libexplain

Reference Manual

Peter Miller
pmiller@opensource.grau

This document describes libexplain version 1.1
and was prepared 20 April 2013.

This document describing the libexplain libreayd the libexplain library itself, are
Copyright © 2008, 2009, 2010, 2011, 2012 Peter Miller

This program is free softave; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Freed®®ffundation; eitherev-
sion 3 of the License, or (at your optionydater version.

This program is distrilted in the hope that it will be useful, but WITHOUT ANYAWRANTY,
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU Lesser General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

Read Me(lib&plain) ReadVie(libexplain)

NAME
libexplain — Explain errno values returned by libc functions

DESCRIPTION
Thelibexplainpackage provides a library which may be used to explain Unix and Linux system call errors.
This will make your applicatiors eror messages much more informatio your users.

The library is not quite a drop-in replacementdwerror(3), but it comes close. Each system call has a
dedicated libexplain function, for example
fd = open(path, flags, mode);
if (fd < 0)
{
fprintf(stderr, "%s\n", explain_open(path, flags, mode));
exit(EXIT_FAILURE);

If, for example, you were to try to open-such-dir/some-file , you would see a message like
open(pathname = "no-such-dir/some-file", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no
"no-such-dir" directory in the current directory

The good ne is that for each of these functions there is a wrapper function, in this case
explain_open_or_dig), that includes the abe cde fragment. Adding good error reporting is as simple

as using a different, but similarly named, function. The library also provides thread safe variants of each
explanation function.

Coverage includes 185 system calls and 547 ioctl requests.

Tutorial Documentation
There is a papewailable in PDF format (http:/libexplain.sourceforge.net/lca2010/Ica2010.pdf) that
describes the library andWwdo use LibExplain. The paper can also be accessesptan_lca201@1),
which also appears in the reference manual (see below).

HOME PAGE
The latest version dibexplainis available on the Web from:

URL: http://libexplain.sourceforge.net/

File: index.html #the libexplain page

File: libexplain.1.1.README #Description, from the tar file
File: libexplain.1.1.lsm #Description, LSM format
File: libexplain.1.1.taigz #the complete source

File: libexplain.1.1.pdf #Reference Manual

BUILDING LIBEXPLAIN
Full instructions for buildindibexplainmay be found in thBUILDING file included in this distribution.
COPYRIGHT

libexplainversion 1.1
Copyright © 2008, 2009, 2010, 2011, 2012 Peter Miller

Library License
The shared libraryand its include files, @& GNU LGPL licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License, or
(at your option) aylater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRAN#ithout
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should hae recevved a mpy of the GNU Lesser General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Reference Manual libgolain 1

Read Me(lib&plain) ReadVie(libexplain)

Non-Library License
Everything else (all source files that do not constitute the shared library and its include &l&ErGPL

licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) ary later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRAN#ithout

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should hae recevved a mpy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual libgolain 2

Read Me(lib&plain) ReadVie(libexplain)

RELEASE NOTES
This section details the various features and bug fixes of the various releasesruciating and
complete detail, and also credits for those of you wive lganerously sent me suggestions and bug reports,
see theetc/CHANGES .files.

Coverage includes 185 system calls and 547 ioctl requests.

Version 1.1 (2012-Nov-20)
» Explanations are nmp available for errors reported by tlesecy3), geresgid2), getresuid2), Ichmod?2),
setgid?2) setiegd(2), setresgi@?), setresui@?), setreuid?), setuiq2) andutimeng2) system calls.

» Emanuel Haupt <ehaupt@critical.ch> dige@d that the error handling fshma¢2) on BSD needed
more portability work.

» There are newxplain_filename_from_stream andexplain_filename_from_fildes
functions to the public API. Thisggs library clients access to libexplasridea of the filename.

» Michael Cree <mcree@orcon.net.nz> disred that there was a problem building libexplain on alpha
architecture.
Debian: Closes: #661440

Version 1.0 (2012-May-19)
* Sevaal testing false rggtive has been fix, concerning EACCES whewauted by root.

Version 0.52 (2012-Mar-04)
* A false ngative in test 76, where Linux security modules changa¢hamég2) semantics.

* A problem on sparc64 has beerefix Libeplain can na cope with a missing O_LARGEFILE
declaration, and yet file flags returned by the kerne¢tfze flag set.

* A build problem on Debian alpha has been fixed, the name of an include file was incorrect.

Version 0.51 (2012-Jan-26)
» Theptracdq?) support has been imwenl with more conditionals determined by the ./configure script
when building.
Debian: Closes: #645745

Version 0.50 (2012-Jan-16)
* SpepS <spepsforge@users.sf.net> and Eric Smith <eric@brouhaha.converdigtbat
_PC_MIN_HOLE_SIZE isrt’supported for all Linux. Some more #ifdef was added.

* Sevaal false ngatives from tests hae been fixed.
Debian: Closes: 654199

* The tarball na includes a libexplain.spec file for building an RPM package ugimipuild(1).

* This change set makes thes@eadlink) string search less particulso that it works in more cases. In
this instance, on Fedora 14.

* Explanations are nowevalable for errors reported by thmealpath(3) system call.
Version 0.49 (2011-Nov-10)

Reference Manual libgolain 3

Read Me(lib&plain) ReadVie(libexplain)

» Explanations are o available for errors reported by tlshmct(2) system call.
» Some build problems (diswered by the LaunchPad RBuid farm) hae keen fixed.

Version 0.48 (2011-Nov-08)
» Explanations are mo available for errors reported by tlelmaf2) system call.

» Seveal build problems on Solaris Y keen fixed.

» Dagobert Michelsen <dam@opencsw.org> found the test 625 was throwing a fiseerie his test
environment. It can we cope with stdin being closed.

» Dagobert Michelsen <dam@opencsw.org> disged that, on Solaris, test falsegaves were caused
by the need for a space before the width ifna “w 800 ” command.

* Eric Smith <eric@brouhaha.com> diseced thatisof(1) could report errors agecutable names, when
it couldnt read the symlink. These non-results are fitiered out.

* Eric Smith <eric@brouhaha.com> distered three false myatives from tests of th&ill (2) system call.
» Better explanations are wavailable when a user attempts teeeute a directory.

Version 0.47 (2011-Sep-27)
» Explanations are o available for errors reported by tlsetsiq2) system call.

» The Ubuntu PR build farm found seeral Hardy build problems. Theseualeen fixed.

» Code has been added to detect those cases where a file descriptor may be open for reading and writing,
but the 1/0 stream it is accessed by is only open for one of them.

» Code has been added to cope with falgtindes whenlsof(1) is not as helpful as could be desired.

» Michael Bienia <geser@ubuntu.com> digared a build problem with the SIOCSHWTSTAMP ioctl
request, and sent a patch.

Version 0.46 (2011-Aug-24)
* LibExplain has been ported to Solaris 8, 9 and 10. My thanks to Dagobert Michelsen and
http://opencsw.org/ for assistance with this port.

» Sevaal more Linuxioctl(2) requests are supported.
* A sedfault has been fixed in the output tee filter when handling exit.

Version 0.45 (2011-Jul-17)
» Dagobert Michelsen <dam@opencsw.org> discsed seeral build problems on OpenSolaris; these
have leen fixed.

» Explanations are mp available for errors reported by the Linipctl(2) V4L1 system calls.

Version 0.44 (2011-Jul-03)

Reference Manual libglain 4

Read Me(lib&plain) ReadVie(libexplain)

» Seveal build problem to do with older Linux kernelsvedeen fixed.

Version 0.42 (2011-Jul-02)
» Explanations are mo available for errors reported by the V4L2 ioctl requests.

» The Debian package no longer installs the libtool *.1a file.
Debian: Closes: 621621

» The call arguments printed for ioctl(2)wmanclude the type of the third argument.
» The error messageswanclude more information about block and character special devices, when
printing file types.

Version 0.42 (2011-May-26)
» This change set adds an “ldconfig” hint to the BUILDING instructions. My thanks teBlaBride
<blake@arahant.com> for this suggestion.

» Emanuel Haupt <ehaupt@critical.ch> reportegesd problems building libexplain on FreeBSD. These
have leen fixed.

Version 0.41 (2011-Mar-15)
* There were some C+4elwords in the unclude files, which caused problems for C++ users. They
have keen replaced.

* Explanations are noavailaible for errors reported by thgetpgid(2), getpgrp(2), ptracq2), setgpid2)
andsetpgri2) system calls.

Version 0.40 (2010-Oct-05)
» The code ne builds and tests successfully on FreeBSD.

» Explanations are mo available for errors reported by tloallog(3) andpoll(2) system calls.

Version 0.39 (2010-Sep-12)
* A build problem has been fixed on Ubuntu Hardyumber of symbols are absent from older versions of
<linux/cdrom.h>, conditional code has been added for them.

» A bug has been fixed in one of the documentation files, it was missing the conditional aroux the
macro, causingomlint(1) andlintian(1) to complain.

Version 0.38 (2010-Sep-08)
» Some build problems on Fedora 13/8deen fixed.

Version 0.37 (2010-Aug-27)
» The library source files are supposed to be LGPL, kiemaer 1000 of them were GPL (about 20%).
This has been fixed.

» A couple of problems building on Fedora 1¥é&een fixed.
Version 0.36 (2010-Aug-25)

Reference Manual libglain 5

Read Me(lib&plain) ReadVie(libexplain)

» Sevaal false ngdive reported by tests on the Linux “alpha” and “ia64” architecturgs baen fixed.

Version 0.35 (2010-Aug-15)
* A number of fale regdives from tests hae been fixed, primarily due to random differences between
Linux architectures.

» The BUILDING document goes into more detail about things that can cause fadeasevhen testing.

* The man pages ke been fixed so that tlyeno longer contain unescaped hyphen characters, as warned
about by thdintian(1) program.

Version 0.34 (2010-Aug-07)
» Another test 33 false gdive has been fixed.

» There is a n® “hanging-indent” option, that can be set fromEXPLAIN_OPTIONenvironment
variable. Itdefaults to zero for backwards compatibiliypplications may set it using the
explain_option_hanging_indent_g8} function.

Version 0.33 (2010-Jul-04)
* A number of testing false gdives (found by the Debian build farm) ¥ been fixed.

» There are newxplain_output_erro¢3) andexplain_output_error_and_d{8) functions for printing
formatted error messages.

» Some systems lwa mma2) report(void*)(-1) instead of NULL for errors. This is now
understood.

Version 0.32 (2010-Jun-22)
» Explanations are mp available for errors reported by tiemag2), munmayg2) andutimeg?) system
calls.

» A number of false rgatives for tests on some less common architectures been fixed.
» Some build problems relating toctl(2) support hee been fixed.
» A bug has been fixed in thibexplain/output.h file, it was missing the C++ insulation.

Version 0.31 (2010-May-01)
* A number of build problems fa been fixed.

Version 0.30 (2010-Apr-28)
» Sevaal test false rggtives havebeen fixed, on various Debian architectures.

Version 0.29 (2010-Apr-25)
* A number of build problems, diseered by the Debian build farm, e been fixed. Whowould of
thought that there could be some much inconsigtbatween Linux architectures?

Version 0.28 (2010-Apr-19)

Reference Manual libglain 6

Read Me(lib&plain) ReadVie(libexplain)

» Sevaal architecture-specific build problems, found by the Debian build farve, lieeen fixed.

Version 0.27 (2010-Apr-17)
» Sevaal architecture-specific build problems, found by the Debian build farve, lieeen fixed.

Version 0.26 (2010-Apr-06)
» A build problem has been fixed on systems whexelist is not compatible witltonst void *

» This change set remes the unused-result warning foremplain_Iseek_or_dig), because it is very
common to ignore the result.

» Explanations are o available for errors reported by tls®dkepair(2) system call.

Version 0.25 (2010-Mar-22)
+ Portability of the code has been imped.

» Theexlain(3) man page e mentions AC_SYS_LARGEFILE in the building requirements.
» Coverage nwv includes thdprintf(3), printf(3), snprint{(3), sprintf(3), vfprintf(3), vprintf(3), vsnprint{3)
andvsprint{3) system calls.

Version 0.24 (2010-Mar-03)
« Itis now possible to redirected libexplain outplor example, it is nav possible to redirect all output to
syslog3).

» Coverage nwv includes thdstatvf§2) andstatvf¢2) system call.
* A number of problems found while building and testing on Solaxis been fixed.

Version 0.23 (2010-Feb-21)
* It turns out that on alpha architecture, you tdisambiguate the FIBMAP vs BMP_IOCTL case in the
pre-processorThe code ne uses a disambiguate function. This problem was g&ed by the Debian
build farm.

Version 0.22 (2010-Feb-12)
» This change set fixes a falsegave found by the Debian automated build system.

Version 0.21 (2010-Feb-09)
» Explanations are mo available for errors reported by ttipurge(3), getw(3) andputw(3) system calls.

» Some build problems va teen fixed.

Version 0.20 (2010-Jan-20)
» Sevaal lintian warnings relating to the man pagegehigeen fixed.

» The LIBEXPLAIN_OPTIONS environment variablewanderstands a mesymbolic-mode-bits=true
option. Itdefaults to false, for shorter error explanations.

» There is a newxplain_Ica201@1) man page. This is a gentle introduction to libexplain, and the paper
accompanying my LCA 2010 talk.

» When process ID (pid) values are printedythre nav accompanied by the name of the process
executable, whenailable.

* Numerous build bugs and niggles/edeen fixed.

» Explanations are mo available for errors reported by tleeclp(3), fdopendi(3), feoi3), fgetpog3),
fputq3), fseekl), fsetpogl), fsynd?2), ftell(3), mkdtemg3), mknod2), mkostem(8), mkstem(s),
mktemgi3), puteny3), putqy3), raise(3), setbuf3), setbuffe(3), seten(3), setlinebuf3), setvbuf3),
stimg?2), tempnan(3), tmpfile(3), tmpnang3), unget¢3), unseten(B) andvfork(2) system calls.

» The ioctl requests from linux/sockios.h, linux/ext2_fs.h, linux/if_eql.h, RRBX/Ip.h, and linux/vt.h are

Reference Manual libgolain 7

Read Me(lib&plain) ReadVie(libexplain)

now understood. Seeral of the ioctl explanations i@ keen improed.

Version 0.19 (2009-Sep-07)
» The ioctl requests from linux/hdreg.h arevianderstood.

» Some build problems on Debian Legnhavebeen fixed.

Version 0.18 (2009-Sep-05)
» More ioctl requests are understood.

» Explanations are o available for errors reported by thiesendbreafB), tcsetatt(3), tcgetatti(3),
tcflusi(3), tedrain(3), system calls.

Version 0.17 (2009-Sep-03)
» Explanations are me available for errors reported by thelldir(3) system call.

* A number of Linux build problems i@ been fixed.

» Explanations for a number of corner-cases ofogper(2) system call hae been impreed, where flags
values interact with file types and mount options.

* A number of BSD build problems ¥ been fixed.

Moreioctl(2) commands are understood.

» A bug has been fixed in the way absolute symbolic links are processed by the path_resolution code.

Version 0.16 (2009-Aug-03)
* The EROFS and ENOMEDIUM explanationsamngreatly improed.

* A number of build problems and falsegagves havebeen fixed on x86_64 architecture.
* The Linux flopgy disk and CD-ROM ioctl requests aremeupported.

» Explanations are mo available for the errors reported by tgegdomainname?), read\v2),
setdomainnan(@), usta(2) andwrite(2) system calls.

Version 0.15 (2009-Jul-26)
» A number of build errors and warnings on amd6édetzen fixed. Theproblems were only detectable
on 64-bit systems.

Version 0.14 (2009-Jul-19)
» Coverage nwv includes another 29 system cadlscept42), acci(2), adjtimg3), adjtimex2), chroot(2),
dirfd(3), eventfd2), fflush(3), filena(3), flock(2), fstatfg2), ftime(3), getgroupg2), gethostnamé?),
kill (2), nice(2), pread2), pwrite(2), sethostnam@), signalfd2), strdug(3), strtod(3), strtof(3), strtol(3),
strtold(3), strtoll(3), strtoul(3), strtoull(3), andtimerfd_creaté?). Atotal of 110 system calls are how
supported

» The ./configure script no longer dematsisf{1). TheLinux libexplain code doeshheedIsof(1). On
systems not supported B0of(1), the error messages attegpiite as useful, but libexplain still works.

» There is nw an explain_*_on_error function for each system call, each reports errors but still
returns the original return value to the caller.

Version 0.13 (2009-May-17)

Reference Manual libglain 8

Read Me(lib&plain) ReadVie(libexplain)

» The web site nw links to a number of services provided by SourceForge.
» Seveaal problems hee keen fixed with compiling libexplain on 64-bit systems.

Version 0.12 (2009-May-04)
» A build problem has been fixed on hosts that didired to do anything special for large file support.

Version 0.11 (2009-Mar-29)
» The current directory is replaced in messages with an absolute path in cases wherestdeaiséthe
current directory may differ from that of the current process.

Version 0.10 (2009-Mar-24)
» The name prefix on all of the library functions has been changed from “libexplain_" to just “explain_".
This wasthe most requested chang¥ou will need to change your code and recompile. Apologies for
the incowenience.

Version 0.9 (2009-Feb-27)
» Two fdse n@aives in the tests hae keen fixed.

» The ./configure script mo explicitly looks for bison(1), and complains if it cannot be found.
» Thesodket(7) address family is nodecoded.

Version 0.8 (2009-Feb-14)
» A problem with the Debian packaging has been fixed.

» The decoding of IPv4 sockaddr structs has been wegro

Version 0.7 (2009-Feb-10)
» Coverage has been extended to inclgdsodkopt(2), getpeernam@), getsocknamg?) and
setsokopt(2).

* Build problems on Debian Sid & been fixed.
» More magnetic tape ioctl controls, from operating systems other than Livextden added.

Version 0.6 (2009-Jan-16)
» Coverage has been extended to inclesecvi(3), ioctl(2), malloq3), pclos€3), pipg(2), poperf3) and
realloc(3) system calls.

» The cwerage forioctl(2) includes linux console controls, magnetic tape controls, socket controls, and
terminal controls.

» A false ngdive from test 31 has been fixed.
Version 0.5 (2009-Jan-03)

Reference Manual libgolain 9

Read Me(lib&plain) ReadVie(libexplain)

A build problem on Debian sid has been fixed.

» There is a newexplain_system_succd83 function, that performs all that
explain_system_success_or_(@eperforms, except that it does not &adt(2).

» There is more i18n support.
* A bug with thepkg-configl) support has been fixed.

Version 0.4 (2008-Dec-24)
» Coverage nwv includesaccep(2), bind(2), connecf?), dup2), fchowr(2), fdoper{3), fpathcong2),
fput(2), futimeg2), getaddrinfo(2), getcwd(2), getrlimit (2), listen(2), pathconf2), putq2), putchax(2),
selec?).

* Internationalization has been imped.
» The thread safety of the code has been irrgato

» The code is nw able to be compiled on OpenBSD. The test suite stibgyimary false ngdives, due to
differences irstrerror(3) results.

Version 0.3 (2008-Nov-23)

» Cover has been extended to includesedi(3), execvé?), ferror(3), fgetd3), fgetg3), fork(2), fread3),
gete(3), getimeofday?), Ichown(2), soke(2), systen3), utimg2), wait3(2), wait4(2), wait(2),
waitpid(2),

» More internationalization support has been added.

» A bug has been fixed in the C++ insulation.

Version 0.2 (2008-Nov-11)
» Coverage nwv includeschmod2), chown(2), dup(2), fchdir(2), fchmod?2), fsta2), ftruncatg?2),
fwrite(3), mkdir(2), readdir(3), readlink(2), remové3), rmdir(2) andtruncate?).

» Thelsof(1) command is used to obtain supplementary file information on those systems with limited
/proc implementations.

» The explanations mounderstand Linux capabilities.

Version 0.1 (2008-Oct-26)
First public release.

Reference Manual libgolain 10

Build(libexplain) Build(libexplain)

NAME
How to build libexplain

SPACE REQUIREMENTS
You will need about 6MB to unpack and build titeexplainpackage. ®ur milage may vary.

BEFORE YOU START

There are a fg pieces of software you may want to fetch and install before you proceed with your
installation of libexplain

libcap Linuxneeds libcap, for access to capabilities.
ftp://ftp.kernel.org/publ/linux/libs/security/linux—privs/kernel-2.2/

Isof
For systems with inadequate or non-existent /proc facilities, and that includes *BSD and MacOS
X, thelsof(1) program is needed to obtain supplementary information about open file descriptors.
However, if Isof(1) is not supported on your operating system, libexplain will still work, but some
useful information (such as translating file descriptors into the name of the open file) will be
absent from error explanations.

ftp://Isof.itap.purdue.edu/pub/tools/unix/Isof/
http://people.freebsd.org/"abe/

You must havelsof(1) installed on *BSD and Solaris, otherwise the test suite will generate
staggering numbers of falsegatives. Itwill produce less informate eror messages, too.

Supported systems include: Free BSD, HP/UX, Linux, Mac OS X, NetBSD, Open BSD, Solaris,
and seeral others.

GNU libtool
The libtool program is used to build shared libraries. It understands the necaesarand
wonderful compiler and linker tricks on maweird and wonderful systems.
http://www.gnu.org/software/libtool/

bison Thebison program is a general-purpose parser generator thattsam grammar description for
an LALR(1) context-free grammar into a C program to parse that grammar.
http://www.gnu.org/software/bison/

GNU Groff
The documentation for tHiexplainpackage was prepared using the GNU vatkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if yeunbdone
so already This is not essential. libexplain wasvd®ped using the GNU C compileand the
GNU C libraries.

The GNU FTP arclies may be found aftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
Thelibexplain package is configured using tbenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thakefileandlibexplain/config.Hiles. Italso creates a shell script
config.statughat you can run in the future to recreate the current configuration.

Normally, you justcdto the directory containinlijpexplains source code and then type
$./configure ——prefix=/usr
...lots of output...
$
If you're usingcshon an old version of System ¥bu might need to type
% sh configure ——prefix=/usr
...lots of output...

Reference Manual libglain 11

Build(libexplain) Build(libexplain)

%
instead, to preent cshfrom trying to executeconfigureitself.

Runningconfiguretakes a minute or tww Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,
$./configure ——prefix=/usr ——quiet

$

To compile thelibexplain package in a different directory from the one containing the source code, you
must use a version afiakethat supports the \ATH variable,such a&NU makecdto the directory where
you want the object files anateeutables to go and run tleenfigurescript. Theconfigurescript

automatically checks for the source code in the directoryctivdigureis in and in .IR .. (the parent
directory). Iffor some reasooonfigureis not in the source code directory that you are configuring, then it
will report that it cart find the source code. In that case, configurewith the option——srcdir= DIR,
whereDIR is the directory that contains the source code.

By default,configurewill arrange for themale installcommand to install thibexplain packages files in
/usr/local/bin /usr/local/lib, /usr/local/include and /usr/local/man There are options which alloyou to
control the placement of these files.

——prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisritocalunless otherwise
specified.

——exec—prefix= PATH
You can specify separate installation prefixes for architecture-specificifdes Defults to
${prefix} unless otherwise specified.

——bindir=" PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/birunless otherwise specified.

——mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-dbifaults to${prefix}/manunless otherwise
specified.

configureignores most other arguments that yotedt; use the-—help option for a complete list.

On systems that require unusual options for compilation or linking thb#xplainpackage’'sonfigure
script does not ki about, you can gie configureinitial values for variables by setting them in the
ervironment. InBourne-compatible shells, you can do that on the command lm#ik

$ CC='gcc —ansi’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CC
C compiler program. The default gee

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémapymmon
to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall(1) if you have it, cp(1) otherwise.

Variable: LIBS
Libraries to link with, in the form-| foo—I bar. Theconfigurescript will append to this, rather
than replace it. It is common to usBBS=-L/usr/local/lib to access other installed

Reference Manual libgolain 12

Build(libexplain) Build(libexplain)

packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so yhesriHze
included in the next release.

BUILDING LIBEXPLAIN
All you should need to do is use the
$ make
...lots of output...
$

command and ait. Thiscan tale a bng time, as there are af¢housand files to be compiled.

You can remee the program binaries and object files from the source directory by using the
$ make clean
...lots of output...

$

command. @ remove dl of the abwe files, and also renve the Makefileandlibexplain/config.hand
config.statudiles, use the

$ make distclean

...lots of output...

$

command.

The file etc/configueacis used to createonfigureby a GNU program calledutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version aitoconf

TESTING LIBEXPLAIN
Thelibexplainpackage comes with a test suifie@ run this test suite, use the command
$ make sure
...lots of output...
Passed All Tests
$

The tests tad&a faction of a second each, with most very fast, and a couple verybalat varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

Sources of False Negates
There are a number of factors that can cause tests to fail unnecessarily.

Root You will get false ngatives if you run the tests as root.

Architecture
Some errors mee aound depending on architecture (spas&86 vss390,etd. Someeven
maove aound due to different memory layout for 32t64-bit, for the same processor family.
For example, when testing BJLT explanations.

strerror Diferent systems ha dfferent strerror(3) implementations (the numbers vahe texts varythe
existence variesgtg. Thiscan &en be hcompatible across Linux architectures when ABI
compatibility was the goag.g.sparcvsi386.

ioctl Thereare (at least) three inconsistent implementations of ioctl request macros, all incompatible,
depending on Unix vendoiThey also vary on Linux, depending on architecture, for ABI
compatibility reasons.

Environment
Some tests are di€ult because the build-and-test environment can vary widelmnetimes it a
chroot, sometimes #’a VW, sometimes i fakeroot, sometimes it really is running as root. All

Reference Manual libglain 13

Build(libexplain) Build(libexplain)

these affect the ability of the library to probe the system looking for the proximal cause of the
error,e.g.ENOSPC or ERFS. Thisoften results in 2 or 4 or 8 explanations of an error,
depending on what the library findsg.existence of useful information in the mount table, or
not.

Mount Table
If you run the tests in a chroot jail build environment, maybe with bind mounts for the file
systems, it is necessary to realdre/etc/mtab(or equvalent) has sensable contents, otherwise
some of the path resolution tests will return falsgetiees.

/proc Ifyour system has a completely inadequptec implementation (including, but not limited to:
*BSD, Mac OS X, and Solaris) or dproc at all,and you hase rot installed thdsof(1) tool,
then large numbers of tests will return falsgaiges.

As these problem ke accured, may of the tests hae been enhanced to cope, but not all falsgetiee
situations hee yet been disogered.

INSTALLING LIBEXPLAIN
As explained in th&€ITE CONFIGURATIONection, abee, thelibexplainpackage is installed under the
/usr/localtree by dedult. Usethe——prefix=" PATH option toconfigureif you want some other path.
More specific installation locations are assignable, use-thelp option toconfigurefor details.

All that is required to install thiexplainpackage is to use the

make install

...lots of output...

#
command. Contrabf the directories used may be found in the firgt fimes of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tb@nfigurescript, rather than
attempting to do this by hand.

Note: if you are doing a manual install (as opposed to a package build) you will also need to run the
#ldconfig
#
command. Thisipdates where the system thinks all the shared libraries are. And since we just installed
one, this is a good idea.

GETTING HELP
If you need assistance with thigexplainpackage, please do not hesitate to contact the author at
Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version numbar lgy the
$ explain —version
explain version 1.1.D001
...warranty disclaimer...
$

command. Pleas#o not send this example; run the program for the exact version number.

Reference Manual libglain 14

Build(libexplain) Build(libexplain)

COPYRIGHT
libexplainversion 1.1
Copyright © 2008, 2009, 2010, 2011, 2012 Peter Miller

Thelibexplainpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU Lesser General Public License for more details.

It should be in th&ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual libglain 15

New-System-Call(libeplain) Nev-System-Call(libexplain)

NAME
new system call — Hav to add a nev system call to libexplain

DESCRIPTION
Adding a n& system call to libexplain is both simple and tedious.

In this example, the system call is caleedmple and takes tw arguments pathnamendflags
example(const char *pathname, int flags);

The libexplain library presents a C interface to the,@ser explains the C system calls. It tries void

dynamic memoryand has seeral helper functions and structures to md#kis simpler.

Naming Corventions
In general, one function péle. Thisgives the static linker more opportunity to leatings out, thus
producing smallerxecutables. Exceptiort® male use ofstatic common functions are acceptable. No
savings for shared libraries, of course.

Functions that write their output inteegplain_string_buffer_tia theexplain_string_buffer_*
functions, all hee a flename oflibexplain/buffer/ something

Functions that write their output tav@essge, messge_sizepair have amessage path component in their
file name.

Functions that accept @mrnovalue as an argumentVean errno path component in their file name,
callederrnum . If a function has both a buffer and an errno, the buffer comes first, both in the argument
list, and the files rame. Ifa function has both a message+size and an errno, the message comes first, both
in the argument list, and the figetame.

MODIFIED FILES
Note that theeodegen command does most of the work for ydeess it the function prototype (in single
guotes) and it will do most of the work.

$ bin/codegen’ exanpl e(const char *pathname, int flags);’
creating catalogue/ exanpl e
$

then you mast edit theatalogue/ exanpl e file to male any adjustment necessaryrhis file is then
used to do the boring stuff:
$ bin/codegen exanpl e

creating explain/syscall/ exanpl e.c

creating explain/syscall/ exanpl e.h

creating libexplain/buffer/errno/ exanpl e.c
creating libexplain/buffer/errno/ exanpl e.h
creating libexplain/ exanpl e.c

creating libexplain/ exanpl e.h

creating libexplain/ exanpl e_or_die.c

creating man/man3/explain_ exanpl e.3

creating man/man3/explain_ exanpl e_or_die.3
creating test exanpl e/main.c

modify explain/syscall.c
modify libexplain/libexplain.h
modify man/manl/explain.1
modify man/man3/explain.3

$

All of these files hae been added to the Aegis change set. Edit the last 4 to place the appended line in their
correct positions within the files, respecting the symbol sort ordering of each file.

libexplain/libexplain.h
Thelibexplain/libexplain.h include file defines the user API. It, andydiles it includes, are
installed into$(prefix)/include by male install.

This file needs another include line. This means that the entire ARdilizlde to the user as a single

16

New-System-Call(libeplain) Nev-System-Call(libexplain)

include directve.
#include <libexplain/ exampleh>
This file is also used to decide which files are installed byrtale installcommand.

Take are that none of those files, directly or indirectind up includingibexplain/config.h
which is generated by tlownfigurescript, and haso namespace protection.

This means you car#tinclude <stddef.h> , or use awy of the types it defines, because on older
systemsconfigureworks quite hard to cope with its absence. Dittmistd.h> and<sys/types.h>

explain/main.c
Include the include file for the mefunction, and add the function to the table.

man/manl/explain.1
Add a description of the mesystem call.

man/man3/libexplain.3
Add your nev man pages, man/man3/explagxample3 and man/man3/explaiexample or_die.3, to the
list. Keep the list sorted.

NEW FILES
Note that theeodegen command does most of the work for ydeess it the function prototype (in single
guotes) and it will do most of the work.

libexplain/buffer/errno/ examplec

The central file for adding a weexample islibexplain/buffer/errno/ examplec Which defines
a function

void explain_buffer_errno_ exampldexplain_string_buffer_t *buffer,

int errnum, const char *pathnament flags;

Theerrnum argument holds therrnovalue. Notethat callingerrno usually has problems because many
systems hee errno as a macro, which makes the compiler barf, and because there are times you want
access to the globafrno, and having it shadowed by the argument is a nuisance.

This function writes its output into the buffer via #eplain_string_buffer_printf , etc
functions. Firsthe argument list is reprinted.

Theexplain_string_buffer_puts_quoted function should be used to print pathnames, because

it uses full C quoting and escape sequences.

If an argument is a file descriptdtrshould be calledildes short for “file descriptor”. On systems capable
of it, the file descriptor can be mapped to a pathname using the

explain_buffer_fildes_to_pathname function. Thismakes explanations for system calls like
read andwrite much more informatie.

Next comes a switch on the errnum value, and additional explanatimenda@i each errno value

documented (or sometimes undocumented) for that system call. Copy-and-paste of the man page is often

useful as a basis for the text of the explanation, but be sure it is open source documentation, and not
Copyright proprietary text.

Don't forget to check the existirifpexplain/buffer/e*.h files for pre-canned explanations for
common errors. Some pre-canned explanations include

EACCES aplain_buffer_eacces

EADDRINUSE eplain_buffer_eaddrinuse

EAFNOSUPPOR explain_buffer_eafnosupport

EBADF explain_buffer_ebadf

EFAULT explain_buffer_efault

EFBIG eplain_buffer_efbig

EINTR explain_buffer_eintr

EINVAL explain_buffer_eimal_vague etc

17

New-System-Call(libeplain) Nev-System-Call(libexplain)

EIO explain_buffer_eio
ELOOP eplain_buffer_eloop
EMFILE explain_buffer_emfile
EMLINK explain_buffer_emlink
ENAMETOOLONG e&plain_buffer_enametoolong
ENFILE explain_buffer_enfile
ENOBUFS eplain_buffer_enobufs
ENOENT eplain_buffer_enoent
ENOMEM explain_buffer_enomem
ENOTCONN eplain_buffer_enotconn
ENOTDIR explain_buffer_enotdir
ENOTSOCK eplain_buffer_enotsock
EROFS explain_buffer_erofs
ETXTBSY explain_buffer_etxtbsy
EXDEV explain_buffer_exdev

libexplain/buffer/errno/example.h
This file holds the function prototype for the &bdunction definition.

libexplain/example.h

The file contains the user visible API for tb@mplesystem call. There aré/& function prototypes

declared in this file:
void explain_ example or_die(const char *pathnament flags;
void explain_ exampld const char *pathnament flags;
void explain_errno_ exampldint errnum, const char *pathnament flags;
void explain_message__ exampldconst char *message, int message_size,
const char *pathnament flags;
void explain_message_errno_ exampldconst char *message, int
message_size, int errnum, const char *pathnament flags;

The function prototypes for these appear inlithexplain/ exampleh include file.

Each function prototype shall be accompanied by thorough Doxygen style comments. These are extracted
and placed on the web site.

The buffer functions areever part of the user visible API.

libexplain/example or_die.c
One function per fileexplain_ example or_die in this case. It simply callexampleand then, if fails,
explain_ exampleto print wty, and then exit(EXIT_FAILURE).

libexplain/example.c
One function per fileexplain_ examplein this case. It simply callsxplain_errno_ exampleto pass
in the globakrrnovalue.

libexplain/errno/example.c
One function per filegxplain_errno_ examplein this case. It calls
explain_message_errno_ example using the<libexplain/global_message_buffer.h>
to hold the string.

libexplain/message/example.c
One function per filegxplain_message_ examplein this case. It simply calls
explain_message_errno_ exampleto pass in the globa&rrno value.

libexplain/message/errno/example.c
One function per filegxplain_message_errno_ examplein this case. It declares and initializes a
explain_string_buffer_t instance, which ensures that the message buffer will not be exceeded,
and passes that buffer to tveplain_buffer_errno_ examplefunction.

18

New-System-Call(libeplain) Nev-System-Call(libexplain)

man/man3/explain_example.3
This file also documents the error explanations functions, ergpfdin_ example or_dir . Use the
same text as you did libexplain/ exampleh

man/man3/explain_example_or_die.3
This file also documents the helper function. Use the same text as yodidekpiain/ exampleh

explain/example.c
Glue to turn the command line into arguments to a cakpdain_ example

explain/example.h
Function prototype for the abe

test_example/main.c
This program should cadixplain_ explain_or_die

NEW IOCTL REQUESTS
Each differentoctl(2) request is, in effect, yet another system call. Except thasliieave gpallingly
bad type safetyl have ®en fugly C++ classes with lesgedoading tharioctl(2).

libexplain/iocontrol/request_by number.c
This file has one include line for eaidttl(2) request. There istable array that contains a
pointer to the explain_iocontrol_t variable declared in the include file (s h@ep both sets of
lines sorted alphabeticallif makes it easier to detect duplicates.

libexplain/iocontrolhameh
Wherenameis the name of thioctl(2) request in lower case. This declares an global const
variable describing he to handle it.

libexplain/iocontrolhamec
This defines the alve dobal variable, and defines yasgtatic glue functions necessary to print a
representation of itYou will probably hare © read the kernel source to diseothe errors the
ioctl can return, and what causes them, in order to write the explanation functjoaretiaémost
never described in the man pages.

TESTS
Write at least one separate test for each case in the errnum switch.

Debian Notes

You can check that the Debian dtbfiilds by using
apt-get install pbuilder
pbuiler create
pbuilder login

now copy the files fromweb-site/debiarnihto the chroot
cd libexplain—*
dpkg-checkbuilddeps
apt-get installvhat dpkg-checkbuilddeps said
apt—get install devscripts
debuild

This should report success.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

19

explain(1) plain(1)

NAME
explain — explain system call error messages

SYNOPSIS
explain [option...]function] argument..]

explain ——version

DESCRIPTION
The explain command is used to decode an error return read fretmaedail) listing, or silimar Because
thisd is being deciphered in a different process than the orginal, the results will be less accurate than if the
program itself were to uddexplain(3).

Functions
The functions understood include:

accepfiildes addr addrlen
Theaccep(2) system call.

accept4ildes|[sock_addr sock_addr_si¥dlags]
Theaccept42) system call.

accespathname
Theaccesg§?) system call.

acctpathname
Theacct(2) system call.

adjtimedelta olddelta
Theadijtimg2) system call.

adjtimexdata
Theadjtimex?2) system call.

bind fildes addr sockaddr_size
Thebind(2) system call.

callocnmemb size
Thecallo(3) system call.

chdirpathname
Thechdir(2) system call.

chmodpathname permission-mode
Thechmod?2) system call.

chownpathname owner group
The chown(2) system call.

chrootpathname
Thechroot(2) system call.

closefildes
Theclos€?2) system call.

closedirdir
Theclosedi(3) system call.

connecfildes serv_addr serv_addr_size
Theconnecf2) system call.

creatpathnamd permission-mode
Thecreaf(2) system call.

