instance variable:

e appl i cati onCont ext : Use this variable to perform explicit bean lookups or to test the state of
the context as a whole.

» Abstract Transacti onal Test NGSpri hgCont ext Test s: Abstract transactional extension of
Abst ract Test NGSpri ngCont ext Test s that adds some convenience functionality for JDBC
access. Expects a javax. sql . DataSource bean and a Pl atfornfransacti onManager
bean to be defined in the ApplicationContext. When you extend
Abstract Transact i onal Test NGSpri ngCont ext Tests, you can access the following
pr ot ect ed instance variables:

e applicationContext: Inherited from the AbstractTestNGSpringContextTests
superclass. Use this variable to perform explicit bean lookups or to test the state of the context
as a whole.

Spring Framework
3.2.1.RELEASE Reference Documentation 306

Spring Framework

« j dbcTenpl at e: Use this variable to execute SQL statements to query the database. Such queries
can be used to confirm database state both prior to and after execution of database-related
application code, and Spring ensures that such queries run in the scope of the same transaction as
the application code. When used in conjunction with an ORM tool, be sure to avoid false positives.

@ Tip

These classes are a convenience for extension. If you do not want your test classes to be tied to
a Spring-specific class hierarchy — for example, if you want to directly extend the class you are
testing — you can configure your own custom test classes by using @ont ext Conf i gur ati on,
@est Executi onLi st ener s, and so on, and by manually instrumenting your test class with
a Test Cont ext Manager . See the source code of Abst ract Test NGSpri ngCont ext Test s
for an example of how to instrument your test class.

Spring MVC Test Framework

Standalone project

Before inclusion in Spring Framework 3.2, the Spring MVC Test framework had already existed
as a separate project on GitHub where it grew and evolved through actual use, feedback, and the
contribution of many.

The standalone spring-test-mvc project is still available on GitHub and can be used in conjunction
with Spring Framework 3.1.x. Applications upgrading to 3.2 should replace the spri ng-t est -
mvc dependency with a dependency on spri ng-t est.

The spri ng-test module uses a different package or g. spri ngf ranewor k. t est . web but
otherwise is nearly identical with two exceptions. One is support for features new in 3.2 (e.g.
asynchronous web requests). The other relates to the options for creating a MockMsc instance. In
Spring Framework 3.2, this can only be done through the TestContext framework, which provides
caching benefits for the loaded configuration.

The Spring MVC Test framework provides first class JUnit support for testing client and server-side
Spring MVC code through a fluent API. Typically it loads the actual Spring configuration through
the TestContext framework and always uses the Di spat cher Servl et to process requests thus
approximating full integration tests without requiring a running Servlet container.

Client-side tests are Rest Tenpl at e-based and allow tests for code that relies on the Rest Tenpl at e
without requiring a running server to respond to the requests.

Server-Side Tests

Before Spring Framework 3.2, the most likely way to test a Spring MVC controller was to write a unit
test that instantiates the controller, injects it with mock or stub dependencies, and then calls its methods
directly, using a MockHt t pSer vl et Request and MockHt t pSer vl et Response where necessary.

Although this is pretty easy to do, controllers have many annotations, and much remains untested.
Request mappings, data binding, type conversion, and validation are just a few examples of what
isn't tested. Furthermore, there are other types of annotated methods such as @ nit Bi nder,
@bdel Attri but e, and @xcept i onHandl er that get invoked as part of request processing.

Spring Framework
3.2.1.RELEASE Reference Documentation 307

https://github.com/SpringSource/spring-test-mvc

Spring Framework

The idea behind Spring MVC Test is to be able to re-write those controller tests by performing
actual requests and generating responses, as they would be at runtime, along the way invoking
controllers through the Spring MVC Di spat cher Ser vl et . Controllers can still be injected with mock
dependencies, so tests can remain focused on the web layer.

Spring MVC Test builds on the familiar "mock” implementations of the Servlet API available in the
spring-test module. This allows performing requests and generating responses without the need
for running in a Servlet container. For the most part everything should work as it does at runtime with
the exception of JSP rendering, which is not available outside a Servlet container. Furthermore, if you
are familiar with how the MockHt t pSer vl et Response works, you'll know that forwards and redirects
are not actually executed. Instead "forwarded" and "redirected" URLs are saved and can be asserted in
tests. This means if you are using JSPs, you can verify the JSP page to which the request was forwarded.

