
Musical MIDI Accompaniment

MmA
Reference Manual

Bob van der Poel
Wynndel, BC, Canada

bob@mellowood.ca

February 20, 2012

Table Of Contents

1 Overview and Introduction 10
1.1 License, Version and Legalities 10
1.2 About this Manual 11

1.2.1 Typographic Conventions 11
1.2.2 LATEX and HTML . 12
1.2.3 Other Documentation 12
1.2.4 Music Notation 12

1.3 InstallingMmA . 12
1.4 RunningMmA . 13
1.5 Comments .. 14
1.6 Theory Of Operation 14
1.7 Case Sensitivity 15

2 RunningMmA 16
2.1 Command Line Options 16
2.2 Lines and Spaces 19
2.3 Programming Comments 19

3 Tracks and Channels 20
3.1 MmA Tracks . 20
3.2 Track Channels 21
3.3 Track Descriptions 21

3.3.1 Drum . 22
3.3.2 Chord . 22
3.3.3 Arpeggio .. 22
3.3.4 Scale .22
3.3.5 Bass . 23
3.3.6 Walk . 23
3.3.7 Plectrum .. 23
3.3.8 Solo and Melody .. . 23
3.3.9 Automatic Melodies 23

2

Table Of Contents MmA

3.4 Silencing a Track 24

4 Patterns 25
4.1 Defining a Pattern 25

4.1.1 Bass . 27
4.1.2 Chord . 29
4.1.3 Arpeggio .. 29
4.1.4 Walk . 30
4.1.5 Scale .31
4.1.6 Aria .31
4.1.7 Plectrum .. 31
4.1.8 Drum . 32
4.1.9 Drum Tone .32

4.2 Including Existing Patterns in New Definitions 33
4.3 Multiplying and Shifting Patterns 33

5 Sequences 37
5.1 Defining Sequences 37
5.2 SeqClear .. . 39
5.3 SeqRnd .. 40
5.4 SeqRndWeight 42
5.5 SeqSize 42

6 Grooves 44
6.1 Creating A Groove 44
6.2 Using A Groove 46

6.2.1 Extended Groove Notation 47
6.2.2 Overlay Grooves 47

6.3 Groove Aliases 48
6.4 AllGrooves 49
6.5 Deleting Grooves 51
6.6 Library Issues 51

7 Riffs 52
7.1 DupRiff .. . 54

8 Musical Data Format 56
8.1 Bar Numbers .. . 56
8.2 Bar Repeat .. 57
8.3 Chords .. 57
8.4 Rests .. 58
8.5 Positioning 59
8.6 Case Sensitivity 60

9 Lyrics 61
9.1 Lyric Options 61

3

Table Of Contents MmA

9.1.1 Event Type .. 61
9.1.2 Kar File Mode .. 62
9.1.3 Word Splitting 62

9.2 Chord Name Insertion 62
9.2.1 Chord Transposition 63

9.3 Setting Lyrics 63
9.3.1 Limitations 65

10 Solo and Melody Tracks 67
10.1 Note Data Format 68

10.1.1 Chord Extensions 70
10.1.2 Accents .. . 71
10.1.3 Long Notes .. . 72
10.1.4 Using Defaults 73
10.1.5 Stretch .. . 73
10.1.6 Other Commands .. . 74

10.2 AutoSoloTracks 74
10.3 Drum Solo Tracks 75
10.4 Arpeggiation 76

11 Emulating plucked instruments: Plectrum Tracks 77
11.1 Tuning 77
11.2 Capo .. 78
11.3 Strum 78
11.4 Patterns 79

12 Automatic Melodies: Aria Tracks 81

13 Randomizing 84
13.1 RndSeed .. . 84
13.2 RSkip .. . 84
13.3 RTime 85
13.4 Other Randomizing Commands 86

14 Chord Voicing 87
14.1 Voicing 87

14.1.1 Voicing Mode 88
14.2 ChordAdjust 90
14.3 Compress 91
14.4 DupRoot .. . 91
14.5 Invert 92
14.6 Limit 93
14.7 NoteSpan 94
14.8 Range .. . 94
14.9 DefChord 95

4

Table Of Contents MmA

14.10 PrintChord 96
14.11 Notes 97

15 Harmony 98
15.1 Harmony 98
15.2 HarmonyOnly 99
15.3 HarmonyVolume 100

16 Ornament 101

17 Tempo and Timing 104
17.1 Tempo .. . 104
17.2 Time .. . 105
17.3 Truncate 105
17.4 TimeSig 107
17.5 BeatAdjust 108
17.6 Fermata 109
17.7 Cut .. 111

18 Swing 114
18.1 Skew .. . 115
18.2 Accent 116
18.3 Delay 116
18.4 Notes 116
18.5 Summary 117

19 Volume and Dynamics 118
19.1 Accent 119
19.2 AdjustVolume 120

19.2.1 Mnemonic Volume Ratios 120
19.2.2 Master Volume Ratio 121

19.3 Volume 122
19.4 Cresc and Decresc 123
19.5 Swell 125
19.6 RVolume 126
19.7 Saving and Restoring Volumes 126

20 Repeats 128

21 Variables, Conditionals and Jumps 131
21.1 Variables 131

21.1.1 Set .132
21.1.2 NewSet .. 132
21.1.3 Mset .133
21.1.4 RndSet .133
21.1.5 UnSet VariableName 134

5

Table Of Contents MmA

21.1.6 ShowVars .. . 134
21.1.7 Inc and Dec .. . 134
21.1.8 VExpand On or Off 134
21.1.9 StackValue 136

21.2 Predefined Variables 136
21.3 Indexing and Slicing 139
21.4 Mathematical Expressions 140
21.5 Conditionals 142
21.6 Goto .. . 144

22 Low Level MIDI Commands 146
22.1 Channel 146
22.2 ChannelPref 147
22.3 ChShare 147
22.4 ForceOut 149
22.5 MIDI .. . 150
22.6 MIDIClear 151
22.7 MIDICue .. . 151
22.8 MIDICopyright 152
22.9 MIDIDef 152
22.10 MIDICresc and MIDIDecresc 152
22.11 MIDIFile 153
22.12 MIDIGlis 154
22.13 MIDIInc 154
22.14 MIDIMark 157
22.15 MIDINote 158

22.15.1 Setting Options 158
22.15.2 Note Events 159
22.15.3 Controller Events 161
22.15.4 Pitch Bend .. . 161
22.15.5 Pitch Bend Range 161
22.15.6 Channel Aftertouch 162
22.15.7 Channel Aftertouch Range 162

22.16 MIDIPan 163
22.17 MIDISeq 164
22.18 MIDISplit 165
22.19 MIDIText 166
22.20 MIDITname 166
22.21 MIDIVoice 167
22.22 MIDIVolume 168

23 Patch Management 170
23.1 Voice 170
23.2 Patch 171

23.2.1 Patch Set .. . 171

6

Table Of Contents MmA

23.2.2 Patch Rename .. . 172
23.2.3 Patch List 173
23.2.4 Ensuring It All Works 173

24 Fine Tuning (Translations) 176
24.1 VoiceTr 177
24.2 ToneTr 178
24.3 VoiceVolTr 178
24.4 DrumVolTr 179

25 Other Commands and Directives 181
25.1 AllTracks 181
25.2 Articulate 182
25.3 Copy .. 183
25.4 Comment .. . 184
25.5 Debug 184
25.6 Delay 185
25.7 Delete 186
25.8 Direction 186
25.9 KeySig 187
25.10 Mallet 187

25.10.1 Rate .. 188
25.10.2 Decay .. . 188

25.11 Octave 189
25.12 Off 189
25.13 On 189
25.14 Print 190
25.15 PrintActive 190
25.16 Restart 190
25.17 ScaleType 190
25.18 Seq 191
25.19 Strum 192
25.20 Synchronize 193
25.21 SetSyncTone 193
25.22 Transpose 194
25.23 Unify 194

26 Begin/End Blocks 196
26.1 Begin .. . 196
26.2 End .. . 197

27 Documentation Strings 198
27.1 Doc .. . 198
27.2 Author 198
27.3 DocVar 199

7

Table Of Contents MmA

28 Paths, Files and Libraries 200
28.0.1 MmA Modules . 200
28.0.2 Special Characters In Filenames 201
28.0.3 Tildes In Filenames 201
28.0.4 Filenames and the Command Line 202

28.1 File Extensions 202
28.2 Eof .. . 203
28.3 LibPath 203
28.4 AutoLibPath 203
28.5 MIDIPlayer 204
28.6 Groove Previews 205
28.7 OutPath 206
28.8 Include 206
28.9 IncPath 207
28.10 Use 207
28.11 MmaStart 208
28.12 MmaEnd 209
28.13 RC Files 210
28.14 Library Files 210

28.14.1 Maintaining and Using Libraries 211

29 Creating Effects 213
29.1 Overlapping Notes 213
29.2 Jungle Birds 214

30 Frequency Asked Questions 215
30.1 Chord Octaves 215
30.2 AABA Song Forms 215
30.3 Where’s the GUI? 216
30.4 Where’s the manual index? 217

A Symbols and Constants 218
A.1 Chord Names .. . 218

A.1.1 Octave Adjustment 222
A.1.2 Altered Chords .. . 222
A.1.3 Diminished Chords 223
A.1.4 Slash Chords .. 223
A.1.5 Polychords .. . 224
A.1.6 Chord Inversions 225
A.1.7 Barre Settings 225
A.1.8 Roman Numerals .. 225

A.2 MIDI Voices 227
A.2.1 Voices, Alphabetically 227
A.2.2 Voices, By MIDI Value 228

A.3 Drum Notes 230

8

Table Of Contents MmA

A.3.1 Drum Notes, Alphabetically 230
A.3.2 Drum Notes, by MIDI Value 230

A.4 MIDI Controllers 232
A.4.1 Controllers, Alphabetically 232
A.4.2 Controllers, by Value 233

B Bibliography and Thanks 235

C Command Summary 236

9

Chapter 1

Overview and Introduction

Musical MIDI Accompaniment, MmA,1 generates standard MIDI2 files which can be used as a backup track
for a soloist. It was written especially for me—I am an aspiring saxophonist and wanted a program to
“play” the piano and drums so I could practice my jazz solos. With MmA I can create a track based on the
chords in a song, transpose it to the correct key for my instrument, and play my very bad improvisations
until they get a bit better.

I also lead a small combo group which is always missing at least one player. WithMmA generated tracks
the group can practice and perform even if a rhythm player is missing. This all works much better than I
expected when I started to write the program . . . so much better that I have usedMmA generated tracks for
live performances with great success.

Around the world musicians are usingMmA for practice, performance and in their studios. Much more than
ever imagined when this project was started!

1.1 License, Version and Legalities

The programMmA was written by and is copyright Robert van der Poel, 2002—2011.

This program, the accompanying documentation, and libraryfiles can be freely distributed according to
the terms of the GNU General Public License (see the distributed file “COPYING”).

If you enjoy the program, make enhancements, find bugs, etc. send a note to me atbob@mellowood.ca ;
or a postcard (or even money) to PO Box 57, Wynndel, BC, Canada V0B 2N0.

The current version of this package is maintained at:http://www.mellowood.ca/mma/ .

This document reflects version 12.02 ofMmA.

1Musical MIDI Accompaniment and the short formMmA in the distinctive script are names for a program written by Bob van
der Poel. The “MIDI Manufacturers Association, Inc.” uses the acronym MMA, but there is no association between the two.

2MIDI is an acronym for Musical Instrument Digital Interface.

10

1.2 About this Manual Overview and Introduction

This program has recently changed its status from beta to a 1.x version. I have done everything
I can to ensure that the program functions as advertised, butI assume no responsibility for
anything it does to your computer or data.

Sorry for this disclaimer, but we live in paranoid times.

This manual most likely has lots of errors. Spelling, grammar, and probably a number of the
examples need fixing. Please give me a hand and report anything . . . it’ll make it much easier
for me to generate a really good product for all of us to enjoy.

1.2 About this Manual

This manual was written by the program author—and this is always a very bad idea. But, having no
volunteers, the choice is no manual at all or my bad perspectives.3

MmA is a large and complex program. It really does need a manual; and users really need to refer to the
manual to get the most out of the program. Even the author frequently refers to the manual. Really.

I have tried to present the various commands in a logical and useful order. The table of contents should
point you quickly to the relevant sections.

1.2.1 Typographic Conventions

� The name of the program is always set in the special logo type:MmA.

� MmA commands and directives are set in small caps: DIRECTIVE.

� Important stuff is emphasized:important.

� Websites look like this:http://www.mellowood.ca/mma/index.html

� Filenames are set in bold typewriter font:filename.mma

� Lines extracted from aMmA input file are set on individual lines:

A command from a file

� Commands you should type from a shell prompt (or other operating system interface) have a leading
$ (to indicate a shell prompt) and are shown on separate lines:

$ enter this

3The problem, all humor aside, is that the viewpoints of a program’s author and user are quite different. The two “see”
problems and solutions differently, and for a user manual the programmer’s view is not the best.

11

1.3 Installing MmA Overview and Introduction

1.2.2 LATEX and HTML

The manual has been prepared with the LATEX typesetting system. Currently, there are two versions avail-
able: the primary version is a PDF file intended for printing or on-screen display (generated withdvipdf);
the secondary version is in HTML (transformed with LATEX2HTML) for electronic viewing. If other formats
are needed . . . please offer to volunteer.

1.2.3 Other Documentation

In addition to this document the following other items are recommended reading:

� The standard library documentation supplied with this document in PDF and HTML formats.

� TheMmA tutorial supplied with this document in pdf and html formats.

� VariousREADMEfiles in the distribution.

� The Python source files.

1.2.4 Music Notation

The various snippets of standard music notation in this manual have been prepared with the MUP program.
I highly recommend this program and use it for most of my notation tasks. MUP is available from Arkkra
Enterprises,http://www.Arkkra.com/ .

1.3 Installing MmA

MmA is a Python program developed with version 2.4 of Python. At the very least you will need this version
(or later) of Python! Please note:MmA does not work with version 3.x of Python.

To play the MIDI files you’ll need a MIDI player. Pmidi, tse3play, and many others are available for Linux
systems. For Windows and Mac systems I’m sure there are many,many choices.

You’ll need a text editor likevi, emacs, etc. to create input files. Don’t use a word processor!

MmA consists of a variety of bits and pieces:

� The executable Python script,mma,4 must somewhere in your path. For users running Windows or
Mac, please checkMmA website for details on how to install on these systems. As distributed the file
“mma.py” (and, when installed) “mma” are executable scripts with the correct permissions already
set (this has no effect for Windows).

4In the distribution this ismma.py. It is renamed to save a few keystrokes when entering the command.

12

1.4 Running MmA Overview and Introduction

� A number of Python modules (all are files ending in “.py”). These should all be installed under
the directory/usr/local/share/mma/MMA . See the enclosed fileINSTALL for some additional
commentary.

� A number of library files defining standard rhythms. These should all be installed under the di-
rectory /usr/local/share/mma/lib/stdlib . In addition, the library files depend on files in
/usr/local/share/mma/includes .

The scriptscp-install or ln-install will install MmA properly on most Linux systems. Both scripts
assume that main script is to be installed in/usr/local/bin and the support files in/usr/local/share/
mma. If you want an alternate location, you can edit the paths in the script. The only supported alternate to
use is/usr/share/mma .

The difference between the two scripts is thatln-install creates symbolic links to the current location;
cp-install copies the files. Which to use it up to you, but if you have unpacked the distribution in a
stable location it is probably easier to use the link version.

In addition, youcan runMmA from the directory created by the untar. This is not recommended, but will
show some ofMmA’s stuff. In this case you’ll have to execute the program filemma.py.

You should be “root” (or at least, you need write permissionsin /usr/local/) to run either install script.
Use the “su” or “sudo” command for this.

If you want to installMmA on a platform other than Linux, please get the latest updatesfrom our website at
www.mellowood.ca/mma .

1.4 RunningMmA

For details on the command line operations inMmA please refer to chapter 2.

To create a MIDI file you need to:

1. Create a text file (also referred to as the “input file”) with instructions whichMmA understands. This
includes the chord structure of the song, the rhythm to use, the tempo, etc. The file can be created
with any suitable text editor.

2. Process the input file. From a command line the instruction:

$ mma myfile <ENTER>

will invoke MmA and, assuming no errors are found, create a MIDI filemyfile.mid .

3. Play the MIDI file with any suitable MIDI player.

4. Edit the input file again and again until you get the perfecttrack.

5. Share any patterns, sequences and grooves with the authorso they can be included in future releases!

An input file consists of the following information:

1. MmA directives. These include TEMPO, TIME, VOLUME, etc. See chapter 25.

13

1.5 Comments Overview and Introduction

2. PATTERN, SEQUENCEand GROOVE detailed in chapters 4, 5, and 6.

3. Music information. See chapter 8.

4. Comment lines and blank lines. See below.

Items 1 to 3 are detailed later in this manual. Please read them before you get too involved in this program.

1.5 Comments

Proper indentation, white space and comments are agood thing—and you really should use them. But, in
most casesMmA really doesn’t care:

� Any leading space or tab characters are ignored,

� Multiple tabs and other white space are treated as single characters,

� Any blank lines in the input file are ignored.

Each line is initially parsed for comments. A comment is anything following a “//” (2 forward slashes).5

Comments are stripped from the input stream. Lines starting with the COMMENT directive are also ig-
nored. See the COMMENT discussion on page 184 for details.

1.6 Theory Of Operation

To understand howMmA works it’s easiest to look at the initial development concept. Initially, a program
was wanted which would take a file which looked something like:

Tempo 120
Fm
C7
...

and end up with a MIDI file which played the specified chords over a drum track.

Of course, after starting this “simple” project a lot of complexities developed.

First, the chord/bar specifications. Just having a single chord per bar doesn’t work—many songs have
more than one chord per bar. Second, what is the rhythm of the chords? What about bass line? Oh, and
where is the drummer?

Well, things got more complex after that. At a bare minimum, the program or interface should have the
ability to:

� Specify multiple chords per bar,

5The first choice for a comment character was a single “#”, but that sign is used for “sharps” in chord notation.

14

1.7 Case Sensitivity Overview and Introduction

� Define different patterns for chords, bass lines and drum tracks,

� Have easy to create and debug input files,

� Provide a reusable library that a user could simply plug in, or modify.

From these simple needsMmA was created.

The basic building blocks ofMmA are PATTERNs. A pattern is a specification which tellsMmA what notes of
a chord to play, the start point in a bar for the chord/notes, and the duration and the volume of the notes.

MmA patterns are combined into SEQUENCEs. This lets you create multi-bar rhythms.

A collection of patterns can be saved and recalled as GROOVEs. This makes it easy to pre-define complex
rhythms in library files and incorporate them into your song with a simple two word command.

MmA is bar or measure based (we use the words interchangeably in this document). This means thatMmA

processes your song one bar at a time. The music specificationlines all assume that you are specifying a
single bar of music. The number of beats per bar can be adjusted; however, all chord changes must fall on
a beat division (the playing of the chord or drum note can occur anywhere in the bar).

To make the input files look more musical,MmA supports REPEATs and REPEATENDINGs. However,
complexities likeD.S. and Coda are not internally supported (but can be created by using theGOTO

command).

1.7 Case Sensitivity

Just about everything in aMmA file is case insensitive.

This means that the command:

Tempo 120

could be entered in your file as:

TEMPO 120

or even

TeMpO 120

for the exact same results.

Names for patterns, and grooves are also case insensitive.

The only exceptions are the names for chords, notes in SOLOs, and filenames. In keeping with standard
chord notation, chord names are in mixed case; this is detailed in Chapter 8. Filenames are covered in
Chapter 28.

15

Chapter 2

Running MmA

MmA is a command line program. To run it, simply type the program name followed by the required options.
For example,

$ mma test

processes the filetest 1 and creates the MIDI filetest.mid .

WhenMmA is finished it displays the name of the generated file, the number of bars of music processed and
an estimate of the song’s duration. Note:

� The duration is fairly accurate, but it does not take into account any mid-barTEMPO changes.

� The report showsminutesandhundredthsof minutes. This is done deliberately so that you can add
a number of times together. Converting the time to minutes andseconds is left as an exercise for the
user.

2.1 Command Line Options

The following command line options are available:

Option Description

Debugging and other aids to figuring out what’s going on.

-b Range List Limit generation to specified range of bars. The list of bar numbers is in the format
N1-N2 or N1,N2,N3 or any combination (N1-N2,N3,N4-N5). Only those bars in
the specified range will be compiled. The bar numbers refer tothe “comment” bar
number at the start of a data line . . . note that the comment numbers will vary from
the actual bar numbers of the generated song.2

-B Range List Same as -b (above), but here the bar numbers refer to the absolute bar numbers in the
generated file.

-c Display the tracks allocated and the MIDI channel assignments after processing the
input file. No output is generated.

1Actually, the filetest or test.mma is processed. Please read section 28.1.
2Use of this command is not recommended for creating production MIDI files. A great deal of “unused” data is included in

the files which may create timing problems. The command is designed for quick previews and debugging.

16

2.1 Command Line Options Running MmA

-d Enable LOTS of debugging messages. This option is mainly designed for program
development and may not be useful to users.3

-e Show parsed/expanded lines. SinceMmA does some internal fiddling with input lines,
you may find this option useful in finding mismatched BEGIN blocks, etc.

-o A debug subset. This option forces the display of complete filenames/paths as they
are opened for reading. This can be quite helpful in determining which library files
are being used.

-p Display patterns as they are defined. The result of this output is not exactly a duplicate
of your original definitions. Most notable are that the note duration is listed in MIDI
ticks, and symbolic drum note names are listed with their numeric equivalents.

-r Display running progress. The bar numbers are displayed as they are created com-
plete with the original input line. Don’t be confused by multiple listing of “*” lines.
For example the line

33 Cm * 2
would be displayed as:

88: 33 Cm * 2
89: 33 Cm * 2

This makes perfect sense if you remember that the same line was used to create both
bars 88 and 89.

-s Display sequence info during run. This shows the expanded lists used in sequences.
Useful if you have used sequences shorter (or longer) than the current sequence
length.

-v Show program’s version number and exit.

-w Disable warning messages.

Commands which modifyMmA’s behavior.

-0 Generate a synchronization tick at the start of every MIDI track. Note that the option
character is a “zero”, not a “O”. For more details see SYNCHRONIZE, page 193.

-1 Force all tracks to end at the same offset. Note that the option character is a “one”,
not an “L”. For more details see SYNCHRONIZE, page 193.

-m BARS Set the maximum number of bars which can be generated. The default setting is 500
bars (a long song!4). This setting is needed since you can create infinite loops by
improper use of theGOTO command. If your song really is longer than 500 bars use
this option to increase the permitted size.

-M x Generate type 0 or 1 MIDI files. The parameter “x” must be set tothe single digit
“0” or ”1”. For more details, see the MIDI SMF section on page 153.

-n Disable generation of MIDI output. This is useful for doing atest run or to check for
syntax errors in your script.

3A number of the debugging commands can also be set dynamically in a song. See the debug section on page 184 for details.
4500 bars with 4 beats per bar at 200 BPM is about 10 minutes.

17

2.1 Command Line Options Running MmA

-P Play and delete MIDI file. Useful in testing, the generated file will be played with the
defined MIDI file player (see section on page 204). The file is created in the current
directory and has the name “MMAtmpXXX.mid” with “XXX” set tothe current PID.

-S Set a macro. If a value is needed, join the value to the name with a ’=’. For example:
$ mma myfile -S tempo=120

will process the filemyfile.mma with the variable $Tempo set with the value “120”.
You need not specify a value:

$ mma myfile -S test
just sets the variable $test with no value.

-T TRACKS Generateonly data for the tracks specified. The tracks argument is a list ofcomma
separated track names. For example, the command “mma mysong-T drum,chord”
will limit the output to the Drum-HH and Chord tracks. This is useful in separating
tracks for multi-track recording.

-V Play a short audio preview of a GROOVE in theMmA library. For complete details on
this command see section on page 205.

Maintaining MmA’s database.

-g Update the library database for the files in the LIBPATH. You should run this com-
mand after installing new library files or adding a new grooveto an existing library
file. If the database (stored in the files in each library underthe name.mmaDB) is not
updated,MmA will not be able to auto-load an unknown groove. Please referto the
detailed discussion on page 210 for details.
The current installation ofMmA does not set directory permissions. It simply copies
whatever is in the distribution. If you have trouble using this option, you will proba-
bly have to reset the permissions on the lib directory.
MmA will update the groove database with all files in the current LIBPATH. All files
musthave a “.mma” extension. Any directory containing a file named MMAIGNORE
will be ignored. Note, thatMMAIGNOREconsists of all uppercase letters and is usually
an empty file.

-G Same as the “-g” option (above), but the uppercase version forces the creation of a
new database file—an update from scratch just in case something really goes wrong.

File commands.

-i Specify the RC file to use. See page 210.

-f FILE Set output to FILE. Normally the output is sent to a file with the name of the input file
with the extension “.mid” appended to it. This option lets you set the output MIDI
file to any file name.

The following commands are used to create the documentation.As a user you
should probably never have a need for any of them.

-Dk Print list ofMmA keywords. For editor extension writers.

18

2.2 Lines and Spaces Running MmA

-Dxl Expand and print DOC commands used to generate the standard library reference for
Latex processing. No MIDI output is generated when this command is given. Doc
strings in RC files are not processed. Files included in other files are processed.

-Dxh Same as -Dxl, but generates HTML output. Used by themma-libdoc.py tool.

-Dgh Generate HTML output for Groove specified on the command line. If the specified
groove name has a ’/’ the first part of the name is assumed to be afile to read using
USE. Used by themma-libdoc.py tool.

-Dbo Generate a list of defined groove names and descriptions froma file specified on the
command line. Used by themma-gb.py tool.

-Ds Generates a list of sequence information. Used by themma-libdoc.py tool.

2.2 Lines and Spaces

WhenMmA reads a file it processes the lines in various places. The firstreading strips out blank lines and
comments of the “//” type.

On the initial pass though the file any continuation lines arejoined. A continuation line is any line ending
with a single “/”—simply, the next line is concatenated to the current line to create a longer line.

Unless otherwise noted in this manual, the various parts of aline are delimited from each other by runs
of white space. White space can be tab characters or spaces. Other characters may work, but that is not
recommended, and is really determined by Python’s definitions.

2.3 Programming Comments

MmA is designed to read and write files; it is not a filter.5

As noted earlier in this manual,MmA has been written entirely in Python.There were some initialconcerns
about the speed of a “scripting language” when the project was started, but Python’s speed appears to be
entirely acceptable. On my long-retired AMD Athlon 1900+ system running Mandrake Linux 10.1, most
songs compiled to MIDI in well under one second. If you need faster results, you’re welcome to recode
this program into C or C++, but it would be cheaper to buy a faster system, or spend a bit of time tweaking
some of the more time intensive Python loops.

If you have Psyco,http://psyco.sourceforge.net/ , installedMmA will attempt to install the correct
module. This will speed up a compilation by about 10%.

5A filter mode could be added toMmA, but I’m not sure why this would be needed.

19

Chapter 3

Tracks and Channels

This chapter discussesMmA tracks and MIDI channels. If you are reading this manual for the first time you
might find some parts confusing. If you do just skip ahead—youcan runMmA without knowing many of
these details.

3.1 MmA Tracks

To create your accompaniment tracks,MmA divides output into several internal tracks. There are a total of
10 basic track types. Each track type has its own algrorithmsfor managing patterns. An unlimited number
of sub-tracks can be created.

WhenMmA is initialized there are no tracks assigned; however, as your library and song files are processed
various tracks will be created. Each track is created a unique name. The basic track types are: ARIA,
ARPEGGIO, BASS, CHORD, DRUM, MELODY, SCALE, SOLO, and PLECTRUM. Each is discussed later
in this chapter.

Tracks are named by appending a “-” and “name” to the type-name. This makes it very easy to remember
the names, without any complicated rules. So, drum tracks can have names “Drum-1”, “Drum-Loud” or
even “Drum-a-long-name”. The other tracks follow the same rule.

In addition to the hyphenated names described above, you canalso name a track using the type-name. So,
“DRUM” is a valid drum track name. In the supplied library files you’ll see that the hyphenated form is
usually used to describe patterns.

All track names are case insensitive. This means that the names “Chord-Sus”, “CHORD-SUS” and
“CHORD-sus” all refer to the same track.

If you want to see the names defined in a song, just runMmA on the file with the “-c” command line option.

20

3.2 Track Channels Tracks and Channels

3.2 Track Channels

MIDI defines 16 distinct channels numbered 1 to 16.1 There is nothing which says that “chording” should
be sent to a specific channel, but the drum channel should always be channel 10.2

ForMmA to produce any output, a MIDI channel must be assigned to a track. During initialization all of the
DRUM tracks are assigned to special MIDI channel 10. As musical data is created other MIDI channels
are assigned to various tracks as needed.

Channels are assigned from 16 down to 1. This means that the lower numbered channels will most likely
not be used, and will be available for other programs or as a “keyboard track” on your synth.

In most cases this will work out just fine. However, there are anumber of methods you can use to set
the channels “manually”. You might want to read the sectionson CHANNEL (page 146), CHSHARE

(page 147), ON (page 189), and OFF (page 189).

Why bother with all these channels? It would be much easier to put all the information onto one channel,
but this would not permit you to set special effects (like MIDIGLIS or MIDIPAN) for a specific track. It
would also mean that all your tracks would need to use the sameinstrumentation.

3.3 Track Descriptions

You might want to come back to this section after reading moreof the manual. But, somewhere, the
different track types, and why they exist needs to be detailed.

Musical accompaniment comes in a combination of the following:

� Chords played in a rhythmic or sustained manner,

� Single notes from chords played in a sustained manner,

� Bass notes. Usually played one at a time in a rhythmic manner,

� Scales, or parts of scales. Usually as an embellishment,

� Single notes from chords played one at time: arpeggios.

� Drums and other percussive instruments played rhythmically.

Of course, this leaves the melody . . . but that is up to you, notMmA. . . but, if you suspect that some power
is missing here, read the brief description of SOLO and MELODY tracks (page 23) and the complete “Solo
and Melody Tracks” chapter (page 67).

MmA comes with several types of tracks, each designed to fill different accompaniment roles. However, it’s
quite possible to use a track for different roles than originally envisioned. For example, the bass track can
be used to generate a single, sustained treble note—or, by enabling HARMONY, multiple notes.

1The values 1 to 16 are used in this document. Internally they are stored as values 0 to 15.
2This is not a MIDI rule, but a convention established in the GM(General MIDI) standard. If you want to find out more

about this, there are lots of books on MIDI available.

21

3.3 Track Descriptions Tracks and Channels

The following sections give an overview of the basic track types, and give a few suggestions on their uses.

3.3.1 Drum

Drums are the first thing one usually thinks about when we hearthe word “accompaniment”. AllMmA drum
tracks share MIDI channel 10, which is a GM MIDI convention. Drum tracks play single notes determined
by the TONE setting for a particular sequence.

3.3.2 Chord

If you are familiar with the sound of guitar strumming, then you’re familiar with the sound of a chord.
MmA chord tracks play a number of notes, all at the same time. The volume of the notes (and the number of
notes) and the rhythm is determined by pattern definitions. The instrument used for the chord is determined
by the VOICE setting for a sequence.

3.3.3 Arpeggio

In musical terms anarpeggio3 is the notes of a chord played one at a time.MmA arpeggio tracks take the
current chord and, in accordance to the current pattern, play single notes from the chord. The choice of
which note to play is mostly decided byMmA. You can help it along with the DIRECTION modifier.

ARPEGGIOtracks are used quite often to highlight rhythms. Using the RSKIP directive produces broken
arpeggios.

Using different note length values in patterns helps to makeinteresting accompaniments.

3.3.4 Scale

The playing of scales is a common musical embellishment which adds depth and character to a piece.

WhenMmA plays a scale, it first determines the current chord. There isan associated scale for each chord
which attempts to match the flavor of that chord. The following table sums up the logic used to create the
scales:

Major A major scale,

Minor A melodic minor scale,4

Diminished A melodic minor scale with a minor fifth and minor dominant seventh.

3The term is derived from the Italian “to play like a harp”.
4If you think that support for Melodic and Harmonic minor scales is important, please contact us.

22

3.3 Track Descriptions Tracks and Channels

All scales start on the tonic of the current chord.

If the SCALETYPE is set to CHROMATIC, then a chromatic scale is used. The default for SCALETYPE is
AUTO.

MmA plays successive notes of a scale. The timing and length of the notes is determined by the current
pattern. Depending on the DIRECTION setting, the notes are played up, down or up and down the scale.

3.3.5 Bass

BASS tracks are designed to play single notes for a chord for standard bass patterns. The note to be
played, as well as its timing, is determined by the pattern definition. The pattern defines which note from
the current chord or scale to play. For example, a standard bass pattern might alternate the playing of the
root and fifth notes of a scale. You can also use BASS tracks to play single, sustained treble notes.

3.3.6 Walk

The WALK tracks are designed to imitate “walking bass” lines. Traditionally, they are played on bass
instruments like the upright bass, bass guitar or tuba.

A WALK track uses a pattern to define the note timing and volume. Whichnote is played is determined
from the current chord and a simplistic direction algorithm. There is no user control over the note selection.

3.3.7 Plectrum

PLECTRUM tracks emulate the sound of a plucked instrument like a guitar or banjo. All otherMmA tracks
take a note length or duration option in their sequence definitions — PLECTRUM tracks are different: the
sounds in these tracks continue to sound until a new chord or pattern is encountered. They can also sound
“fuller” than other tracks since more notes tend to be played.

3.3.8 Solo and Melody

SOLO and MELODY tracks are used for arbitrary note data. Most likely, this isa melody or counter-melody
. . . but these tracks can also be used to create interesting endings, introductions or transitions.

3.3.9 Automatic Melodies

Real composers don’t need to fear much from this feature . . . but it can create some interesting effects.
ARIA tracks use a predefined pattern to generate melodies over a chord progression. They can be used to
actuallycompose a bit of music or simply to augment a section of an existing piece.

23

3.4 Silencing a Track Tracks and Channels

3.4 Silencing a Track

There are a number of ways to silence a track:

� Use the OFF command to stop the generation of MIDI data (page 189).

� Disable the sequence for the bar with an empty sequence (page38).

� Delete the entire sequence with SEQCLEAR (page 39).

� Disable the MIDI channel with a “Channel 0” (page 146).

� Force only the generation of specific tracks with the -T command line option (page 18).

Please refer to the appropriate sections on this manual for further details.

24

Chapter 4

Patterns

MmA builds its output based on PATTERNs and SEQUENCEs supplied by you. These can be defined in the
same file as the rest of the song data, or can be included (see chapter 28) from a library file.

A pattern is a definition for a voice or track which describes what rhythm to play during the current bar.
The actual notes selected for the rhythm are determined by the song bar data (see chapter 8).

4.1 Defining a Pattern

The formats for the different tracks vary, but are similar enough to confuse the unwary.

Each pattern definition consists of three parts:

� A unique label to identify the pattern. This is case-insensitive. Note that the same label names can
be used in different tracks—for example, you could use the name “MyPattern” in both a Drum and
Chord pattern . . . but this is probably not a good idea. Names can use punctuation characters, but
must not begin with an underscore (“”). The pattern names “z” or “Z” and “-” are also reserved.

� A series of note definitions. Each set in the series is delimited with a “;”.

� The end of the pattern definition is indicated by the end-of-line.

In the following sections definitions are shown in continuation lines; however, it is quite legal to mash all
the information onto a single line.

The following concepts are used when defining a pattern:

Start When to start the note. This is expressed as a beat offset. For example, to start a note at the start of
a bar you use “1”, the second beat would be “2”, the fourth “4”,etc. You can easily use off-beats
as well: The “and” of 2 is “2.5”, the “and ahh” of the first beat is “1.75”, etc. Using a beat offset
greater than the number of beats in a bar or less than “0” is notpermitted. Please note that offsets in
the range “0” to “.999” will actually be played in thepreviousbar using the chord specified at beat
1 of the current bar (this can be useful in Jazz charts, and it will generate a warning!).1 See TIME

(page 105).

The offset can be further modified by appending a note length (see the duration chart, below). If
you want to specify an offset in the middle of the first beat youcan use “1.5” or “1+8”. The latter

1The exception is that RTIME may move the chord back into the bar.

25

4.1 Defining a Pattern Patterns

means the first beat plus the value of an eight note. This notation is quite useful when generating
“swing” sequences. For example, two “swing eights” chords on beat one would be notated as: “1
81 90; 1+81 82 90”.

You can subtract note lengths as well, but this is rarely done. And, to make your style files com-
pletely unreadable, you can even use note length combinations. So, yes, the following pattern is
fine:2

Chord Define C1 2-81+4 82 90

Duration The length of a note is somewhat standard musical notation. Since it is impractical to draw in
graphical notes or to use fractions (like1

4) MmA, uses a shorthand notation detailed in the following
table:

Notation Description
1 Whole note
2 Half
4 Quarter
8 Eighth
81 The first of a pair of swing eights
82 The second of a pair of swing eights
16 Sixteenth
32 Thirty-second
64 Sixty-fourth
3 Eight note triplet
43 Quarter note triplet
23 Half note triplet
6 Sixteenth note triplet
5 Eight note quintuplet
0 A single MIDI tick
ddT dd MIDI ticks.

The “81” and “82” notations represent the values of a pair of eighth notes in a swing pair. These
values vary depending on the setting of SWINGMODE SKEW, see page 114.

The note length “0” is a special value often used in drum tracks where the actual “ringing”length
appears to be controlled by the MIDI synth, not the driving program. Internally, a “0” note length is
converted to a single MIDI tick.

Lengths can have a single or double dot appended. For example, “2.” is a dotted half note and “4..”
adds an eight and sixteenth value to a quarter note.

Note lengths can be combined using “+”. For example, to make adotted eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

Note lengths can also be combined using a “-”. For example, tomake a dotted half you could use
“1-4”. Subtraction might appear silly at first, but is usefulin generating a notejust a bit shorter than

2The start offset is the value of the first of a pair of swing eights plus a quarterbeforethe second beat.

26

4.1 Defining a Pattern Patterns

its full beat. For example, “1-0” will generate a note 1 MIDI tick shorter than a whole note. This
can be used in generating breaks in sustained tones.3

It is permissible to combine notes with “dots”, “+”s and “-”s. The notation “2.+4” would be the
same as a whole note.

The actual duration given to a note will be adjusted by the ARTICULATE value page 182).

In special cases you might want to forget all standard duration conventions and specify the length
of a note or chord in MIDI ticks. Just append a single “t” or “T”to end of the value. For example, a
quarter note duration can be set with a “4” or “192t”. Using MIDI values can simplify the creation
of odd-length beats.

When using MIDI tick values you cannot use “+”, “-” or “.” to combine or modify the value.

Volume The MIDI velocity4 to use for the specified note. For a detailed explanation of how MmA calculates
the volume of a note, see chapter 19.

MIDI velocities are limited to the range 0 to 127. However,MmA does not check the volumes specified
in a pattern for validity.5

In most cases velocities in the range 50 to 100 are useful.

Patterns can be defined for BASS, WALK , CHORD, ARPEGGIOand DRUM tracks. All patterns are shared
by the tracks of the same type—Chord-SusandChord-Pianoshare the patterns forChord. As a conve-
nience,MmA will permit you to define a pattern for a sub-track, but remember that it will be shared by all
similar tracks. For example:

Drum Define S1 1 0 50

and

Drum-woof Define S1 1 0 50

Will generate identical outcomes.6

4.1.1 Bass

A BASS pattern is defined with:

Position Duration Offset Volume ; ...

Each group consists of an beat offset for the start point, thenote duration, the note offset and volume.

3See the supplied GROOVE “Bluegrass” for an example.
4MIDI “note on” events are declared with a “velocity” value. Think of this as the “striking pressure” on a piano.
5This is a feature that you probably don’t want to use, but if you want to ensure that a note is always sounded use a very

large value (e.g., 1000) for the volume. That way, future adjustments will maintain a large value and this large value will be
clipped to the maximum permitted MIDI velocity.

6What really happens is that this definition is stored in a slot named “DRUM”.

27

4.1 Defining a Pattern Patterns

The note offset is one of the digits “1” through “7”, each representing a note of the chord scale. So, if you
want to play the root and fifth in a traditional bass pattern you’d use “1” and “5” in your pattern definition.

The note offset can be modified by appending a single or multiple set of “+” or “-” signs. Each “+” will
force the note up an octave; each “-” forces it down. This modifier is handy in creating bass patterns
when you wish to alternate between the root note and the root up an octave . . . but users will find other
interesting patterns. There is no limit to the number of “+”sor “-”s. You can even use both together if
you’re in a mood to obfuscate.

The note offset can be further modified with a single accidental ”#”, ”&” or ”b”. This modifier will raise
or lower the note by a semitone.7 In the boogie-woogie library file a ”6#” is used to generate a dominant
7th.

Bass Define Broken8 1 8 1 90 ; /
2 8 5 80 ; /
3 8 3 90 ; /
4 8 1+ 80

Sheet Music EquivalentB
4
4

GI N GH N GH N GH N
Example 4.1: Bass Definition

Example 4.1 defines 4 bass notes (probably staccato eight notes) at beats 1, 2, 3 and 4 in a4
4 time bar. The

first note is the root of the chord, the second is the fifth; the third note is the third; the last note is the root
up an octave. The volumes of the notes are set to a MIDI velocity of 90 for beats 1 and 3 and 80 for beats
2 and 4.

MmA refers to note tables to determine the “scale” to use in a basspattern. Each recognized chord type has
an associated scale. For example, the chord “Cm” consists of the notes “c”, “e♭” and “g”; the scale for this
chord is “c, d, e♭, f, g, a, b”.

Due to the ease in which specific notes of a scale can be specified, BASS tracks and patterns are useful for
much more than “bass” lines! These tracks are useful for sustained string voices, interesting arpeggio and
scale lines, and counter melodies.

7Be careful using this feature . . . certain scales/chords mayreturn non-musical results.

28

4.1 Defining a Pattern Patterns

4.1.2 Chord

A CHORD pattern is defined with:

Position Duration Volume1 Volume2 ...; ...

Each group consists of an beat offset for the start point, thenote duration, and the volumes for each note
in the chord. If you have fewer volumes than notes in a chord, the last volume will apply to the remaining
notes.

Chord Define Straight4+3 1 4 100 ; /
2 4 90 ; /
3 4 100 ; /
4 3 90 ; /
4.3 3 80 ; /
4.6 3 80

Sheet Music Equivalent

A4
4

GGG GGG GGG GGGH GGGH GGGH
3

Example 4.2: Chord Definition

Example 4.2 defines a44 pattern in a quarter, quarter, quarter, triplet rhythm. Thequarter notes sound on
beats 1, 2 and 3; the triplet is played on beat 4. The example assumes that you have C major for beats 1
and 2, and G major for 3 and 4.

Using a volume of “0” will disable a note. So, you want only theroot and fifth of a chord to sound, you
could use something like:

Chord Define Dups 1 8 90 0 90 0; 3 8 90 0 90 0

4.1.3 Arpeggio

An ARPEGGIOpattern is defined with:

Position Duration Volume ; ...

The arpeggio tracks play notes from a chord one at a time. Thisis quite different from chords where the
notes are played all at once—refer to the STRUM directive (page 192).

29

4.1 Defining a Pattern Patterns

Each group consists of an beat offset, the note duration, andthe note volume. You have no choice as to
which notes of a chord are played (however, they are played inalternating ascending/descending order.8)

The volume is applied to the specified note in the pattern.

Arpeggio Define 4s 1 4 100; /
2 4 90; /
3 4 100; /
4 4 100

Sheet Music EquivalentA4
4 G G G G

Example 4.3: Arpeggio Definition

Example 4.3 plays quarter note on beats 1, 2, 3 and 4 of a bar in4
4 time.

4.1.4 Walk

A WALK ing Bass pattern is defined with:

Position Duration Volume ; ...

Walking bass tracks play up and down the first part of a scale, paying attention to the “color”9 of the chord.
Walking bass lines are very common in jazz and swing music. They appear quite often as an “emphasis”
bar in marches.

Each group consists of an beat offset, the note duration, andthe note volume.MmA selects the actual note
pitches to play based on the current chord (you cannot changethis).

Example 4.4 plays a bass note on beats 1, 2 and 3 of a bar in3
4 time.

8See the DIRECTION command (page 186).
9The color of a chord are items like “minor”, “major”, etc. Thecurrent walking bass algorithm generates acceptable

(uninspired) lines. If you want something better there is nothing stopping you from using a RIFF to over-ride the computer
generated pattern for important bars.

30

4.1 Defining a Pattern Patterns

Walk Define Walk4 1 4 100 ; /
2 4 90; /
3 4 90

Example 4.4: Walking Bass Definition

4.1.5 Scale

A SCALE pattern is defined with:

Position Duration Volume ; ...

Each group consists of an beat offset for the start point, thenote duration, and volume.

Scale Define S1 1 1 90
Scale Define S4 S1 * 4
Scale Define S8 S1 * 8

Example 4.5: Scale Definition

Example 4.5 defines three scale patterns: “S1” is just a single whole note, not that useful on its own, but it
is used as a base for “S4” and “S8”.

“S4” is 4 quarter notes and “S8” is 8 eight notes. All the volumes are set to a MIDI velocity of 90.

Scale patterns are quite useful in endings. More options forscales detailed in the SCALEDIRECTION

(page 186) and SCALETYPE (page 190) sections.

4.1.6 Aria

An ARIA pattern is defined with:

Position Duration Volume ; ...

much like a scale pattern. Please refer to the the ARIA section (page 81) for more details.

4.1.7 Plectrum

An PLECTRUM pattern is defined with:

31

4.1 Defining a Pattern Patterns

Position Strum Volume1 Volume2 ...; ...

Note the absence of a duration setting. For details, please refer to the the PLECTRUM section (page 77)
for more details.

4.1.8 Drum

Drum tracks are a bit different from the other tracks discussed so far. Instead of having each track saved
as a separate MIDI track, all the drum tracks are combined onto MIDI track 10.

A Drum pattern is defined with:

Position Duration Volume; ...

Drum Define S2 1 0 100; /
2 0 80 ; /
3 0 100 ; /
4 0 80

Example 4.6: Drum Definition

Example 4.6 plays a drum sound on beats 1, 2, 3 and 4 of a bar in4
4 time. The MIDI velocity (volume) of

the drum is 100 on beats 1 and 3; 80 on beats 2 and 4.

This example uses the special duration of “0”, which indicates 1 MIDI tick.