20

explain(1) plain(1)

dirfd dir Thedirfd(3) system call.

dupfildes
Thedup(2) system call.

dup2oldfd newfd
ThedupZ?2) system call.

eventfd initval flags
Theewentfd2) system call.

execlp pathname arg.
Theexeclp(3) system call.

execv pathname argv
Theexec\y(3) system call.

execve pathname arg.
Theexecvg?) system call.

execvp pathname arg.
Theexecv3) system call.

fchdir pathname
Thefchdir(2) system call.

fchownfildes owner group
Thefchowr(2) system call.

fclosefp Thefclosd3) system call.

fentl fildes comman@larg |
Thefcntl(2) system call.

fdopenfd mode
Thefdoper{3) system call.

fdopendirfildes
Thefdopendi(3) system call.

feoffp Thefeof3) system call.

ferrorfp Theferror(3) system call.
fflushfp Thefflush(3) system call.
fgetcfp Thefgetd3) system call.

fgetposfp pos
Thefgetpog3) system call.

fgetsdata data_size fp
Thefgetg3) system call.

filenofp Thefilend3) system call.

flock fildes command
Theflock(2) system call.

fork Thefork(2) system call.

fpathconffildes name
Thefpathcon(3) system call.

fpurgefp
Thefpurgeg(3) system call.

21

explain(1) plain(1)

freadptr size nmemb fp
Thefread3) system call.

fopenpathname mode
Thefoper(2) system call. Thpathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Theodeargument (a textual equaent of theopensystem
call's flagsagument). Seéoper(3) for more information.

fputcc[fp]
Thefput(3) system call.

fputss fp
Thefputq3) system call.

freopenpathname flags fp
Thefreoper{3) system call.

fseekfp offset whence
Thefseek3) system call.

fsetposp pos
Thefsetpo§3) system call.

fstatpathname
Thefstai(2) system call.

fstatfsfildes data
Thefstatf2) system call.

fstatvfsfildes data
Thefstatvfg2) system call.

fsyncfildes
Thefsyng2) system call.

ftell fp Theftell(3) system call.
ftimetp Theftimg3) system call.

ftruncatefildes length
Theftruncatg?) system call.

futimesfildes tv[0] tv[1]
Thefutimeg3) system call.

getcfp Thegec(3) system call.
getchar Theechar(3) system call.

getcwdbuf size
Thegetcwd2) system call.

getdomainnamdata data_size
Thegetdomainnamg?) system call.

getgroupgiata_size data
Thegetgroupg?2) system call.

gethostname dlata data_sizé
The gethostnamg?) system call.

getpeernaméldes sock_addr sock_addr_size
Thegetpeernamg?) system call.

getpgidpid
Thegetpgid(2) system call.

22

explain(1) plain(1)

getpgrppid
Thegetpgrp(2) system call.

getresgidgid egid sgid
Thegeresgid?2) system call.

getresuiduid euid suid
Thegeresuid2) system call.

getrlimit resource rlim
The getrlimit (2) system call.

getsocknaméldes[sock_addf sock_addr_siz§
The getisocknamg) system call.

getsockopfildes level name data data_size
The getsodkopt(2) system call.

gettimeofday fv|[tz]]
The gettimeofday?) system call.

getwfp Thegew(3) system call.

ioctl fildes request data
Theioctl(2) system call.

kill pid sig
Thekill (2) system call.

Ichmodpathname mode
Thelchmod?2) system call.

Ichownpathname owner group
Thelchown(2) system call.

link oldpath newpath
Thelink(2) system call.

listenfildes backlog
Thelisten(2) system call.

Iseekfildes offset whence
ThelseeK?2) system call.

Istatpathname
Thelstat(2) system call.

mallocsize
Themalloq3) system call.

mkdir pathnamd mode]
Themkdin(2) system call.

mkdtemppathname
Themkdtemf3) system call.

mknodpathname mode dev
Themknod?2) system call.

mkostempemplat flags
Themkostem(8) system call.

mkstemptemplat
ThemkstemfB) system call.

mktemppathname
Themktemg3) system call.

23

explain(1) plain(1)

mmapdata data_size prot flags fildes offset
Themmayg2) system call.

munmapdata data_size
Themunmag2) system call.

niceinc Thenicg2) system call.

openpathname flagf mode]
Theoper(2) system call. Thpathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Tflagsargument may be numeric or symbolic. Thede
argument may be numeric or symbolic.

opendirpathname
Theopendi(3) system call.

pathconfpathname name
Thepathcon(3) system call.

pclosefp
Thepclos€3) system call.

pipepipefd
Thepipg(2) system call.

poll fds nfds timeout
Thepoll(2) system call.

popencommand flags
Thepoper{3) system call.

preadfildes data data_size offset
Thepread?2) system call.

ptracerequest pid addr data
Theptracg2) system call.

putcc fp Theputd3) system call.

putcharc
Theputchal3) system call.

putenvstring
The puteny3) system call.

putss Theputg3) system call.

putw value fp
The putw(3) system call.

pwrite fildes data data_size offset
The pwrite(2) system call.

raisesig Theraisg3) system call.

readfildes data data-size
Theread(2) system call.

reallocptr size
Therealloc(3) system call.

realpathpathname resolved_pathname
Therealpath(3) system call.

renameoldpath newpath
Therenamg?2) system call.

24

explain(1) plain(1)

readvfildes iov...
Theready2) system call.

selecinfds readfds writefds exceptfds timeout
Theselec(2) system call.

setbuffp data
Thesetbu(3) system call.

setbufferfp data size
The setbuffe(3) system call.

setdomainnamdata data_size
The setdomainnan{@) system call.

setenwname value overwrite
Theseteny3) system call.

setgidgid
Thesetgid2) system call.

setgroupslata_size data
Thesetgroup§?) system call.

sethosthamaame] name_siz¢
Thesethostnam@) system call.

setlinebuffp
Thesetlinebuf3) system call.

setpgid [pid [pgid]]
Thesetpgid2) system call.

setpgrppid pgid
Thesetpgrig2) system call.

setregidrgid egid
Thesetegd(2) system call.

setreuidruid euid
Thesetreuid?2) system call.

setresgidgid egid sgid
Thesetresgid?) system call.

setresuiduid euid suid
Thesetresuid?) system call.

setreuidruid euid
Thesetreuid?2) system call.

setsid Thesetsid2) system call.

setsockopfildes level name data data_size
The setsokopt(2) system call.

setuiduid
Thesetuid?2) system call.

setvbuffp data mode size
Thesetvbuf3) system call.

shmatshmid shmaddr shmflg
Theshmag2) system call.

shmctlshmid command data
Theshmct(2) system call.

25

explain(1) plain(1)

signalfdfildes mask flags
Thesignalfd2) system call.

socketdomain type protocol
Thesoke(2) system call.

socketpaidomain type protocol sv
The sokepair(2) system call.

statpathname
Thestaf(2) system call.

statfspathname data
The statfg2) system call.

statvfspathname data
The statvf¢2) system call.

stimet Thestimg?2) system call.

strdupdata
Thestrduf(3) system call.

strerror Theerror given will be printed out with all known detail.

strndupdata data_size
Thestrndug3) system call.

strtodnptr endptr
Thestrtod3) system call.

strtof nptr endptr
The strtof(3) system call.

strtol nptr endptr base
Thestrtol(3) system call.

strtold nptr endptr
Thestrtold(3) system call.

strtoll nptr endptr base
Thestrtoll(3) system call.

strtoulnptr endptr base
Thestrtoul(3) system call.

strtoull nptr endptr base
Thestrtoull(3) system call.

symlink oldpath newpath
Thesymlink2) system call.

systemcommand
Thesysten) system call.

tcdrainfildes
Thetcdrain(3) system call.

tcflow fildes action
Thetcflom(3) system call.

tcflushfildes selector
Thetcflush(3) system call.

tcgetattrfildes data
Thetcgetatt(3) system call.

26

explain(1) plain(1)

tcsendbreakildes duration
ThetcsendbreaB) system call.

tcsetattrfildes options data
Thetcsetatt(3) system call.

telldir dir
Thetelldir(3) system call.

tempnandir prefix
Thetempnan(3) system call.

timet Thetimg2) system call.

timerfd_createclockid flags
Thetimerfd_creat€?) system call.

tmpfle Thetmpfilg3) system call.

tmpnampathname
Thetmpnan{3) system call.

truncatepathname size
Thetruncatg?) system call.

ungetcc fp
Theunget¢3) system call.

unlink pathname
Theunlink(2) system call.

unsetemname
Theunseten{8) system call.

ustatdev ubuf
Theusta(2) system call.

utime pathnamg times]
Theutimg2) system call.

utimenspathnamd data]
Theutimeng?2) system call.

utimensat fiildes] pathnamd data] flags]]
Theutimensaf2) system call.

utimespathname data
Theutimeg2) system call.

vfork Thevfork(2) system call.

wait status
Thewait(2) system call.

wait3 status options rugge
Thewait3(2) system call.

wait4 pid status options rugge
Thewait4(2) system call.

waitpid pid status options
Thewaitpid(2) system call.

write fildes data data-size
Thewrite(2) system call.

27

explain(1) plain(1)

writev fildes data data-size
Thewrite(2) system call.

Do not include the perentheses used toariad call.

OPTIONS
The explain command understands the following options:

-E The exit staus, success or fail, will be printed immediately beforectesscommand
terminates.
—enumber

The value okrrnoas a numbere(g.2), or as a symbok(g.ENOENT), or as the text of its
meaning €.g.No such file or directory You will need quotes to insulate spaces and punctuation
from the shell.

-V Print the version of thexplain executing.

EXIT STATUS
The explain command exits with status 1 oy @mor. The explain command only exits with status O if
there are no errors.

COPYRIGHT
explain version 1.1
Copyright © 2008, 2009, 2010, 2011, 2012 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

28

explain_lca2010(1) xplain_lca2010(1)

NAME
explain_Ica2010 — No medium found: whersiime to stop trying to reastrerror(3)’s mind.

MOTIV ATION
The idea for libexplain occurred to me back in the early 1980s. Waeag/stem call returns an error,
the kernel knows exactly what went wrong... and compresses this into less that &#oite.ofJser space
has access to the same data as the kernel, it should be possible for user space to figure out exactly what
happened to proke the error return, and use this to write good error messages.

Could it be that simple?

Error messages as finesse
Good error messages are often those “one percent” tasks that get dropped when schedule pressure squeezes
your project. Howeer, a good error message can mesk tuge, disproportionate imprement to the user
experience, when the user wanders into scan&nown territory not usually encountered. This is no easy
task.

As a larval programmethe author didr’see the problem with (completely accurate) error messages like
this one:

floating exception (core dumped)

until the alternatie ron-programmer interpretation was pointed out. But that ika’only thing wrong
with Unix error messages. Mooften do you see error messages like:

$ /stupid
can’t open file

$
There are tw options for a deeloper at this point:
1. youcan run a debuggesuch agydi(1), or
2. youcan usestracgl) ortrusg1) to look inside.

* Remember that your users may netrehaveaccess to these tools, let alone the ability to use them.
(It's a\ery long time sinc&nix beginnemeant “has only writtennedevice drver”.)
In this example, hower, usingstracegl) reveals

$ strace —e trace=open ./stupid
open("some/file", O_RDONLY) = -1 ENOENT (No such file or directory)
can’t open file

$
This is considerably more information than the error message&lpso pically, the stupid source code
looks like this
int fd = open(" some/thing, O_RDONLY);
if (fd < 0)
{
fprintf(stderr, "can’t open file\n");
exit(1);
}

The user isrt’'told whichfile, and also fails to tell the usehicherror Was the file gen there? Vds there
a permissions problem? It does tell you it was trying to open a file, but that was probably by accident.

Grab your clue stick and go beat the larval programmer wiffeit.him aboutperror(3). Thenext time
you use the program you see a different error message:

$ /stupid
open: No such file or directory

$

Progress, but not what wgpected. Hav can the user fix the problem if the error message dbdhhim

29

explain_lca2010(1) xplain_lca2010(1)

what the problem as? Lookingat the source, we see

int fd = open(" some/thing, O_RDONLY);
if (fd < 0)
{
perror(“open");
exit(1);
}
Time for another run with the clue stick. This time, the error message takes one step forward and one step
back:

$ /stupid
some/thing No s uch file or directory

$

Now we know the file it was trying to open, but are no longer informed that itopas(2) that filed. In
this case it is probably not significant, but it can be significant for other system calls. It ceailsbba
creal(2) instead, an operation implying that different permissions are necessary.

const char *filename =" some/thing;
int fd = open(filename, O_RDONLY);

if (fd < 0)

{

perror(filename);
exit(1);
}
The abeoe example code is unfortunately typical of non-larval programmers as Wietle to tell our
padavan learner about thetrerror(3) system call.

$ /stupid
open some/thing No s uch file or directory
$
This maximizes the information that can be presented to the Tisercode looks li& this:
const char *filename =" some/thing;
int fd = open(filename, O_RDONLY);
if (fd < 0)
{

fprintf(stderr, "open %s: %s\n", filename, strerror(errno));
exit(1);
}

Now we havethe system call, the flename, and the error string. This contains all the information that
stracg1) printed. Thas as @od as it gets.

Orisit?
Limitations of perror and strerror

The problem the authorwaback in the 1980s, was that the error message is incomplete. Does “no such
file or directory” refer to thesomé directory, or to the ‘thing’ file in the “"somé& directory?

A quick look at the man page fetrerror(3) is telling:
strerror — return string describing error number
Note well: it is describing the erroumber not the error.

On the other hand, the kerre@lowswhat the error &s. Theravas a pecific point in the kernel code,
caused by a specific condition, where the kernel code branched and said “no”. Could a user-space program
figure out the specific condition and write a better error message?

However, the problem goes deepaivhat if the problem occurs during thead(2) system call, rather than
theoper(2) call? It is simple for the error message associatedopi#(2) to include the file name, it's

30

explain_lca2010(1) xplain_lca2010(1)

right there. But to be able to include a file name in the error associated widad® system call, you
have o pass the file name all the way down the call stack, as well as the file descriptor.

And here is the bit that grates: the kernel already knows what file name the file descriptor is associated
with. Why should a programmer ke o pass redundant data all the way down the call stack just to
improve an eror message that maywvee be issued? Imeality, many programmers donbother and the
resulting error messages are the worse for it.

But that was the 1980s, on a PDP11, with limited resources and no shared libraries. Back theor,afo fla
Unix included/proc even in rudimentary form, and thsof(1) program waswer a decade way. <o the
idea was shelved as impractical.

Level I nfinity Support
Imagine that you areel infinity support. Your job description says that youveeeer have talk to
users. Wi, then, is there still a constant stream of people wanting you, the local Unix guru, to decipher yet
another error message?

Strangely 25 years laterdespite a simple permissions system, implemented with complete congistenc
most Unix users still hee ro idea hav to decode “No such file or directory”, or yaof the other cryptic
error messages theee &ery day Or, a least, cryptic to them.

Wouldn't it be rice if first level tech support didh’need error messages decipher&tiBuldn’t it be nice to
have earor messages that users could understand without calling tech support?

These dayfproc on Linux is more than able to provide the information necessary to decode the vast
majority of error messages, and point the user to the proximate cause of their problem. On systems with a
limited /proc implementation, thésof(1) command can fill in manof the gaps.

In 2008, the stream of translation requests happened to the author way too often. It was time to re-examine
that 25 year old idea, and libexplain is the result.

USING THE LIBRARY
The interface to the library tries to be consistent, where possibles gagt'with an example using
strerror(3):

if (rename(old_path, new_path) < 0)

fprintf(stderr, "rename %s %s: %s\n", old_path, new_path,
strerror(errno));
exit(1);
}

The idea behind libexplain is to provideteerror(3) equialent foreachsystem call, tailored specifically
to that system call, so that it can provide a more detailed error message, containing much of the information
you see under the “ERRORS” heading of section 2 andrgpages, supplemented with information about
actual conditions, actual argument values, and system limits.

The Simple Case
Thestrerror(3) replacement:

if (rename(old_path, new_path) < 0)

{

fprintf(stderr, "%s\n", explain_rename(old_path, new_path));
exit(1);
}

The Errno Case
It is also possible to pass an explaitno(3) value, if you must first do some processing that would disturb
errno, such as error rec@ry:

if (rename(old_path, new_path < 0))

{

int old_errno = errno;

31

explain_lca2010(1) xplain_lca2010(1)

code that disturbs errno
fprintf(stderr, "%s\n", explain_errno_rename(old_errno,
old_path, new_path));
exit(1);
}
The Multi-thread Cases

Some applications are multi-threaded, and thus are unable to share libexpiainal buffer You can
supply your own buffer using

if (unlink(pathname))

{
char message[3000];
explain_message_unlink(message, sizeof(message), pathname);
error_dialog(message);
return -1,
}

And for completeness, bo#irno(3) and thread-safe:

ssize_t nbytes = read(fd, data, sizeof(data));
if (nbytes < 0)

{
char message[3000];

int old_errno = errno;
error recovery..
explain_message_errno_read(message, sizeof(message),
old_errno, fd, data, sizeof(data));
error_dialog(message);
return -1,

}
These are replacements &rerror_r(3), on systems that ta .

Interface Sugar
A set of functions added as amience functions, to woo programmers to use the libexplain lidtary
out to be the autha’nmost commonly used libexplain functions in command line programs:

int fd = explain_creat_or_die(filename, 0666);

This function attempts to create awni@e. If it can't, it prints an error message and exits with
EXIT_FAILURE. If there is no errgiit returns the n& file descriptor.

A related function:
int fd = explain_creat_on_error(filename, 0666);

will print the error message on failure, but also returns the original error resudtrran(B) is unmolested,
as well.

All the other system calls
In general, eery system call has its own include file

#include <libexplain/ nameh>
that defines function prototypes for six functions:
* explain_ name
* explain_errno_ name
* explain_message name

* explain_message_errno_ name

32

explain_lca2010(1) xplain_lca2010(1)

 explain_ nameor_die and
* explain_ nameon_error

Every function prototype has Doxygen documentation, and this documerngatiotstripped when the
include files are installed.

Thewait(2) system call (and friends) V&ome extra variants that also interpret failure to be an exit status
that isnt EXIT_SUCCESS. Thigspplies tosysten3) andpclosg3) as well.

Coverage includes 185 system calls and 547 ioctl requests. There arenor@nsystem calls yet to
implement. Systernalls that neer return, such aext(2), are not present in the libraend will never be.
Theexecfamily of system callsare supported, because theeturn when there is an error.

Cat
This is what a hypothetical “cat” program could look like, with full error reporting, using libexplain.

#include <libexplain/libexplain.h>
#include <stdlib.h>
#include <unistd.h>

There is one include for libexplain, plus the usual suspects. (If you wish to reduce the preprocessor load,
you can use the specifdibexplain/ nameh> includes.)

static void
process(FILE *fp)
{
for (;;)
{
char buffer[4096];
size_t n = explain_fread_or_die(buffer, 1, sizeof(buffer), fp);
if (In)
break;
explain_fwrite_or_die(buffer, 1, n, stdout);

}

The procesgunction copies a file stream to the standard output. Should an error occur for either reading or
writing, it is reported (and the pathname will be included in the error) and the command exits with
EXIT_FAILURE. We don’t even worry about tracking the pathnames, or passing them down the call stack.
int
main(int argc, char **argv)

for (;;)
{
int ¢ = getopt(argc, argv, "o:");
if (c == EOF)
break;
switch (c)
{
case '0":
explain_freopen_or_die(optarg, "w", stdout);
break;

The fun part of this code is that libexplain can report eirmisding the pathnameven if youdon't
explicitly re-open stdout as is done hek&fe con't even worry about tracking the file name.

default:
fprintf(stderr, "Usage: %ss [—o <filename>] <filename>...\n",
argv[0]);
return EXIT_FAILURE;

33

explain_lca2010(1) xplain_lca2010(1)

}
}
if (optind == argc)
process(stdin);
else

while (optind < argc)

{
FILE *fp = explain_fopen_or_die(argv[optind]++, "r");
process(fp);
explain_fclose_or_die(fp);

}

}

The standard output will be closed implicjthyt too late for an error report to be issued, so we do that
here, just in case the buffered I/O haswitten anything yet, and there is an ENOSPC error or something.
explain_fflush_or_die(stdout);
return EXIT_SUCCESS;
}

That's dl. Full error reporting, clear code.

Rusty’s Sale of Interface Goodness
For those of you not familiar with it, Rusty RusseliHow Do | Make This Hard to Misuse?” page is a
must-read for API designers.
http://ozlabs.org/"rusty/index.cgi/tech/2008-03-30.htm|

10. It's impossible to get wrong.

Goals need to be set high, ambitiously high, lest you accomplish them and think you are finished when you
are not.

The libexplain library detects bogus pointers andyratiner bogus system call parameters, and generally
tries to &oid segfaults inen the most trying circumstances.

The libexplain library is designed to be thread safe. More real-world use will likedgl ©@aces this can
be improed.

The biggest problem is with the actual function names thesseBecaus€ does not hege rame-spaces,
the libexplain library aliays uses aexplain_ name prak. Thisis the traditional way of creating a
pseudo-name-space in order woid symbol conflicts. Howesr, it results in some unnatural-sounding
names.

9. The compiler or linker wotlet you get it wrong.

A common mistak is to tseexplain_open whereexplain_open_or_die was intended.
Fortunately the compiler will often issue a type error at this pogng(cant assignconst char *
rvalue to anint Ivalue).

8. The compiler will warn if you get it wrong.

If explain_rename is used wheexplain_rename_or_die was intended, this can cause other
problems. GCQas a usefulvarn_unused_result function attribute, and the libexplain library
attaches it to all thexplain_ namefunction calls to produce a warning when you m#is mistake.
Combine this wittgcc —Werrorto promote this to kel 9 goodness.

7. The obvious use is (probably) the correct one.

The function names ke keen chosen to cuay teir meaning, but this is notvedys successful. While
explain_ nameor_die andexplain_ nameon_error are fairly descriptie, the less-used thread
safe variants are harder to decode. The function prototypes help the comaidstonderstanding, and
the Doxygen comments in the header files help the uarde understanding.

34

explain_lca2010(1) xplain_lca2010(1)

6. The name tells you how to use it.

It is particularly important to reaglkplain_ name or_die as “explain fameor die)”. Using a
consistenexplain_ name-space prefix has some unfortunate side-effects in the obviousness department,
as well.

The order of words in the names also indicate the order ofgbenants. Thargument lists alays end
with the same arguments as passed to the systeraltaflthem If _errno_ appears in the name, its
argument abays precedes the system cathaments. If message appears in the name, its two
arguments alays come first.

5. Do it right or it will break at runtime.

The libexplain library detects bogus pointers andyratiner bogus system call parameters, and generally
tries to @oid segfaults ineen the most trying circumstances. It shoulderdreak at runtime, but more
real-world use will no doubt impve tis.

Some error messages are aimed agldpers and maintainers rather than end users, as this can assist with
bug resolution. Noso much “break at runtime” as “be infornvatia runtime” (after the system call barfs).

4. Follow common convention and you'll get it right.

Because C does notyearame-spaces, the libexplain libraryvals uses aexplain_ name prak. This
is the traditional way of creating a pseudo-name-space in ordesitbsymbol conflicts.

The trailing arguments of all the libexplain call are identical to the system calrthdescribing. This is
intended to provide a consistent gemtion in common with the system calls themselves.

3. Read the documentation and you'll get it right.

The libexplain library aims to lva complete Doxygen documentation for each avelyepublic API call
(and internally as well).

MESSAGE CONTENT
Working on libexplain is a bit li& looking at the underside of your car when it is up on the hoist at the
mechanics. Theres ome ugly stufunder there, plus mud and crud, and users rarely s@egibod error
message needs to be infornaatieven for a user who has been fortunate enough notwe tbdook at the
under-side very often, and also informatior the mechanic listening to the usagscription er the
phone. Thiss no easy task.

Revisiting our first example, the code wouldklikis if it uses libexplain:
int fd = explain_open_or_die("some/thing", O_RDONLY, 0);
will fail with an error message kkthis

open(pathname = "somef/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT) because there is no "some" directory
in the current directory

This breaks down into three pieces

system-callfailed, system-errorbecause
explanation

Before Because
It is possible to see the part of the message before “becausestlggechnical to non-technical users,
mostly as a result of accurately printing the system call itself at the beginning of the error message. And it
looks likestracg1) output, for bonus geek points.

open(pathname = "somef/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT)

This part of the error message is essential to theajeer when he is writing the code, and equally
important to the maintainer who has to read bug reports and fix bugs in the code. It says exactly what
failed.

35

explain_lca2010(1) xplain_lca2010(1)

If this text is not presented to the user then the user cannot copy-and-paste it into a bug report, and if it isn’t
in the bug report the maintainer celknow what actually went wrong.

Frequently tech sthivill use stracg1) ortrusg1) to get this exact information, but thigeaue is not open
when reading bug reports. The bug repostgrstem is far farwaay, and, by nav, in a far different state.
Thus, this information needs to be in the bug report, which means it must be in the error message.

The system call representation alseegicontext to the rest of the message. If need arises, the offending
system call argument may be referred to by name in the explanation after “because”. In addition, all strings
are fully quoted and escaped C strings, so embedded newlines and non-printing characters will not cause
the usess terminal to go haywire.

The system-errois what comes out atrerror(2), plus the error symbol. Impatient and expert sysadmins
could stop reading at this point, but the authexperience to date is that reading further igarging. (If

it isn’t rewading, it's probably an area of libexplain that can be invetb Codecontributions are

welcome, of course.)

After Because
This is the portion of the error message aimed at non-technical users. It looks beyond the simple system
call arguments, and looks for something more specific.

there is no "some" directory in the current directory

This portion attempts to explain the proximal cause of the error in plain language, and it is here that
internationalization is essential.

In general, the policis to include as much information as possible, so that the user tioesd’to go
looking for it (and doeshleave it out of the bug report).

Internationalization
Most of the error messages in the libexplain libraryehaen internationalized. There are no localizations
as yet, so if you want the explanations in yourveatinguage, please contribute.

The “most of” qualifier above, relates to the fact that the proof-of-concept implementation did not include
internationalization support. The code base is being revised praghgasually as a result of refactoring
messages so that each error message string appears in the code exactly once.

Provision has been made for languages that need to assemble the portions of
system-callfailed, system-errorbecause explanation
in different orders for correct grammar in localized error messages.

Postmortem
There are times when a program has yet to use libexplain, and yousesiracg1) either There is an
explain(1) command included with libexplain that can be used to decipher error messages, if the state of the
underlying system hagrchanged too much.

$ explain rename foo /tmp/bar/baz —e ENOENT

rename(oldpath = "foo", newpath = "/tmp/bar/baz") failed, No such
file or directory (2, ENOENT) because there is no "bar" directory
in the newpath "/tmp" directory

$

Note hav the path ambiguity is resolved by using the system call argument name. Of course/gybu ha
know the error and the system call faplain(1) to be useful. As an aside, this is one of the ways used by
the libexplain automatic test suite to verify that libexplain is working.

Philosophy
“Tell me everything, including stufl didn’t know to look for”

The library is implemented in such a way that when statically linked, only the code you actually use will be
linked. Thisis achieed by having one function per source file, wheeefeasible.

When it is possible to supply more information, libexplain will do so. The less the user has to track down
for themselves, the bettefhis means that UIDs are accompanied by the user name, GIDs are

36

explain_lca2010(1) xplain_lca2010(1)

accompanied by the group name, PIDs are accompanied by the process hame, file descriptors and streams
are accompanied by the pathnasete,

When resolving paths, if a path component does not exist, libexplain will look for similar names, in order to
suggest alternates for typographical errors.

The libexplain library tries to use as little heap as possible, and usually none. Thigoid foeaturbing
the process state, as far as possible, although sometimes io&labée.

The libexplain library attempts to be thread safe,umyding global variables, keeping state on the stack as
much as possible. There is a single common message, lbatfehe functions that use it are documented
as not being thread safe.

The libexplain library does not disturb a procesgjnal handlers. This makes determining whether a
pointer would segfault a challenge, but not impossible.

When information is&ilable via a system call as well as#able through dproc entry, the system call
is preferred. This is tovaid disturbing the processdate. Therare also times when no file descriptors
are xailable.

The libexplain library is compiled with large file support. There is no large/small schizophrenia. Where
this affects the argument types in the API, and error will be issued if the necessary large file defines are
absent.

FIXME: Work is needed to makaure that file system quotas are handled in the code. This applies to some
getrlimit(2) boundaries, as well.

There are cases when relati paths are uninformaté. For example: system daemons, servers and
background processes. In these cases, absolute paths are used in the error explanations.

PATH RESOLUTION
Short version: sepath_resolutio(i7).

Long version: Most users i reve heard ofpath_resolutiofi7), and may advanced users ka reve read
it. Hereis an annotated version:

Step 1: Start of the resolution process
If the pathname starts with the slash (/") charadber starting lookup directory is the root directory of the
calling process.

If the pathname does not start with the slash(“/”) charatieistarting lookup directory of the resolution
process is the current working directory of the process.

Step 2: Walk along the path
Set the current lookup directory to the starting lookup directdow, for each non-final component of the
pathname, where a component is a substring delimited by slash (/") characters, this component is looked
up in the current lookup directory.

If the process does notveasarch permission on the current lookup directaryEACCES error is
returned ("Permission denied").

open(pathname = "/home/archives/.ssh/private_key", flags =
O_RDONLY) failed, Permission denied (13, EACCES) because the
process does not have search permission to the pathname
"lhomef/archives/.ssh" directory, the process effective GID 1000
"pmiller" does not match the directory owner 1001 "archives" so
the owner permission mode "rwx" is ignored, the others permission
mode is "-—-", and the process is not privileged (does not have
the DAC_READ_SEARCH capability)

If the component is not found, an ENOENT error is returned ("No such file or directory").

unlink(pathname = "/home/microsoft/rubbish") failed, No such file
or directory (2, ENOENT) because there is no "microsoft" directory
in the pathname "/home" directory

37

explain_lca2010(1) xplain_lca2010(1)

There is also some support for users whew this-type pathnames, making suggestions when ENOENT is
returned:

open(pathname = "/user/include/fcntl.h", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "user"
directory in the pathname "/* directory, did you mean the "usr"
directory instead?

If the component ifound, but is neither a directory nor a symbolic link, an ENOTDIR error is returned
("Not a directory").

open(pathname = "/home/pmiller/.netrc/Ica”, flags = O_RDONLY)
failed, Not a directory (20, ENOTDIR) because the ".netrc" regular
file in the pathname "/home/pmiller" directory is being used as a
directory when it is not

If the component is found and is a directarg st the current lookup directory to that direct@yd go to
the next component.

If the component is found and is a symbolic link (symlink), we first resbig symbolic link (with the
current lookup directory as starting lookup directory). Upon gtiat error is returned. If the result is not
a drectory, an ENOTDIR error is returned.

unlink(pathname = "/tmp/dangling/rubbish") failed, No such file or
directory (2, ENOENT) because the "dangling" symbolic link in the
pathname "/tmp" directory refers to "nowhere" that does not exist

If the resolution of the symlink is successful and returns a direeterget the current lookup directory to
that directoryand go to the next component. Note that the resolution process akesrecursion. In
order to protect the kernel against stae&fbow, and also to protect against denial of service, there are
limits on the maximum recursion depth, and on the maximum number of symbolic linkgeftlI&n
ELOORP error is returned when the maximum is exceeded ("Toy leags of symbolic links").

open(pathname = "/tmp/dangling”, flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because a symbolic link
loop was encountered in pathname, starting at "/tmp/dangling”

It is also possible to get an ELOOP or EMLINK error if there are tog/reanlinks, but no loop was
detected.

open(pathname = "/tmp/rabbit-hole”, flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because too many
symbolic links were encountered in pathname (8)

Notice hav the actual limit is also printed.

Step 3: Find the final entry
The lookup of the final component of the pathname goes jeshiiit of all other components, as described
in the previous step, with wdifferences:

(i) Thefinal component need not be a directory (at least as far as the path resolution process is concerned.
It may have © be a drectory, or a ron-directory because of the requirements of the specific system
call).

(ii) It is not necessarily an error if the final component is not found; maybe we are just creating it. The
details on the treatment of the final entry are described in the manual pages of the specific system
calls.

(iii) It is also possible to kra a poblem with the last component if it is a symbolic link and it should not
be folloved. For example, using theper(2) O_NOFOLLQN flag:

open(pathname = "a-symlink”, flags = O_RDONLY | O_NOFOLLOW) failed,
Too many levels of symbolic links (ELOOP) because O_NOFOLLOW was
specified but pathname refers to a symbolic link

38

explain_lca2010(1) xplain_lca2010(1)

(iv) Itis common for users to maknistakes when typing pathnames. The libexplain library attempts to
make suggestions when ENOENT is returned, for example:

open(pathname = "/usr/include/filecontrl.h”, flags = O_RDONLY)
failed, No such file or directory (2, ENOENT) because there is no
"filecontrl.h" regular file in the pathname "/usr/include"

directory, did you mean the "fcntl.h" regular file instead?

(v) Itis also possible that the final component is required to be something other than a regular file:

readlink(pathname = "just-a-file", data = Ox7F930A50, data_size =
4097) failed, Invalid argument (22, EINVAL) because pathname is a
regular file, not a symbolic link

(vi) FIXME: handling of the "t" bit.
Limits
There are a number of limits withga&ds to pathnames and filenames.
Pahname length limit
There is a maximum length for pathnames. If the pathname (or some intermediate pathname

obtained while resolving symbolic links) is too long, an ENAMETOOLONG error is returned
("File name too long"). Notice lothe system limit is included in the error message.

open(pathname =" very...lond, flags = O_RDONLY) failed, File name
too long (36, ENAMETOOLONG) because pathname exceeds the system
maximum path length (4096)

Filename length limit
Some Unix variants lva a Imit on the number of bytes in each path component. Some of them
deal with this silentlyand some gie ENAMETOOLONG,; the libexplain library usgmthcon(3)
_PC_NO_TRUNC to tell which. If this error happens, the libexplain library will state the limit in
the error message, the limit is obtained frpathcon{3) _PC_MME_MAX. Notice how the
system limit is included in the error message.

open(pathname =" system7/only—had-14-charactetsdlags = O_RDONLY)
failed, File name too long (36, ENAMETOOLONG) because
"only—had-14-characters" component is longer than the system

limit (14)

Empty pathname
In the original Unix, the empty pathname referred to the current diredtlanyadays POSIX
decrees that an empty pathname must not be resolved successfully.

open(pathname =", flags = O_RDONLY) failed, No such file or
directory (2, ENOENT) because POSIX decrees that an empty
pathname must not be resolved successfully

Permissions
The permission bits of a file consist of three groups of three bits. The first group of three is used when the
effective wser ID of the calling process equals the owner ID ofitbe Thesecond group of three is used
when the group ID of the file either equals the efiectroup ID of the calling process, or is one of the
supplementary group IDs of the calling process. When neither holds, the third group is used.

open(pathname = "/etc/passwd”, flags = O_WRONLY) failed,
Permission denied (13, EACCES) because the process does not have
write permission to the "passwd" regular file in the pathname

"letc" directory, the process effective UID 1000 "pmiller" does

not match the regular file owner 0 "root" so the owner permission
mode "rw-" is ignored, the others permission mode is "r—-", and

the process is not privileged (does not have the DAC_OVERRIDE

39

explain_lca2010(1) xplain_lca2010(1)

capability)

Some considerable space igagi to this explanation, as most users do notkiteat this is ha the
permissions systemasks. Inparticular: the ownegroup and other permissions are exalgsihey are not
“OR"ed together.

STRANGE AND INTERESTING SYSTEM CALLS
The process of writing a specific error handler for each system call oftatsrenteresting quirks and
boundary conditions, or obscueerno(3) values.

ENOMEDIUM, No medium found
The act of copying a CD was the source of the title for this paper.

$ dd if=/dev/cdrom of=fubar.iso
dd: opening “/dev/cdrom”: No medium found

$

The author wondered whhis computer was telling him there is no such thing as a psychic medium. Quite
apart from the fact that huge numbers ofwealinglish speakers are notem avare that “media” is a

plural, let alone that “medium” is its singuléne string returned bstrerror(3) for ENOMEDIUM is so

terse as to be almost completely free of content.

Whenoper(2) returns ENOMEDIUM it would be nice if the libexplain library could expand a little on this,
based on the type of dé itis. For example:

... because there is no disk in the flpgpive

... because there is no disc in the CD-ROMari

... because there is no tape in the tapesdri

... because there is no memory stick in the card reader

And so it came to pass...

open(pathname = "/dev/cdrom”, flags = O_RDONLY) failed, No medium
found (123, ENOMEDIUM) because there does not appear to be a disc
in the CD-ROM drive

The trick, that the author was previously waee of, was to open the device using the O_NONBLOCK

flag, which will allov you to open a dve with no medium in it.You then issue device specifiact|(2)

requests until you figure out what the heck it is. (Not sure if this is POSIX, but it also seems to work that
way in BSD and Solaris, according to thvedim(1) sources.)

Note also the differing uses of “disk” and “disc” in cotiteTheCD standard originated in France, but
evaything else has a “k”.

EFAULT, Bad address
Any system call that takes a pointer argument can retuAUEF. The libexplain library can figure out
which argument is at fault, and it does it without disturbing the process (or thread) signal handling.

When aailable, themincorg?2) system call is used, to ask if the memory regiomlislv It can return three
results: mapped but not in physical memangpped and in physical memoend not mapped. When
testing the validity of a pointethe first two are “yes” and the last one is “no”.

Checking C strings are morefilifult, because instead of a pointer and a size, we omya@inter To
determine the size we wouldvab find the NUL, and that could segfault, catch-22.

To work around this, the libexplain library uses tsat(2) sysem call (with a known good second
argument) to test C strings for validiti failure return && errno == ERULT is a ‘no”, and anythng else
is a “yes”. This, of course limits strings t&TFH_MAX characters, but that usually i@ problem for the
libexplain library because that is almostaadys the longest strings it cares about.

EMFILE, Too many open files
This error occurs when a process already has the maximum number of file descriptors open. If the actual
limit is to be printed, and the libexplain library tries to, you tapén a file in/fproc to read what it is.

open_max = sysconf(_SC_OPEN_MAX);

40

explain_lca2010(1) xplain_lca2010(1)

This one wart’so dfficult, there is @aysconf3) way of obtaining the limit.

ENFILE, Too many open files in system
This error occurs when the system limit on the total number of open files has been reached. In this case
there is no handgyscon3) way of obtain the limit.