All other means of rendering including @ResponseBody methods and Vi ewtypes (besides JSPs) such
as Freemarker, Velocity, Thymeleaf, and others for rendering HTML, JSON, XML, and so on should
work as expected, and the response will contain the generated content.

Below is an example of a test requesting account information in JSON format:

inport static org.springframework.test.web.servlet.request. MockMcRequest Bui | ders. *;
import static org.springframework.test.web.servlet.result. MockM/cResul t Mat chers. *;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@\ebAppConfi guration

@ont ext Confi guration("test-servlet-context.xm")
public class Exanpl eTests {

@\ut owi r ed
private WebAppl i cationContext wac;

private MockM/c nmockMrc;

@Bef ore
public void setup() {

thi s. mockMrc = MockM/cBui | ders. webAppCont ext Set up(t hi s.wac) . build();
}

@est
public void getAccount() throws Exception {
this. mockMrc. perforn(get("/accounts/1").accept("application/json;charset=UTF-8"))
.andExpect (status().isCk())
. andExpect (content (). content Type("application/json"))
. andExpect (j sonPat h("$. name") . val ue("Lee");

The testrelies onthe WebAppl i cat i onCont ext support of the TestContext framework. It loads Spring
configuration from an XML configuration file located in the same package as the test class (also supports
JavaConfig) and injects the created WebAppl i cati onCont ext into the test so a MockMvc instance
can be created with it.

The MockMrc is then used to perform a request to "/ account s/ 1" and verify the resulting response
status is 200, the response content type is " appl i cati on/j son", and response content has a JSON
property called "name" with the value "Lee". JSON content is inspected with the help of Jayway's
JsonPath project. There are lots of other options for verifying the result of the performed request and
those will be discussed later.

Spring Framework
3.2.1.RELEASE Reference Documentation 308

https://github.com/jayway/JsonPath

Spring Framework

Static Imports

The fluent APl in the example above requires a few static imports such as
MockM/cRequest Bui | ders. *, MockM/cResul t Mat chers. *, and MockMscBui l ders. *. An
easy way to find these classes is to search for types matching "MockMvc*". If using Eclipse, be sure to
add them as "favorite static members" in the Eclipse preferences under Java -> Editor -> Content Assist
-> Favorites. That will allow use of content assist after typing the first character of the static method
name. Other IDEs (e.g. IntelliJ) may not require any additional configuration. Just check the support for
code completion on static members.

Setup Options

The goal of server-side test setup is to create an instance of MockM/c that can be used to perform
requests. There are two main options.

The first option is to point to Spring MVC configuration through the TestContext framework, which
loads the Spring configuration and injects a WebAppl i cat i onCont ext into the test to use to create
a MockMrc:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@\ébAppConfiguration

@Cont ext Confi gurati on("my-servl et-context.xm")
public class M/WbTests {

@\ut owi r ed
private WebAppli cationCont ext wac;

private MockM/c nockMrc;
@efore

public void setup() {
thi s. mockMrc = MockM/cBui | der s. webAppCont ext Set up(t hi s. wac) . build();

}

...

The second option is to simply register a controller instance without loading any Spring configuration.
Instead basic Spring MVC configuration suitable for testing annotated controllers is automatically
created. The created configuration is comparable to that of the MVC JavaConfig (and the MVC
namespace) and can be customized to a degree through builder-style methods:

public class M/WbTests {
private MbockM/c nobckMic;
@ef ore

public void setup() {
thi s. mockM/c = MockM/cBui | ders. st andal oneSet up(new Account Control |l er()).build();

}

...

Which option should you use?

Spring Framework
3.2.1.RELEASE Reference Documentation 309

Spring Framework

The "webAppContextSetup" loads the actual Spring MVC configuration resulting in a more complete
integration test. Since the TestContext framework caches the loaded Spring configuration, it helps to
keep tests running fast even as more tests get added. Furthermore, you can inject mock services into
controllers through Spring configuration, in order to remain focused on testing the web layer. Here is an
example of declaring a mock service with Mockito:

<bean i d="account Servi ce" cl ass="org. nockito. Mdckito" factory-nethod="nock">
<constructor-arg val ue="org. exanpl e. Account Servi ce"/>
</ bean>

Then you can inject the mock service into the test in order set up and verify expectations:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@\ebAppConfi guration

@ont ext Configuration("test-servlet-context.xm")
public class Account Tests {

@\ut owi r ed
private WebAppl i cationContext wac;

private MockM/c nmockMrc;

@\ut owi r ed
private Account Servi ce account Servi ce;

...