4.1.9 Drum Tone

Essential to drum definitions is the TONE directive.

When a drum pattern is defined it uses the default “note” or “tone” which is a snare drum sound. But,
this can (and should) be changed using the TONE directive. This is normally issued at the same time as a
sequence is set up (see chapter 5).

TONE is a list of drum sounds which match the sequence length. Here’s a short, concocted example (see
the library files for many more):

Drum Define S1 1 0 90
Drum Define S2 S1 * 2
Drum Define S4 S1 * 4
SeqClear
SeqSize 4
Drum Sequence S4 S2 S2 S4
Drum Tone SnareDrum1 SideKick LowTom1 Slap

32

4.2 Including Existing Patterns in New Definitions Patterns

Here the drum patterns “S2” and “S4” are defined to sound a drumon beats 1 and 3, and 1, 2, 3 and 4
respectively (see section 4.3 for details on the “*” option). Next, a sequence size of 4 bars and a drum
sequence are set to use this pattern. Finally,MmA is instructed to use a SnareDrum1 sound in bar 1, a
SideKick sound in bar 2, a LowTom1 in bar 3 and a Slap in bar 4. Ifthe song has more than four bars, this
sequence will be repeated.

In most cases you will probably use a single drum tone name forthe entire sequence, but it can be useful
to alternate the tone between bars.

To repeat the same “tone” in a sequence list, use a single “/”.

The “tone” can be specified with a MIDI note value or with a symbolic name. For example, a snare drum
could be specified as “38” or “SnareDrum1”. Appendix A.3 lists all the defined symbolic names.

It is possible to substitute tone values. See the TONETR command (see page 178).

4.2 Including Existing Patterns in New Definitions

When defining a pattern, you can use an existing pattern name inplace of a definition grouping. For
example, if you have already defined a chord pattern (which isplayed on beats 1 and 3) as:

Chord Define M13 1 4 80; 3 4 80

you can create a new pattern which plays on same beats and addsa single push note just before the third
beat:

Chord Define M1+3 M13; 2.5 16 80 0

A few points to note:

� the existing pattern must exist and belong to the same track,

� the existing pattern is expanded in place,

� it is perfectly acceptable to have several existing definitions, just be sure to delimit each with a “;”,

� the order of items in a definition does not matter, each will beplaced at the correct position in the
bar.

This is a powerful shortcut in creating patterns. See the included library files for examples.

4.3 Multiplying and Shifting Patterns

Since most pattern definitions are, internally, repetitious, you can create complex rhythms by multiplying
a copy of an existing pattern. For example, if you have defineda pattern to play a chord on beats 1 though
4 (a quarter note strum), you can easily create a similar pattern to play eighth note chords on beats 1, 1.5,
etc. though 4.5 with a command like:

33

4.3 Multiplying and Shifting Patterns Patterns

Track Define NewPattern OldPattern * N

where “Track” is a valid track name (“Chord”, “Walk”, “Bass”, “Arpeggio” or “Drum”, as well as “Chord2”
or “DRUM3”, etc.).

The “*” is absolutely required.

“N” can be any integer value between 2 and 100.

Drum Define S1 1 1 100
Drum Define S13 S1 * 2
Drum Define S1234 S1 * 4
Drum Define S8 S1234 * 2
Drum Define S16 S8 * 2
Drum Define S32 S16 * 2
Drum Define S64 S1 * 64

Example 4.7: Multiply Define

In example 4.7 a Drum pattern is defined which plays a drum toneon beat 1 (assuming44 time). Then a
new pattern, “S13”, is created. This is the old “S1” multiplied by 2. This new pattern will play a tone on
beats 1 and 3.

Next, “S1234” is created. This plays 4 notes, one the each beat.

Note the definition for “S64”: “S32” could have been multiplied by 2, but, for illustrative purposes, “S1”
has been multiplied by 64—same result either way.

WhenMmA multiplies an existing pattern it will (usually) do what youexpect. The start positions for all
notes are adjusted to the new positions; the length of all thenotes are adjusted (quarter notes become
eighth notes, etc.). No changes are made to note offsets or volumes.

Example 4.8 shows how to get a swing pattern which might be useful on a snare drum.

To see the effects of multiplying patterns, create a simple test file and process it thoughMmA with the “-p”
option.

Even cooler10 is combining a multiplier, and existing pattern and a new pattern all in one statement. The
following is quite legal (and useful):

Drum Define D1234 1 0 90 * 4

which creates drum hits on beats 1, 2, 3 and 4.

More contrived (but examples are needed) is:

10In this case the word “cool” substitutes for the more correct“useful”.

34

4.3 Multiplying and Shifting Patterns Patterns

Begin Drum Define
SB8 1 2+16 90 ; 3.66 4+32 80
SB8 SB8 * 4

End

Sheet Music Equivalent, Normal Notation

4
4

GT G GT G GT G GT G
Sheet Music Equivalent, Actual Rhythm

4
4

G GI G GI G GI G GI3 3 3 3

Example 4.8: Swing Beat Drum Definition

Drum Define Dfunny D1234 * 2; 1.5 0 70 * 2

If you’re really interested in the result, runMmA with the “-p” option with the above definition.

An existing pattern can be modified byshifting it a beat, or portion of a beat. This is done in aMmA
definition with the SHIFT directive. Example 4.9 shows a triplet pattern created to play on beat 1, and then
a second pattern played on beat 3.

Note that the shift factor can be a negative or positive value. It can be fractional. Just be sure that the
factor doesn’t force the note placement to be less than 1 or greater than the TIME setting.

And, just like the multiplier discussed earlier you can shift patterns as they are defined. And shifts and
multipliers can be combined. So, to define a series of quarternotes on the offbeat you could use:

Drum Define D1234’ 1 0 90 * 4 Shift .5

which would create the same pattern as the longer:

Drum Define D1234’ 1.5 1 90; 2.5 1 90; 3.5 1 90; 4.5 1 90

35

4.3 Multiplying and Shifting Patterns Patterns

Chord Define C1-3 1 3 90; /
1.33 3 90; 1.66 3 90

A4
4

GGG GGG GGG M M M3

Chord Define C3-3 C1-3 Shift 2A4
4

M M GGG GGG GGG M3

Example 4.9: Shift Pattern Definition

36

Chapter 5

Sequences

Patterns by themselves don’t do much good. They have to be combined into sequences to be of any use to
you or toMmA.

5.1 Defining Sequences

A SEQUENCEcommand sets the pattern(s) used in creating each track in your song:

Track Sequence Pattern1 Pattern2 ...

“Track” can be any valid track name: “Chord”, “Walk”, “Walk-Sus”, “Arpeggio-88”, etc.

All pattern names used when setting a sequence need to be defined when this command is issued; or you
can use what appears to be a pattern definition right in the sequence command by enclosing the pattern
definition in a set of curly brackets “{ }”.

SeqClear
SeqSize 2
Begin Drum

Sequence Snare4
Tone Snaredrum1

End
Begin Drum-1

Sequence Bass1 Bass2
Tone KickDrum2

End
Chord Sequence Broken8
Bass Sequence Broken8
Arpeggio Sequence { 1 1 100 * 8 } { 1 1

80 * 4 }

Example 5.1: Simple Sequence

37

5.1 Defining Sequences Sequences

Example5.1 creates a 2 bar pattern. The Drum, Chord and Bass patterns repeat on every bar; the Drum-1
sequence repeats after 2 bars. Note how the Arpeggio patternis defined at run-time.1

If there are fewer patterns than SEQSIZE, the sequence will be filled out to correct size. If the numberof
patterns used is greater than SEQSIZE (see chapter 25) a warning message will be printed and the pattern
list will be truncated.

When defining longer sequences, you can use the “repeat” symbol, a single “/”, to save typing. For
example, the following two lines are equivalent:

Bass Sequence Bass1 Bass1 Bass2 Bass2
Bass Sequence Bass1 / Bass2 /

The special pattern name “-” (no quotes, just a single hyphen), or a single “z” can be used to turn a track
off. For example, if you have set the sequences in example 5.1and decide to delete the Bass halfway
though the song you could:

Bass Sequence -

The special sequences, “-” or “z”, are also the equivalent ofa rest or “tacet” sequence. For example, in
defining a 4 bar sequence with a bass pattern on the first 3 bars and a walking bass on bar 4 you might do
something like:

Bass Sequence Bass4-13 / / z
Walk Sequence z / / Walk4-4

If you already have a sequence defined2 you can repeat or copy the existing pattern by using a single “*”
as the pattern name. This is useful when you are modifying an existing sequence.

For example, assume that we have created a four bar GROOVE called “Neato”. Now, we want to change
the CHORD pattern to use for an introduction . . . but, we really only want to change the fourth bar in the
pattern:

Groove Neato
Chord Sequence * * * {1 2 90 }
Defgroove NeatoIntro

When a sequence is created a series of pointers to the existingpatterns are created. If you change the
definition of a particular pattern later in your file the new definition will have no effect on your existing
sequences.

Sequences are the workhorse ofMmA. With them you can set up many interesting patterns and variations.
This chapter should certainly give more detail and many moreexamples.

Seqeuence definitions can get quite long and may need multiple lines. You can do this by using “/” marked
continuation lines. Or, to make it possible to have commentsat the end of lines,MmA will parse SEQUENCE

lines and attempt to join lines together until a matching number of “{”s and “}”s are found. One caution:

1If you runMmA with the “-s” option you’ll see pattern names in the format “1”. The leading underscore indicates that the
pattern was dynamically created in the sequence.

2In reality there is always a sequence defined for every track,but it might be a series of “rest” bars.

38

5.2 SeqClear Sequences

in order for this feature to work with multi-bar sequences you must have non-matching braces on a line.
For example, this will work:

Chord Sequence {1 4 90;
3 4 90 } { 1 1 90 }

This will not work:

Chord Sequence {1 4 90 } !
{1 1 90 }

The following commands help manipulate sequences in your creations:

5.2 SeqClear

This command clears all existing sequences from memory. It is useful when defining a new sequence and
you want to be sure that no “leftover” sequences are active. The command:

SeqClear

deletes all sequence information, with the important exception that SOLO tracks are ignored.

Alternately, the command:

Drum SeqClear

deletesall drum sequences. This includes the track “Drum”, “Drum1”, etc.

If you use a sub-track:

Chord-Piano SeqClear

only the sequence for that track is cleared.3

In addition to clearing the sequence pattern, the followingother settings are restored to a default condition:

� Track Invert setting,

� Track Sequence Rnd setting,

� Track MidiSeq setting,

� Track octave,

� Track voice,

� Track Rvolume,

� Track Volume,

3It is probably easier to use the command:

Chord-Piano Sequence -

if that is what you want to do. In this caseonlysequence pattern is cleared.

39

5.3 SeqRnd Sequences

� Track RTime,

� Track Strum.

CAUTION: It is not possible to clear only a track like DRUM or CHORD using this command. The
command

Chord SeqClear

resetsall CHORD tracks, whereas the command:

Chord-Foo SeqClear

resets the CHORD-FOO track. If you need to clearonly the CHORD track use the “-” option.

5.3 SeqRnd

Normally, the patterns used for each bar are selected in order. For example, if you had a sequence:

Drum-2 Sequence P1 P2 P3 z

bar 1 would use “P1”, bar 2 “P2”, etc. However, it is quite possible (and fun and useful) to insert a
randomness to the order of sequences.MmA can achieve this in three different ways:

1. Separately for each track:

Drum-Snare SeqRnd On

2. Globally for all tracks:

SeqRnd On

3. For a selected set of tracks (keeping the tracks synchronized):

SeqRnd Drum-Snare Chord-2 Chord-3

To disable random sequencing:

SeqRnd Off
Drum SeqRnd Off

To illustrate the different effects you can generate, assume that you have a total of four tracks defined:
Drum-Snare, Drum-Low, Chord and Bass; your sequence size is 4 bars; and you have created some type
of sequence for each track with a commands similar to:

Drum-Snare Sequence D1 D2 D3 D4
Drum-Low Sequence D11 D22 D33 D44
Chord Sequence C1 C2 C3 C4
Bass Sequence B1 B2 B3 B4

With no sequence randomization at all, the tracks will be be processed as:

40

5.3 SeqRnd Sequences

P
P

P
P
P
P

P
P
P

Track
Bar

1 2 3 4 5

Drum-Snare D1 D2 D3 D4 D1
Drum-Low D11 D22 D33 D44 D11

Chord C1 C2 C3 C4 C1
Bass B1 B2 B3 B4 B1

Next, assume we have set sequence randomization with:

SeqRnd On

Now, the sequence may look like:

P
P

P
P
P
P

P
P
P

Track
Bar

1 2 3 4 5

Drum-Snare D3 D1 D1 D2 D4
Drum-Low D33 D11 D11 D22 D44

Chord C3 C1 C1 C2 C4
Bass B3 B1 B1 B2 B4

Note that the randomization keeps the different sequences together: Drum sequences D3 and D33 are
always played with Chord sequence C3, etc.

Next, we will set randomization for a Drum and Chord track only:

Drum-Low SeqRnd On
Chord SeqRnd On

P
P

P
P
P
P

P
P
P

Track
Bar

1 2 3 4 5

Drum-Snare D1 D2 D3 D4 D1
Drum-Low D22 D11 D44 D44 D33

Chord C3 C4 C2 C1 C1
Bass B1 B2 B3 B4 B1

In this case there is no relationship between any of the randomized tracks.

Finally, it is possible to set a “global” randomization for aselected set of tracks. In this case we will set
the Drum tracks only:

SeqRnd Drum-Snare Drum-Low

41

5.4 SeqRndWeight Sequences

P
P

P
P
P
P

P
P
P

Track
Bar

1 2 3 4 5

Drum-Snare D3 D1 D4 D4 D2
Drum-Low D33 D11 D44 D44 D22

Chord C1 C2 C3 C4 C1
Bass B1 B2 B3 B4 B1

Note that the drum sequences always “line up” with each otherand the Chord and Bass sequences follow
in the normal order.

The SEQCLEAR command will disable all sequence randomization. The SEQ command will disable
“global” (for all tracks) randomization.

5.4 SeqRndWeight

When SEQRND is enabled each sequence for the track (or globally) has an equal chance of being selected.
There are times when you may want to change this behavior. Forexample, you might have a sequence like
this:

Chord Sequence C1 C2 C3 C4

and you feel that the patterns C1 and C2 need to be used twice as often as C3 and C4. Simple:

Chord SeqRndWeight 2 2 1 1

Think of the random selection occurring like selecting balls out of bag. The SEQRNDWEIGHT command
“fills up the bag”. In the above case, there will be two C1 and C2 balls, one C3 and C4 ball— for a total
of six balls.

This command can be used in both a track and global context.

The effects are saved in GROOVES.

SEQCLEAR will reset both global and track contexts to the default (equal) condition.

5.5 SeqSize

The number of bars in a sequence are set with the “SeqSize” command. For example:

SeqSize 4

sets it to 4 bars. The SeqSize applies to all tracks.

This command resets thesequence counterto 1.

42

5.5 SeqSize Sequences

If some sequences have already been defined, they will be truncated or expanded to the new size. Trun-
cation is done by removing patterns from the end of the sequence; expansion is done by duplicating the
sequence until it is long enough.

43

Chapter 6

Grooves

Grooves, in some ways, areMmA’s answer to macros . . . but they are cooler, easier to use, andhave a more
musical name.

Really, though, a groove is just a simple mechanism for savingand restoring a set of patterns and se-
quences. Using grooves it is easy to create sequence libraries which can be incorporated into your songs
with a single command.

6.1 Creating A Groove

A groove can be created at anytime in an input file with the command:

DefGroove SlowRhumba

Optionally, you can include a documentation string to the end of this command:

DefGroove SlowRumba A descriptive comment!

A groove name can include any character, including digits and punctuation. However, it cannot include a
space character (used as a delimiter), a colon “:” or a ’/’1.

In normal operation the documentation strings are ignored.However, whenMmA is run with the -Dx
command line option these strings are printed to the terminal screen in LATEX format. The standard library
document is generated from this data. The commentsmustbe suitable for LATEX: this means that special
symbols like “#”, “&”, etc. must be “quoted” with a preceding“ /”.

At this point the following information is saved:

� Current Sequence size,

� The current sequence for each track,

� Time setting (quarter notes per bar),

� “Accent”,

� “Articulation” settings for each track,

� “Compress”,

1The ’/’ and ’:’ are used in extended names.

44

6.1 Creating A Groove Grooves

� “Direction”,

� “DupRoot”,

� “Harmony”,

� “HarmonyOnly”,

� “HarmonyVolume”,

� “Invert”,

� “Limit”,

� “Mallet” (rate and decay),

� “MidiSeq”,

� “MidiVoice”,

� “MidiClear”

� “NoteSpan”,

� “Octave”,

� “Range”,

� “RSkip”,

� “Rtime”,

� “Rvolume”,

� “Scale”,

� “SeqRnd”, globally and for each track,

� “SeqRndWeight”, globally and for each track,

� “Strum”,

� “SwingMode” Status and Skew,

� “Time Signature”,

� “Tone” for drum tracks,

� “Unify”,

� “Voice”,

� “VoicingCenter”,

� “VoicingMode”,

� “VoicingMove”,

� “VoicingRange”,

45

6.2 Using A Groove Grooves

� “Volume” for tracks and master,

� “VolumeRatio”.

6.2 Using A Groove

You can restore a previously defined groove at anytime in yoursong with:

Groove Name

At this point all of the previously saved information is restored.

A few cautions:

� Pattern definitions arenot saved in grooves. Redefining a pattern results in a new patterndefinition.
Sequences use the pattern definition in effect when the sequence is declared.

� The “SeqSize” setting is restored with a groove. The sequence point is also reset to bar 1. If you
have multi-bar sequences, restoring a groove may upset youridea of the sequence pattern.

To make life (infinitely) more interesting, you can specify more than one previously defined groove. In
this case the next groove is selected after each bar. For example:

Groove Tango LightTango LightTangoSus LightTango

would create the following bars:

1. Tango

2. LightTango

3. LightTangoSus

4. LightTango

5. Tango

Note how the groove pattern wraps around to the first one when the list is exhausted. There is no way to
select an item from the list, except by going though it.

You might find this handy if you have a piece with an alternating time signature. For example, you might
have a3

4
4
4 song. Rather than creating a 2 bar groove, you could do something like:

Groove Groove34 Groove44

For long lists you can use the “/” to repeat the last groove in the list. The example above could be written:

Groove Tango LightTango LightTangoSus /

When you use the “list” feature of GROOVEs you should be aware of what happens with the bar sequence
number. Normally the sequence number is incremented after each bar is processed; and, when a new
groove is selected the sequence number is reset (see SEQ, page 191). When you use a list which changes

46

6.2 Using A Groove Grooves

the GROOVEafter each bar the sequence number is reset after each bar . . .with one exception: if the same
GROOVE is being used for two or more bars the sequence will not be reset.2

Another way to select GROOVEs is to use a list of grooves with a leading value. This lets youselect
the GROOVE to use based on the value of a variable . . . handy if you want different sounds for repeated
sections. Again, an example:

Set loop 1 // create counter with value of 1
Repeat

Groove $loop BossaNovaSus BossaNova1Sus BossaNovaFill
print This is loop $Loop ...Groove is $ Groove
1 A / Am
Inc Loop // Bump the counter value

RepeatEnd 4

If you use this option, make sure the value of the counter is greater than 0. Also, note that the values larger
than the list count are “looped” to be valid. The use of “/”s for repeated names is also permitted. For an
example have a look at the filegrooves.mma , included in this distribution. You could get the same results
with various “if” statements, but this is easier.

6.2.1 Extended Groove Notation

In addition to only setting thenameof a GROOVEyou can also set the specific file that the GROOVEexists
by using a filename prefix:

Groove stdlib/rhumba:rhumbaend

would load the “RhumbaEnd” groove from the filerhumba.mma file located in thestdlib directory. In
most cases the use of an extended groove name is only requiredonce (if at all) since the command forces
the file containing the named groove to be completely read andall grooves defined in that file will now be
in memory and available with simple GROOVE commands.

When using extended names you may receive a warning message ifthe selected name is duplicated in
other library files (only if the “mma -g” command has updated the library database). You can specify a
library file in the current directory with a “dot” filename like ./testlibfile:rocking .

Extended groove names, in just about all cases, eliminate the need for the USE command. For a complete
understanding you should also read the PATHS section (page 210) of this of this manual.

6.2.2 Overlay Grooves

To make the creation of variations easier, you can use GROOVE in a track setting:

2Actually,MmA checks to see the next GROOVE in the list is the same as the current one, and if it is then no change is done.

47

6.3 Groove Aliases Grooves

Scale Groove Funny

In this case only the information saved in the correspondingDEFGROOVE FUNNY for the SCALE track
will be restored. You might think of this as a “groove overlay”. Have a look at the sample song “Yellow
Bird” for an example.

When restoring track grooves, as in the above example, the SEQSIZE is not reset. The sequence size of
the restored track is adjusted to fit the current sequence size setting.

One caution with these “overlays” is that no check is done to see if the track you’re using exists. Yes, the
GROOVE must have been defined, but not the track. Huh? Well, you need to know a bit about howMmA
parses files and how it handles new tracks. WhenMmA reads a line in a file it first checks to see if the first
word on the line is a simple command like PRINT, MIDI or any other command which doesn’t require a
leading trackname. If it is, the appropriate function is called and file parsing continues. If it is not a simple
commandMmA tests to see if it is a track specific command. But to do that, it first has to test the first word
to see if it is a valid track name likeBassor Chord-Major. And, if it is a valid track name and that track
doesn’t exist, the track is created . . . this is donebeforethe rest of the command is processed. So, if you
have a command like:

Bass-Foo Groove Something

and you really meant to type:

Bass-Foe Groove Something

you’ll have a number of things happening:

1. The trackBass-Foowill be created. This is not an issue to be concerned over since no data will be
created for this new track unless you set a SEQUENCEfor it.

2. As part of the creation, all the existing GROOVEs will have theBass-Footrack (with its default/empty
settings) added to them.

3. And the current setting you think you’re modifying with the Bass-Foesettings will be created with
theBass-Foosettings (which are nothing).

4. Eventually you’ll wonder whyMmA isn’t working.

So, be very careful using this command option. Check your spelling. And use the PRINTACTIVE com-
mand to verify your GROOVE creations. A basic test is done byMmA when you use a GROOVE in this
manner and if the sequence for the named track is not defined you will get a warning.

6.3 Groove Aliases

In an attempt to make the entire groove naming issue simpler,an additional command has been added.
More complication to make life simpler.

You can create an alias for any defined GROOVE name with:

48

6.4 AllGrooves Grooves

DefAlias NewAlias SomeGroove

Now you can refer to the groove “SomeGroove” with the name “NewAlias”.

A few rules:

� the alias name must not be the name of a currently defined groove,

� when defining a new groove you cannot use the name of an alias.

Groove aliases are a tool designed to make it possible to havea standard set of groove names inMmA usable
at the same time as the standard library.

There is a major difference between a groove alias and the simple act of assigning two names to the same
groove. Consider this snippet:

...define some things ...
Defgroove Good
Defgroove Good2

You now have both “good” and “good2” assigned to the same set of sequences, etc. Now, lets change
something:

Groove Good
Chord Voice Accordion
...

Now, the groove “good” has an accordion voicing; “good2” still has whatever the old “good” had. Com-
pare this with:

...define some things ...
DefGroove Good
DefAlias Good2 Good

Now, make the same change:

Groove Good
Chord Voice Accordion

By using an alias “good2” now points to the changed “good”.

6.4 AllGrooves

There are times when you wish to change a setting in a set of library files. For example, you like the
Rhumbalibrary sounds, but, for a particular song you’d like a punchier bass sound. Now, it is fairly easy
to create a new library file for this; or you can set the new basssettings each time you select a different
GROOVE.

Much easier is to apply your changes to all the GROOVEs in the file. For example:

49

6.4 AllGrooves Grooves

Use Rhumba
Begin AllGrooves

Bass Articulate 50
Bass Volume +20
Walk Articulate 50
Walk Volume +10

End
...

The ALL GROOVEScommand operates by applying its arguments to each GROOVEcurrently defined. This
includes the environment you are currently in, even if this is not a defined GROOVE.

You can use the command with or without a track modifier:

AllGrooves Volume p

or

AllGrooves Chord Octave 5

Everything after the directive is interpreted as a legitimate MmA command. A warning message will be
displayed if the command had no effect. The warning “No tracks affected with . . .” will be displayed if
nothing was done. This could be due to a misspelled command ortrack name, or the fact that the specified
track does not exist.

If you want to “undo” the effect of the ALL GROOVESjust import the library file again with:

Use stdlib/rhumba
Groove Rhumba

or remove all the current GROOVEs from memory with:

GrooveClear
Groove Rhumba

In both cases you’ll end up with the original GROOVE settings.

A few notes:

� This command only effects GROOVEs which have been loaded into memory either by loading a
library file or otherwise creating a GROOVE.

� Be careful what commands you use since they are applied ratherblindly. For example, the command:

AllTracks BeatAdjust 2

will insert 2 additional beats for each GROOVE you have. So, if you have 10 GROOVEs you would
insert 20 beats. Not what you intended. TEMPO and other commands will cause similar problems.

50

6.5 Deleting Grooves Grooves

6.5 Deleting Grooves

There are times when you might wantMmA to forget about all the GROOVEs in its memory. Just do a:

GrooveClear

at any point in your input file and that is exactly what happens. But, “why”, you may ask, “would one
want to do this?” One case would be to force the re-reading of alibrary file. For example, a library file
might have a user setting like:

If Ndef ChordVoice
Set ChordVoice Piano1

Endif

In this case you could set the variable “ChordVoice” before loading any of the GROOVEs in the file. All
works! Now, assume that you have a repeated section and want to change the voice. Simply changing the
variabledoes not work. The library file isn’t re-read since the existing GROOVEdata is already in memory.
Using GROOVECLEAR erases the existing data and forces a re-reading of the library file.

Please note that low-level setting like MIDI track assignments arenot changed by this command.

Groove aliases are also deleted with this command.

6.6 Library Issues

If you are using a groove from a library file, you just need to dosomething like:

Groove Rhumba2

at the appropriate position in your input file.

One minor problem whichmayarise is that more than one library file has defined the same groove name.
This might happen if you have a third-party library file. For the proposes of this example, lets assume
that the standard library file “rhumba.mma” and a second file “xyz-rhumba.mma” both define the groove
“Rhumba2”. The auto-load (see page 207) routines which search the library database will load the first
“Rhumba2” it finds, and the search order cannot be determined.To overcome this possible problem, do a
explicit loading of the correct file. In this case, simply do:

Use xyz-rhumba

near the top of your file. And if you wish to switch to the groovedefined in the standard file, you can
always do:

Use rhumba

just before the groove call. The USE will read the specified file and overwrite the old definition of
“Rhumba2” with its own.

This issue in covered in more detail on page 211 of this manual.

51

Chapter 7

Riffs

In previous chapters you were shown how to create a PATTERN which becomes a part of a SEQUENCE.
And how to set a musical style by defining a GROOVE.

These predefined GROOVEs are wonderful things. And, yes, entire accompaniment tracks can be created
with just some chords and a single GROOVE. But, often a bit of variety in the track is needed.

The RIFF command permits the setting of an alternate pattern for any track for a single bar–this overrides
the current SEQUENCEfor that track.

The syntax for RIFF is very similar to that of DEFINE, with the exception that no pattern name is used.
You might think of RIFF as the setting of an SEQUENCEwith an anonymous pattern.

A RIFF is set with the command:

Track Riff Pattern

where:

Track is any validMmA track name,

Pattern is any existing pattern name defined for the specified track, or a pattern definition following the
same syntax as a DEFINE. In addition the pattern can be a single “z”, indicating no pattern for the
specified track.

Following is a short example using RIFF to change the Chord Pattern:

Groove Rhumba
1 Fm7
2 Bb7
3 EbM7
Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
4 Eb6 / Eb
5 Fm7

In this case there is a Rhumba Groove for the song; however, in bar 4 the melodic pattern is emphasized
by chording a quarter-note triplet over beats 3 and 4. In thiscase the pattern has been defined right in the
RIFF command.

The next example shows that RIFF patterns can be defined just like the patterns used in a sequence.

52

Riffs

Drum Define Emph8 1 0 128 * 8
Groove Blues
1 C
2 G
Drum-Clap Riff Emph8
3 G
4 F
Drum-Clap Riff Emph8
5 C

Here theEmph8pattern is defined as a series of eighth notes. This is appliedfor the third and fifth bars.
If you compile and play this example you will hear a sporadic hand-clap on bar 3. TheDrum-Claptrack
was previously defined in the Blues GROOVE as random claps on beats 2 and 4—our RIFF changes this to
a louder volume with multiple hits.

The special pattern “z” can be used to turn off a track for a single bar. This is similar to using a “z” in the
SEQUENCEdirective.

A few things to keep in mind when using RIFFs:

� Each RIFF is in effect for only one bar (see the discussion below about multiple RIFFs).

� RIFF sequences are always enabled. Even if there is no sequence for a track, or if the “z” sequence
is being used, the pattern specified in RIFF will apply.

� The existing voicing, articulation, etc. for the track willapply to the RIFF.

� It’s quite possible to use a macro for repeated RIFFs. The following example uses a macro which
sets the VOLUME, ARTICULATE, etc. as well as the pattern. Note how the pattern is initially set as
single whole note, but, redefined in the RIFF as a run controlled by another macro. In bar 2 an eight
note run is played and in bar 5 this is changed to a run of triplets.

Mset CRiff
Begin Scale

Define Run 1 1 120
Riff Run * $SSpeed
Voice AltoSax
Volume f
Articulate 80
Rskip 5

End
MsetEnd
Groove Blues
1 C
Set SSpeed 8
$CRiff
2 G
3 G
Set SSpeed 12

53

7.1 DupRiff Riffs

$CRIFF
5 C

� A RIFF can only be deleted by using it (i.e., a music bar follows the setting), with a SEQCLEAR or
by a track DELETE.

RIFFs can also be used to specify a bar of music in a SOLO or MELODY track. Please see the “Solo and
Melody” chapter 10.

The above examples show how to apply a temporary pattern to a single bar—the bar which follows the
RIFF command. But, you can “stack”1 a number of patterns to be processed sequentially. Each successive
RIFF command adds a pattern to the stack; these patterns are then “pulled” from the stack as successive
chord lines are processed.

Recycling an earlier example, lets assume that you want to usea customized pattern for bars 4 and 5 in a
mythical song:

Groove Rhumba
1 Fm7
2 Bb7
3 EbM7
Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
Chord Riff 1 2 100; 3 8 90;
4 Eb6 / Eb
5 Fm7

In this example the firstChord Riff will be used in bar 4; the second in bar 5. For an example of thissee
the sample fileegs/riffs/riffs.mma .

I often use this feature when creating a SOLO line.

7.1 DupRiff

In the above section we discussed the creation of RIFFs. In addition to being fun and useful in a specified
track, they can easily be duplicated between similar trackswith a single command:

Solo DupRiff Solo-1 Solo-2

will copy any pending RIFF data in the SOLO track to the SOLO-1 and SOLO-2 tracks.

A few rules:

� All the tracks must be of the same type. You can’t copy a RIFF from CHORD track to a SOLO, etc.

� The source track must have RIFF data to copy.

� The destination track(s) mustnot have any pending RIFF data.

1Actually a queue or FIFO (First In, First Out) buffer.

54

7.1 DupRiff Riffs

The use of the DUPRIFF makes it very easy to manage data for solos with multiple instruments. For
example:

Begin Solo-1
Voice Flute
HarmonyOnly Open

End

Begin Solo
Voice Clarinet
Begin Riff

2g+; f+;
2e+; d+;

End
End

Solo DupRiff Solo-1

The above example creates two SOLO tracks. SOLO-1 will only play the harmony notes; SOLO will play
the melody. Without DUPRIFF you would need to duplicate the note data in both tracks, either line by line
or with a macro. Using DUPRIFF is much simpler.

55

Chapter 8

Musical Data Format

Compared to patterns, sequences, grooves and the various directives used inMmA, the actual bar by bar
chord notations are surprisingly simple.

Any line in your input file which is not a directive or comment is assumed to be a bar of chord data.

A line for chord data consists of the following parts:

� Optional line number,

� Chord or Rest data (with optional position indicator),

� Optional lyric data,

� Optional solo or melody data,

� Optional multiplier.

Formally, this becomes:

[num] Chord [Chord ...] [lyric] [solo] [* Factor]

As you can see, all that is really needed is a single chord. So,the line:

Cm

is completely valid. As is:

10 Cm Dm Em Fm* 4

The optional solo or melody data is enclosed in “{ }”s. The complete format and use is detailed in the
Solo and Melody Tracks, page 67.

Lyrics are enclosed in ”[]” brackets. See theLyrics chapter, page 61.

8.1 Bar Numbers

The optional leading bar number is silently discarded byMmA. It is really just a specialized comment which
helps you debug your music. Note that only a numeric item is permitted here.

56

8.2 Bar Repeat Musical Data Format

Get in the habit of using bar numbers. You’ll thank yourself when a song seems to be missing a bar, or
appears to have an extra one. Without the leading bar numbersit can be quite frustrating to match your
input file to a piece of sheet music.1

One important use of the leading bar number is for the -b command line option (page 16).

You should note that it is perfectly acceptable to have only abar number on a line. This is common when
you are using bar repeat, for example:

1 Cm * 4
2
3
4
5 A

In the above example bars 2, 3 and 4 are comment bars.

8.2 Bar Repeat

Quite often music has several sequential identical bars. Instead of typing these bars over and over again,
MmA has an optionalmultiplier which can be placed at the end of a line of music data. The multiplier or
factor can is specified as “* NN” This will cause the current bar to repeated the specified number of times.
For example:

Cm / Dm / * 4

produces 4 bars of output with each the first 2 beats of each bara Cm chord and the last 2 a Dm. (The “/”
is explained below.)

8.3 Chords

The most important part of a musical data line is, of course, the chords. You can specify a different chord
for each beat in your music. For example:

Cm Dm Em Fm

specifies four different chords in a bar. It should be obviousby now that in a piece in44 you’ll end up with
a “Cm” chord on beat 1, “Dm” on 2, etc.

If you have fewer chord names than beats, the bar will be filledautomatically with the last chord name on
the line. In other words:

Cm

and
1If your line numbers get out of order you can use the supplied utility mma-renum to renumber the comment lines. This

utility is installed in your default path or in the rootMmA directory, depending on the distribution.

57

8.4 Rests Musical Data Format

Cm Cm Cm Cm

are equivalent (assuming 4 beats per bar). There must be one (or more) spaces between each chord.

One further shorthand is the “/”. This simply means to repeatthe last chord. So:

Cm / Dm /

is the same as

Cm Cm Dm Dm

It is perfectly okay to start a line with a “/”. In this case thelast chord from the previous line is used. If
the first line of music data begins with a “/” you’ll get an error—MmA tries to be smart, but it doesn’t read
minds. Having “/” at the end of the bar is a tad silly sinceMmA just ends up throwing these away, but it
does no harm.

MmA recognizes a wide variety of chords in standard and Roman numeral notation. In addition, you can
specify slash chords, inversions, barre offsets, and shiftthe octave up or down. Refer to the complete table
in the appendix for details, page 218.

8.4 Rests

To disable a voice for a beat you can use a “z” for a chord name. If used by itself a “z” will disable all
but the drum tracks for the given beat. However, you can disable “Chord”, “Arpeggio”, “Scale”, “Walk”,
“Aria”, or “Bass” tracks as well by appending a track specifierto the “z”. Track specifiers are the single
letters “C”, “A”, “S”, “W”, “B”, “R” or ‘D” and “!”. Track specifier s are only valid if you also specify a
chord. The track specifiers are:

D - All drum tracks,
W - All walking bass tracks,
B - All bass tracks,
C - All chord tracks,
A - All arpeggio tracks,
S - All scale tracks,
R - All aria tracks,
P - All plectrum tracks,
! - All tracks (almost the same as DWBCAP, see below).

Assuming the “C” is the chord and “AB” are the track specifiers:

CzAB - mutes the ARPEGGIOand BASS tracks,
z - mutes all the tracks except for the drums,
Cz - is not permitted,
zAB - is not permitted.

Assuming that you have a drum, chord and bass pattern defined:

58

8.5 Positioning Musical Data Format

Fm z G7zC CmzD

would generate the following beats:

1 - Drum pattern, Fm chord and bass,
2 - Drum pattern only,
3 - Drum pattern and G7 bass, no chord,
4 - Cm chord and bass, no drum.

In addition, there is a super-z notation. “z!” forces all instruments to be silent for the given beats. “z!” is
the same as “zABCDWR”, except that the latter is not valid since itneeds a prefixed chord.

The “z” notation is used when you have a “tacet” beat or beats.The alternate notations can be used to
silence specific tracks for a beat or two, but this is used lessfrequently.

8.5 Positioning

In earlier versions ofMmA all chords (and rests) were positioned on the beat, and one could only specify
a limited number of chord changes per bar. Using the enhancedpositioning syntax an unlimited number
of chord changes per bar can be specified. But, please notethe changes you hear in your song depend on
the specific pattern you are using! You might specify a chord at, for example, beat 2.25, but if the pattern
doesn’t sound a chord at that position it’s a bit silly.

As discussed above, a normal set of chord changes is entered like:

Cm / Dm

which sets a “Cm” for beats 1 and 2, and “Dm” for beats 3 to the barend.

To modify this, you can use the “@” symbol along with an offsetto indicate other changes. So, the above
example could also be written as:

Cm Dm@3

Changing on the “off beat” is simple as well. Consider,

C D@3.5 F

In this case the “C” chord is in effect from the first beat until beat 3.5, a “D” chord is set for 3.5 until 4,
and an “F” from 4 to the end of bar.

In parsing, whenMmA finds a chord name without the “@” it assumes that the positionis the next full beat
after the previous chord . . . which means that in the above example “F” and “F@4” are equivalent.

� The offset used must be 1 or greater and less than the value of the TIME parameter (page 105) plus
1. Any partial beat (2.33, 3.9, 1.25, etc.) is permitted.

� Chords must be specified in order of their position in the bar. For example,

59

8.6 Case Sensitivity Musical Data Format

Cm Dm E@1.5

would generate an error.

� No spaces are permitted between chord and the “@” symbol or between the “@” and the value.

� The “@” must be at the end of the chord following any chord modifiers. The chords “+Cdim>-2@2.5”
and “E/G#@4” are perfectly acceptable.

8.6 Case Sensitivity

In direct conflict with the rest of the rules for input files, all chord names (and modifiers)arecase sensitive.
This means that youcan notuse notations like “cm”—use “Cm” instead.

The “z” and the associated track specifiers are also case sensitive. For example, the form “Zc” willnot
work!

60

Chapter 9

Lyrics

MIDI files can include song lyrics and some (certainly not all) MIDI file players and/or sequencers can
display them as a file is played. This includes newer “arranger” keyboards and many software players.
Check your manuals.

The “Standard MIDI File” document describes aLyric Meta-event:

FF 05 len textLyric. A lyric to be sung. Generally, each syllable will will be a separate lyric
event which begins at the event’s time.1

Unfortunately, not all players and creators follow the specification—the most notable exception are “.kar”
files. These files eschew theLyric event and place their lyrics as aText Event. There are programs strewn
on the net which convert between the two formats (but I reallydon’t know if conversion is needed).

If you want to read the word from the source, refer to the official MIDI lyrics documentation athttp:
//www.midi.org/about-midi/smf/rp017.shtml .

9.1 Lyric Options

MmA has a number of options in setting lyrics. They are all calledvia the LYRIC command. Most options
are set as option/setting pairs with the option name and the setting joined with an “=”.

9.1.1 Event Type

MmA supports both format for lyrics (discussed above). The EVENT option is used to select the desired
mode.

Lyric EVENT=LYRIC

selects the default LYRIC EVENT mode.

Lyric EVENT=TEXT

selects the TEXT EVENT mode. Use of this option also prints a warning message.

1I am quoting from “MIDI Documentation” distributed with theTSE Library. Pete Goodliffe, Oct. 21, 1999. You may be
able to get the complete document athttp://tse3.sourceforge.net/docs.html

61

9.2 Chord Name Insertion Lyrics

9.1.2 Kar File Mode

As noted above, Karaoke or .kar files use a slightly differentMIDI format for their lyrics. MmA supports
kar file creation with this mode:

Lyric KARMODE=On

When this mode is entered the following changes are made:

� The extension used for the MIDI file name is changed from .mid to .kar (if you have specified an
output file name on the command line this is not done).

� Some meta track information is changed to make it compatiblewith the kar useage.

� The word splitting algorithm is modified. In kar mode hyphens(“-”) are used to indicate syllable
breaks and are removed from the input. You can force a hyphen into your lyrics by using the notation
“\-”.

You can turn the mode off with:

Lyric KarMode=Off

Repeated mode switching is quite acceptable and may be usefulin generating proper lyric breaks.

9.1.3 Word Splitting

Another option controlled by the LYRIC command is to determine the method used to split words. As
mentioned earlier (and in various MIDI documents), the lyrics should be split into syllables.MmA does
this by taking each word (anything with white space surrounding it) and setting a MIDI event for that.
However, depending on your player, you might want only one event per bar. You might even want to put
the lyrics for several bars into one event. In this case simply set the “bar at a time” flag:

Lyric SPLIT=BAR

You can return to normal (syllable/word) mode at anytime with:

Lyric SPLIT=NORMAL

9.2 Chord Name Insertion

It is possible to haveMmA duplicate the current chord names and insert them as a lyrics. The option:

Lyric CHORDS=On

will enable this. In this mode the chord line is parsed and inserted as verse one into each bar.

The mode is enabled with “On” or “1” and disabled with “Off” or“0”.

62

9.3 Setting Lyrics Lyrics

After the chords are extracted they are treated exactly likea verse you have entered as to word splitting,
etc. Note that the special chord “z” is converted to “N.C.” anddirectives after the “z” in constructs like
“C7zCS” will appear with only the chord name.

9.2.1 Chord Transposition

If you are transposing a piece or if you with to display the chords for a guitar with a capo you can tell
MmA to transpose the chord names inserted with CHORDS=ON. Just add a transpose directive in the LYRIC

command:

Lyric CHORDS=On Transpose=2

Please note that the Lyrics code doesnot look at the global TRANSPOSEsetting.2

MmA isn’t too smart in it’s transposition and will often displaythe “wrong” chord names in relation to
“sharp” and “flat” names. If you find that you are getting too many “wrong” names, try setting the
CNAMES option to either “Sharp” or “Flat”. Another example:

Lyric CHORDS=On Transpose=2 CNames=Flat

By default, the “flat” setting is used. In addition to “Flat” and “Sharp” you can use the abbreviations “#”,
“b” and “&”.

You can (and may well need to) change the CNAMES setting in a number of different places in the song.

9.3 Setting Lyrics

Adding a lyric to your song is a simple matter . . . and like so many things, there is more than one way to
do it.

Lyrics can be set for a bar in-between a pair of[]s somewhere in a data bar.3 For example:

z [Pardon]
C [me, If I’m]
E7 [sentimental, /r]
C [when we say good]

The alternate method is to use the LYRIC SET directive:

Lyric Set Hello Young Lovers

The SET option can be anywhere in a LYRIC line. The only restriction is that no “=” signs are permitted
in the lyric. When setting the lyric for a single verse the[]s are optional; however, for multiple verses
they are used (just like they are when you include the lyric ina data/chord line). The advantage to using

2This is a feature! It permits you to have separate control over music generation and chord symbol display.
3Although the lyric can be placed anywhere in the bar, it is recommended that you only place the lyric at the end of the bar.

All the examples follow this style.

63

9.3 Setting Lyrics Lyrics

LYRIC SET is that you can specify multiple bars of lyrics at one point inyour file. See the sample files in
egs/lyrics for an examples.

The lyrics for each bar are separated into individual events, one for each word . . . unless the option
SPLIT=BAR has been used, in which case the entire lyric is placed at the offset corresponding to the start
of the bar.

MmA recognizes two special characters in a LYRIC:

� A /r is converted into an EOL character (hex value 0x0D). A/r should appear at the end of each
lyrical line.

� A /n is converted into a LF character (hex value 0x0A). A/n should appear at the end of each verse
or paragraph.

When a multi-verse section is created using a REPEAT or GOTO, different lyrics can be specified for
different passes. In this case you simply specify two more sets of lyrics:

A / Am / [First verse] [Second Verse]

However, for this work properly you must set the internal counter LYRICVERSEfor any verse other than
1. This counter is set with the command:

Lyric Verse=Value | INC | DEC

This means that you can directly set the value (the default value is 1) with a command like:

Lyric Verse=2

And you can increment or decrement the value with the INC and DEC options. This is handy at to use in
repeat sections:

Lyric Verse=Inc

You cannot set the value to a value less than 1.

There are a couple of special cases:

� If there is only one set of lyrics in a line, it will be treated as text for verse 1, regardless of the value
of LYRICVERSE.

� If the value of LYRICVERSEis greater than the number of verses found after splitting the line, then
no lyrics are produced. In most cases this is probably not what you want.

At times you may wish to overrideMmA’s method of determining the beat offsets for a lyric or a single
syllable in a lyric. You can specify the beat in the bar by enclosing the value in “< >” brackets. For
example, suppose that your song starts with a pickup bar and you’d like the lyrics for the first bar to start
on beat 4:

z z z C [<4>Hello]
F [Young lovers]

Assuming4
4 the above would put the word “Hello” at beat 4 of the first bar; “Young” on the first beat of

bar 2; and “lovers” on beat 3 of bar 2.

64

9.3 Setting Lyrics Lyrics

Note: there must not be a space inside the “< >”, nor can there be a space between the bracket and the
syllable it applies to.

Only the first “< >” is checked. So, if you really want to have the characters “<” or ”>” in a lyric just
include a dummy to keepMmA happy:

C [<><Verse 1.>This is a Demo]

Example 9.14 shows a complete song with lyrics. You should also examine the file egs/lyrics.mma for
an alternate example.

9.3.1 Limitations

A few combinations are not permitted:

� You cannot specify lyrics in bars that are being repeated with the “*” option.

� You cannot insert lyrics with LYRIC SET and [STUFF] into the same bar.

4Included in this distribution assongs/twinkle.mma .