Digging deeperone may disceer that on Linux there is oroc entry we could read to obtain this value.
Catch-22: we are out of file descriptors, so we tapen a file to read the limit.

On Linux there is a system call to obtain it, but it has no [e]glibc wrapper function, sowi Bhit
very carefully:

long
explain_maxfile(void)
{

#ifdef __linux__

struct __sysctl_args args;

int32_t maxfile;

size_t maxfile_size = sizeof(maxfile);

int name[] = { CTL_FS, FS_MAXFILE };

memset(&args, 0, sizeof(struct __sysctl_args));

args.name = name;

args.nlen = 2;

args.oldval = &maxfile;

args.oldlenp = &maxfile_size;

if (syscall(SYS__ sysctl, &args) >= 0)
return maxfile;

#endif
return -1,

}

This permits the limit to be included in the error message, wratalzle.

EINVAL “In valid argument” vsENOSY'S “Function not implemented”
Unsupported actions (such@anlink2) on a AT file system) are not reported consistently from one
system call to the m& It is possible to hae @ther EINVAL or ENOSYS returned.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.

Note that errno(3) is not always set
There are times when it is necessary to read the [e]glibc sources to detenmamel vehen errors are
returned for some system calls.

feof(3), filena(3)
It is often assumed that these functions cannot return an &hisris only true if thestreamargument
is valid, howeer they are capable of detecting arvatid pointer.

fpathcon(3), pathcon(3)
The return value dpathcon§2) andpathcon{2) could legitimately be -1, so it is necessary to see if
errno(3) has been explicitly set.

ioctl(2)
The return value abctl(2) could legitimately be -1, so it is necessary to segiiio(3) has been
explicitly set.

readdir(3)
The return value akaddir(3) is NULL for both errors and end-afd. It is necessary to see if
errno(3) has been explicitly set.

41

explain_lca2010(1) xplain_lca2010(1)

setbuf3), setbuffe(3d), setlinebuf3), setvbu3)
All but the last of these functions returoid. Andsetvbuf3) is only documented as returning
“non-zero” on errar It is necessary to seeeafrno(3) has been explicitly set.

strtod(3), strtol(3), strtold(3), strtoll(3), strtoul(3), strtoull(3)
These functions return O on errbut that is also a legitimate returalue. Itis necessary to see if
errno(3) has been explicitly set.

unget¢3)
While only a single character of backup is mandated by the ANSI C standard, it turns out that [e]glibc
permits more.. but that means it can fail with ENOMEM. It can also fail with EBADFpifis bogus.
Most diffi cult of all, if you pass EOF an error return occurs, but errno is not set.

The libexplain library detects all of these errors correetign in cases where the error values are poorly
documented, if at all.

ENOSPC, No space left on device
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can neake source of the error much clearer.

write(fildes = 1 "example”, data = Oxbfff2340, data_size = 5)
failed, No space left on device (28, ENOSPC) because the file
system containing fildes ("/home") has no more space for data

As more special device support is added, error messages are expected to include the device name and actual
size of the device.

EROFS, Read-only file system
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can neake source of the error much clearer.

As more special device support is added, error messages are expected to include the device name and type.

open(pathname = "/dev/fd0", O_RDWR, 0666) failed, Read-only file
system (30, EROFS) because the floppy disk has the write protect
tab set

...because a CD-ROM is not writable
...because the memory card has the write protect tab set
...because the ¥ inch magnetic tape does net darite ring

rename
Therenamég?2) system call is used to change the location or name of a file, moving it between directories if
required. Ifthe destination pathname already exists it will be atomically replaced, so that there is no point
at which another process attempting to access it will find it missing.

There are limitations, hower: you can only rename a directory on top of another directory if the
destination directory is not empty.

rename(oldpath = "foo", newpath = "bar") failed, Directory not
empty (39, ENOTEMPTY) because newpath is not an empty directory;

that is, it contains entries other than "." and "..
You can'’t rename a directory on top of a non-direct@ither.

rename(oldpath = "foo", newpath = "bar") failed, Not a directory
(20, ENOTDIR) because oldpath is a directory, but newpath is a
regular file, not a directory

Nor is the reerse allowed

rename(oldpath = "foo", newpath = "bar") failed, Is a directory
(21, EISDIR) because newpath is a directory, but oldpath is a
regular file, not a directory

42

explain_lca2010(1) xplain_lca2010(1)

This, of course, makes the libexplain librarggb more complicated, because tmink(2) orrmdir(2)
system call is called implicitly bsenamé?2), and so all of thanlink(2) orrmdir(2) errors must be detected
and handled, as well.

dup2
ThedupZ?2) system call is used to create a second file descriptor that references the same object as the first
file descriptar Typically this is used to implement shell input and output redirection.

The fun thing is that, just asnamé&2) can atomically rename a file on top of an existing file and vemo
the old file,dupZ2) can do this onto an already-open file descriptor.

Once again, this makes the libexplain librafgb more complicated, because thes€2) system call is
called implicitly bydup2?2), and so all otlos€2)’'s arors must be detected and handled, as well.

ADVENTURES IN IOCTL SUPPORT
Theioctl(2) system call provides device i authors with a way to communicate with user-space that
doesnt fit within the existing kernel API. Seectl_list(2).

Decoding Request Numbers
From a cursory look at thectl(2) interface, there would appear to be a large but finite number of possible
ioctl(2) requests. Each differeictl(2) request is effeately another system call, but without any
type-safety at all — the compiler cahelp a programmer get these right. This was probably thevatioti
behindtcflush(3) and friends.

The initial impression is that you could decadetl(2) requests using a huge switch statement. This turns
out to be infeasible because one very rapidly disathat it is impossible to include all of the necessary
system headers defining the varioostl(2) requests, because yH®vea hard time playing nicely with

each other.

A deeper look reeals that there is a range of ‘yaie” request numbers, and devicevdriauthors are
encouraged to use them. This means that there is a far larger possible set of requests, with ambiguous
request numbers, than are immediately apparent. Also, there are some historical ambiguities as well.

We dready knev that the switch was impractical, butmave know that to select the appropriate request
name and explanation we must consider not only the request number but also the file descriptor.

The implementation dbctl(2) support within the libexplain library is toVea able of pointers toctl(2)
request descriptors. Each of these descriptors includes an optional pointer to a disambiguation function.

Each request is actually implemented in a separate source file, so that the necessary include files are
relieved of the obligation to play nicely with others.

Representation
The philosopit behind the libexplain library is to provide as much information as possible, including an
accurate representation of the system call. In the casett§®) this means printing the correct request
number (by name) and also a correct (or at least useful) representation of the third argument.

Theioctl(2) prototype looks lik this:
int ioctl(int fildes, int request, ...);

which should hee your type-safety alarms goingfofinternalto [e]glibc, this is turned into a variety of
forms:

int __ioctl(int fildes, int request, long arg);
int __ioctl(int fildes, int request, void *arg);

and the Linux kernel syscall interface expects

asmlinkage long sys_ioctl(unsigned int fildes, unsigned int
request, unsigned long arg);

The extreme variability of the third argument is a challenge, when the libexplain library tries to print a
representation of that thirdgament. Havever, once the request number has been disambiguated, each
entry in the the libexplain librarg’ioctl table has a custoprint_data function (OO done manually).

43

explain_lca2010(1) xplain_lca2010(1)

Explanations
There are fewer problems determining the explanation to be used. Once the request number has been
disambiguated, each entry in the libexplain libraugttl table has a custoprint_explanation
function (again, OO done manually).

Unlike sction 2 and section 3 system calls, mosti(2) requests hee ro erors documented. This means,
to give good error descriptions, it is necessary to read kernel sources teedisco

» whaterrno(3) values may be returned, and
* the cause of each error.

Because of the OO nature of function call dispatching withing the kernel, you need atl seanices
implementing thaioctl(2) request, not just the generic implementation. It is to be expected that different
kernels will have dfferent error numbers and subtly different error causes.

EINVAL vsENOTTY
The situation isen worse forioctl(2) requests than for system calls, with EINVAL and ENOTTY both
being used to indicate that mctl(2) request is inappropriate in that context, and occasionally ENOSYS,
ENOTSUP and EOPNOTSUPP (meant to be used for sockets) as well. There are comments in the Linux
kernel sources that seem to indicate a progresieanup is in progresg=or extra chaos, BSD adds
ENOIOCTL to the confusion.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.
intptr_t
The C99 standard defines an integer type that is guaranteed to be able ty Ipoidten without
representation loss.

The abee function syscall prototype would be better written

long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t

arg);
The problem is the cognit dssonance induced by device-specific or file-system-spegtt(2)
implementations, such as:

long vfs_ioctl(struct file *filp, unsigned int cmd, unsigned long

arg);
The majority ofioctl(2) requests actually t1@ an int *arg third agument. Butaving it declaredbng
leads to code treating thislasig *arg . This is harmless on 32-bitsizeof(long) ==
sizeof(int)) but nasty on 64-bitss{zeof(long) != sizeof(int)). Dependingn the

endian-ness, you do or doget the value you expect, but yalwaysget a memory scribble or stack
scribble as well.

Writing all of these as
int ioctl(int fildes, int request, ...);
int __ioctl(int fildes, int request, intptr_t arg);
long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t

arg);
long vfs_ioctl(struct file *filp, unsigned int cmd, intptr_t arg);

emphasizes that the integer is only an integer to represent a quantity that is aayssaalunrelated
pointer type.

CONCLUSION
Use libexplain, your users will likit.

COPYRIGHT
libexplain version 1.1
Copyright © 2008, 2009, 2010, 2011, 2012 Peter Miller

44

explain_lca2010(1) xplain_lca2010(1)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

45

GPL(1) FreeSoftware Bundation GPL(1)

NAME
GPL - GNU General Public License

DESCRIPTION

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted tandop
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed svagk/our freedom to share

and change theavks. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program -- te ek it remains free software for all its use¥se,

the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to ary other work released this way by its autho¥eu can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to makaure that you hae the freedom to distribute copies of free software (and charge for them

if you wish), that you recee ource code or can get it if you want it, that you can change the software or
use pieces of it in mefree programs, and that you kmgou can do these things.

To protect your rights, we need to peat others from denying you these rights or asking you to surrender
the rights. Therefore, you @ eertain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you kextei You must mak aure that thg, too, recere a can get the
source code. And you must sihithem these terms so thknow their rights.

Developers that use the GNU GPL protect your rights with #gps: (1) assert copyright on the software,
and (2) offer you this License giving yowgiepermission to cop distribute and/or modify it.

For the deelopers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed toydasers access to install or run modified versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the saite. Thesystematic pattern of such abuse occurs in the area of products

for individuals to use, which is precisely where it is most unacceptable. Thereforeyerge$igned this

version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States shouldwqiasdiots to

restrict deelopment and use of software on general-purpose computers, but in those that do, we wish to
avad the special danger that patents applied to a free program coutdtrafi&ctively proprietary To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

GPL 46

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

The precise terms and conditions for copying, distribution and modificatiomfollo
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-kklaws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to grcopyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals organizations.

To “modify” a work means to cgpfrom or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exacycde resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, woulklyoaldirectly or
secondarily liable for infringement under applicable copyright &écept executing it on a computer or
modifying a prvate cofy. Propagation includes copying, distribution (with or without modification),

making &ailable to the public, and in some countries other activities as well.

To “corvey’ a work means ankind of propagation that enables other parties toenoakeceve wmpies.
Mere interaction with a user through a computer network, with no transfer ofasom corveying.

An interactive wser interface displays “Appropriate g2 Notices” to the extent that it includes a cement

and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
corvey the work under this License, andvhto view a py of this License. If the interface presents a list

of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means gnnon-source form of a work.

A “ Standard Interface” means an interface that either isfianiabtandard defined by a recognized
standards bodwr, in the case of interfaces specified for a particular programming language, one that is
widely used among delopers working in that language.

The “System Libraries” of anxecutable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementationvislable to the public in source code forA.“ Major
Component”, in this context, means a major essential component (kernelwsyslem, and so on) of the
specific operating system (if any) on which tixecaitable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for anxecutable work) run the object code and to modify the work, including scripts to

control those actities. Hawvever, it does not include the work'System Libraries, or general-purpose tools

or generally aailable free programs which are used unmodified in performing those activities but which are
not part of the wrk. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 47

GPL(1) FreeSoftware Bundation GPL(1)

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License expliditimafyour unlimited
permission to run the unmodified Program. The output from runningesszbwork is ceered by this
License only if the output, gén its content, constitutes avawed work. ThisLicense acknowledges your
rights of fair use or other eaqualent, as provided by copyrightia

You may make, run and propagatevee@d works that you do not cegy, without conditions so long as

your license otherwise remains in forcéou may corvey @vered works to others for the sole purpose of
having them ma& modifications exclusiely for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License irvegng all material for which you do not
control copyright. Thosehus making or running the wered works for you must do so excldy on your
behalf, under your direction and control, on terms that prohibit them from makjrapies of your
copyrighted material outside their relationship with you.

Corveying under ap other circumstances is permitted solely under the conditions stated belo
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Igd Rights From Anti-Circumvention ha

No covered work shall be deemed part of an effectechnological measure underyaapplicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you cowvey a overed work, you waie any egd power to forbid circumvention of technological
measures to the extent such circumvention is effecteddogiging rights under this License with respect to
the cavered work, and you disclaim gintention to limit operation or modification of the work as a means
of enforcing, against the workisers, your or third parties’del rights to forbid circumvention of
technological measures.

4. Corveying Verbatim Copies.

You may corvey vabatim copies of the Progras®urce code as you reeeiit, in ary medium, provided
that you conspicuously and appropriately publish on eachawgppropriate copyright notice; keep intact
all notices stating that this License ang aon-permissie terms added in accord with section 7 apply to
the code; keep intact all notices of the absenceyofvarnranty; and gie dl recipients a coyp of this

License along with the Program.

You may charge anprice or no price for each cgphat you comey, and you may offer support or warranty
protection for a fee.

5. Corveying Modified Source Versions.

You may corvey a wrk based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) Thework must carry prominent notices stating that you modified it, and giving\anéldate.

b) Thework must carry prominent notices stating that it is released under this Licenseyaotditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore applglong with ary applicable section 7 additional terms, to
the whole of the work, and all its partsgaalless of hws they are packaged. This Licensevgs no
permission to license the work inyaother way but it does not imalidate such permission if you &
separately receed it.

d) If the work has interact® wser interfaces, each must display Appropriatga R otices; howeer, if
the Program has interaai interfaces that do not display AppropriatgdeNotices, your work need
not male them do so.

GNU GPL 48

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

A compilation of a ceered work with other separate and independent works, which are not by their nature
extensions of the a@red work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “gdgi'df the compilation and its

resulting copyright are not used to limit the accessga teghts of the compilatios’ users beyond what

the individual works permit. Inclusion of aveed work in an agggete does not cause this License to

apply to the other parts of the agggke.

6. Corveying Non-Source Forms.

You may corvey a overed work in object code form under the terms of sections 4 and 5, provided that you
also comey the machine-readable Corresponding Source under the terms of this License, in one of these

ways:

a)

b)

d)

e)

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offealid for at least three years and valid for as long as you

offer spare parts or customer support for that product modelg@gione who possesses the object
code either (1) a cgpof the Corresponding Source for all the software in the product thatesedo

by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing thigog of source, or (2) access to

copy the Corresponding Source from a network server at no charge.

Corvey individual copies of the object code with a gaf the written offer to provide the
Corresponding Source. This alternatis dlowed only occasionally and noncommercigdgd only
if you receved the object code with such an offer accord with subsection 6b.

Corvey the object code by offering access from a designated place (gratis or for a charge), and offer
equialent access to the Corresponding Source in the same way through the same place at no further
chage. You need not require recipients to gape Corresponding Source along with the object code.

If the place to copthe object code is a network sentbe Corresponding Source may be on a

different server (operated by you or a third party) that supportsasnti copying facilities, provided

you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
awailable for as long as needed to satisfy these requirements.

Corvey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Libraryneed not be included in cesying the object code work.

A “User Product” is either (1) a “consumer product”, which meansaagible personal property which is
normally used for personal, familyr household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved iraf/ar of coverage. fer a particular product reced by a marticular user‘normally

used” refers to a typical or common use of that class of prodgetdiess of the status of the particular

user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer producgeedless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product meany amethods, procedures, authorizatiay or other
information required to install anckecute modified versions of a wered work in that User Product from a
modified version of its Corresponding Source. The information mutsud ensure that the continued
functioning of the modified object code is in no case@ried or interfered with solely because
modification has been made.

If you corvey an object code work under this section in, or with, or specifically for use in, a User Product,

GPL 49

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

and the coweying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed tegardtess of hav the transaction is
characterized), the Corresponding Sourceveged under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you dhad party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warrantgr updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source omeyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementatiaifable to the public in source code
form), and must require no special passwordeyrfar unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though thevere included in this License, to the extent thay e valid under applicableva

If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remainsged by this License withoutgerd to the additional
permissions.

When you cowvey a opy of a mvered work, you may at your option remeany aditional permissions

from that cop, or from ary part of it. (Additional permissions may be written to require their own vamo
in certain cases when you modify thenk) You may place additional permissions on material, added by
you to a cegered work, for which you hae a can gve gpropriate copyright permission.

Notwithstanding ay other provision of this License, for material you add to\ae work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaimingwarranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiringpreservation of specified reasonablgdeotices or author attributions in that material or in
the Appropriate Lgd Notices displayed by works containing it; or

c) Prohibitingmisrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Decliningto grant rights under trademarbkdor use of some trade names, trademarks, or service
marks; or

f) Requiringindemnification of licensors and authors of that material by anyone whkeysohe
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissie alditional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you rerediit, or ary part of it, contains a notice stating that it iszgmed

by this License along with a term that is a further restriction, you mayeetmat term. If a license
document contains a further restriction but permits relicensing eeyag under this License, you may
add to a ceered work material geerned by the terms of that license document, provided that the further
restriction does not sume such relicensing or caeying.

If you add terms to a wered work in accord with this section, you must place, in theamieource files,
a datement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GPL 50

GPL(1) FreeSoftware Bundation GPL(1)

Additional terms, permisge a non-permissie, may be stated in the form of a separately written license,
or stated as exceptions; the edeequirements apply either way.

8. Termination.

You may not propagate or modify avaed work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including anpatent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionallynless and until the copyright holder explicitly and finally terminates your
license, and (b) permanentif/the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first timewsorbeied notice of

violation of this License (for grwork) from that copyright holdeand you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties/ereréized
copies or rights from you under this License. If your righteeH®en terminated and not permanently
reinstated, you do not qualify to reeeirew licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to vecgirun a cop of the Program. Ancillary
propagation of a a@red work occurring solely as a consequence of using peer-to-peer transmission to
receve a opy likewise does not require acceptance. Hamenothing other than this License grants you
permission to propagate or modifyyacovered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating e work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you corey a overed work, the recipient automatically recss a icense from the original
licensors, to run, modify and propagate that work, subject to this Lic&oseare not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of gagzation, or substantially all assets of
one, or subdividing an ganization, or merging genizations. Ifpropagation of a a@red work results

from an entity transaction, each party to that transaction who/es@opy of the work also recees

whatever licenses to the work the padyredecessor in interest had or couldeginder the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose gnfurther restrictions on theercise of the rights granted offismed under this

License. IBr example, you may not impose a license fee, rqyaltgther charge forxercise of rights

granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that anpatent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 51

GPL(1) FreeSoftware Bundation GPL(1)

the Program or gnportion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contaljatmtributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some, pemmiged by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contribetsion. Br purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exchasivorldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” yseapress agreement or commitment, hegre
denominated, not to enforce a patent (such as an express permission to practice a pataandmncd to
sue for patent infringement)lo “grant” such a patent license to a party means teraath an agreement
or commitment not to enforce a patent against the party.

If you cornvey a overed work, knowingly relying on a patent license, and the Corresponding Source of the
work is not aailable for anyone to cop free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be s@itable, or (2) arrange to depé yourself of the benefit of the patent

license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” meanswoehal

knowledge that, but for the patent license, youveging the coered work in a countryor your recipient’s

use of the ceered work in a countrywould infringe one or more identifiable patents in that country that

you hae reason to beliee ae valid.

If, pursuant to or in connection with a single transaction or arrangement, yay,corpropagate by
procuring comeyance of, a ceered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify oveya gecific copy of the caovered work,

then the patent license you grant is automatically extended to all recipients ofeitesl aeork and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of itrage, prohibits the
execise of, or is conditioned on the noxercise of one or more of the rights that are specifically granted
under this LicenseYou may not corey a overed work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which yoa pagtknent to the third party

based on the extent of your activity of eeying the work, and under which the third party grants, yocin
the parties who would rees the cavered work from you, a discriminatory patent license (a) in connection
with copies of the ogered work comeyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain t#lesedowork, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limitiggraplied license or other defenses to

GNU GPL 52

GPL(1) FreeSoftware Bundation GPL(1)

infringement that may otherwise beagable to you under applicable patentla
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court grageement or otherwise) that contradict the
conditions of this License, thi@lo not excuse you from the conditions of this License. If you cannot

convey a overed work so as to satisfy simultaneously your obligations under this Licenseyanttiem

pertinent obligations, then as a consequence you may nagyciat dl. For example, if you agree to

terms that obligate you to collect a royalty for furthervaymg from those to whom you ceey the

Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding ay other provision of this License, youvepermission to link or combine grcovered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to cuay the resulting wrk. Theterms of this License will continue to apply to the
part which is the ogered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised andvorasions of the GNU General Public
License from time to time. Suchweversions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version numbetf the Program specifies that a certain numbered
version of the GNU General Public License “oyaater version” applies to it, you &ate option of
following the terms and conditions either of that numbered version oy d&tan version published by the
Free Software dundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may chooseyaversion &er published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that prosypublic statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions mayvgiyou additional or different permissions. Howee no additional obligations
are imposed on greuthor or copyright holder as a result of your choosing tovioHidater version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,a THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE SATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES RBVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NDLIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS O THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM PRVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSAR SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED 1O IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE D YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NO LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED IMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM O OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GNU GPL 53

GPL(1) FreeSoftware Bundation GPL(1)

SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided ab@annot be gien local legd effect
according to their terms, reviewing courts shall apply localthteat most closely approximates an absolute
waiver of al civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a cgmf the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your MePrograms

If you develop a nev program, and you want it to be of the greatest possible use to the public, the best way
to achiee tis is to mak it free software whichveryone can redistribute and change under these terms.

To do 9, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectiely state the exclusion of warranty; and each file showe ladeast the “copyright”
line and a pointer to where the full notice is found.

one line to give the pgram’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) anlater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on e to contact you by electronic and paper mail.

If the program does terminal interaction, radkoutput a short notice likthis when it starts in an
interactve node:

<program> Copright (C) <year> <name of author>
This program comes with ABSOLUTEINO WARRANTY; for details type “sh@ w”. Thisis free
software, and you are welcome to redistribute it under certain conditions; typec’shar details.

The hypothetical commands “skiav” and “shav ¢” should shav the appropriate parts of the General
Public License. Of course, your programdmmands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school;, ifoesign a “copyright
disclaimer” for the program, if necessaior more information on this, andvwdo gpply and follav the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine libraggou may consider it more useful to permit linking proprietary
applications with the librarylf this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.htmlI>.

GNU GPL 54

libexplain(3) libexplain(3)

NAME
libexplain — Explain errno values returned by libc functions

SYNOPSIS
cc ... —lexplain;

#include <libexplain/libexplain.h>

DESCRIPTION
The libexplain library exists to gt eplanations of error reported by system calls. The error message
returned bystrerror(3) tend to be quite cryptic. By providing a specific error report for each system call, a
more detailed error message is possible, usually identifying and describing the specific cause from amongst
the numerous meanings eaahno value maps to.

Race Condition
The explanation of the cause of an error is dependent on the environment of the error to remain unchanged,
so that when libexplain gets around to looking for the cause, the cause is still there. On a running system,
and particularly a multi-user system, this is notagk possible.

If an incorrect explanation is provided, it is possible that the cause is no longer present.

Compiling
Assuming the library header files has been installed/usiginclude , and the library files hee been
installed into/usr/lib , compiling against libexplain requires no speeibloptions.

When linking your pograms, addexplain to the list of libraries at the end of your link line.
cc ... —lexplain

When you configure your package with GNU Autoconf, you need the large file support macro
AC_SYS_LARGEFILE

If you arent using GNU Autoconf, you will h&e to work out the needed large file support requirements
yourdelf.

There is gkg-configl) package for you to use, too:
CFLAGS="$CFLAGS ‘pkg—config libexplain ——cflags" LIBS="$LIBS ‘pkg—config libexplain
—-libs"

This can mak figuring out the command line requirements much easier.

Environment Variable
The EXPLAIN_OPTIONSenvironment variable may be used to control some of the content in the
messages. Optio@se separated by comma (*,”) characters.

There are three ways to set an option:

1. Theform “namesvalu€’ may be used explicitlyThe values “true” and “false” are used for boolean
options.

2. Anoption name alone is interpreted to menarhe-true”.

3. Theform “no-namé is interpreted to meamame=false”.

The following options arevailable:

delug Additionaldebugging messages for libexplairvelepers. Notgenerally useful to clients of the
library.
Default: false.

extra-device-info
Additional information for block and character special devices is printed when naming a file and
its type.
Default: true

55

libexplain(3) libexplain(3)

numeric-errno
This option includes the numemgerno value in the message,g.“(2, ENOENT)” rather than
“(ENOENT)”. Disablingthis option is generally of use in automated testing, teeptdJNIX
dialect differences from producing falsegagives.
Default: true

dialect-specific
This controls the presence of explanatory text specific to a particular UNIX dialect. It also
suppresses printing system specific maximums. Disabling this option is generally of use in
automated testing, to prent UNIX dialect differences from producing falsegagives.
Default: true.

hanging-indent
This controls the hanging indent depth used for error message wrapping. By default no hanging
indent is used, but this can sometimes obfuscate the end of one error message and the beginning
of another A hanging indent results in continuation lines starting with white spoace, similar to
RFC822 headersA value of 0 means no hanging indent (all lines flush with lefgmar A
common value to use is 4: it doestonsume to much of each line, and it is a clear indent. The
program may choose tow@ride the environment variable using the
explain_option_hanging_indent_g8) function. The hanging indent is limited to 10% of the
terminal width.
Default: 0

internal-strerror
This option controls the source of system eror messatge téfalse, it usestrerorP(3) for the
text. Iftrue, it uses internal string for thexé Thisis mostly of use for automated testitgy
avoid false negatives induced by inconsistencies across Unix implementations.
Default: false.

program-name
This option controls the inclusion of the program name at the start of error messages, by the
explain_*_or_die and explain_*_on_error functions. This helps users understand which
command is throwing the erroDisabling this option may be of some interest to script writers.
Program deelopers can use theplain_program_name_sé3) function to set the name of the
command, if thg wish to werride the name that libexplain would otherwise obtain from the
operating system. Programweiopers can use theplain_program_name_assemi§f) function
to trump this option.
Default: true.

symbolic-mode-bits
This option controls he permission mode bits are represented in error messages. Setting this
option to true will cause symbolic names to be pringeed.§ IRUSR | S_ IWUSR | S_IRGRP |
S_IROTH). Settingthis option to false will cause octal values to be pringeg.0644).
Default: false.

Supported System Calls
Each supported system call has its enampage.

explain_accep{3)
Explainaccep(2) errors

explain_accept_or_dig)
accept a connection on a socket and report errors

explain_accept43)
Explainaccept42) errors

explain_accept4_or_di@)
accept a connection on a socket and report errors

56

libexplain(3) libexplain(3)

explain_accesi)
Explainacces§?) errors

explain_access_or_d(8)
check permissions for a file and report errors

explain_acct3)
Explainacc{2) errors

explain_acct_or_di€3)
process accounting control and report errors

explain_adjtimg3)
Explainadijtimg2) errors

explain_adjtime_or_di€3)
smoothly tune kernel clock and report errors

explain_adjtimex3)
Explainadijtimex?2) errors

explain_adjtimex_or_di€3)
tune kernel clock and report errors

explain_bind3)
Explainbind(2) errors

explain_bind_or_di€3)
bind a name to a socket and report errors

explain_calloq3)
Explaincalloo(3) errors

explain_calloc_or_di€3)
Allocate and clear memory and report errors

explain_chdir(3)
Explainchdir(2) errors

explain_chdir_or_di€3)
change working directory and report errors

explain_chmod3)
Explainchmod?2) errors

explain_chmod_or_di@)
change permissions of a file and report errors

explain_chowi(3)
Explainchownerrors

explain_chown_or_di€3)
change ownership of a file and report errors

explain_chroot(3)
Explainchroot(2) errors

explain_chroot_or_di€3)
change root directory and report errors

explain_closé3)
Explainclos€?2) errors

explain_close_or_dig3)
close a file descriptor and report errors

57

libexplain(3) libexplain(3)

explain_closedi(3)
Explainclosedi(3) errors

explain_closedir_or_di€3)

close a directory and report errors
explain_connedf)

Explainconnecf?) errors
explain_connect_or_di@)

initiate a connection on a socket and report errors
explain_creat3)

Explaincreaf(2) errors
explain_creat_or_di€3)

create and open a file and report errors
explain_dirfd(3)

Explaindirfd(3) errors
explain_dirfd_or_di€3)

get directory stream file descriptor and report errors
explain_dug3)

Explaindup(2) errors
explain_dup_or_di€3)

duplicate a file descriptor and report errors
explain_dupZ3)

Explaindup??2) errors
explain_dup2_or_di€3)

duplicate a file descriptor and report errors

explain_eventf¢)
Explaineventfd2) errors

explain_eventfd_or_di@)
create a file descriptor fowent notification and report errors

explain_execl3)
Explainexeclp(3) errors

explain_execlp_or_di@)
execute a file and report errors

explain_exec(3)
Explainexec\(3) errors

explain_execv_or_di@)
execute a file and report errors

explain_execvgs)
Explainexecvg?) errors

explain_execve_or_d(8)
execute program and report errors

explain_execv(B)
Explainexecv3) errors

explain_execvp_or_d(8)
execute program and report errors

58

libexplain(3) libexplain(3)

explain_exi(3)
print an explanation of exit status before exiting

explain_fchdir(3)
Explainfchdir(2) errors

explain_fchmog3)
Explainfchmod?2) errors

explain_fchmod_or_di@)
change permissions of a file and report errors

explain_fchowif3)
Explainfchowr(2) errors

explain_fchown_or_di€)
change ownership of a file and report errors

explain_fclosé3)
Explainfclos€?2) errors

explain_fclose_or_dig)
close a stream and report errors

explain_fcnt(3)
Explainfcntl(2) errors
explain_fentl_or_dig€3)
Manipulate a file descriptor and report errors

explain_fdopeii3)
Explainfdoper{3) errors

explain_fdopen_or_dig)
stream open function and report errors

explain_fdopendi¢3)
Explainfdopendi(3) errors

explain_fdopendir_or_di€3)
open a directory and report errors

explain_feof3)
Explainfeo{3) errors

explain_feof _or_di€3)
check and reset stream status and report errors

explain_ferron(3)
Explainferror(3) errors

explain_ferror_or_dig3)
check stream status and report errors

explain_fflusi(3)
Explainfflush(3) errors

explain_fflush_or_dié3)
flush a stream and report errors

explain_fget¢3)
Explainfgetdq3) errors

explain_fgetc_or_di€3)
input of characters and report errors

59

libexplain(3)

explain_fgetpo&3)

Explainfgetpog3) errors

explain_fgetpos_or_di@)

reposition a stream and report errors

explain_fget$3)

Explainfgetg3) errors

explain_fgets_or_di3)

input of strings and report errors

explain_filenq3)

Explainfilena(3) errors

explain_fileno_or_di¢3)

check and reset stream status and report errors

explain_flock3)

Explainflock(2) errors

explain_flock_or_di¢3)

apply or remwe an advisory lock on an open file and report errors

explain_fopelt3)

Explainfoper(3) errors

explain_fopen_or_di€)

open files and report errors

explain_fork(3)

Explainfork(2) errors

explain_fork_or_di€3)

create a child process and report errors

explain_fpathconf3)

Explainfpathcon3) errors

explain_fpathconf_or_dig)

get configuration values for files and report errors

explain_fprintf(3)

Explainfprintf(3) errors

explain_fprintf_or_di€3)

formatted output carersion and report errors

explain_fpuige(3)

Explainfpurgeg(3) errors

explain_fpuige _or_dig3)

purge a stream and report errors

explain_fputg3)

Explainfputq3) errors

explain_fputc_or_di€3)

output of characters and report errors

explain_fputg3)

Explainfputq3) errors

explain_fputs_or_di€3)

write a string to a stream and report errors

libexplain(3)

60

libexplain(3) libexplain(3)

explain_fread3)

Explainfread3) errors
explain_fread_or_di€3)

binary stream input and report errors

explain_freopei(3)
Explainfreoper{3) errors

explain_freopen_or_di)
open files and report errors

explain_fseel3)

Explainfseek3) errors
explain_fseek_or_di@)

reposition a stream and report errors

explain_fsetpo3)
Explainfsetpo§3) errors

explain_fsetpos_or_d{8)
reposition a stream and report errors

explain_fstat3)
Explainfstaf3) errors

explain_fstat_or_di€3)
get file status and report errors

explain_fstatf¢3)
Explainfstatfg2) errors

explain_fstatfs_or_di€3)
get file system statistics and report errors

explain_fstatvf§3)
Explainfstatvf$2) errors

explain_fstatvfs_or_digd)
get file system statistics and report errors

explain_fsyng3)
Explainfsyn¢2) errors

explain_fsync_or_dig)
synchronize a files in-core state with storage device and report errors

explain_ftell(3)
Explainftell(3) errors

explain_ftell_or_dig3)
get stream position and report errors

explain_ftimg3)
Explainftime(3) errors

explain_ftime_or_di€3)
return date and time and report errors

explain_ftruncat€3)
Explainftruncatg?) errors

explain_ftruncate_or_di€3)
truncate a file to a specified length and report errors

61

libexplain(3) libexplain(3)

explain_futime$3)
Explainfutimeg3) errors

explain_futimes_or_dig)
Executefutimeg3) and report errors

explain_fwritg(3)
Explainfwrite(3) errors

explain_fwrite_or_dig€3)
binary stream output and report errors

explain_getaddrinf¢3)
Explaingetaddrinfa(3) errors

explain_getaddrinfo_or_dig)
network address and and report errors

explain_get¢3)
Explaingetc(3) errors

explain_getc_or_di€3)
input of characters and report errors

explain_getcha(3)
Explaingetchar(3) errors

explain_getchar_or_di€3)
input of characters and report errors

explain_getcwd3)
Explaingetcwd2) errors

explain_getdomainnang8)
Explaingetddomainnamg) errors

explain_getdomainname_or_d&)
get domain name and report errors

explain_getgroupé3)
Explaingetgroupg?2) errors

explain_getgroups_or_d(8)
get list of supplementary group IDs and report errors

explain_getcwd_or_di@)
Get current working directory and report errors

explain_gethostnan(8)
Explaingethostnam@) errors

explain_gethostname_or_di#&)
get hostname and report errors

explain_getpeernan(8)
Explaingetpeernamg?) errors

explain_getpeername_or_di#&)
Executgepeernamg) and report errors

explain_getpgid3)
Explaingetpgid(2) errors

explain_getpgid_or_di€3)
get process group and report errors

62

libexplain(3)

explain_getpgri3)
Explaingetpgrp(2) errors

explain_getpgrp_or_di€3)
get process group and report errors

explain_getresgi@3)
Explaingetresgid2) errors

explain_getresgid_or_di@)

get real, effectie and sared group IDs and report errors

explain_getresui@3)
Explaingetresuid2) errors

explain_getresuid_or_di@)

get real, effectie and saed user IDs and report errors

explain_getrlimi(3)

Explaingetrlimit (2) errors
explain_getrlimit_or_di€3)

get resource limits and report errors

explain_getsocknantd)
Explaingetsocknam@) errors

explain_getsockname_or_d®)

Executegetsocknamg) and report errors
explain_getsokopt(3)

Explaingetsodkopt(2) errors
explain_getsokopt_or_dig3)

Executegetsokopt(2) and report errors

explain_gettimeofdaiB)
Explaingettimeofday?) errors

explain_gettimeofday_or_d{8)
get time and report errors

explain_getw3)

Explaingetw(3) errors
explain_getw_or_di€3)

input a word (int) and report errors
explain_iocti(3)

Explainioctl(2) errors
explain_ioctl_or_di€3)

Executeoctl(2) and report errors
explain_kill(3)

Explainkill (2) errors
explain_kill_or_dig3)

send signal to a process and report errors
explain_lchmod3)

Explainlchmod?2) errors
explain_Ichmod_or_di€3)

change permissions of a file and report errors

libexplain(3)

63

libexplain(3) libexplain(3)

explain_Ichowr{3)
Explainlchown(2) errors

explain_Ichown_or_di€3)
change ownership of a file and report errors

explain_link(3)
Explainlink(2) errors

explain_link_or_di€3)
make a rew rame for a file and report errors

explain_lister(3)
Explainlisten(2) errors

explain_listen_or_di€3)
listen for connections on a socket and report errors

explain_lseek3)
Explainlseek?) errors

explain_lseek_or_di@)
reposition file offset and report errors

explain_Ista(3)
Explainlstat(2) errors

explain_Istat_or_di€3)
get file status and report errors

explain_mallog3)
Explainmalloq(3) errors

explain_malloc_or_di€3)
Executemalloq3) and report errors

explain_mkdif3)
Explainmkdin(2) errors

explain_mkdir_or_di€3)
create directory and report errors

explain_mkdtem(8)
Explainmkdtemf3) errors

explain_mkdtemp_or_d(8)
create a unique temporary directory and report errors

explain_mknod3)
Explainmknod?2) errors

explain_mknod_or_dig)
create a special or ordinary file and report errors

explain_mkostem(3)
Explainmkostem(8) errors

explain_mkostemp_or_d{8)
create a unique temporary file and report errors

explain_mkstem(3)
Explainmkstemf8) errors

explain_mkstemp_or_d{8)
create a unique temporary file and report errors

64

libexplain(3) libexplain(3)

explain_mktem(8)
Explainmktem$3) errors

explain_mktemp_or_d{8)
make a wique temporary filename and report errors

explain_mmay3)
Explainmmapg?2) errors

explain_mmap_or_di@)
map file or device into memory and report errors

explain_munma(s)
Explainmunma?) errors

explain_munmap_or_d{8)
unmap a file or device from memory and report errors

explain_nicg3)
Explainnice(2) errors

explain_nice_or_di€3)
change process priority and report errors

explain_opelf3)
Explainoper(2) errors

explain_open_or_di€3)
open files and report errors

explain_opendi(3)