The "standaloneSetup” on the other hand is a little closer to a unit test. It tests one controller at a
time, the controller can be injected with mock dependencies manually, and it doesn't involve loading
Spring configuration. Such tests are more focused in style and make it easier to see which controller
is being tested, whether any specific Spring MVC configuration is required to work, and so on. The
"standaloneSetup" is also a very convenient way to write ad-hoc tests to verify some behavior or to
debug an issue.

Just like with integration vs unit testing, there is no right or wrong answer. Using the "standaloneSetup"
does imply the need for some additional "webAppContextSetup" tests to verify the Spring MVC
configuration. Alternatively, you can decide write all tests with "webAppContextSetup" and always test
against actual Spring MVC configuration.

Performing Requests

To perform requests, use the appropriate HTTP method and additional builder-style methods
corresponding to properties of MockHt t pSer vl et Request . For example:

‘ mockMvc. perforn(post ("/hotels/{id}", 42).accept(Medi aType. APPLI CATI ON_JSQN));

In addition to all the HTTP methods, you can also perform file upload requests, which internally creates
an instance of MockMul ti part Ht t pSer vl et Request :

‘ nockMvc. perforn(fileUpl oad("/doc").file("al", "ABC'.getBytes("UTF-8")));

Query string parameters can be specified in the URI template:

‘ nockMvc. perforn{get ("/hotel s?foo={foo}", "bar"));

Spring Framework
3.2.1.RELEASE Reference Documentation 310

Spring Framework

Or by adding Servlet request parameters:

nockMvc. perforn{get("/hotel s").paran("foo", "bar"));

If application code relies on Servlet request parameters, and doesn't check the query string, as is most
often the case, then it doesn't matter how parameters are added. Keep in mind though that parameters
provided in the URI template will be decoded while parameters provided through the parant...)
method are expected to be decoded.

In most cases it's preferable to leave out the context path and the Servlet path from the request URI. If
you must test with the full request URI, be sure to set the cont ext Pat h and ser vl et Pat h accordingly
so that request mappings will work:

mockMvc. perform(get ("/app/ mai n/ hotel s/{id}").contextPath("/app").servletPath("/min"))

Looking at the above example, it would be cumbersome to set the contextPath and servletPath with
every performed request. That's why you can define default request properties when building the
MockMrc:

public class M/WbTests {
private MockM/c nockMrc;

@efore
public void setup() {
mockM/c = st andal oneSet up(new Account Control I er())
. def aul t Request (get ("/")
.contextPath("/app").servletPath("/ main")
. accept (Medi aType. APPLI CATI ON_JSON) . bui I d();

The above properties will apply to every request performed through the MockMrc. If the same property
is also specified on a given request, it will override the default value. That is why, the HTTP method and
URI don't matter, when setting default request properties, since they must be specified on every request.

Defining Expectations

Expectations can be defined by appending one or more . andExpect (. .) after call to perform the
request:

mockMvc. perforn(get ("/accounts/1")).andExpect (status().isCk());

MockM/cResul t Mat cher s. * defines a number of static members, some of which return types with
additional methods, for asserting the result of the performed request. The assertions fall in two general
categories.

The first category of assertions verify properties of the response, i.e the response status, headers, and
content. Those are the most important things to test for.

The second category of assertions go beyond the response, and allow inspecting Spring MVC specific
constructs such as which controller method processed the request, whether an exception was raised
and handled, what the content of the model is, what view was selected, what flash attributes were added,

Spring Framework
3.2.1.RELEASE Reference Documentation 311

Spring Framework

and so on. Itis also possible to verify Servlet specific constructs such as request and session attributes.
The following test asserts that binding/validation failed:

nockMvc. perforn(post ("/ persons"))
.andExpect (status().isCk())
. andExpect (nmodel (). attribut eHasErrors("person"));

Many times when writing tests, it's useful to dump the result of the performed request. This can be done
as follows, where pri nt () is a static import from MockM/cResul t Handl er s:

mockMvc. per form(post ("/ persons"))
.andDo(print())
.andExpect (status().isCk())
. andExpect (nodel (). attributeHasErrors("person"));

As long as request processing causes an unhandled exception, the pri nt () method will print all the
available result data to Syst em out .