65

9.3 Setting Lyrics Lyrics

Tempo 200
Groove Folk
Repeat

1 G [Twinkle,] [When the]
2 G [Twinkle] [blazing]
3 C [little] [sun is]
4 G [star; /r] [gone, /r]
5 Am [How I] [When he]
6 G [wonder] [nothing]
7 D7 [what you] [shines u-]
8 G [are. /r] [pon. /r]
9 G [Up a-] [then you]
10 D7 [bove the] [show your]
11 G [world so] [little]
12 D [high, /r] [light, /r]
13 G [Like a] [Twinkle,]
14 D7 [diamond] [twinkle,]
15 G [in the] [all the]
16 D7 [sky! /r] [night. /r]
17 G [Twinkle,]
18 G [twinkle]
19 C [Little]
20 G [star, /r]
21 Am [How I]
22 G [wonder]
23 D7 [what you]
24 G [are. /r /n]

Lyric Verse=Inc
RepeatEnd

Example 9.1: Twinkle, Twinkle, Little Star

66

Chapter 10

Solo and Melody Tracks

So far the creation of accompaniment tracks using drum and chord patterns has been discussed. However,
there are times when chording (and chord variations such as arpeggios) are not sufficient. Sometimes you
might want a real melody line!

While reading this chapter, don’t forget that you can easily add HARMONY to your SOLO tracks (see
page 98 for details). You can even import (see MIDI INC page 154) an existing MIDI track (maybe a
melody you’ve plunked out on a keyboard) and haveMmA insert that into your song as a SOLO and apply
ARTICULATION and HARMONY to it . . . imagine how good you may sound!

MmA has two internal track types reserved for melodic lines. They are the SOLO and MELODY tracks.
These two track types are identical with two major exceptions:

� SOLO tracks are only initialized once, at start up. Commands like SEQCLEAR are ignored by SOLO

tracks.

� No settings in SOLO tracks are saved or restored with GROOVE commands.

These differences mean that you can set parameters for a SOLO track in a preamble in your music file and
have those settings valid for the entire song. For example, you may want to set an instrument at the top of
a song:

Solo Voice TenorSax

On the other hand, MELODY tracks save and restore grooves just like all the other available tracks. If you
have the following sequence in a song file:

Melody Voice TenorSax
Groove Blues
...musical data

no one will be surprised to find that the MELODY track playing with the default voice (Piano).

As a general rule, MELODY tracks have been designed as a “voice” to accompany a predefined form
defined in a GROOVE—it is a good idea to define MELODY parameters as part of a GROOVE. SOLO tracks
are thought to be specific to a certain song file, with their parameters defined in the song file.

Apart from the exceptions noted above, SOLO and MELODY tracks are identical.

Before you create any SOLO or MELODY tracks you should set the key signature. See page 187 for details
on this important setting.

67

10.1 Note Data Format Solo and Melody Tracks

Unlike the other available tracks, you do not define a sequence or pattern for a SOLO or MELODY track.
Instead, you specify a series of notes as a RIFF pattern. For example, consider the first two bars of “Bill
Bailey” (the details of melody notation will be covered laterin this chapter):

Solo Riff 4c;2d;4f;
F
Solo Riff 4.a;8g#;4a;4c+;
F

In the above example the melody has been inserted into the song with a series of RIFF lines. Specifying
a RIFF for each bar of your song can get tedious, so there is a shortcut . . . any data surrounded by curly
brackets “{ }” is interpreted as a RIFF for a SOLO or MELODY track. This means that the above example
could be rewritten as:

F {4c;2d;4f; }
F {4.a;8g#;4a;4c+; }

By default the note data is inserted into the SOLO track. If more than one set of note data is present, it will
be inserted into the next track set by the AUTOSOLOTRACKS command (page 74).

Another method is to use a number of RIFF commands inside a BEGIN/END section. For example:

Begin Solo Riff
4c;2d;4f;
4.a;8g#;4a;4c+

End
F
F

If you look at the sample songs from our websitehttp://www.mellowood.ca/mma/examples.html you
will see this used in many songs to create short introductions.

10.1 Note Data Format

The notes in a SOLO or MELODY track are specified as a series of “chords”. Each chord can be asingle
note, or several notes (all with the same duration). Each chord in the bar is delimited with a single
semicolon.1 Please note the terminology used here! When we refer to a “chord” we are referring to the
data a one point in the bar. It might be a single note, a number of notes, or a rest.

Each chord can have several parts. All missing parts will default to the value in the previous chord. The
order of the items is important: follow the order below.

Duration The duration of the note. This is specified in the same manner as chord patterns; see page 26
for details on how to specify a note duration. By default, a quarter note duration is used.

1I have borrowed heavily from the notation program MUP for thesyntax used here. For notation I highly recommend MUP
and use it for most of my notation tasks, including the creation of the score snippets in this manual. MUP is available from
Arkkra Enterprises,http://www.Arkkra.com/ .

68

10.1 Note Data Format Solo and Melody Tracks

The duration can also be set in MIDI ticks (192 ticks equals a quarter note) by appending a “t” or
“T” to an integer value. As an example, you could set a quarternote “c” as “4c” or “192tc”. You’ll
probably never use this option directly, but other parts ofMmA can use it to generate solo note data.

Pitch Each note or pitch in the chord can be specified in a number of ways. Firstly, you can use standard
musical notation: the lowercase letters “a” to “g” are recognized as well as “r” to specify a rest.
Secondly, you can specify a note via its MIDI value. A MIDI value of 60 is the same as a “middle
c”. Important: if you specify a note using a MIDI value that note will not be adjusted for the OCTAVE

setting in the track (TRANSPOSEwill be applied). Thirdly, in the case ofDrum Solo Tracks, page 75,
you can use MIDI values or mnemonic values like “SnareDrum1”.

For notes in standard notation (“a” to “g”) the following modifiers are permitted directly after the
pitch:

Accidental A pitch modifier consisting of a single “#” (sharp), “&” (flat)or “n” (natural). Please
note that an accidental will override the current KEYSIG for the current bar (just like in real
musical notation). Unlike standard musical notation the accidentalwill apply to similarly
named notes in different octaves.

Please note that when you specify a chord inMmA you can use either a “b” or a “&” to represent
a flat sign; however, when specifying notes for a SOLO you can only use the “&” character.

Double sharps and flats are not supported.

Octave Without an octave modifier, the current octave specified by the OCTAVE directive is used
for the pitch(es). Any number of “-” or “+” signs can be appended to a note. Each “-” drops
the note by an octave and each “+” will increase it. The base octave begins with “c” below the
treble clef staff. The underlying track OCTAVE setting is applied to the modified pitch.

Velocity You can override the default MIDI velocity (MmA uses a value of 90) by appending a “/” and
a value between “0” and “127” after a pitch. This includes pitches in standard notation, drum
mnemonics and MIDI values. The velocity setting is applied to one note only. If you have a grouping
of notes like “abc/50” the changed velocity will apply to theentire group; however, for groups with
space or comma delimiters the modifier will apply to only one note . . .in the case of “a,b,c/40” or “a
b c/40” only the “c” will have a modified velocity.

Tilde The tilde character, ˜, can appear as the first or last item in anote sequence. As the last character it
signals that the final note duration extend past the end of thebar (note, when we say “last” we mean
just that . . . if you have a< > modifier in the last chord of a bar place the tilde after that).As the
first character it signals to use the duration extending pastthe end of the previous bar as an initial
offset. For details, see below.

To make your note data more readable, you can include any number of space and tab characters (which
are ignored byMmA). Individual notes in a chord can be separated by spaces or commas.

Example 10.1 shows a few bars of “Bill Bailey” with theMmA equivalent. We’ve put in commas and spaces
to show where they can be, optionally, used.

69

10.1 Note Data Format Solo and Melody Tracks

AW4
4 GG FF GG

F GTGT GV GI GG GG GG FF GG EE
KeySig 1b
F { 4c a-; 2d a-; 4f d; }
F { 4.a , f; 8g#f; 4a,f; c+f; }
F { 4c , a-; 2d,a-; 4fc; }
F { 1af; }

Example 10.1: Solo Notation

10.1.1 Chord Extensions

In order to make SOLOs more versatile, you may extend the notation with options in< > delimiters. Only
one set of< >s is permitted for each chord; however, it can be anywhere in the chord (we suggest you
place it at the end). If you have more than one pair of commands, separate them with a single comma.

Null You can set a “ignore” or “do nothing” chord with the simple notation<> (no spaces are permitted
here). If this is the only item in the chord then that chord will be ignored This means that no tones
will be generated, and the offset into the bar will not be changed. The use of the notation is mainly
for tilde notation with notes held over multiple bars.

Volume A volume can be specified. The volume is set as a command=valuepair. For example: “Vol-
ume=ff” would set the volume of a chord to “very loud”. See thepermitted volumes (on page 118).
It is probably easier to set accented beats with the ACCENT directive (page 119) or directly mod-
ify the MIDI velocity by appending it to the end of the pitch with a “/” (page 69). The keyword
“Volume” is optional:< VOLUME=FF > and< FF > will generate identical results. This optional
setting is in addition to the current VOLUME track setting and is in effect for the duration of the
current bar. It is not possible to set different volumes for individual notes in the chord with this
option.

Articulate In addition to the ARTICULATE setting for the track and the note duration (see above), you
can set an articulation value for each chord. This can be useful in creating staccato or tenuto notes
without resorting to complicated note/rest values. By default the articulation is set to 100%. It can
be changed with an integer value from 1 (creating a very shortnote) to 200 (a long note). This
option is set with the ARTICULATE= command. For example, to set the articulation of a chord to
“staccato”, you could use the string< ARTICULATE=50> in the chord specification. This value is
in effect for the duration of the current bar.

For those who “need to know”, here’s how the note duration is determined:

1. The note duration (ie, 4, 8, 16) is parsed and converted to MIDI ticks. A quarter note will
receive 192 MIDI ticks, a half note 384, etc.

70

10.1 Note Data Format Solo and Melody Tracks

2. The duration is adjusted by the articulation setting. Assuming the articulation is 80% the
quarter note will be converted from 192 MIDI ticks to 154.

3. Finally, the duration is adjusted again by the track ARTICULATE setting. Assuming the default
setting of 90(%) this will result in the 154 ticks adjusting to 138.

4. In addition, a RTIME setting can add or subtract additional ticks to the note.

The following example

F {4c; d<ff>; e<Volume=mp,Articulate=80>; f<Articulate=120>; }

will create a solo line (using an F chord) with the following notes, volumes and articulations:

Note Volume Articulation
c default “mf” default “100”
d set to “ff” continues as “100”
e set to “mp” set to “80”
f continues “mp” set to “120”

Offset When a SOLO line is parsed the notes and rests are placed into the bar at the logical sequence
derived from their durations. So, if you have two half note chords the first would be placed at the
start of the bar (offset 0) and the second in the middle (offset 384). You can override this with the
OFFSET= option. The value used adjusts the pointer, overriding logical placement. You can use this
feature to place a note anywhere in a bar, or even to overlap notes. The value used must be within
the bar; values less than 0 or past the end of the bar (in the case of 4 beats to the bar this would be
768). As an example:

1 F {2f; 2c <offset=198>; }

would place a half note at beats 1 and 2 of the bar. The second note would overlap the first.

10.1.2 Accents

Individual notes or chords can have accents. Unfortunately, in MmA’s text format, we can’t use a notation
which places the accent over the note, like sheet music does .. . so we need a slightly different method. In
a SOLO or MELODY line you can have any of the characters “!”, “-”, “ˆ” or “&” between the duration and
pitch. All the accents much be in one chunk, without additional characters or spaces.

The following table shows the supported single character accents and their effect:

! Staccato: Make the following note’s duration shorter.

- Tenuto: Lengthen the following note’s duration.

ˆ Accent: Make the following note louder.

& Soft: Make the following note softer.

71

10.1 Note Data Format Solo and Melody Tracks

You can use any number of these accents in a set (however, morethan 5 becomes useless). Their effects
are cummulative.2

And example of the usage might be:

Solo Riff 4a; !ˆ c; !!d; e;

In this example the second note will have a shorter duration and be louder; the third note will have normal
volume, but be quite a bit shorter.

An accent effects only the current note/chord.

10.1.3 Long Notes

Notes tied across bar lines can be easily handled inMmA scores. Consider the following:

A4
4 G G G GF F F

It can be handled in three different ways in your score:

� F {4c;d;e;4+1+2f; }
F {2r;2c; }

In this case youMmA will generate a warning message since the last note of the first bar ends past the
end of that bar. The rest in the second bar is used to position the half note correctly.

� F {4c;d;e;4+2f˜ };
F {2r;2c; }

This time a ˜ character has been added to the end of the first line. In this case it just signals that you
“know” that the note is too long, so no warning is printed.

� F {4c;d;e;4+2f˜; }
F {˜2c; }

The cleanest method is shown here. The ˜forces the insertionof the extra 2 beats from the previous
bar into the start of the bar.

If you have a very long note, as in this example:

2Each accent character changes the note articulation or volume by 20%.

72

10.1 Note Data Format Solo and Melody Tracks

A4
4 G G G GC E F F

you can have both leading and ending tildes in the same chord;however, to forceMmA to ignore the chord
you need to include an empty chord marker:

C {4c;d;e;4+2f˜; }
C {˜<>˜; }
C {˜2c; }

MmA has some built-in error detection which will signal problems if you use a tilde at the end of a line
which doesn’t have a note held past the end of the current bar or if you use a tilde to start a bar which
doesn’t have one at the end of the previous bar.

10.1.4 Using Defaults

The use of default values can be a great time-saver, and lead to confusion! For example, the following all
generate four quarter note “f”s:

Solo Riff 4f; 4f; 4f; 4f;
Solo Riff 4f; f; f; f;
Solo Riff 4f; 4; 4; 4;
Solo Riff f; ; ; ;
Solo Riff 4f; ; ; ;

One problem which can turn around and bite you when least expected is the use of a default duration with
notes specified as MIDI pitch values. This willnot work:

Solo Riff 4 100; 110 !

The problem is that for the second chordMmA assumes the value 110 to be a duration. Simple fix is to
insert a comma before the second pitch:

Solo Riff 4 100; ,110

10.1.5 Stretch

If you are copying sheet music notation into aMmA song which uses a TIME setting which is different from
the time signature of the sheet music you may find yourself needing to change note values. For example,
if you have a march written in68 you will have six eight notes (or combination) per bar; however, if the
MmA GROOVE is written with a TIME of 6 beats per measure you would need to convert the sheet music
eights to quarters.

73

10.2 AutoSoloTracks Solo and Melody Tracks

The STRETCH option lets you useMmA to do the conversion. In the above example, just use a command
like:

Solo-Trumpet Stretch 200

and enter the note values directly from the sheet music.MmA will double the duration of each note.

The argument to STRETCH is a percentage value. So, “200” will double the duration of each note; “50”
will halve them.

STRETCH permits arguments in the range “1” to “500”. The value isnot saved in GROOVES since it’s
really just intended as something to be used in a short section of song code.

10.1.6 Other Commands

Most of the timing and volume commands available in other tracks also apply to SOLO and MELODY

tracks. Important commands to consider include ARTICULATE, VOICE and OCTAVE. Also note that
TRANSPOSEis applied to your note data.

10.2 AutoSoloTracks

When a “{ }” expression is found in a chord line, it is assumed to be note data and is treated as a RIFF. You
can have any number of “{ }” expressions in a chord line. They will be assigned to the tracks specified in
the AUTOSOLOTRACKS directive.

By default, four tracks are assigned:Solo, Solo-1, Solo-2, andSolo-3. This order can be changed:

AutoSoloTracks Melody-Oboe Melody-Trumpet Melody-Horn

Any number of tracks can be specified in this command, but theymust all be SOLO or MELODY tracks.
You can reissue this command at any time to change the assignments.

The list set in this command is also used to “fill out” melody lines for tracks set as HARMONYONLY .
Again, an example:

AutoSoloTracks Solo-1 Solo-2 Solo-3 Solo-4
Solo-2 HarmonyOnly 3Above
Solo-3 HarmonyOnly 8Above

Of course, some voicing is also set . . . and a chord line:

C {4a;b;c;d; }

The note data{4a;b;c;d;} will be set to theSolo-1 track. But, if you’ve not set any other note data
by way of RIFF commands toSolo-2andSolo-3, the note data will also be copied to these two tracks.
Note that the trackSolo-4is unaffected since it isnot a HARMONYONLY track. This feature can be very
useful in creating harmony lines with the harmonies going todifferent instruments. The supplied file
egs/harmony.mma shows an example.

74

10.3 Drum Solo Tracks Solo and Melody Tracks

To save some typing, you can have empty sets of{} as placeholders. For example, assume you have three
SOLO tracks:

AutoSoloTracks Solo-Violin Solo-Viola Solo-Cello

and you don’t use the Viola in a section. Doing something like:

C {4a;b;c;d; } {} {1+1g }
G {4g;b; } {} {}

is fine. Note how the Cello has a long note over two bars and the Viola has no notes at all.

10.3 Drum Solo Tracks

A solo or melody track can also be used to create drum solos. The first thing to do is to set a track as a
drum solo type:

Solo-MyDrums DrumType

This will create a new SOLO track with the nameSolo-MyDrumsand set its “Drum” flag. If the track
already exists and has data in it, the command will fail. The MIDI channel 10 is automatically assigned to
all tracks created in this manner. You cannot change a “drum”track back to a normal track.

These is no limit to the number of SOLO or MELODY tracks you can create . . . and it probably makes
sense to have several different tracks if you are creating anything beyond a simple drum pattern.

Tracks with the “drum” setting ignore TRANSPOSEand HARMONY settings.

The specification for pitches is different in these tracks. Instead of standard notation pitches, you must
specify a series of drum tone names or MIDI values. If you wantmore than one tone to be sounded
simultaneously, create a list of tones separated by commas.

Some examples:

Solo-MyDrums Riff 4 SnareDrum1; ; r ; SnareDrum1;

would create a snare hit on beats 1, 2 and 4 of a bar. Note how thesecond hit uses the default tone set in
the first beat.

Solo-MyDrums Riff 8,38;;;;

creates 4 hits, starting on beat 1. Instead of “names” MIDI values have been used (“38” and “SnareDrum1”
are identical). Note how “,” is used to separate the initial length from the first tone.

Solo-MyDrums Riff 4 SnareDrum1,53,81; r; 4 SideKick ;

creates a “chord” of 3 tones on beat 1, a rest on beat 2, and a “SideKick” on beat 3.

Using MIDI values instead of names lets you use the full rangeof note values from 0 to 127. Not all will
produce valid tones on all synths.

75

10.4 Arpeggiation Solo and Melody Tracks

To make the use of solo drum tracks a bit easier, you can use thethe TONE command to set the default
drum tone to use (by default this is MIDI value 38 or SnareDrum1). If you do not specify a tone to use in
a solo the default will be used.

You can access the default tone by using the special Tone “*”.In the following example:

Begin Solo-Block
DrumType
Tone LowWoodBlock

End
...

Solo-Block Riff 4r; SnareDrum; * ; ;
...

Solo-Block Riff 4;;;;

The first solo created will have a rest on beat 1, a SnareDrum onbeat 2 and LowWoodBlock on beats 3
and 4. The second will have LowWoodBlock on each beat.

10.4 Arpeggiation

It is fun and simple to arpeggiate notes in a SOLO or MELODY track. For example:

Solo-Guitar Arpeggiate Direction=Up Rate=32 Decay=-4

will take the notes in the SOLO-GUITAR track and arpeggiate them as a series of 32nd notes. Each
successive note’s velocity will be decremented by 4

Enabling a HARMONY (or the entry of multiple notes by the user) is needed for meaningful effects . . .
arpeggiating over a single note isn’t the nicest sound (but it works). For this to sound musical, you will
have to experiment with the various options and the track ARTICULATE setting. For an interesting (weird)
effect try a long RATE combined with MALLET .

Each option for this command must be entered in the OPTION=VALUE format.

Rate The duration of each generated note. For example, “16” will use 16th notes; “20t” will use 20 MIDI
ticks. If RATE is set to “0” or “None” the arpeggiator will be disabled.

Decay A value to decrement each successive note. This is a percentage. To reduce (ie, make quieter) use
negative values; positive values will increase the volume.Default is “0”.

Direction The direction of the “strum”. Valid values are “Up”, “Down”,“Both” and “Random”. Default
is “Up”.

This command generates an error if the DRUMTYPE option has been set.

76

Chapter 11

Emulating plucked instruments:

Plectrum Tracks

PLECTRUM1 tracks are designed to letMmA create tracks that sound, remarkably, like real, strummed
instruments (guitars, mandolins, banjos, etc).

As mentioned earlier in this document, the biggest difference between PLECTRUM and other tracks is that
a duration is not used. This means that each string (note) in PLECTRUM patterns continue to sound until
they are changed (a new note) or muted.

When creating a PLECTRUM pattern or sequence you simply set an offset, strum durationand volumes for
each string of the “instrument”.

To aid in debugging, a special DEBUG option PLECTRUM is provided. When enabled this will display
chord shapes for generated chords. See on page 184 for information to enable/disable this option.

11.1 Tuning

By default the PLECTRUM tracks are set to a standard guitar. However, it’s very easy to change with
with the TUNING command. This command requires a note setting for each string in the instrument. For
example, to duplicate the default:

Plectrum Tuning e- a- d g b e+

In this case we have set six strings. The first string is a low “e”, the second a low “a”, etc.

Similarly, you could define a tenor banjo with:

Plectrum Tuning g- d a e+

Only one TUNING setting can be set for a sequence. It applies to all bars in thecurrent sequence. It is
saved and restored in GROOVEs.

If you change the TUNING for a PLECTRUM track after setting a SEQUENCE you must ensure that the
number of strings in the PATTERN and TUNING are the same. A mismatch will generate an error. However,

1The concept and code base for the Plectrum track was developed by Louis James Barman¡louisjbarman at googlemail
dot com¿. Send compliments to him!

77

11.2 Capo Emulating plucked instruments: Plectrum Tracks

setting a different TUNING with the same number of strings is just fine.

11.2 Capo

A “capo” is small bar which is placed on the neck of a guitar, banjo or other stringed instrument to raise
its pitch. They are quite useful when a song is in a pitch too low for a singer . . . a capo placed on the
guitar raises the pitch of each played chord. Much easier fora player than having to change (raise) each
chord in the song. InMmA the use of a PLECTRUM CAPO setting is a bit different: it doesn’t change the
chord pitches. A “C Major” chord remains a “C Major” chord. However, the actual note assignments
to the different strings on the instrument can (and most likely) changes. Depending on the tuning of the
“instrument” a “C” chord with a CAPO 2 will be created as a “B”chord shapeplayed above the second
fret. In most cases a chord with a positive CAPO value will have a higher tonality.

To change the CAPO value:

Plectrum Capo 2

In addition to raising the pitch of the instrument, you can use negative values . . . in a real instrument you
would need to stretch the neck for similar results! There areno limits on the capo values. Very high or
low values will have no different effect over moderate ones since the generated notes will always be in the
MIDI range of 0 to 127.

Only one CAPO setting can be set for a sequence. It applies to all bars in thecurrent sequence. It is saved
and restored in GROOVEs.

It is also possible to change the pitch or tonality for individual chords with the “barre” chord name exten-
sion (detailed on page 225).

Yet another way to change the pitch is to use the OCTAVE settings (see page 189).

Remember: unlike a real instrument, neitherCAPOor barre chords change the pitch (transpose) the chord
in MmA. The same chord is played, but with a higher tonality.

11.3 Strum

By default, all PLECTRUM patterns calculate theirSTRUM offsets (delays) from the first string. In most
cases this will sound just fine (remember, we don’t have a realguitar here! It’s a virtual model which is
not meant to be the same). There are cases when you might want to modify the order. Use the STRUM

option to change the default to “Start”, “Center” or “End”. Example:

Plectrum Strum center

will force the strumming offsets to be calculated from the center string.

The PLECTRUM STRUM command permitsonlyone keyword.

78

11.4 Patterns Emulating plucked instruments: Plectrum Tracks

11.4 Patterns

Setting a pattern for a PLECTRUM track is similar to that of other tracks: you simply set the offset and
volumes for the different strings. In addition you must specify a “strum” value (used as a delay between
strings). The formal definition for a PLECTRUM pattern is:

Offset Strum Strings Velocity [...Strings Velocity]

where:

Offset A beat or offset into the bar. This is used in the same manner asin all the other MMA patterns.

Strum The strumming delay between hitting each string. Use a positive number for a downward strum
and negative number for an upward strum and use zero for all the notes to be played together. “3” is
a fast downward strum and “-10” is a slow upward strum.

Strings The string or strings that are to be plucked. Details below.

Velocity The MIDI velocity (loudness) for each string. “127” is the maximum volume, A value of zero is
used to mute the string or strings. Guitarists often mute thestrings with the side of their hand when
strumming.2

For a basic strumming guitar you might use:3

Begin Plectrum-Strumming
Voice NylonGuitar
Volume m
Sequence 1.0 +5 120 120 120 120 120 100; \

2.0 +5 90 80 80 80 80 80; \
2.5 -5 - - 50 50 50 50; \
3.0 +5 90 80 80 80 80 80; \
3.5 -5 - - 50 50 50 50; \
4.0 +5 90 80 80 80 80 80; \
4.5 -5 - - 50 50 50 50;

End

This gives eight strums per bar. Note the strum values at beats 2.5, 3.5 and 4.5: using a negative strum
value causes the strum to run in the opposite (high to low) direction.

Also, notice the use of “-” values for certain strings. A “-” lets that string continue to vibrate until the next
pattern. If you want to disable (mute) a string use a “0” for the volume.

Another example shows how to set up a finger picking pattern:

2The PLECTRUM track differs from otherMmA tracks as the duration of each note is not given but instead like a real guitar
the note on the string will continue to sound until either it is muted by using a velocity of zero or until another note is played
on the same string.

3These examples use BEGIN/END shorthand notation. This is explained in the “Begin/End Block” chapter on page 196.

79

11.4 Patterns Emulating plucked instruments: Plectrum Tracks

Begin Plectrum-FingerPicking
Voice NylonGuitar
Volume m
Sequence 1.0 0 - 100 - - 90 -; \

1.5 0 - - - 90 - -; \
2.0 0 - - 90 - 90 -; \
2.5 0 - - - 90 - -; \
3.0 0 - - - - - 90; \
3.5 0 - - - - 90 -; \
4.0 0 - - - 90 - -; \
4.5 0 - - 90 - - -;

End

To make creation of volume tables a bit easier, you can shorten the notation by setting a range and volume.
This is done by using “n-m:v” where n is the start string number and m is the end string number and v is
the volume.Please note that the strings are numbered in “reverse” order, just like a guitar. The last
string (the bottom and usually the highest pitch) is string “1”, the first string (assuming 6 strings) is “6”.
So,

� “1.0 0 2:50” is the same as “1.0 0 - - - - 50 -”

� “1.0 -5 2-4:80” is the same as “1.0 -5 - - 80 80 80 -”

It is not possible to mix range and individual string settings. So,you cannot do:

� “1.0 0 2:50 90”!
Missing volume settings are expanded just like in CHORD tracks. So, assuming a 6 string guitar:

� “1.0 0 90 ” is the same as “1.0 0 90 90 90 90 90 90”

However, do note that you must specify either one or all the strings if you are not using a range. Again,
you cannot do:

� “1. 0 80 90”!
Please note that the following options have no effect in a PLECTRUM track: ARTICULATE, VOICING,
MALLET and DIRECTION.

80

Chapter 12

Automatic Melodies: Aria Tracks

ARIA tracks are designed to letMmA automatically generate something resembling melody. Honest, this
will never put real composers on the unemployment line (well, no more than they are mostly there already).

You might want to use an ARIA to embellish a section of a song (like an introduction or an ending). Or
you can haveMmA generate a complete melody over the song chords.

In a traditional song the melody depends on two parts: patterns (IE. note lengths, volume, articulation)
and pitch (usually determined by the chords in a song). If youhave been usingMmA at all you will know
that that chords are the building block of whatMmA does already. So, to generate a melody we just need
some kind of pattern. And, sinceMmA already uses patterns in most things it does, it is a short step to use a
specialized pattern to generate a melody.

It might serve to look at the sample song files enclosed in thispackage in the directoryegs/aria . Compile
and play them. Not too bad?

Just like other track, you can create as many ARIAs as you want. So, you can have the tracks ARIA-1,
ARIA, and ARIA-SILLY all at the same time. And, the majority of other commands (like OCTAVE,
ARTICULATE, HARMONY, etc.) apply to ARIAs.

The following commands are important to note:

Range Just like scale tracks. A RANGE of 2.5 would letMmA work on a two and one-half octave chord,
etc.

ScaleType Much like a scale track. By default, the setting for this is CHORD. But, you can use AUTO,
SCALE, CHORD, KEY or CHROMATIC. AUTO and SCALE are identical and forceMmA to select
notes from the scale associated with the current chord; CHROMATIC generates an 11 tone scale
starting at the root note of the chord; CHORD forces the selection to the notes in the current chord;
KEY sets the scale to one based on the current key signature (see page 187).

Direction AsMmA processes the song it moves a note-selection pointer up or down. By default DIRECTION

is set to the single value ”1” which tellsMmA to add 1 after each note is generated. However, you
can set the value to an integer -4 to 4 or the special value ”r*”. The “r” setting creates a random
direction. You can have 1 to 4 “r”s:

81

Automatic Melodies: Aria Tracks

of ’r’s Direction Adjust
r -1 to 1
rr -2 to 2
rrr -3 to 3
rrrr -4 to 4

With ”r” a random value -1, 0 or 1 will be used.

Important: in anARIA track the sequence size/point is ignored forDIRECTION.

A bit more detail on defining an ARIA:

First, here is a simplified sample track definition:

Begin Aria
Voice JazzGuitar
Volume f
Sequence 1.5 8 90; 2 8 90; 2.5 8 90; \

3 8 90; 3.5 8 90; 4 8 90; 4.5 8 90
ScaleType Scale
Range 1
Direction 0 0 1 2 -4 0 1 r

End

Next assume that we have a few bars of music with only a CMajor chord. The following table shows the
notes which would be generated for each event in the set SEQUENCE:

Event Direction Offset Pointer Note
1 0 0 c
2 0 0 c
3 1 1 d
4 2 3 f
5 -4 6 b
6 0 6 b
7 1 0 c
8 r ?? ??

If you were to change the SCALETYPE or RANGE you would get a completely different series. Really,
tables like this one are very difficult to determine and quiteuseless. Just try different DIRECTION and
RANGE settings, SCALETYPEs, etc. Most combinations will sound fine, but Chromatic scales might not
be to your liking.

Please note the following:

� ARIAs arenot saved or modified by GROOVE commands. Well, almost . . . the sequence size will
be adjusted to match the new size from the groove. This might be unexpected:

� Load a groove. Let’s say it has a SEQSIZEof 4.

� Create an ARIA. Use 4 patterns to match the groove size (if you don’tMmA will expand the
sequence size for the ARIA, just like other tracks).

82

Automatic Melodies: Aria Tracks

� Process a few bars of music.

� Load a new groove, but this time with a SEQSIZEof 2. Now, the ARIA will be truncated. This
behavior is duplicated in other tracks as well, but it might be unexpected here.

� DIRECTION can notbe changed on a bar by bar basis. It applies to the entire sequence. After each
note in the ARIA is generated a pointer advances to the next direction in the list.

You can make dramatic changes to your songs with a few simple tricks. Try modifying the DIRECTION set-
tings just slightly; use several patterns and SEQRND to generate less predictable patterns; use HARMONYONLY

with a different voice and pattern.

Oh, and have fun!

83

Chapter 13

Randomizing

One criticism of computer generated music is that all to often it’s too predictable or mechanical sounding.
Again, inMmA we’re not trying to replace real, flesh and blood musicians, but applying some randomization
to the way in which tracks are generated can help bridge the human—mechanical gap.

13.1 RndSeed

All of the random functions (RTIME, RSKIP, etc.) inMmA depend on thePython randommodule. Each
timeMmA generates a track the values generated by the random functions will be different. In most cases
this is a “good thing”; however, you may wantMmA to use the same sequence of random values1 each time
it generates a track. Simple: just use:

RndSeed 123.56

at the top of your song file. You can use any value you want: it really doesn’t make any difference, but
different values will generate different sequences.

You can also use this with no value, in which case Python uses its own value (see the Python manual for
details). Essentially, using no value undoes the effect which permits the mixing of random and not-so-
random sections in the same song.

One interesting use of RNDSEED could be to ensure that a repeated section is identical: simply start the
section with something like:

Repeat
RndSeed 8
...chords

It is highly recommended that youdo notuse this command in library files.

13.2 RSkip

To aid in creating syncopated sounding patterns, you can usethe RSKIP directive to randomly silence or
skip notes. The command takes a value in the range 0 to 99. The “0” argument disables skipping. For

1Yes, this is a contradiction of terms.

84

13.3 RTime Randomizing

example:

Begin Drum
Define D1 1 0 90
Define D8 D1 * 8
Sequence D8
Tone OpenHiHat
RSkip 40

End

In this case a drum pattern has been defined to hit short “OpenHiHat” notes 8 per bar. The RSKIP argument
of “40” causes the note to be NOT sounded (randomly) only 40% of the time.

Using a value of “10” will cause notes to be skipped 10% of the time (they are played 90% of the time),
“90” means to skip the notes 90% of the time, etc.

You can specify a different RSKIP for each bar in a sequence. Repeated values can be representedwith a
“/”:

Scale RSkip 40 90 / 40

If you use the RSKIP in a chord track, the entire chordwill not be silenced. The option will be applied to
the individual notes of each chord. This may or may not be whatyou are after. You cannot use this option
to generate entire chords randomly. For this effect you needto create several chord patterns and select
them with SEQRND.

13.3 RTime

One of the biggest problem with computer generated drum and rhythm tracks is that, unlike real musicians,
the beats are precise and “on the beat”. The RTIME directive attempts to solve this.

The command can be applied to all tracks.

Drum-4 Rtime 4

The value passed to the RTIME directive is the number of MIDI ticks with which to vary the start time of
the notes. For example, if you specify “5” the start times will vary from -5 to +5 ticks) on each note for
the specified track. There are 192 MIDI ticks in each quarter note.

Any value from 0 to 100 can be used; however values in the range0 to 10 are most commonly used.
Exercise caution in using large values!

You can specify a different RTIME for each bar in a sequence. Repeated values can be representedwith a
“/”:

Chord RTime 4 10 / 4

You can further fine-tune the RTIME settings by using a minimum and maximum value in the form
M INIMUM ,MAXIMUM . Note theCOMMA! For example:

85

13.4 Other Randomizing Commands Randomizing

Chord Rtime 0,10 -10,0 -10,20 8

Would set different minimum and maximum adjustment values for different sequence points. In the above
example the adjustments would be in the range 0 to 10, -10 to 0,-10 to 20 and -8 to 8.

RTIME is guaranteed never to start a note before the start of a bar.

13.4 Other Randomizing Commands

In addition to the above, the following commands should be examined:

� ARIA (page 81) tracks have a “r” option for the movement direction.

� The track DIRECTION (page 186) command has a “random” option for playing scales,arpeggios,
and other tracks.

� RVOLUME (page 126) makes random adjustments to the volume of each note.

� The VOICING (page 89) command has an RMOVE option.

� RNDSET (page 133) lets you set a variable to a random value.

� SEQRND (page 40) enables randomization of sequences; this randomization can be fine-tuned with
the SEQRNDWEIGHT (page 42) command.

86

Chapter 14

Chord Voicing

In music, a chord is simply defined as two more notes played simultaneously. Now, this doesn’t mean that
you can play just any two or three notes and get a chord which sounds nice—but whatever you do get will
be a chord of some type. And, to further confuse the unwary, different arrangements of the same notes
sound better (or worse) in different musical situations.

As a simple example, consider a C major chord. Built on the first, third and fifth notes of a C major scale
it can be manipulated into a variety of sounds:

A GGG
Root

GGG
1st Inversion

GGG
2nd Inversion

GGG
Wide Position

These are all C major chords . . . but they all have a different sound or color. The different forms a chord
can take are called “voicings”. Again, this manual is not intended to be a primer on musical theory—that’s
a subject for which lots of lessons with your favorite music teacher is recommended. You’ll need a bit of
basic music theory if you want to understand how and whyMmA creates its tracks.

The different options in this chapter effect not only the waychords are constructed, but also the way bass
lines and other tracks are formed.

There are generally two ways inMmA to take care of voicings.

1. useMmA’s extensive VOICING options, most likely with the”Optimal” voicing algorithm,

2. do everything by yourself with the commands INVERT and COMPRESS.

The commands LIMIT and DUPROOT may be used independently for both variants.

14.1 Voicing

The VOICING command is used to set the voicing mode and several other options relating to the selected
mode. The command needs to have a CHORD track specified and a series of Option=Value pairs. For
example:

87

14.1 Voicing Chord Voicing

Chord-Piano Voicing Mode=Optimal Rmove=10 Range=9

In the following sections all the options available will be covered.

14.1.1 Voicing Mode

The easiest way to deal with chord voicings is via the VOICING MODE=XX option.

When choosing the inversion of a chord to play an accompanist will take into consideration the style of
the piece and the chord sequences. In a general sense, this isreferred to as “voicing”.

A large number of the library files have been written to take advantage of the following voicing commands.
However, not all styles of music take well to the concept. And, don’t forget about the other commands
since they are useful in manipulating bass lines, as well as other chord tracks (e.g., sustained strings).

MmA has a variety of sophisticated, intelligent algorithms1 to deal with voicing.

As a general rule you should not use the INVERT and COMPRESScommands in conjunction with the
VOICING command. If you do, you may create beautiful sounds. But, the results are more likely to be
less-than-pleasing. Use of voicing and other combinationswill display various warning messages.

The main command to enable voicings is:

Chord Voicing Mode=Type

As mentioned above, this command can only be applied to CHORD tracks. Also note that this effects all
bars in the sequence . . . you cannot have different voicings for different bars in the sequence (attempting
to do this would make no sense).

The following MODE types are available:

Optimal A basic algorithm which automatically chooses the best sounding voicing depending on the
voicing played before. Always try this option before anything else. It might work just fine without
further work.

The idea behind this algorithm is to keep voicings in a sequence close together. A pianist leaves his
or her fingers where they are, if they still fit the next chord. Then, the notes closest to the fingers are
selected for the next chord. This way characteristic notes are emphasized.

The following optional setting apply to chords generated with MODE=OPTIMAL :

Voicing Range To get wider or closer voicings, you may define a range for the voicings. This can
be adjusted with the RANGE option:

Chord-Guitar Voicing Mode=Optimal Range=12

In most cases the default value of 12 should work just fine. But,you may want to fine tune . . .
it’s all up to you.

1Great thanks are due to Alain Brenzikofer who not only pressured me into including the VOICING options, but wrote a
great deal of the actual code.

88

14.1 Voicing Chord Voicing

Voicing Center Just minimizing the Euclidean distance between chords doesn’t do the trick as there
could be runaway progressions that let the voicings drift upor down infinitely.

When a chord is “voiced” or moved to a new position, a “center point” must be used as a base.
By default, the fourth degree of the scale corresponding to the chord is a reasonable choice.
However, you can change this with:

Chord-1 Voicing Center=<value>

Thevaluein this command can be any number in the range 0 to 12. Try different values. The
color of your whole song might change.

Note that the value is the note in the scale, not a chord-note position.

Voicing Move To intensify a chord progression you may want to have ascending or descending
movement of voicings. This option, in conjunction with the DIR optional (see below) sets the
number of bars over which a movement is done.

For the MOVE option to have any effect you must also set the direction to either -1 or 1. Be
careful that you don’t force the chord too high or low on the scale. Use of this command in
a REPEAT section can cause unexpected results. For this reason you should include a SEQ

command at the beginning of repeated sections of your songs.

In most cases the use of this command is limited to a section ofa song, its use is not recom-
mended in groove files. You might want to do something like this in a song:

...select groove with voicing
chords ...
Chord-Piano Voicing Move=5 Dir=1
more chords...
Chord-Piano Voicing Move=5 Dir=-1
more chords...

Voicing Dir This option is used in conjunction with the MOVE option to set the direction (-1 or 1)
of the movement.

Voicing Rmove As an alternate to movement in a specified direction, random movement can add
some color and variety to your songs. The command option is quite useful (and safe to use)
in groove files. The argument for this option is a percentage value specifying the frequency to
apply a move in a random direction.

For example:

Chord-3 Voicing Mode=Optimal Rmove=20

would cause a movement (randomly up or down) in 20% of the bars. As noted earlier, using
explicit movement instructions can move the chord into an undesirable range or even “off the
keyboard”; however, the algorithm used in RMOVE has a sanity check to ensure that the chord
center position remains, approximately, in a two octave range.

Key This mode attempts to cluster the notes of a chord around the root note of the key signature (see
page 187). For example, a C major chord has the notes “C”, “E” and “G”. If K EYSIG is set to “C”

89

14.2 ChordAdjust Chord Voicing

the “G” will be lowered by an octave. However, if the the key signature were to be set to “E” no
changes would be made. The algorithm used is very simplistic, but the results sound satisfactory.

Root This Option may for example be used to turn off VOICING within a song. VOICING MODE=ROOT

means nothing else than doing nothing, leaving all chords inroot position.

None This is the same as the ROOT option.

Invert Rather than basing the inversion selection on an analysis of past chords, this method quite stupidly
tries to keep chords around the base point of “C” by inverting “G” and “A” chords upward and “D”,
“E” and “F” downward. The chords are also compressed. Certainly not an ideal algorithm, but it
can be used to add variety in a piece.

CompressedDoes the same as the stand-alone COMPRESScommand. Like ROOT, it is only added to be
used in some parts of a song where VOICING MODE=OPTIMAL is used.

14.2 ChordAdjust

The actual notes used in a chord are derived from a table whichcontains the notes for each variation of a
“C” chord—this data is converted to the desired chord by adding or subtracting a constant value according
to the following table:

G♭ -6
G -5
G♯ -4
A♭ -4
A -3
A♯ -2
B♭ -2

B -1
C♭ -1
B♯ 0
C 0
C♯ 1
D♭ 1
D 2

D♯ 3
E♭ 3
E 4
F♭ 4
E♯ 5
F 5
F♯ 6

This means that whenMmA encounters an “Am” chord it adjusts the notes in the chord table down by 3
MIDI values; an “F” chord is adjusted 5 MIDI values up. This also means that “A” chords will sound
lower than “F” chords.

In most cases this works just fine; but, there are times when the “F” chord might sound betterlower than
the “A”. You can force a single chord by prefacing it with a single “-” or “+” (see page 222). But, if
the entire song needs adjustment you can use CHORDADJUSTcommand to raise or lower selected chord
pitches:

ChordAdjust E=-1 F=-1 Bb=1

Each item in the command consists of a pitch (“B♭”, “C”, etc.) an “=” and an octave specifier (-1, 0 or 1).
The pitch values are case sensitive and must be in upper case;there mustnot be a space on either side of
the “=”.

To a large extent the need for octave adjustments depends on the chord range of a song. For example, the
supplied song “A Day In The Life Of A Fool” needs all “E” and “F”chords to be adjusted down an octave.

90

14.3 Compress Chord Voicing

The value “0” will reset the adjustment to the original value; setting a value a second time has no effect.

14.3 Compress

WhenMmA grabs the notes for a chord, the notes are spread out from the root position. This means that
if you specify a “C13” you will have an “A” nearly 2 octaves above the root note as part of the chord.
Depending on your instrumentation, pattern, and the chord structure of your piece, notes outside of the
“normal” single octave range for a chordmaysound strange.

Chord Compress 1

ForcesMmA to put all chord notes in a single octave range.

This command is only effective in CHORD and ARPEGGIOtracks. A warning message is printed if it is
used in other contexts.

Notes: COMPRESStakes any value between 1 and 5 as arguments (however, some values will have no
effect as detailed above). You can specify a different COMPRESSfor each bar in a sequence. Repeated
values can be represented with a “/”:

Chord Compress 1 / 0 /

To restore to its default (off) setting, use a “0” as the argument.

For a similar command, with different results, see the LIMIT command (page 93).

14.4 DupRoot

To add a bit of fullness to chords, it is quite common for keyboard players to duplicate the root tone of a
chord into a lower (or higher) octave. This is accomplished inMmA with the command:

Chord DupRoot -1 -2 1 2

In the above example, the value of -1 adds a note one octave lower than the root note, -2 adds the tone 2
octaves lower, etc. Similarly, the value of 1 will add a note one octave higher than the root tone, etc.

Only the values -9 to 9 are permitted.

You can have multiple notes generated by setting multiple duplicates as comma separated lists:

Chord DupRoot -1,-2

will add notes 1 and 2 octaves below the root of the chord and

91

14.5 Invert Chord Voicing

Chord DupRoot -1,1,2

will add notes 1 below, and 1 and 2 above.2 Note: no spaces are in the comma separated list (spaces
indicate the next bar in the sequence).

The volume used for the generated note(s) is the average of the non-zero notes in the chord adjusted by
the HARMONYVOLUME setting for the current track.3

Different values can be used in each bar of the sequence.

The option is reset to 0 after all SEQUENCEor SEQCLEAR commands. To turn off this setting just use a
value of 0:

Chord DupRoot 0

The DUPROOT command is only valid in CHORD tracks.

DUPROOT can only duplicate only the root tone of a chord. If you want toduplicate other pitches in the
chord, create a BASS track with the appropriate pattern. For example, if you wantto duplicate the fifths in
your chord, try this:

Begin Chord
Voice Piano1
Octave 6
Sequence 1 1 90 * 4

End

Begin Bass-dupchord
ChShare Chord
Octave 5
Sequence 1 1 1- 90 * 4; 1 1 5- 90 * 4

End

The above, very simple, example will play the third and fifth notes of the chord an octave lower using the
same pattern as the basic chords.

14.5 Invert

By defaultMmA uses chords in the root position. By example, the notes of a C major chord are C, E and G.
Chords can be inverted (something musicians do all the time).Sticking with the C major chord, the first
inversion shifts the root note up an octave and the chord becomes E, G and C. The second inversion is G,
C and E.

2Adding too many root tones in varying octaves can create harmonic overtone problems (in other words, it can sound
crappy).

3By default the HARMONYVOLUME is 80%. You probably do not want the added note(s) to be louder, but experiment!

92

14.6 Limit Chord Voicing

MmA extends the concept of inversion a bit by permitting the shift to be to the left or right, and the number
of shifts is not limited. So, you could shift a chord up several octaves by using large invert values.4

Inversions apply to each bar of a sequence. So, the followingis a good example:

SeqSize 4
Chord-1 Sequence STR1
Chord-1 Invert 0 1 0 1

Here the sequence pattern size is set to 4 bars and the patternfor each bar in the Chord-1 track is set to
“STR1”. Without the next line, this would result in a rather boring, repeating pattern. But, the Invert
command forces the chord to be in the root position for the first bar, the first inversion for the second, etc.