Explainopendi(3) errors
explain_opendir_or_di€3)

open a directory and report errors

explain_pathconf3)
Explainpathcon¢3) errors

explain_pathconf_or_dig)
get configuration values for files and report errors

explain_pclosé€3)
Explainpclos€3) errors

explain_pclose_or_di@)
Executepclos€3) and report errors

explain_pipg3)
Explainpipg(2) errors

explain_pipe_or_di€3)
Executepipg(2) and report errors

explain_poll(3)
Explainpoll(2) errors
explain_poll_or_dig€3)
wait for some gent on a file descriptor and report errors

explain_popeii3)
Explainpoper{3) errors

explain_popen_or_di@)
Executepoper{3) and report errors

65

libexplain(3) libexplain(3)

explain_pread3)
Explainpread?) errors

explain_pread_or_di€3)
read from a file descriptor at avgn offset and report errors

explain_printf(3)
Explainprintf(3) errors

explain_printf_or_di€3)
formatted output carersion and report errors

explain_ptracg3)
Explainptracg2) errors

explain_ptrace_or_di€3)
process trace and report errors

explain_putg3)
Explainputq3) errors

explain_putc_or_di€3)
output of characters and report errors

explain_putcha(3)

Explainputchal3) errors
explain_putchar_or_di€3)

output of characters and report errors

explain_puteny(3)
Explainputeny3) errors

explain_putenv_or_dig)
change or add an environment variable and report errors

explain_putg3)
Explainputq3) errors

explain_puts_or_di€3)
write a string and a trailing newline to stdout and report errors

explain_putw(3)
Explainputw(3) errors

explain_putw_or_di€3)
output a word (int) and report errors

explain_pwritg3)
Explainpwrite(2) errors

explain_pwrite_or_di€3)
write to a file descriptor at a\gn off set and report errors

explain_raisg3)
Explainraisg(3) errors

explain_raise_or_di€3)
send a signal to the caller and report errors

explain_read3)
Explainread(2) errors

explain_read_or_di€3)
read from a file descriptor and report errors

66

libexplain(3) libexplain(3)

explain_readdi(3)
Explainreaddir(3) errors

explain_readdir_or_di€3)
read a directory and report errors

explain_readlink3)
Explainreadlink(2) errors

explain_readlink_or_di€3)
read value of a symbolic link and report errors

explain_ready3)
ExplainreadJ2) errors

explain_readv_or_di€3)
read data into multiple buffers and report errors

explain_realloq3)
Explainrealloc(3) errors

explain_realloc_or_di€3)
Executerealloc(3) and report errors

explain_realpatt{3)
Explainrealpath(3) errors

explain_realpath_or_di€3)
return the canonicalized absolute pathname and report errors

explain_renamé3)
Explainrenamé?2) errors

explain_rename_or_di@)
change the name or location of a file and report errors

explain_rmdir(3)

Explainrmdir(2) errors
explain_rmdir_or_dig3)

delete a directory and report errors

explain_seledf3)
Explainselec(?) errors

explain_select_or_di@)
executeselec(2) and report errors

explain_setbuf3)
Explainsetbu¢3) errors

explain_setbuffef3)
Explainsetbuffe(3) errors

explain_setbuffer_or_di@)
stream buffering operations and report errors

explain_setbuf_or_dig)
set stream buffer and report errors

explain_setdomainnan(a)
Explainsetdomainnan{g) errors

explain_setdomainname_or_d8)
set domain name and report errors

67

libexplain(3)

explain_seten(B)
Explainseteny3) errors

explain_setenv_or_d(8)

change or add an environment variable and report errors

explain_setgiq3)

Explainsetgid?2) errors
explain_setgid_or_di€3)

set group identity and report errors
explain_setgroup&3)

Explainsetgroupg§?) errors
explain_setgroups_or_d{8)

get list of supplementary group IDs and report errors

explain_sethostnand)
Explainsethostnam@) errors

explain_sethostname_or_d®)

set hostname and report errors
explain_setlinebu3)

Explainsetlinebuf3) errors
explain_setlinebuf_or_di@)

stream buffering operations and report errors
explain_setpgid3)

Explainsetpgid?) errors
explain_setpgid_or_dig)

set process group and report errors

explain_setpgri3)
Explainsetpgrig2) errors

explain_setpgrp_or_dig)

set process group and report errors
explain_setegd(3)

Explainsetegd(2) errors
explain_setegd_or_dig3)

set real and/or effeott goup ID and report errors
explain_setreuid3)

Explainsetreuid?) errors
explain_setreuid_or_dig)

set the real and effeed user ID and report errors
explain_setresgi(B)

Explainsetresgi@?) errors
explain_setresgid_or_d{8)

set real, effectie and saed group ID and report errors
explain_setresui(B)

Explainsetresui@?) errors
explain_setresuid_or_d{8)

set real, effectie and saed user ID and report errors

libexplain(3)

68

libexplain(3)

explain_setreuid3)
Explainsetreuid?2) errors

explain_setreuid_or_di)
set real and/or effeot wser ID and report errors

explain_setsig3)
Explainsetsiq?2) errors

explain_setsid_or_dig)

creates a session and sets the process group ID and report errors

explain_setsokopt(3)

Explainsetsokopt(2) errors
explain_setsokopt_or_dig3)

executesetsokopt(2) and report errors
explain_setuid3)

Explainsetuid?) errors
explain_setuid_or_di€3)

set user identity and report errors
explain_setvbuf3)

Explainsetvbuf3) errors
explain_setvbuf_or_di@)

stream buffering operations and report errors
explain_shmaf3)

Explainshmag?) errors
explain_shmat_or_dig)

shared memory attach and report errors
explain_shmci(3)

Explainshmct(2) errors
explain_shmctl_or_di€3)

shared memory control and report errors
explain_signalfd3)

Explainsignalfd?2) errors
explain_signalfd_or_di€3)

create a file descriptor for accepting signals and report errors
explain_so&et(3)

Explainsoket(2) errors
explain_so&e_or_dig3)

create an endpoint for communication and report errors
explain_so&etpair(3)

Explainsokepair(2) errors
explain_so&epair_or_dig3)

create a pair of connected sockets and report errors
explain_sprint{3)

Explainsprintf(3) errors
explain_sprintf_or_di€3)

formatted output carersion and report errors

libexplain(3)

69

libexplain(3) libexplain(3)

explain_stat3)
Explainstaf2) errors

explain_statf$3)
Explainstatfg2) errors

explain_statfs_or_di€3)
get file system statistics and report errors

explain_statvf§3)
Explainstatvf¢2) errors

explain_statvfs_or_dig)
get file system statistics and report errors

explain_stim¢3)
Explainstimg?) errors

explain_stime_or_di€3)
set system time and report errors

explain_strdug3)
Explainstrdup(3) errors

explain_strdup_or_di€3)
duplicate a string and report errors

explain_strnduig3)
Explainstrndug3) errors

explain_strndup_or_di€3)
duplicate a string and report errors

explain_strtod3)
Explainstrtod3) errors

explain_strtod_or_di€3)
corvert string to floating-point number and report errors

explain_strto{3)
Explainstrtof(3) errors

explain_strtof _or_di€3)
corvert string to floating-point number and report errors

explain_strto(3)
Explainstrtol(3) errors

explain_strtol_or_di€3)
corvert a string to a long integer and report errors

explain_strtold3)
Explainstrtold(3) errors

explain_strtold_or_di€3)
corvert string to floating-point number and report errors

explain_strtoll(3)
Explainstrtoll(3) errors

explain_strtoll_or_dig3)
convert a string to a long long integer and report errors

explain_strtou(3)
Explainstrtoul(3) errors

70

libexplain(3)

explain_strtoul_or_di€3)
convert a string to a long long integer and report errors

explain_strtoul(3)
Explainstrtoull(3) errors

explain_strtoull_or_di€3)

convert a string to an unsigned long long integer and report errors

explain_symlink3)

ExplainsymlinK2) errors
explain_symlink_or_di€3)

malke a rew rame for a file and report errors
explain_syster(8)

Explainsysten) errors
explain_system_or_d(8)

execute a shell command and report errors
explain_tcdrain(3)

Explaintcdrain(3) errors
explain_tcdrain_or_di€3)

Executetcdrain(3) and report errors
explain_tcflow(3)

Explaintcflow(3) errors
explain_tcflow_or_di€3)

Executetcflom(3) and report errors
explain_tcflusi3)

Explaintcflusih(3) errors
explain_tcflush_or_di€3)

discard terminal data and report errors
explain_tcgetatt(3)

Explaintcgetatt(3) errors
explain_tcgetattr_or_di€3)

get terminal parameters and report errors

explain_tcsendbreg8)
Explaintcsendbrea) errors

explain_tcsendbreak_or_di8)
send terminal line break and report errors

explain_tcsetatt3)
Explaintcsetatt(3) errors

explain_tcsetattr_or_di€3)
set terminal attributes and report errors
explain_telldir(3)
Explaintelldir(3) errors
explain_telldir_or_dig3)
return current location in directory stream and report errors

explain_tempnar8)
Explaintempnan(B) errors

libexplain(3)

71

libexplain(3) libexplain(3)

explain_tempnam_or_d{8)
create a hame for a temporary file and report errors

explain_time3)
Explaintime(2) errors

explain_time_or_di€3)
get time in seconds and report errors

explain_timerfd_creat€3)
Explaintimerfd_creat€?) errors

explain_timerfd_create_or_d(8)
timers that notify via file descriptors and report errors

explain_tmpfilg3)

Explaintmpfileg(3) errors
explain_tmpfile_or_dié3)

create a temporary file and report errors

explain_tmpnan(3)
Explaintmpnang3) errors

explain_tmpnam_or_di@)
create a hame for a temporary file and report errors

explain_truncat¢3)
Explaintruncatg?) errors

explain_truncate_or_di€3)
truncate a file to a specified length and report errors

explain_unget¢€3)
Explainunget¢3) errors

explain_ungetc_or_dig)
push a character back to a stream and report errors

explain_unlink3)
Explainunlink(2) errors

explain_unlink_or_di€3)
delete a file and report errors

explain_unseteni)
Explainunseten{B) errors

explain_unsetenv_or_d{8)
remove a environment variable and report errors

explain_ustaf3)
Explainusta(2) errors

explain_ustat_or_di€3)
get file system statistics and report errors

explain_utimé3)
Explainutimg2) errors

explain_utime_or_di€3)
change file last access and modification times and report errors

explain_utimeng3)
Explainutimeng2) errors

72

libexplain(3) libexplain(3)

explain_utimens_or_di@)
change file last access and modification times and report errors

explain_utimensdB)
Explainutimensaf2) errors

explain_utimensat_or_d(8)
change file timestamps with nanosecond precision and report errors

explain_utime$3)
Explainutimeg?2) errors

explain_utimes_or_dig)
change file last access and modification times and report errors

explain_vfork(3)
Explainvfork(2) errors

explain_vfork_or_di€3)
create a child process and block parent and report errors

explain_vfprint{3)
Explainvfprintf(3) errors

explain_vfprintf_or_di€3)
formatted output carersion and report errors

explain_vprint{3)
Explainvprintf(3) errors

explain_vprintf_or_di€3)
formatted output carersion and report errors

explain_vsnprint3)
Explainvsnprint{3) errors

explain_vsnprintf_or_di€3)
formatted output carersion and report errors

explain_snprint{3)
Explainsnprint{3) errors

explain_snprintf_or_di€3)
formatted output carersion and report errors

explain_vsprint{3)
Explainvsprint{3) errors

explain_vsprintf_or_di€3)
formatted output carersion and report errors

explain_waif3)
Explainwait(2) errors

explain_wait_or_di€3)
wait for process to change state and report errors

explain_wait3y3)
Explainwait3(2) errors

explain_wait3_or_di€3)
wait for process to change state and report errors

explain_wait43)
Explainwait4(2) errors

73

libexplain(3) libexplain(3)

explain_wait4_or_di€3)

wait for process to change state and report errors
explain_waitpid'3)

Explainwaitpid(2) errors
explain_waitpid_or_di€3)

wait for process to change state and report errors
explain_write(3)

Explainwrite(2) errors
explain_write_or_dig€3)

write to a file descriptor and report errors
explain_writew(3)

Explainwritev(2) errors
explain_writev_or_di€3)

write data from multiple buffers and report errors

There are plans for additionalaage. Thidist is expected to expand in later releases of this library.

SEE ALSO
errno(3) numberof last error

perror(3)
print a system error message

strerror(3)
return string describing error number

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

74

explain_accept(3) »plain_accept(3)

NAME
explain_accept — explain accept(2) errors

SYNOPSIS
#include <libexplain/accept.h>

const char *explain_accept(int fildes, struct sockaddr *sock, aoicklen_t *sock_addr_size);

const char *explain_errno_accept(int errnum, int fildes, struct sockaddr *socksazlden_t
*sock_addr_size);

void explain_message_accept(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addrlen);

void explain_message_errno_accept(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnecdelogep€) system call.

explain_accept
const char *explain_accept(int fildes, struct sockaddr *sock, aoicklen_t *sock_addr_size);
Theexplain_acceptfunction is used to obtain an explanation of an error returned lactep(2) system
call. Theleast the message will contain is the valustcgrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)

{
fprintf(stderr, "%s\n", explain_accept(fildes, sock_addr,
sock_addr_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_accept_or_dig) function.
fildes The original fildes, exactly as passed todbeep(2) system call.

sock_addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

Returns: Themessage explaining the errdrhis message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will meraritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, grathean
functions in this library.

explain_errno_accept
const char *explain_errno_accept(int errnum, int fildes, struct sockaddr *socksazlden_t
*sock_addr_size);
Theexplain_errno_acceptfunction is used to obtain an explanation of an error returned lactep(2)

system call. The least the message will contain is the valsteenfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)

{

int err = errno;

75

explain_accept(3) »plain_accept(3)

fprintf(stderr, "%s\n", explain_errno_accept(err, fildes, sock_addr,
sock_addr_size));
exit(EXIT_FAILURE);

}

The abee mde example iswvailable pre-packaged as thgplain_accept_or_dig) function.

errnum The error value to be decoded, usually obtained frorerim® global variable just before this
function is called. This is necessary if you need toar@licode between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbeep(2) system call.

sock_addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

Returns: Themessage explaining the errdrhis message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will meraritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, grathean
functions in this library.

explain_message_accept
void explain_message_accept(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addr_size);

Theexplain_message_accefainction may be used to obtain an explanation of an error returned by the
accep(2) system call. The least the message will contain is the vahteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)

{
char message[3000];
explain_message_accept(message, sizeof(message), fildes, sock_addr,
sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_accept_or_dig) function.

messge The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todbeep(2) system call.

sock_addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

explain_message_errno_accept
void explain_message_errno_accept(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock_addr_size);

76

explain_accept(3) »plain_accept(3)

Theexplain_message_errno_accefunction may be used to obtain an explanation of an error returned by
theaccep(2) system call. The least the message will contain is the vakteeafor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)

int err = errno;

char message[3000];

explain_message_errno_accept(message, sizeof(message), err, fildes,
sock_addr, sock_addr_size);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example iswvailable pre-packaged as thgplain_accept_or_dig) function.

messge The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorerim® global variable just before this

function is called. This is necessary if you need toaalicode between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbeep(2) system call.

sock_addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

SEE ALSO
accep(2)
accept a connection on a socket
explain_accept_or_dig)
accept a connection on a socket and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

77

explain_accept4(3) »plain_accept4(3)

NAME
explain_accept4 — explain accept4(2) errors

SYNOPSIS
#include <libexplain/accept4.h>

const char *explain_accept4(int fildes, struct sockaddr *sock, sattklen_t *sock_addr_size, int flags);

const char *explain_errno_accept4(int errnum, int fildes, struct sockaddr *socksaukdien_t
*sock_addr_size, int flags);

void explain_message_accept4(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addr_size, int flags);

void explain_message_errno_accept4(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock_addr_size, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returnecdelogebéf2) system call.

explain_accept4
const char *explain_accept4(int fildes, struct sockaddr *sock, sattklen_t *sock_addr_size, int flags);
The explain_accept4function is used to obtain arxm@anation of an error returned by thecept42)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed todbeept42) system call.

sock_addr
The original sock_addexactly as passed to tlaecept42) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todbeept42) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)

{
fprintf(stderr, "%s\n", explain_accept4(fildes, sock_addr,
sock_addr_size, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_accept4_or_di@) function.

explain_errno_accept4
const char *explain_errno_accept4(int errnum, int fildes, struct sockaddr *socksaudkdien_t
*sock_addr_size, int flags);

The explain_errno_accept4 function is used to obtain an explanation of an error returned by the
accept42) system call. The least the message will contain is the valwstresfor(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be

78

explain_accept4(3) »plain_accept4(3)

explained and this function, because méhc functions will alter the value @frrno.
fildes The original fildes, exactly as passed todbeept42) system call.

sock_addr
The original sock_addexactly as passed to tlaecept42) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todbeept42) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a dfer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_accept4(err, fildes,
sock_addr, sock_addr_size, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_accept4_or_di@) function.

explain_message_accept4
void explain_message_accept4(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addr_size, int flags);

The explain_message_acceptfunction is used to obtain an explanation of an error returned by the
accept42) system call. The least the message will contain is the valwstresfor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todbeept42) system call.

sock_addr
The original sock_addexactly as passed to tlaecept42) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todbeept42) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)
{
char message[3000];

explain_message_accept4(message, sizeof(message), fildes,

sock_addr, sock_addr_size, flags);

fprintf(stderr, "%s\n", message);

79

explain_accept4(3) »plain_accept4(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_accept4_or_di@) function.

explain_message_errno_accept4
void explain_message_errno_accept4(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock_addr_size, int flags);

Theexplain_message_errno_accepfdinction is used to obtain a@anation of an error returned by the
accept42) system call. The least the message will contain is the valwstresfor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbeept42) system call.

sock_addr
The original sock_addexactly as passed to tlaecept42) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todbeept42) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)

{
int err = errno;
char message[3000];
explain_message_errno_accept4(message, sizeof(message), err,
fildes, sock_addr, sock_addr_size, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as thglain_accept4_or_di@) function.
SEE ALSO
accept42)

accept a connection on a socket
explain_accept4_or_di@)
accept a connection on a socket and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

80

explain_accept4_or_die(3) xplain_accept4_or_die(3)

NAME
explain_accept4_or_die — accept a connection on a socket and report errors

SYNOPSIS
#include <libexplain/accept4.h>

int explain_accept4_or_die(int fildes, struct sockaddr *sock, addklen_t *sock_addr_size, int flags);
int explain_accept4_on_error(int fildes, struct sockaddr *sock, smitiklen_t *sock_addr_size, int flags);

DESCRIPTION
The explain_accept4_or_didunction is used to call theccept42) system call. Onaflure an gplanation
will be printed tostderr, obtained from thexplain_acceptd3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_accept4_on_error function is used to call th@ccept42) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_acceptd3) function, tut still returns to the
caller.

fildes The fildes, exactly as to be passed todbeept42) system call.

sock_addr
The sock_addexactly as to be passed to thecept42) system call.

sock addr_size
The sock_addr_size, exactly as to be passed tctept42) system call.

flags The flags, exactly as to be passed toatmept42) system call.

RETURN VALUE
The explain_accept4_or_diefunction only returns on success, seeept42) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_accept4_on_errorfunction alvays returns the value return by the wrappedept42) system
call.

EXAMPLE
Theexplain_accept4_or_didunction is intended to be used in a fashion similar to the following example:
int result = explain_accept4_or_die(fildes, sock_addr, sock_addr_size, flags);

SEE ALSO
accept42)
accept a connection on a socket

explain_accept43)
explainaccept4?2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

81

explain_accept_or_die(3) xplain_accept_or_die(3)

NAME
explain_accept_or_die — accept a connection on a socket and report errors

SYNOPSIS
#include <libexplain/accept.h>
int explain_accept_or_die(int fildes, struct sockaddr *sock ,addklen_t *sock _addr_size);

DESCRIPTION
The explain_accept_or_diefunction is used to call thaccep(2) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_accep3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int fd = explain_accept_or_die(fildes, sock_addr, sock_addr_size);
fildes The fildes, exactly as to be passed toabeep(2) system call.

sock_addr
The sock_addexactly as to be passed to thecep(2) system call.

sock addr_size
The sock_addr_size, exactly as to be passed &cttep(2) system call.

Returns: Thidunction only returns on success, s@eep(2) for more information.On failure, prints an
explanation and exits.

SEE ALSO
accep(2)
accept a connection on a socket

explain_accepf3)
explainaccep(?) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

82

explain_access(3) xplain_access(3)

NAME
explain_access — explain access(2) errors

SYNOPSIS
#include <libexplain/access.h>
const char *explain_access(const char *pathname, int mode);
const char *explain_errno_access(int errnum, const char *pathname, int mode);
void explain_message_access(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_access(char *message, int message_size, int errnum, const char *pathname,
int mode);

DESCRIPTION
These functions may be used to obtain explanatioracitese?) errors.

explain_access
const char *explain_access(const char *pathname, int mode);

The explain_access function is used to obtain an explanation of an error returneddget®) system
call. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{
fprintf(stderr, "%s0, explain_access(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed tatices§) system call.

mode The original mode, exactly as passed toabees§?) system call. TP 8n Returns: The message
explaining the errar This message uffer is shared by all libglain functions which do not
supply a lffer in their argument list. This will beverwritten by the next call to grlibexplain
function which shares this buffencluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_access
const char *explain_errno_access(int errnum, const char *pathname, int mode);

The explain_errno_access function is used to obtairkplaretion of an error returned by theces§)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

int fd = access(pathname, mode);
if (fd < 0)
{ .

int err = errno;

fprintf(stderr, "%s0, explain_errno_access(err, pathname,

mode));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from emao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be

83

explain_access(3) xplain_access(3)

explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatices§) system call.

mode The original mode, exactly as passed toateese?) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be ozerwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_access
void explain_message_access(char *message, int message_size, const char *pathname, int mode);

The explain_message_access function is used to obtakpkamation of an error returned by thecesg?)
system call. The least the message will contain is @aheevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{
char message[3000];
explain_message_access(message, sizeof(message), pathname,
mode);
fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tatices§) system call.

mode The original mode, exactly as passed toateese?) system call.

explain_message_errno_access

void explain_message_errno_access(char *message, int message_size, int errnum, const char *pathname,
int mode);

The eplain_message_errno_access function is used to obtain an explanation of an error returned by the
accesf) system call. The least the message will contain is the valuetddrror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following exameple:
int fd = access(pathname, mode);
if (fd < 0)
{ .
int err = errno;
char message[3000];
explain_message_errno_access(message, sizeof(message), err,
pathname, mode);
fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);

84

explain_access(3) xplain_access(3)

}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etao global variable just before this

function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatices§) system call.
mode The original mode, exactly as passed toateest?) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

85

explain_access_or_die(3) x@ain_access_or_die(3)

NAME
explain_access_or_die — check permissions for a file and report errors

SYNOPSIS

#include <libexplain/libexplain.h>

void explain_access_or_die(const char *pathname, int mode);
DESCRIPTION

The explain_access_or_die function is used to callattees&?) system call and check the resufdn
failure it prints an explanation of the errobtained fromexplain_acces&), and then terminates by calling
exit(EXIT_FAILURE)

explain_access_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed tadbes§?) system call.

mode The mode, exactly as to be passed tatwes§?) system call.
Returns: Onlyeve return on success. On failure process will exit.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

86

explain_acct(3) gplain_acct(3)

NAME
explain_acct — explain acct(2) errors

SYNOPSIS
#include <libexplain/acct.h>

const char *explain_acct(const char *pathname);

const char *explain_errno_acct(int errnum, const char *pathname);

void explain_message_acct(char *message, int message_size, const char *pathname);

void explain_message_errno_acct(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedalogi{Besystem call.

explain_acct
const char *explain_acct(const char *pathname);

The explain_acctfunction is used to obtain an explanation of an error returned act@) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed t@atic§2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)

fprintf(stderr, "%s\n", explain_acct(pathname));
exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as thglain_acct_or_di€3) function.

explain_errno_acct
const char *explain_errno_acct(int errnum, const char *pathname);

The explain_errno_acct function is used to obtain an explanation of an error returned bpcdtig?)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to aayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@atic§2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

87

explain_acct(3) gplain_acct(3)

if (acct(pathname) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acct(err, pathname));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thgplain_acct_or_di€3) function.
explain_message_acct

void explain_message_acct(char *message, int message_size, const char *pathname);

The explain_message_acdunction is used to obtain ax@anation of an error returned by theci2)

system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed t@atic§2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)

{
char message[3000];
explain_message_acct(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thgplain_acct_or_di€3) function.

explain_message_errno_acct
void explain_message_errno_acct(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_acdunction is used to obtain an explanation of an error returned by the
acc{2) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from etmao global variable just before this

function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@atic§2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)

int err = errno;

char message[3000];
explain_message_errno_acct(message, sizeof(message), err,

88

explain_acct(3) gplain_acct(3)

pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as thgplain_acct_or_di€3) function.

SEE ALSO
acc{2) switchprocess accounting on or off
explain_acct_or_di€3)
switch process accounting on of afd report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

89

explain_acct_or_die(3) xplain_acct_or_die(3)

NAME
explain_acct_or_die — switch process accounting onfaraf report errors

SYNOPSIS
#include <libexplain/acct.h>

void explain_acct_or_die(const char *pathname);
int explain_acct_on_error(const char *pathname))

DESCRIPTION
Theexplain_acct_or_diefunction is used to call thecc(2) system call. On failure an explanation will be

printed tostderr, obtained from theexplain_acc(3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_acct_on_errorfunction is used to call thecci2) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_acc{3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed ta¢b€?) system call.

RETURN VALUE
The explain_acct_or_diefunction only returns on success, seei{2) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_acct_on_errorfunction alvays returns the value return by the wrappedi2) system call.

EXAMPLE
Theexplain_acct_or_diefunction is intended to be used in a fashion similar to the following example:
explain_acct_or_die(pathname);

SEE ALSO
acc(2) switchprocess accounting on or off
explain_acct3)
explainaccy?) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

90

explain_adijtime(3) gplain_adjtime(3)

NAME
explain_adjtime — explain adjtime(2) errors

SYNOPSIS
#include <libexplain/adijtime.h>

const char *explain_adjtime(const struct tirde delta, struct timeal * olddelta);
const char *explain_errno_adjtime(int errnum, const struciéihvfeelta, struct timeal * olddelta);
void explain_message_adjtime(char *message, int message_size, const stuatt teita, struct timeal
*olddelta);
void explain_message_errno_adjtime(char *message, int message_size, int errnum, const s@uct time
*delta, struct timeal * olddelta);
DESCRIPTION
These functions may be used to obtain explanations for errors returneddoltithe2) system call.
explain_adjtime
const char *explain_adjtime(const struct tirde delta, struct timeal * olddelta);
The explain_adjtime function is used to obtain arx@anation of an error returned by thedjtimg?2)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
delta The original delta, exactly as passed toatigimg2) system call.
olddelta The original olddelta, exactly as passed todatigimg2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddfer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

fprintf(stderr, "%s\n", explain_adjtime(delta, olddelta));
exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as tbgolain_adjtime_or_di€3) function.

explain_errno_adjtime
const char *explain_errno_adjtime(int errnum, const struciéihvieelta, struct timeal * olddelta);

The explain_errno_adjtime function is used to obtain an explanation of an error returned by the
adjtimg2) system call. The least the message will contain is the vahteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

delta The original delta, exactly as passed toatigimg2) system call.
olddelta The original olddelta, exactly as passed todtigimg2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther

91

explain_adijtime(3) gplain_adjtime(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_adjtime(err, delta,
olddelta));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.

explain_message_adjtime
void explain_message_adjtime(char *message, int message_size, const stuatt teita, struct timeal

*olddelta);
The explain_message_adjtimefunction is used to obtain an explanation of an error returned by the
adjtimg2) system call. The least the message will contain is the vakteeafor(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

delta The original delta, exactly as passed toatigimg2) system call.
olddelta The original olddelta, exactly as passed todatigimg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

{
char message[3000];
explain_message_adjtime(message, sizeof(message), delta,
olddelta);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.

explain_message_errno_adjtime
void explain_message_errno_adjtime(char *message, int message_size, int errnum, const s@uct time
*delta, struct timeal * olddelta);

Theexplain_message_errno_adjtiméunction is used to obtain axm@anation of an error returned by the
adjtimg2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

delta The original delta, exactly as passed toatgimg2) system call.

92

explain_adijtime(3) gplain_adjtime(3)

olddelta The original olddelta, exactly as passed todatigimg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_adjtime(message, sizeof(message), err,
delta, olddelta);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The aboe mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.
SEE ALSO
adjtimg2)

smoothly tune kernel clock
explain_adjtime_or_di€3)
smoothly tune kernel clock and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

93

explain_adjtime_or_die(3) xplain_adjtime_or_die(3)

NAME
explain_adjtime_or_die — smoothly tune kernel clock and report errors

SYNOPSIS
#include <libexplain/adijtime.h>

void explain_adjtime_or_die(const struct tivak* delta, struct timeal * olddelta);
int explain_adjtime_on_error(const struct tirde* delta, struct timeal * olddelta);

DESCRIPTION
The explain_adjtime_or_die function is used to call thadjtimg2) system call. On failure axganation
will be printed tostderr, obtained from thexplain_adjtimg3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_adjtime_on_error function is used to call thedjtimg2) system call. On failure an
explanation will be printed tstderr, obtained from theexplain_adjtimé&3) function, but still returns to the
caller.

delta The delta, exactly as to be passed taaifjmg2) system call.
olddelta The olddelta, exactly as to be passed tatjgmg2) system call.

RETURN VALUE
The explain_adijtime_or_die function only returns on success, sahtimg2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_adjtime_on_error function alvays returns the value return by the wrappéimg2) system
call.

EXAMPLE
Theexplain_adjtime_or_diefunction is intended to be used in a fashion similar to the following example:
explain_adjtime_or_die(delta, olddelta);

SEE ALSO
adjtimg2)
smoothly tune kernel clock
explain_adjtimg3)
explain adjtimg2) errors
ext(2) terminatehe calling process
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

94

explain_adjtime(3) explain_adjtimex(3)

NAME
explain_adijtime — explain adjtimex(2) errors

SYNOPSIS
#include <libexplain/adjtimex.h>

const char *explain_adjtimex(struct timnédata);

const char *explain_errno_adjtimex(int errnum, struct xirndata);

void explain_message_adjtimex(char *message, int message_size, strué¢idatz);

void explain_message_errno_adjtimex(char *message, int message_size, int errnum, skréidatime
DESCRIPTION

These functions may be used to obtain explanations for errors returnedabltitheX2) system call.

explain_adjtimex
const char *explain_adjtimex(struct tisnédata);
The explain_adjtimex function is used to obtain arxmanation of an error returned by thdjtimex2)

system call. The least the message will contain is @ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
data The original data, exactly as passed toatigimex2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a uifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)

fprintf(stderr, "%s\n", explain_adjtimex(data));
exit(EXIT_FAILURE);
}
The aboe mde example iswvailable pre-packaged as thgplain_adjtimex_or_di€3) function.
explain_errno_adjtimex
const char *explain_errno_adjtimex(int errnum, struct xirndata);

The explain_errno_adjtimex function is used to obtain an explanation of an error returned by the
adjtimeX2) system call. The least the message will contain is the valuetgdrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to aayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed toatigimex2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddfer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);

95

explain_adjtime(3) explain_adjtimex(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_adjtimex(err, data));
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_adjtimex_or_di€3) function.
explain_message_adjtimex

void explain_message_adjtimex(char *message, int message_size, strué¢idatz);

The explain_message_adjtimexunction is used to obtain arxmanation of an error returned by the

adjtimeX2) system call. The least the message will contain is #hgevof strerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed toatigimex2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)

{
char message[3000];
explain_message_adjtimex(message, sizeof(message), data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_adjtimex_or_di€3) function.

explain_message_errno_adjtimex
void explain_message_errno_adjtimex(char *message, int message_size, int errnum, skréidatime

The explain_message_errno_adjtimexXunction is used to obtain arxmganation of an error returned by
the adjtimex2) system call. The least the message will contain is the valskeeofor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehao global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed toatigimex2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)
{ .
int err = errno;
char message[3000];
explain_message_errno_adjtimex(message, sizeof(message), err,

96

explain_adjtime(3) explain_adjtimex(3)

data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example iswvailable pre-packaged as thgplain_adjtimex_or_di€3) function.
SEE ALSO
adjtimex2)
tune kernel clock
explain_adjtimex_or_di€3)
tune kernel clock and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

97

explain_adjtime_or_die(3) gplain_adijtimex_or_die(3)

NAME
explain_adjtimex_or_die - tune kernel clock and report errors

SYNOPSIS
#include <libexplain/adjtimex.h>
int explain_adjtimex_or_die(struct timé&data);
int explain_adjtimex_on_error(struct tin&édata);
DESCRIPTION
The explain_adjtimex_or_die function is used to call thedjtimex2) system call. On dilure an

explanation will be printed tstderr, obtained from theexplain_adjtimex3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_adjtimex_on_error function is used to call thadjtimeX2) system call. Ondilure an
explanation will be printed tstderr, obtained from thexplain_adjtimeX3) function, but still returns to the
caller.

data The data, exactly as to be passed tatjgmex2) system call.

RETURN VALUE
The explain_adjtimex_or_die function only returns on success, seltimex2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_adjtimex_on_error function alvays returns the value return by the wrappetjtimex2)
system call.

EXAMPLE
The explain_adjtimex_or_die function is intended to be used in asliion similar to the folleing
example:
int result = explain_adjtimex_or_die(data);
SEE ALSO
adjtimex2)
tune kernel clock
explain_adjtimex3)
explain adjtimexX2) errors
ext(2) terminatehe calling process
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

98

explain_bind(3) &plain_bind(3)

NAME
explain_bind — explain bind(2) errors

SYNOPSIS
#include <libexplain/bind.h>

const char *explain_bind(int fildes, const struct sockaddr *sock, addiock_addr_size);

const char *explain_errno_bind(int errnum, int fildes, const struct sockaddr *sock_ addr
sock_addr_size);

void explain_message_bind(char *message, int message_size, int fildes, const struct sockaddr *sock_addr
int sock_addr_size);

void explain_message_errno_bind(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *sock_addmnt sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnecdoidyd{Bg system call.

explain_bind
const char *explain_bind(int fildes, const struct sockaddr *sock, addiock_addr_size);
The explain_bind function is used to obtain am@anation of an error returned by thimd(2) system call.

The least the message will contain is theig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)

{
fprintf(stderr, "%s\n",
explain_bind(fildes, sock_addr, sock_addr_size));
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_bind_or_di€3) function.
fildes The original fildes, exactly as passed tolired(2) system call.

sock_addr
The original sock_addexactly as passed to tidnd(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tbittaé2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_bind
const char *explain_errno_bind(int errnum, int fildes, const struct sockaddr *sock_ addr
sock_addr_size);
The explain_errno_bind function is used to obtain arx@anation of an error returned by tbend(2)

system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)
{

int err = errno;

99

explain_bind(3) &plain_bind(3)

fprintf(stderr, "%s\n", explain_errno_bind(err,
fildes, sock_addr, sock_addr_size));
exit(EXIT_FAILURE);

}

The aboe mde example iswvailable pre-packaged as thgplain_bind_or_di€3) function.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tohired(2) system call.

sock_addr
The original sock_addexactly as passed to tlénd(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tbitta2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_bind
void explain_message_bind(char *message, int message_size, int fildes, const struct sockaddr *sock_addr
int sock_addr_size);

The explain_message_bindunction may be used to obtain an explanation of an error returned by the
bind(2) system call. The least the message will contain isaghe\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)

{
char message[3000];
explain_message_bind(message, sizeof(message),
fildes, sock_addr, sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_bind_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tohired(2) system call.

sock_addr
The original sock_addexactly as passed to tind(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tbitti€2) system call.
explain_message_errno_bind
void explain_message_errno_bind(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *sock_addmnt sock_addr_size);

100

explain_bind(3) &plain_bind(3)

The explain_message_errno_bindunction may be used to obtain axpkanation of an error returned by
the bind(2) system call. The least the message will contain is the valustirror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_bind(message, sizeof(message), err,
fildes, sock_addr, sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The aboe mde example iswvailable pre-packaged as thgplain_bind_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this

function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tohired(2) system call.

sock_addr
The original sock_addexactly as passed to tind(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tbitti2) system call.