In some cases, you may want to get direct access to the result and verify something that cannot be
verified otherwise. This can be done by appending . andRet ur n() at the end after all expectations:

M/cResult mvcResult = nmockMrc. perform(post("/
persons")). andExpect (status().isCk()).andReturn();
...

When all tests repeat the same expectations, you can define the common expectations once when
building the MockMrc:

st andal oneSet up(new Si npl eController())
.al waysExpect (status().isOk())
. al waysExpect (content (). cont ent Type("appl i cation/json;charset=UTF-8"))
. bui 1 d()

Note that the expectation is always applied and cannot be overridden without creating a separate
MockM/c instance.

When JSON response content contains hypermedia links created with Spring HATEOAS, the resulting
links can be verified:

mockMvc. perforn(get ("/ people").accept (Mdi aType. APPLI CATI ON_JSON))
. andExpect (j sonPat h("$.1inks[?(@rel == "self"')].href").value("http://Iocal host: 8080/

peopl e"));

When XML response content contains hypermedia links created with Spring HATEOAS, the resulting
links can be verified:

Map<String, String> ns = Collections.singletonMap("ns", "http://ww.w3.org/2005/Atont);
nmockMvc. perforn(get ("/handl e").accept (Medi aType. APPLI CATI ON_XW.))

. andExpect (xpat h("/person/ns:link[@el =" self']/@ref", ns).string("http://
| ocal host : 8080/ peopl e"));

Filter Registrations

When setting up a MockMrc, you can register one or more Fi | t er instances:

Spring Framework
3.2.1.RELEASE Reference Documentation 312

https://github.com/SpringSource/spring-hateoas
https://github.com/SpringSource/spring-hateoas

Spring Framework

mockM/c = st andal oneSet up(new PersonControl I er()).addFilters(new
Char acter EncodingFilter()).build();

Registered filters will be invoked through MockFi | t er Chai n from spri ng-t est and the last filter will
delegates to the Di spat cher Servl et .

Further Server-Side Test Examples

The framework's own tests include many sample tests intended to demonstrate how to use Spring MVC
Test. Browse these examples for further ideas. Also the spring-mvc-showcase has full test coverage
based on Spring MVC Test.

Client-Side REST Tests

Client-side tests are for code using the Rest Tenpl at e. The goal is to define expected requests and
provide "stub" responses:

Rest Tenpl ate rest Tenpl ate = new Rest Tenpl ate();

MockRest Servi ceServer nmockServer = MckRest Servi ceServer. createServer(restTenpl ate);
nockSer ver . expect (request To("/greeting")).andRespond(w t hSuccess("Hell o world", "text/
plain"));

/'l use RestTenplate ...

mockServer. verify();

In the above example, MockRest Ser vi ceServer -- the central class for client-side REST tests
-- configures the Rest Tenpl at e with a custom C i ent Ht t pRequest Fact ory that asserts actual
requests against expectations and returns "stub" responses. In this case we expect a single request
to "/greeting” and want to return a 200 response with "text/plain" content. We could define as many
additional requests and stub responses as necessary.

Once expected requests and stub responses have been defined, the Rest Tenpl at e can be used in
client-side code as usual. At the end of the tests nockSer ver. veri fy() can be used to verify that
all expected requests were performed.

Static Imports

Just like with server-side tests, the fluent API for client-side tests requires a few static imports. Those are
easy to find by searching "MockRest*". Eclipse users should add " MockRest Request Mat chers. *"
and "MbckRest ResponseCreat ors. *" as "favorite static members" in the Eclipse preferences
under Java -> Editor -> Content Assist -> Favorites. That allows using content assist after typing the
first character of the static method name. Other IDEs (e.g. IntelliJ) may not require any additional
configuration. Just check the support for code completion on static members.

Further Examples of Client-side REST Tests

Spring MVC Test's own tests include example tests of client-side REST tests.
PetClinic Example

The PetClinic application, available from the samples repository, illustrates several features of the
Spring TestContext Framework in a JUnit 4.5+ environment. Most test functionality is included in the
Abst ract C i ni cTest s, for which a partial listing is shown below:

Spring Framework
3.2.1.RELEASE Reference Documentation 313

https://github.com/SpringSource/spring-framework/tree/master/spring-test-mvc/src/test/java/org/springframework/test/web/servlet/samples
https://github.com/SpringSource/spring-mvc-showcase
https://github.com/SpringSource/spring-framework/tree/master/spring-test-mvc/src/test/java/org/springframework/test/web/client/samples

Spring Framework

inmport static org.junit.Assert.assertEqual s;
[l inmport ...

