Contents

NAME 1
SYNOPSIS 1
DESCRIPTION 1
OPTIONS 2
ENVIRONMENT 2
USE CASES 2
OTHER 5
BUGS AND MISFEATURES 6
COPYRIGHT AND LICENSING 6
AUTHOR 6
DOCUMENT REVISION INFORMATION 6
NAME

tsshbatch - Run Commands On Batches Of Machines

SYNOPSIS

tsshbatch.py [-ehvk] [-n name] [-p pw] [-H "h1 h2 ...’ | hostlistfile] command arg ...

DESCRIPTION

tsshbatch is a tool to enable you to issue a command to many hosts without hav-
ing to log into each one separately. When writing scripts, this overcomes the ssh
limitation of not being able to specify the password on the command line.

tsshbatch also understands basic sudo syntax and can be used to access a host,
sudo a command, and then exit.

tsshbatch thus allows you to write complex, hands-off scripts that issue commands
to many hosts without the tedium of manual login and sudo promotion. System ad-
ministrators, especially, will find this helpful when working in large host farms.

OPTIONS

-H ’hostlist’ Single quoted list of hosts on which to run the command

-e Don’t report remote host stderr out-
put

-h Print help information

-k Use ssh keys instead of name/password
credentials

-n name Login name to use

-p pWw Password to use when logging in and/or
doing sudo

-v Print detailed program version infor-

mation and exit

ENVIRONMENT

tsshbatch respects the TSSHBATCH environment variable. You may set this vari-
able with any options above you commonly use to avoid having to key them in each
time you run the program. For example:

export TSSHBATCH="-n jluser -p 100n3y"

This would cause all subsequent invocations of t sshbat ch to attempt to use the login
name/password credentials of jluser and 100n3y respectively.

USE CASES

1) Different Ways To Specify Targeted Hostnames

There are two ways to specify the list of hosts on which you want to run
the specified command:

e On the command line via the —H option:
tsshbatch.py -H "hostA hostB’ uname -a

This would run the command uname -a on the hosts
hostA and hostB respectively.

Notice that the list of hosts must be separated by spaces
but passed as a single argument. Hence we enclose them
in single quotes.

e Via a host list file:

tsshbatch.py myhosts df -Ph

Here, t sshbatch expects the file myhosts to contain
a list of hosts, one per line, on which to run the command
df -Ph. As an example, if you want to target the hosts
larry, curly and moe in foo.com, myhosts would
look like this:

larry.foo.com
curly.foo.com
moe.foo.com

This method is handy when there are standard “sets” of
hosts on which you regularly work. For instance, you may
wish to keep a host file list for each of your production
hosts, each of your test hosts, each of your AIX hosts, and
SO on.

2) Authentication Using Name And Password

The simplest way to use t sshbatch is to just name the hosts can com-
mand you want to run:

tsshbatch.py linux-prod-hosts uptime

You will be prompted for your username and password one time which
tsshbatch will then use to log into each of the machines named in
linux-prod-hosts. (Notice that his assumes your name and pass-
word are the same on each host!)

Typing in your login credentials all the time can get tedious after awhile so
tsshbatch provides a means of providing them on the command line:

tsshbatch.py -n joe.luser -p my_weak_pw linux-prod-hosts uptime

This allows you to use t sshbatch inside scripts for hands-free opera-
tion.

If your login name is the same on all hosts, you can simplify this further
by defining it in the environment variable:

export TSSHBATCH="-n joe.luser"

Any subsequent invocation of t sshbatch will only require a password
to run.

HOWEVER, there is a huge downside to this - your plain text password is
exposed in your scripts, on the command line, and possibly your command
history. This is a pretty big security hole, especially if you’re an admin-
istrator with extensive privileges. (This is why the ssh program does not
support such an option.) For this reason, it is strongly recommended that
you use the —p option sparingly, or not at all. A better way is to push ssh
keys to every machine and use key exchange authentication as described
below.

However, there are times when you do have use an explicit password, such
as when doing sudo invocations. It would be really nice to use —p and

avoid having to constantly type in the password. There are two strate-
gies for doing this more securely than just entering it in plain text on the
command line:

e Temporarily store it in the environment variable:
export TSSHBATCH="-n joe.luser -p my_weak_pw"

Do this interactively after you log in, not from a script (oth-
erwise you’d just be storing the plain text password in a
different script). The environment variable will persist as
long as you’re logged in and disappear when you log out.

If you use this just make sure to observe three security
precautions:

1) Clear your screen immediately after doing
this so no one walking by can see the pass-
word you just entered.

2) Configure your shell history system to ig-
nore commands beginning with export TSSHBATCH.
That way your plain text password will never
appear in the shell command history.