You can use a negative Invert value:

Chord-1 Invert -1

In this case the C major chord becomes G, C and E.

Note that using fewer Invert arguments than the current sequence size is permitted.MmA simply expands
the number of arguments to the current sequence size. You mayuse a “/” for a repeated value.

A SEQUENCEor CLEARSEQ command resets INVERT to 0.

This command on has an effect in CHORD and ARPEGGIOtracks. And, frankly, ARPEGGIOs sound a bit
odd with inversions.

If you use a large value for INVERT you can force the notes out of the normal MIDI range. In this case the
lowest or highest possible MIDI note value will be used.

14.6 Limit

If you use “jazz” chords in your piece, some people might not like the results. To some folks, chords like
11th, 13th, and variations have a dissonant sound. And, sometimes they are in a chart, but don’t really
make sense. The LIMIT command can be used to set the number of notes of a chord used.

For example:

Chord Limit 4

will limit any chords used in the CHORD track to the first 4 notes of a chord. So, if you have a C11 chord
which is C, E, G, B♭, D, and F, the chord will be truncated to C, E, G and B♭.

This command only applies to CHORD and ARPEGGIOtracks. It can be set for other tracks, but the setting
will have no effect.

4The term “shift” is used here, but that’s not quite whatMmA does. The order of the notes in the internal buffer stays the
same, just the octave for the notes is changed. So, if the chord notes are “C E G” with the MIDI values “0, 4, 7” an invert of 1
would change the notes to “C2 E G” and the MIDI values to “12, 4, 7”.

93

14.7 NoteSpan Chord Voicing

Notes: LIMIT takes any value between 0 and 8 as an argument. The “0” argument will disable the com-
mand. This command applies to all chords in the sequence—only one value can be given in the command.

To restore to its default (off) setting, use a “0” as the argument.

For a similar command, with different results, see the COMPRESScommand (page 91).

14.7 NoteSpan

Many instruments have a limited range. For example, the basssection of an accordion is limited to a single
octave.5 To emulate these sounds it is a simple matter of limitingMmA’s output to match the instrument.
For example, in the “frenchwaltz” file you will find the directive:

Chord NoteSpan 48 59

which forces all CHORD tones to the single octave represented by the MIDI values 48 though 59.

This command is applied over other voicing commands like OCTAVE and RANGE and even TRANSPOSE.
Notes will still be calculated with respect to these settings, but then they’ll be forced into the limited
NOTESPAN.

NOTESPAN expects two arguments: The first is the range start, the second the range end (first and last
notes to use). The values are MIDI tones and must be in the range 0 to 127. The first value must be less
than the second, and the range must represent at least one full octave (12 notes). It can be applied to all
tracks except DRUM.

14.8 Range

For ARPEGGIOand SCALE tracks you can specify the number of octaves used. The effects of the RANGE

command is slightly different between the two.

SCALE: Scale tracks, by default, create three octave scales. The RANGE value will modify this to the
number of octaves specified. For example:

Scale Range 1

will force the scales to one octave. A value of 4 would create 4octave scales, etc.

You can use fractional values when specifying RANGE. For example:

Scale Range .3

will create a scale of 2 notes.6 And,

5Some accordions have “freebass” switches which overcomes this, but that is the exception.
6Simple math here: take the number of notes in a scale (7) and multiply by .3. Take the integer result as the number of notes.

94

14.9 DefChord Chord Voicing

Scale Range 1.5

will create a scale of 10 notes. Now, this gets a bit more confusing for you if you have set SCALETYPE

CHROMATIC. In this case a RANGE 1 would generate 12 notes, and RANGE 1.5 18.

Partial scales are useful in generating special effects.

ARPEGGIO: Normally, arpeggios use a single octave.7 The RANGE command specifies the number of
octaves8 to use. A fractional value can be used; the exact result depends on the number of notes in the
current chord.

In all cases the values of “0” and ”1” have the same effect.

For both SCALE and ARPEGGIOthere will always be a minimum of two notes in the sequence.

14.9 DefChord

MmA comes with a large number of chord types already defined. In most cases, the supplied set (see
page 218) is sufficient for all the “modern” or “pop” charts normally encountered. However, there are
those times when you want to do something else, or something different.

You can define additional chord types at any time, or redefine existing chord types. The DEFCHORD

command makes no distinction between a new chord type or a redefinition, with the exception that a
warning message is printed for the later.

The syntax of the command is quite strict:

DefChord NAME (NoteList) (ScaleList)

where:

� Namecan be any string, but cannot contain a “/”, “>” or space. It is case sensitive. Examples of
valid names include “dim”, “NO3” and “foo-12-xx”.

� NoteList is a comma separated list of note offsets (actually MIDI notevalues), all of which are
enclosed in a set of “()”s. There must be at least 2 note offsets and no more than 8 and all values
must be in the range 0 to 24. Using an existing chord type, a “7”chord would be defined with (0, 4,
7, 10). In the case of a C7 chord, this translates to the notes (c, e, g, b♭).

� ScaleListis a list of note offsets (again, MIDI note values), all of which are enclosed in a set of “()”s.
There must be exactly 7 values in the list and all values must be in the range 0 to 24. Following on
the C7 example above, the scale list would be (0, 2, 4, 5, 7, 9, 10) or the notes (c, d, e, f, g, a, b♭).

Some examples might clarify. First, assume that you have a section of your piece which has a major chord,
but you only want the root and fifth to sound for the chords and you want the arpeggios and bass notes to
onlyuse the root. You could create new patterns, but it’s just as easy to create a new chord type.

7Not quite true: they use whatever notes are in the chord, which might exceed an octave span.
8Again, not quite true: the command just duplicates the arpeggio notes the number of times specified in the RANGE setting.

95

14.10 PrintChord Chord Voicing

DefChord 15 (0,4) (0, 0, 0, 0, 0, 0, 0)
15 C / G /
16 C15 / G15

In this case a normal Major chords will be used in line 15. In line 16 the new “15” will be used. Note the
trick in the scale: by setting all the offsets to “0” only the root note is available to theWALK andBASS

tracks.

Sometimes you’ll see a new chord type thatMmA doesn’t know. You could write the author and ask him to
add this new type, but if it is something quite odd or rare, it might be easier to define it in your song. Let’s
pretend that you’ve encountered a “Cmaj12” A reasonable guess is that this is a major 7 with an added
12th (just the 5th up an octave). You could change the “maj12”part of the chord to a “M7” or “maj7” and
it should sound fine. But:

DefChord maj12 (0, 4, 7, 11, 19) (0, 2, 4, 5, 7, 9, 11)

is much more fun. Note a few details:

� The name “maj12” can be used with any chord. You can have “Cmaj12” or G♭maj12”.

� “maj12” a case sensitive name. The name “Maj12” is quite different (and unknown).

� A better name might be “maj(add12)”.

� The note and scale offsets are MIDI values. They are easy to figure if you think of the chord as a
“C”. Just count off notes from “C” on a keyboard (C is note 0).

� Do Not include a chord name (i.e. C or B♭) in the definition. Just thetype.

The final example handles a minor problem inMmA and “diminished” chords. In most of the music the
author ofMmA encounters, the marking “dim” on a chord usually means a “diminished 7th”. So, whenMmA
initializes it creates a copy of the “dim7” and calls it “dim”. But, some people think that “dim” should
reference a “diminished triad”. It’s pretty easy to change this by creating a new definition for “dim”:

DefChord dim (0, 3, 6) (0, 2, 3, 5, 6, 8, 9)

In this example the scale notes use the same notes as those in a“dim7”. You might want to change the B♭♭
(9) to B♭ (10) or B (11). If you really disagree with the choice to make adim7 the default you could even
put this in ammarc file.

It is even easier to use the non-standard notation “dim3” to specify a diminished triad. Better yet: use the
unambigious “m♭5” for a triad and “dim7” for a four note chord.

14.10 PrintChord

This command can be used to make the create of custom chords a bit simpler. Simply pass one or more
chord types after the command and they will be displayed on your terminal. Example:

96

14.11 Notes Chord Voicing

PrintChord m M7 dim

in a file should display:

m : (0, 3, 7) (0, 2, 3, 5, 7, 9, 11) Minor triad.
M7 : (0, 4, 7, 11) (0, 2, 4, 5, 7, 9, 11) Major 7th.
dim : (0, 3, 6, 9) (0, 2, 3, 5, 6, 8, 9) Diminished. MmA assumes

a diminished 7th.

From this you can cut and paste, change the chord or scale and insert the data into a DEFCHORD command.

14.11 Notes

MmA makes other adjustments on-the-fly to your chords. This is done to make the resulting sounds “more
musical” . . . to keep life interesting, the definition of “more musical” is quite elusive. The following notes
will try to list some of the more common adjustments made “behind your back”.

� Just before the notes (MIDI events) for a chord are generatedthe first and last notes in the chord are
compared. If they are a separated by a half-step (or 1 MIDI value) or an octave plus half-step, the
volume of the first note is halved. This happens in chords suchas a Major-7th or Flat-9th. If the
adjustment is not done the dissonance between the two tones overwhelms the ear.

97

Chapter 15

Harmony

MmA can generate harmony notes for you . . . just like hitting two or more keys on the piano! And you don’t
have to take lessons.

Automatic harmonies are available for the following track types: Bass, Walk, Arpeggio, Scale, Solo and
Melody.

Just in case you are thinking thatMmA is a wonderful musical creator when it comes to harmonies, don’t be
fooled. MmA’s ideas of harmony are quite facile. It determines harmony notes by finding a note lower or
higher than the current note being sounded within the current chord. And its notion of “open” is certainly
not that of traditional music theory. But, the sound isn’t toobad.

15.1 Harmony

To enable harmony notes, use a command like:

Solo Harmony 2

You can set a different harmony method for each bar in your sequence.

The following are valid harmony methods:

2 or 2Below Two part harmony. The harmony note selected is lower (on the scale).

28Below Two part harmony, the harmony note is lowered by an additional octave.

2Above The same as “2”, but the harmony note is raised an octave.

28Above The same as “2Above”, but the harmony note is raised by two octaves.

3 or 3Below Three part harmony. The harmony notes selected are lower.

3Above The same as “3”, but both notes are raised an octave.

38Above Same as “3”, but the two harmony notes are raised by two octaves.

38Below Same as “3”, but the two harmomy notes are lowered by two octaves.

Openor OpenBelow Two part harmony, however the gap between the two notes is larger
than in “2”.

98

15.2 HarmonyOnly Harmony

Open8Below Same as “OpenBelow”, but the harmony note is lowered by an additional oc-
tave.

OpenAbove Same as “Open”, but the added note is above the original.

Open8Above Same as “OpenAbove”, but the added note is raised by an additional octave.

8 or 8Below A note 1 octave lower is added.

8Above A note 2 octave higher is added.

16or 16Below A single note two octaves below is added.

16Above A single note two octaves above are added.

24or 24Below A single note three octaves below is added.

24Above A single note three octaves above is added.

You can combine any of the above harmony modes by using a “+”. For example:

OPEN+8Below will produce harmony notes with an “Open” harmony and a note an octave
below the current note.

3Above+16 will generate 2 harmony notes above the current note plus a note 2 octaves below.

8Below+8Above+16Belowwill generate 3 notes: one 2 octaves below the current, one an
octave below, and one an octave above.

There is no limit to the number of modes you can concatenate. Any duplicate notes generated will be
ignored.

All harmonies are created using the current chord.

To disable harmony use a “0”, “-” or “None”.

Be careful in using harmonies. They can make your song sound heavy, especially with BASS notes (ap-
plying a different volume may help).

The command has no effect in DRUM or CHORD tracks.

15.2 HarmonyOnly

As a added feature to the automatic harmony generation discussed in the previous section, it is possible to
set a track so that itonly plays the harmony notes. For example, you might want to set uptwo arpeggio
tracks with one playing quarter notes on a piano and a harmonytrack playing half notes on a violin. The
following snippet is extracted from the song file “Cry Me A River” and sets up 2 different choir voices:

99

15.3 HarmonyVolume Harmony

Begin Arpeggio
Sequence A4
Voice ChoirAahs
Invert 0 1 2 3
SeqRnd
Octave 5
RSkip 40
Volume p
Articulate 99

End

Begin Arpeggio-2
Sequence A4
Voice VoiceOohs
Octave 5
RSkip 40
Volume p
Articulate 99
HarmonyOnly Open

End

Just like the HARMONY command, above, you can have different settings for each barin your sequence.
Setting a bar (or the entire sequence) to ’‘-” or “0” disablesboth the HARMONY and HARMONYONLY

settings.

The command has no effect in DRUM or CHORD tracks.

If you want to use this feature with SOLO or MELODY tracks you can duplicate the notes in your RIFF or
in-line notationor with the AUTOHARMONYTRACKS command, see page 74.

15.3 HarmonyVolume

By default,MmA will use a volume (velocity) of 80% of that used by the original note for all harmony notes
it generates. You can change this with the the HARMONYVOLUME command. For example:

Begin Solo
Voice JazzGuitar
Harmony Open
HarmonyVolume 80

End

You can specify different values for each bar in the sequence. The values are percentages and must be
greater than 0 (large values work just fine if you want the harmony louder than the original). The command
has no effect in DRUM or PLECTRUM tracks.

100

Chapter 16

Ornament

Individual notes in various tracks can be embellished or ornamented by using standard musical “tricks”
like grace notes, mordents, etc. This is specified with the ORNAMENT command. This command is valid
in CHORD, BASS, WALK , ARPEGGIOand SCALE tracks. This command has a number of valid options,
all set in the OPTION=VALUE format. Following are the recognized options:

Type This is the type of embellishment to use. Valid settings are MORDENT, TURN, TRILL , GRACE and
3AFTER. The effects are best illustrated in standard notation:

A G GGGGGGG GTrill G GI GGrace G GG G GMordent

A G GGGG GTurn G G GGGG3After G GFall h

Chromatic By default, when selecting the additional notes to useMmA uses the scale list for the current
chord. This ensures that the added notes blend with the rest of the accompaniment. The exception
occurs when the initial note is part of a modified pattern;1 in this case a chromatic note is used.

The CHROMATIC option forces the use of chromatic notes. It is set with CHROMATIC=ON. You
can also use TRUE to enable; OFF or FALSE to disable.

Place Valid settings are ABOVE, BELOW, RANDOM. The examples shown above are all with the default
option ABOVE in effect. Using the PLACE=BELOW setting moves the embellishments down below
the note. The final option, PLACE=RANDOM, places the ornament randomly.

Duration The time-slice given to the main note and the embellishment can be set with this option. By
default the embellishment is given 20% of the duration (the remaining 80% going to the note). This
is pretty straightforward to use, except that in the TRILL setting this sets the number of pairs of notes
to use (for example, in TYPE=TRILL DURATION=25 you will get each note divided into 4 pairs).

1This can occur in BASS patterns which have a♯ or ♭ modifier.

101

Ornament

The ARTICULATE setting will effect both the main note and the embellishments. When using the
3AFTER setting a duration of 75 will set all 4 notes to the same duration.

Pad This option adds (or subtracts) duration to both the ornamented and main portion of the note(s).
Optionally, you can set 2 values (a comma separated pair, eg.PAD=10,20) which will set different
values for the main note and the ornamentation (in that order). The value(s) are set as percentage
value(s). The default is to add 10% to each note. The placement (the start time) of both notes
is determined by the note duration specified in the pattern; this option effects the “overlay” time.
Judicious use of this option will give the notes/ornamentation a more legato or staccato feel. Both
values must be in the range of -100 to 100.

Volume The relative volume (actually MIDI velocity) of the embellishments defaults to 75% of the main
note. You can make added notes louder (VOLUME=150) or softer (VOLUME=50).

Beats Set the offsets on which the embellishments will be applied.Beats are specified in the same manner
as pattern offsets (page 25). The beats (offsets) are a commaseparated list:

Scale Ornament Beats=1,3.25,4

Bars Limit the ornamentation to specified bars in the sequence. This is a comma separated list. For
example, if you have a 4 bar sequence you could limit the ornamentation to the first and third bars
in the sequence with:

Arpeggio Ornament Type=Moderent Bars=1,3

To make life more interesting (and confusing) this can be combined with the BEATS option, above.
You can disable this setting (the default) with the special value “All”.

Rskip Skip a random number of ornamented notes. The setting must bein the 0 to 100 range (with 0
turning the feature off and 100 skipping every event). RSKIP is only applied to events permitted
by the BEATS and BARS options. Also, the track setting for RSKIP is further applied to generated
notes.

For reference, here is a setting line which duplicates the defaults:

Bass Ornament Type=None Chromatic=Off Duration=20.0 Pad=10.0,10.0
Volume=75.0 Place=ABOVE Beats= Rskip=0 Bars=

To disable all ornamantations you can use an empty command orthe single keywords “None” or “Off”:

Scale Ornament
Scale Ornament Off

There are a number of examples in theegs/ornament directory.

Some points to note:

� If the HARMONY setting is enabled, the ORNAMENT options are applied only to the main note, not
the harmony.

� In CHORD tracks the top (highest pitch) note is ornamented.

102

Ornament

� The ARTICULATE settingis applied to the ornamented and original notes. In some cases this can
lead to overlaps or a gap between the notes.

� All options are reset to default when an OPTION command is encountered. It probably makes more
sense this way than only changing some . . . certainly there should be less confusion. If you want to
change only one or two options you can do:

Chord Ornament $ Chord Ornament Beats=1,3

in which case only the BEATS are modified.

� You cannotset different ornaments for bar sequences, only limit them with the BARS option. If you
need, for example, an ornament in first bar, and a different one in the third, simply make a copies
of the track, set the sequence for the first track’s bars so that you have an empty first track; set the
second track’s sequence to compliment and set the ornament,etc.2

� An empty option string can be used for the PLACE and BARSsettings (eg. BASS ORNAMENT PLACE=).
This is mainly for use in macros. You can do something like:

Bass Ornament $ Walk Ornament

2This is a deliberate departure from the normalMmA syntax. It’s quite unlikely that you would want more that oneornamen-
tation setting in a sequence, but quite likely that you’d only want a setting to be applied to a certain bar in the sequence.

103

Chapter 17

Tempo and Timing

MmA has a rich set of commands to adjust and vary the timing of yoursong.

17.1 Tempo

The tempo of a piece is set in Beats per Minute with the “Tempo” directive.

Tempo 120

sets the tempo to 120 beats/minute. You can also use the tempocommand to increase or decrease the
current rate by including a leading “+”, “-” or “*” in the rate. For example (assuming the current rate is
120):

Tempo +10

will increase the current rate to 130 beats/minute.

The tempo can be changed series of beats, much like a rit. or accin real music. Assuming that a time
signature of44, the current tempo is 120, and there are 4 beats in a bar, the command:

Tempo 100 1

will cause 4 tempo entries to be placed in the current bar (in the MIDI meta track). The start of the bar
will be 115, the 2nd beat will be at 110, the 3rd at 105 and the last at 100. Note: the value of $TEMPO

will reflect the final value, not the intermediates.

You can also vary an existing rate using a “+”, “-” or “*” in therate.

You can vary the tempo over more than one bar. For example:

Tempo +20 5.5

tellsMmA to increase the tempo by 20 beats per minute and to step the increase over the next five and a half
bars. Assuming a start tempo of 100 and 4 beats/bar, the meta track will have a tempo settings of 101,
102, 103 . . . 120. This will occur over 22 beats (5.5 bars * 4 beats) of music.

Using the multiplier is handy if you are switching to “doubletime”:

Tempo * 2

and to return:

104

17.2 Time Tempo and Timing

Temp * .5

Note that the “+”, “-” or “*” sign mustnot be separated from the tempo value by any spaces. The value
for TEMPO can be any value, but will be converted to integer for the finalsetting.

17.2 Time

MmA doesn’t really understand time signatures. It just cares about the number of beats in a bar. So, if you
have a piece in44 time you would use:

Time 4

For 3
4 use:

Time 3

For 6
8 you’d probably want either “2” or “6”.

Changing the time also cancels all existing sequences. So, after a time directive you’ll need to set up your
sequences or load a new groove.1

17.3 Truncate

It is not uncommon to find that the time signature in a song changes. Most often this is to generate a short
(or long) bar in the middle of a phrase. Example 17.1 shows a few bars of a popular song which changes
from cut time to2

4 as well asMmA code to generate the correct MIDI file.

The TRUNCATE reduces the duration of the following bar to the specified number of beats. For example:

Truncate 3

will create a bar 3 beats long.

TRUNCATE works by shortening the duration and deleting the pattern definitions in the unused section of
the bar. Normally, the ending of the bar’s pattern is the partskipped.

However, you can also force the segment of the current pattern which TRUNCATE uses with the SIDE

option. For example, if you would like the next bar to have 2 beats and to use the second half of the
pattern:

Truncate 2 Side=Right

You can even use the “middle” part of the pattern by using a value for the SIDE option:

1The time value is saved/restored with grooves so setting a time is redundant in this case.

105

17.3 Truncate Tempo and Timing

Au F @B W EB W G GI GI G GE W

A EB W
2
4 FE W u EB W F M GI GI

KeySig Bb
Groove Country
Bb
/
/ / Eb
Bb
Truncate 2
Eb // this is a 2/4 bar
Bb
/

Example 17.1: Mixed Time Notation

Truncate 1 Side=2

would force the next bar to have 1 beat using the pattern starting at offset 2 in the bar. To illustrate the
above case, assume you have a CHORD sequence defined as:

Chord Sequence 1 4 80; 2.5 8 90; 3 4 100; 4 8 100;

The option SIDE=2 will convert the SEQUENCEto be:

Chord Sequence 1.5 8 90;

which will be used in the following bar.

The number of bars in which TRUNCATE is in effect is normally one (the next bar). However, you can
change this with the COUNT= option. For example, you might want to create a sequence with different
GROOVES:

Truncate 1 Count=4
Groove PopBallad
C // 1 beat bar
Groove PopHits
/ // second 1 beat bar
Groove PopFill

106

17.4 TimeSig Tempo and Timing

/ // third 1 beat bar
Groove PopBalladSus
/ // final 1 beat bar
Groove PopBallad
/ // normal 4 beat bar

You can specify both the number of beats and the SIDE as fractional values. This can be handy when your
song is in a compound time. For example, the song “ Theme From Mahogany” is in4

4 time, but one bar is
in 5

8 time. We have 4 beats in each bar, and don’t really have an 8 beat time to use (we could, but it makes
our input a bit more complicated), we simply convert the second time to 2.5

4 (not a legal time signature!).
This is cleanly handled by the following snippet:

Truncate 2.5
Groove PianoBalladFill
Timesig 5 8
C
Timesig 4 4

The arguments for the SIDE option are:

Left the start of the pattern (the default),

Right the end of the pattern,

Value an offset into the pattern in beats (can be fractional).

A few caveats:

� Both the SIDE and COUNT options are value pairs joined with a single “=”. No spaces are permitted.

� The chord data in the truncated line(s) must contain the correct number of chords. Having too many
chords will generate an error.

� When using SOLO or MELODY data an error is generated if the data falls outside of the duration of
the shortened bar.

� You can not use TRUNCATE to lengthen a bar. If you need to lengthen a bar (perhaps a5
4 bar in a4

4

song you just need to create a bar with the additional beats (in this case a 1 beat bar).

The example fileegs/truncate.mma shows some examples of this command.

17.4 TimeSig

Even thoughMmA doesn’t really use Time Signatures, some MIDI programs do recognize and use them.
So, here’s a command which will let you insert a Time Signature in your MIDI output:

TimeSig NN DD

The NN parameter is the time signature numerator (the numberof beats per bar). In34 you would set this
to “3”.

107

17.5 BeatAdjust Tempo and Timing

The DD parameter is the time signature denominator (the length of the note getting a single beat). In3
4

you would set this to “4”.

The NN value must be an integer in the range of 1 to 126. The DD value must be one of 1, 2, 4, 8, 16, 32
or 64.

MmA assumes that all songs are in4
4 and places that MIDI event at offset 0 in the Meta track.

The TIMESIG value is remembered by GROOVEs and is properly set when grooves are switched. You
should probably have a time signature in any groove library files you create (the supplied files all do).

The common time signatures “common” and “cut” are supported. They are translated byMmA to 4
4 and 2

2.

17.5 BeatAdjust

Internally,MmA tracks its position in a song according to beats. For example, in a 4
4 piece the beat position

is incremented by 4 beats after each bar is processed. For themost part, this works fine; however, there
are some conditions when it would be nice to manually adjust the beat position:

� Insert some extra (silent) beats at the end of bar to simulatea pause,

� Delete some beats to handle a “short” bar.

� Change a pattern in the middle of a bar.

Each problem will be dealt with in turn. In example 17.2 a pause is simulated at the end of bar 10. One
problem with this logic is that the inserted beat will be silent, but certain notes (percussive things like
piano) often will continue to sound (this is related to the decay of the note, not thatMmA has not turned off
the note). Frankly, this really doesn’t work too well . . . which is why the FERMATA (page 109) was added.

Time 4
1 Cm / / /
...
10 Am / C /
BeatAdjust 1
...

Example 17.2: Adding Extra Beats

In example 17.3 the problem of the “short bar” is handled. In this example, the sheet music has the
majority of the song in4

4 time, but bar 4 is in2
4. This could be handled by setting the TIME setting to 2

and creating some different patterns. Forcing silence on the last 2 beats and backing up the counter is a bit
easier.

Note that the adjustment factor can be a partial beat. For example:

108

17.6 Fermata Tempo and Timing

1 Cm / / /
...
4 Am / z! /
BeatAdjust -2
...

Example 17.3: Short Bar Adjustment

BeatAdjust .5

will insert half of a beat between the current bars.

Finally in example 17.4, the problem of overlapping bars is handled. We want to change the GROOVE in
the middle of a bar. So, we create the third bar two times. The first one has a “z!” (silence) for beats 3
and 4; the second has “z!” for beats 1 and 2. This permits the two halves to overlap without conflict. The
BEATADJUST forces the two bars to overlap completely.

Groove BigBand
1 C
Groove BigBandFill
2 Am
3 / / z!
BeatAdjust -4
Groove BigBand

z! / F
5 F
...

Example 17.4: Mid-Bar Groove Change

Note: A number of the items discussed above are much easier to handle with the TRUNCATE command,
(on page 105).

17.6 Fermata

A “fermata” or “pause” in written music tells the musician tohold a note for a longer period than the
notation would otherwise indicate. In standard music notation it is represented by a “

(. ” above a note.

To indicate all thisMmA uses a command like:

109

17.6 Fermata Tempo and Timing

Fermata 1 1 200

Note that there are three parts to the command:

1. The beat offset from the current point in the score to applythe “pause”. The offset can be positive or
negative and is calculated from the current bar. Positive numbers will apply to the next bar; negative
to the previous. For offsets into the next bar you use offsetsstarting at “0”; for offsets into the
previous bar an offset of “-1” represents the last beat in that bar.

For example, if you were in44 time and wanted the quarter note at the end of the next bar to be
paused, you would use an offset of 3. The same effect can be achieved by putting the FERMATA

command after the bar and using an offset of -1.

2. The duration of the pause in beats. For example, if you havea quarter note to pause your duration
would be 1, a half note (or 2 quarter notes) would be 2.

3. The adjustment. This represented as a percentage of the current value. For example, to force a note
to be held for twice the normal time you would use 200 (two-hundred percent). You can use a value
smaller than 100 to force a shorter note, but this is seldom done.

Example 17.5 shows how you can place a FERMATA before or after the effected bar.

A4
4
G G G G3C G G G GGm7

MmA Equivalent

Fermata 3 1 200
C
Gm7
Alternate

C
Fermata -1 1 200
Gm7

Example 17.5: Fermata

Here example 17.6 shows the first four bars of a popular torch song. The problem with the piece is that
the first beat of bar four needs to be paused, and the accompaniment style has to switch in the middle of
the bar. The example shows how to split the fourth bar with thefirst beat on one line and the balance on a
second. The “z!”s are used to “fill in” the 4 beats skipped by the BEATADJUST.

110

17.7 Cut Tempo and Timing

At G G G G G GW GV GC Vdim C G G G G G GG7 G G G G G GW GV GC Vdim C G G G GV3 C7
G7 -

C C#dim
G7
C / C#dim
G7 z!
Fermata -4 1 200
Cut -3
BeatAdjust -3.5
Groove EasySwing
z! G7 C7

Example 17.6: Fermata with Cut

The following conditions will generate warning messages:

� A beat offset greater than one bar,

� A duration greater than one bar,

� An adjustment value less than 100.

This command works by adjusting the global tempo in the MIDI meta track at the point of the fermata.
In most cases you can put more than one FERMATA command in the same bar, but they should be in beat
order (no checks are done). If the FERMATA command has a negative position argument, special code is
invoked to remove any note-on events in the duration specified, after the start of the beat.2 This means that
extra rhythm notes will not be sounded—probably what you expect a held note to sound like.

17.7 Cut

This command was born of the need to simulate a “cut” or, more correctly, a “caesura”. This is indicated
in music by two parallel lines put at the top of a staff indicating the end of a musical thought. The symbol
is also referred to as “railroad tracks”.

The idea is to stop the music on all tracks, pause briefly, and resume.3

2Technically speaking,MmA determines an interval starting 5% of a beat after the start of the fermata to a point 5% of a beat
before the end. Any MIDI Note-On events in this range (in all tracks) are deleted.

3The answer to the music theory question of whether the “pause” takes timefrom the current beat or is treated as a “fermata”
is not clear—but as far asMmA is concerned the command has no effect on timing.

111

17.7 Cut Tempo and Timing

MmA provides the CUT command to help deal with this situation. But, before the command is described in
detail, a diversion: just how is a note or chord sustained in aMIDI file?

Assume that aMmA input file (and the associated library) files dictates that some notes are to be played
from beat 2 to beat 4 in an arbitrary bar. WhatMmA does is:

� determine the position in the piece as a midi offset to the current bar,

� calculate the start and end times for the notes,

� adjust the times (if necessary) based on adjustable features such asSTRUM, ARTICULATE, RTIME,
etc.,

� insert the required MIDI “note on” and “note off” commands atthe appropriate point in the track.

You may think that a given note starts on beat 2 and ends (usingARTICULATE 100) right on beat 3—but
you would most likely be wrong. So, if you want the note or chord to be “cut”, what point do you use to
instructMmA correctly? Unfortunately, the simple answer is “it depends”. Again, the answers will consist
of some examples.

In this first case you wish to stop the track in the middle of thelast bar. The simplest answer is:

1 C
...
36 C / z! /

Unfortunately, this will “almost” work. But, any chords which are longer than one or two beats may
continue to sound. This, often, gives a “dirty” sound to the end of the piece. The simple solution is to add
to the end of the piece:

Cut -2

Depending on the rhythm you might have to fiddle a bit with the cut value. But, the example here puts a
“all notes off” message in all the active tracks at the start of beat 3. The exact same result can be achieved
by placing:

Cut 3

beforethe final bar.

In this second example a tiny bit of silence is desired between bars 4 and 5 (this might be the end of a
musical introduction). The following bit should work:

1 C
2 G
3 G
4 C
Cut
BeatAdjust .2
5 G
...

112

17.7 Cut Tempo and Timing

In this case the “all notes off” is placed at the end of bar 4 andtwo-tenths of a beat is inserted at the same
location. Bar 5 continues the track.

The final example show how you might combineCUT with FERMATA. In this case the sheet music shows
a caesura after the first quarter note and fermatas over the quarter notes on beats 2, 3 and 4.

1 C C#dim
2 G7
3 C / C#dim
Fermata 1 3 120
Cut 1.9
Cut 2.9
Cut 3.9
4 G7 / C7 /
5 F6

A few tutorial notes on the above:

� The command

Fermata 1 3 120

applies a slow-down in tempo to the second beat for the following bar (an offset of 1), for 3 beats.
These 3 beats will be played 20% slower than the set tempo.

� The threeCUT commands insert MIDI “all notes off” in all the active tracksjust beforebeats 2, 3
and 4.

Finally, the proper syntax for the command:

[TrackName] Cut [Offset]

If the voice is omitted, MIDI “all notes off” will be insertedinto each active track.

If the offset is omitted, the current bar position will be used. This the same as using an offset value of 0.

113

Chapter 18

Swing

In jazz and swing music there is a convention to apply specialtiming to eighth notes. Normally, the first of
a pair of eights is lengthened and the second is shortened. Inthe sheet music this can is sometimes notated
as sequences of a dotted eighth followed by a sixteenth. But, if you were to foolish enough to play the
song with this timing you’d get a funny look from a jazz musician who will tell you to “swing” the notes.

The easiest way to think about swing eighths is to mentally convert them to a triplet consisting of a quarter
note and and eighth.

A G G G G G G G G
A GT G GT G GT G GT G
A G GI G GI G GI G GI3 3 3 3

In the above music the first shows “straight eights”, the second “dotted eight, sixteenths”, and the third a
rough indication of how the first line would be played in “swing”. It all depends on the style of music . . .
if we are playing a classical piece the first line would have eight notes of the same length, and the second
line would have a sixteenth note one third the length of the dotted eights. In contemporary music it might
be that way . . . or either or both could be played as the third line.

MmA can handle this musical style in a number of ways, the controlis though the SWINGMODE command
and options.

In default modeMmA assumes that you don’t want your song to swing.

To enable automatic conversions, simply set SWINGMODE to “on”:

SwingMode On

This directive accepts the value “On” and “Off” or “1” and “0”.

114

18.1 Skew Swing

With SWINGMODE enabledMmA takes some extra steps when creating patterns and processing of SOLO

and MELODY parts.

� Any eighth note in a pattern “on the beat” (1, 2, etc.) is converted to a “81” note.

� Any eighth note in a pattern “off the beat” (1.5, 2.5, etc.) isconverted to “82” note, and the offset is
adjusted to the prior beat plus the value of an “81” note.

� Drum notes with a value of a single MIDI tick are handled in thesame way, but only the offset
adjustment is needed.

� In SOLO and MELODY tracks any successive pairs of eighth notes (or rests) are adjusted.

Important: when defining patterns and sequences remember that the adjustment is made when the pattern
is compiled. With a DEFINE command the arguments are compiled (and swing will be applied). But
a SEQUENCE command with an already defined pattern will use the existingpattern values (the swing
adjustment may or may not have been done at define time). Finally, if you have a dynamic define in the
sequence the adjustment will take place if needed.

Important (again):SWINGMODE is saved and restored when switching GROOVES. This means that the
SWINGMODE setting you set in a song file is only valid until the next time you issue a GROOVEcommand.
See the summary below for more details.

18.1 Skew

SWINGMODE has an additional option, SKEW. This factor is used to create the “81” and “82” note lengths
(see page 26). By default the value “66” is used. This simply means that the note length “81” is assigned
66% of the value of an eight note, and “82” is assigned 34%.

You can change this setting at any point in your song or style files. It will take effect immediately on all
future patterns and solo lines.

The setting:

SwingMode Skew=60

will set a 60/40 setting.

If you want to experiment, find a GROOVEwith note lengths of “81” and “82” (“swing” is as good a choice
as any). Now, put a SWINGMODE SKEW=VALUE directive at the top of your song file (before selecting
any GROOVEs). Compile and play the song with different values to hear theeffects.

If you want to play with different effects you could do something like this:

SwingMode On Skew=40
... Set CHORD pattern/groove
SwingMode Skew=30
... Set Drum-1 pattern/groove
SwingMode Skew=whatever

115

18.2 Accent Swing

... Set Drum-2

This will give different rates for different tracks. I’ll probably not enjoy your results, but I play polkas on
the accordion for fun.

18.2 Accent

It’s natural for musicians to emphasize swing notes by making the first (the longer one) a bit louder than
the second. By defaultMmA uses the internal/default volumes for both notes. However,you can change
this with the ACCENT option. The option takes a pair of values joined by a single comma. The first value
sets the percentage change for the “on-the-beat” notes; thesecond set the adjustment for the “off-the-beat”
notes. For example:

Swingmode On Accent=110,80

will apply changes of 110% and 80% to the volumes. Use of this option will create more natural sounding
tracks.

18.3 Delay

By default, the logic for setting the start positions of each note generated by SWINGMODE is that the first
note of the pair doesn’t move and the second is set at the duration of a “81” note from the first (remember,
“81” is set by the SKEW value).

However, you can move either or both notes forward to backwards with the DELAY option. This option
takes 2 arguments (a comma pair) with the first setting a delayfor the first note and the second a delay
for the second. The delays can be negative, in which case the note would be sounded early. The values
represent MIDI ticks and must be in the range -20 . . . +20.

Example:

Swingmode On Delay=5,0

would push the first note of each pair just past the beat.

18.4 Notes

So far in this section we have assumed that all swing notes areeight note pairs. But, you can also set the
function to work over sixteenth notes as well:

Swingmode On Notes=16

The only permitted values for NOTESare “8” (the default) and “16”. This is, probably, only useful in very
slow tempo settings.

116

18.5 Summary Swing

18.5 Summary

SWINGMODE is a Global setting which functions are patterns and solo note sequences are defined or
created. This can be confusing . . . you can’t take an existingGROOVE and just do a SWINGMODE after
calling it up . . . the command will have no effect. Instead, you’ll have modify the actual library code. Or
write your own.

The complete SWINGMODEsetting is saved in the current GROOVEand can be accessed via the $SWINGMODE

built-in macro.

The easy (and ugly and unintuitive) way to handle swing is to hard-code the value right into your patterns.
For example, you could set a swing chord pattern with:

Chord Define Swing8 1 3+3 80; 1.66 3 80; 2 3+3 80; 2.66 3 80 ...

We really don’t recommend this for the simple reason that theswing rate is frozen as quarter/eighth triplets.

If you refer to the table of note lengths (page 26) you will findthe cryptic values of “81” and “82”. These
notes are adjusted depending on the SWING SKEW value. So:

Chord Define Swing8 1 81 80; 1+81 82 80; 2 81 80; 2+81 82 80 ...

is a bit better. In this case we have set a chord on beat 1 as the first of an eighth note, and a chord on the
off-beat as the second. Note how we specify the off-beats as “1+81”, etc.

In this example the feel of the swing will vary with the SWING SKEW setting.

But, aren’t computers supposed to make life simple? Well, here is our recommended method:

SwingMode On
Chord Define Swing8 1 8 80; 1.5 8 80; 2 8 80; 2.5 8 80 ...

Now,MmA will convert the values for you. Magic, well . . . almost.

There are times when you will need to be more explicit, especially in SOLO and MELODY tracks:

� If a bar has both swing and straight eighths.

� If the note following an eighth is not an eighth.

117

Chapter 19

Volume and Dynamics

Before getting intoMmA volume specifics, we’ll present a short primer on volume as itrelates to MIDI
devices.

A MIDI device (a keyboard, software synth, etc.) has severalmethods to control how loud a sound is:

� Whenever a “note on” event is sent to the device it has a “velocity” byte. The velocity can be a value
from 1 to 127 (in most cases the value 0 will turn off a note). You can think of these velocity values
in the same way as you think of the difference in loudness of a piano key depending on the strength
with which you strike a key. The harder you hit the key or the greater the velocity value, the louder
the tone.

� MIDI devices have “controllers” which set the volume for a given channel. For example, Controller
7 is the “Channel Volume MSB” and Controller 39 is the “Channel Volume LSB”. By sending
different values to these controllers the volume for the specified channel will be modified. These
changes are relative to the velocities of notes.

� Finally, there are various “external” settings such as volume knobs, foot pedals and amplifier set-
tings. We’ll ignore these completely.

An important difference between the “velocity” and “controller” methods is that you cannot change the
volume of a note once it has started using the “velocity” method. However, relying on the “controller”
method doesn’t always overcome this limitation: some synths or playback devices don’t support channel
volume controllers and having multiple notes with different volumes is impossible. So, you might need a
combination of the two methods to achive your desired results.

In aMmA program there are a number ways to control the velocity of each note created.1

The basic method used byMmA to affect volume is to change the velocity of a “note on” event. However,
you might also be interested in accessing your MIDI device more directly to set better mixes between
channels. In that case you should read the discussion for MIDIVOLUME (page 168).

The rest of this chapter deals with MIDI velocity. Each note created by in aMmA program receives an initial
velocity set in the pattern definition. It then goes though several adjustments. Here’s the overview of the
creation and changes each note’s velocity setting goes though.

1. The initial velocity is set in the pattern definition, see chapter 4,2

1We’ll try to be consistent and refer to a MIDI “volume” as a “velocity” and internalMmA adjustments to velocity as volumes.
2Solo and Melody track notes use an initial velocity of 90.

118

19.1 Accent Volume and Dynamics

2. the velocity is then adjusted by the master and track volume settings3 (see page 121 for the discus-
sion of ADJUSTVOLUME RATIO),

3. if certain notes are to be accented, yet another adjustment is made,

4. and, finally, if the random volume is set, more adjustment.

For the most partMmA uses conventional musical score notation for volumes. Internally, the dynamic name
is converted to a percentage value. The note velocity is adjusted by the percentage.

The following table shows the available volume settings andthe adjustment values.

Symbolic Name Ratio (Percentage) Adjustment
off 0
pppp 5
ppp 10
pp 25
p 40
mp 70
m 100
mf 110
f 130
ff 160
fff 180
ffff 200

The setting OFF is useful for generating fades at the end of a piece. For example:

Volume ff
Decresc Off 5
G / Gm / * 5

will cause the last 5 bars of your music to fade from aff to silence.

As stated before, the initial velocity of a note is set in the pattern definition (see chapter 4). The following
commands set the master volume, track volume and random volume adjustments. And, again, please note
that even though this manual calls the adjustments “volume”, they all do the same thing: manipulate the
initial note velocity.

19.1 Accent

“Real musicians”,4 in an almost automatic manner, emphasize notes on certain beats. In popular Western
music written in4

4 time this is usually beats one and three. This emphasis sets the pulse or beat in a piece.

3Please don’t confuse the concept ofMmA master and track volumes with MIDI channel volumes.
4as opposed to mechanical.

119

19.2 AdjustVolume Volume and Dynamics

In MmA you can set the velocities in a pattern so that this emphasis is automatically adjusted. For example,
when setting a walking bass line pattern you could use a pattern definition like:

Define Walk W1234 1 4 100; 2 4 70; 3 4 80; 4 4 70

However, it is much easier to use a definition which has all thevelocities the same:

Define Walk W1234 1 1 90 * 4

and use the ACCENT command to increase or decrease the volume of notes on certain beats:

Walk Accent 1 20 2 -10 4 -10

The above command will increase the volume for walking bass notes on beat 1 by 20%, and decrease the
volumes of notes on beats 2 and 4 by 10%.

You can use this command in all tracks.

When specifying the accents, you must have matching pairs of data. The first item in the pair is the beat
(which can be fractional), the second is the volume adjustment. This is a percentage of the current note
volume that is added (or subtracted) to the volume. Adjustment factors must be integers in the range -100
to 100.

The ACCENTs can apply to all bars in a track; as well, you can set different accents for different bars. Just
use a “{}” pair to delimit each bar. For example:

Bass Accent {1 20} / / {1 30 3 30 }

The above line will set an accent on beat 1 of bars 1, 2 and 3; in bar 4 beats 1 and 3 will be accented.

You can use a “/” to repeat a setting. The “/” can be enclosed ina “{}” delimiter if you want.

19.2 AdjustVolume

19.2.1 Mnemonic Volume Ratios

The ratios used to adjust the volume can be changed from the table at the start of this chapter. For example,
to change the percentage used for theMF setting:

AdjustVolume MF=95 f=120

Note that you can have multiple setting on the same line.

The values used have the same format as those used for the VOLUME command, below. For now, a few
examples:

AdjustVolume Mf=mp+200

will set the adjustment factor formf to that ofmpplus 200%.

And,

120

19.2 AdjustVolume Volume and Dynamics

AdjustVolume mf=+20

will increase the currentmf setting by 20%.

You might want to do these adjustment in your MMArc file(s).

19.2.2 Master Volume Ratio

MmA uses its master and track volumes to determine the final velocity of a note. By default, the track
volume setting accounts for 60% of the adjustment and the master volume for the remaining 40%. The
simple-minded logic behind this is that if the user goes to the effort of setting a volume for a track, then
that is probably more important than a volume set for the entire piece.

You can change the ratio used at anytime with the ADJUSTVOLUME RATIO=<VALUE> directive.<Value>
is the percentage to use for theTrackvolume. A few examples:

AdjustVolume Ratio=60

This duplicates the default setting.

AdjustVolume Ratio=40

Volume adjustments use 40% of the track volume and 60% of the master volume.

AdjustVolume Ratio=100

Volume adjustments use only the track volume (and ignore themaster volume completely).

AdjustVolume Ratio=0

Volume adjustments use only the master volume (and ignore the track volumes completely).

Any value in the range 0 to 100 can be used as an argument for this command. This setting is saved in
GROOVEs.

CRESCand DECRESCcommands can give unexpected results, depending on the value of the current ratio.
For example, you might think that you can fade to silence witha command like:

Decresc m pppp 4

However, since the ratio, by default, is set to 60 you are onlychanging the master volume. Two ways you
can fix this are:

AdjustVolume Ratio=0
Decresc m pppp 4

which changes the ratio. If you are also changing GROOVEs you might want to use:

AllGrooves AdjustVolume Ratio=0

or, change the volumes for the master and tracks:

121

19.3 Volume Volume and Dynamics

Alltracks Decresc m pppp 4
Decresc m pppp 4

Feel free to experiment with different ratios.

19.3 Volume

The volume for a track and the master volume, is set with the VOLUME command. Volumes can be
specified much like standard sheet music with the conventional dynamic names. These volumes can be
applied to a track or to the entire song. For example:

Arpeggio-Piano Volume p

sets the volume for the Arpeggio-Piano track to something approximatingpiano.

Volume f

sets the master volume toforte.

In most cases the volume for a specific track will be set withinthe GROOVE definition; the master volume
is used in the music file to adjust the overall feel of the piece.

When using VOLUME for a specific track, you can use a different value for each barin a sequence:

Drum Volume mp ff / ppp

A “/” can be used to repeat values.

In addition to the “musical symbols” likeff andmpyou can also use numeric values to indicate a percent-
age. In this case you can use intermediate values to those specified in the table above. For example, to set
the volume betweenmf andf, you could do something like:

Volume 87

But, we don’t recommend that you use this!

A better option is to increment or decrement an existing volume by a percentage. A numeric value prefaced
by a “+” or “-” is interpreted as a change. So:

Drum-Snare Volume -20

would decrement the existing volume of the DRUM-SNARE track by 20%. If an adjustment creates a
negative volume, the volume will be set to 0 and a warning message will be displayed.