@cont ext Confi gurati on
public abstract class AbstractC inicTests extends
Abstract Transacti onal JUni t 4Spri ngCont ext Tests {

@\ut owi red
protected Cinic clinic;

@est
public void getVets() {
Col I ection<Vet> vets = this.clinic.getVets();
assert Equal s("JDBC query nust show the same nunber of vets",
super . count Rows| nTabl e("VETS"), vets.size());
Vet vl = EntityUtils.getByld(vets, Vet.class, 2);
assert Equal s("Leary", vl.getlLastNanme());
assert Equal s(1, v1.getNrO Specialties());
assert Equal s("radi ol ogy", (v1.getSpecialties().get(0)).getNane());
...

1.

Notes:

 This test case extends the AbstractTransactional JUnit4SpringContextTests
class, from which it inherits configuration for Dependency Injection (through the
Dependencyl nj ecti onTest Executi onLi stener) and transactional behavior (through the
Transacti onal Test Executi onLi st ener).

» Thecl i ni ¢ instance variable — the application object being tested — is set by Dependency Injection
through @\ut owi r ed semantics.

» The t est Get Vet s() method illustrates how you can use the inherited count Rowsl nTabl e()
method to easily verify the number of rows in a given table, thus verifying correct behavior of the
application code being tested. This allows for stronger tests and lessens dependency on the exact
test data. For example, you can add additional rows in the database without breaking tests.

» Like many integration tests that use a database, most of the tests in Abst r act Cl i ni cTest s depend
on a minimum amount of data already in the database before the test cases run. Alternatively, you
might choose to populate the database within the test fixture set up of your test cases — again, within
the same transaction as the tests.

The PetClinic application supports three data access technologies: JDBC, Hibernate, and
JPA. By declaring @Cont ext Confi gurati on without any specific resource locations, the
Abstract Cini cTests class will have its application context loaded from the default location,
Abstract i ni cTests-context.xm , which declares a common Dat aSour ce. Subclasses
specify additional context locations that must declare a Pl at f or nifr ansact i onManager and a
concrete implementation of Cl i ni c.

For example, the Hibernate implementation of the PetClinic tests contains the following
implementation. For this example, Hi bernat eC i ni cTests does not contain a single line of
code: we only need to declare @ont ext Configurati on, and the tests are inherited from
Abstract Cini cTests. Because @ont ext Confi guration is declared without any specific

Spring Framework
3.2.1.RELEASE Reference Documentation 314

Spring Framework

resource locations, the Spring TestContext Framework loads an application context from all
the beans defined in Abstract i nicTests-context.xm (i.e., the inherited locations) and
Hi ber nat eCl i ni cTest s- cont ext. xm , with Hi ber nat eCl i ni cTest s- cont ext. xm possibly
overriding beans defined in Abstract Cl i ni cTest s-cont ext. xmi .

@Cont ext Confi guration
public class Hibernated inicTests extends AbstractdinicTests { }

In a large-scale application, the Spring configuration is often split across multiple files. Consequently,
configuration locations are typically specified in a common base class for all application-specific
integration tests. Such a base class may also add useful instance variables — populated by Dependency
Injection, naturally — such as a Sessi onFact ory in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration
tests as in the deployed environment. One likely point of difference concerns database connection
pooling and transaction infrastructure. If you are deploying to a full-blown application server,
you will probably use its connection pool (available through JNDI) and JTA implementation.
Thus in production you will use a Jndi Obj ect Fact oryBean or <j ee:j ndi -1 ookup> for the
Dat aSour ce and Jt aTr ansact i onManager . JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP Basi cDat aSour ce and
Dat aSour ceTr ansact i onManager or Hi ber nat eTr ansact i onManager for them. You can factor
out this variant behavior into a single XML file, having the choice between application server and a 'local’
configuration separated from all other configuration, which will not vary between the test and production
environments. In addition, it is advisable to use properties files for connection settings. See the PetClinic
application for an example.

11.4 Further Resources

Consult the following resources for more information about testing:

e JUnit: “ A programmer-oriented testing framework for Java ”. Used by the Spring Framework in its
test suite.

» TestNG: Atesting framework inspired by JUnit with added support for Java 5 annotations, test groups,
data-driven testing, distributed testing, etc.

» MockObjects.com: Web site dedicated to mock objects, a technique for improving the design of code
within test-driven development.