SEE ALSO
bind(2) binda rame to a socket
explain_bind_or_di€3)
bind a name to a socket and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

101

explain_bind_or_die(3) »plain_bind_or_die(3)

NAME
explain_bind_or_die - bind a name to a socket and report errors

SYNOPSIS
#include <libexplain/bind.h>

void explain_bind_or_die(int fildes, const struct sockaddr *sock , addsock _addr_size);

DESCRIPTION
Theexplain_bind_or_diefunction is used to call thaind(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_bind3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_bind_or_die(fildes, sock_addr, sock_addr_size);

fildes The fildes, exactly as to be passed toltimel(2) system call.

sock_addr
The sock_addexactly as to be passed to thied(2) system call.

sock addr_size
The sock_addr_size, exactly as to be passed tuiridg?) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
bind(2) binda rame to a socket

explain_bind3)
explainbind(2) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

102

explain_calloc(3) gplain_calloc(3)

NAME
explain_calloc — explairalloc(3) errors

SYNOPSIS
#include <libexplain/calloc.h>

const char *explain_calloc(size_t nmemb, size_t size);
const char *explain_errno_calloc(int errnum, size_t nmemb, size_t size);
void explain_message_calloc(char *message, int message_size, size_t nmemb, size_t size);
void explain_message_errno_calloc(char *message, int message_size, int errnum, size_t nmemb, size_t
size);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedchjlab@) system call.

explain_calloc
const char *explain_calloc(size_t nmemb, size_t size);

The explain_callocfunction is used to obtain an explanation of an error returned byatloe(3) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
nmemb The original nmemb, exactly as passed toctiec(3) system call.
size The original size, exactly as passed todhkkoc(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !'=0)
{
fprintf(stderr, "%s\n", explain_calloc(nmemb, size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_calloc_or_di€3) function.

explain_errno_calloc
const char *explain_errno_calloc(int errnum, size_t nmemb, size_t size);

The explain_errno_callocfunction is used to obtain arxmganation of an error returned by thallo(3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

nmemb The original nmemb, exactly as passed toctic(3) system call.
size The original size, exactly as passed todhakoc(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

103

explain_calloc(3) gplain_calloc(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !'=0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_calloc(err, nmemb,
size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_calloc_or_di€3) function.

explain_message_calloc
void explain_message_calloc(char *message, int message_size, size_t nmemb, size_t size);

Theexplain_message_callofunction is used to obtain amm@anation of an error returned by tb&llo(3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

nmemb The original nmemb, exactly as passed toctic(3) system call.
size The original size, exactly as passed todhkkoc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errmno = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !'=0)

{
char message[3000];
explain_message_calloc(message, sizeof(message), nmemb, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_calloc_or_di€3) function.

explain_message_errno_calloc
void explain_message_errno_calloc(char *message, int message_size, int errnum, size_t nmemb, size_t
size);
The explain_message_errno_callofunction is used to obtain axmganation of an error returned by the

calloc(3) system call. The least the message will contain isahe\ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be

104

explain_calloc(3) gplain_calloc(3)

explained and this function, because méhc functions will alter the value @frrno.
nmemb The original nmemb, exactly as passed toctiec(3) system call.
size The original size, exactly as passed todhkoc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !'=0)
{ .
int err = errno;
char message[3000];
explain_message_errno_calloc(message, sizeof(message), err,
nmemb, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_calloc_or_di€3) function.

SEE ALSO
calloc(3)
Allocate and clear memory
explain_calloc_or_di€3)
Allocate and clear memory and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

105

explain_calloc_or_die(3) »plain_calloc_or_die(3)

NAME
explain_calloc_or_die - Allocate and clear memory and report errors

SYNOPSIS
#include <libexplain/calloc.h>
void *explain_calloc_or_die(size_t nmemb, size t size);
void *explain_calloc_on_error(size_t nmemb, size_t size);
DESCRIPTION
Theexplain_calloc_or_diefunction is used to call thealloc(3) system call. On failure an explanation will

be printed tostderr, obtained from theexplain_calloq3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_calloc_on_errorfunction is used to call thealloc(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_callod3) function, but still returns to the caller.

nmemb The nmemb, exactly as to be passed tc#iiec(3) system call.
size The size, exactly as to be passed toctic(3) system call.

RETURN VALUE
The explain_calloc_or_die function only returns on success, sesloc(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_calloc_on_errorfunction alvays returns the value return by the wrappatioc(3) system
call.

EXAMPLE
Theexplain_calloc_or_diefunction is intended to be used in a fashion similar to the following example:
void *result = explain_calloc_or_die(nmemb, size);

SEE ALSO
calloc(3)
Allocate and clear memory
explain_calloq3)
explain calloc(3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

106

explain_chdir(3) gplain_chdir(3)

NAME
explain_chdir — explain chdir(2) errors

SYNOPSIS
#include <libexplain/chdir.h>
const char *explain_chdir(const char *pathname);
void explain_message_chdir(char *message, int message_size, const char *pathname);
const char *explain_errno_chdir(int errnum, const char *pathname);
void explain_message_errno_chdir(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These function may be used to obtain explanatiochdif(2) errors.

explain_chdir
const char *explain_chdir(const char *pathname);
The explain_chdir function is used to obtain an explanation of an error returnedditii2) system call.

The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)

{ fprintf(stderr, '%s0, explain_chdir(pathname));
exit(EXIT_FAILURE);
}
pathname

The original pathname, exactly as passed teltti(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_chdir
const char *explain_errno_chdir(int errnum, const char *pathname);

The explain_errno_chdir function is used to obtain an explanation of an error returned dbgit{i2)
system call. The least the message will contain is the valsasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)

{
int err = errno;
fprintf(stderr, '%s0, explain_errno_chdir(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed teltti(2) system call.

107

explain_chdir(3) gplain_chdir(3)

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_chdir
void explain_message_chdir(char *message, int message_size, const char *pathname);

The explain_message_chdir function is used to obtain an explanation of an error returnedhtiy (2)e
system call. The least the message will contain is @aheevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)

char message[3000];
explain_message_chdir(message, sizeof(message), pathname);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuira been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed teltti(2) system call.

explain_message_errno_chdir
void explain_message_errno_chdir(char *message, int message_size, int errnum, const char * pathname);

The explain_message_errno_chdir function is used to obtaixpganation of an error returned by the
chdir(2) system call. The least the message will contain is the vaktesofor(errnum) , but usually
it will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_chdir(message, sizeof(message), err,
pathname);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

108

explain_chdir(3) gplain_chdir(3)

pathname
The original pathname, exactly as passed teltti(2) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

109

explain_chdir_or_die(3) »plain_chdir_or_die(3)

NAME
explain_chdir_or_die — change working directory and report errors

SYNOPSIS
#include <libexplain/chdir.h>

void explain_chdir_or_die(const char * pathname);
DESCRIPTION
The explain_chdir_or_die function is used to call thehdir(2) system call. On failure an explanation will

be printed tostderr, obtained from explain_chdi3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_chdir_or_die(pathname);

pathname
The pathname, exactly as to be passed totitie(2) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

110

explain_chmod(3) xplain_chmod(3)

NAME
explain_chmod - explain chmod(2) errors

SYNOPSIS
#include <libexplain/chmod.h>
const char *explain_chmod(const char *pathname, int mode);
const char *explain_errno_chmod(int errnum, const char *pathname, int mode);
void explain_message_chmod(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_chmod(char *message, int message_size, int errnum, const char *pathname,
int mode);

DESCRIPTION
These functions may be used to otain explanationshfood2) errors.

explain_chmod
const char *explain_chmod(const char *pathname, int mode);

The explain_chmod function is used to obtain golanation of an error returned by tbleamod?2) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname, mode) < 0)

{ fprintf(stderr, '%s0, explain_chmod(pathname, mode));
exit(EXIT_FAILURE);
}
pathname

The original pathname, exactly as passed telihred?2) system call.
mode The original mode, exactly as passed todtmaod2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_chmod
const char *explain_errno_chmod(int errnum, const char *pathname, int mode);

The explain_errno_chmod function is used to obtainxghaaation of an error returned by tblemod?2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname) < 0)

{
int err = errno;
fprintf(stderr, '%s0, explain_errno_chmod(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

111

explain_chmod(3) xplain_chmod(3)

pathname
The original pathname, exactly as passed tehihreod?2) system call.

mode The original mode, exactly as passed todtmaod2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message _chmod
void explain_message_chmod(char *message, int message_size, const char *pathname, int mode);

The explain_message_chmod function is used to obtairpdanation of an error returned by ttlanod?2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname, mode) < 0)

{
char message[3000];
explain_message_chmod(message, sizeof(message), pathname, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed telihreod?2) system call.

mode The original mode, exactly as passed todtmaod2) system call.

explain_message_errno_chmod
void explain_message_errno_chmod(char * message, int message_size, int errnum, const char *pathname,
int mode);

The eplain_message_errno_chmod function is used to obtain an explanation of an error returned by the
chmod?2) system call. The least the message will contain is the valstresfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname) < 0)

int err = errno;
char message[3000];
explain_message_errno_chmod(message, sizeof(message), err,
pathname);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

112

explain_chmod(3) xplain_chmod(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from etmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed telihred?2) system call.
mode The original mode, exactly as passed todtmaod2) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

113

explain_chmod_or_die(3) x@lain_chmod_or_die(3)

NAME
explain_chmod_or_die — change permissions of a file and report errors

SYNOPSIS
#include <libexplain/chmod.h>
void explain_chmod_or_die(const char *pathname, int mode);

DESCRIPTION
The explain_chmod_or_die function is used to calldhmod?2) system call. On failure arxglanation

wiil be printed to stderrobtained fromexplain_chmod@3), and the the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_chmod_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed totimed?2) system call.

mode The mode, exactly as to be passed tcctimod2) system call.

Returns: This function only returns on successOn failure, prints an explanation and
exit(EXIT_FAILURE)s.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

114

explain_chavn(3) eplain_chown(3)

NAME
explain_chown — explain chown(2) errors

SYNOPSIS
#include <libexplain/chown.h>

const char *explain_chown(const char *pathname, int ownegroup);

const char *explain_errno_chown(int errnum, const char *pathname, int,aningnoup);

void explain_message_chum(char *message, int message_size, const char *pathnameywnet, ont
group);

void explain_message_errno_chkio(char *message, int message_size, int errnum, const char *pathname,
int owner int group);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchgwing?) system call.

explain_chown
const char *explain_chown(const char *pathname, int owniegroup);

The explain_chownfunction is used to obtain ax@anation of an error returned by tblewn(2) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

fprintf(stderr, "%s\n", explain_chown(pathname, owner, group));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed telbe/n(2) system call.

owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todh@mvn(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_chown
const char *explain_errno_chown(int errnum, const char *pathname, int,aningnoup);

The explain_errno_chownfunction is used to obtain an explanation of an error returned hyhtie(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_chown(err, pathname, owner,
group));
exit(EXIT_FAILURE);
}

115

explain_chavn(3) eplain_chown(3)

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed telbe/n(2) system call.

owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todimvn(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_chown
void explain_message chum(char *message, int message_size, const char *pathnameywnet, ont

group);
The explain_message _chowfunction may be used to obtain an explanation of an error returned by the
chown(2) system call.The least the message will contain is the valugtrefror(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

char message[3000];

explain_message_chown(message, sizeof(message), pathname, owner, group);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed telbe/n(2) system call.

owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todihmvn(2) system call.

explain_message_errno_chown
void explain_message_errno_chkio(char *message, int message_size, int errnum, const char *pathname,
int owner int group);

Theexplain_message_errno_chowfunction may be used to obtain an explanation of an error returned by
the chown(2) system call. The least the message will contain is the valseofor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

int err = errno;

char message[3000];

explain_message_errno_chown(message, sizeof(message), err,
pathname, owner, group);

116

explain_chavn(3) eplain_chown(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.
messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname

The original pathname, exactly as passed telbe/n(2) system call.
owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todi@mvn(2) system call.

SEE ALSO
chown(2)
change ownership of a file
explain_chown_or_di€3)
change ownership of a file and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

117

explain_chavn_or_die(3) gplain_chown_or_die(3)

NAME
explain_chown_or_die — change ownership of a file and report errors

SYNOPSIS
#include <libexplain/chown.h>

void explain_chown_or_die(const char *pathname, int oninegroup);
DESCRIPTION
The explain_chown_or_diefunction is used to call thehown(2) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_chow(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_chown_or_die(pathname, owner, group);

pathname
The pathname, exactly as to be passed totinen(2) system call.

owner The ownerexactly as to be passed to tti®wn(2) system call.
group The group, exactly as to be passed toctimevn(2) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
chown(2)
change ownership of a file
explain_chowif3)
explain chown(2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

118

explain_chroot(3) gplain_chroot(3)

NAME
explain_chroot — explain chroot(2) errors

SYNOPSIS
#include <libexplain/chroot.h>

const char *explain_chroot(const char *pathname);

const char *explain_errno_chroot(int errnum, const char *pathname);

void explain_message_chroot(char *message, int message_size, const char *pathname);

void explain_message_errno_chroot(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchyotii€?) system call.

explain_chroot
const char *explain_chroot(const char *pathname);

The explain_chroot function is used to obtain ammanation of an error returned by tbleroot(2) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed telitaot(2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)

fprintf(stderr, "%s\n", explain_chroot(pathname));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_chroot_or_di€3) function.

explain_errno_chroot
const char *explain_errno_chroot(int errnum, const char *pathname);

The explain_errno_chroot function is used to obtain an explanation of an error returned bshtbet(2)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed teliteot(2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

119

explain_chroot(3) gplain_chroot(3)

if (chroot(pathname) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_chroot(err, pathname));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_chroot_or_di€3) function.

explain_message_chroot
void explain_message_chroot(char *message, int message_size, const char *pathname);

The explain_message_chroofunction is used to obtain an explanation of an error returned by the
chroot(2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed telitaot(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)

{
char message[3000];
explain_message_chroot(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_chroot_or_di€3) function.

explain_message_errno_chroot
void explain_message_errno_chroot(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_chrodfunction is used to obtain axpmanation of an error returned by the
chroot(2) system call. The least the message will contain isghe \ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained froretire global variable just before this

function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed teltaot(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)

int err = errno;

char message[3000];
explain_message_errno_chroot(message, sizeof(message), err,

120

explain_chroot(3) gplain_chroot(3)

pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_chroot_or_di€3) function.

SEE ALSO
chroot(2)
change root directory
explain_chroot_or_di€3)
change root directory and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

121

explain_chroot_or_die(3) xplain_chroot_or_die(3)

NAME
explain_chroot_or_die — change root directory and report errors

SYNOPSIS
#include <libexplain/chroot.h>

void explain_chroot_or_die(const char *pathname);
int explain_chroot_on_error(const char *pathname))

DESCRIPTION
The explain_chroot_or_die function is used to call thehroot(2) system call. On failure arxglanation
will be printed tostderr, obtained from theexplain_chroo{3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_chroot_on_error function is used to call thehroot(2) system call. On failure axganation
will be printed tostderr, obtained from thexplain_chroo(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed tottlo®t(2) system call.

RETURN VALUE
The explain_chroot_or_die function only returns on success, sgeoot(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_chroot_on_error function alvays returns the value return by the wrappgamot(2) system
call.

EXAMPLE
Theexplain_chroot_or_diefunction is intended to be used in a fashion similar to the following example:
explain_chroot_or_die(pathname);

SEE ALSO
chroot(2)
change root directory
explain_chroot(3)
explain chroot(2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

122

explain_close(3) %plain_close(3)

NAME
explain_close - explain close(2) errors

SYNOPSIS
#include <libexplain/close.h>

const char *explain_close(int fildes);

const char *explain_errno_close(int errnum, int fildes);

void explain_message_close(char *message, int message_size, int fildes);

void explain_message_errno_close(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchys#® system call.

explain_close
const char *explain_close(int fildes);

Theexplain_closefunction is used to obtain an explanation of an error returned lyab#2) system call.
The least the message will contain is theig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{
fprintf(stderr, "%s\n", explain_close(fildes));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed toclesg?2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_close
const char *explain_errno_close(int errnum, int fildes);

The explain_errno_closefunction is used to obtain an explanation of an error returned bgldbe?2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)

int err = errno;
fprintf(stderr, "%s\n", explain_close(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from emao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toclmseg?2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

123

explain_close(3) %plain_close(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_close
void explain_message_close(char *message, int message_size, int fildes);

The explain_message_closkinction is used to obtain axmanation of an error returned by tbl®sg?2)
system call. The least the message will contain is @aheevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)

{
char message[3000];
explain_message_close(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toclesg?2) system call.

explain_message_errno_close
void explain_message_errno_close(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_clostinction is used to obtain axmanation of an error returned by the
closg?) system call. The least the message will contain isghe\ofstrerror(errnum) , but usually
it will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_close(message, sizeof(message), err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toclosg?2) system call.

SEE ALSO
close close a file descriptor

explain_close_or_die
close a file descriptor and report errors

124

explain_close(3) %plain_close(3)

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

125

explain_closedir(3) x¥plain_closedir(3)

NAME
explain_closedir — explain closedir(3) errors

SYNOPSIS
#include <libexplain/closedir.h>

const char *explain_closedir(DIR *dir);

const char *explain_errno_closedir(int errnum, DIR *dir);

void explain_message_closedir(char *message, int message_size, DIR *dir);

void explain_message_errno_closedir(char *message, int message_size, int errnum, DIR *dir);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchystai(3) system call.

explain_closedir
const char *explain_closedir(DIR *dir);

The explain_closedir function is used to obtain arxm@anation of an error returned by thksedi(3)
system call. The least the message will contain is @aheevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

{ fprintf(stderr, "%s\n", explain_closedir(dir));
exit(EXIT_FAILURE);
}
dir The original dir exactly as passed to tletosedi(3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_closedir
const char *explain_errno_closedir(int errnum, DIR *dir);

The explain_errno_closedir function is used to obtain an explanation of an error returned by the
closedi3) system call. The least the message will contain is the vals&asfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_closedir(err, dir));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tletosedi(3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

126

explain_closedir(3) x¥plain_closedir(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_closedir
void explain_message_closedir(char *message, int message_size, DIR *dir);

The explain_message_closediunction may be used to obtain axpanation of an error returned by the
closedi(3) system call. The least the message will contain is #hegevof strerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

{
char message[3000];
explain_message_closedir(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

dir The original dir exactly as passed to tletosedi(3) system call.

explain_message_errno_closedir
void explain_message_errno_closedir(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_closediunction may be used to obtain axpknation of an error returned
by theclosedi(3) system call.The least the message will contain is the valustr@iror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_closedir(message, sizeof(message), err, dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to @@l code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tletosedi(3) system call.
SEE ALSO
closedi(3)

close a directory

127

explain_closedir(3) x¥plain_closedir(3)

explain_closedir_or_di€3)
close a directory and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

128

explain_closedir_or_die(3) x@lain_closedir_or_die(3)

NAME
explain_closedir_or_die — close a directory and report errors

SYNOPSIS
#include <libexplain/closedir.h>
void explain_closedir_or_die(DIR *dir);
DESCRIPTION
Theexplain_closedir_or_diefunction is used to call thelosedi(3) system call.On failure an gplanation

will be printed tostderr, obtained fromexplain_closedif3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_closedir_or_die(dir);
dir The dir, exactly as to be passed to ttlesedi(3) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
closedi(3)
close a directory
explain_closedi(3)
explain closedi(3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

129

explain_close_or_die(3) xplain_close_or_die(3)

NAME
explain_close_or_die — close a file descriptor and report errors

SYNOPSIS
#include <libexplain/close.h>

void explain_close_or_die(int fildes);

DESCRIPTION
The explain_close_or_digunction is used to call thelos€2) system call. On failure an explanation will
be printed tostderr, obtained from explain_clos€3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_close_or_die(fildes);

fildes The fildes, exactly as to be passed todlos€?2) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
clos€?) closea file descriptor

explain_closé3)
explain clos€?) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

130

explain_connect(3) »plain_connect(3)

NAME
explain_connect — explain connect(2) errors

SYNOPSIS
#include <libexplain/connect.h>

const char *explain_connect(int fildes, const struct sockaddr *sery_iatiderv_addr_size);

const char *explain_errno_connect(int errnum, int fildes, const struct sockaddr *serviafddr
serv_addr_size);

void explain_message_connect(char *message, int message_size, int fildes, const struct sockaddr
*serv_addrint serv_addr_size);

void explain_message_errno_connect(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *serv_addint serv_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedcoyileef?) system call.

explain_connect
const char *explain_connect(int fildes, const struct sockaddr *sery_iatiderv_addr_size);

The explain_connectfunction is used to obtain arxganation of an error returned by tkennecf2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)

{
fprintf(stderr, "%s\n", explain_connect(fildes, serv_addr,
serv_addr_size));
exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed to¢banec{?) system call.

serv_addr
The original serv_addexactly as passed to tlhennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed toaheec{2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_connect
const char *explain_errno_connect(int errnum, int fildes, const struct sockaddr *serviafddr
serv_addr_size);

The explain_errno_connect function is used to obtain an explanation of an error returned by the
connecf2) system call. The least the message will contain is the vals&asfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)
{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_connect(err,
fildes, serv_addr, serv_addr_size));

131

explain_connect(3) »plain_connect(3)

exit(EXIT_FAILURE);
}

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed to¢banec{?) system call.

serv_addr
The original serv_addexactly as passed to tlhennec2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed toaheec{2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_connect
void explain_message_connect(char *message, int message_size, int fildes, const struct sockaddr
*serv_addrint serv_addr_size);

The explain_message_connedtinction may be used to obtain axpknation of an error returned by the
connecf?) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)

{
char message[3000];
explain_message_connect(message, sizeof(message),
fildes, serv_addr, serv_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to¢banec{?) system call.

serv_addr
The original serv_addexactly as passed to tlhennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed todaheec{2) system call.

explain_message_errno_connect
void explain_message_errno_connect(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *serv_addint serv_addr_size);

The explain_message_errno_connedtinction may be used to obtain axpkanation of an error returned
by theconnecf2) system call. The least the message will contain is ahee\ofstrerror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

132

explain_connect(3) »plain_connect(3)

if (connect(fildes, serv_addr, serv_addr_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_connect(message, sizeof(message), err,
fildes, serv_addr, serv_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed to¢banec{?) system call.

serv_addr
The original serv_addexactly as passed to tlhennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed todaheec{2) system call.
SEE ALSO
connecf?)

initiate a connection on a socket
explain_connect_or_di@)
initiate a connection on a socket and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

133

explain_connect_or_die(3) xplain_connect_or_die(3)

NAME
explain_connect_or_die - initiate a connection on a socket and report errors

SYNOPSIS
#include <libexplain/connect.h>

void explain_connect_or_die(int fildes, const struct sockaddr *serv, iatlderv_addr_size);
DESCRIPTION
Theexplain_connect_or_digfunction is used to call theonnecf2) system call.On failure an gplanation

will be printed tostderr, obtained fromexplain_conned), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_connect_or_die(fildes, serv_addr, serv_addr_size);
fildes The fildes, exactly as to be passed todtenect?) system call.

serv_addr
The serv_addexactly as to be passed to t@nnecf2) system call.

serv_addr_size
The serv_addr_size, exactly as to be passed motheecf2) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
connecf?)

initiate a connection on a socket
explain_connedf)

explainconnecf?) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

134

explain_creat(3) xplain_creat(3)

NAME
explain_creat — explain creat(2) errors

SYNOPSIS
#include <libexplain/creat.h>

const char *explain_creat(const char *pathname, int mode);

const char *explain_errno_creat(int errnum, const char *pathname, int mode);

void explain_message_creat(char *message, int message_size, const char *pathname, int mode);

void explain_message_errno_creat(char *message, int message_size, int errnum, const char *pathname, int
mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchgat{®) system call.

explain_creat
const char *explain_creat(const char *pathname, int mode);

Theexplain_creatfunction is used to obtain an explanation of an error returned tyyah€?) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

{ fprintf(stderr, "%s\n", explain_creat(pathname, mode));
exit(EXIT_FAILURE);
}
pathname

The original pathname, exactly as passed teia{(2) system call.
mode The original mode, exactly as passed todfeai2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_creat
const char *explain_errno_creat(int errnum, const char *pathname, int mode);

The explain_errno_creat function is used to obtain arxmganation of an error returned by theeai(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_creat(err, pathname, mode));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ajl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

135

explain_creat(3) xplain_creat(3)

pathname
The original pathname, exactly as passed teia{(2) system call.

mode The original mode, exactly as passed todfeai2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_creat
void explain_message_creat(char *message, int message_size, const char *pathname, int mode);

The explain_message_creafunction may be used to obtain an explanation of an error returned by the
creaf(2) system call. The least the message will contain is the valsteenfor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

{
char message[3000];
explain_message_creat(message, sizeof(message), pathname, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed teia{(2) system call.

mode The original mode, exactly as passed todfeai2) system call.

explain_message_errno_creat
void explain_message_errno_creat(char *message, int message_size, int errnum, const char *pathname, int
mode);

The explain_message_errno_credunction may be used to obtain axpanation of an error returned by
the creaf(2) system call. The least the message will contain is a@hge\vof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

int err = errno;

char message[3000];

explain_message_errno_creat(message, sizeof(message), err, pathname,
mode);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

136

explain_creat(3) xplain_creat(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained froretire global variable just before this

function is called. This is necessary if you need to @ajl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed teia{(2) system call.
mode The original mode, exactly as passed todfeai2) system call.
SEE ALSO
creai(2) openand possibly create a file or device
explain_creat_or_di€3)
create and open a file and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

137

explain_creat_or_die(3) xplain_creat_or_die(3)

NAME
explain_creat_or_die — create and open a file creat and report errors

SYNOPSIS
#include <libexplain/creat.h>

void explain_creat_or_die(const char *pathname, int mode);

DESCRIPTION
The explain_creat_or_diefunction is used to call thereaf2) system call.On failure an explanation will

be printed tostderr, obtained from explain_creaf3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_creat_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed torded(2) system call.

mode The mode, exactly as to be passed tacthai2) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
creai(2) openand possibly create a file or device

explain_creat3)
explaincreat(2) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

138

explain_dirfd(3) eplain_dirfd(3)

NAME
explain_dirfd — explain dirfd(3) errors

SYNOPSIS

#include <libexplain/dirfd.h>

const char *explain_dirfd(DIR *dir);

const char *explain_errno_dirfd(int errnum, DIR *dir);

void explain_message_dirfd(char *message, int message_size, DIR *dir);

void explain_message_errno_dirfd(char *message, int message_size, int errnum, DIR *dir);
DESCRIPTION

These functions may be used to obtain explanations for errors returneddinyd{® system call.

explain_dirfd
const char *explain_dirfd(DIR *dir);
Theexplain_dirfd function is used to obtain an explanation of an error returned lmjrtd€3) system call.

The least the message will contain is th&ig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
dir The original dir exactly as passed to tlokirfd(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)

fprintf(stderr, "%s\n", explain_dirfd(dir));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

explain_errno_dirfd
const char *explain_errno_dirfd(int errnum, DIR *dir);

The explain_errno_dirfd function is used to obtain axmanation of an error returned by tdefd(3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from emo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @&frrno.

dir The original dir exactly as passed to tlokirfd(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a tdfer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);

139

explain_dirfd(3) eplain_dirfd(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_dirfd(err, dir));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

explain_message_dirfd
void explain_message_dirfd(char *message, int message_size, DIR *dir);
The explain_message_dirfdunction is used to obtain an explanation of an error returned byirfld¢3)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

dir The original dir exactly as passed to tlokrfd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)

{
char message[3000];
explain_message_dirfd(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

explain_message_errno_dirfd
void explain_message_errno_dirfd(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_dirfdfunction is used to obtain axmganation of an error returned by the
dirfd(3) system call. The least the message will contain isghe \ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tlokrfd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_dirfd(message, sizeof(message), err,

140

explain_dirfd(3) eplain_dirfd(3)

dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

SEE ALSO
dirfd(3) getdirectory stream file descriptor
explain_dirfd_or_di€3)
get directory stream file descriptor and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

141

explain_dirfd_or_die(3) xplain_dirfd_or_die(3)

NAME
explain_dirfd_or_die — get directory stream file descriptor and report errors

SYNOPSIS
#include <libexplain/dirfd.h>
int explain_dirfd_or_die(DIR *dir);
int explain_dirfd_on_error(DIR *dir);
DESCRIPTION
The explain_dirfd_or_die function is used to call theirfd(3) system call. On failure an explanation will

be printed tcstderr, obtained from thexplain_dirfd(3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_dirfd_on_error function is used to call thdirfd(3) system call. Ondflure an gplanation
will be printed tostderr, obtained from thexplain_dirfd(3) function, but still returns to the caller.

dir The dir, exactly as to be passed to tthefd(3) system call.

RETURN VALUE
The explain_dirfd_or_die function only returns on success, sk#d(3) for more information. Oraflure,
prints an explanation and exits, it does not return.

The explain_dirfd_on_error function alvays returns thealue return by the wrappetirfd(3) system call.

EXAMPLE
Theexplain_dirfd_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_dirfd_or_die(dir);
SEE ALSO
dirfd(3) getdirectory stream file descriptor
explain_dirfd(3)
explaindirfd(3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

142

explain_dup2(3) gplain_dup2(3)

NAME

explain_dup?2 - explain dup2(2) errors

SYNOPSIS

#include <libexplain/dup2.h>

const char *explain_dup?2(int oldfd, int newfd);

const char *explain_errno_dup?2(int errnum, int oldfd, int newfd);

void explain_message_dup2(char *message, int message_size, int oldfd, int newfd);

void explain_message_errno_dup2(char *message, int message_size, int errnum, int oldfd, int newfd);

DESCRIPTION

These functions may be used to obtain explanations for errors returneddop&®) system call.

explain_dup2

const char *explain_dup?2(int oldfd, int newfd);

The explain_dup?2 function is used to obtain an explanation of an error returned bguh&2) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)

{
fprintf(stderr, "%s\n", explain_dup2(oldfd, newfd));
exit(EXIT_FAILURE);

}
oldfd The original oldfd, exactly as passed to dop22) system call.

newfd The original newfd, exactly as passed todbpZ2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_dup?2

const char *explain_errno_dup?2(int errnum, int oldfd, int newfd);

The explain_errno_dup2 function is used to obtain arxm@anation of an error returned by tdap2a?2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_dup2(err, oldfd, newfd));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from emo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

oldfd The original oldfd, exactly as passed to dopZ2) system call.
newfd The original newfd, exactly as passed todbp22) system call.

143

explain_dup2(3) gplain_dup2(3)

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_dup2
void explain_message_dup2(char *message, int message_size, int oldfd, int newfd);
The explain_message_dup2unction may be used to obtain an explanation of an error returned by the

dup42) system call. The least the message will contain is the valsteenfor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)

char message[3000];

explain_message_dup2(message, sizeof(message), oldfd, newfd);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

oldfd The original oldfd, exactly as passed to dopZ2) system call.
newfd The original newfd, exactly as passed todbp22) system call.

explain_message_errno_dup2
void explain_message_errno_dup2(char *message, int message_size, int errnum, int oldfd, int newfd);
The explain_message_errno_dupfunction may be used to obtain axpkanation of an error returned by

the dupZ2) system call. The least the message will contain is @hgevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_dup2(message, sizeof(message), err, oldfd, newfd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @@l code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

oldfd The original oldfd, exactly as passed to dop22) system call.

144

explain_dup2(3) gplain_dup2(3)

newfd The original newfd, exactly as passed todbp22) system call.

SEE ALSO
dup22) duplicatea file descriptor
explain_dup2_or_di€3)
duplicate a file descriptor and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

145

explain_dup2_or_die(3) xplain_dup2_or_die(3)

NAME
explain_dup2_or_die — duplicate a file descriptor and report errors

SYNOPSIS
#include <libexplain/dup2.h>

void explain_dup2_or_die(int oldfd, int newfd);
DESCRIPTION
The explain_dup2_or_diefunction is used to call theupa2) system call.On failure an explanation will

be printed tostderr, obtained from explain_dupZ3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_dup2_or_die(oldfd, newfd);

oldfd The oldfd, exactly as to be passed todbpZ2) system call.
newfd The newfd, exactly as to be passed todingZ2) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
dup22) duplicatea file descriptor

explain_dupZ3)
explaindup22) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

146

explain_dup(3) gplain_dup(3)

NAME
explain_dup — explain dup(2) errors

SYNOPSIS
#include <libexplain/dup.h>

const char *explain_dup(int fildes);

const char *explain_errno_dup(int errnum, int fildes);

void explain_message_dup(char *message, int message_size, int fildes);

void explain_message_errno_dup(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddoyp@jesystem call.

explain_dup
const char *explain_dup(int fildes);

The explain_dup function is used to obtain axmanation of an error returned by tep2) system call.
The least the message will contain is theig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{
fprintf(stderr, "%s\n", explain_dup(fildes));
exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed todg(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_dup
const char *explain_errno_dup(int errnum, int fildes);

Theexplain_errno_dup function is used to obtain am@anation of an error returned by ttep(2) system
call. Theleast the message will contain is the valustogrror(errnum) , but usually it will do much
better and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_dup(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from emao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todg(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

147

explain_dup(3) gplain_dup(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.
explain_message_dup
void explain_message_dup(char *message, int message_size, int fildes);
The explain_message_dugunction may be used to obtain arpination of an error returned by the

dup(2) system call.The least the message will contain is the valugtrefrror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)

{
char message[3000];
explain_message_dup(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todhg(2) system call.

explain_message_errno_dup
void explain_message_errno_dup(char *message, int message_size, int errnum, int fildes);
The explain_message_errno_dugunction may be used to obtain an explanation of an error returned by

the dup(2) system call. The least the message will contain is the valustedrror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_dup(message, sizeof(message), err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todg(2) system call.

SEE ALSO
dup(2) duplicatea file descriptor

explain_dup_or_di€3)
duplicate a file descriptor and report errors

148

explain_dup(3) gplain_dup(3)

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

149

explain_dup_or_die(3) »lain_dup_or_die(3)

NAME
explain_dup_or_die — duplicate a file descriptor and report errors

SYNOPSIS
#include <libexplain/dup.h>

void explain_dup_or_die(int fildes);

DESCRIPTION
Theexplain_dup_or_diefunction is used to call theup(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_dug3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_dup_or_die(fildes);

fildes The fildes, exactly as to be passed todbg2) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
dup(2) duplicatea file descriptor

explain_dug(3)
explaindup(2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

150

explain_eventfd(3) explain_eventfd(3)

NAME
explain_eventfd — explain gentfd(2) errors

SYNOPSIS
#include <libexplainfeentfd.h>
const char *explain ventfd(unsigned int initval, int flags);
const char *explain_errnoventfd(int errnum, unsigned int initval, int flags);
void explain_messageventfd(char *message, int message_size, unsigned int initval, int flags);
void explain_message_errnaeatfd(char *message, int message_size, int errnum, unsigned int initval, int
flags);
DESCRIPTION
These functions may be used to obtain explanations for errors returnecdebgritid?2) system call.

explain_eventfd
const char *explain ventfd(unsigned int initval, int flags);

Theexplain_eventfd function is used to obtain amm@anation of an error returned by tentfd2) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
initval The original initval, exactly as passed to #éventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a dfer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

fprintf(stderr, "%s\n", explain_eventfd(initval, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_eventfd_or_di@) function.

explain_errno_eventfd
const char *explain_errnoventfd(int errnum, unsigned int initval, int flags);

Theexplain_errno_eventfd function is used to obtain am@anation of an error returned by tbentfd2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

initval The original initval, exactly as passed to #éventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther

151

explain_eventfd(3) explain_eventfd(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_eventfd(err, initval,
flags));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_eventfd_or_di@) function.

explain_message entfd
void explain_messageventfd(char *message, int message_size, unsigned int initval, int flags);

The explain_message ventfd function is used to obtain an explanation of an error returned by the
ewentfd2) system call. The least the message will contain isghee \ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

initval The original initval, exactly as passed to #éventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

{
char message[3000];
explain_message_eventfd(message, sizeof(message), initval,
flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_eventfd_or_di@®) function.

explain_message_errno \entfd

void explain_message_errnaeatfd(char *message, int message_size, int errnum, unsigned int initval, int
flags);

The explain_message_errno ventfd function is used to obtain amm@anation of an error returned by the
ewentfd2) system call. The least the message will contain is the vakigeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

152

explain_eventfd(3) explain_eventfd(3)

initval The original initval, exactly as passed to #éventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_eventfd(message, sizeof(message), err,
initval, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as thglain_eventfd_or_di@) function.

SEE ALSO
ewentfd2)
create a file descriptor fowent notification
explain_eventfd_or_di@)
create a file descriptor fowent notification and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

153

explain_eventfd_or_die(3) gplain_eventfd_or_die(3)

NAME
explain_eventfd_or_die — createvent notify file descriptor and report errors

SYNOPSIS
#include <libexplainfeentfd.h>
int explain_eentfd_or_die(unsigned int initval, int flags);
int explain_eentfd_on_error(unsigned int initval, int flags);
DESCRIPTION
The explain_eventfd_or_die function is used to call theventfd2) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_eventf@) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_eventfd_on_error function is used to call thewntfd2) system call. On failure an
explanation will be printed tgtderr, obtained from theexplain_eventf3) function, it still returns to the
caller.

initval ~ The initval, exactly as to be passed toekentfd2) system call.
flags The flags, exactly as to be passed toeemtfd2) system call.

RETURN VALUE

The explain_eventfd_or_die function only returns on success, saentfd2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_eventfd_on_error function alvays returns the value return by the wrappsehtfd2) system
call.

EXAMPLE
Theexplain_eventfd_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_eventfd_or_die(initval, flags);

SEE ALSO
ewentfd2)
create a file descriptor fowvent notification

explain_eventf¢3)
explain eventfd2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

154

explain_eeclp(3) explain_execlp(3)

NAME
explain_eeclp — explainexeclp(3) errors

SYNOPSIS
#include <libexplain/eeclp.h>

const char *explaineclp(, ...);
const char *explain_errnoxeclp(int errnum, , ...);
void explain_messagexeclp(char *message, int message_size, , ...);

void explain_message_errnxeelp(char *message, int message_size, int errnum, , ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedebydip) system call.

explain_execlp
const char *explaineclp(, ...);

The explain_execlpfunction is used to obtain an explanation of an error returned Bl (3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a uifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)

fprintf(stderr, "%s\n", explain_execlp());
exit(EXIT_FAILURE);

}
The abee mde example iswvailable pre-packaged as thgplain_execlp_or_dig) function.

explain_errno_execlp
const char *explain_errnoxeclp(int errnum, , ...);

The explain_errno_execlpfunction is used to obtain axmanation of an error returned by tbreclp(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execlp(err,));
exit(EXIT_FAILURE);

155

explain_eeclp(3) explain_execlp(3)

}
The abee mde example iswvailable pre-packaged as thgplain_execlp_or_dig) function.

explain_message_execlp
void explain_messagexeclp(char *message, int message_size, , ...);

The explain_message_execlfunction is used to obtain an explanation of an error returned by the
execlp(3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

char message[3000];
explain_message_execlp(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_execlp_or_dig) function.

explain_message_errno_execlp
void explain_message_errnxeelp(char *message, int message_size, int errnum, , ...);

The explain_message_errno_execlunction is used to obtain an explanation of an error returned by the
execlp(3) system call. The least the message will contain isghe \ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from emo global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)

{
int err = errno;
char message[3000];
explain_message_errno_execlp(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_execlp_or_dig) function.