And, finally, for fine tuning you can adjust a “musical symbol”volume by a percentage. The volume “mf-
10” will generate a volume 10% less than the value of “mf”; “f+20” will generate a volume 20% greater
than “f”.

MmA volume adjustments are velocity adjustments. If a note has an initial velocity of 127 you really can’t
make it louder. So, we recommend that you start off notes witha middle-of-the-road velocity setting (we
use 90) which leaves room forMmA’s volume commands to make adjustments.

122

19.4 Cresc and Decresc Volume and Dynamics

19.4 Cresc and Decresc

If you wish to adjust the volume over one or more bars use the CRESCor DECRESC5 commands. These
commands work in both the master context and individual tracks.

For all practical purposes, the two commands are equivalent, except for a possible warning message. If
the new volume in less than the current volume in a CRESC a warning will be displayed; the converse
applies to a DECRESC. In addition, a warning will be displayed if the effect of either command results in
no volume change.

The command requires two or three arguments. The first argument is an optional initial volume followed
by the new (destination) volume and the number of bars the adjustment will take.

For example:

Cresc fff 5

will gradually vary the master volume from its current setting to a “triple forte” over the next 5 bars. Note
that the very next bar will be played at the current volume andthe fifth bar atfff with the other three bars
at increasing volumes.

Similarly:

Drum-Snare Decresc mp 2

will decrease the “drum-snare” volume to “mezzo piano” overthe next 2 bars.

Finally, consider:

Cresc pp mf 4

which will set the current volume topp and then increase it tomf over the next 4 bars. Again, note that
the very next bar will be played atppand the fourth atmf.

You can use numeric values (not recommended!) in these directives:

Cresc 20 100 4

As well as increment/decrement:

Volume ff
...
Decresc -10 -40 4

The above example will first set the volume to 10% less than thecurrentff setting. Then it will decrease
the volume over the next 4 bars to a volume 40% less than the newsetting for the first bar.

A SEQCLEAR command will reset all track volumes to the defaultM.

When applying CRESCor DECRESCat the track level the volumes for each bar in the sequence will end
up being the same. For example, assuming a two bar sequence length, you might have:

5We use the term “decrescendo”, others prefer “diminuendo”.

123

19.4 Cresc and Decresc Volume and Dynamics

Chord Volume MP F

which alternates the volume between successive bars in the CHORD track. Now, if you were to:

Chord Cresc M FF 4

The following actions take effect:

1. A warning message will be displayed,

2. The volume for the chord track will be set tom,

3. The volume for the chord track will increment toff over the next four bars,

4. The volume for the sequence will end up beingff for all the bars in the remaining sequence. You
may need to reissue the initial chord volume command.

You may find that certain volume adjustments don’t create thevolumes you are expecting. In most cases
this will be due to the fact thatMmA uses a master and track volume to determine the final result. So, if you
want a fade at the end of a piece you might do:

Decresc m pppp 4

and find that the volume on the last bar is still too loud. Thereare two simple solutions:

� Add a command to decrease the track volumes. For example:

Alltracks Decresc m pppp 4

in addition to to the master setting.

� Change the ratio between track and master settings:

AdjustVolume Ratio=0

or some other small value.

These methods will produce similar, but different results.

The adjustments made for CRESCand DECRESCare applied over each bar effected. This means that the
first note or notes in a bar will be louder (or softer) than the last. You can use this effect for interesting
changes by using a single bar for the range. Assuming a current volume ofmp:

Cresc fff 1

will set the final notes in the following bar to befff, etc.

If you have a number of bars with the same chord and the track you are modifying has UNIFY enabled the
volume will not change. UNIFY creates long notes sustained over a number of bars for which the volume
is only set once.

Sometimes a CRESC6 command will span a groove change.MmA handles this in two different ways:

� Master CRESCcommands can continue over a new GROOVE. For example:

6This applies to DECRESCand SWELL as well.

124

19.5 Swell Volume and Dynamics

Groove One
Cresc mp ff 8
C * 4
Groove Two
Dm * 4

will work just fine. This makes sense since library files and groove definitions normally do not have
master volume settings.

� However, volume changes at a track level cannot span GROOVE changes. Using a similar example:

Groove One
Chord Cresc mp ff 8
C * 4
Groove Two
Dm * 4

In this caseMmA will truncate the CRESC after 4 bars and issue a warning message. The CHORD

volume will never reachff. Since groove definitions and library files normally do set individual
volumes for each track it would be counter intuitive to permit a previous CRESC to continue its
effect.

19.5 Swell

Often you want a crescendo to be followed by a decrescendo (or, less commonly, a decrescendo followed
by a crescendo). Technically, this is amessa di voce.7 You’ll see the notation in sheet music with opposed
“hairpins”.

A SWELL is set with a command like:

Swell pp ff 4

or

Chord Swell ff 4

In the first case the master volume will be increased over 2 bars frompp to ff and then back topp. In the
second case the CHORD volume will be increased toff over 2 bars, then back to the original volume.

You can achieve the same results with a pair of CRESCand DECRESCcommands (and you might be safer
to do just this since SWELL doesn’t issue as many warnings).

Note that, just like in CRESC, you can skip the first argument (the initial volume setting). Also, note that
the final argument is the total number of bars to effect (and itmust be 2 or more).

7Some references indicate thatmessa di voceapplies to a single tone, andMmA is not capable of doing this.

125

19.6 RVolume Volume and Dynamics

19.6 RVolume

Not even the best musician can play each note at the same volume. Nor would he or she want to—the
result would be quite unmusical . . . soMmA tries to be a bit human by randomly adjusting note volume
with the RVOLUME command.

The command can be applied to any specific track. Examples:

Chord RVolume 10
Drum-Snare RVolume 5

The RVOLUME argument is a percentage value by which a volume is adjusted.A setting of 0 disables the
adjustment for a track (this is the default).

When set, the note velocity (after the track and master volumeadjustments) is randomized up or down by
the value. Again, using the above example, let us assume thata note in the current pattern gets a MIDI
velocity of 88. The random factor of 10 will adjust this by 10%up or down—the new value can be from
78 to 98.

The idea behind this is to give the track a more human soundingeffect. You can use large values, but it’s
not recommended. Usually, values in the 5 to 10 range work well. You might want slightly larger values
for drum tracks.

You can further fine-tune the RVOLUME settings by using a minimum and maximum value in the form
M INIMUM ,MAXIMUM . Note theCOMMA! For example:

Chord RVolume 0,10 -10,0 -10,20 8

Would set different minimum and maximum adjustment values for different sequence points. In the above
example the adjustments would be in the range 0 to 10, -10 to 0,-10 to 20 and -8 to 8.

Notes:

� No generated value will be out of the valid MIDI velocity range of 1 to 127.

� A different value can be used for each bar in a sequence:

Scale RVolume 5,10 0 / 20

� A “/” can be used to repeat values.

19.7 Saving and Restoring Volumes

Dynamics can get quite complicated, especially when you areadjusting the volumes of a track inside a
repeat or other complicated sections of music. In this section attempts to give some general guidelines and
hints.

For the most part, the supplied groove files will have balanced volumes between the different instruments.
If you find that some instruments or drum tones are consistently too loud or soft, spend some time with
the chapter on Fine Tuning, page 176.

126

19.7 Saving and Restoring Volumes Volume and Dynamics

Remember that GROOVEs save all the current volume settings. This includes the master setting as well
as individual track settings. So, if you are using the mythical groove “Wonderful” and think that the
Chord-Pianovolume should be louder in a particular song it’s easy to do something like:

Groove Wonderful
Chord-Piano Volume ff
DefGroove Wonderful

Now, when you call this groove the new volume will be used. Note that you’ll have to do this for each
variation of the groove that you use in the song.

In most songs you will not need to do major changes. But, it is nice to use the same volume each time
though a section. In most cases you’ll want to do a explicit setting at the start of a section. For example:

Repeat
Volume mf
...
Cresc ff 5
...
EndRepeat

Another useful technique is the use of the $LASTVOLUME macro. For example:

Volume pp
...
Cresc f 5
...
$ LastVolume // restores to pp

127

Chapter 20

Repeats

MmA attempts to be as comfortable to use as standard sheet music.This includesrepeatsandendings.

More complex structures likeD.S., Coda, etc. arenot directly supported. But, they are easily simulated
with by using some simple variables, conditionals and GOTOs. See chapter 21 for details. Often as not,
it may be easier to use your editor to cut, paste and duplicate. Another, alternate, method of handling
complicated repeats is to set sections of code in MSET (see page 133) variables and simply expand those.

A section of music to be repeated is indicated with a REPEAT and REPEATEND or ENDREPEAT.1 In
addition, you can have REPEATENDINGS.

1,2. 3. 4.A4
4

!Am !C !D7 TT !Dm D7 TT !G7 !A

Repeat
1 Am
2 C
RepeatEnding 2
3 D7
RepeatEnding
4 D7 / Dm
RepeatEnd
5 G7
6 A

Example 20.1: Repeats

In example 20.1MmA produces music with bars:

1, 2, 3,

1The reason for both ENDREPEAT and REPEATEND is to match IFEND and ENDIF.

128

Repeats

1, 2, 3,
1, 2, 4,
1, 2, 5, 6

This works just like standard sheet music. Note that both REPEATENDING and REPEATEND can take an
optional argument indicating the number of times to use the ending or to repeat the block. The effect of an
optional count for REPEATENDING is illustrated in the example, above. The following simple example:

Repeat
1 Am
2 Cm
RepeatEnd 3

Will expand to:

1, 2,
1, 2,
1, 2

Note that the optional argument “3” produces a total of threecopies. The default argument for REPEAT

is “2”. Using “1” cancels the REPEAT and “0” deletes the entire section. Using “1” and “0” are useful in
setting up Coda sections where you want a different count the second time the section is played. Note that
the count argument can be a macro. Have a look at the sample fileegs/misc/repeats.mma for lots of
examples.

Combining optional counts with both REPEATENDING and REPEATEND is permitted. Another example:

Repeat
1 Am
2 C
RepeatEnding 2
3 D7
RepeatEnd 2

Produces:

1, 2, 3,
1, 2, 3,
1, 2,
1, 2

MmA processes repeats by reading the input file and creating duplicates of the repeated material. This means
that a directive in the repeated material would be processedmultiple times. Unless you know what you
are doing, directives should not be inserted in repeat sections. Be especially careful if you define a pattern
inside a repeat. Using TEMPO with a “+” or “-” will be problematic as well.

Repeats can be nested to any level.

Some count values for REPEATEND or ENDREPEAT and REPEATENDING will generate a warning mes-
sage. Using the optional textNoWarnas the first argument will suppress the message:

129

Repeats

Repeat
...
RepeatEnd Nowarn 1

There must be one REPEATEND or ENDREPEAT for every REPEAT. Any number of REPEATENDINGs
can be included before the REPEATEND.

130

Chapter 21

Variables, Conditionals and Jumps

To make the processing of your music easier,MmA supports a very primitive set for variable manipulations
along with some conditional testing and the oft-frowned-upon GOTO command.

21.1 Variables

MmA lets you set a variable, much like in other programming languages and to do some basic manipulations
on them. Variables are most likely to be used for two reasons:

� For use in setting up conditional segments of your file,

� As a shortcut to entering complex chord sequences.

To begin, the following list shows the available commands toset and manipulate variables:

Set VariableName String
Mset VariableName ...MsetEnd
UnSet VariableName
ShowVars
Inc Variablename [value]
Dec Variablename [value]
Vexpand ON/Off

All variable names are case-insensitive. Any characters can be used in a variable name. The only excep-
tions are that a variable name cannot start with a “$” or a “” (an underscore—this is reserved for internal
variables, see below)and names cannot contain a “[” or “]” character (brace characters are reserved for
indexing, see page 139).

Variables are set and manipulated by using their names. Variables are expanded when their name is
prefaced by a space followed by single “$” sign. For example:

Set Silly Am / Bm /
1 $Silly

The first line creates the variable “Silly”; the second creates a bar of music with the chords “Am / Bm /”.

Note that the “$” must be the first item on a line or follow a space character. For example, the following
will NOT work:

131

21.1 Variables Variables, Conditionals and Jumps

Set Silly 4a;b;c;d;
1 Am {$Silly }

However:

1 Am { $Silly }

will work fine.

Following are details on all the available variable commands:

21.1.1 Set

Set or create a variable. You can skip theString if you do want to assign an empty string to the variable.
A valid example is:

Set PassCount 1

You can concatenate variables or constants by using a single“+”. For example:

Groove Rhumba
Repeat
...
Set a $ Groove + Sus
Groove $a
...
Groove Rhumba1
Repeatend

This can be useful in calling GROOVE variations.

21.1.2 NewSet

The NEWSET command works the same as SET with the exception that that it is completely ignored if the
variable already exists. So,

NewSet ChordVoice JazzGuitar

and

If NDef ChordVoice
Set ChordVoice JazzGuitar

Endif

have identical results.

132

21.1 Variables Variables, Conditionals and Jumps

21.1.3 Mset

This command is quite similar to SET, but MSET expects multiple lines. An example:

MSet LongVar
1 Cm
2 Gm
3 G7

MsetEnd

It is quite possible to set a variable to hold an entire section of music (perhaps a chorus) and insert this via
macro expansion at various places in your file.

Each MSET must be terminated by a ENDMSET or MSETEND command (on its own separate line).

Be careful if you use an MSET variable in a PRINT statement . . . you’ll probably get an error. The PRINT

command will print thefirst line of the variable and the remainder will be reinserted into the input stream
for interpretation.

Special code inMmA will maintain the block settings from BEGIN/END. So, you can do something like:

Mset Spam
Line one
Line 2
333

EndMset
Begin Print

$Spam
End

21.1.4 RndSet

There are times when you may want a random value to use in selecting a GROOVE or for other more
creative purposes. The RNDSET command sets a variable from a value in a list. The list can be anything;
just remember that each white space forms the start of a new item. So,

RndSet Var 1 2 3 4 5

will set $VAR to one of the values 1, 2, 3, 4 or 5.

You could use this to randomly select a GROOVE:

Groove $var Groove1 Groove2 Groove3

Alternately,

RndSet Grv Groove1 Groove2 Groove3

will set $GRV to one of “Groove1”, “Groove2” or “Groove3”.

Then you can do the same as in the earlier example with:

133

21.1 Variables Variables, Conditionals and Jumps

Groove $Grv

You can also have fun using random values for timing, transposition, etc.

21.1.5 UnSet VariableName

Removes the variable. This can be useful if you have conditional tests which simply rely on a certain
variable being “defined”.

21.1.6 ShowVars

Mainly used for debugging, this command displays the names of the defined variables and their contents.
The display will preface each variable name with a “$”. Note that internalMmA variables are not displayed
with this command.

You can call SHOWVARS with an argument list. In this case the values of the variables names in the list
will be printed. Variables which do not exist willnot cause an error, e.g.:

ShowVars xXx Count foo
$XXX - not defined
$COUNT: 11
$FOO: This is Foo

21.1.7 Inc and Dec

These commands increment or decrement a variable. If no argument is given, a value of 1 is used; other-
wise, the value specified is used. The value can be an integer or a floating point number.

A short example:

Set PassCount 1
Set Foobar 4
Showvars
Inc FooBar 4
Inc PassCount
ShowVars

This command is quite useful for creating conditional testsfor proper handling of codas or groove changes
in repeats.

21.1.8 VExpand On or Off

Normally variable expansion is enabled. These two options will turn expansion on or off. Why would you
want to do this? Well, here’s a simple example:

134

21.1 Variables Variables, Conditionals and Jumps

Set LeftC Am Em
Set RightC G /
VExpand Off
Set Full $LeftC $RightC
VExpand On

In this case the actual contents of the variable “Full” is “$LeftC $RightC”. If the OFF/ON option lines
had not been used, the contents would be “Am Em G /”. You can easily verify this with the SHOWVARS

option.

WhenMmA processes a file it expands variables in a recursive manner. This means that, in the above
example, the line:

1 $Full

will be changed to:

1 Am Em G /

However, if later in the file, you change the definition of one of the variables . . . for example:

Set LeftC Am /

the same line will now be “1 Am / G /”.

Most ofMmA’s internal commandscanbe redefined with variables. However, you really shouldn’t use this
feature. It’s been left for two reasons: it might be useful, and, it’s hard to disable.

Not all commands can be redefined. The following examples will work, howeverin most cases we recom-
mend that you do not redefineMmA commands.

Set Rate Tempo 120
$Rate
Set R Repeat
$R

Set B Begin
Set E End
$B Arpeggio Define
...
$E

Set A Define Arpeggio
Begin
$a ...
End

Even though you can use a variable to substitute for the REPEATor IF directives, using one for REPEATEND,
ENDREPEAT, REPEATENDING, LABEL, IFEND or ENDIF will fail.

Variable expansion should usually not be a concern. In most normal files,MmA will expand variables as
they are encountered. However, when reading the data in a REPEAT, IF or MSET section the expansion

135

21.2 Predefined Variables Variables, Conditionals and Jumps

function is skipped—but, when the lines are processed, after being stored in an internal queue, variables
are expanded.

21.1.9 StackValue

Sometimes you just want to save a value for a few lines of code.The STACKVALUE command will save
its arguments. You can later retrieve them via the $StackValue macro. For example (taken from the
stdpats.mma file):

StackValue $ SwingMode
SwingMode On
Begin Drum Define

Swing8 1 0 90 * 8
End

...
SwingMode $ StackValue

Note that the $StackValue macro removes the last value from the stack. If you invoke the macro when
there is nothing saved an error will occur.

21.2 Predefined Variables

For your convenienceMmA tracks a number of internal settings and you can access thesevalues with special
macros.1 All of these “system” variables are prefaced with a single underscore. For example, the current
tempo is displayed with the variable $TEMPO.

There are two categories of system variables. The first are the simple values for global settings:

$ AutoLibPath Current AUTOL IBPATH setting.

$ BarNum Current bar number of song.

$ Debug Current debug settings.

$ Groove Name of the currently selected groove. May be empty if no groove has been selected.

$ KeySig Key signature as defined in song file. If no key signature is setthe somewhat cryptic 0# will
be returned.

$ IncPath Current INCPATH setting.

$ LastDebug Debug settings prior to last DEBUG command. This setting can be used to restore settings,
e.g.:

1The values are dynamically created and reflect the current settings, and may not be exactly the same as the value you
originally set due to internal roundings, etc.

136

21.2 Predefined Variables Variables, Conditionals and Jumps

Debug Warnings=off
...stuff generating annoying warnings
Debug $ LastDebug

$ LastGroove Name of the groove selectedbeforethe currently selected groove.

$ LastVolume Previously set global volume setting.

$ LibPath Current LIBPATH setting.

$ LineNum Line number in current file.

$ Lyric Current LYRIC settings.

$ MIDISplit List of SPLITCHANNELS.

$ OutPath Current OUTPATH setting.

$ MIDIPlayer Current MIDI PLAYER setting, including options.

$ Seq Current SEQ point (0 to SEQSIZE). Useful in debugging.

$ SeqRnd Global SEQRND setting (on, off or track list).

$ SeqRndWeight Global SEQRNDWEIGHT settings.

$ SeqSizeCurrent SEQSIZE setting.

$ SwingMode Current SWINGMODE setting (On or Off) and the Skew value.

$ StackValue The last value stored on the STACKVALUE stack.

$ Tempo Current TEMPO. Note that if you have used the optionalbar countin setting the tempo this
will be the target tempo.

$ Time The current TIME (beats per bar) setting.

$ ToneTr List of all TONETR settings.

$ Transpose Current TRANSPOSEsetting.

$ VExpand VExpand value (On/Off). Not very useful since you can’t enable VEXPAND back with a
macro.

$ VoiceTr List of all VOICETR settings.

$ Volume Current global volume setting.

$ VolumeRatio Global volume ratio (track vrs. master) from ADJUSTVOLUME Ratio setting.

The second type of system variable is for settings in a certain track. Each of these variables is in the
form $ TRACKNAME VALUE. For example, the current voice setting for the “Bass-Sus” track can be
accessed with the variable $Bass-SusVoice.

If the associated command permits a value for each sequence in your pattern, the macro will more than
one value. For example (assuming a SEQSIZE of 4):

137

21.2 Predefined Variables Variables, Conditionals and Jumps

Bass Octave 3 4 2 4
Print $ Bass Octave
...
3 4 2 4

The following are the available “TrackName” macros:

$ TRACKNAME Accent

$ TRACKNAME Articulate

$ TRACKNAME Channel Assigned MIDI channel 1–16, 0 if not assigned.

$ TRACKNAME Compress

$ TRACKNAME Direction

$ TRACKNAME DupRoot (only permitted in Chord Tracks)

$ TRACKNAME Harmony

$ TRACKNAME HarmonyVolume

$ TRACKNAME Invert

$ TRACKNAME Limit

$ TRACKNAME Mallet Rate and delay values (only valid in Solo and Melody tracks)

$ TRACKNAME MidiNote Current setting

$ TRACKNAME NoteSpan

$ TRACKNAME Octave

$ TRACKNAME Ornament (all options)

$ TRACKNAME Range

$ TRACKNAME Rskip

$ TRACKNAME Rtime

$ TRACKNAME Rvolume

$ TRACKNAME SeqRnd

$ TRACKNAME SeqRndWeight

$ TRACKNAME Sequence

$ TRACKNAME Span

$ TRACKNAME Strum (only permitted in Chord tracks)

$ TRACKNAME Tone (only permitted in Drum tracks)

$ TRACKNAME Unify

138

21.3 Indexing and Slicing Variables, Conditionals and Jumps

$ TRACKNAME Voice

$ TRACKNAME Voicing (only permitted in Chord tracks)

$ TRACKNAME Volume

The “TrackName” macros are useful in copying values betweennon-similar tracks and CHSHARE tracks.
For example:

Begin Bass
Voice AcousticBass
Octave 3
...

End
Begin Walk

ChShare Bass
Voice $ Bass Voice
Octave $ Bass Octave
...

End

21.3 Indexing and Slicing

All variables can have an optionsliceor indexappended to them using “[]” notation. The exact syntax of
the data in the “[]”s is dependent on the underlying Python interpreter. But, as a summary:

[2] - selects the 3rd item in the list,

[1:2] - selects the 2nd to 3rd item (which means only the 2nd),

[0:2] - selects items 1 and 2,

[-1] - selects the last item.

It is possible to use thestepoption as well, but we don’t know when you would.

When indexing or slicing a variable, the following should be kept in mind:

� For simple variables which contain only one element (ie. $Tempo) any index other than “[0]”,
“[-1]”, etc. will return an empty string.

� Variables containing multiple values (ie. $BassVolume) are treated as list. Slicing and indexing is
useful to extract a single value.

� Variables created with MSET are treated a list of lines. Slicing returns multiple (or single) lines.
This can be useful in selecting only a portion of a previouslycreated variable.

The “[]” must follow the variablewithout any space characters. The expression inside the “[]” must not
contain any spaces.

139

21.4 Mathematical Expressions Variables, Conditionals and Jumps

The index or slice expression cannot be a variable.

An example:

Groove bossanova
Bass Volume m mf p mp
print $ Bass Volume
print $ Bass Volume[1:3]
print $ Bass volume[2]

will display:

100 110 40 70
110 40
40

21.4 Mathematical Expressions

Anywhere you can use a variable (user defined or built-in) youcan also use a mathematical expression.
Expressions delimited in a $(. . .) set are passed to the underlying Python interpreter, parsed and expanded.
Included in an expression can be any combination of values, operators, andMmA variables.

Here are a couple of examples with theMmA generated values:

Print $(123 * (4.0/5))
98.4

Tempo 100
Set V $($ Tempo + 44)
Print $v

144

How it works: MmA first parses each line and expands any variables it finds. In the second example this
means that the $Tempo is converted to “100”. After all the variable expansion is done a check is made to
find math delimiters. Anything inside these delimiters is evaluated by Python.

You can even use this feature to modify values stored in lists.2 A bit complex, but well worthwhile! In the
following example we add “10” to the current ARTICULATE setting. It’s split into three lines to make it
clearer:

set a $(’ $ Chord Articulate ’.split())

Note the use of single quotes to convert theMmA “string” to something Python can deal with. You could
just as easily use double quotes, but do note that the spaces before the “$” and before the final “ ’ ” are
needed. The result of the above is that the variable “$a” now is set to something like: “[’100’, ’100’, ’90’,
’80’]”.

2this was written before the introduction of slices, (see section 21.3). Slices make this much easier, but lets leave the hard
stuff in just to show what can be done.

140

21.4 Mathematical Expressions Variables, Conditionals and Jumps

set b $([str(int(x)+10)for x in $a])

Next we use a list comprehension to add “10” to each value in the list. Our new list (contained in “$b”)
will be: “[’110’, ’110’, ’100’, ’90’]”. Notice how the strings were converted from strings to integers (for
the addition) and then back to strings.

set c $(’ ’.join($b))

The new list is now converted to a string whichMmA can deal with and store it in “$c”. In this case: “110
110 100 90”.

Chord Articulate $c

Finally, CHORD ARTICULATE is modified.

Now, that that is clear, you can easily combine the operationusing no variables at all:

Chord Articulate $(’ ’.join([str(int(x)+10)for x in’ $ Chord Articulate
’.split()]))

Some additional notes:

� To keep your computer safe from malicious scripts, only the following operators and functions are
permitted.

The unary operators:

- + ˜

the basic operators:

+ - / // % * **

the bitwise operators:

& | ˆ << >>

the constants:

e pi

the functions:

ceil() fabs() floor() exp() log() log10() pow()
sqrt() acos() asin() atan() atan2() cos() hypot()
sin() tan() degrees() radians() cosh() sinh()
tanh() abs() chr() int()

the miscellaneous functions:3

for, in, str(), .join(), .split()

and values and parentheses.

3It is possible that the following functions could be used to do “bad” things. If you see code using these commands from a
suspect source you should be careful.

141

21.5 Conditionals Variables, Conditionals and Jumps

� For details on the use/format of the above please refer to thePython documentation.

� $(. . .) expressions cannot be nested.

� There must be a whitespace character before the leading $.

� Any MmA variables must be delimited with whitespace. For example $($ Tempo + 44) will work;
however, both $($Tempo + 44) and $($Tempo+ 44) will cause an error.

� The supplied fileegs/misc/math.mma shows a number of examples.

21.5 Conditionals

One of the most important reasons to have variables inMmA is to use them in conditionals. InMmA a
conditional consists of a line starting with an IF directive, a test, a series of lines to process (depending
upon the result of the test), and a closing ENDIF or IFEND4 directive. An optional ELSE statement may
be included.

The first set of tests are unary (they take no arguments):

Def VariableName Returns true if the variable has been defined.

Ndef VariableName Returns true if the variable has not been defined.

In the above tests you must supply the name of a variable—don’t make the mistake of including a “$”
which will invoke expansion and result in something you werenot expecting.

A simple example:

If Def InCoda
5 Cm
6 /

Endif

The other tests are binary (they take two arguments):

LT Str1 Str2 Returns true ifStr1 is less thanStr2. (Please see the discussion below on how the tests are
done.)

LE Str1 Str2 Returns true ifstr1 is less than or equal toStr2.

EQ Str1 Str2 Returns true ifstr1 is equal toStr2.

NE Str1 Str2 Returns true ifstr1 is not equal toStr2.

GT Str1 Str2 Returns true ifstr1 is greater thanStr2.

GE Str1 Str2 Returns true ifstr1 is greater than or equal toStr2.

4MmA’s author probably suffers from mild dyslexia and can’t remember if the command is IfEnd or EndIf, so both are
permitted. Use whichever is more comfortable for you.

142

21.5 Conditionals Variables, Conditionals and Jumps

In the above tests you have several choices in specifyingStr1andStr2. At some point, whenMmA does the
actual comparison, two strings or numeric values are expected. So, you really could do:

If EQ abc ABC

and get a “true” result. The reason that “abc” equals “ABC” is that all the comparisons inMmA are case-
insensitive.

You can also compare a variable to a string:

If GT $foo abc

will evaluate to “true” if thecontentsof the variable “foo” evaluates to something “greater than”“abc”.
But, there is a bit of a “gotcha” here. If you have set “foo” to a two word string, thenMmA will choke on
the command. In the following example:

Set Foo A B
If GT $Foo abc

the comparison is passed the line:

If GT A B abc

andMmA seeing three arguments generates an error. If you want the comparison done on a variable which
might be more than one word, use the “$$” syntax. This delays the expansion of the variable until the IF

directive is entered. So:

If GT $$foo abc

would generate a comparison between “A B” and “ABC”.

Delayed expansion can be applied to either variable. It onlyworks in an IF directive.

Strings and numeric values can be confusing in comparisons.For example, if you have the strings “22”
and ”3” and compare them as strings, “3” is greater than “22”;however, if you compare them as values
then 3 is less than 22.

The rule inMmA is quite simple: If either string in a comparison is a numericvalue, both strings are
converted to values. Otherwise they are compared as strings.5

This lets you do consistent comparisons in situations like:

Set Count 1
If LE $$Count 4

...
IfEnd

Note that the above example could have used “$Count”, but you should probably always use the “$$” in
tests.

Much like other programming languages, an optional ELSE condition may be used:

5An attempt is made to convert each string to a float. If conversion of both strings is successful, the comparison is made
between two floats, otherwise two strings are used.

143

21.6 Goto Variables, Conditionals and Jumps

If Def Coda
Groove Rhumba1

Else
Groove Rhumba

Endif

The ELSE statement(s) are processed only if the test for the IF test is false.

Nesting of IFs is permitted:

If ndef Foo
Print Foo has been defined.

Else
If def bar

Print bar has been defined. Cool.
Else

Print no bar ...go thirsty.
Endif

Endif

works just fine. Indentation has been used in these examples to clearly show the nesting and conditions.
You should do the same.

21.6 Goto

The GOTO command redirects the execution order of your script to the point at which a LABEL or line
number has been defined. There are really two parts to this:

1. A command defining a label, and,

2. The GOTO command.

A label is set with the LABEL directive:

Label Point1

The string defining the label can be any sequence of characters. Labels are case-insensitive.

To make this look a lot more line those old BASIC programs, anylines starting with a line number are
considered to be label lines as well.

A few considerations on labels and line numbers:

� A duplicate label generated with a LABEL command will generate an error.

� A line number label duplicating a LABEL is an error.

� A L ABEL duplicating a line number is an error.

� Duplicate line numbers are permitted. The last one encountered will be the one used.

144

21.6 Goto Variables, Conditionals and Jumps

� All label points are generated when the file is opened, not as it is parsed.

� Line numbers (really, just comments) do not need to be in any order.

The command:

Goto Point1

causes an immediate jump to a new point in the file. If you are currently in repeat or conditional segment
of the file, the remaining lines in that segment will be ignored.

MmA does not check to see if you are jumping into a repeat or conditional section of code—but doing so
will usually cause an error. Jumping out of these sections isusually safe.

The following example shows the use of both types of label. Inthis example only lines 2, 3, 5 and 6 will
be processed.

Goto Foo
1 Cm
Label Foo
2 Dm
3 /
Goto 5
4 Am
5 Cm
6 Dm

For an example of how to use some simple labels to simulate a “DS al Coda” examine the file “lullaby-of-
Broadway” in the sample songs directory.

145

Chapter 22

Low Level MIDI Commands

The commands discussed in this chapter directly effect yourMIDI output devices.

Not all MIDI devices are equal. Many of the effects in this chapter may be ignored by your devices. Sorry,
but that’s just the way MIDI is.

22.1 Channel

As noted in the Tracks and Channels chapter (page 20)MmA assigns MIDI channels dynamically as it
creates tracks. In most cases this works fine; however, you can if you wish force the assignment of a
specific MIDI channel to a track with the CHANNEL command.

You cannot assign a channel number to a track if it already defined (well, see the section CHSHARE, below,
for the inevitable exception), nor can you change the channel assignments for any of the DRUM tracks.

Let us assume that you want theBasstrack assigned to MIDI channel 8. Simply use:

Bass Channel 8

Caution: If the selected channel is already in use an error will be generated. Due to the wayMmA allocates
tracks, if you really need to manually assign track it is recommended that you do this in a MMARC file.

You can disable a channel at any time by using a channel numberof 0:

Arpeggio-1 Channel 0

will disable the Arpeggio-1 channel, freeing it for use by other tracks. A warning message is generated.
Disabling a track without a valid channel is fine. When you set achannel to 0 the track is also disabled.
You can restart the track with the ON command (see page 189).

You don’t need to have a valid MIDI channel assigned to a trackto do things like: MIDIPAN, MIDIG LIS,
MIDIV OLUME or even the assignment of any music to a track. MIDI data is created in tracks and then
sent out to the MIDI buffers. Channel assignment is checked and allocated at this point, and an error will
be generated if no channels are available.

It’s quite acceptable to do channel reassignments in the middle of a song. Just assign channel 0 to the
unneeded track first.

MIDI channel settings arenot saved in GROOVEs.

146

22.2 ChannelPref Low Level MIDI Commands

MmA inserts a MIDI “track name” meta event when the channel buffers are first assigned at a MIDI offset
of 0. If the MIDI channel is reassigned, a new “track name” is inserted at the current song offset.

A more general method is to use CHANNELPREF detailed below.

You can access the currently assigned channel with the $TRACK CHANNEL macro.

22.2 ChannelPref

If you prefer to have certain tracks assigned to certain channels you can use the CHANNELPREFcommand
to create a custom set of preferences. By default,MmA assigns channels starting at 16 and working down to
1 (with the expectation of drum tracks which are all assignedchannel 10). If, for example, you would like
theBasstrack to be on channel 9, sustained bass on channel 3, andArpeggioon channel 5, you can have
a command like:

ChannelPref Bass=9 Arpeggio=5 Bass-Sus=3

Most likely this will be in yourMMARC file.

You can use multiple command lines, or have multiple assignments on a single line. Just make sure that
each item consists of a trackname, an “=” and a channel numberin the range 1 to 16.

If a channel has already been assigned this command will probably be ignored. It should be usedbefore
any MIDI data is generated.

22.3 ChShare

MmA is fairly conservative in its use of MIDI tracks. “Out of the box” it demands a separate MIDI channel
for each of its tracks, but only as they are actually used. In most cases, this works just fine.

However, there are times when you might need more tracks thanthe available MIDI channels or you may
want to free up some channels for other programs.

If you have different tracks with the same voicing, it’s quite simple. For example, you might have an
arpeggio and scale track:

Arpeggio Sequence A16 z
Arpeggio Voice Piano1
Scale Sequence z S8
Scale Voice Piano1

In this example,MmA will use different MIDI channels for theArpeggioand theScale. Now, if you force
channel sharing:

147

22.3 ChShare Low Level MIDI Commands

Scale ChShare Arpeggio

both tracks will use the same MIDI channel.

This is really foolproof in the above example, especially since the same voice is being used for both. Now,
what if you wanted to use a different voice for the tracks?

Arpeggio Sequence A16 z
Arpeggio Voice Piano1 Strings
Scale Sequence z S8
Scale ChShare Arpeggio

You might think that this would work, but it doesn’t.MmA ignores voice changes for bars which don’t have
a sequence, so it will set “Piano1” for the first bar, then “Strings” for the second (so far, so good). But,
when it does the third bar (an ARPEGGIO) it will not know that the voice has been changed to “Strings”
by theScaletrack.

So, the general rule for track channel sharing is to use only one voice.

One more example which doesn’t work:

Arpeggio Sequence A8
Scale Sequence S4
Arpeggio Voice Piano1
Scale Voice Piano1
Scale ChShare Arpeggio

This example has an active scale and arpeggio sequence in each bar. Since both use the same voice, you
may think that it will work just fine . . . but it may not. The problem here is thatMmA will generate MIDI
on and off events which may overlap each other. One or the other will be truncated. If you are using a
different octave, it will work much better. It may sound okay, but you should probably find a better way
to do this.

When a CHSHARE directive is parsed the “shared” channel is first checked to ensure that it has been
assigned. If not currently assigned, the assignment is firstdone. What this means is that you are subverting
MmA’s normal dynamic channel allocation scheme. This may causeis a depletion of available channels.

Please note that that the use of the CHSHARE command is probably never really needed, so it might have
more problems than outlined here. If you want to see how much abother channel sharing becomes, have
a look at the standard library filefrenchwaltz.mma . All this so the accordion bass can use one channel
instead of 6. If I were to write it again I’d just let it suck up the MIDI channels.

For another, simpler, way of reassigning MIDI tracks and lettingMmA do most of the work for you, refer to
the DELETE command, see page 186.

148

22.4 ForceOut Low Level MIDI Commands

22.4 ForceOut

Under normal conditionsMmA only generates the MIDI tracks it thinks are valid or relevant. So, if you
create a track but insert no note data into that track it will not be generated. An easy way to verify this
is by creating file and runningMmA with the -c command line option. Lets start off by creating a file you
might think will set the keyboard channel on your synth to a TenorSax voice:

Begin Solo-Keyboard
Channel 1
Voice TenorSax
MIDIVolume 100

End

If you test this you should get:

$ mma test -c

File ’test’ parsed, but no MIDI file produced!

Tracks allocated:
SOLO-KEYBOARD

Channel assignments:
1 SOLO-KEYBOARD

So, aMmA track will be created. But if you compile this file and examine the resulting MIDI file you will
find that the voicehas notbeen set.1

To overcome this, insert the FORCEOUT command at the end of the track setup.

For example, here is a more complete file which will set the keyboard track (MIDI channel 1) to TenorSax
with a volume of 100, play a bar of accompaniment, set a Trumpet voice with a louder volume, play another
bar, and finally reset the keyboard to the default Piano voice. A cool way to program your keyboard for
different voicing changes so you can have more fun doing play-a-longs.

Groove BossaNova

Begin Solo
Channel 1
Voice TenorSax
MIDIVolume 100
ForceOut

End

1 C

1Depending on your initialization files, there may be other information MIDI in the track which is inserted into the output
file.

149

22.5 MIDI Low Level MIDI Commands

Begin Solo
Voice Trumpet
MIDIVolume 120
ForceOut

End

2 G

Begin Solo
Voice Piano1
MIDIVolume 127
ForceOut

End

Note: The same or similar results could be accomplished withthe MIDI command; however, it’s a bit
harder to use and the commands would be in the Meta track.

22.5 MIDI

The complete set of MIDI commands is not limitless—but from this end it seems that adding commands
to suit every possible configuration is never-ending. So, inan attempt to satisfy everyone, a command
which will place any arbitrary MIDI stream in your tracks hasbeen implemented. In most cases this will
be a MIDI “Sysex” or “Meta” event.

For example, you might want to start a song off with a MIDI reset:

MIDI 0xF0 0x05 0x7e 0x7f 0x09 0x01 0xf7

The values passed to the MIDI command are normal integers; however, they must all be in the range of
0x00 to 0xff. In most cases it is easiest to use hexadecimal numbers by using the “0x” prefix. But, you
can use plain decimal integers if you prefer.

In the above example:

0xF0 Designates a SYSEX message

0x05 The length of the message

0x7e . . . The actual message

Another example places the key signature of F major (1 flat) inthe meta track:2

MIDI 0xff 0x59 0x02 0xff 0x00

Somecautions:

2This is much easier to do with the KeySig command, page 187

150

22.6 MIDIClear Low Level MIDI Commands

� MmA makes no attempt to verify the validity of the data!

� The “Length” field must be manually calculated.

� Malformed sequences can create non-playable MIDI files. In extreme situations, these might even
damage your synth. You are on your own with this command . . . becareful.

� The MIDI directive always places data in theMeta track at the current time offset into the file. This
should not be a problem.

Cautions aside,includes/init.mma has been included in this distribution. I use this without apparent
problems; to use it add the command line:

MMAstart init

in your MMARC file. The file is pretty well commented and it sets a synth up to something reasonably
sane.

If you need a brief delay after a raw MIDI command, it is possible to insert a silent beat with the
BEATADJUSTcommand (see page 108). See the fileincludes/reset.mma for an example.

22.6 MIDIClear

As noted earlier in this manual you should be very careful in programming MIDI sequences into your song
and/or library files. Doing damage to a synthesizer is probably a remote possibility . . . but leaving it in a
unexpected mode is likely. For this reason the MIDICLEAR command has been added as a companion to
the MIDIVOICE and MIDISEQ commands.

Each time a MIDI track (not necessary the same as aMmA track) is ended or a new GROOVE is started,
a check is done to see if any MIDI data has been inserted in the track with a MIDIVOICE or MIDISEQ

command. If it has, a further check is done to see if there is an“undo” sequence defined via a MIDICLEAR

command. That data is then sent; or, if data has not be defined for the track, a warning message is
displayed.

The MIDICLEAR command uses the same syntax as MIDIVOICE and MIDISEQ; however, you can not
specify different sequence for different bars in the sequence:

Bass-Funky MIDIClear 1 Modulation 0; 1 ReleaseTime 0

As in MIDIV OICE and MIDISEQ you can include sequences defined in a MIDIDEF (see below). The
<beat>offsets are required, but ignored.

22.7 MIDICue

MIDI files can contain “cue points” to be used as pointers to sections of the file. InMmA you can insert
these in the meta-track:

151

22.8 MIDICopyright Low Level MIDI Commands

MidiCue Begin slow portion of song

or in a specified track:

Chord MidiCue Chords get louder here

Not all MIDI sequencers or editors recognize this event.

The text for this command is queued until the track is created. If the specified track is never created the
text is discarded.

22.8 MIDICopyright

Inserting a copyright message into a MIDI file may be a good idea, and it’s simple enough to do.

MidiCopyright (C) Bob van der Poel 2044

will insert the message “(C)..” as the first item in the first track of the generated file.3 You can have any
number of MIDI COPYRIGHT messages in your file. They will be inserted sequentially at the head of the
file. Command placement in your input file has no effect on the positioning.

22.9 MIDIDef

To make it easier to create long sets of commands for MIDISEQ and MIDICLEAR you can create special
macros. Each definition consists of a symbolic name, a beat offset, a controller name and a value. For
example:

MIDIdef Rel1 1 ReleaseTime 50; 3 ReleaseTime 0

creates a definition called “Rel1” with two controller events. The controller names can be a single value
or a permitted symbolic name (page 232).

You can have multiple controller events. Just list them with“;” delimiters.

22.10 MIDICresc and MIDIDecresc

Much like the track CRESCand DECRESC(page 123) commands, these commands change volume over
a set number of bars. However, unlike the previously mentioned commands, these commands utilize the
MIDI Channel Volume settings (page 168).

The two commands are identical, with the exception that MIDICRESC prints a warning if the second
argument is smaller than the first and MIDIDECRESCprints a warning if the second argument is larger
than the first.

3A copyright message is set as a meta-event with the coding<FF 02 Len Text>.

152

22.11 MIDIFile Low Level MIDI Commands

The first two arguments are MIDI values in the range 0 to 127. The third argument is the number of bars
to apply the command over.MmA distributes the needed values evenly over the bar range.MmA assumes
that your song will be long enough for the specifed bar count;if the song is too short you will end up with
volume settings past the end of the song (the MIDI file will be expanded for this).

To change the MIDI channel volume of the Bass track over three and a half bars:

Bass MidiCresc 50 100 3.5

The volume arguments for this command can also be set using the standard volume mnemonics “m”, “p”,
etc. (see (see page 119)).

For example:

Chord MidiDecresc mf pp 2

Please read the discussion for MIDIVOLUME (page 168) for more details.

22.11 MIDIFile

This option controls some fine points of the generated MIDI file. The command is issued with a se-
ries of parameters in the form “MODE=VALUE”. You can have multiple settings in a single MIDIFILE

command.

MmA can generate two types of SMF (Sta ndard MIDI Files):

0. This file contains only one track into which the data for allthe different channel tracks has been
merged. A number of synths which accept SMF (Casio, Yamaha andothers) only accept type 0
files.

1. This file has the data for each MIDI channel in its own track.This is the default file generated by
MmA.

You can set the filetype in an RC file (or, for that matter, in any file processed byMmA) with the command:

MidiFile SMF=0

or

MidiFile SMF=1

You can also set it on the command line with the -M option. Using the command line option will override
the MIDI SMF command if it is in a RC file.

By defaultMmA uses “running status” when generating MIDI files. This can bedisabled with the command:

MidiFile Running=0

or enabled (but this is the default) with:

153

22.12 MIDIGlis Low Level MIDI Commands

MidiFile Running=1

Files generated without running status will be about 20 to 30% larger than their compressed counterparts.
They may be useful for use with brain-dead sequencers and in debugging generated code. There is no
command line equivalent for this option.

22.12 MIDIGlis

This sets the MIDI portamento4 (in case you’re new to all this, portamento is like glissandobetween
notes—wonderful, if you like trombones! To enable portamento:

Arpeggio MIDIGlis 30

The parameter can be any value between 1 and 127. To turn the sliding off:

Arpeggio MIDIGlis 0

This command will work with any track (including drum tracks). However, the results may be somewhat
“interesting” or “disappointing”, and many MIDI devices don’t support portamento at all. So, be cautious.
The data generated is not sent into the MIDI stream until musical data is created for the relevant MIDI
channel.

22.13 MIDIInc

MmA has the ability to include a user supplied MIDI file at any point of its generated files. These included
files can be used to play a melodic solo over aMmA pattern or to fill a section of a song with something like
a drum solo.

When the MIDIINC command is encountered the current line is parsed for options, the file is inserted into
the stored MIDI stream, and processing continues. The include has no effect on any song pointers, etc.
Optionally, the MIDI data can be pushed into a SOLO or MELODY track and further processed by that
track’s optional settings (see the fileegs/midi-inc/README-riffs for a detailed tutorial on this option).

MIDI INC has a number of options, all set in the form OPTION=VALUE. Following are the recognized
options:

FILE The filename of the file to be included. This must be a complete filename. The filename will be
expanded by the Python os.path.expanduser() function for tilde expansion. No prefixes or extensions
are added byMmA. Examples: FILE=/home/bob/midi/myfile.mid . or FILE=\textasciitilde{}/
sounds/myfile.mid .

VOLUME An adjustment for the volume of all the note on events in the included MIDI file. The ad-
justment is specified as a percentage with values under 100 decreasing the volume and over 100

4The name “Glis” is used because “MIDIPortamento” gets to be abit long to type and “MIDIPort” might be interpreted as
something to do with “ports”.

154

22.13 MIDIInc Low Level MIDI Commands

increasing it. If the resultant volume (velocity) is less than 1 a velocity of 1 will be used; if it is over
127, 127 will be used. Example: VOLUME=80.