» "Mock Objects": Article in Wikipedia.

» EasyMock: Java library “ that provides Mock Objects for interfaces (and objects through the class
extension) by generating them on the fly using Java's proxy mechanism. ” Used by the Spring
Framework in its test suite.

» JMock: Library that supports test-driven development of Java code with mock objects.
» Mockito: Java mock library based on the test spy pattern.

» DbUnit: JUnit extension (also usable with Ant and Maven) targeted for database-driven projects that,
among other things, puts your database into a known state between test runs.

e The Grinder: Java load testing framework.

Spring Framework
3.2.1.RELEASE Reference Documentation 315

http://www.junit.org/
http://testng.org/
http://www.mockobjects.com/
http://en.wikipedia.org/wiki/Mock_Object
http://www.easymock.org/
http://www.jmock.org/
http://mockito.org/
http://xunitpatterns.com/Test%20Spy.html
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

Part IV. Data Access

This part of the reference documentation is concerned with data access and the interaction between
the data access layer and the business or service layer.

Spring's comprehensive transaction management support is covered in some detail, followed by
thorough coverage of the various data access frameworks and technologies that the Spring Framework
integrates with.

Chapter 12, Transaction Management

Chapter 13, DAO support

Chapter 14, Data access with JDBC

Chapter 15, Object Relational Mapping (ORM) Data Access

Chapter 16, Marshalling XML using O/X Mappers

Spring Framework

12. Transaction Management

12.1 Introduction to Spring Framework transaction
management

Comprehensive transaction support is among the most compelling reasons to use the Spring
Framework. The Spring Framework provides a consistent abstraction for transaction management that
delivers the following benefits:

» Consistent programming model across different transaction APIs such as Java Transaction API (JTA),
JDBC, Hibernate, Java Persistence APl (JPA), and Java Data Objects (JDO).

» Support for declarative transaction management.

Simpler API for programmatic transaction management than complex transaction APIs such as JTA.

Excellent integration with Spring's data access abstractions.

The following sections describe the Spring Framework's transaction value-adds and technologies. (The
chapter also includes discussions of best practices, application server integration, and solutions to
common problems.)

» Advantages of the Spring Framework's transaction support model describes why you would use the
Spring Framework's transaction abstraction instead of EJB Container-Managed Transactions (CMT)
or choosing to drive local transactions through a proprietary API such as Hibernate.

» Understanding the Spring Framework transaction abstraction outlines the core classes and describes
how to configure and obtain Dat aSour ce instances from a variety of sources.

» Synchronizing resources with transactions describes how the application code ensures that resources
are created, reused, and cleaned up properly.

» Declarative transaction management describes support for declarative transaction management.

» Programmatic transaction management covers support for programmatic (that is, explicitly coded)
transaction management.

12.2 Advantages of the Spring Framework's transaction
support model

Traditionally, Java EE developers have had two choices for transaction management: global or local
transactions, both of which have profound limitations. Global and local transaction management is
reviewed in the next two sections, followed by a discussion of how the Spring Framework's transaction
management support addresses the limitations of the global and local transaction models.

Global transactions

Global transactions enable you to work with multiple transactional resources, typically relational
databases and message queues. The application server manages global transactions through the
JTA, which is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA

Spring Framework
3.2.1.RELEASE Reference Documentation 317

Spring Framework

User Tr ansact i on normally needs to be sourced from JNDI, meaning that you also need to use JNDI
in order to use JTA. Obviously the use of global transactions would limit any potential reuse of application
code, as JTA is normally only available in an application server environment.

Previously, the preferred way to use global transactions was via EJB CMT (Container Managed
Transaction): CMT is a form of declarative transaction management (as distinguished from
programmatic transaction management). EJB CMT removes the need for transaction-related JNDI
lookups, although of course the use of EJB itself necessitates the use of JNDI. It removes most but
not all of the need to write Java code to control transactions. The significant downside is that CMT is
tied to JTA and an application server environment. Also, it is only available if one chooses to implement
business logic in EJBs, or at least behind a transactional EJB facade. The negatives of EJB in general
are so great that this is not an attractive proposition, especially in the face of compelling alternatives
for declarative transaction management.