3) Make sure you don’t leave a logged in ses-
sion unlocked so that other users could walk
up and see your password by displaying the
environment.

This approach is best when you want your login creden-
tials available for the duration of an entire login session.

e Store your password in an encrypted file and decrypt it
inline.

First, you have to store your password in an encrypted for-
mat. There are several ways to do this, but gpg is com-
monly used:

echo "my_weak_pw" | gpg —-c >mysecretpw
Provide a decrypt passphrase, and you’re done.
Now, you can use this by decrypting it inline as needed:
#!/bin/sh
A demo scripted use of tsshbatch with CLI password passing

MYPW="‘cat mysecretpw | gpg" # User will be prompted for unlock

sshbatch.py —-n joe.luser —p SMYPW hostlistl commandl arg
sshbatch.py -n joe.luser —-p SMYPW hostlist2 command2 arg
sshbatch.py -n joe.luser —-p S$MYPW hostlist3 command3 arg

This approach is best when you want your login creden-
tials available for the duration of the execution of a script.

It does require the user to type in a passphrase to unlock
the encrypted password file, but your plain text password
never appears in the wild.

3) Authentication Using Key Exchange

For most applications of t sshbatch, it is much simpler to use key-based
authentication. For this to work, you must first have pushed ssh keys to all
your hosts. You then instruct t sshbat ch to use key-based authentication
rather than name and password. Not only does this eliminate the need to
constantly provide name and password, it also eliminates passing a plain
text password on the command line and is thus far more secure. This also
overcomes the problem of having different name/password credentials on
different hosts.

By default, t sshbatch will prompt for name and password if they are
not provided on the command line. To force key-based authentication, use
the —k option:

tsshbatch.py -k AIX-prod-hosts 1ls -al
4) Executing A sudo Command

tsshbatch is smart enough to handle commands that begin with sudo.
It knows that such commands require a password even if you used key
exchange to initially log in. That’s because, once you are logged in -
whether via name/password or via key exchange - sudo requires your
password again to promote your privileges.

When using name/password authentication, with t sshbatch you need
do nothing special to run sudo commands on your targeted hosts (assum-
ing you have the privilege of doing so there).

However, when using key exchange-based authentication, if you want to
run sudo commands, you will also have to provide a password by one of
the means described previously. That’s because, once you are logged into
a host, your password is required again to do sudo privilege promotion.

OTHER

tsshbatch writes the stdout of the remote host(s) to stdout on the local ma-
chine. It similarly writes remote stderr output to the local machine’s stderr. If
you wish to suppress st derr output, either redirect it on your local command line or
use the —e option to turn it off entirely.

You will not be able to run remote sudo commands if the host in question enables the
Defaults requiretty inits sudoers configuration.

You must have a reasonably current version of Python installed. If your Python instal-
lation does not install paramiko you’ll have to install it manually, since t sshbatch
requires these libraries.

BUGS AND MISFEATURES

When sudo is presented a bad password, it ordinarily prints a string indicating some-
thing is wrong. t sshbatch looks for this to let you know that you’ve got a problem
and then terminates further operation. This is so that you do not attempt to log in with a
bad password across all the servers you have targeted. (Many enterprises have policies
to lock out a user ID after some small number of failed login/access attempts.)

However, some older versions of sudo (noted on a RHEL 4 server running sudo
1.6.7p5) do not return any feedback when presented with a bad password. This means
that t sshbatch cannot tell the difference between a successful sudo and a system
waiting for you to reenter a proper password. In this situation, if you enter a bad
password, the the program will hang. Why? t sshbat ch thinks nothing is wrong and
waits for the sudo command to complete. At the same time, sudo itself is waiting for
an updated password. In this case, you have to kill t sshbatch and start over. This
typically requires you to put the program in background (*Ct r1-Z in most shells) and
then killing that job from the command line.

There is no known workaround for this problem.

COPYRIGHT AND LICENSING

tsshbatch is Copyright (c) 2011 TundraWare Inc.

For terms of use, see the t sshbatch-1icense.txt file in the program distribu-
tion. If you install tsshbatch on a FreeBSD system using the "ports’ mechanism, you
will also find this file in /usr/local/share/doc/tsshbatch.

AUTHOR

Tim Daneliuk
tsshbatch@tundraware.com

DOCUMENT REVISION INFORMATION

$Id: tsshbatch.rst,v 1.109 2012/01/17 14:58:52 tundra Exp $
You can find the latest version of this program at:

http://www.tundraware.com/Software/tsshbatch

http://www.tundraware.com/Software/tsshbatch

	Contents
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	USE CASES
	OTHER
	BUGS AND MISFEATURES
	COPYRIGHT AND LICENSING
	AUTHOR
	DOCUMENT REVISION INFORMATION