STRETCH This option is used to “stretch” or “compress” a file to match the timing of theMmA track. Val-
ues in the range of 1 to 500 are accepted. They specify, in percentage terms, the size of adjustment.
For example, STRETCH=200 will double the duration of the imported file. This is useful when the
time signature of the currentMmA file and the imported file differ. See the discussion for a similar
SOLO command on page 73.

OCTAVE Octave adjustment for all notes in the file. Values in the range -4 to 4 are permitted. Notes in
drum tracks (channel 10) will not be effected. Example: OCTAVE=2. Note: specifying an octave
does not set the selected track to that octave; it just adjusts notes by 12 (or 24, etc) pitches up or
down.

TRANSPOSE Transposition adjustment settings in the range -24 to 24 arepermitted. If you do not set
a value for this, the global transpose setting will be applied (excepting channel 10, drum, notes).
Example: TRANSPOSE=-2. Having different values for the global and import TRANSPOSEis fine
and should work as expected.

You should note that when you are using the TRACK RIFF (see below) and TRANSPOSEoptions
together you will end up with two levels of tranposition: onefrom the MIDI INC and a second when
the SOLO or MELODY data generated is parsed. This maynot be what you want.

LYRIC This option will copy anyLyric events to theMmA meta track. The valid settings are “On” or
“Off”. By default this is set to “Off”. Example: LYRIC=ON.

TEXT This option will copy anyTextevents to theMmA meta track. The valid settings are “On” or “Off”.
By default this is set to “Off”. Example: TEXT=ON.

START Specifies the start pointof the file to be includedin beats. For example, START=22 would start
the include process 22 beats into the file. The data will be inserted at the current song position in
your MMA file. The value used must greater or equal to 0 and may be a fractional beat value (18.456
is fine).

END Specifies the end pointof the file to be includedin beats. For example, END=100 would discard
all data after 100 beats in the file. The value used must be greater that theStartposition and can be
fractional.

REPORT Parse the MIDI file and print a summary report on the terminal.The MIDI data is note inserted,
nor is an output MIDI file created. To enable, include REPORT=ON; to duplicate the default use
REPORT=OFF. The most useful information generated are the note start data which you can use
with STRIPSILENCE.

STRIPSILENCE By default,MmA will strip off any silence at the start of an imported MIDI track. You
can avoid this behaviour by setting STRIPSILENCE=OFF, or set a specific amount to strip with the
STRIPSILENCE=VALUE option. To duplicate the default, use STRIPSILENCE=ON.

A problem with deleting silence is that different tracks in your file may have different “start” points.
If you are having a problem with included data not starting where you think it should, examine the
file with the REPORToption (above) and set the STRIPSILENCE factor manually. Eg:

155

22.13 MIDIInc Low Level MIDI Commands

MidiInc File=myfile.mid Solo=1 StripSilence=2345

IGNOREPC A MIDI file being imported may contain Program Change commands(voice changes). By
defaultMmA will strip these out so that the voices set in theMmA track are used. However, you can
override this by setting IGNOREPC=FALSE. To duplicate the default, use IGNOREPC=TRUE5

TRACK A tracknamemust be setinto which notes are inserted. You can set more than one track/channel
if you wish. For example, if you have the option DRUM=10 any notes in the MIDI file with a
channel 10 setting would be inserted into theMmA DRUM track. Similarity, SOLO-TENOR=1 will
copy notes from channel 1 into the SOLO-TENOR track. If the track doesn’t exist, it will be created.
Note: this means that the channel assignment in your included file and the newMmA generated file
will most likely be different.

To convert the data in the imported track into data that a SOLO or MELODY track can process append
the keyword RIFF to the channel number with a comma. The note on/off data will be converted into
RIFF commands and pushed into the specified track.

Further, you can append the key PRINT as well. The generated RIFFs will not be inserted into the
track but displayed on your computer monitor. This can be useful for debugging or to generate lines
which can be edited and inserted into a song file.

At least oneTRACK option is required to include a MIDI file. It is up to the user toexamine existing
MIDI files to determine the tracks being used and which to include intoMmA’s output.

A short example which you could insert into aMmA file is really this simple:

MIDIinc File=test.mid Solo-Piano=1 Drum=10 Volume=70

This will include the MIDI file “test.mid” at the current position and assign all notes in channel 1 to the
Solo-Pianotrack and the notes from channel 10 to theDrum track. The volumes for all the notes will be
adjusted to 70% of that in the original.

Slighty more complicated (and probably silly):

MidiInc File=test.mid Lyric=On Solo-Piano=1,Riff Solo-harmony=2,riff
Drum=10 Solo-Guitar=3

Will import the existing file “test.mid” and:

Lyrics will be read and inserted into the meta track,
Solo-Piano Data from channel 1 will be converted and inserted into the SOLO-PIANO track

as a series of RIFFs.
Solo-Harmony Data from channel 1 (again!) will be converted and inserted into the SOLO-HARMONY

track as a series of RIFFs.
Drum Channel 10 data will be copied into the DRUM track.
Solo-Guitar Channel 3 data will be copied into the SOLO-GUITAR track. Track settings (ie,

Articulate, Harmony) willnot be applied.

5“On” and “1” can be used instead of “True”; “Off” and “0” can beused instead of “False”.

156

22.14 MIDIMark Low Level MIDI Commands

More complete example of usage are shown in the directoryegs/midi-inc in the distribution.

A few notes:

� The import ignores the tempo setting in the MIDI header. Simply, this means that the MIDI files
to be included do not have to have the same tempo.MmA assumes a beat division of 192 (this is set
in bytes 12 and 13 of the MIDI file). If the included file differsa warning is printed andMmA will
attempt to adjust the timings, but there may be some (usuallynot noticeable) drift due to rounding.

� The included MIDI file is parsed to find the offset of the first note-on event. Notes to be included
are set with their offsets compensated by that time. This means that any silence at the start of the
included file is skipped (this may surprise you if you have used the optionalStart setting). Please
note the STRIPSILENCE option, above, for one work-a-round.

� If you want the data from the included MIDI file to start somewhere besides the start of the current
bar you can use a BEATADJUST before the MIDI INC—use another to move the pointer back right
after the include to keep the song pointer correct.

� Not all events in the included files are transferred: notably, all system and meta events (other than
text and lyric, see above) are ignored.

� If you want to apply different VOLUME or other options to different tracks, just do multiple includes
of the same file (with each include using a different track andoptions).

� MmA assumes that all the option pairs are valid. If an option pairisn’t a real directive, it is assumed
that the option is a valid track name. So, a line like:

MidiInc Files=test.mid Solo-Piano=1 Drum=10 Volume=70

will generate an error like:

MidiInc: FILES is not a valid MMA track.

Sorry, but we’re not the best guessers or parsers in the world.

For short snippets of MIDI you can insert individual events using the MIDINOTE command (page 158).

22.14 MIDIMark

You can insert a MIDI Marker event into the Meta track with this command. The mark can be useful in
debugging your MIDI output with a sequencer or editor which supports Mark events (most do).

MidiMark Label

will insert the text “Label” at the current position. You canadd an optional negative or positive offset in
beats:

157

22.15 MIDINote Low Level MIDI Commands

MidiMark 2 Label4

will insert “Label4” 2 beats into the next bar.

Note: the “mark” inserted can only be a single word. If you need a longer message see MIDI CUE

(page 151) or MIDI TEXT (page 166).

22.15 MIDINote

It is relatively easy to insert various melody and harmony notes into a song with SOLO and other tracks.
However, there are times when you may wish to insert a set of notes complete with MIDI timing and
velocities. These values can be hand generated or created byan external program.

The MIDINOTE command is used to insert one or more MIDI note on/off, controller or pitch bend events
directly into a track. If you have a large segment of MIDI datato insert you will probably want to generate
a MIDI file and insert it into your song with the MIDIINC command (page 154). MIDI NOTE is more
suited for short segments.

22.15.1 Setting Options

M IDI NOTE has a number of settings which modify its behavior. These options can be different for each
track and are set on a track-by-track basis. Options are reset to their defaults with the SEQCLEAR com-
mand (except for SOLO tracks). They arenot saved or modified by GROOVE commands.

M IDI NOTE takes various options in the OPTION=VALUE notation. Pleasenote that options can appear
on a line by themselves, or can be mixed into a data/command line. The order is not important—all option
pairs are parsed out of an input linebeforethe actual data is read. The following options are supported:

Transpose=On/Off By default MIDINOTE ignores the global TRANSPOSEsetting. If enabled, each note
will be adjusted by the global setting. Careful with this: TRANSPOSEis a global setting which
effectsall tracks; MIDI NOTE TRANSPOSEeffects only the specified track.

Offsets=Beats/TicksBy default a MIDI tick offset into the current position in the file is used. However,
you can change this to “Beats” so that conventionalMmA beat offset are used (see example below).

Duration=Notes/Ticks By default the note duration is specified using MIDI ticks. Setting the value to
“Notes” enables the use of conventionalMmA note durations (which are converted, internally, to MIDI
ticks.

Articulate=On/Off This option is OFF by default. If enabled the current ARTICULATE (page 182) setting
is applied to each event if the duration is set toNotes. Setting this option to “off” causes each note
to have its full value. If using “ticks” (the default) for theduration this command is ignored.

Octave=Value Octave adjustment will increase/decrease by the set numberof octaves for each note en-
tered in a NOTE command. Values in the range -4 to 4 are permitted. Notes in drum tracks (channel

158

22.15 MIDINote Low Level MIDI Commands

10) will not be effected. This has no effect on the underlyingtrack’s octave. Any generated notes
outside of the valid MIDI range of 0 to 127 will be adjusted to fit the range.

Volume=Value Use this option to adjust the volume (velocity) of the notes set with a NOTE command
(useful if you have played a melody on a keyboard and it is too loud/soft). The value is a percentage
adjustment factor and, by default, is set to 100. Values greater than 100 will make notes louder and
values less than 100 will make them softer. Using very large factors will cause all notes to have
maximum velocity (127); small factors will cause minimum velocity. Generated values less than 1
are magically set to 1; values greater than 127 are set to 127.The adjustment factor must be greater
than 0.

Adjust=Value This option is set to 0 by default. If a value is set all futureTick Offsetsin M IDI NOTE

directives will be adjusted by that value. This can be quite useful if you have a set of note on/off
events parsed from an existing MIDI file. Using the ADJUST value can shift the series back and
forth in your song file. The setting has no effect when using Beat offsets.

To duplicate the default settings you might use a line like:

Chord-Piano MidiNote Offsets=Ticks Duration=Ticks Articulate=Off
Transpose=Off Adjust=0 Volume=100 Octave=0

You can insert MIDI events directly into any track with a command line like:

Solo MidiNote Note 1 c#+ 100 4

The valid commands are NOTE (note on/off event), CTRL (controller event) and PB (pitch bend event),
PBR (series/range of pitch bend events), CHAT (a channel aftertouch event) and CHATR (series/range of
channel aftertouch events). Following is a detailed command set for each option:

22.15.2 Note Events

A M IDI NOTE NOTE event is specified with the “Note” keyword; however, the keyword doesn’t need to
be used. So:

Solo MidiNote 1 65 100 4

and

Solo MidiNote Note 1 65 100 4

are equivalent.

After the command you need to specify the offset, pitch, velocity and duration of the desired note.

Offset The offset into the current bar. The exact format depends of the global setting use (Ticks or Beats).
When using Ticks (the default) the offset is simply inserted into the current bar at the given offset.
To insert an event at the start of the current bar use “0”. If using Beats, you can use any valid offset
used in defining patterns (page 25). Values less than 1 will place the event before the current bar.
Note: when using Tick offsets they will be adjusted by the global ADJUSTsetting.

159

22.15 MIDINote Low Level MIDI Commands

� The value for the offset can be negative. This will generate an event before the start of the
current bar and a warning message will be displayed.

� Offsets can be fractional if using “beats”. Fractional values when using “ticks” will cause an
error.

Note The next field represents the MIDI note or pitch or a set of notes (a chord). Notes can be specified
with their MIDI value (0 to 127) or using standard notation pitch mnemonics.

A single note is specified with a MIDI value or mnemonic; a chord (multiple notes) is specified by
appending each desired note with a single comma. For example, to insert a C Major chord you could
use the line:

Solo MidiNote Note 1 c,e,g 90 192

Pitch names are used just like you would in a SOLO or MELODY track (page 69). The permitted
syntax is limited to the letters ’a’, ’b’, ’c’, ’d’, ’e’, ’f’ or ’g’ followed by an optional ’&’, ’#’ or ’n’
and a number of ’-’s or ’+’s. When a note pitch is specified by name the OCTAVE setting for the
track is honored. The current KEYSIG is applied toeachchord. Accidentals, whether set explicitly
or from a key signature,do notapply to successive chords.6Theydo apply to successive notes in a
chord, irrespective of octave. So, the chord “a#,a+,a++” would have all three “a”s sharp.

For DRUM tracks and SOLO or MELODY tracks which have the “DrumType” attribute set, you can
use drum tone mnemonics (page 230). The special tone “*” can be used to select the tone. In the
case of MELODY and SOLO tracks the current default tone is used (page 75); for DRUM tracks the
currently selected TONE (page 32). Use of the special “*” is useful when you have a series of drum
events—changing only the TONE is much easier than changing a number of MIDI NOTE commands.

Velocity The “volume” of the note is set with a MIDI velocity in the range 0 to 127. Notes with the
velocity of 0 will, probably, not sound.

Duration The length of the note is set in either MIDI ticks forMmA note durations, depending on the
global “Duration” setting. When using Ticks remember that 192 MIDI ticks equals a quarter note.
If you have enabled the Articulate setting and are using Notedurations the duration will be adjusted.

� When using “note” for the duration any validMmA note length is permitted. For example, using a
duration of “8+8” would generate the same duration as “4”.

� The MIDINOTE directive does not check for overlapping notes of the same pitch. These are easy to
create if long durations are specified and may not give the desired results.

� The SWING setting is ignored.

6The reason for this is thatMmA doesn’t really know when to stop applying an accidental in a set of MIDI NOTE commands
since they can easily span the current bar. It is thought bestto honor a key signature, but to reset it for each chord. Not quite
standard musical notation; but thenMmA isn’t notation.

160

22.15 MIDINote Low Level MIDI Commands

22.15.3 Controller Events

A MIDI controller event can be directly inserted at any pointin our song using a MIDI NOTE CONTROLLER

command. For example:

Solo MidiNote Ctrl 3 Modulation 90

will insert aModulationcontrol event. The necessary values are:

Offset Same as forNote. See above for details.

Controller This can be a value in the range 0 to 127 specifying the MIDI controller or a symbolic name.
See the appendix (page 232) for a list of defined names.

Datum The “parameter” value for the controller. Must be in the range 0 to 127.

22.15.4 Pitch Bend

A MIDI Pitch Bend event can be directly inserted at any point inour song using a MIDI NOTE PB com-
mand. For example:

Solo MidiNote PB 3 934

Offset Same as forNote. See above for details.

Value The value for a pitch bend event must be in the range -8191 to +8192.7 The exact effect of different
values is device dependant; however, -8191 sets the pitch bend to “as low as possible”, 8192 sets it
“as high as possible”, and 0 resets the pitch to neutral.

22.15.5 Pitch Bend Range

This command is just like PITCH BEND, described above, with the added feature of creating a series of
events over a period of time. This makes it easy to create various “swoops” and “slides” in your song. As
always, the example:

Solo MidiNote PBR 20 3,4 0,1000

Count This sets the total number of events to insert. Each event will be distributed over the specifedoffset
range.

Offset Range Two values joined with a single comma. Both values and the comma must be present. The
first value is the first event offset to use, the second is the last. Events will be evently distributed
over the two offsets. Each offset has the same format as as forNote.

Value Range Two values joined with a single comma. Both values and the comma must be present. The
first value is the initial pitch bend setting; the second is the final. The values will be incremented (or

7The number is a 14 bit value over 2 bytes. InternallyMmA converts the argument to a value 0 to 16383.

161

22.15 MIDINote Low Level MIDI Commands

decremented) for each event offset according to thecountvalue. See PITCH BEND, above, for the
range rules.

22.15.6 Channel Aftertouch

MIDI channel aftertouch events can be directly inserted in aMmA song using the MIDI NOTE CHAT com-
mand. For example:

Solo MidiNote ChAT 3 50

Offset Same as forNote. See above for details.

Value The value for a channel aftertouch event must be in the range 0to 127. The exact effect of this
command is highly specific to different synths; however, it applies to all currently sounding note
events on the specified channel. On some hardware (or software) the command is ignored; on others
it effects the volume or vibrato.

22.15.7 Channel Aftertouch Range

Just like CHANNEL AFTERTOUCH, described above, with the added feature of creating a series of events
over a period of time. Example:

Solo MidiNote ChATR 20 3,4 0,100

Count This sets the total number of events to insert. Each event will be distributed over the specifedoffset
range.

Offset Range Two values joined with a single comma. Both values and the comma must be present. The
first value is the first event offset to use, the second is the last. Events will be evently distributed
over the two offsets. Each offset has the same format as as forNote.

Value Range Two values joined with a single comma. Both values and the comma must be present. The
first value is the initial pitch bend setting; the second is the final. The values will be incremented
(or decremented) for each event offset according to thecountvalue. See CHANNEL AFTERTOUCH,
above, for the range rules.

� Remember that you can use hexadecimal notation for any of the above commands. A hex value is
one preceded by a “0x” . . . the decimal value 20 would be 0x14.

� M IDI NOTE is unaffected by GROOVE commands.

� Bar measure pointers arenot updated or affected.

� For an alternate method of including a complete MIDI file directly into a track please see the
MIDII NC command (page 154).

162

22.16 MIDIPan Low Level MIDI Commands

� Yet an another alternate method to be aware of is MIDI (page 150) which places events directly into
the Meta track.

22.16 MIDIPan

In MIDI-speak “pan” is the same as “balance” on a stereo. By adjusting the MIDIPAN for a track you can
direct the output to the left, right or both speakers. Example:

Bass MIDIPan 4

This command is only available in track mode. The data generated is not sent into the MIDI stream until
musical data is created for the relevant MIDI channel.

The value specified must be in the range 0 to 127, and must be an integer.

A variation for this command is to have the pan value change over a range of beats:

Solo MidiPan 10 120 4

in this case you must give exactly 3 arguments:

1. The initial pan value (0 to 127),

2. The final pan value (0 to 127),

3. The number of beats to apply the pan over.

Using a beat count you can create interesting effects with different instruments moving between the left
and right channels.

MIDIPAN is not saved or restored by GROOVEcommands, nor is it effected by SEQCLEAR. A MIDIPAN

is inserted directly into the MIDI track at the point at whichit is encountered in the music file. This means
that the effect of MIDIPAN will be in use until another MIDIPAN is encountered.

MIDIPAN can be used in MIDI compositions to emulate the sound of an orchestra. By assigning different
values to different groups of instruments, you can get the feeling of strings, horns, etc. all placed in the
“correct” position on the stage.

MIDIPAN can be used for much cruder purposes. When creating accompaniment tracks for a mythical
jazz group, you might set all the bass tracks (Bass, Walk, Bass-1, etc) set to aMIDIPAN 0. Now, when
practicing at home you have a “full band”; and the bass playercan practice without the generated bass
lines simply by turning off the left speaker.

Because most MIDI keyboard do not reset between tunes, there should be a MIDIPAN to undo the effects
at the end of the file. Example:8

8This is much easier to do with the MMAStart and MMAEnd options(see chapter 28).

163

22.17 MIDISeq Low Level MIDI Commands

Include swing
Groove Swing
Bass MIDIPan 0
Walk MIDIPan 0
1 C
2 C
...
123 C
Bass MIDIPan 64
Walk MIDIPan 64

22.17 MIDISeq

It is possible to associate a set of MIDI controller messageswith certain beats in a sequence. For example,
you might want to have the Modulation Wheel set for the first beats in a bar, but not for the third. The
following example shows how:

Seqsize 4
Begin Bass-2

Voice NylonGuitar
Octave 4
Sequence { 1 4 1 90; 2 4 3 90; 3 4 5 90; 4 4 1+ 90 }
MIDIDef WheelStuff 1 1 0x7f ; 2 1 0x50; 3 1 0
MidiSeq WheelStuff
Articulate 90

End

C ∗ 4

The MIDI SEQ command is specific to a track and is saved as part of the GROOVE definition. This lets
style file writers use enhanced MIDI features to dress up their sounds.

The command has the following syntax:

TrackName MidiSeq <Beat> <Controller> <Datum> [; ...]

where:

Beat is the Beat in the bar. This can be an integer (1,2, etc.) or a floating point value (1.2, 2.25, etc.). It
must be 1 or greater and less than the end of bar (in4

4 it must be less than 5).

Controller A valid MIDI controller. This can be a value in the range 0x00 to 0x7f or a symbolic name.
See the appendix (page 232) for a list of defined names.

Datum All controller messages use a single byte “parameter” in therange 0x00 to 0x7f.

164

22.18 MIDISplit Low Level MIDI Commands

You can enter the values in either standard decimal notationor in hexadecimal with the prefixed “0x”. In
most cases, your code will be clearer if you use values like “0x7f” rather than the equivalent “127”.

The MIDI sequences specified can take several forms:

1. A simple series like:

MIDISeq 1 ReleaseTime 50; 3 ReleaseTime 0

in this case the commands are applied to beats 1 and 3 in each bar of the sequence.

2. As a set of names predefined in an MIDIDEF command:

MIDISeq Rel1 Rel2

Here, the commands defined in “Rel1” are applied to the first barin the sequence, “Rel2” to the
second. And, if there are more bars in the sequence than definitions in the line, the series will be
repeated for each bar.

3. A set of series enclosed in{ } braces. Each braced series is applied to a different bar in the sequence.
The example above could have been does as:

MIDISeq { 1 ReleaseTime 50; 3 ReleaseTime 0 } /
{ 2 ReleaseTime 50; 4 ReleaseTime 0 }

4. Finally, you can combine the above into different combinations. For example:

MIDIDef Rel1 1 ReleaseTime 50
MIDIDef Rel2 2 ReleaseTime 50
MIDISeq { Rel1; 3 ReleaseTime 0 } { Rel2; 4 ReleaseTime 0 }

You can have specify different messages for different beats(or different messages/controllers for the same
beat) by listing them on the same MIDI SEQ line separated by “;”s.

If you need to repeat a sequence for a measure in a sequence youcan use the special notation “/” to force
the use of the previous line. The special symbol “z” or ”-” canbe used to disable a bar (or number of bars).
For example:

Bass-Dumb MIDISeq 1 ReleaseTime 20 z / FOOBAR

would set the “ReleaseTime” sequence for the first bar of the sequence, no MIDISeq events for the second
and third, and the contents of “FOOBAR” for the fourth.

To disable the sending of messages just use a single “-”:

Bass-2 MidiSeq - // disable controllers

22.18 MIDISplit

For certain post-processing effects it is convenient to have each different drum tone in a separate MIDI
track. This makes it easier to apply an effect to, for example, the snare drum. Just to make this a bit more

165

22.19 MIDIText Low Level MIDI Commands

fun you can split any track created byMmA.

To use this feature:

MIDISplit <list of channels>

So, to split out just the drum channel9 you would have the command:

MIDISplit 10

somewhere in your song file.

When processingMmA creates an internal list of MIDI note-on events for each toneor pitch in the track. It
then creates a separate MIDI track for each list. Any other events are written to another track.

22.19 MIDIText

This command inserts an arbitrary text string into a MIDI track at the current file position:

Chord-Sus MidiText I just love violins.

will insert the text event10 “I just love violins.” into the CHORD-SUS track.

Please note that if the specified track does not exist the textwill be queued. If the track is never created,
the command is ignored.

You can also insert text into the Meta track:

MidiText A message in the Meta Track

Since the Meta track always exists, no queueing is done.

22.20 MIDITname

When creating a MIDI track,MmA inserts a MIDI Track Name event at the start of the track. By default,
this name is the same as the associatedMmA track name. You can change this by issuing the MIDITNAME

command. For example, to change the CHORD track name you might do something like:

Chord MidiTname Piano

Please note that thisonly effects the tracks in the generated MIDI file. You still referto the track in your
file as CHORD.

You can also use this command to rename the automatic name inserted into the Meta track. WhenMmA
starts it inserts a Track Name event based on the filename at offset 0 in the Meta Track. For example, if
you have aMmA input file “dwr.mma” the a “Meta SeqName” event “dwr” will be inserted. A command
like:

9In MmA this will always be channel 10.
10This is a meta-event<FF 01 len msg>

166

22.21 MIDIVoice Low Level MIDI Commands

MidiTName My version of ‘‘Dancing with Roses’’

anywhere in the input file will remove the original text and insert a new event in its place.11

22.21 MIDIVoice

Similar to the MIDISEQ command discussed in the previous section, the MIDIVOICE command is used
to insert MIDI controller messages into your files. Instead of sending the data for each bar as MIDISEQ

does, this command just sends the listed control events at the start of a track and then, if needed, at the
start of each bar.

Again, a short example. Let us assume that you want to use the “Release Time” controller to sustain notes
in a bass line:

Seqsize 4
Begin Bass-2

Voice NylonGuitar
MidiVoice 1 ReleaseTime 50
Octave 4
Sequence { 1 4 1 90; 2 4 3 90; 3 4 5 90; 4 4 1+ 90 }
Articulate 60

End

C ∗ 4

should give an interesting effect.

The syntax for the command is:

Track MIDIVoice <beat> <controller> <Datum> [; ...]

This syntax is identical to that discussed in the section forMIDISEQ, above. The<beat>value is required
for the command—it determines if the data is sent before or after the VOICE command is sent. Some
controllers are reset by a voice, others not. My experimentsshow that BANK should be sent before, most
others after. Using a “beat” of “0” forces the MidiVoice datato be sent before the Voice control; any other
“beat” value causes the data to be sent after the Voice control. In this silly example:

Voice Piano1
MidiVoice {0 Bank 5; 1 ReleaseTime 100 }

the MIDI data is created in an order like:

0 Param Ch=xx Con=00 val=05
0 ProgCh Ch=xx Prog=00
0 Param Ch=xx Con=72 val=80

11A Track Name (SeqName) message is set as a meta-event with thecoding<FF 03 Len Text>.

167

22.22 MIDIVolume Low Level MIDI Commands

All the MIDI events occur at the same offset, but the order is (may be) important.

By defaultMmA assumes that the MIDIVoice data is to be used only for the firstbar in the sequence. But,
it’s possible to have a different sequence for each bar in thesequence (just like you can have a different
VOICE for each bar). In this case, group the different data groups with {} brackets:

Bass-1 MIDIVoice {1 ReleaseTime 50 } {1 ReleaseTime 20 }

This list is stored with other GROOVE data, so is ideal for inclusion in a style file.

If you want to disable this command after it has been issued you can use the form:

Track MIDIVoice - // disable

Some technical notes:

� MmA tracks the events sent for each bar and will not duplicate sequences.

� Be cautious in using this command to switch voice banks. If youdon’t switch the voice bank back
to a sane value you’ll be playing the wrong instruments!

� Do use the MIDICLEAR command (see section 22.6) to “undo” anything you’ve done via a MIDIVOICE

command.

22.22 MIDIVolume

MIDI devices equipped with mixer settings can make use of the“Channel” or “Master” volume settings.12

MmA doesn’t set any channel volumes without your knowledge. If you want to use a set of reasonable
defaults, look at the fileincludes/init.mma which sets all channels other than “1” to “100”. Channel
“1” is assumed to be a solo/keyboard track and is set to the maximum volume of “127”.

You can set selected MIDIVOLUMEs:

Chord MIDIVolume 55

will set the Chord track channel. For most users, the use of this command isnot recommended since it will
upset the balance of the library grooves. If you need a track softer or louder you should use the VOLUME

setting (which changes the MIDI velocities of each note) forthe track.

The data generated is not sent into the MIDI stream until musical data is created for the relevant MIDI
channel.

More sophisticated MIDI programs use MIDI volume changes incombination with velocity settings. If
you are going to do a “fancy arrangement” you’ll probably be better of using a dedicated sequencer/editor
to make the track-by-track volume changes. On the other hand, you may find that using MIDIVOLUME,
MIDIC RESCand MIDIDECRESC(page 152) works just fine.

12I discovered this on my keyboard after many frustrating hours attempting to balance the volumes in the library. Other
programs would change the keyboard settings, and not being aware of the changes, I’d end up scratching my head.

168

22.22 MIDIVolume Low Level MIDI Commands

The volume arguments for this command can also be set using the standard volume mnemonics “m”, “p”,
etc. (see (see page 119)).

Caution: If you use the command with ALLTRACKS you should note that only existingMmA tracks will be
effected.

169

Chapter 23

Patch Management

Modern music keyboards and synthesizers are capable of producing a bewildering variety of sounds. Many
consumer units priced well under $1000.00 contain several hundred or more unique voices. But, “out of
the box”MmA supports the 128 “General MIDI”1 preset voices as well as “extended” voices (see below).
These voices are assigned the values 0 to 127. We refer to the various voices as “tones”, “instruments”, or
“patches”.2

23.1 Voice

The MIDI instrument or voice used for a track is set with:

Chord-2 Voice Piano1

Voices apply only to the specified track. The actual instrument can be specified via the MIDI instrument
number, an “extended” value, or with the symbolic name. See the tables in the MIDI voicing section
(page 227) for lists of the standard, recognized names.

You can create interesting effects by varying the voice usedwith drum tracks. By default “Voice 0” is
used. However, you can change the drum voices. The supplied library files do not change the voices since
this is highly dependent on the MIDI synth you are using.

You can specify a different VOICE for each bar in a sequence. Repeated values can be representedwith a
“/”:

Chord Voice Piano1 / / Piano2

It is possible to set up translations for the selected voice:see the VOICETR command (see page 177).

To complicate matters a little bit more,MmA also adds a pseudo voice NONE which disables the generation
of MIDI code to select a default voice. This is useful when youset a given track to a specific MIDI channel
and you have preset an external synth. For example, suppose you want a SOLO track on MIDI channel 1
with no voice settings:

1The General MIDI or GM standard was developed by the MIDI Manufactures Association.
2“Patch” a bit of a historical term dating back to the times when synthesizers cost a lot of money and used bits of wire and

cable to “patch” different oscillators, filters, etc. together.

170

23.2 Patch Patch Management

Begin Solo
channel 1
Voice None
...

End

23.2 Patch

In addition to the 128 standard voices mandated by the MIDI standards (referred to as the GM voices)MmA

also supports extended voice banks.

The rest of this chapter presents features which are highly dependent your hardware. It is quite
possible to create midi files which sound very different (or even awful, or perhaps not at all) on
other hardware. We recommend that youdo notuse these features to create files you want to
share!

A typical keyboard will assign instruments to different voice banks. The first, default, bank will contain
the standard set of 128 GM instruments. However, you can select different banks, each with a variety
of voices, by changing the current voice bank. This switching is done by changing the value of MIDI
Controller 0, 32 or both. You’ll need to read the manual for your hardware to figure this out.

In order to use voices outside of the normal GM rangeMmA uses an extended addressing mode which
includes values for the patch and controllers 0 and 32. Each value is separated from the others with a
single “.”. Two examples would include 22.33.44 and 22.33. The first value is the Patch Number, the
second is a value for Controller 0. The third value, if present, is the setting for Controller 32.

My Casio Wk-3000 lists Bank-53, Program-27 as ”Rotary Guitar”. It’s easy to use this voice directly in a
VOICE command:

Chord Voice 27.53

Yes, but who wants all those “funny” numbers in theirMmA files? Well, no one that I know. For this reason
the PATCH command has been developed. This command lets you modify existing patch names, list names
and create new ones.

PATCH takes a variety of options. We suggest you read this section and examine some of the included
example files before venturing out on your own. But, really, it’s not that complicated.

Unless otherwise noted, you can stack a number of different options onto the same PATCH line.

23.2.1 Patch Set

The SET option is used to assign one or more patch values to symbolic names. Going back to my Casio
example, above, I could use the following line to register the voice withMmA

171

23.2 Patch Patch Management

Patch Set 27.53=RotaryGuitar

The assignment consists of two parts or keys joined by a “=” sign. No spaces are permitted. The left part
of the assignment is a value. It can be a single number in the range 0 to 127; or 2 or 3 numbers joined by
“.”s. The right right part is a symbolic name. Any charactersare permitted (but no spaces!).

After the assignment you can use “RotaryGuitar” just like anyother instrument name:

Chord Voice rotaryguitar

Note that once the voice has been registered you don’t need toworry about the case of individual letters.

It’s even possible to register a number of voices in this manner:

Patch set 27.53=RotaryGuitar 61.65=BASS+TROMBONE

Just make sure that the SET assignments are the last thing on the PATCH line.

It is relatively easy to load entire sets of extended patch names by creating specialMmA include files. For
example, for a Casio WK-3000 keyboard you might have the fileincludes/casio-wk3.mma with a large
number of settings. Here’s a snippet:

Begin Patch Set
0.48=GrandPiano
1.48=BrightPiano
2.48=ElecGrandPiano
3.48=Honky-Tonk1
...

End

Now, at the top of your song file or in aMMARC file insert the command:

include casio-wk300 3

A file like this can be created by hand or you can convert existing an existing file to a format understands.
A number of “patch” files exist for the popular “Band in a Box” program from PGMusic. There files
may be subject to copyright, so use them with respect. No patch files are included in this distribution, but
many are freely available on the internet. For a start you might want to look athttp://www.pgmusic.
com/support_miscellaneous.htm . These files cannot be read myMmA, so we have included a little
conversion utilityutil/pg2mma.py . There is a short file with instructionsutil/README.pg2mma .

The SET option will issue warning messages if you redefine existing instrument names or addresses. We
suggest that you edit any configuration files so that they haveunique names and that you do not rename
any of the standard GM names.

23.2.2 Patch Rename

The naming of patches is actually quite arbitrary. You’ll find that different manufacturers use different
names to refer to the same voices. Most of the time this isn’t amajor concern, but you have the freedom

3Refer to INCLUDE (on page 206) for details on file placement.

172

23.2 Patch Patch Management

in MmA to change any patch name you want. For example,MmA calls the first voice in the GM set “Piano1”.
Maybe you want to use the name “AcousticGrand”. Easy:

Patch Rename Piano1=AcousticGrand

Each RENAME option has a left and right part joined by an “=” sign. The leftpart is the current name; the
right is the new name. Please note that after this command thename “Piano1” will not be available.

You can have any number of items in a list; however, they must be the last items on the PATCH line.

23.2.3 Patch List

After making changes toMmA’s internal tables you might want to check to make sure that what you meant
is what you got. For this reason there are three different versions of the LIST command.

List=GM Lists the current values of the GM voices,

List=EXT Lists the extended voices,

List=All Lists both the GM and extended voices.

For example, the command:

Patch List=EXT

will produce a listing something like:

0.48=GrandPiano
1.48=BrightPiano
2.48=ELEC.GrandPiano
...

23.2.4 Ensuring It All Works

If you are going to use any of the extended patches in your MIDIfiles you may need to do some additional
work.

Your hardware may need to be in a “special” mode for any of the extended patches to take effect. What we
suggest is that you use the MIDI command (see page 150) to do some initialization. For an example please
look at the fileincludes/init.mma which we include in our personal files. This file sets the volume, pan
and controller values to known settings. It’s easy to modifythis file to match your hardware setup.

To use a file likeincludes/init.mma just include a line like:

include init

in your mmarc file. See the Path section of this manual for details (on page 200).

173

23.2 Patch Patch Management

To help keep things sane,MmA checks each track as it is closed. If an extended voice has been used in that
track it resets the effected controllers to a zero state. In most cases this means that if you finish playing the
file your keyboard will be returned to a “default” state.

However, you might wish to generate some explicit MIDI sequences at the end of a generated file. Just
write another file like theinit.mma file we discussed above. You can insert this file by placing a line like:

include endinit

at the end of your song file. Or, use the MMAEND command detailed on page 209.

You can get about as complicated as you want with all this. Onescheme you might consider is to use
macros to wrap your extended patch code. For example:

if def Casio
include casio-wk3000
include init.file.for.casio.mma

endif

Groove somegroove

if def Casio
Chord Voice ROtaryGuitar

Endif

1 Cm
2 Dm

...more chords
if def Casio

include restore-file-for-casio.mma
endif

Now, when you compile the file define the macro on the command line:

$ mma -SCASIO filename

This defines the macro so that your wrappers work. To compile for the GM voicing, just skip the
“-SCASIO”.

An alternate method is to use the VOICETR command (detailed on page 177). Using a similar example
we’d create a song file like:

if def Casio
include casio-wk3000
include init.file.for.casio.mma
VoiceTR Piano1=RotaryGuitar ChoralAhhs=VoxHumana

endif
Groove somegroove

1 Cm

174

23.2 Patch Patch Management

2 Dm
...more chords

if def Casio
include restore-file-for-casio.mma

endif

Notice how, in this example, we don’t need to wrap each and every VOICE line. We just create a translation
table with the alternate voices we want to use. Now, when the GROOVE is loaded the various voices will
be changed.

175

Chapter 24

Fine Tuning (Translations)

A program such asMmA which is intended to be run of various computers and synthesizers (both hardware
keyboards and software versions) suffers from a minor deficiency of the MIDI standards: mainly that the
standard says nothing about what a certain instrument should sound like, or the relative volumes between
instruments. The GM extension helps a bit, but only a bit, by saying that certain instruments should be
assigned certain program change values. This means that allGM synths will play a ”Piano” if instrument
000 is selected.

But, if one plays a GM file on a Casio keyboard, then on PC soft-synth, and then on a Yahama keyboard
you will get three quite different sounds. The files suppliedin this distribution have been created to sound
good on the author’s setup: A Casio WK-3000 keyboard.

But, what if your hardware is different? Well, there are solutions! Later in this chapter commands are
shown which will change the preselected voice and tone commands and the default volumes. At this time
there are no example files supplied withMmA, but your contributions are welcome.

The general suggestion is that:

1. You create a file with the various translations you need. For example, the file might be called
yamaha.mma and contain lines like:

VoiceTR Piano1=Piano2
ToneTr SnareDrum2=SnareDrum1
VoiceVolTr Piano2=120 BottleBlow=80
DrumVolTr RideBell=90 Tambourine=120

Place this file in the directory/usr/local/share/mma/includes .

2. Include this file in your ˜/.mmarc file. Following the above example, you would have a line:

Include yamaha

That’s it! Now, whenever you compile aMmA file the translations will be done.

All of the following translation settings follow a similar logic as to “when” they take effect, and that is at
the time the VOICE, VOLUME, etc. command is issued. This may confuse the unwary if GROOVESare
being used. But, the following sequence:

176

24.1 VoiceTr Fine Tuning (Translations)

1. You set a voice with the VOICE command,
2. You save that voice into a GROOVE with DEFGROOVE,
3. You create a voice translation with VOICETR,
4. You activate the previously defined GROOVE.

Wrong!

does not have the desired effect. In the above sequence the VOICETR will haveno effect. For the desired
translations to work the VOICE (or whatever) command must comeafter the translation command.

24.1 VoiceTr

In previous section you saw how to set a voice for a track by using its standard MIDI name. The VOICETR

command sets up a translation table that can be used in two different situations:

� It permits creation of your own names for voices (perhaps fora foreign language),

� It lets you override or change voices used in standard library files.

VOICETR works by setting up a simple translation table of “name” and “alias” pairs. WheneverMmA
encounters a voice name in a track command it first attempts totranslate this name though the alias table.

To set a translation (or series of translations):

VoiceTr Piano1=Clavinet Hmmm=18

Note that you additional VOICETR commands will add entries to the existing table. To clear thetable use
the command with no arguments:

VoiceTr // Empty table

Assuming the first command, the following will occur:

Chord-Main Voice Hmmm

The VOICE for theChord-Maintrack will be set to “18” or “Organ3”.

Chord-2 Voice Piano1

The VOICE for theChord-2track will be set to “Clavinet”.

If your synth does not follow standard GM-MIDI voice naming conventions you can create a translation
table which can be included in all yourMmA song files via an RC file. But, do note that the resulting files
will not play properly on a synth conforming to the GM-MIDI specification.

Following is an abbreviated and untested example for using an obsolete and unnamed synth:

VoiceTr Piano1=3 /
Piano2=4 /
Piano3=5 /
... /
Strings=55 /
...

177

24.2 ToneTr Fine Tuning (Translations)

Notes: the translation is only done one time and no verification is done when the table is created. The
table contains one-to-one substitutions, much like macros.

For translating drum tone values, see the DRUMTR command (page 178).

24.2 ToneTr

It is possible to create a translation table which will substitute one Drum Tone for another. This can be
useful in a variety of situations, but consider:

� Your synth lacks certain drum tones—in this case you may wantto set certain DRUMTR commands
in a MMA RC file.

� You are using an existing GROOVE in a song, but don’t like one or more of the Drum Tones selected.
Rather than editing the library file you can set a translation right in the song. Note, do thisbefore
anyGROOVE commands.

To set a translation (or set of translations) just use a list of drumtone values or symbolic names with each
pair separated by white space. For example:

ToneTR SnareDrum2=SnareDrum1 HandClap=44

will use a “SnareDrum1” instead of a “SnareDrum2” and the value “44” (actually a “PedalHiHat”) instead
of a “HandClap”.

You can turn off all drum tone translations with an empty line:

ToneTR

The syntax and usage of DRUMTR is quite similar to the VOICETR command (see page 177).

24.3 VoiceVolTr

If you find that a particular voice, i.e., Piano2, is too loud or soft you can create an entry in the “Voice
Volume Translation Table”. The concept is quite simple:MmA checks the table whenever a track-specific
VOLUME command is processed. The table is created in a similar manner to the VOICETR command:

VoiceVolTr Piano2=120 105=75

Each voice pair must contain a valid MIDI voice (or numeric value), an “=” and a volume adjustment
factor. The factor is a percentage value which is applied to the normal volume. In the above example two
adjustments are created:

1. Piano2 will be played at 120% of the normal value,

2. Banjo (voice 105) will be played at 75% of the normal value.

178

24.4 DrumVolTr Fine Tuning (Translations)

The adjustments are made when a track VOLUME command is encountered. For example, if the above
translation has be set andMmA encounters the following commands:

Begin Chord
Voice Piano2
Volume mp
Sequence 1 4 90

End

the following adjustments are made:

1. A look up is done in the global volume table. The volume “mf”is determined to be 85% for the set
MIDI velocity,

2. the adjustment of 120% is applied to the 85%, changing thatto 102%.

3. Assuming that no other volume adjustments are being made (probably there will be a global volume
and, perhaps, a RVOLUME) the MIDI velocity in the sequence will be changed from 90 to 91.
Without the translation the 90 would have been changed to 76.

This is best illustrated by a short example. Assume the following in an input file:

Solo Voice TenorSax
Solo Volume f
Print Solo Volume set to $ Solo Volume
VoiceVolTr TenorSax=90
Solo Volume f
Print Solo Volume set to $ Solo Volume

which will print out:

Solo Volume set to 130
Solo Volume set to 117

The second line reflects that 90% of 130 is 117.

To disable all volume translations:

VoiceVolTr // Empty table

24.4 DrumVolTr

You can change the volumes of individual drum tones with the DRUMVOLTR translation. This command
works just like the VOICEVOLTR command described above. It just uses drum tones instead of instrument
voices.

For example, if you wish to make the drum tones “SnareDrum1” and “HandClap” a bit louder:

179

24.4 DrumVolTr Fine Tuning (Translations)

DrumVolTr SnareDrum1=120 HandClap=110

The drum tone names can be symbolic constants, or MIDI valuesas in the next example:

DrumVolTr 44=90 31=55

All drum tone translations can be disabled with:

DrumVolTr // Empty table

180

Chapter 25

Other Commands and Directives

In addition to the “Pattern”, “Sequence”, “Groove” and “Repeat” and other directives discussed earlier,
and chord data,MmA supports a number of directives which affect the flavor of your music.

The subjects presented in this chapter are ordered alphabetically.

25.1 AllTracks

Sometimes you want to apply the same command to all the currently defined tracks; for example, you
might want to ensure thatno tracks have SEQRND set. Yes, you could go though each track (and hope you
don’t miss any) and explicitly issue the command:

Bass SeqRnd Off ...
Chord SeqRnd Off

But,

AllTracks SeqRnd Off

is much simpler. Similarly, you can set the articulation forall tracks with:

AllTracks Articulate 80

You can even combine this with a BEGIN/END like:

Begin AllTracks
Articulate 80
SeqRnd Off
Rskip 0

End

This command is handy when you are changing an existing GROOVE.

There are two forms of the ALLTRACKS command. The first, as discussed above, applies to all tracksthat
are currently defined. Please note that SOLO, MELODY and ARIA tracks arenot modified.

The second form of the command lets you specify one or more track types. For example, you may want
to increase the volume of all the DRUM tracks:

181

25.2 Articulate Other Commands and Directives

AllTracks Drum Volume +20

Or to set the articulation on BASS and WALK tracks:

AllTracks Bass Walk Articulate 55

If you specify track types you can use any of BASS, CHORD, ARPEGGIO, SCALE, DRUM, WALK ,
MELODY, SOLO and ARIA tracks.

25.2 Articulate

WhenMmA processes a music file, all the note lengths specified in a pattern are converted to MIDI lengths.

For example in:

Bass Define BB 1 4 1 100; 2 4 5 90; 3 4 1 80; 4 4 5 90

bass notes on beats 1, 2, 3 and 4 are defined. All are quarter notes.MmA, being quite literal about things,
will make each note exactly 192 MIDI ticks long—which means that the note on beat 2 will start at the
same time as the note on beat 1 ends.

MmA has an ARTICULATE setting for each voice. This value is applied to shorten or lengthen the note
length. By default, the setting is 90. Each generated note duration is taken to be a percentage of this
setting, So, a quarter note with a MIDI tick duration of 192 will become 172 ticks long.

If A RTICULATE is applied to a short note, you are guaranteed that the note will never be less than 1 MIDI
tick in length.

To set the value, use a line like:

Chord-1 Articulate 96

ARTICULATE values must be greater than 0 and less than or equal to 200. Values over 100 will lengthen
the note. Settings greater than 120 will generate a warning.

You can specify a different ARTICULATE for each bar in a sequence. Repeated values can be represented
with a “/”:

Chord Articulate 50 60 / 30

Notes: The full values for the notes are saved with the pattern definition. The articulation adjustment is
applied at run time. The ARTICULATE setting is saved with a GROOVE.

Articulate settings can easily be modified by prefacing the values with a “+” or “-” which will increment
or decrement the existing values. For example:

Chord Articulate 80 85 90 95
Chord Articulate +10 -10

182

25.3 Copy Other Commands and Directives

results in the CHORD ARTICULATE setting of: “90 75 100 85”. Having fewer values that the current
sequence size is fine. The inc/dec values get expanded to the sequence size and are applied to the existing
settings.