SEE ALSO
execlp(3)
execute a file

156

explain_eeclp(3) explain_execlp(3)

explain_execlp_or_di@)
execute a file and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

157

explain_execlp_or_die(3) gplain_eeclp_or_die(3)

NAME
explain_eeclp_or_die — gecute a file and report errors

SYNOPSIS
#include <libexplain/eeclp.h>
void explain_eaeclp_or_die(, ...);
int explain_aeclp_on_errory(, ...);
DESCRIPTION
The explain_execlp_or_diefunction is used to call thexeclp(3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_execlf3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_execlp_on_errorfunction is used to call thexeclp(3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_execl3) function, but still returns to the caller.

RETURN VALUE
The explain_execlp_or_diefunction only returns on success, seclp3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_execlp_on_errorfunction alays returns the value return by the wrapgseclp(3) system
call.

EXAMPLE
Theexplain_execlp_or_didunction is intended to be used in a fashion similar to the following example:
explain_execlp_or_die();

SEE ALSO
execlp(3)
execute a file

explain_execl3)
explain execlp(3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

158

explain_execv(3) explain_execv(3)

NAME
explain_eecv — explainexecy3) errors

SYNOPSIS
#include <libexplainfeecv.h>

const char *explain »&cv(const char *pathname, char *const*argv);

const char *explain_errnoxecv(int errnum, const char *pathname, char *const*argv);

void explain_messagexecv(char *message, int message_size, const char *pathname, char *const*argv);
void explain_message_errnxeev(char *message, int message_size, int errnum, const char *pathname,
char *const*argv);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedebsya®) system call.

explain_execv
const char *explain »&cv(const char *pathname, char *const*argv);

The explain_execvfunction is used to obtain axm@anation of an error returned by threcy3) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesec\y3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)

fprintf(stderr, "%s\n", explain_execv(pathname, argv));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tbgplain_execv_or_di@) function.

explain_errno_execv
const char *explain_errnoxecv(int errnum, const char *pathname, char *const*argv);

The explain_errno_execvfunction is used to obtain axmganation of an error returned by thaecy3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from elmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesec\y3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

159

explain_execv(3) explain_execv(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execv(err, pathname,
argv));
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre—packaged as tegplain_execv_or_di8) function.

explain_message_execv
void explain_messagexecv(char *message, int message_size, const char *pathname, char *const*argv);

The explain_message_exedunction is used to obtain an explanation of an error returned bssetlog3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesec\y3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)

char message[3000];
explain_message_execv(message, sizeof(message), pathname,
argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre—packaged as tbgplain_execv_or_di@) function.

explain_message_errno_execv

void explain_message_errnxeev(char *message, int message_size, int errnum, const char *pathname,
char *const*argv);

The explain_message_errno_exedunction is used to obtain axpmanation of an error returned by the
exec\(3) system call. The least the message will contain is the vakieeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from eéhmao global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

160

explain_execv(3) explain_execv(3)

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesec\y3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_execv(message, sizeof(message), err,
pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tbgplain_execv_or_di@) function.
SEE ALSO
exec\(3) execute a file
explain_execv_or_di@)
execute a file and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2012 Peter Miller

161

explain_execve(3) eplain_eecve(3)

NAME
explain_eecve — explain execve(2) errors

SYNOPSIS
#include <libexplainfeecve.h>

const char *explain x@cve(const char *pathname, const char *const *amgnst char *const *envp);

const char *gplain_errno_recve(int errnum, const char *pathname, const char *congjvaonst char

*const *envp);

void explain_messagexecve(char *message, int message_size, const char *pathname, const char *const
*argv, const char *const *envp);

void explain_message_errnakeeve(char *message, int message_size, int errnum, const char *pathname,
const char *const *argwonst char *const *envp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedebya¥e€?) system call.

explain_execve
const char *explain »@cve(const char *pathname, const char *const *amgnst char *const *envp);

The explain_execvedunction is used to obtain an explanation of an error returned tBstiogd?2) system
call. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
fprintf(stderr, "%s\n", explain_execve(pathname, argv, envp));
exit(EXIT_FAILURE);

pathname
The original pathname, exactly as passed t@xevg?2) system call.

argv The original argvexactly as passed to tlesecve?) system call.
envp The original envp, exactly as passed todkexve?2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_execve
const char *gplain_errno_recve(int errnum, const char *pathname, const char *congfvaonst char
*const *envp);

The explain_errno_execvefunction is used to obtain axmanation of an error returned by terecvg?)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execve(err, pathname, argv, envp));
exit(EXIT_FAILURE);

errnum The error @lue to be decoded, usually obtained from emao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

162

explain_execve(3) eplain_eecve(3)

pathname
The original pathname, exactly as passed t@xevg?2) system call.

argv The original argvexactly as passed to tlesecve?) system call.
envp The original envp, exactly as passed togkexve?2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_execve
void explain_messagexecve(char *message, int message_size, const char *pathname, const char *const
*argv, const char *const *envp);

The explain_message_execvienction may be used tebtain an explanation of an error returned by the
execve?) system call. The least the message will contain is the valugtrefror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
char message[3000];
explain_message_execve(message, sizeof(message), pathname, argv, envp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed t@xbevg?2) system call.

argv The original argyexactly as passed to tlesecve?) system call.
envp The original envp, exactly as passed todkexve?2) system call.

explain_message_errno_execve
void explain_message_errnakeeve(char *message, int message_size, int errnum, const char *pathname,
const char *const *argwonst char *const *envp);

Theexplain_message_errno_execy¥anction may be used to obtain atplnation of an error returned by
the execveg2) system call. The least the message will contain is the valsteenfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
int err = errno;
char message[3000];
explain_message_errno_execve(message, sizeof(message), err,
pathname, argv, envp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

163

explain_execve(3) eplain_eecve(3)

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@xevg?2) system call.

argv The original argvexactly as passed to tlesecve?) system call.

envp The original envp, exactly as passed todkexve?2) system call.
SEE ALSO
execve?)
execute program
explain_execve_or_d(8)
execute program and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

164

explain_execve_or_die(3) gplain_eecve_or_die(3)

NAME
explain_execve_or_die — xecute program and report errors

SYNOPSIS
#include <libexplainfeecve.h>

void explain_a&ecve_or_die(const char *pathname, const char *const *aomst char *const *envp);

DESCRIPTION
The explain_execve_or_didunction is used to call thexecvg2) system call. Onafilure an gplanation

will be printed tostderr, obtained fromexplain_execvgs), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_execve_or_die(pathname, argv, envp);

pathname
The pathname, exactly as to be passed texéwv€2) system call.

argv The argyexactly as to be passed to tecve?) system call.
envp The envp, exactly as to be passed tcetleeve?) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
execve?)
execute program

explain_execvgs)
explain execve?) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

165

explain_eecv_or_die(3) gplain_eecv_or_die(3)

NAME
explain_execv_or_die — gecute a file and report errors

SYNOPSIS
#include <libexplainfeecv.h>

void explain_aecv_or_die(const char *pathname, char *const*argv);
int explain_aecv_on_error(const char *pathname, char *const*argv);

DESCRIPTION
The explain_execv_or_digunction is used to call thexec(3) system call. Ondflure an explanation will
be printed tostderr, obtained from theexplain_exec{B) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_execv_on_errorfunction is used to call thexec3) system call. On failure arnxganation
will be printed tostderr, obtained from thexplain_exec{B) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed tex¢®(3) system call.

argv The argyexactly as to be passed to tecy3) system call.

RETURN VALUE
Theexplain_execv_or_didunction only returns on success, seec\3) for more information. Orgflure,
prints an explanation and exits, it does not return.

Theexplain_execv_on_erroifunction alvays returns the value return by the wrappaec(3) system call.

EXAMPLE
Theexplain_execv_or_didunction is intended to be used in a fashion similar to the following example:
explain_execv_or_die(pathname, argv);

SEE ALSO
exec(3) execute a file

explain_exec(3)
explainexec\(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2012 Peter Miller

166

explain_eecvp(3) eplain_eecvp(3)

NAME
explain_execvp — explain recvp(3) errors

SYNOPSIS
#include <libexplainfeecvp.h>

const char *explain »&cvp(const char *pathname, char *const *argv);

const char *explain_errnoxecvp(int errnum, const char *pathname, char *const *argv);

void explain_message xecvp(char *message, int message_size, const char *pathname, char *cgwgst *ar
void explain_message_errnaxeevp(char *message, int message_size, int errnum, const char *pathname,
char *const *argv);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedeyavg3) system call.

explain_execvp
const char *explain »@cvp(const char *pathname, char *const *argv);

The explain_execvpfunction is used to obtain ammanation of an error returned by tbeecvi(3) system
call. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)
{
fprintf(stderr, "%s\n", explain_execvp(pathname, argv));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

pathname
The original pathname, exactly as passed t@xevi(3) system call.

argv The original argvexactly as passed to tlegecvid3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_execvp
const char *explain_errnoxecvp(int errnum, const char *pathname, char *const *argv);

The explain_errno_execvpfunction is used to obtain a@anation of an error returned by tarecvi(3)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

int err = errno;

fprintf(stderr, "%s\n", explain_errno_execvp(err,
pathname, argv));

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

167

explain_eecvp(3) eplain_eecvp(3)

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@xevi(3) system call.

argv The original argvexactly as passed to tlesgecvid3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_execvp
void explain_messagexecvp(char *message, int message_size, const char *pathname, char *cgwgst *ar

The explain_message_execvipnction may be used to obtain an explanation of an error returned by the
execvi(3) system call.The least the message will contain is the valugrefror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

char message[3000];
explain_message_execvp(message, sizeof(message), pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed t@xev(3) system call.

argv The original argvexactly as passed to tlegecvid3) system call.

explain_message_errno_execvp
void explain_message_errnaxeevp(char *message, int message_size, int errnum, const char *pathname,
char *const *argv);

Theexplain_message_errno_execvpnction may be used to obtain atpknation of an error returned by
the execvf(3) system call. The least the message will contain is dhee\ofstrerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

int err = errno;

char message[3000];

explain_message_errno_execvp(message, sizeof(message),
err, pathname, argv);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

168

explain_eecvp(3) eplain_eecvp(3)

}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from emao global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@xevi(3) system call.

argv The original argvexactly as passed to tlegecvid3) system call.

SEE ALSO
execvi(3)
execute a file
explain_execvp_or_d(8)
execute a file and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

169

explain_execvp_or_die(3) eplain_eecvp_or_die(3)

NAME
explain_execvp_or_die — recute a file and report errors

SYNOPSIS
#include <libexplainfeecvp.h>
void explain_eecvp_or_die(const char *pathname, char *const *argv);

DESCRIPTION
The explain_execvp_or_digfunction is used to call thexecv(3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_execv(8), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_execvp_or_die(pathname, argv);

pathname
The pathname, exactly as to be passed texé®/3) system call.

argv The argyexactly as to be passed to tecvi3) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
execvi(3)
execute a file

explain_execv(B)
explain execvf(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

170

explain_«it(3) explain_exit(3)

NAME
explain_exit — print an explanation of exit status before exiting

SYNOPSIS
#include <libexplain/libexplain.h>
void explain_exit_on_exit(void);
void explain_exit_on_error(void);
void explain_exit_cancel(void);
DESCRIPTION

The explain_exit_on_exifunction may be used to Y& the calling program print an explanation of itste
status (the value passedetdt(3) or the return value fromain) immediately before it terminates.

Theexplain_exit_on_errofunction may be used to ¥mthe calling program print arxplanation of its it
status immediately before it terminates, if that exit status is not EXIT_SUCCESS.

The explain_exit_cancelfunction may be used to cancel the effect of thelain_exit_on_exitor
explain_exit_on_errofunction.

These functions may be called multiple times, and y @der The last called has precedencEhe
explanation will neer be grinted more than once.

Call Exit As Normal
In order to hge the explanation printed, simply callit(3) as normal, or return fromainas normal.Do
not call aiy of these functions in order to exit your programytae called before you exit your program.

Caveat
This functionality is only @ailable on systems with then_exi{3) system call.Unfortunately the atexi{(3)
system call is not sfitiently capable, as it does not pass the exit status to the registered function.

SEE ALSO
ext(3) causenormal process termination
atexi(3) register a function to be called at normal process termination
on_exi{3)
register a function to be called at normal process termination

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

171

explain_fchdir(3) aplain_fchdir(3)

NAME
explain_fchdir — explain fchdir(2) errors

SYNOPSIS
#include <libexplain/fchdir.nh>
const char *explain_fchdir(int fildes);
void explain_message_fchdir(char *message, int message_size, int fildes);
const char *explain_errno_fchdir(int errnum, int fildes);
void explain_message_errno_fchdir(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanatiorfstidir(2) errors.

explain_fchdir
const char *explain_fchdir(int fildes);

The eplain_fchdir function is used to obtain an explanation of an error returned lighttig2) system
call. Theleast the message will contain is tteue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{
fprintf(stderr, '%s0, explain_fchdir(fildes));
exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed tofitredir(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fchdir
const char *explain_errno_fchdir(int errnum, int fildes);

The explain_errno_fchdir function is used to obtain mplamation of an error returned by tfehdir(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)

int err = errno;
fprintf(stderr, '%s0, explain_errno_fchdir(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofittedir(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

172

explain_fchdir(3) aplain_fchdir(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.
explain_message_fchdir
void explain_message_fchdir(char *message, int message_size, int fildes);
The explain_message_fchdir function is used to obtairxplamation of an error returned by tfeladir(2)

system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)

{
char message[3000];
explain_message_fchdir(message, sizeof(message), fildes);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufiguirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofittedir(2) system call.

explain_message_errno_fchdir
void explain_message_errno_fchdir(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fchdir function is used to obtaixm@anation of an error returned by the
fchdir(2) system call. The least the message will contain is #heevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fchdir(message, sizeof(message), err,
fildes);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufiguirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofitredir(2) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

173

explain_fchdir(3) aplain_fchdir(3)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

174

explain_fchdir_or_die(3) xplain_fchdir_or_die(3)

NAME
explain_fchdir_or_die — change directory and report errors

SYNOPSIS
#include <libexplian/fchdir.h>
void explain_fchdir_or_die(int fildes);

DESCRIPTION
The explain_fchdir_or_die function is used to change directory vitclit#r(2) system call. On failure, it
prints an error message on stderresalain_fchdin3), and exits.

This function is intended to be used in a fashion similar to the following example:

explain_fchdir_or_die(fildes);
fildes exactly as to be passed to tieddir(2) system call.

SEE ALSO

fchdir(3)

change working directory
explain_fchdir(3)

reportfchdir(2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

175

explain_fchmod(3) gplain_fchmod(3)

NAME
explain_fchmod - explain fchmod(2) errors

SYNOPSIS
#include <libexplain/fchmod.h>
const char *explain_fchmod(int fildes, int mode);
const char *explain_errno_fchmod(int errnum, int fildes, int mode);
void explain_message_fchmod(char *message, int message_size, int fildes, int mode);
void explain_message_errno_fchmod(char *message, int message_size, int errnum, int fildes, int mode);

DESCRIPTION
The explain_fchmod function may be used to obtain explanatiofchfmod?) errors.

explain_fchmod
const char *explain_fchmod(int fildes, int mode);

The explain_fchmod function is used to obtain gpl&nation of an error returned by tfthmod2) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)
{

fprintf(stderr, "%s\n", explain_fchmod(fildes, mode));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fchmod
const char *explain_errno_fchmod(int errnum, int fildes, int mode);

The explain_errno_fchmod function is used to obtain an explanation of an error returnedchynti?)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fchmod(err, fildes,
mode));
exit(EXIT_FAILURE);
}

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftttenod2) system call.

176

explain_fchmod(3) gplain_fchmod(3)

mode The original mode, exactly as passed tofthenod2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be ozerwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fchmod
void explain_message_fchmod(char *message, int message_size, int fildes, int mode);

The explain_message _fchmod function is used to obtainxplaration of an error returned by the
fchmod2) system call. The least the message will contain is the valtresfor(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)

{
char message[3000];
explain_message_fchmod(message, sizeof(message), fildes, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.

explain_message_errno_fchmod
void explain_message_errno_fchmod(char *message, int message_size, int errnum, int fildes, int mode);

The explain_message_errno_fchmod function is used to obtain an explanation of an error returned by the
fchmod2) system call. The least the message will contain is #hgevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fchmod(message, sizeof(message), err,
fildes, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. Because a messageufiguirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

177

explain_fchmod(3) gplain_fchmod(3)

fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

178

explain_fchmod_or_die(3) xplain_fchmod_or_die(3)

NAME
explain_fchmod_or_die — change permissions of a file and report errors

SYNOPSIS
#include <libexplain/libexplain.h>
void explain_fchmod_or_die(int fildes, int mode);

DESCRIPTION
The explain_fchmod_or_diefunction is used to call thehmod?2) system call. On failure arxglanation

wiil be printed tostderr, obtained fromexplain_fchmod@3), and the the process terminates by call ing
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fchmod_or_die(fildes, mode);

fildes The fildes, exactly as to be passed tofthenod2) system call.
mode The mode, exactly as to be passed td¢chmod?2) system call.

Returns: This function only returns on success. Oraildre, prints an explanation and
exit(EXIT_FAILURE)s.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

179

explain_fchavn(3) eplain_fchown(3)

NAME
explain_fchown — explain fchown(2) errors

SYNOPSIS
#include <libexplain/fchown.h>

const char *explain_fchown(int fildes, int ownart group);
const char *explain_errno_fchown(int errnum, int fildes, int owimérgroup);
void explain_message_fchown(char *message, int message_size, int fildes, intiot\greup);
void explain_message_errno_falko(char *message, int message_size, int errnum, int fildesywmeroint
group);
DESCRIPTION
These functions may be used to obtain explanations for errors returneddyotivg2) system call.

explain_fchown
const char *explain_fchown(int fildes, int ownart group);

Theexplain_fchownfunction is used to obtain an explanation of an error returned ghber(2) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)

{

fprintf(stderr, "%s\n", explain_fchown(fildes, owner, group));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_fchown_or_di€) function.
fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tfighowr(2) system call.
group The original group, exactly as passed toft®wr(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fchown
const char *explain_errno_fchown(int errnum, int fildes, int owimérgroup);

Theexplain_errno_fchownfunction is used to obtain an@anation of an error returned by tfelowr(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)

{
int err = errno;
fprintf(stderr, "%s\n",
explain_errno_fchown(err, fildes, owner, group));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fchown_or_di€) function.

180

explain_fchavn(3) eplain_fchown(3)

errnum The error @lue to be decoded, usually obtained from elmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tfighowr(2) system call.
group The original group, exactly as passed toft®wr(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fchown
void explain_message_fchown(char *message, int message_size, int fildes, intiot\greup);

The explain_message_fchowifunction may be used to obtain an explanation of an error returned by the
fchowr(2) system call. The least the message will contain is the valuestmdrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)

{
char message[3000];
explain_message_fchown(message, sizeof(message), fildes, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fchown_or_di€) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tfighowr(2) system call.
group The original group, exactly as passed toft®wr(2) system call.

explain_message_errno_fchown
void explain_message_errno_faoho(char *message, int message_size, int errnum, int fildesywmeroint
group);

The explain_message_errno_fchowifunction may be used to obtain an explanation of an error returned
by thefchowr(2) system call. The least the message will contain is @ahes\of strerror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fchown(message, sizeof(message),
err, fildes, owner, group);
fprintf(stderr, "%s\n", message);

181

explain_fchavn(3) eplain_fchown(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fchown_or_di€) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this

function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tfighowr(2) system call.
group The original group, exactly as passed toft®wr(2) system call.

SEE ALSO
fchowr(2)
change ownership of a file
explain_fchown_or_di€)
change ownership of a file and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

182

explain_fchavn_or_die(3) gplain_fchown_or_die(3)

NAME
explain_fchown_or_die — change ownership of a file and report errors

SYNOPSIS
#include <libexplain/fchown.h>

void explain_fchown_or_die(int fildes, int ownént group);
DESCRIPTION
The explain_fchown_or_diefunction is used to call thiehowr(2) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_fchowif3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fchown_or_die(fildes, owner, group);

fildes The fildes, exactly as to be passed tofthewr(2) system call.
owner The ownerexactly as to be passed to flcbowr(2) system call.
group The group, exactly as to be passed tdthewr(2) system call.

Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fchowr(2)
change ownership of a file
explain_fchowi{3)
explainfchowr(2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

183

explain_fclose(3) gplain_fclose(3)

NAME
explain_fclose — explain fclose(3) errors

SYNOPSIS
#include <libexplain/fclose.h>
const char *explain_fclose(FILE *fp);
const char *explain_errno_fclose(int errnum, FILE *fp);
void explain_message_fclose(char *message, int message_size, FILE *fp);
void explain_message_errno_fclose(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanatiofdasd3) errors.

explain_fclose
const char *explain_fclose(FILE * fp);

The explain_fclose function is used to obtain an explanation of an error returnedftips§8) function.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))
{
fprintf(stderr, "%s\n", explain_fclose(fp));
exit(EXIT_FAILURE);

}

fp The original fp, exactly as passed to ttles&3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Note: This function may be of little diagnostic value, because libc mag testroyed aty useful contet,
leaving nothing for libexplain to work with (this is true of glibc in particulaFor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example
if (fflush(fp))
{
fprintf(stderr, "%s\n", explain_fflush(fp));
exit(EXIT_FAILURE);

}

if (fclose(fp))

{
fprintf(stderr, "%s\n", explain_fclose(fp));
exit(EXIT_FAILURE);

}

explain_errno_fclose
const char *explain_errno_fclose(int errnum, FILE * fp);

The explain_errno_fclose function is used to obtain an explanation of an error returnedfddystig)
function. Theleast the message will contain is the valustoérror(errnum) , but usually it will do
much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))

184

explain_fclose(3) gplain_fclose(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fclose(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to aayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttles&3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Note: This function may be of little diagnostic value, because libc mag testroyed aty useful contet,
leaving nothing for libeplain to work with (this is true of glibc in particularlor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example
if (fflush(fp))
{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fflush(err, fp));
exit(EXIT_FAILURE);

}

if (fclose(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fclose(err, fp));
exit(EXIT_FAILURE);

}

explain_message_fclose
void explain_message_fclose(char *message, int message_size, FILE *fp);

The explain_message_fclose function is used to obtain an explanation of an error returndd|bssiBe
function. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))

{
char message[3000];

explain_message_fclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. Because a messageufiguirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ttlese(3)system call.

Note: This function may be of little diagnostic value, because libc mag testroyed aty useful contet,

185

explain_fclose(3) gplain_fclose(3)

leaving nothing for libexplain to work with (this is true of glibc in particulaFor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example

if (fflush(fp))

{

char message[3000];

explain_message_fflush(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
if (fclose(fp))
{
char message[3000];
explain_message_fclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

explain_message_errno_fclose
void explain_message_errno_fclose(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fclose function is used to obtairptanation of an error returned by the
fclos€3) function. The least the message will contain is the valsg@fror(errnum) , but usually it
will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following exameple:
if (fclose(fp))
{
int err = errno;
char message[3000];
explain_message_errno_fclose(message, sizeof(message),
err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttles&3) system call.

Note: This function may be of little diagnostic value, because libc mag testroyed aty useful contet,
leaving nothing for libeplain to work with (this is true of glibc in particularlor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example

if (fflush(fp))

{

int err = errno;

char message[3000];

explain_message_errno_fflush(message, sizeof(message),
err, fp);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

186

explain_fclose(3) gplain_fclose(3)

if (fclose(fp))
{
int err = errno;
char message[3000];
explain_message_errno_fclose(message, sizeof(message),
err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

187

explain_fclose_or_die(3) xplain_fclose_or_die(3)

NAME
explain_fclose_or_die — close a stream and report errors

SYNOPSIS
#include <libexplain/fclose.h>
void explain_fclose_or_die(FILE *fp);

DESCRIPTION
The explain_fclose_or_die function is usedfliash(3) andfclos€3) the given dream. Ifthere is an erroit
will be reported usingxplain_fclos€3), and then terminates by calliegit(EXIT_FAILURE)
explain_fclose_or_die(fp);

fp The fp, exactly as to be passed tofttles€3) system call.
Returns: Onlyreturns on success. Reports error and process exits on failure.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

188

explain_fcntl(3) aplain_fcntl(3)

NAME
explain_fcntl — explain fcntl(2) errors

SYNOPSIS
#include <libexplain/fcntl.h>

const char *explain_fcntl(int fildes, int command, long arg);

const char *explain_errno_fcntl(int errnum, int fildes, int command, long arg);

void explain_message_fcntl(char *message, int message_size, int fildes, int command, long arg);

void explain_message_errno_fcntl(char *message, int message_size, int errnum, int fildes, int command,
long arg);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedayti{Be system call.

explain_fcntl
const char *explain_fcntl(int fildes, int command, long arg);

Theexplain_fcntl function is used to obtain amm@anation of an error returned by tfomtl(2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)
{
fprintf(stderr, "%s\n", explain_fcntl(fildes, command, arg));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed tofitrel(2) system call.

command
The original command, exactly as passed tdc¢ht(2) system call.

arg The original arg, exactly as passed toftingl(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fcntl
const char *explain_errno_fcntl(int errnum, int fildes, int command, long arg);

The explain_errno_fcntl function is used to obtain arx@anation of an error returned by tfentl(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fcntl(err, fildes, command, arg));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @@l code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

189

explain_fcntl(3) aplain_fcntl(3)

fildes The original fildes, exactly as passed tofitrel(2) system call.

command
The original command, exactly as passed tdc¢ht(2) system call.

arg The original arg, exactly as passed toftingl(2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fcntl
void explain_message_fcntl(char *message, int message_size, int fildes, int command, long arg);

The explain_message_fcntfunction may be used tmbtain an explanation of an error returned by the
fcntl(2) system call. The least the message will contain isahes\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)

{
char message[3000];
explain_message_fcntl(message, sizeof(message), fildes, command, arg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofitrel(2) system call.

command
The original command, exactly as passed tdc¢ht(2) system call.

arg The original arg, exactly as passed toftingl(2) system call.

explain_message_errno_fcntl
void explain_message_errno_fcntl(char *message, int message_size, int errnum, int fildes, int command,
long arg);

The explain_message_errno_fcntfunction may be used to obtain axpknation of an error returned by
the fentl(2) system call. The least the message will contain is égevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fcntl(message, sizeof(message), err, fildes,
command, arg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

190

explain_fcntl(3) aplain_fcntl(3)

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to @@l code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofitrel(2) system call.

command
The original command, exactly as passed tdc¢ht(2) system call.
arg The original arg, exactly as passed toftingl(2) system call.
SEE ALSO

fcntl(2) manipulatea file descriptor
explain_fentl_or_dig€3)
manipulate a file descriptor and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

191

explain_fcntl_or_die(3) ®plain_fecntl_or_die(3)

NAME
explain_fcntl_or_die — manipulate a file descriptor and report errors

SYNOPSIS
#include <libexplain/fcntl.h>

int explain_fcntl_or_die(int fildes, int command, long arg);
DESCRIPTION
Theexplain_fcntl_or_die function is used to call thfentl(2) system call.On failure an explanation will be

printed to stderr, obtained from explain_fcnt(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int result = explain_fcntl_or_die(fildes, command, arg);

fildes The fildes, exactly as to be passed toftil(2) system call.

command
The command, exactly as to be passed tdécthi&?2) system call.

arg The arg, exactly as to be passed tofthd(2) system call.

Returns: Thidunction only returns on success, and it returns wieaigas returned by the fcntl(2) call;
depending on the command, this mayeheo use. Onfailure, prints an explanation and exits, it
does not return.

SEE ALSO
fcntl(2) manipulatea file descriptor

explain_fcnt(3)
explainfcntl(2) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

192

explain_fdopen(3) ¥plain_fdopen(3)

NAME
explain_fdopen - explain fdopen(3) errors

SYNOPSIS
#include <libexplain/fdopen.h>

const char *explain_fdopen(int fildes, const char *flags);
const char *explain_errno_fdopen(int errnum, int fildes, const char *flags);
void explain_message_fdopen(char *message, int message_size, int fildes, const char *flags);
void explain_message_errno_fdopen(char *message, int message_size, int errnum, int fildes, const char
*flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidbypibg3) system call.

explain_fdopen

const char *explain_fdopen(int fildes, const char *flags);
Theexplain_fdopenfunction is used to obtain an explanation of an error returned dygdaperf3) system

call. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if ('fp)
{

fprintf(stderr, "%s\n", explain_fdopen(fildes, flags));
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_fdopen_or_dig) function.
fildes The original fildes, exactly as passed toftteper{3) system call.
flags The original flags, exactly as passed toftieper{3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fdopen
const char *explain_errno_fdopen(int errnum, int fildes, const char *flags);

Theexplain_errno_fdopenfunction is used to obtain an explanation of an error returned lgdper{3)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

FILE *fp = fdopen(fildes, flags);

if ('fp)

{ .
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fdopen(err, fildes, flags));
exit(EXIT_FAILURE);

}

The aboe mde example iswvailable pre-packaged as thgplain_fdopen_or_dig) function.

193

explain_fdopen(3) ¥plain_fdopen(3)

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftteper{3) system call.
flags The original flags, exactly as passed toftheper{3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fdopen
void explain_message_fdopen(char *message, int message_size, int fildes, const char *flags);

The explain_message_fdopefunction may be used to obtain an explanation of an error returned by the
fdoper{3) system call.The least the message will contain is the valugtrefror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if ('fp)
{

char message[3000];

explain_message_fdopen(message, sizeof(message), fildes, flags);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example iswvailable pre-packaged as thgplain_fdopen_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftteper{3) system call.
flags The original flags, exactly as passed toftteper{3) system call.

explain_message_errno_fdopen
void explain_message_errno_fdopen(char *message, int message_size, int errnum, int fildes, const char
*flags);

The explain_message_errno_fdopefunction may be used to obtain an explanation of an error returned
by thefdoper{3) system call. The least the message will contain is the valsienfor(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if ('fp)

{

int err = errno;

char message[3000];

explain_message_errno_fdopen(message, sizeof(message),
err, fildes, flags);

fprintf(stderr, "%s\n", message);

194

explain_fdopen(3) ¥plain_fdopen(3)

exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_fdopen_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to @ajl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftteper{3) system call.
flags The original flags, exactly as passed toftieper{3) system call.

SEE ALSO
fdoper{3)
stream open functions
explain_fdopen_or_dig)
stream open functions and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

195

explain_fdopendir(3) x¥plain_fdopendir(3)

NAME
explain_fdopendir — explaifdopendi(3) errors

SYNOPSIS
#include <libexplain/fdopendir.h>

const char *explain_fdopendir(int fildes);

const char *explain_errno_fdopendir(int errnum, int fildes);

void explain_message_fdopendir(char *message, int message_size, int fildes);

void explain_message_errno_fdopendir(char *message, int message_size, int errnum, int fildes);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedidypibiedif3) system call.

explain_fdopendir
const char *explain_fdopendir(int fildes);
The explain_fdopendir function is used to obtain axmanation of an error returned by tfdopendi(3)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftt@pendif3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (Iresult)

fprintf(stderr, "%s\n", explain_fdopendir(fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fdopendir_or_di€3) function.

explain_errno_fdopendir
const char *explain_errno_fdopendir(int errnum, int fildes);

The explain_errno_fdopendir function is used to obtain an explanation of an error returned by the
fdopendi(3) system call. The least the message will contain is the vals&esfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftt@pendif3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);

196

explain_fdopendir(3) x¥plain_fdopendir(3)

if (Iresult)
{ .
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fdopendir(err, fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fdopendir_or_di€3) function.

explain_message_fdopendir
void explain_message_fdopendir(char *message, int message_size, int fildes);

The explain_message_fdopendifunction is used to obtain an explanation of an error returned by the
fdopendi(3) system call. The least the message will contain is the vals&esfor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftt@pendif3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (fresult)
{
char message[3000];
explain_message_fdopendir(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thglain_fdopendir_or_di€3) function.

explain_message_errno_fdopendir
void explain_message_errno_fdopendir(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fdopendifunction is used to obtain axpanation of an error returned by
thefdopendi(3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from eéhmo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftt@pendif3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (Iresult)
{ .
int err = errno;
char message[3000];
explain_message_errno_fdopendir(message, sizeof(message), err,

197

explain_fdopendir(3) x¥plain_fdopendir(3)

fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_fdopendir_or_di€3) function.
SEE ALSO
fdopendi(3)
open a directory
explain_fdopendir_or_di€3)
open a directory and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

198

explain_fdopendir_or_die(3) xplain_fdopendir_or_die(3)

NAME
explain_fdopendir_or_die — open a directory and report errors

SYNOPSIS
#include <libexplain/fdopendir.h>
DIR *explain_fdopendir_or_die(int fildes);
DIR *explain_fdopendir_on_error(int fildes);
DESCRIPTION
The explain_fdopendir_or_die function is used to call thédopendi(3) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_fdopendi¢3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_fdopendir_on_error function is used to call th&dopendif3) system call. On failure an
explanation will be printed tstderr, obtained from theexplain_fdopendi(3) function, lut still returns to
the caller.

fildes The fildes, exactly as to be passed toftlependif3) system call.

RETURN VALUE
The explain_fdopendir_or_die function only returns on success, $dependi(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_fdopendir_on_error function ailvays returns the value return by the wrappeopendif3)
system call.

EXAMPLE
The explain_fdopendir_or_die function is intended to be used in a fashion similar to the viollp
example:
DIR *result = explain_fdopendir_or_die(fildes);
SEE ALSO
fdopendi(3)
open a directory
explain_fdopendi¢3)
explainfdopendi(3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

199

explain_fdopen_or_die(3) xplain_fdopen_or_die(3)

NAME
explain_fdopen_or_die — stream open functions and report errors

SYNOPSIS

#include <libexplain/fdopen.h>

void explain_fdopen_or_die(int fd, const char *mode);
DESCRIPTION

The explain_fdopen_or_diefunction is used to call thieloperf3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_fdopeii3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
FILE *fp = explain_fdopen_or_die(fd, mode);
fd The fd, exactly as to be passed tofttaper{3) system call.
mode The mode, exactly as to be passed tddbper{3) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.
SEE ALSO
fdoper{3)
stream open functions

explain_fdopeii3)
explainfdoper{3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

200

explain_feof(3) aplain_feof(3)

NAME
explain_feof — explairfeof3) errors

SYNOPSIS
#include <libexplain/feof.h>

const char *explain_feof(FILE *fp);

const char *explain_errno_feof(int errnum, FILE *fp);

void explain_message_feof(char *message, int message_size, FILE *fp);

void explain_message_errno_feof(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedéy{Blesystem call.

explain_feof
const char *explain_feof(FILE *fp);

The explain_feoffunction is used to obtain axm@anation of an error returned by tfe®{3) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thef3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a tifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{
fprintf(stderr, "%s\n", explain_feof(fp));
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_feof or_di€3) function.

explain_errno_feof
const char *explain_errno_feof(int errnum, FILE *fp);

Theexplain_errno_feoffunction is used to obtain an explanation of an error returned bgadkig) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thef3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{

201

explain_feof(3) aplain_feof(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_feof(err, fp));
exit(EXIT_FAILURE);

}
The aboe mde example iswvailable pre-packaged as thgplain_feof or_di€3) function.

explain_message_feof
void explain_message_feof(char *message, int message_size, FILE *fp);

The explain_message_fedfunction is used to obtain an explanation of an error returned biedf8)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thef3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)

{
char message[3000];
explain_message_feof(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_feof or_di€3) function.

explain_message_errno_feof
void explain_message_errno_feof(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_feofunction is used to obtain axm@anation of an error returned by the
feof3) system call. The least the message will contain isahe \ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thef3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_feof(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_feof or_di€3) function.

202

explain_feof(3) aplain_feof(3)

SEE ALSO
feof3) checkand reset stream status
explain_feof _or_di€3)
check and reset stream status and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

203

explain_feof or_die(3) xplain_feof _or_die(3)

NAME
explain_feof or_die — check and reset stream status and report errors

SYNOPSIS
#include <libexplain/feof.h>
void explain_feof_or_die(FILE *fp);
int explain_feof _on_error(FILE *fp);
DESCRIPTION
The explain_feof _or_diefunction is used to call thieo{3) system call. On failure axganation will be

printed tostderr, obtained from theexplain_feo{3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_feof_on_errorfunction is used to call thieof3) system call. Onailure an explanation will
be printed tcstderr, obtained from thexplain_feo(3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofge(3) system call.

RETURN VALUE
The explain_feof_or_diefunction only returns on success, $eef3) for more information. Onailure,
prints an explanation and exits, it does not return.

Theexplain_feof _on_errorfunction alvays returns the value return by the wrapfeui(3) system call.

EXAMPLE
Theexplain_feof or_diefunction is intended to be used in a fashion similar to the following example:
explain_feof _or_die(fp);

SEE ALSO
feof3) checkand reset stream status
explain_feof3)
explainfeof(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

204

explain_ferror(3) gplain_ferror(3)

NAME
explain_ferror — explain ferror(3) errors

SYNOPSIS
#include <libexplain/ferror.h>

const char *explain_ferror(FILE *fp);

const char *explain_errno_ferror(int errnum, FILE *fp);

void explain_message_ferror(char *message, int message_size, FILE *fp);

void explain_message_errno_ferror(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedéydah&) system call.

explain_ferror
const char *explain_ferror(FILE *fp);

The explain_ferror function is used to obtain an explanation of an error returned bigrtloe(3) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)

{
fprintf(stderr, "%s\n", explain_ferror(fp));

exit(EXIT_FAILURE);
}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the

problem, otherwise intervening code coul#édtered theerrno global variable.
fp The original fp, exactly as passed to theor(3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_ferror
const char *explain_errno_ferror(int errnum, FILE *fp);

The explain_errno_ferror function is used to obtain an explanation of an error returned bigttoe(3)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ferror(err, fp));
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the

problem, otherwise intervening code coul#édtered theerrno global variable.

errnum The error @lue to be decoded, usually obtained from eéhmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

205

explain_ferror(3) gplain_ferror(3)

fp The original fp, exactly as passed to theor(3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be ozerwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_ferror
void explain_message_ferror(char *message, int message_size, FILE *fp);

The explain_message_ferroffunction may be used to obtain an explanation of an error returned by the
ferror(3) system call. The least the message will contain isdahes\ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)

{
char message[3000];
explain_message_ferror(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code coul#édtered theerrno global variable.