Local transactions

Local transactions are resource-specific, such as a transaction associated with a JDBC connection.
Local transactions may be easier to use, but have significant disadvantages: they cannot work
across multiple transactional resources. For example, code that manages transactions using a JDBC
connection cannot run within a global JTA transaction. Because the application server is not involved in
transaction management, it cannot help ensure correctness across multiple resources. (It is worth noting
that most applications use a single transaction resource.) Another downside is that local transactions
are invasive to the programming model.

Spring Framework's consistent programming model

Spring resolves the disadvantages of global and local transactions. It enables application developers to
use a consistent programming model in any environment. You write your code once, and it can benefit
from different transaction management strategies in different environments. The Spring Framework
provides both declarative and programmatic transaction management. Most users prefer declarative
transaction management, which is recommended in most cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative
model, developers typically write little or no code related to transaction management, and hence do not
depend on the Spring Framework transaction API, or any other transaction API.

Spring Framework
3.2.1.RELEASE Reference Documentation 318

Spring Framework

Do you need an application server for transaction management?

The Spring Framework's transaction management support changes traditional rules as to when
an enterprise Java application requires an application server.

In particular, you do not need an application server simply for declarative transactions through
EJBs. In fact, even if your application server has powerful JTA capabilities, you may decide
that the Spring Framework's declarative transactions offer more power and a more productive
programming model than EJB CMT.

Typically you need an application server's JTA capability only if your application needs to handle
transactions across multiple resources, which is not a requirement for many applications. Many
high-end applications use a single, highly scalable database (such as Oracle RAC) instead.
Standalone transaction managers such as Atomikos Transactions and JOTM are other options. Of
course, you may need other application server capabilities such as Java Message Service (JMS)
and J2EE Connector Architecture (JCA).

The Spring Framework gives you the choice of when to scale your application to a fully loaded
application server. Gone are the days when the only alternative to using EJB CMT or JTA was
to write code with local transactions such as those on JDBC connections, and face a hefty
rework if you need that code to run within global, container-managed transactions. With the Spring
Framework, only some of the bean definitions in your configuration file, rather than your code,
need to change.

12.3 Understanding the Spring Framework transaction
abstraction

The key to the Spring transaction abstraction is the notion of
a transaction strategy. A transaction strategy is defined by the
org. springframework.transacti on. Pl at f or nffr ansact i onManager interface:

public interface Pl atfornlransacti onManager {

TransactionStatus get Transacti on(Transacti onDefinition definition)
throws Transacti onExcepti on;

void conmit(TransactionStatus status) throws Transacti onExcepti on;

voi d roll back(TransactionStatus status) throws Transacti onExcepti on;

}

This is primarily a service provider interface (SPI), although it can be used programmatically
from your application code. Because Pl atformlransacti onManager is an interface, it can
be easily mocked or stubbed as necessary. It is not tied to a lookup strategy such as JNDI.
Pl at f or MTr ansact i onManager implementations are defined like any other object (or bean) in the
Spring Framework loC container. This benefit alone makes Spring Framework transactions a worthwhile
abstraction even when you work with JTA. Transactional code can be tested much more easily than
if it used JTA directly.

Again in keeping with Spring's philosophy, the Tr ansact i onExcept i on that can be thrown by any
of the Pl at f or niTr ansact i onManager interface's methods is unchecked (that is, it extends the

Spring Framework
3.2.1.RELEASE Reference Documentation 319

http://www.atomikos.com/
http://jotm.objectweb.org/

Spring Framework

j ava. | ang. Runt i neExcept i on class). Transaction infrastructure failures are almost invariably fatal.
In rare cases where application code can actually recover from a transaction failure, the application
developer can still choose to catch and handle Tr ansact i onExcepti on. The salient point is that
developers are not forced to do so.

The get Transaction(..) method returns a Transacti onSt atus object, depending on a
Transacti onDefi ni ti on parameter. The returned Tr ansact i onSt at us might represent a new
transaction, or can represent an existing transaction if a matching transaction exists in the current
call stack. The implication in this latter case is that, as with Java EE transaction contexts, a
Transacti onSt at us is associated with a thread of execution.

The Transact i onDef i ni ti on interface specifies:

 Isolation: The degree to which this transaction is isolated from the work of other transactions. For
example, can this transaction see uncommitted writes from other transactions?

» Propagation: Typically, all code executed within a transaction scope will run in that transaction.
However, you have the option of specifying the behavior in the event that a transactional method
is executed when a transaction context already exists. For example, code can continue running in
the existing transaction (the common case); or the existing transaction can be suspended and a new
transaction created. Spring offers all of the transaction propagation options