25.3 Copy

Sometimes it is useful to duplicate the settings from one voice to another. The COPY command does just
that:

Bass-1 Copy Bass

will copy the settings from theBasstrack to theBass-1track.

The COPY command only works between tracks of the same type.

The following settings are copied:

� Accent (page 119)

� Articulate (page 182)

� Compress (page 91)

� Direction (page 186)

� Harmony (page 98)

� HarmonyOnly (page 99)

� HarmonyVolume (page 100)

� Invert (page 92)

� Octave (page 189)

� Riff (page 52)

� RSkip (page 84)

� RTime (page 85)

� RVolume (page 126)

� ScaleType (page 190)

� Strum (page 192)

� Voice (page 170) or Tone (page 32)

� Volume (page 122)

Warning: Since not all settings are copied, you may be betteroff to use internal macros for this.

183

25.4 Comment Other Commands and Directives

25.4 Comment

As previously discussed, a comment inMmA is anything following a “//” in a line. A second way of
marking a comment is with the COMMENT directive. This is quite useful in combination the BEGIN and
END directives. For example:

Begin Comment
This is a description spanning

several lines which will be
ignored by MMA.

End

You could achieve the same with:

// This is a description spanning
// several lines which will be
// ignored by MMA.

or even:

Comment This is a description spanning
Comment several lines which will be
Comment ignored by MMA.

One minor difference between// and COMMENT is that the first is discarded when the input stream is read;
the more verbose version is discarded during line processing.

Quite often it is handy to delete large sections of a song witha BEGIN COMMENT/END on a temporary
basis.

25.5 Debug

To enable you to find problems in your song files (and, perhaps,even find problems withMmA itself)
various debugging messages can be displayed. These are normally set from the command line command
line (page 16).

However, it is possible to enable various debugging messages dynamically in a song file using the DEBUG

directive. In a debug statement you can enable or disable anyof a variety of messages. A typical directive
is:

Debug Debug=On Expand=Off Patterns=On

Each section of the debug directive consists of amodeand the command word ON or OFF. The two parts
must be joined by a single “=”. You may use the values “0” for “Off” and “1” for “On” if desired.

The available modes with the equivalent command line switches are:

184

25.6 Delay Other Commands and Directives

Mode Command Line Equivalent
Debug -d debugging messages
Filenames -o display file names
Patterns -p pattern creation
Sequence -s sequence creation
Runtime -r running progress
Warnings -w warning messages
Expand -e display expanded lines
Plectrum display Plectrum chord shapes
Roman display Roman numeral chord conversions

The modes and command are case-insensitive (although the command line switches are not). The options
for PLECTRUM and ROMAN are not accessible from the command line.

The current state of the debug flags is saved in the variable $Debug and the state prior to a change is saved
in $ LastDebug.

25.6 Delay

The DELAY setting permits you to delay each note in a sequence. This cancreate interesting and, some-
times, beautiful effects. In most cases you should use this in a duplicate track with a lesser volume . . . the
effect is not meant to duplicate offsets defined in SEQUENCEdefinitions.

Solo Delay 8t -18t 8 -16

Assuming a 4 bar sequence, the above command would apply the following delays to each note:

1. 8 MIDI ticks,

2. a negative 18 MIDI ticks (a “pushed” note).

3. a delay equal to a eighth note,

4. a negative sixteenth note.

The DELAY setting can be negative (in this case the note is sounded in advance).1 You can have different
delays for each bar in a sequence. The values for the delay aregiven in standardMmA note durations (see
page 26 for details). DELAY is saved in GROOVES.

See the sample files inegs/delay .2

1A single leading “-” and “+” sign is striped from the specifiednote duration.
2This command was conceived to be used in SOLO tracks. If you find a good use for it in other tracks, please letthe author

know.

185

25.7 Delete Other Commands and Directives

25.7 Delete

If you are using a track in only one part of your song, especially if it is at the start, it may be wise to free
that track’s resources when you are done with it. The DELETE command does just that:

Solo Delete

If a MIDI channel has been assigned to that track, it is markedas “available” and the track is deleted. Any
data already saved in the MIDI track will be written whenMmA is finished processing the song file.

25.8 Direction

In tracks using chords or scales you can change the directionin which they are applied:

Scale Direction UP

The effects differ in different track types. For SCALE and ARPEGGIOtracks:

UP Plays in upward direction only
DOWN Plays in downward direction only
BOTH Plays upward and downward (default)

RANDOM Plays notes from the chord or scale randomly

When this command is encountered in a SCALE track the start point of the scale is reset.

A WALK track recognizes the following option settings:

BOTH The default. The bass pattern will go up and down a partial
scale. Some notes may be repeated.

UP Notes will be chosen sequentially from an ascending, partial scale.
DOWN Notes will be chosen sequentially from a descending, partial scale.

RANDOM Notes will be chosen in a random direction from a partial scale.

All four patterns are useful and create quite different effects.

The CHORD tracks DIRECTION only has an effect when the STRUM setting has a non-zero value. In this
case the following applies:

UP The default. Notes are sounded from the lowest tone to the highest.
DOWN Notes are sounded from the highest to the lowest.
BOTH The UP and DOWN values are alternated for each successive chord.

RANDOM A random direction is selected for each chord.

You can specify a different DIRECTION for each bar in a sequence. Repeated values can be represented
with a “/”:

Arpeggio Direction Up Down / Both

The setting is ignored by BASS, DRUM and SOLO tracks.

186

25.9 KeySig Other Commands and Directives

25.9 KeySig

The key signature is an underlining concept in all modern music. In MmA it will effect the notes used
in SOLO or MELODY tracks, is a basic requirement for ROMAN numeral chords, and sets a MIDI Key
Signature event.3 In most cases you should set the key signature in all your songs.

In addition, the CHORD track VOICING MODE=KEY option depends on the key being properly set via
this command.

Setting the key signature is simple to do:

KeySig 2b

The argument consists of a single digit “0” to “7” followed bya “b” or “&” for flat keys or a “#” for sharp
keys.

As a more musical alternate, you can use a pitch name like “F” or “G#”.

The optional keywords “Major” or “Minor” (these can be abbreviated to “Maj” or “Min” . . . and case
doesn’t count) can be added to this command. This will accomplish two things:

1. The MIDI track Key Signature event will be set to reflect minor or major.

2. If you are using a musical name the proper key (number of flats or sharps) will be used.

To summarize, the following are all valid KEYSIG directives:

KeySig 2# Major
KeySig 1b
KeySig 0b Min
KeySig F Min
KeySig A Major

25.10 Mallet

Some instruments (Steel-drums, banjos, marimbas, etc.) are normally played with rapidly repeating notes.
Instead of painfully inserting long lists of these notes, you can use the MALLET directive. The MALLET

directive accepts a number of options, each an OPTION=VALUEpair. For example:

Solo-Marimba Mallet Rate=16 Decay=-5

This command is also useful in creating drum rolls. For example:

3For the most part, MIDI Key Signature events are ignored by playback programs. However, theymaybe used in other
MIDI programs which handle notation.

187

25.10 Mallet Other Commands and Directives

Begin Drum-Snare2
Tone SnareDrum1
Volume F
Mallet Rate=32 Decay=-3
Rvolume 3
Sequence z z z 1 1 100

End

The following options are supported:

25.10.1 Rate

The RATE must be a valid note length (i.e., 8, 16, or even 16.+8).

For example:

Solo-Marimba Mallet Rate=16

will set all the notes in the “Solo-Marimba” track to be sounded a series of 16th notes.

� Note duration modifiers such as articulate are applied to each resultant note,

� It is guaranteed that the note will sound at least once,

� The use of note lengths assures a consistent sound independent of the song tempo.

� MALLET can be used in tracks except PLECTRUM.

To disable this setting use a value of “0”.

25.10.2 Decay

You can adjust the volume (velocity) of the notes being repeated when MALLET is enabled:

Drum-Snare Mallet Decay=-15

The argument is a percentage of the current value to add to thenote each time it is struck. In this example,
assuming that the note length calls for 4 “strikes” and the initial velocity is 100, the note will be struck
with a velocity of 100, 85, 73 and 63.

Important: a positive value will cause the notes to get louder, negative values cause the notes to get softer.

Note velocities will never go below 1 or above 255. Note, however, that notes with a velocity of 1 will
most likely be inaudible.

The decay option value must be in the range -50 to 50; however,be cautious using any values outside the
range -5 to 5 since the volume (velocity) of the notes will change quite quickly. The default value is 0 (no
decay).

188

25.11 Octave Other Commands and Directives

25.11 Octave

WhenMmA initializes and after the SEQCLEAR command all track octaves are set to “4”. This will place
most chord and bass notes in the region of middle C.

You can change the octave for any voice with OCTAVE command. For example:

Bass-1 Octave 3

Sets the notes used in the “Bass-1” track one octave lower thannormal.

The octave specification can be any value from 0 to 10. Variouscombinations of INVERT, TRANSPOSE

and OCTAVE can force notes to be out of the valid MIDI range. In this case the lowest or highest available
note will be used.

You can specify a different OCTAVE for each bar in a sequence. Repeated values can be representedwith
a “/”:

Chord Octave 4 5 / 4

Octave settings can easily be modified by prefacing the values with a “+” or “-” which will increment or
decrement the existing values. For example:

Bass Octave 2 3 4 5
Bass Octave +1 +2 -1 -3

results in the BASS OCTAVE setting of: “3 5 3 2”. Having fewer values that the current sequence size is
fine. The inc/dec values get expanded to the sequence size andare applied to the existing settings.

25.12 Off

To disable the generation of MIDI output on a specific track:

Bass Off

This can be used anywhere in a file. Use it to override the effect of a predefined groove, if you wish. This
is simpler than resetting a voice in a groove. The only way to reset this command is with a ON directive.

25.13 On

To enable the generation of MIDI output on a specific track which has been disabled with an OFF directive:

Bass On

Attempts to enable tracks disabled with the -T command line option generate a warning (the command is
ignored).

189

25.14 Print Other Commands and Directives

25.14 Print

The PRINT directive will display its argument to the screen when it is encountered. For example, if you
want to print the file name of the input file while processing, you could insert:

Print Making beautiful music for MY SONG

No control characters are supported.

This can be useful in debugging input files, especially when combined with different system variables:

Print The volume for the bass is: $ Bass Volume

The available system variables are detailed on page 136.

25.15 PrintActive

The PRINTACTIVE directive will the currently active GROOVE and the active tracks. This can be quite
useful when writing groove files and you want to modify and existing groove.

Any parameters given are printed as single comment at the endof the header line.

This is strictly a debugging tool. No PRINTACTIVE statements should appear in finalized grooves or song
files.

25.16 Restart

This command will reset a track (or all tracks) to a default state. You may find this particularly handy
in SCALE and ARPEGGIOtracks when you want note selection to start in a particular place, not left over
from previous bars.

Usage is simple:

Arpeggio Restart

or to do the whole lot:

Restart

You will find very few cases where the use of this command is necessary.

25.17 ScaleType

This option is only used by SCALE and ARIA tracks. A warning is generated if you attempt to use this
command in other tracks.

190

25.18 Seq Other Commands and Directives

By default, the SCALETYPE is set to AUTO. The permissible settings are:

CHROMATIC Forces use of a chromatic scale
AUTO Uses scale based on the current chord (default)

SCALE Same as “Auto”
CHORD Uses the individual notes of the current chord (similar to ARPEGGIOtracks).

For more details on usage in ARIA tracks see page 81.

When this command is encountered in a SCALE track the start point of the scale is reset.

25.18 Seq

If your sequence, or groove, has more than one pattern (i.e.,you have set SeqSize to a value other than 1),
you can use this directive to force a particular pattern point to be used. The directive:

Seq

resets thesequence counterto 1. This means that the next bar will use the first pattern in the current
sequence. You can force a specific pattern point by using an optional value after the directive. For example:

Seq 8

forces the use of pattern point 8 for the next bar. This can be quite useful if you have a multi-bar sequence
and, perhaps, the eight bar is variation which you want used every eight bars, but also for a transition bar,
or the final bar. Just put aSEQ8 at those points. You might also want to put aSEQat the start of sections
to force the restart of the count.

If you have enable sequence randomization with the SEQRND ON command, the randomization will be
disabled by a SEQ command.4 However, settings of track SEQRND will not be effected. One difference
between SEQRND OFF and SEQ is that the current sequence point is set with the latter; with SEQRND OFF

it is left at a random point.

Note: Using a value greater than the current SEQSIZE is not permitted.

This is a very useful command! For example, look at the four bar introduction of the song “Exactly Like
You”:

Groove BossanovaEnd
seq 3
1 C
seq 2
2 Am7
seq 1
3 Dm7
seq 3
4 G7 / G7#5

4A warning message will also be displayed.

191

25.19 Strum Other Commands and Directives

In this example the four bar “ending groove” has been used to create an interesting introduction.

25.19 Strum

WhenMmA generates a chord,5 all the notes are played at the same time.6

To make the notes in a chord sound like something a guitar or banjo might play, use the STRUM directive.
For example:

Chord-1 Strum 5

sets the strumming factor to 5 for track Chord-1. The strum factor is specified in MIDI ticks. Usually
values around 10 to 15 work just fine. The valid range for STRUM is -300 to 300 (just under the duration
of a quarter note).

In the previous example the first note in the chord will be played on the beat indicated by the pattern
definition, the second note will be played 5 ticks later, etc.

You can specify a different STRUM for each bar in a sequence. Repeated values can be representedwith a
“/”. Assuming that there are four bars in the current sequence:

Chord Strum 20 5 / 10

To make the effect of STRUM more random (and human) you can set a range for the delay. For example:

Chord Strum 20,25

will causeMmA to select a value between 20 and 25 ticks for each successive note. You can have a different
range for each bar in your sequence. In most cases a small range is adequate. Large values can create
“odd” effects. Note that the syntax calls for exactly two values and a comma, no spaces are permitted.

STRUM can be used in all tracks except for DRUM. Since tracks other than CHORD only generate single
notes, the command will only effect notes added via a HARMONY or HARMONYONLY directive. Judicious
use of STRUM can add depth and a “cascading” effect.

STRUM can be applied to a PLECTRUM track. See PLECTRUM STRUM (see page 78)

Notes:

� When notes in a CHORD track have both aSTRUM andINVERT applied, the order of the notes played
will not necessarily be root, third, etc. The notes are sorted into ascending order, so for a C major
scale with andINVERT of 1 the notes played would be “E G C”.

� The strumming direction of notes in a CHORD track can be changed with the DIRECTION (see
page 186) command.

� The DIRECTION directive only effects STRUM timing in CHORD tracks.

5In this case we define “chord” as two or more notes played at thesame time.
6An exception to this are notes generated if RTIME (see page 85) is set.

192

25.20 Synchronize Other Commands and Directives

� In tracks other than CHORD the strum delays apply to notes after the initial note. In thecase of
HARMONYONLY tracks the delay will apply to the first generated note.

25.20 Synchronize

The MIDI tracks generated byMmA are perfectly “legit” and should be playable in any MIDI file player.
However, there are a few programs and/or situations in whichyou might need to use theSYNCHRONIZE

options.

First, when a program is expecting all tracks to start at the same location, or is intolerant of “emptiness”
at the start of a track, you can add a “tick note” at the start ofeach track.7

Synchronize START

will insert a one tick note on/off event at MIDI offset 1. You can also generate this with the “-0” command
line option.

You can set the tone and velocity used for this using the SETSYNCTONE command (below).

Second, some programs think (wrongly) that all tracks should end at the same point.8 Adding the com-
mand:

Synchronize END

will delete all MIDI data past the end of the last bar in your input file and insert MIDI “all notes off”
events at that point. You can also generate this effect with the “-1” command line option.

The commands can be combined in any order:

Synchronize End Start

is perfectly valid.

25.21 SetSyncTone

The tone used for the synchronization tone is, by default, a MIDI “80” with a velocity of “90”. You can
change this to any desired combination:

SetSyncTone Tone=88 Velocity=1

The tone must be in the range 0 to 127; the velocity must be 1 to 127 (a velocity of 0 is treated as note off
event and not permitted). A velocity of “1” will be inaudibleon most systems and is useful to pad the start
of a composition (use a bar with a “z!” chord).

The command VOLUME is an alias for VELOCITY.

7Timidity truncates the start of tracks up to the first MIDI event when playing a file or splitting out single tracks.
8Seq24 does strange looping if all tracks don’t end identically.

193

25.22 Transpose Other Commands and Directives

25.22 Transpose

You can change the key of a piece with the “Transpose” command. For example, if you have a piece
notated in the key of “C” and you want it played back in the key of“D”:

Transpose 2

will raise the playback by 2 semi-tones. SinceMmA’s author plays tenor saxophone

Transpose -2

which puts the MIDI keyboard into the same key as the horn, is not an uncommon directive

You can use any value between -12 and 12. All tracks (with the logical exception of the drum tracks) are
effected by this command.

25.23 Unify

The UNIFY command is used to force multiple notes of the same voice and pitch to be combined into a
single, long, tone. This is very useful when creating a sustained voice track. For example, consider the
following which might be used in real groove file:

Begin Bass-Sus
Sequence 1 1 1 90 4
Articulate 100
Unify On
Voice TremoloStrings

End

Without the UNIFY ON command the strings would be sounded (or hit) four times during each bar; with
it enabled the four hits are combined into one long tone. Thistone can span several bars if the note(s)
remain the same.

The use of this command depends on a number of items:

� The VOICE being used. It makes sense to use enable the setting if using asustained tone like
“Strings”; it probably doesn’t make sense if using a tone like “Piano1”.

� For tones to be combined you will need to have ARTICULATE set to a value of 100. Otherwise the
on/off events will have small gaps in them which will cancel the effects of UNIFY.

� Ensure that RTIME is not set for UNIFY tracks since the start times may cause gaps.

� If your pattern or sequence has different volumes in different beats (or bars) the effect of a UNIFY

will be to ignore volumes other than the first. Only the first NOTE ON and the last NOTE OFF events
will appear in the MIDI file.

You can specify a different UNIFY for each bar in a sequence. Repeated values can be representedwith a
“/”:

194

25.23 Unify Other Commands and Directives

Chord Unify On / / Off

But, you probably don’t want to use this particular feature.

Valid arguments are “On” or “1” to enable; “Off” or “0” to disable.

195

Chapter 26

Begin/End Blocks

Entering a series of directives for a specific track can get quite tedious. To make the creation of library
files a bit easier, you can create a block. For example, the following:

Drum Define X 0 2 100; 50 2 90
Drum Define Y 0 2 100
Drum Sequence X Y

Can be replaced with:

Drum Begin
Define X 0 2 100; 50 2 90
Define Y 0 2 100

End
Drum Sequence X Y

Or, even more simply, with:

Begin Drum Define
X 0 2 100; 50 2 90
Y 0 2 100

End

If you examine some of the library files you will see that this shortcut is used a lot.

26.1 Begin

The BEGIN command requires any number of arguments. Valid examples include:

Begin Drum
Begin Chord2
Begin Walk Define

Once a BEGIN block has been entered, all subsequent lines have the words from the BEGIN command
prepended to each line of data. There is not much magic here—BEGIN/END is really just some syntactic
sugar.

196

26.2 End Begin/End Blocks

26.2 End

To finish off a BEGIN block, use a single END on a line by itself.

Defining musical data or repeats inside a block (other than COMMENT blocks) will not work.

Nesting is permitted, e.g.:

Scale Begin
Begin Define

stuff
End
Sequence stuff

End

A BEGIN must be competed with a END before the end of a file, otherwise an error will be generated.The
USE and INCLUDE commands are not permitted inside a block.

197

Chapter 27

Documentation Strings

It has been mentioned a few times already the importance of clearly documenting your files and library
files. For the most part, you can use comments in your files; butin library files you use the DOC directive.

In addition to the commands listed in this chapter, you should also note DEFGROOVES, section 6).

For some real-life examples of how to document your library files, look at any of the library files supplied
with this distribution.

27.1 Doc

A DOC command is pretty simple:

Doc This is a documentation string!

In most cases, DOCs are treated as COMMENTs. However, if the-Dx1 option is given on the command
line, DOCs are processed and printed to standard output.

For producing theMmA Standard Library Referencea trivial Python program is used to collate the output
generated with a command like:

$ mma -Dxl -w /usr/local/lib/mma/swing

Note, the ’-w’ option has been used to suppress the printing of warning messages.

All D OC lines/strings are concatenated into one long paragraph. Ifyou want any line breaks they should
be indicated with a “<P>”. In latex this is converted to a new line; in html it is left asis (forcing a new
line as well).

27.2 Author

As part of the documentation package, there is a AUTHOR command:

1See the command summary, page 16.

198

27.3 DocVar Documentation Strings

Author Bob van der Poel

Currently AUTHOR lines are processed and the data is saved, but never used. It may be used in a future
library documentation procedures, so you should use it in any library files you write.

27.3 DocVar

If any variables are used to change the behavior of a library file they should be documented with a DOCVAR

command. Normally these lines are treated as comments, but when processing with the -Dxl or -Dxh
command line options the data is parsed and written to the output documentation files.

Assuming that you are using theMmA variable $CHORDVOICE as an optional voice setting in your file, you
might have the following in a library file:

Begin DocVar
ChordVoice Voice used in Chord tracks (defaults to Piano2).

End

If NDef ChordVoice
Set ChordVoice Piano2

Endif

All variables used in the library file should be documented. You should list the user variables first, and
then any variables internal to the library file. To double check to see what variables are used you can add
a SHOWVARS to the end of the library file and compile. Then document the variables and remove the
SHOWVARS.

199

Chapter 28

Paths, Files and Libraries

This chapter coversMmA filenames, extensions and a variety of commands and/or directives which effect
the way in which files are read and processed.

28.0.1 MmA Modules

First a few comments on the location of theMmA Python modules.

The Python language (which was used to writeMmA) has a very useful feature: it can include other files
and refer to functions and data defined in these files. A large number of these files or modules are included
in every Python distribution. The programMmA consists of a short “main” program and several “module”
files. Without these additional modulesMmA will not work.

The only sticky problem in a program intended for a wider audience is where to place these modules.
Hopefully, it is a “good thing” that they should be in one of several locations. On a Linux (and Mac)
system the following locations are checked:

� /usr/local/share/mma/MMA

� /usr/share/mma/MMA

� ./MMA

on Mac the same path as Linux is used, with the addition of:

� /Users/Shared/mma/MMA

and on a Windows system:

� c:\textbackslash{}mma\textbackslash{}MMA

� c:\textbackslash{}ProgramFiles\textbackslash{}mma\M MA

� .\textbackslash{}MMA

To make it possible to have multiple installations ofMmA (most likely for testing), a check is made to see
the modules are present in the home of theMmA executable. This is stored in the Python system variable
sys.path[0]. Note: this is not the same as. .

Additionally it is possible to place the modules in your python-site directory. If, when initializing itself,
MmA cannot find the needed modules it will terminate with an errormessage.

200

Paths, Files and Libraries

MmA assumes that the default include and library directories are located in the above listed directories as
well. If these can’t be found a warning message will be displayed.

If you really need to, you can modify this in the mainmma.py script.

28.0.2 Special Characters In Filenames

In all the following sections we refer to various forms of “filename” and “path”.MmA parses files and
uses various forms of “whitespace”1 to separate different parts of commands. This means that youcannot,
easily, include space characters in a filename embedded in aMmA source file. But, you can, if needed. When
MmA uses a path or filename it first transforms any sequences of theliteral “\x20” into “space” characters.

If you are on a Windows or Mac platform you may need to use the space feature, if not for filenames, for
paths.

For example:

SetMidiPlayer C: \Program \x20Files \Windows\x20Player

In this example we are setting our MIDI player to “\verb!C:\ProgramFiles\WindowsPlayer! ”. The
“\x20”s are converted to space characters.

When runningMmA on a Windows platform you don’t need to use the rather ugly “\”s since Python will
conveniently convert paths with normal “forward” slash characters to something Windows understands.

A common mistake made, especially by users on Windows platforms, is using quote characters to delimit a
filename.Don’t use quotation marks! MmA doesn’t see anything special in quotes and the quote characters
will be assumed to be part of a filename . . . and it won’t work.

28.0.3 Tildes In Filenames

SetOutPath ˜/music/midies

In this case the “˜” is replaced with the path of the current user (for details see the Python documentation
for os.path.expanduser()). The result of tilde expansions is system dependent and varies between Linux,
Mac, and Windows.

The case of a filename is relevant if your system supports case-sensitive filenames. For example, on a
Linux system the names “file.mid” and “File.MID” refer to different files; on a Windows system they refer
to the same file.

1Whitespace is defined by Python to include space characters, tabs, etc. Again, refer to the Python documentation if you
need details.

201

28.1 File Extensions Paths, Files and Libraries

28.0.4 Filenames and the Command Line

Please note that the above discussion, especially the partsconcerning embedded spaces, apply only to file
and path names in aMmA source file. If you want to compile a.mma file with a space character it is not a
problem. From the command line:

$ mma ’’my file’’

works just fine . . . but note that we used quotation marks to tell the shell, notMmA that “my file” is one
name, not two.

28.1 File Extensions

For most files the use of a the file name extension “.mma” is optional. However, it is suggested that most
files (with the exceptions listed below) have the extension present. It makes it much easier to identifyMmA
song and library files and to do selective processing on thesefiles.

In processing an input song fileMmA can encounter several different types of input files. For allfiles, the
initial search is done by adding the file name extension “.mma” to file name (unless it is already present),
then a search for the file as given is done.

For files included with the USE directive, the directory set withSETL IBPATH is first checked, followed by
the current directory.

For files included with the INCLUDE directive, the directory set withSETINCPATH is first checked, fol-
lowed by the current directory.

Following is a summary of the different files supported:

Song Files The input file specified on the command line should always be named with the “.mma” exten-
sion. WhenMmA searches for the file it will automatically add the extensionif the file name specified
does not exist and doesn’t have the extension.

Library Files Library files really shouldall be named with the extension.MmA will find non-extension
names when used in a USE or INCLUDE directive. However, it will not process these files when
creating indexes with the “-g” command line option—these index files are used by the GROOVE

commands to automatically find and include libraries.

RC Files As noted in the RC-File discussion (see page 210)MmA will automatically include a variety of
“RC” files. You can use the extension on these files, but common usage suggests that these files are
probably better without.

MMAstart and MMAend MmA will automatically include a file at the beginning or end of processing
(see page 209). Typically these files are named MMASTART and MMAEND. Common usage is
to not use the extension if the file is in the current directory; use the file if it is in an “includes”
directory.

202

28.2 Eof Paths, Files and Libraries

One further point to remember is that filenames specified on the command line are subject to wild-card
expansion via the shell you are using.

28.2 Eof

Normally, a file is processed until its end. However, you can short-circuit this behavior with the EOF

directive. IfMmA finds a line starting with EOF no further processing will be done on that file . . . it’s just
as if the real end of file was encountered. Anything on the sameline, after the EOF is also discarded.

You may find this handy if you want to test process only a part ofa file, or if you making large edits to a
library file. It is often used to quit when using the LABEL and GOTO directives to simulate constructs like
D.C. al Coda, etc.

28.3 LibPath

The search for library files can be set with the LibPath variable. To set LIBPATH:

SetLibPath PATH

You can have only one path in the SETL IBPATH directive.

WhenMmA starts up it sets the library path to the first valid directoryin the list:

� /usr/local/share/mma/lib

� /usr/share/mma/lib

� ./lib

The last choice lets you runMmA directly from the distribution directory.

You are free to change this to any other location in a RCFile, page 210.

L IBPATH is used by the routine which auto-loads grooves from the library, and the USE directive. The -g
and -G command line options are used to maintain the library database, page 18).

The current setting can be accessed via the macro $L IBPATH.

Note that just like AUTOL IBPATH (below) existing the existing GROOVEdatabases are deleted from mem-
ory.

28.4 AutoLibPath

The sub-directories containing the current library files toautomatically load is determined by the current
setting of AUTOL IBPATH. Please see the library file discussion on page 210 for details.

203

28.5 MIDIPlayer Paths, Files and Libraries

You can change the automatic include directory by resettingthis variable. All arguments must be sub-
directories of LIBPATH for it to work.

The command to reset the variable is:

SetAutoLibPath mydir yourdir bestdir

The current setting can be accessed via the macro $AutoLibPath.

Any existing GROOVE definitions are deleted from memory when this command is issued (this it to avoid
name conflicts between libraries).

28.5 MIDIPlayer

When using the -P command line optionMmA uses the MIDI file player defined with SETMIDI PLAYER

to play the generated file. By default the program is set to “aplaymidi” on Linux, “open” on Mac, and an
empty file on Windows. You can change this to a different player:

SetMIDIplayer /usr/local/kmid

You will probably want to use this command in an RC file.

It is permissible to include command options as well. So, forexample, on Linux you might do:

SetMIDIplayer timidity -a

Command line options with an “=” are permitted, so long as theydo notstart with an alpha character. So,

SetMIDIplayer aplaymidi --port=12:3

will work.

To set to an empty name, just use the command with no arguments:

SetMIDIplayer

An empty filename On a Linux host will generate an error if you attempt to preview a file with the -P
command line option; on Windows hosts the empty string instructs Windows to use the default player for
the generated MIDI file.

There are two additional settings for the MIDI file player:

� In a Windows environment the player will be forked as a background process andMmA will wait for
a set time.

� In a Unix environment the player will be forked in the foreground andMmA will wait for the player
to terminate.

You can change the above behavior with the BACKGROUND and DELAY options.

204

28.6 Groove Previews Paths, Files and Libraries

SetMidiPlayer BackGround=1 Delay=4 myplayer -abc

In the above example the player is forced to play as a background process with a delay time of 4 seconds.
The player name is set to “myplayer” with an option string of “-abc”.

and,

SetMidiPlayer BackGround=0 Delay=4

will set the player name to “” (which is only valid in a Windowsenvironment) and force it to play in the
foreground. In this case the delay setting will have no effect.

The BACKGROUND option can be set with “1” or “Yes” and unset with “0” or “No”. No other values are
valid.

Note that when setting player options the player name is required (otherwise it is set to “”).

28.6 Groove Previews

MmA comes with well over 1000 different grooves in its standard libraries. Determining which to use
in your song can be quite a chore. For this reason a special “preview” command line option has been
included. To use it, first decide on which GROOVE you’d like to listen to. Then, from a terminal or other
command line interface, type a command like:

$ mma -V bolero

This will create a short (4 bar) file with a GROOVE BOLERO command and some chords. This file will
then be played in the same manner as the-P command line option. If you don’t hear the file being played
or if you get an error message, please refer to the SETM IDI PLAYER section, above.

In addition to using a default set of chords, etc. you can customize the preview with some command line
options. Note that each of these options can be placed anywhere on the line in any order. Nothing in the
options (except chord names) is case sensitive. Each of the commands must have an= and contain no
spaces:

Count set the number of bars to create/play. The default is 4.

Chords set the chords to use. The chords must be in the form of a list with commas separating the chord
names. For example:

Chords=A,Gm,C,D7

By default we use:

Chords=I,vi,ii,V7

A generic introduction notated in Roman numerals.

Any otherMmA command can be inserted in a-V line. For example, to play a 4 bar sequence in the key of
G with a tempo of 144:

205

28.7 OutPath Paths, Files and Libraries

$ mma -V mambo2 Chords=I,I,V7,III Tempo=144 KeySig=G

The supplied utilitymma-gb.py makes extensive use of this command set.

With the extendedGROOVEname extension, (see page 47) you can preview grooves from files not yet in
the library (or database). Assuming you are working on a new library file in your current directory, just
issue a command like:

$ mma -V ./newfile:newgroove

You can skip the leading “./” in the path, but it forces a bit more verbiage frmMmA.

28.7 OutPath

MIDI file generation is to an automatically generated filename (see page 16). If the OUTPATH variable is
set, that value will be prepended to the output filename. To set the value:

SetOutPath PATH

Just make sure that “PATH” is a simple path name. The variableis case sensitive (assuming that your
operating system supports case sensitive filenames). This is a common directive in a RC file (see page 210).
By default, it has no value.

You can disable the OUTPATH variable quite simply: just issue the command without an argument.

If the name set by this command begins with a “.”, “/” or “/” it is prepended to the complete filename
specified on the command line. For example, if you have the input filenametest.mma and the output path
is ˜ /mids —the output file will be/home/bob/mids/test.mid .

If the name doesn’t start with the special characters noted in the preceding paragraph the contents of the
path will be inserted before the filename portion of the inputfilename. Again, an example: the input
filename ismma/rock/crying and the output path is “midi”—the output file will bemma/rock/midi/
crying.mid .

The current setting can be accessed via the macro $OutPath.

Note that this option is ignored if you use the -f command lineoption (page 18) or if an absolute name for
the input file (one starting with a “/” or a “˜”) is used.

28.8 Include

Other files with sequence, pattern or music data can be included at any point in your input file. There is
no limit to the level of includes.

206

28.9 IncPath Paths, Files and Libraries

Include Filename

A search for the file is done in the INCPATH directory (see below) and the current directory. The “.mma”
filename extension is optional (if a filename exists both withand without the “.mma” extension, the file
with the extension will be used).

The use of this command should be quite rare in user files; however, it is used extensively in library files
to include standard patterns.

28.9 IncPath

The search for include files can be set with the INCPATH variable. To set INCPATH:

SetIncPath PATH

You can have only one path in the SETINCPATH directive.

WhenMmA initializes it sets the include path to first found directoryin:

� /usr/local/share/mma/includes

� /usr/share/mma/includes

� ./includes

The last location lets you runMmA from the distribution directory.

If this value is not appropriate for your system, you are freeto change it in a RC File.

The current setting can be accessed via the macro $IncPath.

28.10 Use

Similar to INCLUDE, but a bit more useful. The USE command is used to include library files and their
predefined grooves.

Compared to INCLUDE, USE has important features:

� The search for the file is done in the paths specified by the LibPath variable,

� The current state of the program is saved before the library file is read and restored when the opera-
tion is complete.

Let’s examine each feature in a bit more detail.

When a USE directive is issued, e.g.:

207

28.11 MmaStart Paths, Files and Libraries

use stdlib/swing

MmA first attempts to locate the file “stdlib/swing” in the directory specified by LIBPATH or the current
directory. As mentioned above,MmA automatically added the “.mma” extension to the file and checks for
the non-extension filename if that can’t be found.

If things aren’t working out quite right, check to see if the filename is correct. Problems you can encounter
include:

� Search order: you might be expecting the file in the current directory to be used, but the same
filename exists in the LIBPATH, in which case that file is used.

� Not using extensions: Remember that fileswith the extension added are first checked.

� Case: The filename iscase sensitive. The files “Swing” and “swing” are not the same. Since most
things inMmA are case insensitive, this can be an easy mistake to make.

� The file is in a sub directory of the LIBPATH. In a standard distribution the actual library files are in
/usr/local/share/mma/lib/stdlib , but the libpath is set to/usr/local/share/mma/lib . In
this case you must name the file to be used asstdlib/rhumba not rhumba .

As mentioned above, the current state of the compiler is saved during a USE. MmA accomplishes this by
issuing a slightly modified DEFGROOVE and GROOVE command before and after the reading of the file.
Please note that INCLUDE doesn’t do this. But, don’t let this feature fool you—since the effects of defining
grooves are cumulative youreally shouldhave SEQCLEAR statements at the top of all your library files.
If you don’t you’ll end up with unwanted tracks in the groovesyou are defining.

In most cases you will not need to use theUSE directive in your music files.If you have properly installed
MmA and keep the database up-to-date by using the command:

$ mma -g

grooves from library files will be automatically found and loaded. Internally, the USE directive is used, so
existing states are saved.

If you are developing new or alternate library files you will find the USE directive handy.

28.11 MmaStart

If you wish to process a certain file or files before your main input file, set the MMA START filename in an
RCFile. For example, you might have a number of files in a directory which you wish to use certain PAN

settings. In that directory, you just need to have a filemmarc which contains the following command:

MmaStart setpan

The actual filesetpan has the following directives:

208

28.12 MmaEnd Paths, Files and Libraries

Bass Pan 0
Bass1 Pan 0
Bass2 Pan 0
Walk Pan 0
Walk1 Pan 0
Walk2 Pan 0

So, before each file in that directory is processed, the PAN for the bass and walking bass voices are set to
the left channel.

If the file specified by a MMA START directive does not exist a warning message will be printed (this is not
an error).

Also useful is the ability to include a generic file with all the MIDI files you create. For example, you
might like to have a MIDI reset at the start of your files—simple, just include the following in yourmmarc
file:

MMAstart reset

This includes the filereset.mma located in the “includes” directory (see page 207).

Multiple MMA START directives are permitted. The files are processed in the order declared. You can
have multiple filenames on a MMASTART line.

One caution with MMASTART files: the file is processed after the RC file, just before the actual song file.

28.12 MmaEnd

Just the opposite of MMA START, this command specifies a file to be included at the end of a maininput
file. See the comments above for more details.

To continue this example, in yourmmarc file you would have:

MmaEnd nopan

and in the filenopan have:

Bass Pan 64
Bass1 Pan 64
Bass2 Pan 64
Walk Pan 64
Walk1 Pan 64
Walk2 Pan 64

If the file specified by a MMA END directive does not exist a warning message will be printed (this is not
an error).

Multiple MMA END directives are permitted and processed in the order declared. You can have multiple
filenames on a MMAEND line.

209

28.13 RC Files Paths, Files and Libraries

28.13 RC Files

WhenMmA starts it checks for initialization files. Only the first found file is processed. The following
locations/files are checked (in order):

1. mmarc — this is a normal file in the current directory.

2. /̃.mmarc — this is an “invisible” file in the users home directory.

3. /usr/local/etc/mmarc

4. /etc/mmarc

Only the first found file will be processed. This means you can override a “global” RC file with a user
specific one. If you just want to override some specific commands you might want to:

1. Create the filemmarc in a directory withMmA files,

2. As the first line in that file have the command:

include ˜/.mmarc

to force the inclusion of your global stuff,

3. Now, place your directory specific commands in your customRC file.

By default, no RC files are installed. If you have enabled debugging (-d) a warning message will be
displayed if no RC file is found.

An alternate method for using a different RC file is to specify the name of the file on the command line
by using the-i option (see page 18). Using this option you can have several RCfiles in a directory and
compile your songs differently depending on the RC file you specify.

The RC file is processed as aMmA input file. As such, it can contain anything a normal input filecan,
including music commands. However, you should limit the contents of RC files to things like:

SetOutPath
SetLibPath
MMAStart
MMAEnd

A useful setup is to have your source files in one directory andMIDI files saved into a different directory.
Having the filemmarc in the directory with the source files permits setting OUTPATH to the MIDI path.

28.14 Library Files

Included in this distribution are a number of predefined patterns, sequences and grooves. They are in
different files in the “lib” directories.

The library files should be self-documenting. A list of standard file and the grooves they define is included
in the separate document, supplied in this distribution as “mma-lib.ps ”.

210

28.14 Library Files Paths, Files and Libraries

MmA maintains a database file in each directory found in themma/lib directory structure. These are in-
visible files with the name.mmaDB. WhenMmA starts up it sets a path list containing the names of each
directory found inmma/lib . When a GROOVE is neededMmA will look in the database files for each
directory. The directorymma/lib/stdlib will be checked first.

28.14.1 Maintaining and Using Libraries

The basicMmA distribution comes with a set of pattern files which are installed in themma/lib/stdlib
directory. Each one of these files has a number of GROOVEs defined in them. For example, the file
mma/lib/stdlib/rhumba.mma contains the groovesRhumba, RhumbaEndand many more.

If you are writing GROOVEs with the intention of adding them to the standard library you should ensure
that none of the names you choose duplicate existing names already used in the same directory.2

If you are creating a set of alternate grooves to duplicate the existing library you might do the following:

1. Create a directory with your name or other short id in themma/lib/ hierarchy. For example, if your
name is “Bob van der Poel” you might create the directorymma/lib/bvdp .

2. Place all your files (or modified files) in that directory.

3. Now, when your song wants to use a groove, you have two choices:

(a) Include the file with the USEdirective. For example, if you have created the filerock.mma and
want to use theGROOVErock8you would:

i. place the directive USE BVDP/ROCK near the top of the song file. Note: it might not be
apparent from the typeface here, but the filename here is alllowercase. In Unix/Linux
case is important, so please make sure of the case of the filenames in commands like USE.

ii. enable the groove with the directive GROOVE ROCK8 (and here the case is not important
sinceMmA thinks that upper and lower case are the same).

(b) ForceMmA to useyour groove directory before the standard library by resetting the auto-lib
directory (again, the case for the path is important):

SetAutoLibPath bvdp stdlib

You will have to update theMmA database with the -g or -G command line options for this to
work. If you elect this route, please note that the files in thestandard library will be used if the
GROOVE is not found in thebvdp directory.

For example:

2When you update the database with theMmA -g/G command a list of files containing duplicate groove definition names will
be displayed. It would not be a big chore to verbosely displayeach and every duplication, but it would most likely generate too
much noise to be useful.

211

28.14 Library Files Paths, Files and Libraries

Groove Metronome2-4
z * 2

SetAutoLibPath bvdp
Groove BossaNova // the bossa from lib/bvdp, not stdlib!

chords ...

The nice thing about this method is that you can have multiplesets of library filesall us-
ing the sameGROOVE names. To create a different version you just need to change the
SETAUTOL IBPATH variable in your song file . . . or, for a collection of songs putthe vari-
able in yourMMARC file.

For those who “really need to know”, here are the steps thatMmA takes when it encounters a GROOVE

command:

1. if the named groove has been loaded/created alreadyMmA just switches to the internal version of that
groove.

2. if the groove can’t be found in memory, a search of the groove databases (created with the -g com-
mand line option) is done. If no database is in memory it is loaded from the directory pointed to
by the LIBPATH and AUTOL IBPATH variables. These databases are then searched for the needed
GROOVE. The databases contain the filenames associated with each GROOVE and that file is then
read with the USE code.

The databases are files.mmaDBstored in each sub directory of LIBPATH. This is a “hidden” file (due to
the leading “.” in the filename). You cannot change the name ofthis file. If there are sub-directories the
entries for them will be stored in the database file for the main tree.

If a library file you create depends on GROOVESfrom another library file you will need to load that library
file with a USE directive. This is due to limitation is the -g/-G update commands.

By using a USE directive or by resetting AUTOL IBDIR you force the loading of your set of grooves.

212

Chapter 29

Creating Effects

It’s really quite amazing how easy and effective it is to create different patterns, sequences and special
effects. AsMmA was developed lots of silly things were tried . . . this chapter is an attempt to display and
preserve some of them.

The examples don’t show any music to apply the patterns or sequences to. The manual assumes that if
you’ve read this far you’ll know that you should have something like:

1 C
2 G
3 G
4 C

as a simple test piece to apply tests to.

29.1 Overlapping Notes

As a general rule, you should not create patterns in which notes overlap. However, here’s an interesting
effect which relies on ignoring that rule:

Begin Scale
define S1 1 1+1+1+1 90
define S32 S1 * 32
Sequence S32
ScaleType
Direction Both
Voice Accordion
Octave 5

End

“S1” is defined with a note length of 4 whole notes (1+1+1+1) sothat when it is multiplied for S32 a
pattern of 32 8th notes is created. Of course, the notes overlap. Running this up and down a chromatic
scale is “interesting”. You might want to play with this a bitand try changing “S1” to:

define S1 1 1 90

to see what the effect is of the notes overlapping.

213

29.2 Jungle Birds Creating Effects

29.2 Jungle Birds

Here’s another use for SCALEs. Someone (certainly not the author) decided that some jungle sounds would
be perfect as an introduction to “Yellow Bird”.

groove Rhumba
Begin Scale

define S1 1 1 90
define S32 S1 * 32
Sequence S32
ScaleType Chromatic
Direction Random
Voice BirdTweet
Octave 5 6 4 5
RVolume 30
Rtime 2 3 4 5
Volume pp pp ppp ppp

End
DefGroove BirdRhumba

The above is an extract from theMmA score. The entire song is included in the “songs” directory of this
distribution.

A neat trick is to create the bird sound track and then add it tothe existing Rhumba groove. Then define a
new groove. Now one can select either the library “rhumba” orthe enhanced “BirdRhumba” with a simple
GROOVE directive.

214

Chapter 30

Frequency Asked Questions

This chapter will serve as a container for questions asked bysome enthusiasticMmA users. It may make
some sense in the future to distribute this information as a separate file.

30.1 Chord Octaves

I’ve keyed in a song but some of the chords sound way too high (orlow).

When a real player plays chords he or she adjusts the position of the chords so that they don’t “bounce”
around between octaves. One wayMmA tries to do the same is with the “Voicing Mode=Optimal” setting.
However, sometimes the chord range of a piece is too large forthis to work properly. In this case you’ll
have to use the octave adjustments in chords. For more details see page 90.

30.2 AABA Song Forms

How can one define parts as part ”A”, part ”B” . . . and arrange them at the end of the file? An option to
repeat a “solo” section a number of times would be nice as well.

UsingMmA variables and some simple looping, one might try something like:

215

30.3 Where’s the GUI? Frequency Asked Questions

Groove Swing
// Set the music into a
// series of macros
mset A

Print Section A
C
G

endmset
mset B

print Section B
Dm
Em

endmset
mset Solo

Print Solo Section $Count
Am / B7 Cdim

endmset
// Use the macros for an
// "A, A, B, Solo * 8, A"
// form
$A
$A
$B
set Count 1
label a

$solo
inc COUNT
if le $count 8

goto A
endif

$A

Note that the “Print” lines are used for debugging purposes.The case of the variable names has been
mixed to illustrate the fact that “Solo” is the same as “SOLO”which is the same as “solo”.

Now, if you don’t like things that look like old BASIC programcode, you could just as easily duplicate
the above with:

Groove Swing
repeat

repeat
Print Section A
C
G
If Def count

eof
Endif
Endrepeat
Print Section B

Dm
Em
Set Count 1
Repeat

Print Solo $Count
Am
Inc Count

Repeatending 7
Repeatend

Repeatend

The choice is up to you.

30.3 Where’s the GUI?

I really think thatMmA is a cool program. But, it needs aGUI. Are you planning on writing one? Will you
help me if I start to write one?

Thanks for the kind comments! The author likesMmA too. A lot!

216

30.4 Where’s the manual index? Frequency Asked Questions

Some attempts have been made to write a number ofGUIs for MmA. But, nothing seemed to be much
more useful than the existing text interface. So, why waste too much time? There is nothing wrong with
graphical programming interfaces, but perhaps not in this case.