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theor(3) system call.

explain_message_errno_ferror
void explain_message_errno_ferror(char *message, int message_size, int errnum, FILE *fp);

Theexplain_message_errno_ferrofunction may be used to obtain atpknation of an error returned by
the ferror(3) system call. The least the message will contain is the valsgeofor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_ferror(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code coul#éndtered theerrno global variable.

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

206

explain_ferror(3) gplain_ferror(3)

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to theor(3) system call.

SEE ALSO
ferror(3)
check stream status
explain_ferror_or_dig3)
check stream status and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

207

explain_ferror_or_die(3) xplain_ferror_or_die(3)

NAME
explain_ferror_or_die — check stream status and report errors

SYNOPSIS
#include <libexplain/ferror.h>
void explain_ferror_or_die(FILE *fp);
DESCRIPTION
The explain_ferror_or_die function is used to call thierror(3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_ferron(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_ferror_or_die(fp);
It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code coul#édtered theerrno global variable.
fp The fp, exactly as to be passed tofdreor(3) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
ferror(3)
check stream status
explain_ferron(3)
explainferror(3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

208

explain_fllush(3) eplain_fflush(3)

NAME
explain_fflush — explain fflush(3) errors

SYNOPSIS
#include <libexplain/fflush.h>

const char *explain_fflush(FILE *fp);

const char *explain_errno_fflush(int errnum, FILE *fp);

void explain_message_fflush(char *message, int message_size, FILE *fp);

void explain_message_errno_fflush(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedifhystif®) system call.

explain_fflush
const char *explain_fflush(FILE *fp);

The explain_fflush function is used to obtain an explanation of an error returned biflubH3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to tthesh(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{
fprintf(stderr, "%s\n", explain_fflush(fp));
exit(EXIT_FAILURE);

}
The aboe mde example iswvailable pre-packaged as thgplain_fflush_or_dié3) function.

explain_errno_fflush
const char *explain_errno_fflush(int errnum, FILE *fp);

The explain_errno_fflush function is used to obtain an explanation of an error returned biflubR3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to aayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttesh(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{

209

explain_fllush(3) eplain_fflush(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fflush(err, fp));
exit(EXIT_FAILURE);

}
The abee mde example iswvailable pre-packaged as thgplain_fflush_or_dié3) function.

explain_message_fflush
void explain_message_fflush(char *message, int message_size, FILE *fp);

Theexplain_message_fflusfiunction is used to obtain axganation of an error returned by tffikeish(3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ttesh(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)

{
char message[3000];
explain_message_fflush(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_fflush_or_dié3) function.

explain_message_errno_fflush
void explain_message_errno_fflush(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fflusliunction is used to obtain an explanation of an error returned by the
fflush(3) system call. The least the message will contain is the vakieeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from emao global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttesh(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flush(fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fflush(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

210

explain_fllush(3) eplain_fflush(3)

The aboe mde example iswvailable pre-packaged as thgplain_fflush_or_dié3) function.

SEE ALSO
fflush(3) flusha gream
explain_fflush_or_dié3)
flush a stream and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

211

explain_filush_or_die(3) gplain_fflush_or_die(3)

NAME
explain_fflush_or_die - flush a stream and report errors

SYNOPSIS
#include <libexplain/fflush.h>
void explain_fflush_or_die(FILE *fp);
int explain_fflush_on_error(FILE *fp);
DESCRIPTION
The explain_fflush_or_diefunction is used to call thilush(3) system call. On failure an explanation will

be printed tostderr, obtained from theexplain_fflusi{3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_fflush_on_error function is used to call thiflush(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fflusi{3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofthesh(3) system call.

RETURN VALUE
Theexplain_fflush_or_diefunction only returns on success, #fiesh(3) for more information. Orgflure,
prints an explanation and exits, it does not return.

The explain_fflush_on_error function alvays returns the value return by the wrapftash(3) system
call.

EXAMPLE
Theexplain_fflush_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fflush_or_die(fp);
SEE ALSO
fflush(3) flusha gream
explain_fflusi(3)
explain fflush(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

212

explain_fgetc(3) gplain_fgetc(3)

NAME
explain_fgetc — explain fgetc(3) errors

SYNOPSIS
#include <libexplain/fgetc.h>

const char *explain_fgetc(FILE *fp);

const char *explain_errno_fgetc(int errnum, FILE *fp);

void explain_message_fgetc(char *message, int message_size, FILE *fp);

void explain_message_errno_fgetc(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidptdf®) system call.
explain_fgetc
const char *explain_fgetc(FILE *fp);
Theexplain_fgetcfunction is used to obtain an explanation of an error returned bget#3) system call.

The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{ fprintf(stderr, "%s\n", explain_fgetc(fp));
exit(EXIT_FAILURE);
}
fp The original fp, exactly as passed to thetq3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fgetc
const char *explain_errno_fgetc(int errnum, FILE *fp);

The explain_errno_fgetc function is used to obtain arxmganation of an error returned by thgetq3)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgetc(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetq3) system call.

213

explain_fgetc(3) gplain_fgetc(3)

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fgetc
void explain_message_fgetc(char *message, int message_size, FILE *fp);
The explain_message_fgettunction may be used to obtain an explanation of an error returned by the

fgetd3) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{
char message[3000];
explain_message_fgetc(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thetq3) system call.

explain_message_errno_fgetc
void explain_message_errno_fgetc(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fgetfunction may be used to obtain an explanation of an error returned by
the fgetq3) system call. The least the message will contain is the valusti@&rror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{
int err = errno;
char message[3000];
explain_message_errno_fgetc(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this

function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

214

explain_fgetc(3) gplain_fgetc(3)

fp The original fp, exactly as passed to thetq3) system call.

SEE ALSO
fgetd3) inputof characters
explain_fgetc_or_di€3)
input of characters and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

215

explain_fgetc_or_die(3) »plain_fgetc_or_die(3)

NAME
explain_fgetc_or_die — input of characters and report errors

SYNOPSIS
#include <libexplain/fgetc.h>

int explain_fgetc_or_die(FILE *fp);
DESCRIPTION
The explain_fgetc_or_diefunction is used to call thigetq3) system call. On failure an explanation will

be printed tostderr, obtained from explain_fget¢3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int ¢ = explain_fgetc_or_die(fp);

fp The fp, exactly as to be passed tofthetq3) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fgetd3) inputof characters

explain_fget¢3)
explainfgetd3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

216

explain_fgetpos(3) plain_fgetpos(3)

NAME
explain_fgetpos — explaifgetpog3) errors

SYNOPSIS

#include <libexplain/fgetpos.h>

const char *explain_fgetpos(FILE *fp, fpos_t *pos);

const char *explain_errno_fgetpos(int errnum, FILE *fp, fpos_t *pos);

void explain_message_fgetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

void explain_message_errno_fgetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedidpstplog3) system call.

explain_fgetpos
const char *explain_fgetpos(FILE *fp, fpos_t *pos);
Theexplain_fgetposfunction is used to obtain am@anation of an error returned by tlyetpog$3) system

call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgetpog$3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

fprintf(stderr, "%s\n", explain_fgetpos(fp, pos));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fgetpos_or_dig) function.

explain_errno_fgetpos
const char *explain_errno_fgetpos(int errnum, FILE *fp, fpos_t *pos);

Theexplain_errno_fgetposfunction is used to obtain an explanation of an error returned Hygetpo$3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etao global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgetpog$3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a dfer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

217

explain_fgetpos(3) plain_fgetpos(3)

if (fgetpos(fp, pos) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgetpos(err, fp, pos));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fgetpos_or_dig) function.
explain_message_fgetpos

void explain_message_fgetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

The explain_message_fgetpofunction is used to obtain arxmanation of an error returned by the

fgetpog3) system call. The least the message will contain isahe ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgetpog$3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

char message[3000];

explain_message_fgetpos(message, sizeof(message), fp, pos);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thglain_fgetpos_or_di8) function.
explain_message_errno_fgetpos
void explain_message_errno_fgetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);
The explain_message_errno_fgetpdsinction is used to obtain an explanation of an error returned by the

fgetpog3) system call. The least the message will contain isahe ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgetpog$3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{
int err = errno;
char message[3000];

218

explain_fgetpos(3) plain_fgetpos(3)

explain_message_errno_fgetpos(message, sizeof(message), err,

fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as thglain_fgetpos_or_dig) function.

SEE ALSO
fgetpog3)
reposition a stream
explain_fgetpos_or_di@)
reposition a stream and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

219

explain_fgetpos_or_die(3) xplain_fgetpos_or_die(3)

NAME
explain_fgetpos_or_die — reposition a stream and report errors

SYNOPSIS
#include <libexplain/fgetpos.h>
void explain_fgetpos_or_die(FILE *fp, fpos_t *pos);
int explain_fgetpos_on_error(FILE *fp, fpos_t *pos);
DESCRIPTION
The explain_fgetpos_or_diefunction is used to call thigetpo$3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_fgetpo&3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_fgetpos_on_error function is used to call thdgetpog3) system call. On failure an
explanation will be printed tgtderr, obtained from theexplain_fgetpog3) function, but still returns to the
caller.

fp The fp, exactly as to be passed toftietpog$3) system call.

pos The pos, exactly as to be passed tddglegpo$3) system call.

RETURN VALUE
The explain_fgetpos_or_diefunction only returns on success, ggetpo$3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fgetpos_on_errorfunction alvays returns the value return by the wrapfgetpog3) system
call.

EXAMPLE
Theexplain_fgetpos_or_didunction is intended to be used in a fashion similar to the following example:
explain_fgetpos_or_die(fp, pos);
SEE ALSO
fgetpog3)
reposition a stream
explain_fgetpo&3)
explainfgetpo$3) errors
ext(2) terminatehe calling process
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

220

explain_fgets(3) gplain_fgets(3)

NAME
explain_fgets — explain fgets(3) errors

SYNOPSIS
#include <libexplain/fgets.h>

const char *explain_fgets(char *data, int data_size, FILE *fp);

const char *explain_errno_fgets(int errnum, char *data, int data_size, FILE *fp);

void explain_message_fgets(char *message, int message_size, char *data, int data_size, FILE *fp);

void explain_message_errno_fgets(char *message, int message_size, int errnum, char *data, int data_size,
FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidpst¢3y system call.
explain_fgets
const char *explain_fgets(char *data, int data_size, FILE *fp);
Theexplain_fgetsfunction is used to obtain an explanation of an error returned bHgeatg3) system call.

The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{
fprintf(stderr, "%s\n", explain_fgets(data, data_size, fp));
exit(EXIT_FAILURE);
}

data The original data, exactly as passed tof¢jetg3) system call.

data_size
The original data_size, exactly as passed tdgéig3) system call.

fp The original fp, exactly as passed to thetg3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fgets
const char *explain_errno_fgets(int errnum, char *data, int data_size, FILE *fp);

The explain_errno_fgetsfunction is used to obtain arxmganation of an error returned by tfgetg3)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgets(err, data, data_size, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @@l code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

221

explain_fgets(3) gplain_fgets(3)

data The original data, exactly as passed tof¢jetg3) system call.

data_size
The original data_size, exactly as passed tdgéig3) system call.

fp The original fp, exactly as passed to thetg3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fgets
void explain_message_fgets(char *message, int message_size, char *data, int data_size, FILE *fp);
The explain_message_fgetunction may be used to obtain axp&anation of an error returned by the

fgetg3) system call. The least the message will contain isghe\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)

{
char message[3000];
explain_message_fgets(message, sizeof(message), data, data_size, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed tof¢jetg3) system call.

data_size
The original data_size, exactly as passed tdgéig3) system call.

fp The original fp, exactly as passed to thetg3) system call.

explain_message_errno_fgets
void explain_message_errno_fgets(char *message, int message_size, int errnum, char *data, int data_size,

FILE *fp);
The explain_message_errno_fgetiinction may be used to obtain axpknation of an error returned by
the fgetg3) system call. The least the message will contain is the vals&esfor(errnum) , but

usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fgets(message, sizeof(message), err,
data, data_size, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

222

explain_fgets(3) gplain_fgets(3)

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this

function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed tof¢jetg3) system call.

data_size
The original data_size, exactly as passed tdgéig3) system call.
fp The original fp, exactly as passed to thetg3) system call.
SEE ALSO

fgetg3) inputof strings
explain_fgets_or_dig3)
input of strings and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

223

explain_fgets_or_die(3) xplain_fgets_or_die(3)

NAME
explain_fgets_or_die — input of strings and report errors

SYNOPSIS
#include <libexplain/fgets.h>

char *explain_fgets_or_die(char *data, int data_size, FILE *fp);
DESCRIPTION
The explain_fgets_or_diefunction is used to call thigietg3) system call. On failure an explanation will

be printed tostderr, obtained from explain_fget$3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fgets_or_die(data, data_size, fp);

data The data, exactly as to be passed tdgheg3) system call.

data_size
The data_size, exactly as to be passed tégttg3) system call.

fp The fp, exactly as to be passed toftieig3) system call.

Returns: Thisfunction only returns on success; data when a line is read, or NULL on eitel-oBh
failure, prints an explanation and exits.

SEE ALSO
fgetg3) inputof strings
explain_fget$3)
explainfgetg3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

224

explain_filename_from ilides(3) aplain_filename_from_fildes(3)

NAME
explain_filename_from_fildes — obtain filename from file descriptor

SYNOPSIS
#include <libexplain/filename.h>

int explain_filename_from_fildes(int fildes, char *data, size_t data_size);
int explain_filename_from_stream(FILE *stream, char *data, size_t data_size);
DESCRIPTION

The explain_filename_from_filde&inction may be used to obtain the name of the file associated with the
file descriptor.

The explain_filename_from_streariunction may be used to obtain the name of the file associated with a
file stream.

The filename is returned in the array pointed talhta The flename will alvays be NUL terminatedIf
the returned filename is longer thdata_sizeit will be silently truncated; a size of at leasATIPI_MAX +
1) is suggested.

On success, returns zero. If the file name cannot be determined, returns -1 (Imatt deésrrno.)

COPYRIGHT
libexplain version 1.1
Copyright © 2012 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

225

explain_fileno(3) plain_fileno(3)

NAME
explain_fileno — explain fileno(3) errors

SYNOPSIS
#include <libexplain/fileno.h>

const char *explain_fileno(FILE *fp);

const char *explain_errno_fileno(int errnum, FILE *fp);

void explain_message_fileno(char *message, int message_size, FILE *fp);

void explain_message_errno_fileno(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returneditgnit{8) system call.
explain_fileno
const char *explain_fileno(FILE *fp);
The explain_fileno function is used to obtain axpanation of an error returned by tfiena(3) system

call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to fitenq(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{
fprintf(stderr, "%s\n", explain_fileno(fp));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fileno_or_di€3) function.

explain_errno_fileno
const char *explain_errno_fileno(int errnum, FILE *fp);

The explain_errno_fileno function is used to obtain axmanation of an error returned by tfiken(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to fitenq(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{

226

explain_fileno(3) plain_fileno(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fileno(err, fp));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fileno_or_di€3) function.

explain_message_fileno
void explain_message_fileno(char *message, int message_size, FILE *fp);

The explain_message_filendunction is used to obtain an explanation of an error returned Hilahg3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to fitenq(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)

{
char message[3000];
explain_message_fileno(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fileno_or_di€3) function.

explain_message_errno_fileno
void explain_message_errno_fileno(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_filendunction is used to obtain an explanation of an error returned by the
filena(3) system call. The least the message will contain isahe\ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to fitenq(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fileno(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

227

explain_fileno(3) plain_fileno(3)

The aboe mde example isvailable pre-packaged as thglain_fileno_or_di€3) function.

SEE ALSO
filena3) checkand reset stream status
explain_fileno_or_di€3)
check and reset stream status and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

228

explain_fileno_or_die(3) gplain_fileno_or_die(3)

NAME
explain_fileno_or_die — check and reset stream status and report errors

SYNOPSIS
#include <libexplain/fileno.h>
int explain_fileno_or_die(FILE *fp);
int explain_fileno_on_error(FILE *fp);
DESCRIPTION
Theexplain_fileno_or_diefunction is used to call thi#enq(3) system call. Onailure an explanation will

be printed tostderr, obtained from theexplain_filend3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fileno_on_error function is used to call thiZlend3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_filend3) function, but still returns to the caller.

fp The fp, exactly as to be passed toftlenq(3) system call.

RETURN VALUE
Theexplain_fileno_or_diefunction only returns on success, fiégena(3) for more information. Orgflure,
prints an explanation and exits, it does not return.

The explain_fileno_on_error function aays returns the value return by the wrapfiéeho(3) system
call.

EXAMPLE
Theexplain_fileno_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fileno_or_die(fp);
SEE ALSO
filena(3) checkand reset stream status
explain_filenq3)
explainfilend(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

229

explain_flock(3) aplain_flock(3)

NAME
explain_flock — explain flock(2) errors

SYNOPSIS
#include <libexplain/flock.h>

const char *explain_flock(int fildes, int command);

const char *explain_errno_flock(int errnum, int fildes, int command);

void explain_message_flock(char *message, int message_size, int fildes, int command);

void explain_message_errno_flock(char *message, int message_size, int errnum, int fildes, int command);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedibgk{® system call.

explain_flock
const char *explain_flock(int fildes, int command);

Theexplain_flock function is used to obtain ampanation of an error returned by theck(2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftbek(2) system call.

command
The original command, exactly as passed tdldu(2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a uifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)

{

fprintf(stderr, "%s\n", explain_flock(fildes, command));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

explain_errno_flock
const char *explain_errno_flock(int errnum, int fildes, int command);

The explain_errno_flock function is used to obtain an explanation of an error returned bfjoiti€2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to aayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftbek(2) system call.

command
The original command, exactly as passed tdltdu(2) system call.

Returns: Themessage explaining the errdhis messageutfer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther

230

explain_flock(3) aplain_flock(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_flock(err, fildes,
command));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

explain_message_flock
void explain_message_flock(char *message, int message_size, int fildes, int command);

The explain_message_flockunction is used to obtain axmanation of an error returned by thieck(2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftbek(2) system call.

command
The original command, exactly as passed tdldu(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)

{
char message[3000];
explain_message_flock(message, sizeof(message), fildes,
command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

explain_message_errno_flock
void explain_message_errno_flock(char *message, int message_size, int errnum, int fildes, int command);

The explain_message_errno_flockunction is used to obtain axmanation of an error returned by the
flock(2) system call. The least the message will contain isghee ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from elmao global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftbek(2) system call.

231

explain_flock(3) aplain_flock(3)

command
The original command, exactly as passed tdldu(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_flock(message, sizeof(message), err,
fildes, command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_flock _or_di€3) function.

SEE ALSO
flock(2) applyor remare an advisory lock on an open file
explain_flock_or_di€3)
apply or remwoe an advisory lock on an open file and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

232

explain_flock_or_die(3) x¥plain_flock_or_die(3)

NAME
explain_flock_or_die — control advisory lock on open file and report errors

SYNOPSIS
#include <libexplain/flock.h>

void explain_flock_or_die(int fildes, int command);
int explain_flock_on_error(int fildes, int command))

DESCRIPTION
The explain_flock_or_die function is used to call thibock(2) system call. On failure an explanation will
be printed testderr, obtained from thexplain_flock3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

Theexplain_flock_on_error function is used to call thibock(2) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_flock'3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed tofthek(2) system call.

command
The command, exactly as to be passed tdldlek(2) system call.

RETURN VALUE
The explain_flock_or_diefunction only returns on success, $leek(2) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_flock_on_error function alvays returns the value return by the wrapfiedk(2) system call.

EXAMPLE
Theexplain_flock_or_diefunction is intended to be used in a fashion similar to the following example:
explain_flock_or_die(fildes, command);

SEE ALSO
flock(2) applyor remae an advisory lock on an open file

explain_flock3)
explainflock(2) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

233

explain_fopen(3) eplain_fopen(3)

NAME
explain_fopen - explain fopen(3) errors

SYNOPSIS
#include <libexplain/fopen.h>
const char *explain_fopen(const char *path, const char *mode);
const char *explain_errno_fopen(int errnum, const char *path, const char *mode);
void explain_message_fopen(char *message, int message_size, const char *path, const char *mode);
void explain_message_errno_fopen(char *message, int message_size, int errnum, const char *path, const
char *mode);

DESCRIPTION
These functions may be used to obtain explanatiorfefer(3) errors.

explain_fopen
const char *explain_fopen(const char *path, const char *mode);

The explain_fopen function is used to obtain &planation of an error returned by tfaper(3) system
call. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{

const char *message = explain_fopen(path, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);

}

path The original path, exactly as passed tofteen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fopen
const char *explain_errno_fopen(int errnum, const char *path, const char *mode);

The explain_errno_fopen function is used to obtain an explanation of an error returnedfdpet{®)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{

const char *message = explain_errno_fopen(err, path, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @ajl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

234

explain_fopen(3) eplain_fopen(3)

path The original path, exactly as passed tofteen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fopen
void explain_message_fopen(char *message, int message_size, const char *path, const char *mode);

The explain_message_fopen function is used to obtain an explanation of an error returnddgsr(@je
system call. The least the message will contain is the value of strerror(euno¥uhlly it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{
char message[3000];
explain_message_fopen(message, sizeof(message), path, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

path The original path, exactly as passed tofteen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call

explain_message_errno_fopen
void explain_message_errno_fopen(char *message, int message_size, int errnum, const char *path, const
char *mode);

The explain_message_errno_fopen function is used to obtairptanation of an error returned by the
foper(3) system call. The least the message will contain is the valsteeofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{

int err = errno;
char message[3000];
explain_message_errno_fopen(message, sizeof(message), err, path,
mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

235

explain_fopen(3) eplain_fopen(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frorretire global variable just before this

function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

path The original path, exactly as passed toftieen(3) system call.

mode The original mode, exactly as passed toftiper(3) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

236

explain_fopen_or_die(3) xplain_fopen_or_die(3)

NAME
explain_fopen_or_die — open file and report errors

SYNOPSIS
#include <libexplain/fopen.h>

FILE *explain_fopen_or_die(const char *pathname, const char *flags);

DESCRIPTION
The explain_fopen_or_di€) function opens thelé whose name is the string pointed to by pathname and
associates a stream with it. Seper(3) for more information.

This is a quick and simple way for programs to constitently rejderbpen errors in a consistent and
detailed fahion.

RETURN VALUE
Upon successful completi@xplain_fopen_or_diereturns & ILE pointer.

If an error occursexplain_fopenwill be called to &plain the errgrwhich will be printed ontstderr, and
then the process will terminate by calliegit(EXIT_FAILURE)

SEE ALSO
fopen(3) streanppen functions

explain_fopelt3)
explainfopern(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

237

explain_fork(3) aplain_fork(3)

NAME
explain_fork — explain fork(2) errors

SYNOPSIS
#include <libexplain/fork.h>

const char *explain_fork(void);

const char *explain_errno_fork(int errnum);

void explain_message_fork(char *message, int message_size);

void explain_message_errno_fork(char *message, int message_size, int errnum);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddmkBesystem call.

explain_fork
const char *explain_fork(void);

The explain_fork function is used to obtain an explanation of an error returned p{&) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{
fprintf(stderr, "%s\n", explain_fork());
exit(EXIT_FAILURE);

}

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fork
const char *explain_errno_fork(int errnum);

The explain_errno_fork function is used to obtain arx@anation of an error returned by tfark(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fork(err,));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @@l code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

238

explain_fork(3) aplain_fork(3)

explain_message_fork
void explain_message_fork(char *message, int message_size);

The explain_message_forkiunction may be used to obtain an explanation of an error returned by the
fork(2) system call.The least the message will contain is the valustreirror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)

{
char message[3000];
explain_message_fork(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

explain_message_errno_fork
void explain_message_errno_fork(char *message, int message_size, int errnum);

The explain_message_errno_forkunction may be used to obtain an explanation of an error returned by
the fork(2) system call. The least the message will contain is #hgevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{

int err = errno;

char message[3000];

explain_message_errno_fork(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this

function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

SEE ALSO
fork(2) createa child process
explain_fork_or_di€3)
create a child process and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

239

explain_fork_or_die(3) eplain_fork_or_die(3)

NAME
explain_fork_or_die — create a child process and report errors

SYNOPSIS
#include <libexplain/fork.h>

void explain_fork_or_die(void);
DESCRIPTION
Theexplain_fork_or_die function is used to call thierk(2) system call. Ondiilure an explanation will be

printed to stderr, obtained from explain_fork3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fork_or_die();
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fork(2) createa child process

explain_fork(3)
explainfork(2) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

240

explain_fpathconf(3) ®plain_fpathconf(3)

NAME
explain_fpathconf — explain fpathconf(3) errors

SYNOPSIS

#include <libexplain/fpathconf.h>

const char *explain_fpathconf(int fildes, int name);

const char *explain_errno_fpathconf(int errnum, int fildes, int name);

void explain_message_fpathconf(char *message, int message_size, int fildes, int name);

void explain_message_errno_fpathconf(char *message, int message_size, int errnum, int fildes, int name);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedimgtticen(3) system call.

explain_fpathconf
const char *explain_fpathconf(int fildes, int name);

The explain_fpathconf function is used to obtain an explanation of an error returned biypakigcon(3)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:

if (fpathconf(fildes, name) < 0)
{

fprintf(stderr, "%s\n", explain_fpathconf(fildes, name));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_dig) function.
fildes The original fildes, exactly as passed tofieghcon(3) system call.
name The original name, exactly as passed tafplaghcon{3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be ozerwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fpathconf
const char *explain_errno_fpathconf(int errnum, int fildes, int name);

The explain_errno_fpathconf function is used to obtain arxmanation of an error returned by the
fpathcon(3) system call. The least the message will contain is the valagesfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fpathconf(err, fildes, name));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_di@) function.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

241

explain_fpathconf(3) ®plain_fpathconf(3)

fildes The original fildes, exactly as passed tofiethcon(3) system call.
name The original name, exactly as passed tafplaghcon{3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fpathconf
void explain_message_fpathconf(char *message, int message_size, int fildes, int name);

The explain_message_fpathconfunction may be used tobtain an explanation of an error returned by
the fpathcon3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)

{
char message[3000];
explain_message_fpathconf(message, sizeof(message), fildes, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_di@) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofiteghcon(3) system call.
name The original name, exactly as passed tafplaghcon3) system call.

explain_message_errno_fpathconf
void explain_message_errno_fpathconf(char *message, int message_size, int errnum, int fildes, int name);

Theexplain_message_errno_fpathcorfiunction may be used to obtain an explanation of an error returned
by thefpathcon(3) system call. The least the message will contain is the vaktesofor(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fpathconf(message, sizeof(message),
err, fildes, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

242

explain_fpathconf(3) ®plain_fpathconf(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from etao global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofttethcon(3) system call.

name The original name, exactly as passed tafplaghcon3) system call.
SEE ALSO
fpathcon(3)
get configuration values for files
explain_fpathconf_or_dig)
get configuration values for files and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

243

explain_fpathconf_or_die(3) xplain_fpathconf_or_die(3)

NAME
explain_fpathconf_or_die — get file configuration and report errors

SYNOPSIS
#include <libexplain/fpathconf.h>
long explain_fpathconf_or_die(int fildes, int name);
DESCRIPTION
The explain_fpathconf_or_die function is used to call thépathcon{3) system call. On failure an

explanation will be printed tstderr, obtained fromexplain_fpathconf3), and then the process terminates
by callingexit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
long result = explain_fpathconf_or_die(fildes, name);

fildes The fildes, exactly as to be passed tofffaghcon{3) system call.
name The name, exactly as to be passed tdghthcon(3) system call.

Returns: Thidunction only returns on success, $pathcon(3) for more information. On failure, prints
an explanation and exits.

SEE ALSO
fpathcon(3)
get configuration values for files

explain_fpathconf3)
explainfpathcon{3) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

244

explain_fprintf(3) eplain_fprintf(3)

NAME

explain_fprintf — explainfprintf(3) errors

SYNOPSIS

#include <libexplain/fprintf.h>

const char *explain_fprintf(FILE *fp, const char *format, ...);

const char *explain_errno_fprintf(int errnum, FILE *fp, const char *format, ...);

void explain_message_fprintf(char *message, int message_size, FILE *fp, const char *format,);

void explain_message_errno_fprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, ...);

DESCRIPTION

These functions may be used to obtain explanations for errors returnedifoyntfig3) system call.

explain_fprintf

const char *explain_fprintf(FILE *fp, const char *format, ...);

The explain_fprintf function is used to obtain ax@anation of an error returned by thintf(3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirentf(3) system call.

Returns: Themessage explaining the errdhis messageutfer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL,
int result = fprintf(fp, format, ...);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_fprintf(fp, format, ...));
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_fprintf_or_di€3) function.

explain_errno_fprintf

const char *explain_errno_fprintf(int errnum, FILE *fp, const char *format, ...);

The explain_errno_fprintf function is used to obtain an explanation of an error returned Hprihé(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirentf(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

245

explain_fprintf(3) eplain_fprintf(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL,;
int result = fprintf(fp, format, ...);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fprintf(err, fp, format,
=)
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_fprintf_or_di€3) function.
explain_message_fprintf
void explain_message_fprintf(char *message, int message_size, FILE *fp, const char *format, ...);

The explain_message_fprintffunction is used to obtain an explanation of an error returned by the
fprintf(3) system call. The least the message will contain isaghee ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirentf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL,
int result = fprintf(fp, format, ...);
if (result < 0)

{
char message[3000];
explain_message_fprintf(message, sizeof(message), fp, format,
)
printf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_fprintf_or_di€3) function.

explain_message_errno_fprintf
void explain_message_errno_fprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, ...);

The explain_message_errno_fprintffunction is used to obtain axmanation of an error returned by the
fprintf(3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

246

explain_fprintf(3) eplain_fprintf(3)

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to aayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirentf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL,
int result = fprintf(fp, format, ...);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fprintf(message, sizeof(message), err,
fp, format, ...);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example iswvailable pre-packaged as thgplain_fprintf_or_di€3) function.
SEE ALSO
fprintf(3)
formatted output carersion
explain_fprintf_or_di€3)
formatted output carersion and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

247

explain_fprintf_or_die(3) eplain_fprintf_or_die(3)

NAME
explain_fprintf_or_die — formatted output ogemsion and report errors

SYNOPSIS
#include <libexplain/fprintf.h>

int explain_fprintf_or_die(FILE *fp, const char *format, ...);
int explain_fprintf_on_error(FILE *fp, const char *format, ...);

DESCRIPTION
The explain_fprintf_or_die function is used to call thiprintf(3) system call. On failure arxganation
will be printed tostderr, obtained from theexplain_fprintf(3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fprintf_on_error function is used to call thiprintf(3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_fprintf(3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofgrentf(3) system call.
format The format, exactly as to be passed tofphimtf(3) system call.

RETURN VALUE
The explain_fprintf_or_die function only returns on success, dpentf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fprintf_on_error function alays returns the value return by the wrappgdntf(3) system
call.

EXAMPLE
Theexplain_fprintf_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_fprintf_or_die(fp, format, ...);
SEE ALSO
fprintf(3)
formatted output carersion
explain_fprintf(3)
explain fprintf(3) errors
ext(2) terminatehe calling process
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

248

explain_fpuge(3) eplain_fpurge(3)

NAME
explain_fpurge — explaifpurge(3) errors

SYNOPSIS

#include <libexplain/fpurge.h>

const char *explain_fpurge(FILE *fp);

const char *explain_errno_fpurge(int errnum, FILE *fp);

void explain_message_fpurge(char *message, int message_size, FILE *fp);

void explain_message_errno_fpurge(char *message, int message_size, int errnum, FILE *fp);
DESCRIPTION

These functions may be used to obtain explanations for errors returnediyrdieé8) system call.

explain_fpurge
const char *explain_fpurge(FILE *fp);
The explain_fpurge function is used to obtain an explanation of an error returned Hpulge(3) system

call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to therge(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

if (fpurge(fp) < 0)

{

fprintf(stderr, "%s\n", explain_fpurge(fp));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_fpulge or_dig3) function.
explain_errno_fpurge

const char *explain_errno_fpurge(int errnum, FILE *fp);

The explain_errno_fpurge function is used to obtain axmanation of an error returned by tfpirge(3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to therge(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{

249

explain_fpuge(3) eplain_fpurge(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fpurge(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fpulge or_dig3) function.

explain_message_fpurge
void explain_message_fpurge(char *message, int message_size, FILE *fp);

The explain_message_fpurgdunction is used to obtain an explanation of an error returned by the
fpurge(3) system call. The least the message will contain isahee ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to therge(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)

{
char message[3000];
explain_message_fpurge(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fpulge or_dig3) function.

explain_message_errno_fpurge
void explain_message_errno_fpurge(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fpurgéunction is used to obtain an explanation of an error returned by the
fpurge(3) system call. The least the message will contain is the vaktesofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to therge(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fpurge(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

250

explain_fpuge(3) eplain_fpurge(3)

The abee mde example isvailable pre-packaged as thglain_fpulge or_dig3) function.

SEE ALSO
fpurge(3)
purge a stream
explain_fpuige _or_dig3)
purge a stream and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

251

explain_fpuge_or_die(3) xplain_fpurge_or_die(3)

NAME
explain_fpurge_or_die — purge a stream and report errors

SYNOPSIS
#include <libexplain/fpurge.h>
void explain_fpurge_or_die(FILE *fp);
int explain_fpurge_on_error(FILE *fp);
DESCRIPTION
The explain_fpurge_or_diefunction is used to call thpurge(3) system call. On failure arxganation

will be printed tostderr, obtained from theexplain_fpuige(3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

The explain_fpurge_on_error function is used to call thipurge(3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_fpuige(3) function, but still returns to the caller.

fp The fp, exactly as to be passed toffhage(3) system call.

RETURN VALUE
The explain_fpurge_or_die function only returns on success, dparge3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fpurge_on_error function alays returns the value return by the wrapfeurge(3) system
call.

EXAMPLE

Theexplain_fpurge_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fpurge_or_die(fp);

SEE ALSO

fpurge(3)

purge a stream
explain_fpuige(3)
explainfpurge(3) errors

ext(2) terminatehe calling process

COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

252

explain_fputc(3) gplain_fputc(3)

NAME
explain_fputc — explain fputc(3) errors

SYNOPSIS

#include <libexplain/fputc.h>

const char *explain_fputc(int ¢, FILE *fp);

const char *explain_errno_fputc(int errnum, int ¢, FILE *fp);

void explain_message_fputc(char *message, int message_size, int c, FILE *fp);

void explain_message_errno_fputc(char *message, int message_size, int errnum, int ¢, FILE *fp);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedfifoyttf® system call.

explain_fputc
const char *explain_fputc(int ¢, FILE *fp);
The explain_fputc function is used to obtain axm@anation of an error returned by tfutq3) system

call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)

{ fprintf(stderr, "%s\n", explain_fputc(c, fp));
exit(EXIT_FAILURE);
}
c The original c, exactly as passed to finatq3) system call.
fp The original fp, exactly as passed to thetd3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply adifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fputc
const char *explain_errno_fputc(int errnum, int ¢, FILE *fp);
The explain_errno_fputc function is used to obtain axm@anation of an error returned by tfautq(3)

system call. The least the message will contain is the valsasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fputc(err, c, fp));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

c The original c, exactly as passed to finatq3) system call.

fp The original fp, exactly as passed to thetd3) system call.

253

explain_fputc(3) gplain_fputc(3)

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fputc
void explain_message_fputc(char *message, int message_size, int c, FILE *fp);

The explain_message_fputdunction may be used to obtain an explanation of an error returned by the
fputd3) system call. The least the message will contain is the valsteeofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)
{

char message[3000];

explain_message_fputc(message, sizeof(message), c, fp);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

c The original c, exactly as passed to finatq3) system call.
fp The original fp, exactly as passed to thetd3) system call.

explain_message_errno_fputc
void explain_message_errno_fputc(char *message, int message_size, int errnum, int ¢, FILE *fp);
The explain_message_errno_fputéunction may be used to obtain an explanation of an error returned by

the fputq(3) system call. The least the message will contain is @hgevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)

{
int err = errno;
char message[3000];
explain_message_errno_fputc(message, sizeof(message), err, c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

c The original c, exactly as passed to finatq3) system call.

254

explain_fputc(3) gplain_fputc(3)

fp The original fp, exactly as passed to thetd3) system call.

SEE ALSO
fputq3) outputof characters
explain_fputc_or_di€3)
output of characters and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

255

explain_fputc_or_die(3) »plain_fputc_or_die(3)

NAME
explain_fputc_or_die - output of characters and report errors

SYNOPSIS
#include <libexplain/fputc.h>

void explain_fputc_or_die(int ¢, FILE *fp);

DESCRIPTION
The explain_fputc_or_diefunction is used to call thiputq3) system call.On failure an explanation will
be printed tostderr, obtained from explain_fput€3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fputc_or_die(c, fp);

c The c, exactly as to be passed tofthe3) system call.
fp The fp, exactly as to be passed toffheq3) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fputq3) outputof characters

explain_fputg3)
explain fputq3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

256

explain_fputs(3) gplain_fputs(3)

NAME
explain_fputs — explaifiput{3) errors

SYNOPSIS
#include <libexplain/fputs.h>

const char *explain_fputs(const char *s, FILE *fp);

const char *explain_errno_fputs(int errnum, const char *s, FILE *fp);

void explain_message_fputs(char *message, int message_size, const char *s, FILE *fp);

void explain_message_errno_fputs(char *message, int message_size, int errnum, const char *s, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediyt48 system call.

explain_fputs
const char *explain_fputs(const char *s, FILE *fp);

Theexplain_fputs function is used to obtain an explanation of an error returned bgutg3) system call.
The least the message will contain is thiig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

fprintf(stderr, "%s\n", explain_fputs(s, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.

explain_errno_fputs
const char *explain_errno_fputs(int errnum, const char *s, FILE *fp);

The explain_errno_fputs function is used to obtain axmanation of an error returned by thautg3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

257

explain_fputs(3) gplain_fputs(3)

if (fputs(s, fp) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fputs(err, s, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.
explain_message_fputs

void explain_message_fputs(char *message, int message_size, const char *s, FILE *fp);

The explain_message_fputéunction is used to obtain an explanation of an error returned bipuke3)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

char message[3000];
explain_message_fputs(message, sizeof(message), s, fp);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The aboe mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.
explain_message_errno_fputs
void explain_message_errno_fputs(char *message, int message_size, int errnum, const char *s, FILE *fp);
The explain_message_errno_fputgunction is used to obtain axmganation of an error returned by the

fputq3) system call. The least the message will contain isaghee ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this

function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{
int err = errno;
char message[3000];

258

explain_fputs(3) gplain_fputs(3)

explain_message_errno_fputs(message, sizeof(message), err, s,

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.