But, I may well be wrong. If you think it’d be better with aGUI . . . well, this is open source and you are
more than welcome to write one. If you do, I’d suggest that youmake your program a front-end which lets
a user compile standardMmA files. If you find that more error reporting, etc. is required to interact properly
with your code, let me know and I’ll probably be quite willingto make those kind of changes.

30.4 Where’s the manual index?

Yes,this manual needs an index. I just don’t have the time to go though and do all the necessary work. Is
there a volunteer?

217

AppendixA

Symbols and Constants

This appendix is a reference to the chords thatMmA recognizes and name/value tables for drum and instru-
ment names. The tables have been auto-generated byMmA using the -D options.

A.1 Chord Names

MmA recognizes standard chord names as listed below. The names are case sensitive and must be entered
in uppercase letters as shown:

A A♯ A♭ B B♯ B♭ C C♯ C♭ D D♯ D♭ E E♯ E♭ F F♯ F♭ G G♯ G♭

Please note that in your input files you must use a lowercase “b” or an “&” to represent a♭ and a “#” for a
♯.

All “7th” chords are “dominant 7th” unless specifically noted as “major”. A dominant 7th has a flattened
7th note (in a C7 chord this is a b♭; a C Major 7th chord has a b♮).

For a more detailed listing of the chords, notes and scales you should download the documentwww.
mellowood.ca/mma/chords.pdf.gz .

The following types of chords are recognized (these are casesensitive and must be in the mixed upper and
lowercase shown):

♯5 Augmented triad.
(add♯9) Major chord plus sharp 9th (no 7th.)
(add9) Major chord plus 9th (no 7th.)
(add♭9) Major chord plus flat 9th (no 7th.)
(♭5) Major triad with flat 5th.
+ Augmented triad.
+7 An augmented chord (raised 5th) with a dominant 7th.
+7♯9 An augmented chord (raised 5th) with a dominant 7th and sharp9th.
+7♭9 An augmented chord (raised 5th) with a dominant 7th and flat 9th.
+7♭9♯11 Augmented 7th with flat 9th and sharp 11th.
+9 7th plus 9th with sharp 5th (same as aug9).
+9M7 An augmented chord (raised 5th) with a major 7th and 9th.
+M7 Major 7th with sharp 5th.
11 9th chord plus 11th (3rd not voiced).

218

A.1 Chord Names Symbols and Constants

11♭9 7th chord plus flat 9th and 11th.
13 7th (including 5th) plus 13th (the 9th and 11th are not voiced).
13♯11 7th plus sharp 11th and 13th (9th not voiced).
13♯9 7th (including 5th) plus 13th and sharp 9th (11th not voiced).
13♭5 7th with flat 5th, plus 13th (the 9th and 11th are not voiced).
13♭9 7th (including 5th) plus 13th and flat 9th (11th not voiced).
13sus 7sus, plus 9th and 13th
13sus♭9 7sus, plus flat 9th and 13th
5 Altered Fifth or Power Chord; root and 5th only.
6 Major tiad with added 6th.
6(add9) 6th with added 9th. This is sometimes notated as a slash chordin the form “6/9”.
69 6th with added 9th. This is sometimes notated as a slash chordin the form “6/9”.
7 7th.
7♯11 7th plus sharp 11th (9th omitted).
7♯5 An augmented chord (raised 5th) with a dominant 7th.
7♯5♯9 7th with sharp 5th and sharp 9th.
7♯5♭9 An augmented chord (raised 5th) with a dominant 7th and flat 9th.
7♯9 7th with sharp 9th.
7♯9♯11 7th plus sharp 9th and sharp 11th.
7♯9♭13 7th with sharp 9th and flat 13th.
7(omit3) 7th with unvoiced 3rd.
7+ An augmented chord (raised 5th) with a dominant 7th.
7+5 An augmented chord (raised 5th) with a dominant 7th.
7+9 7th with sharp 9th.
7-5 7th, flat 5.
7-9 7th with flat 9th.
7alt 7th with flat 5th and flat 9th.
7♭13 7th (including 5th) plus flat 13th (the 9th and 11th are not voiced).
7♭5 7th, flat 5.
7♭5♯9 7th with flat 5th and sharp 9th.
7♭5♭9 7th with flat 5th and flat 9th.
7♭9 7th with flat 9th.
7♭9♯11 7th plus flat 9th and sharp 11th.
7omit3 7th with unvoiced 3rd.
7sus 7th with suspended 4th, dominant 7th with 3rd raised half tone.
7sus2 A sus2 with dominant 7th added.
7sus4 7th with suspended 4th, dominant 7th with 3rd raised half tone.
7sus♭9 7th with suspended 4th and flat 9th.
9 7th plus 9th.
9♯11 7th plus 9th and sharp 11th.
9♯5 7th plus 9th with sharp 5th (same as aug9).
9+ 7th plus 9th with sharp 5th (same as aug9).
9+5 7th plus 9th with sharp 5th (same as aug9).
9-5 7th plus 9th with flat 5th.
9♭5 7th plus 9th with flat 5th.

219

A.1 Chord Names Symbols and Constants

9sus 7sus plus 9th.
9sus4 7sus plus 9th.
M Major triad. This is the default and is used in the absense of any other chord type

specification.
M13 Major 7th (including 5th) plus 13th (9th and 11th not voiced).
M13♯11 Major 7th plus sharp 11th and 13th (9th not voiced).
M6 Major tiad with added 6th.
M7 Major 7th.
M7♯11 Major 7th plus sharp 11th (9th omitted).
M7♯5 Major 7th with sharp 5th.
M7(add13) 7th (including 5th) plus 13th and flat 9th (11th not voiced).
M7+5 Major 7th with sharp 5th.
M7-5 Major 7th with a flat 5th.
M7♭5 Major 7th with a flat 5th.
M9 Major 7th plus 9th.
M9♯11 Major 9th plus sharp 11th.
add♯9 Major chord plus sharp 9th (no 7th.)
add9 Major chord plus 9th (no 7th.)
add♭9 Major chord plus flat 9th (no 7th.)
aug Augmented triad.
aug7 An augmented chord (raised 5th) with a dominant 7th.
aug7♯9 An augmented chord (raised 5th) with a dominant 7th and sharp9th.
aug7♭9 An augmented chord (raised 5th) with a dominant 7th and flat 9th.
aug9 7th plus 9th with sharp 5th (same as aug9).
aug9M7 An augmented chord (raised 5th) with a major 7th and 9th.
dim A dim7, not a triad!
dim3 Diminished triad (non-standard notation).
dim7 Diminished seventh.
dim7(addM7)Diminished tirad with added Major 7th.
m Minor triad.
m♯5 Minor triad with augmented 5th.
m♯7 Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,

“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

m(add9) Minor triad plus 9th (no 7th).
m(♭5) Minor triad with flat 5th (aka dim).
m(maj7) Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,

“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

m(sus9) Minor triad plus 9th (no 7th).
m+5 Minor triad with augmented 5th.
m+7 Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,

“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

m+7♯9 Augmented minor 7 plus sharp 9th.

220

A.1 Chord Names Symbols and Constants

m+7♭9 Augmented minor 7 plus flat 9th.
m+7♭9♯11 Augmented minor 7th with flat 9th and sharp 11th.
m11 9th with minor 3rd, plus 11th.
m11♭5 Minor 7th with flat 5th plus 11th.
m13 Minor 7th (including 5th) plus 13th (9th and 11th not voiced).
m6 Minor 6th (flat 3rd plus a 6th).
m6(add9) Minor 6th with added 9th. This is sometimes notated as a slashchord in the form

“m6/9”.
m69 Minor 6th with added 9th. This is sometimes notated as a slashchord in the form

“m6/9”.
m7 Minor 7th (flat 3rd plus dominant 7th).
m7♯5 Minor 7th with sharp 5th.
m7♯9 Minor 7th with added sharp 9th.
m7(♯9) Minor 7th with added sharp 9th.
m7(add11) Minor 7th plus 11th.
m7(add13) Minor 7th plus 13th.
m7(♭9) Minor 7th with added flat 9th.
m7(omit5) Minor 7th with unvoiced 5th.
m7-5 Minor 7th, flat 5 (aka 1/2 diminished).
m7♭5 Minor 7th, flat 5 (aka 1/2 diminished).
m7♭5♭9 Minor 7th with flat 5th and flat 9th.
m7♭9 Minor 7th with added flat 9th.
m7♭9♯11 Minor 7th plus flat 9th and sharp 11th.
m7omit5 Minor 7th with unvoiced 5th.
m7sus4 Minor suspended 4th, minor triad plus 4th and dominant 7th.
m9 Minor triad plus 7th and 9th.
m9♯11 Minor 7th plus 9th and sharp 11th.
m9♭5 Minor triad, flat 5, plus 7th and 9th.
mM7 Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,

“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

mM7(add9)Minor Triad plus Major 7th and 9th.
maj13 Major 7th (including 5th) plus 13th (9th and 11th not voiced).
maj7 Major 7th.
maj9 Major 7th plus 9th.
m♭5 Minor triad with flat 5th (aka dim).
min♯7 Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,

“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

min(maj7) Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,
“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

msus4 Minor suspended 4th, minor triad plus 4th.
omit3(add9)Triad: root, 5th and 9th.
omit3add9 Triad: root, 5th and 9th.
sus Suspended 4th, major triad with the 3rd raised half tone.

221

A.1 Chord Names Symbols and Constants

sus(add♯9) Suspended 4th, major triad with the 3rd raised half tone plussharp 9th.
sus(add9) Suspended 4th, major triad with the 3rd raised half tone plus9th.
sus(add♭9) Suspended 4th, major triad with the 3rd raised half tone plusflat 9th.
sus2 Suspended 2nd, major triad with the major 2nd above the root substituted for 3rd.
sus4 Suspended 4th, major triad with the 3rd raised half tone.
sus9 7sus plus 9th.
o A dim7 using a degree symbol
o(addM7) dim7(addM7) using degree symbol
o3 A dim3 (triad) using a degree symbol
ø Half-diminished using slashed degree symbol

In modern pop charts the “M” in a major 7th chord (and other major chords) is often represented by a “∆”.
When entering these chords, just replace the “∆” with an “M”. For example, change “G∆7” (or “Gmaj7”)
to “GM7”.

A chord name without a type is interpreted as a major chord (ortriad). For example, the chord “C” is
identical to “CM”.

There are also two not-chord items: “z” and “z!”. These areMmA’s idea of rests. See see page 58 for more
details..

MmA has an large set of defined chords. However, you can add your own with the DEFCHORD command,
see page 95.

A.1.1 Octave Adjustment

Depending on the key and chord sequence, a chord may end up in the wrong octave. This is caused by
MmA’s internal routines which create a chord: all of the tables are maintained for a “C” chord and the others
are derived from that point by subtracting or adding a constant. To compensate you can add a leading “-”
or “+” to the chordname to force the movement of that chord andscale up or down an octave.

For example, the following line will move the chord up and down for the third and fourth beats:

Cm Fm -Gm +D7

The effect of octave shifting is also highly dependent on thevoicing options in effect for the track.

You’ll have to listen to theMmA output to determine when and where to use this adjustment. Hopefully, it
won’t be needed all that much.

If you have a large number of chords to adjust, use the CHORDADJUSTcommand (page)90.

A.1.2 Altered Chords

According toStandardized Chord Symbol Notationaltered chords should be written in the form Cmi7(♭9♯5).
However, this is pretty hard to type (and parse). So, we’ve used the convention that the altered intervals

222

A.1 Chord Names Symbols and Constants

should be written in numerical order: Cm♯5♭9. Also, note that we use “m” for “minor” which appears to
be more the conventional method than “mi”.

A.1.3 Diminished Chords

In most pop and jazz charts it is assumed that a diminished chord is always a diminished 7th . . . a dimin-
ished triad is never played.MmA continues this, sometimes erroneous assumption.1 You can change the
behavior in several ways: change the chord notes and scale for a “dim” from a dim7 to a triad by following
the instructions on page 95; use the slightly oddball notation of “m♭5” which generates a “diminished
triad”; or use the more-oddball notation “dim3”. Our recommendation is to use “m♭5” for the triad and
“dim7” for the four note chord.

Notational notes: In printed music a “diminished” chord is sometimes represented with a small circle
symbol (e.g. “Fo”) and a “half-diminished” as a small slashed circle (e.g., “Cø”). MmA accepts this input
so long as:

o is represented by the character code 176,

ø is represented by the character code 248.

A.1.4 Slash Chords

Charts sometimes useslash chordsin the form “Am/E”. This notation is used, mainly, to indicate chord
inversions. For example, the chord notes in “Am/E” become “E”, “A” and “C” with the “E” taking the root
position.MmA will accept chords of this type. However, you may not notice any difference in the generated
tracks due to the inversions used by the current pattern.

You may also encounter slash chords where the note after the “slash” isnot a note in the chord. Consider
the ambiguous notation “Dm/C”. The composer (or copyist) might mean to add a “C” bass note to a “Dm”
chord, or she might mean “Dm7”, or even an inverted “Dm7”.MmA will handle these . . . almost perfectly.
When the “slash” part of the chord indicates a note which isnot a note in the chord,MmA assumes that
the indicated note should be used in the bass line. Since eachchord generated byMmA also has a “scale”
associated with it for use by bass and scale patterns this works. For example, a C Major chord will have
the scale “c, d, e, f, g, a, b”; a C Minor chord has the same scale, but with an e♭. If the slash note is
contained in the scale, the scale will be rotated so that the note becomes the “root” note.

A warning message will be printed if the note is not in both thechord and the scale.

Another notation you may see is something like “Dm/9”. Again, the meaning is not clear. It probably
means a “Dm9”, or “Dm9/E” . . . but sinceMmA isn’t sure this notation will generate an error.

As an option, you can use a Roman or Arabic numeral in the range “I” to “VII” or “1” to “7” to specify
the bass note (sometimes referred to as “fingered bass”). Forexample, to specify the bass note as the5th

1Sometimes a reliable source agrees with us . . . in this caseStandardized Chord Symbol Notationis quite clear that “dim”
is a Diminished 7th and a diminished triad should be notated as “mi(♭5)”.

223

A.1 Chord Names Symbols and Constants

in a C major chord you can use eitherG/D, G/V, or G/v. The Roman portion can be in upper or lower
case.

Please note that for fairly obvious reasons you cannot have both slash notation and an inversion (see the
next section).

For more details on “slash chords” your favorite music theory book or teacher is highly recommended!

A.1.5 Polychords

In modern music chords can be quite complex and difficult to notate in anything but standard sheet music.
In addition to the slash chords discussed above there are also POLYCHORDS. Simply stated a polychord is
the result of two (or more) chords played at the same time. In traditional music theory this is notated as a
fraction. So, a Dmajor chord combined with a Cseventh could benotated asD

C7. In traditional theory, the
notes in the D chord would be played higher (above) the notes of the C7 chord.

MmA handles polychords by specifying the two parts joined by a “pipe” symbol. So, the example above
would be notated as:

C7|D

For optimal results, you should understand the process by whichMmA creates the new chord:

1. The notes for the first chord and the underlying scale are calculated,

2. The notes for the second chord are calculated,

3. The notes are combined (with duplicates removed).

4. If the new chord is longer than 8 notes it is truncated (and awarning message is displayed).

Note that the scale list used by BASSand SCALE is the one belonging to the first chord; the second chord’s
octave is not adjusted; and no volume changes between the twochords are made. This means that you
most likely should take care to ensure the following:

� Explicitly set the octave of the second chord with the “+” modifier. To continue the example, use
“C7|+D”.

� Consider the order of the two chords to ensure the proper scale. The chord “C7|+D” and “+D|C7”
may generate the same notes, but the underlying scales are completely different.

� Consider adjusting the volume of the individual notes in the new chord. Since you’ll not be using
polychords very often you might want to do adjust the patternwith a RIFF directive:

Chord Riff 1 2 90 85 80 75 70 65 60
C7|+D

which would generate a 2 beat chord with decreasing note velocities.

� Pay careful attention to the VOICING of the chord. Different setting mangle the note order and
produce different results from what you may expect.

224

A.1 Chord Names Symbols and Constants

It is possible to combine slash, barre, octave and inversions with polychords. In the case of barre only the
value for the first chord is used.

A cute trick is to create a “pretend” polychord by duplicating the chord into a higher octave. For example,
the chord “D|+D” will generate two D major chords an octave apart. You might use this to make a single
bar sound brighter. If you are not hearing what you think should, examine the VOICING for the track—
VOICING MODE=OPTIMAL will remove the duplicate notes you are trying to insert.

A.1.6 Chord Inversions

Instead of using a slash chord you can specify an inversion touse with a chord. The notation is simply an
“>” and a number between -5 and 5 immediately following the chord name.

The chord will be “rotated” as specified by the value after the“>”.

For example, the chord “C>2” will generate the notes G, C and E; “F>-1” gives C, F and A.

There is an important difference between this option and a slash chord: in inversions neither the root note
nor the associated scale are modified.

The actual effect of a chord inversion will vary, perhaps greatly, depending on the VOICING mode. For
example, using an inverted chord with VOICING MODE=OPTIMAL makes no difference at all, using with
VOICING MODE=NONE (the default) gives the most difference.

A.1.7 Barre Settings

It is possible to set a barre for a chord in a PLECTRUM track by adding a “:” and a value to the chordname.
A barre setting must be the last item in a chordname and is onlyused by PLECTRUM tracks. Barre values
must be in the range -20 to 20. Examples include “Cm:3”, “E7>2:-2” and “+F:4”.

Important: unlike a real instrument,MmA barre chords do not change the pitch (transpose) the chord. The
same chord is played, but with a higher tonality.

A.1.8 Roman Numerals

Instead of standard chord symbol notation you can use roman numerals to specify chords. This is not the
place for music theory, but, simply put, a roman numeral specifies an interval based on the current key.
So, in the key ofC Major a ”I” would be aC major chord , “V” a G major , etc.

When using Roman numeral chords it is very important to set the KEYSIGnature! Failing to do this will
result in undefined behavior2. See page 187 for details on setting the key signature.

MmA recognizes the following:

I to VII These uppercase roman numerals represent major chords.

2Undefined in this case means thatMmA assumes you are in the key of C Major.

225

A.1 Chord Names Symbols and Constants

i to vii Lowercase roman numerals represent minor chords.

In addition, certain modifiers can be used to specify a chord quality (major, diminished, etc). These are
appended to the roman numeral (without spaces).MmA is a bit lazy when it comes to the strict interpre-
tation of chord qualities and permits many constructions which are technically incorrect (but work fine
musically). Quality modifiers include the following:

0, o, O oro a diminished triad. Only valid with lowercase (minor) numerals,

07, o7, O7 oro a diminished seventh chord. Only valid with lowercase (minor) numerals,

-07, -o7, -O7 orø a half diminished seventh chord. Only valid with lowercase (minor) nu-
merals,

b or & Lowers the resulting chord pitch by a semitone,

Raises the resulting chord pitch by a semitone.

Examples of roman numeral chords include “I”, “IV”, “V7”, “ii0”, “V13” and “v13”.

Other chord modifiers such as octave adjustment, capo and inversions can be combined with roman nu-
merals. So, “I:3”, “+ii>2” and “IV7>2:-2” are legitimate.

When specifying chords in Roman numeral notation “slash” inversions should be specified in Arabic or
Roman numerals, see page 223 for more details.3

MmA’s implementation differs from the standard in several ways:

� In Roman, the symbol for diminished chords should be the small, raised circle “o”. Since it’s hard
to type that with a text editor we use a “0” (digit), “o” or “O”.Half diminished should be the slashed
circle “ø” ... to make typing easier we recommend our alternate of an “o” preceded by a “-”. If your
input method and text editor support “o” and “ø” ensure they are the character values 176 and 248.

� In Roman, inversions are specified with small, raised Arabic numerals after the chord name.MmA
doesn’t support this.

� In Roman, bass notes are specified with a small Arabic numeral after the chord name.MmA doesn’t
support this. Use slash notation instead.

� Unlike Roman, complicated notations are permitted. For example (in the key of C) the roman chords
ib6(add9)andIbm6(add9) will both convert to the standard notationCbm6(add9).

� MmA permits the use of ab or # to modify the pitch by a semitone. In strict Roman numeral usage
the chord should be specified as an altered chord or inversion. However, it’s much too common to
see usages likeC#dim in the key ofC to disallowi#0. And to be completely wrong, but permitted,
you could even useI#dim (blame it on the parser).

To aid in debugging, a special DEBUG option ROMAN is provided. When enabled this will display the
conversions for both Roman numeral chords and slash notation. See on page 184 for information to
enable/disable this option.

3It is permissible to use something likev/D, but you really shouldn’t.

226

A.2 MIDI Voices Symbols and Constants

A.2 MIDI Voices

When setting a voice for a track (i.e. Bass Voice NN), you can specify the patch to use with a symbolic
constant. Any combination of upper and lower case is permitted. The following are the names with the
equivalent voice numbers:

A.2.1 Voices, Alphabetically

5thSawWave 86
Accordion 21
AcousticBass 32
AgogoBells 113
AltoSax 65
Applause/Noise 126
Atmosphere 99
BagPipe 109
Bandoneon 23
Banjo 105
BaritoneSax 67
Bass&Lead 87
Bassoon 70
BirdTweet 123
BottleBlow 76
BowedGlass 92
BrassSection 61
BreathNoise 121
Brightness 100
Celesta 8
Cello 42
Charang 84
ChifferLead 83
ChoirAahs 52
ChurchOrgan 19
Clarinet 71
Clavinet 7
CleanGuitar 27
ContraBass 43
Crystal 98
DistortonGuitar 30
EchoDrops 102
EnglishHorn 69

EPiano 5
Fantasia 88
Fiddle 110
FingeredBass 33
Flute 73
FrenchHorn 60
FretlessBass 35
Glockenspiel 9
Goblins 101
GuitarFretNoise 120
GuitarHarmonics 31
GunShot 127
HaloPad 94
Harmonica 22
HarpsiChord 6
HelicopterBlade 125
Honky-TonkPiano 3
IceRain 96
JazzGuitar 26
Kalimba 108
Koto 107
Marimba 12
MelodicTom1 117
MetalPad 93
MusicBox 10
MutedGuitar 28
MutedTrumpet 59
None

8323199
NylonGuitar 24
Oboe 68
Ocarina 79
OrchestraHit 55

OrchestralHarp 46
Organ1 16
Organ2 17
Organ3 18
OverDriveGuitar 29
PanFlute 75
Piano1 0
Piano2 1
Piano3 2
Piccolo 72
PickedBass 34
PizzicatoString 45
PolySynth 90
Recorder 74
ReedOrgan 20
ReverseCymbal 119
RhodesPiano 4
Santur 15
SawWave 81
SeaShore 122
Shakuhachi 77
Shamisen 106
Shanai 111
Sitar 104
SlapBass1 36
SlapBass2 37
SlowStrings 49
SoloVoice 85
SopranoSax 64
SoundTrack 97
SpaceVoice 91
SquareWave 80
StarTheme 103

227

A.2 MIDI Voices Symbols and Constants

SteelDrums 114
SteelGuitar 25
Strings 48
SweepPad 95
SynCalliope 82
SynthBass1 38
SynthBass2 39
SynthBrass1 62
SynthBrass2 63
SynthDrum 118
SynthStrings1 50

SynthStrings2 51
SynthVox 54
TaikoDrum 116
TelephoneRing 124
TenorSax 66
Timpani 47
TinkleBell 112
TremoloStrings 44
Trombone 57
Trumpet 56
Tuba 58

TubularBells 14
Vibraphone 11
Viola 41
Violin 40
VoiceOohs 53
WarmPad 89
Whistle 78
WoodBlock 115
Xylophone 13

A.2.2 Voices, By MIDI Value

0 Piano1
1 Piano2
2 Piano3
3 Honky-TonkPiano
4 RhodesPiano
5 EPiano
6 HarpsiChord
7 Clavinet
8 Celesta
9 Glockenspiel
10 MusicBox
11 Vibraphone
12 Marimba
13 Xylophone
14 TubularBells
15 Santur
16 Organ1
17 Organ2
18 Organ3
19 ChurchOrgan
20 ReedOrgan
21 Accordion
22 Harmonica
23 Bandoneon
24 NylonGuitar
25 SteelGuitar
26 JazzGuitar

27 CleanGuitar
28 MutedGuitar
29 OverDriveGuitar
30 DistortonGuitar
31 GuitarHarmonics
32 AcousticBass
33 FingeredBass
34 PickedBass
35 FretlessBass
36 SlapBass1
37 SlapBass2
38 SynthBass1
39 SynthBass2
40 Violin
41 Viola
42 Cello
43 ContraBass
44 TremoloStrings
45 PizzicatoString
46 OrchestralHarp
47 Timpani
48 Strings
49 SlowStrings
50 SynthStrings1
51 SynthStrings2
52 ChoirAahs
53 VoiceOohs

54 SynthVox
55 OrchestraHit
56 Trumpet
57 Trombone
58 Tuba
59 MutedTrumpet
60 FrenchHorn
61 BrassSection
62 SynthBrass1
63 SynthBrass2
64 SopranoSax
65 AltoSax
66 TenorSax
67 BaritoneSax
68 Oboe
69 EnglishHorn
70 Bassoon
71 Clarinet
72 Piccolo
73 Flute
74 Recorder
75 PanFlute
76 BottleBlow
77 Shakuhachi
78 Whistle
79 Ocarina
80 SquareWave

228

A.2 MIDI Voices Symbols and Constants

81 SawWave
82 SynCalliope
83 ChifferLead
84 Charang
85 SoloVoice
86 5thSawWave
87 Bass&Lead
88 Fantasia
89 WarmPad
90 PolySynth
91 SpaceVoice
92 BowedGlass
93 MetalPad
94 HaloPad
95 SweepPad
96 IceRain

97 SoundTrack
98 Crystal
99 Atmosphere
100 Brightness
101 Goblins
102 EchoDrops
103 StarTheme
104 Sitar
105 Banjo
106 Shamisen
107 Koto
108 Kalimba
109 BagPipe
110 Fiddle
111 Shanai
112 TinkleBell

113 AgogoBells
114 SteelDrums
115 WoodBlock
116 TaikoDrum
117 MelodicTom1
118 SynthDrum
119 ReverseCymbal
120 GuitarFretNoise
121 BreathNoise
122 SeaShore
123 BirdTweet
124 TelephoneRing
125 HelicopterBlade
126 Applause/Noise
127 GunShot
8323199 None

229

A.3 Drum Notes Symbols and Constants

A.3 Drum Notes

When defining a drum tone, you can specify the patch to use with asymbolic constant. Any combination
of upper and lower case is permitted. In addition to the drum tone name and the MIDI value, the equivalent
“name” in superscriptis included. The “names” may help you find the tones on your keyboard.

A.3.1 Drum Notes, Alphabetically

Cabasa 69A

Castanets 84C

ChineseCymbal 52E

Claves 75E♭

ClosedHiHat 42G♭

CowBell 56A♭

CrashCymbal1 49D♭

CrashCymbal2 57A

HandClap 39E♭

HighAgogo 67G

HighBongo 60C

HighQ 27E♭

HighTimbale 65F

HighTom1 50D

HighTom2 48C

HighWoodBlock 76E

JingleBell 83B

KickDrum1 36C

KickDrum2 35B

LongGuiro 74D

LongLowWhistle 72C

LowAgogo 68A♭

LowBongo 61D♭

LowConga 64E

LowTimbale 66G♭

LowTom1 43G

LowTom2 41F

LowWoodBlock 77F

Maracas 70B♭

MetronomeBell 34B♭

MetronomeClick 33A

MidTom1 47B

MidTom2 45A

MuteCuica 78G♭

MuteHighConga 62D

MuteSudro 85D♭

MuteTriangle 80A♭

OpenCuica 79G

OpenHighConga 63E♭

OpenHiHat 46B♭

OpenSudro 86D

OpenTriangle 81A

PedalHiHat 44A♭

RideBell 53F

RideCymbal1 51E♭

RideCymbal2 59B

ScratchPull 30G♭

ScratchPush 29F

Shaker 82B♭

ShortGuiro 73D♭

ShortHiWhistle 71B

SideKick 37D♭

Slap 28E

SnareDrum1 38D

SnareDrum2 40E

SplashCymbal 55G

SquareClick 32A♭

Sticks 31G

Tambourine 54G♭

VibraSlap 58B♭

A.3.2 Drum Notes, by MIDI Value

27 HighQE♭

28 SlapE

29 ScratchPushF

30 ScratchPullG♭

31 SticksG

32 SquareClickA♭

33 MetronomeClickA

34 MetronomeBellB♭

35 KickDrum2B

36 KickDrum1C

37 SideKickD♭

38 SnareDrum1D

39 HandClapE♭

40 SnareDrum2E

41 LowTom2F

42 ClosedHiHatG♭

43 LowTom1G

44 PedalHiHatA♭

45 MidTom2A

46 OpenHiHatB♭

47 MidTom1B

48 HighTom2C

49 CrashCymbal1D♭

50 HighTom1D

51 RideCymbal1E♭

52 ChineseCymbalE

53 RideBellF

54 TambourineG♭

55 SplashCymbalG

56 CowBellA♭

230

A.3 Drum Notes Symbols and Constants

57 CrashCymbal2A

58 VibraSlapB♭

59 RideCymbal2B

60 HighBongoC

61 LowBongoD♭

62 MuteHighCongaD

63 OpenHighCongaE♭

64 LowCongaE

65 HighTimbaleF

66 LowTimbaleG♭

67 HighAgogoG

68 LowAgogoA♭

69 CabasaA

70 MaracasB♭

71 ShortHiWhistleB

72 LongLowWhistleC

73 ShortGuiroD♭

74 LongGuiroD

75 ClavesE♭

76 HighWoodBlockE

77 LowWoodBlockF

78 MuteCuicaG♭

79 OpenCuicaG

80 MuteTriangleA♭

81 OpenTriangleA

82 ShakerB♭

83 JingleBellB

84 CastanetsC

85 MuteSudroD♭

86 OpenSudroD

231

A.4 MIDI Controllers Symbols and Constants

A.4 MIDI Controllers

When specifying a MIDI Controller in a MIDI SEQ or MIDI VOICE command you can use the absolute
value in (either as a decimal number or in hexadecimal by prefixing the value with a “0x”), or the symbolic
name in the following tables. The tables have been extractedfrom information athttp://www.midi.org/
about-midi/table3.shtml . Note that all the values in these tables are in hexadecimal notation.

Complete reference for this is not a part ofMmA. Please refer to a detailed text on MIDI or the manual for
your synthesizer.

A.4.1 Controllers, Alphabetically

AllNotesOff 123
AllSoundsOff 120
AttackTime 73
Balance 8
BalanceLSB 40
Bank 0
BankLSB 32
Breath 2
BreathLSB 34
Brightness 74
Chorus 93
Ctrl102 102
Ctrl103 103
Ctrl104 104
Ctrl105 105
Ctrl106 106
Ctrl107 107
Ctrl108 108
Ctrl109 109
Ctrl110 110
Ctrl111 111
Ctrl112 112
Ctrl113 113
Ctrl114 114
Ctrl115 115
Ctrl116 116
Ctrl117 117
Ctrl118 118
Ctrl119 119
Ctrl14 14

Ctrl15 15
Ctrl20 20
Ctrl21 21
Ctrl22 22
Ctrl23 23
Ctrl24 24
Ctrl25 25
Ctrl26 26
Ctrl27 27
Ctrl28 28
Ctrl29 29
Ctrl3 3
Ctrl30 30
Ctrl31 31
Ctrl35 35
Ctrl41 41
Ctrl46 46
Ctrl47 47
Ctrl52 52
Ctrl53 53
Ctrl54 54
Ctrl55 55
Ctrl56 56
Ctrl57 57
Ctrl58 58
Ctrl59 59
Ctrl60 60
Ctrl61 61
Ctrl62 62
Ctrl63 63

Ctrl79 79
Ctrl85 85
Ctrl86 86
Ctrl87 87
Ctrl88 88
Ctrl89 89
Ctrl9 9
Ctrl90 90
Data 6
DataDec 97
DataInc 96
DataLSB 38
DecayTime 75
Detune 94
Effect1 12
Effect1LSB 44
Effect2 13
Effect2LSB 45
Expression 11
ExpressionLSB 43
Foot 4
FootLSB 36
General1 16
General1LSB 48
General2 17
General2LSB 49
General3 18
General3LSB 50
General4 19
General4LSB 51

232

A.4 MIDI Controllers Symbols and Constants

General5 80
General6 81
General7 82
General8 83
Hold2 69
Legato 68
LocalCtrl 122
Modulation 1
ModulationLSB 33
NonRegLSB 98
NonRegMSB 99
OmniOff 124
OmniOn 125

Pan 10
PanLSB 42
Phaser 95
PolyOff 126
PolyOn 127
Portamento 65
PortamentoCtrl 84
PortamentoLSB 37
RegParLSB 100
RegParMSB 101
ReleaseTime 72
ResetAll 121
Resonance 71

Reverb 91
SoftPedal 67
Sostenuto 66
Sustain 64
Tremolo 92
Variation 70
VibratoDelay 78
VibratoDepth 77
VibratoRate 76
Volume 7
VolumeLSB 39

A.4.2 Controllers, by Value

0 Bank
1 Modulation
2 Breath
3 Ctrl3
4 Foot
5 Portamento
6 Data
7 Volume
8 Balance
9 Ctrl9
10 Pan
11 Expression
12 Effect1
13 Effect2
14 Ctrl14
15 Ctrl15
16 General1
17 General2
18 General3
19 General4
20 Ctrl20
21 Ctrl21
22 Ctrl22
23 Ctrl23
24 Ctrl24

25 Ctrl25
26 Ctrl26
27 Ctrl27
28 Ctrl28
29 Ctrl29
30 Ctrl30
31 Ctrl31
32 BankLSB
33 ModulationLSB
34 BreathLSB
35 Ctrl35
36 FootLSB
37 PortamentoLSB
38 DataLSB
39 VolumeLSB
40 BalanceLSB
41 Ctrl41
42 PanLSB
43 ExpressionLSB
44 Effect1LSB
45 Effect2LSB
46 Ctrl46
47 Ctrl47
48 General1LSB
49 General2LSB

50 General3LSB
51 General4LSB
52 Ctrl52
53 Ctrl53
54 Ctrl54
55 Ctrl55
56 Ctrl56
57 Ctrl57
58 Ctrl58
59 Ctrl59
60 Ctrl60
61 Ctrl61
62 Ctrl62
63 Ctrl63
64 Sustain
65 Portamento
66 Sostenuto
67 SoftPedal
68 Legato
69 Hold2
70 Variation
71 Resonance
72 ReleaseTime
73 AttackTime
74 Brightness

233

A.4 MIDI Controllers Symbols and Constants

75 DecayTime
76 VibratoRate
77 VibratoDepth
78 VibratoDelay
79 Ctrl79
80 General5
81 General6
82 General7
83 General8
84 PortamentoCtrl
85 Ctrl85
86 Ctrl86
87 Ctrl87
88 Ctrl88
89 Ctrl89
90 Ctrl90
91 Reverb
92 Tremolo

93 Chorus
94 Detune
95 Phaser
96 DataInc
97 DataDec
98 NonRegLSB
99 NonRegMSB
100 RegParLSB
101 RegParMSB
102 Ctrl102
103 Ctrl103
104 Ctrl104
105 Ctrl105
106 Ctrl106
107 Ctrl107
108 Ctrl108
109 Ctrl109
110 Ctrl110

111 Ctrl111
112 Ctrl112
113 Ctrl113
114 Ctrl114
115 Ctrl115
116 Ctrl116
117 Ctrl117
118 Ctrl118
119 Ctrl119
120 AllSoundsOff
121 ResetAll
122 LocalCtrl
123 AllNotesOff
124 OmniOff
125 OmniOn
126 PolyOff
127 PolyOn

234

AppendixB

Bibliography and Thanks

I’ve had help from a lot of different people and sources in developing this program. If I have missed listing
you in theCONTRIBfile shipped with theMmA distribution, please let me know and I’ll add it right away.I
really want to do this!

I’ve also had the use of a number of reference materials:

Craig Anderson.MIDI for Musicians.Amsco Publishing, New York, NY.

William Duckworth.Music Fundamentals.Wadsworth Publishing, Belomnt, CA.

Michael Esterowitz.How To Play From A Fakebook.Ekay Music, Inc. Katonah, NY.

Pete Goodliffe.MIDI documentation (for the TSE3 library).http://tse3.sourceforge.net/ .

Norman Lloyd.The Golden Encyclopedia Of Music.Golden Press, New York, NY.

The MIDI Manufacturers Association.Various papers, tables and other information.http://www.
midi.org/ .

Victor López.Latin Rhythms: Mystery Unraveled.Alfred Publishing Company. These are handout
notes from the 2005 Midwest Clinic 59th Annual Conference, Chicago, Illinois, December 16, 2005.
A PDF of this document is available on various Internet sites.

Carl Brandt and Clinton Roemer.Standardized Chord Symbol Notation.Roerick Music Co. Sher-
man Oaks, CA.

And, finally, to all those music teachers my parents and I paidfor, and the many people who have helped
by listening and providing helpful suggestions and encouragement in my musical pursuits for the last 40
plus years that I’ve been banging, squeezing and blowing. You know who you are—thanks.

235

AppendixC

Command Summary

TRACK Accent<beat adj> Adjust volume for specified beat(s) in each bar of a track.119

AdjustVolume <name=value> Set the volume ratios for named volume(s).120

AllGrooves apply a command to all grooves.49

AllTracks <cmds> Applies cmds(s) to all active tracks.181

TRACK Arpeggiate<options> Arpeggiate notes in a solo track.76

TRACK Articulate <value> . . . Duration/holding-time of notes.182

Author <stuff> A specialized comment used by documentation extractors.198

AutoSoloTracks<tracks> Set the tracks used in auto assigning solo/melody notes.74

BarNumbers Leading<number> on data line (ignored).56

BarRepeat Data bars can repeat with a “* nn”57

BeatAdjust <beats> Adjust current pointer by<beats>. 108

Begin Delimits the start of a block.196

TRACK Capo<value> Set the Plectrum track Capo.78

TRACK ChShare<track> Force track to share MIDI track.147

TRACK Channel<1..16> Force the MIDI channel for a track.146

TRACK ChannelPref<1..16> Set a preferred channel for track.147

ChordAdjust <Tonic=adj> Adjust center point of selected chords.90

Comment<text> ignore/discard<text>. 184

TRACK Compress<value> . . . Enable chord compression for track.91

TRACK Copy<source> Overlay<source> track to specified track.183

[TRACK] Cresc<[start] end count> Decrease volume over bars.123

[TRACK] Cut <beat> Force all notes off at<beat> offset.111

Debug<options> Selectively enable/disable debugging levels.184

Dec<name> [value] Decrement the value of variable<name> by 1 or<value>. 134

[TRACK] Decresc<[start] end count> Increase volume over bars.123

DefAlias Create an alias name for a Groove.48

DefChord <name notelist scalelist> Define a new chord.95

236

Command Summary

DefGroove<name> [Description] Define a new groove.44

TRACK Define<pattern> Define a pattern to use in a track.25

Delay<track> Set a delay for all notes.185

TRACK Delete Delete specified track for future use.186

TRACK Direction [Up | Down | BOTH | RANDOM] . . . Set direction of runs in Scale, Arpeggio and
Walk tracks.186

Doc<stuff> A special comment used by documentation extractors.198

DocVar <description> A specialized comment used to document user variables in a library file. 199

TRACK DrumType Force a solo track to be a drum track.75

DrumVolTr <tone>=<adj> . . . adjusts volume for specified drum tone.179

TRACK DupRoot<octave> Duplicate the root note in a chord to lower/higher octave.91

End Delimits the end of a block.196

EndIf End processing of “IF”.142

EndMset End of a “Mset” section.133

EndRepeat[count] End a repeated section.128

Eof Immediately stop/end input file.203
Fermata<beat> <count> <adjustment> Expand<beat> for <count> by<adjustment percentage.

109
TRACK ForceOut Force voicing and raw data output for track.149

Goto<name> jump processing to<name>. 145

Groove<name> Enable a previously defined groove.46

GrooveClear Delete all current Grooves from memory.51
TRACK Harmony [Option] . . . Set harmony for Bass, Walk, Arpeggio, Scale, Solo and Melodytracks.

98
TRACK HarmonyOnly <Option> . . . Force track to sound only harmony notes from current pattern.

99
TRACK HarmonyVolume <Percentage> . . . Set the volume used by harmony notes.100

If <test> <cmds> Test condition and process<cmds>. 142

IfEnd End processing of “IF”.142

Inc <name> [value] Increment the value of variable<name> by 1 or<value>. 134

Include <file> Include a file.206

TRACK Invert <value> . . . set the inversion factor for chords in track.92

KeySig<sig> Set the key signature.187

Label <name> Set<name> as a label for “GOTO”.144

TRACK Limit <value> Limit number of notes used in a chord to<value>. 93

Lyric <options> Set various lyrics options.61

MIDI <values> Send raw MIDI commands to MIDI meta-track.150

237

Command Summary

TRACK MIDIClear <Beat Controller Data> Set command (or series) of MIDI commands to send
when track is completed.151

MIDICopyright Insert a Copyright message.152

[TRACK] MIDICresc start end countIncrease MIDI volume over bars.152

[TRACK] MIDICue Insert a Cue point message.151

[TRACK] MIDIDecresc start end countDecrease MIDI volume over bars152

MIDIDef Define a series of commands forMIDISEQ AND MIDIC LEAR. 152

MIDIFile <option> Set various MIDI file generation options.153

TRACK MIDIGlis <1..127> Set MIDI portamento (glissando) value for track.154

TRACK MIDIInc <File> <Options> Include an existing MIDI file into a track.154

MIDIMark [offset] Label Inserts Label into the MIDI track.157

TRACK MIDINote <Options> Insert various MIDI events directly into a track.158

TRACK MIDIPan <0..127> Set MIDI pan/balance for track.163

TRACK MIDISeq <Beat Controller Data> options> . . . Set MIDI controller data for a track.164

MIDISplit <channel list> Force split output for track.165

[TRACK] MIDITName <string> Assigns an alternate name to a MIDI track.166

[TRACK] MIDIText <string> Inserts arbitray text to a MIDI track.166

TRACK MIDIVoice <Beat Controller Data> Set “one-time” MIDI controller command for track.167

TRACK MIDIVolume <1..128> Set MIDI volume for track.168

TRACK Mallet <Rate=nn| Decay=nns> Set mallet repeat for track.187

MmaEnd <file> Set filename to process after main file completed.209

MmaStart <file> Set file to include before processing main file.208

Mset<name> <lines> Set<variable> to series of lines.133

MsetEnd End of a “Mset” section.133

NewSet<name> <stuff> Set the variable<name> to<stuff>. 132

TRACK NoteSpan<start> <end> set MIDI range of notes for track.94

TRACK Octave<0..10> . . . Set the octave for track.189

TRACK Off Disable note generation for specified track.189

TRACK On Enable note generation for specified track.189

Patch<options> Patch/Voice management.170

Print <stuff> Print <stuff> to output during compile. Useful for debugging.190

PrintActive Print list of active tracks to output.190

PrintChord <name(s)> Print the chord and scale for specific chord types.96

TRACK RSkip <Value> . . . Skip/silence random percentage of notes.84

TRACK RTime <Value] . . .85

238

Command Summary

TRACK RVolume<adj> . . . Set volume randomization for track.126

TRACK Range<value> Set number of octaves used in Scale and Arpeggio tracks.94

Repeat Start a repeated section.128

RepeatEnd[count] End a repeated section.128

RepeatEnding Start a repeat-ending.128

[TRACK] Restart Initialize a track to (near) default settings.190

TRACK Riff <pattern> Define a special pattern to use in track for next bar.52

RndSeed<Value> . . . Seed random number generator.84

RndSet<variable> <list of values> Randomly set variable.133

TRACK ScaleType<Chromatic| Auto> . . . Set type of scale. Only for Scale tracks.190

Seq Set the sequence point (bar pattern number).191

[TRACK] SeqClear Clears sequence for track (or all tracks).39

[TRACK] SeqRnd<On/Off/Tracks> Enable random sequence selection for track (or all tracks).40

[TRACK] SeqRndWeight<list of values> Sets the randomization weight for track or global.42

SeqSize<value> Set the number of bars in a sequence.42

TRACK Sequence<pattern> . . . Set pattern(s) to use for track.37

Set<name> <stuff> Set the variable<name> to <stuff>. 132

SetAutoLibPath <path> Set the Auto-Include file path.203

SetIncPath<path> Set the path for included files.207

SetLibPath<path> Set the path to the style file library.203

SetMIDIplayer <program> Set the MIDI file player program.204

SetOutPath<path> Set the output filename.206

SetSyncTone<tone> <velocity> set the sync tone.193

ShowVars Display user defined variables.134

StackValue<stuff> Push<stuff> onto a temporary stack ($ StackValue pops).136

TRACK Strum <key> Set the Plectrum track strum mode.78

TRACK Strum <value> . . . Set the strumming factor for various tracks.192

[TRACK] Swell<[start] end count> Change and restore volume over bars.125

SwingMode<on/off> Set swing mode timing.114

Synchronize<START | END> Insert a start/end synchronization mark.193

Tempo<rate> Set the rate in beats per minute.104

Time <count> Set number of beats in a bar.105

TimeSig<nn dd> Set the MIDI time signature (not used by MMA).107

TRACK Tone<Note> . . . Set the drum-tone to use in a sequence.32

ToneTR<old>=<new> translates MIDI drum tone<old> to <new>. 178

239

Command Summary

Transpose<value> Transpose all tracks to a different key.194

Truncate <beats> Set the duration of next bar.105

TRACK Tuning <strings> Create a Plectrum track tuning.77

UnSet<name> Remove the variable<name>. 134
[TRACK] Unify <On | Off>] . . . Unify overlapping notes.194

Use<file> Include/import an existing .mma file.207

VExpand <on/off> Set variable expansion.134

TRACK Voice<instrument> . . . Set MIDI voice for track.170

VoiceTr <old=new> . . .- translates MIDI instrument<old> to<new>. 177

VoiceVolTr <voice>=<adj> . . .- adjusts volume for specified voice.178

TRACK Voicing <options. Set the voicing for a chord track.87

[TRACK] Volume<value> . . . Set the volume for a track or all tracks.122

[] Index or Slice variable expansions139

$(. . .) Delimits math expressions140

$Name A user defined macro.131

$ Name A predefined variable.136

240