SEE ALSO
fputq3) writea gring to a stream
explain_fputs_or_di€3)
write a string to a stream and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

259

explain_fputs_or_die(3) »plain_fputs_or_die(3)

NAME
explain_fputs_or_die — write a string to a stream and report errors

SYNOPSIS
#include <libexplain/fputs.h>

void explain_fputs_or_die(const char *s, FILE *fp);
int explain_fputs_on_error(const char *s, FILE *fp);

DESCRIPTION
The explain_fputs_or_diefunction is used to call thiputg3) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_fput¢3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_fputs_on_error function is used to call thiputq3) system call. Ondflure an gplanation
will be printed tostderr, obtained from thexplain_fput¢3) function, but still returns to the caller.

S The s, exactly as to be passed toftheq3) system call.
fp The fp, exactly as to be passed toffhdg3) system call.

RETURN VALUE
The explain_fputs_or_diefunction only returns on success, $getq3) for more information. Oraflure,
prints an explanation and exits, it does not return.

The explain_fputs_on_error function alvays returns thealue return by the wrappédutq3) system call.

EXAMPLE
Theexplain_fputs_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fputs_or_die(s, fp);
SEE ALSO
fputq3) writea gring to a stream
explain_fputg3)
explainfputq3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

260

explain_fread(3) gplain_fread(3)

NAME
explain_fread — explain fread(3) errors

SYNOPSIS
#include <libexplain/fread.h>

const char *explain_fread(void *psize_t size, size_t nmemb, FILE *fp);

const char *explain_errno_fread(int errnum, void *gize_t size, size_t nmemb, FILE *fp);

void explain_message_fread(char *message, int message_size, voidz®ptt size, size_t nmemb, FILE
*fp);

void explain_message_errno_fread(char *message, int message_size, int errnum, yade*ptisize,
size_t nmemb, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedieadi® system call.

explain_fread
const char *explain_fread(void *psize_t size, size_t nmemb, FILE *fp);

The explain_fread function is used to obtain an explanation of an error returned biyeth&3) system
call. Theleast the message will contain is the valustodrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))

{ fprintf(stderr, "%s\n", explain_fread(ptr, size, nmemb, fp));
exit(EXIT_FAILURE);
}
ptr The original ptrexactly as passed to tfiead3) system call.
size The original size, exactly as passed tofthad3) system call.

nmemb The original nmemb, exactly as passed tdftbed3) system call.
fp The original fp, exactly as passed to ffgad3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fread
const char *explain_errno_fread(int errnum, void *gize_t size, size_t nmemb, FILE *fp);

The explain_errno_fread function is used to obtain axmanation of an error returned by tfread(3)
system call. The least the message will contain is the valsteasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fread(err, ptr, size, nmemb, fp));
exit(EXIT_FAILURE);

}

261

explain_fread(3) gplain_fread(3)

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ptr The original ptrexactly as passed to tfiead3) system call.
size The original size, exactly as passed toftead3) system call.
nmemb The original nmemb, exactly as passed tdftbed3) system call.
fp The original fp, exactly as passed to ffgad3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fread
void explain_message_fread(char *message, int message_size, voidz®ptt size, size_t nmemb, FILE

*fo);
The explain_message_freadunction may be used t@btain an explanation of an error returned by the
fread3) system call.The least the message will contain is the valustrefrror(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))

{
char message[3000];
explain_message_fread(message, sizeof(message), ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
ptr The original ptrexactly as passed to tfiead3) system call.
size The original size, exactly as passed toftead3) system call.
nmemb The original nmemb, exactly as passed tdftbed3) system call.
fp The original fp, exactly as passed to ffgad3) system call.

explain_message_errno_fread
void explain_message_errno_fread(char *message, int message_size, int errnum, yade*ptisize,
size_t nmemb, FILE *fp);

The explain_message_errno_freadunction may be used to obtain axpknation of an error returned by
the fread3) system call. The least the message will contain is the valageasfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))
{

int err = errno;

262

explain_fread(3) gplain_fread(3)

char message[3000];

explain_message_errno_fread(message, sizeof(message), err,
ptr, size, nmemb, fp);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ptr The original ptrexactly as passed to tfiead3) system call.
size The original size, exactly as passed tofthad3) system call.
nmemb The original nmemb, exactly as passed tdftbed3) system call.
fp The original fp, exactly as passed to ffgad3) system call.

SEE ALSO
fread3) binarystream input
explain_fread_or_di€3)
binary stream input and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

263

explain_fread_or_die(3) xplain_fread_or_die(3)

NAME
explain_fread_or_die — binary stream input and report errors

SYNOPSIS
#include <libexplain/fread.h>

void explain_fread_or_die(void *ptsze_t size, size_t nmemb, FILE *fp);

DESCRIPTION
Theexplain_fread_or_diefunction is used to call thieead3) system call.On failure an explanation will
be printed tostderr, obtained from explain_fread3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
size_t how_many = explain_fread_or_die(ptr, size, nmemb, fp);

ptr The ptr exactly as to be passed to tiead3) system call.
size The size, exactly as to be passed tdrad3) system call.
nmemb The nmemb, exactly as to be passed tdrée(3) system call.
fp The fp, exactly as to be passed toftkad3) system call.

Returns: Thidunction only returns on success, the number read or 0 on end-of-input. On failure, prints an
explanation and exits.

SEE ALSO
fread3) binarystream input

explain_fread3)
explainfread(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

264

explain_freopen(3) xplain_freopen(3)

NAME
explain_freopen — explain freopen(3) errors

SYNOPSIS
#include <libexplain/freopen.h>
const char *explain_freopen(const char *pathname, const char *flags, FILE *fp);
const char *explain_errno_freopen(int errnum, const char *pathname, const char *flags, FILE *fp);
void explain_message_freopen(char *message, int message_size, const char *pathname, const char *flags,
FILE *fp);
void explain_message_errno_freopen(char *message, int message_size, int errnum, const char *pathname,
const char *flags, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanatiorfssfoper3) errors.
explain_freopen
const char *explain_freopen(const char *pathname, const char *flags, FILE *fp);
The explain_freopen function is used to obtainygiamation of an error returned by tieoper{3) system

call. Theleast the message will contain is treue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if ({freopen(pathname, flags, fp))
{

fprintf(stderr, '%s0, explain_freopen(pathname, flags, fp));
exit(EXIT_FAILURE);
}

pathname
The original pathname, exactly as passed tdréoperf3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to ttlper{3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_freopen
const char *explain_errno_freopen(int errnum, const char *pathname, const char *flags, FILE *fp);

The explain_errno_freopen function is used to obtainxafaration of an error returned by tiieoper{3)
system call. The least the message will contain is the valsasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (freopen(pathname, flags, fp))

{
int err = errno;
fprintf(stderr, '%s0, explain_errno_freopen(err, pathname,
flags, fp));
exit(EXIT_FAILURE);
}

265

explain_freopen(3) xplain_freopen(3)

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tdréoperf3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to tleper{3) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.
explain_message_freopen
void explain_message_freopen(char *message, int message_size, const char *pathname, const char *flags,

FILE *fp);
The explain_message_freopen function is used to obtain an explanation of an error returned by the
freoperf3) system call. The least the message will contain is the valuestodrror(errno) , but

usually it will do much betteend indicate the underlying cause in more detail.
Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if ({freopen(pathname, flags, fp))
{

char message[3000];
explain_message_freopen(message, sizeof(message), pathname, flags,
fp);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tdréoperf3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to tleper{3) system call.

explain_message_errno_freopen
void explain_message_errno_freopen(char *message, int message_size, int errnum, const char *pathname,
const char *flags, FILE *fp);

The plain_message_errno_freopen function is used to obtain an explanation of an error returned by the
freoperf3) system call. The least the message will contain is #igevof strerror(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (Ifreopen(pathname, flags, fp))
{
int err = errno;
char message[3000];
explain_message_errno_freopen(message, sizeof(message), err,

266

explain_freopen(3) xplain_freopen(3)

pathname, flags, fp);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageufisuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tdréoperf3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to trper{3) system call.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

267

explain_freopen_or_die(3) xplain_freopen_or_die(3)

NAME
explain_freopen_or_die - open file and report errors

SYNOPSIS
#include <libexplain/freopen.h>
void explain_freopen_or_die(const char *pathname, const char *flags, FILE *fp);

DESCRIPTION
The «plain_freopen_or_die function is used to reopen a file vidréoper{3) system call. On failure it
will print an explanation, obtained from ttieexplain_freope(B) function, on the standard error stream
and then exit.

This function is intended to be used in a fashion similar to the following example:
explain_freopen_or_die(pathname, flags, fp);

pathname
The pathname, exactly as to be passed t&rd¢bperf3) system call.

flags The flags, exactly as to be passed toftbeperf3) system call.
fp The fp, exactly as to be passed tofteeper{3) system call.
Returns: Onlyeve return on success. Me returns on failure.

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

268

explain_fseek(3) ¥plain_fseek(3)

NAME
explain_fseek — explaifseek3) errors

SYNOPSIS
#include <libexplain/fseek.h>

const char *explain_fseek(FILE *fp, long offset, int whence);

const char *explain_errno_fseek(int errnum, FILE *fp, long offset, int whence);

void explain_message_fseek(char *message, int message_size, FILE *fp, long offset, int whence);

void explain_message_errno_fseek(char *message, int message_size, int errnum, FILE *fp, long offset, int
whence);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedisself®) system call.

explain_fseek
const char *explain_fseek(FILE *fp, long offset, int whence);

Theexplain_fseekfunction is used to obtain an explanation of an error returned igabk3) system call.
The least the message will contain is theig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to theek3) system call.

offset The original offset, exactly as passed tofde=k3) system call.
whence The original whence, exactly as passed tdskek3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

fprintf(stderr, "%s\n", explain_fseek(fp, offset, whence));
exit(EXIT_FAILURE);

}

The aboe mde example iswvailable pre-packaged as thgplain_fseek or_di@) function.

explain_errno_fseek
const char *explain_errno_fseek(int errnum, FILE *fp, long offset, int whence);

The explain_errno_fseekfunction is used to obtain axmanation of an error returned by tfseek3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to theek3) system call.
offset The original offset, exactly as passed tofde=k3) system call.
whence The original whence, exactly as passed tdskek3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

269

explain_fseek(3) ¥plain_fseek(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fseek(err, fp, offset,
whence));
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_fseek or_di@) function.

explain_message_fseek
void explain_message_fseek(char *message, int message_size, FILE *fp, long offset, int whence);

The explain_message_fseefkinction is used to obtain axpanation of an error returned by tfeeek3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theek3) system call.
offset The original offset, exactly as passed tofde=k3) system call.
whence The original whence, exactly as passed tdskek3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

{
char message[3000];
explain_message_fseek(message, sizeof(message), fp, offset,
whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_fseek or_di@) function.

explain_message_errno_fseek
void explain_message_errno_fseek(char *message, int message_size, int errnum, FILE *fp, long offset, int
whence);

The explain_message_errno_fseekunction is used to obtain an explanation of an error returned by the
fseek3) system call. The least the message will contain isahm ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

270

explain_fseek(3) ¥plain_fseek(3)

fp The original fp, exactly as passed to theek3) system call.
offset The original offset, exactly as passed tofde=k3) system call.
whence The original whence, exactly as passed tdskek3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

{

int err = errno;
char message[3000];
explain_message_errno_fseek(message, sizeof(message), err, fp,
offset, whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The aboe mde example iswvailable pre-packaged as thgplain_fseek or_di@) function.
SEE ALSO
fseek3) repositiora dream
explain_fseek _or_di@)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

271

explain_fseek_or_die(3) xplain_fseek _or_die(3)

NAME
explain_fseek_or_die - reposition a stream and report errors

SYNOPSIS
#include <libexplain/fseek.h>

void explain_fseek_or_die(FILE *fp, long offset, int whence);
int explain_fseek_on_error(FILE *fp, long offset, int whence);

DESCRIPTION
The explain_fseek_or_diefunction is used to call thiseek3) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_fseek3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_fseek_on_errorfunction is used to call thiseek3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fseek3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofdez=k3) system call.
offset The offset, exactly as to be passed tofseek3) system call.
whence The whence, exactly as to be passed tdsbek3) system call.

RETURN VALUE
The explain_fseek_or_diefunction only returns on success, $eeek3) for more information. Oraflure,
prints an explanation and exits, it does not return.

Theexplain_fseek_on_errorfunction alvays returns thealue return by the wrappdseek3) system call.

EXAMPLE
Theexplain_fseek_or_didunction is intended to be used in a fashion similar to the following example:
explain_fseek_or_die(fp, offset, whence);

SEE ALSO
fseek3) repositiora dream

explain_fseel3)
explainfseek3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

272

explain_fsetpos(3) xplain_fsetpos(3)

NAME
explain_fsetpos — explaifsetpo$3) errors

SYNOPSIS
#include <libexplain/fsetpos.h>
const char *explain_fsetpos(FILE *fp, fpos_t *pos);
const char *explain_errno_fsetpos(int errnum, FILE *fp, fpos_t *pos);
void explain_message_fsetpos(char *message, int message_size, FILE *fp, fpos_t *pos);
void explain_message_errno_fsetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedsstpiog3) system call.

explain_fsetpos
const char *explain_fsetpos(FILE *fp, fpos_t *pos);

Theexplain_fsetposfunction is used to obtain an explanation of an error returned bgatpo$3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofetpo$3) system call.

Returns: Themessage explaining the errdhis messageutfer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

fprintf(stderr, "%s\n", explain_fsetpos(fp, pos));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fsetpos_or_d{8) function.

explain_errno_fsetpos
const char *explain_errno_fsetpos(int errnum, FILE *fp, fpos_t *pos);

The explain_errno_fsetposfunction is used to obtain amanation of an error returned by tfsetpo$3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpo$3) system call.
pos The original pos, exactly as passed tofetpo$3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

273

explain_fsetpos(3) xplain_fsetpos(3)

if (fsetpos(fp, pos) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fsetpos(err, fp, pos));
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fsetpos_or_d{8) function.
explain_message_fsetpos

void explain_message_fsetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

The explain_message_fsetpofunction is used to obtain arxm@anation of an error returned by the

fsetpo§3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thetpo$3) system call.
pos The original pos, exactly as passed tofetpo$3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

char message[3000];

explain_message_fsetpos(message, sizeof(message), fp, pos);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as thglain_fsetpos_or_d{8) function.

explain_message_errno_fsetpos
void explain_message_errno_fsetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

The explain_message_errno_fsetpdsinction is used to obtain axmanation of an error returned by the
fsetpo§3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from eémao global variable just before this

function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @&frrno.

fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofetpo$3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{
int err = errno;
char message[3000];

274

explain_fsetpos(3) xplain_fsetpos(3)

explain_message_errno_fsetpos(message, sizeof(message), err,

fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The aboe mde example isvailable pre-packaged as thglain_fsetpos_or_d{8) function.

SEE ALSO

fsetpo§3)
reposition a stream

explain_fsetpos_or_d{8)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

275

explain_fsetpos_or_die(3) xplain_fsetpos_or_die(3)

NAME
explain_fsetpos_or_die - reposition a stream and report errors

SYNOPSIS
#include <libexplain/fsetpos.h>
void explain_fsetpos_or_die(FILE *fp, fpos_t *pos);
int explain_fsetpos_on_error(FILE *fp, fpos_t *pos);
DESCRIPTION
The explain_fsetpos_or_digfunction is used to call thisetpo$3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_fsetpog3) function, and then the process terminates by
callingexit(EXIT_FAILURE)

Theexplain_fsetpos_on_errorfunction is used to call thisetpo$3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_fsetpo€3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofdetpo$3) system call.
pos The pos, exactly as to be passed tdtkgo$3) system call.

RETURN VALUE
The explain_fsetpos_or_diefunction only returns on success, geetpo$3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fsetpos_on_errorfunction aays returns the value return by the wrapfeetpog§3) system
call.

EXAMPLE
Theexplain_fsetpos_or_didunction is intended to be used in a fashion similar to the following example:
explain_fsetpos_or_die(fp, pos);
SEE ALSO
fsetpo§3)
reposition a stream

explain_fsetpog3)
explainfsetpo$3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

276

explain_fstat(3) gplain_fstat(3)

NAME
explain_fstat — explain fstat(2) errors

SYNOPSIS
#include <libexplain/fstat.h>

const char *explain_fstat(int fildes, struct stat *buf);

const char *explain_errno_fstat(int errnum, int fildes, struct stat *buf);

void explain_message_fstat(char *message, int message_size, int fildes, struct stat *buf);

void explain_message_errno_fstat(char *message, int message_size, int errnum, int fildes, struct stat *buf);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedstatBe system call.

explain_fstat
const char *explain_fstat(int fildes, struct stat *buf);

The explain_fstat function is used to obtain an explanation of an error returned Hgtdi@) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
fprintf(stderr, "%s\n", explain_fstat(fildes, buf));

exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed tofgta{2) system call.
buf The original buf, exactly as passed tofiftai2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fstat
const char *explain_errno_fstat(int errnum, int fildes, struct stat *buf);

The explain_errno_fstat function is used to obtain arx@anation of an error returned by tf&tai(2)
system call. The least the message will contain is the valstasfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstat(err, fildes, buf));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @al code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofgta{2) system call.

buf The original buf, exactly as passed tofiftai2) system call.

277

explain_fstat(3) gplain_fstat(3)

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fstat
void explain_message_fstat(char *message, int message_size, int fildes, struct stat *buf);

The explain_message_fstatunction may be used to obtain arp&nation of an error returned by the
fsta(2) system call.The least the message will contain is the valugrefror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
char message[3000];
explain_message_fstat(message, sizeof(message), fildes, buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofgta{2) system call.
buf The original buf, exactly as passed tofiftai2) system call.

explain_message_errno_fstat
void explain_message_errno_fstat(char *message, int message_size, int errnum, int fildes, struct stat *buf);

The explain_message_errno_fstafunction may be used to obtain an explanation of an error returned by
the fstaf2) system call. The least the message will contain is the valg&esfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_fstat(message, sizeof(message), err, fildes, buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofgtai2) system call.

278

explain_fstat(3) gplain_fstat(3)

buf The original buf, exactly as passed tofiftai2) system call.

SEE ALSO
fstaf2) getfile status
explain_fstat_or_di€3)
get file status and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2008 Peter Miller

279

explain_fstatfs(3) eplain_fstatfs(3)

NAME
explain_fstatfs — explain fstatfs(2) errors

SYNOPSIS
#include <libexplain/fstatfs.h>

const char *explain_fstatfs(int fildes, struct statfs *data);

const char *explain_errno_fstatfs(int errnum, int fildes, struct statfs *data);

void explain_message_fstatfs(char *message, int message_size, int fildes, struct statfs *data);

void explain_message_errno_fstatfs(char *message, int message_size, int errnum, int fildes, struct statfs
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedsiatis®) system call.

explain_fstatfs
const char *explain_fstatfs(int fildes, struct statfs *data);

The explain_fstatfs function is used to obtain an explanation of an error returned WigtHiéf2) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofttatfg2) system call.
data The original data, exactly as passed tofitetfg2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)

{
fprintf(stderr, "%s\n", explain_fstatfs(fildes, data));

exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thglain_fstatfs_or_di€3) function.

explain_errno_fstatfs
const char *explain_errno_fstatfs(int errnum, int fildes, struct statfs *data);

The explain_errno_fstatfs function is used to obtain axmganation of an error returned by tfstatfg2)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofgtatfg2) system call.
data The original data, exactly as passed tofitetfg2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a dfer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

280

explain_fstatfs(3) eplain_fstatfs(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatfs(err, fildes,
data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fstatfs_or_di€3) function.

explain_message_fstatfs
void explain_message_fstatfs(char *message, int message_size, int fildes, struct statfs *data);

Theexplain_message_fstatfRinction is used to obtain an explanation of an error returned bigtetitg2)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofttatfg2) system call.
data The original data, exactly as passed tofitetfg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)

{
char message[3000];
explain_message_fstatfs(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fstatfs _or_di€3) function.

explain_message_errno_fstatfs
void explain_message_errno_fstatfs(char *message, int message_size, int errnum, int fildes, struct statfs

*data);
The explain_message_errno_fstatffunction is used to obtain an explanation of an error returned by the
fstatf2) system call. The least the message will contain isaheofstrerror(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofttatfg2) system call.
data The original data, exactly as passed tofitetfg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

281

explain_fstatfs(3) eplain_fstatfs(3)

if (fstatfs(fildes, data) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fstatfs(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_fstatfs_or_di€3) function.

SEE ALSO
fstatfg2)
get file system statistics
explain_fstatfs_or_di€3)
get file system statistics and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

282

explain_fstatfs_or_die(3) xplain_fstatfs_or_die(3)

NAME
explain_fstatfs_or_die — get file system statistics and report errors

SYNOPSIS
#include <libexplain/fstatfs.h>

void explain_fstatfs_or_die(int fildes, struct statfs *data);
int explain_fstatfs_on_error(int fildes, struct statfs *data);

DESCRIPTION
Theexplain_fstatfs_or_diefunction is used to call thistatfg2) system call. Onaflure an explanation will
be printed tostderr, obtained from theexplain_fstatf$3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fstatfs_on_error function is used to call thistatf§2) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fstatf$3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed tofthatf{2) system call.
data The data, exactly as to be passed tdstafg2) system call.

RETURN VALUE
The explain_fstatfs_or_die function only returns on success, dsw@tf§2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatfs_on_error function alvays returns the value return by the wrappsatfg2) system
call.

EXAMPLE
Theexplain_fstatfs_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fstatfs_or_die(fildes, data);

SEE ALSO
fstatfg2)
get file system statistics
explain_fstatf¢3)
explainfstatfg2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

283

explain_fstat_or_die(3) »plain_fstat_or_die(3)

NAME
explain_fstat_or_die — get file status and report errors

SYNOPSIS
#include <libexplain/fstat.h>

void explain_fstat_or_die(int fildes, struct stat *buf);

DESCRIPTION
Theexplain_fstat_or_diefunction is used to call thistai(2) system call. Ondilure an explanation will be

printed to stderr, obtained from explain_fsta{3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fstat_or_die(fildes, buf);

fildes The fildes, exactly as to be passed toftha{2) system call.
buf The buf, exactly as to be passed tofttai2) system call.
Returns: Thidunction only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fstaf2) getfile status

explain_fstag3)
explainfstai(2) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2008 Peter Miller

284

explain_fstatvfs(3) gplain_fstatvfs(3)

NAME
explain_fstatvfs — explaifstatvf¢2) errors

SYNOPSIS
#include <libexplain/fstatvfs.h>

const char *explain_fstatvfs(int fildes, struct statvfs *data);

const char *explain_errno_fstatvfs(int errnum, int fildes, struct statvfs *data);

void explain_message_fstatvfs(char *message, int message_size, int fildes, struct statvfs *data);

void explain_message_errno_fstatvfs(char *message, int message_size, int errnum, int fildes, struct statvfs
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedstatirig?) system call.

explain_fstatvfs
const char *explain_fstatvfs(int fildes, struct statvfs *data);

Theexplain_fstatvfsfunction is used to obtain an explanation of an error returned bigtdtef2) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofgtatvi¢2) system call.
data The original data, exactly as passed tofitetvi$2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)
{

fprintf(stderr, "%s\n", explain_fstatvfs(fildes, data));
exit(EXIT_FAILURE);

}
The abee mde example iswvailable pre-packaged as thgplain_fstatvfs_or_dig) function.

explain_errno_fstatvfs
const char *explain_errno_fstatvfs(int errnum, int fildes, struct statvfs *data);

Theexplain_errno_fstatvfsfunction is used to obtain amm@anation of an error returned by tfstatvig2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofgtatvi¢2) system call.
data The original data, exactly as passed tofietvi§2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

285

explain_fstatvfs(3) gplain_fstatvfs(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatvfs(err, fildes,
data));
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_fstatvfs_or_di@) function.

explain_message_fstatvfs
void explain_message_fstatvfs(char *message, int message_size, int fildes, struct statvfs *data);

The explain_message_fstatvfdunction is used to obtain an explanation of an error returned by the
fstatvf¢2) system call. The least the message will contain is the valuestodrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofgtatvi¢2) system call.
data The original data, exactly as passed tofietvi§2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)

{
char message[3000];
explain_message_fstatvfs(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_fstatvfs_or_di@) function.

explain_message_errno_fstatvfs
void explain_message_errno_fstatvfs(char *message, int message_size, int errnum, int fildes, struct statvfs

*data);
The explain_message_errno_fstatvfunction is used to obtain an explanation of an error returned by the
fstatvf42) system call. The least the message will contain is #heevof strerror(errno) , but

usually it will do much betteend indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofgtatvi¢2) system call.
data The original data, exactly as passed tofitetvi$2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

286

explain_fstatvfs(3) gplain_fstatvfs(3)

if (fstatvfs(fildes, data) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_fstatvfs(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example iswvailable pre-packaged as thgplain_fstatvfs_or_di@) function.
SEE ALSO
fstatvfg2)

get file system statistics
explain_fstatvfs_or_dig)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

287

explain_fstatvfs_or_die(3) xplain_fstatvfs_or_die(3)

NAME
explain_fstatvfs_or_die — get file system statistics and report errors

SYNOPSIS
#include <libexplain/fstatvfs.h>

void explain_fstatvfs_or_die(int fildes, struct statvfs *data);
int explain_fstatvfs_on_error(int fildes, struct statvfs *data);

DESCRIPTION
The explain_fstatvfs_or_diefunction is used to call thistatvf§2) system call. Onailure an gplanation
will be printed tostderr, obtained from thexplain_fstatvf§3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fstatvfs_on_error function is used to call thdstatvf§2) system call. On aflure an
explanation will be printed tstderr, obtained from theexplain_fstatvf§3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed tofthatvi¢2) system call.
data The data, exactly as to be passed tdttavf$2) system call.

RETURN VALUE
The explain_fstatvfs_or_diefunction only returns on success, $etatvig2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatvfs_on_errorfunction alvays returns the value return by the wrappstdtvig2) system
call.

EXAMPLE
Theexplain_fstatvfs_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fstatvfs_or_die(fildes, data);

SEE ALSO
fstatvfg2)
get file system statistics

explain_fstatvf§3)
explainfstatvf¢2) errors

ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

288

explain_fsync(3) gplain_fsync(3)

NAME
explain_fsync — explaiisyng?2) errors

SYNOPSIS
#include <libexplain/fsync.h>

const char *explain_fsync(int fildes);

const char *explain_errno_fsync(int errnum, int fildes);

void explain_message_fsync(char *message, int message_size, int fildes);

void explain_message_errno_fsync(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddyntt®) system call.
explain_fsync
const char *explain_fsync(int fildes);
The explain_fsyncfunction is used to obtain an explanation of an error returned bfgyhdg2) system

call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofdg2) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

if (fsync(fildes) < 0)

{

fprintf(stderr, "%s\n", explain_fsync(fildes));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_fsync_or_di€) function.
explain_errno_fsync

const char *explain_errno_fsync(int errnum, int fildes);

The explain_errno_fsync function is used to obtain axmganation of an error returned by tfeyng2)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdg?2) system call.

Returns: Themessage explaining the errdhis messageutfer is shared by all libexplain functions which
do not supply a ifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{

289

explain_fsync(3) gplain_fsync(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fsync(err, fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fsync_or_di€3) function.

explain_message_fsync
void explain_message_fsync(char *message, int message_size, int fildes);

The explain_message_fsynfunction is used to obtain an explanation of an error returned Hgythé?2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofdg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)

{
char message[3000];
explain_message_fsync(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fsync_or_dig) function.

explain_message_errno_fsync
void explain_message_errno_fsync(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fsyntunction is used to obtain an explanation of an error returned by the
fsyng2) system call. The least the message will contain isahe \ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fsync(message, sizeof(message), err,
fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

290

explain_fsync(3) gplain_fsync(3)

The abee mde example isvailable pre-packaged as thglain_fsync_or_di€3) function.

SEE ALSO
fsyn€2) synchronize file's in-core state with storage device
explain_fsync_or_dig)
synchronize a files in-core state with storage device and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

291

explain_fsync_or_die(3) »plain_fsync_or_die(3)

NAME
explain_fsync_or_die — synchronize a file with storage device and report errors

SYNOPSIS
#include <libexplain/fsync.h>
void explain_fsync_or_die(int fildes);
int explain_fsync_on_error(int fildes);
DESCRIPTION
The explain_fsync_or_diefunction is used to call thisyng2) system call. On failure an explanation will

be printed tcstderr, obtained from thexplain_fsyng€3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_fsync_on_error function is used to call thisyng2) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fsyn¢3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed toffyag¢2) system call.

RETURN VALUE
Theexplain_fsync_or_diefunction only returns on success, $&mnd?2) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_fsync_on_errorfunction avays returns thealue return by the wrappdslyng2) system call.

EXAMPLE
Theexplain_fsync_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fsync_or_die(fildes);

SEE ALSO
fsyn€2) synchronize file's in-core state with storage device

explain_fsyng3)
explainfsynd?) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

292

explain_ftell(3) plain_ftell(3)

NAME
explain_ftell — explairftell(3) errors

SYNOPSIS
#include <libexplain/ftell.h>

const char *explain_ftell(FILE *fp);

const char *explain_errno_ftell(int errnum, FILE *fp);

void explain_message_ftell(char *message, int message_size, FILE *fp);

void explain_message_errno_ftell(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedteyl {Blesystem call.

explain_ftell
const char *explain_ftell(FILE *fp);

The explain_ftell function is used to obtain a@anation of an error returned by tfiell(3) system call.
The least the message will contain is th&ig ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to ttedi(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)

fprintf(stderr, "%s\n", explain_ftell(fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_ftell_or_di€3) function.

explain_errno_ftell
const char *explain_errno_ftell(int errnum, FILE *fp);

Theexplain_errno_ftell function is used to obtain an explanation of an error returned lfett8) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tte#i(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a wifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);

293

explain_ftell(3) plain_ftell(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftell(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_ftell_or_di€3) function.

explain_message_ftell
void explain_message_ftell(char *message, int message_size, FILE *fp);

The explain_message_ftelfunction is used to obtain axmganation of an error returned by thell(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ttedi(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)

{
char message[3000];
explain_message_ftell(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_ftell_or_di€3) function.

explain_message_errno_ftell
void explain_message_errno_ftell(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_ftelfunction is used to obtain an explanation of an error returned by the
ftell(3) system call. The least the message will contain isahe \ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tte#i(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)
{ .
int err = errno;
char message[3000];
explain_message_errno_ftell(message, sizeof(message), err,

294

explain_ftell(3) plain_ftell(3)

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_ftell_or_di€3) function.

SEE ALSO
ftell(3) repositiona dream
explain_ftell_or_dig3)
reposition a stream and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2010 Peter Miller

295

explain_ftell_or_die(3) gplain_ftell_or_die(3)

NAME
explain_ftell_or_die — get stream position and report errors

SYNOPSIS
#include <libexplain/ftell.h>
long explain_ftell_or_die(FILE *fp);
long explain_ftell_on_error(FILE *fp);
DESCRIPTION
The explain_ftell_or_die function is used to call thigell(3) system call. On failure an explanation will be

printed tostderr, obtained from theexplain_ftell(3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_ftell_on_error function is used to call thigell(3) system call. Onailure an explanation will
be printed tcstderr, obtained from thexplain_ftell(3) function, but still returns to the caller.

fp The fp, exactly as to be passed toftk#(3) system call.

RETURN VALUE
The explain_ftell_or_die function only returns on success, $&#l(3) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_ftell_on_error function alays returns the value return by the wrapfiet(3) system call.

EXAMPLE
Theexplain_ftell_or_diefunction is intended to be used in a fashion similar to the following example:
long result = explain_ftell_or_die(fp);

SEE ALSO
ftell(3) getstream position
explain_ftell(3)
explainftell(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2010 Peter Miller

296

explain_ftime(3) aplain_ftime(3)

NAME
explain_ftime — explain ftime(3) errors

SYNOPSIS
#include <libexplain/ftime.h>

const char *explain_ftime(struct timeb *tp);

const char *explain_errno_ftime(int errnum, struct timeb *tp);

void explain_message_ftime(char *message, int message_size, struct timeb *tp);

void explain_message_errno_ftime(char *message, int message_size, int errnum, struct timeb *tp);
DESCRIPTION

These functions may be used to obtain explanations for errors returneditionéf® system call.

explain_ftime
const char *explain_ftime(struct timeb *tp);
The explain_ftime function is used to obtain an explanation of an error returned bffirte3) system

call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
tp The original tp, exactly as passed to fiirae(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a uifer in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{
fprintf(stderr, "%s\n", explain_ftime(tp));
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_ftime_or_di€3) function.

explain_errno_ftime
const char *explain_errno_ftime(int errnum, struct timeb *tp);

The explain_errno_ftime function is used to obtain an explanation of an error returned biirine3)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frorretire global variable just before this
function is called. This is necessary if you need to &yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tp The original tp, exactly as passed to firae(3) system call.

Returns: Themessage explaining the errdhis messageuffer is shared by all libexplain functions which
do not supply a ddffer in their agument list. This will be werwritten by the next call to an
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

297

explain_ftime(3) aplain_ftime(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftime(err, tp));
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_ftime_or_di€3) function.

explain_message_ftime
void explain_message_ftime(char *message, int message_size, struct timeb *tp);

The explain_message_ftiméunction is used to obtain axmganation of an error returned by tfieng(3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

tp The original tp, exactly as passed to firae(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)

{
char message[3000];
explain_message_ftime(message, sizeof(message), tp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example iswvailable pre-packaged as thgplain_ftime_or_di€3) function.

explain_message_errno_ftime
void explain_message_errno_ftime(char *message, int message_size, int errnum, struct timeb *tp);

The explain_message_errno_ftimdunction is used to obtain an explanation of an error returned by the
ftimg(3) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from emo global variable just before this
function is called. This is necessary if you need to @@yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tp The original tp, exactly as passed to firae(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_ftime(message, sizeof(message), err,
tp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

298

explain_ftime(3) aplain_ftime(3)

The abee mde example iswvailable pre-packaged as thgplain_ftime_or_di€3) function.

SEE ALSO
ftimg(3) returndate and time
explain_ftime_or_di€3)
return date and time and report errors
COPYRIGHT

libexplain version 1.1
Copyright © 2009 Peter Miller

299

explain_ftime_or_die(3) xplain_ftime_or_die(3)

NAME
explain_ftime_or_die - return date and time and report errors

SYNOPSIS
#include <libexplain/ftime.h>
void explain_ftime_or_die(struct timeb *tp);
int explain_ftime_on_error(struct timeb *tp);
DESCRIPTION
The explain_ftime_or_die function is used to call thiéime(3) system call. On failure an explanation will

be printed tcstderr, obtained from thexplain_ftimg3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_ftime_on_error function is used to call th#imeg3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_ftime&3) function, but still returns to the caller.

tp The tp, exactly as to be passed toftme(3) system call.

RETURN VALUE
The explain_ftime_or_diefunction only returns on success, $&me3) for more information. Oraflure,
prints an explanation and exits, it does not return.

Theexplain_ftime_on_error function alvays returns thealue return by the wrappédtime(3) system call.

EXAMPLE
Theexplain_ftime_or_diefunction is intended to be used in a fashion similar to the following example:
explain_ftime_or_die(tp);
SEE ALSO
ftimg(3) returndate and time
explain_ftimg3)
explain ftimg(3) errors
ext(2) terminatehe calling process

COPYRIGHT
libexplain version 1.1
Copyright © 2009 Peter Miller

300

explain_ftruncate(3) xplain_ftruncate(3)

NAME
explain_ftruncate — explain ftruncate(2) errors

SYNOPSIS
#include <libexplain/ftruncate.h>

const char *explain_ftruncate(int fildes, long long length);

const char *explain_errno_ftruncate(int errnum, int fildes, long long length);

void explain_message_ftruncate(char *message, int message_size, int fildes, long long length);

void explain_message_errno_ftruncate(char *message, int message_size, int errnum, int fildes, long long
length);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedtpyrtbatg?) system call.

explain_ftruncate
const char *explain_ftruncate(int fildes, long long length);

The explain_ftruncate function is used to obtain axxmanation of an error returned by tfieuncate?2)
system call. The least the message will contain is @aheevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{

fprintf(stderr, "%s\n", explain_ftruncate(fildes, length));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed toftnencatg2) system call.
length The original length, exactly as passed tofthencatg2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_ftruncate
const char *explain_errno_ftruncate(int errnum, int fildes, long long length);

The explain_errno_ftruncate function is used to obtain an explanation of an error returned by the
ftruncatg2) system call. The least the message will contain is the valagesfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftruncate(err, fildes, length));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from etmo global variable just before this
function is called.This is necessary if you need to caly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftnencatg2) system call.

301

explain_ftruncate(3) xplain_ftruncate(3)

length The original length, exactly as passed tofthencatg?2) system call.

Returns: Themessage explaining the errofhis message uffer is shared by all libexplain functions
which do not supply auifer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_ftruncate
void explain_message_ftruncate(char *message, int message_size, int fildes, long long length);

Theexplain_message_ftruncatéunction may be used tobtain an explanation of an error returned by the
ftruncatg?) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrno global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)

{
char message[3000];
explain_message_ftruncate(message, sizeof(message), fildes, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftnencatg2) system call.
length The original length, exactly as passed tofthencatg?2) system call.

explain_message_errno_ftruncate

void explain_message_errno_ftruncate(char *message, int message_size, int errnum, int fildes, long long
length);

Theexplain_message_errno_ftruncatéunction may be used to obtain atplnation of an error returned
by theftruncatg?) system call.The least the message will contain is the valugtrefror(errnum)
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_ftruncate(message, sizeof(message), err,
fildes, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from etmao global variable just before this
function is called.This is necessary if you need to caly code between the system call to be

302

explain_ftruncate(3) xplain_ftruncate(3)

explained and this function, because méhc functions will alter the value @frrno.
fildes The original fil