Reference Documentation

-/

Spring

§) SPring

s O Ur coe

3.1

Copyright © 2004-2012 Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob
Harrop, Alef Arendsen, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack,
Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin
Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen Poutsma, Chris Beams, Tareq

Abedrabbo, Andy Clement, Dave Syer, Oliver Gierke, Rossen Stoyanchev

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Spring Framework

Table of Contents

I. Overview of SPring FramEWOIKooi it e e e s e e e e e e e e neeeeeeas 1
1. Introduction to SPring FramEWOIKccoiiciiiiiiieeee e e e e e 2
1.1. Dependency Injection and Inversion of Controlcccooecviveeiiiieeenniieee e 2

L2, MOQUIES ...ttt ettt e e et e e et e e e s e nba e e e e annree s 3
(O0 (=X @071 =1 0= SRR 3

Data ACCESTINTEGIAtiONuuvuiueuiuiuiiiuiuiuruenrnrnrnrrrrrrrrrrrrrrrrrrrrr.. 4

ATAT L o TSP PP PPPPPPPPPPPPPR 4

AOP and INSErUMENTALION ... e et ee e e e e e e e eeeeeee e e e e e e e e ennes 5

LI S P PPPRPRPPPPRN 5

1.3, USBOE SCENAIOSvveieeiirieeeiiiteee e ettt e e ettt e ettt e e e sttt e e e e e e e st e e e s anbne e e e anneeee s 5
Dependency Management and Naming CONVENtioNSeceeeeeiiiiiiiiieeeeeeeseennns 9

Spring Dependencies and Depending 0N SPringcceeeeevvveeeeiiiieeeennenn. 11

Maven Dependency ManagemMentueeuveureeeermnrmmmmrmrrrmnmnn. 12

vy Dependency Managementcoceeeeiiiiiiiiiieeeeeeescsiiree e e e e e e 13

oo o] oo EN PRSP PR PPPRPP PP 14

Not Using COmMMONS LOGGINGuvvvrrereeeeeiiiiiiiiiieeeeeeesssiierneeeeeeeesesnsnsneens 14

USING SLFAT oot 15

USING LOGAT ..ottt ettt e e e e e e et e e e e e e e e ennnraees 16

1. WhHat'S NEW IN SPIING 3 ..ottt e st e e e e e e e ennees 18
2. New Features and Enhancementsin Spring 3.0 ..., 19
2.1 JAVAD et e e pa e aae 19

2.2. IMproved dOCUMENEEEIONciiuviiieeiiieeee et e e e e e e e e e e e e e e e e e e 19

2.3. New articles @and tULOMTAISooouveiie it 19

2.4. New module organization and build SyStemccccoviiiieiiiiieeeeec e 20

2.5. OVerview Of NEW FEALUIESc.vviieiiiiie e e e e 21
Core APISUPdated fOr JAVADcooiiiiiiiiiiiiee e 22

Spring EXPression LanQUAOEccceevvviviiiiieecc ettt 22

The Inversion of Control (I0C) CONLAINEScccoecviviriieeeeeecciieeee e 23
Javabased bean metadalaeevvvieeiiii e 23

Defining bean metadata within COMpoNENtscccooovviiiiiiiieeee e, 24

General purpose type conversion system and field formatting system 24

L[] D= = T 1= S URRRRR 24

TREWED TIEr . a e 25
Comprehensive REST SUPPOITcoioiiiiiiiieeee e 25

@)\ A O o (o [(o] =TT 25

Declarative model validationcoeeiiiiiiiiiiiiiee e 25

Early support for JAVAEE 6ooeviiieiiiiiiieicc e 25

Support for embedded datalasescoccvviiiiiiiiiie 25

3. New Features and Enhancementsin Spring 3.1 ... 26
3.1. Overview of NEW FEALUINESceeiiiiiiee e 26

31 Reference Documentation

Spring Framework

CaChe ADSLIACHIONcoiiiiiiee it e e neeeeeaanes 26
Bean Definition ProfileSoocceiiiiiiee et 26
Environment ADSIraCtioncccuuviiiiieie e 26
PropertySource ADSIFaCHIONueiieeeeiiiciiiieiee e e e e e e 26
Code equivalents for Spring's XML NamMeSPaCEScvveerrirreeeiniieeeeiiieeeeenaes 27
SUPPOrt FOr HIDEIMNELE 4.Xovveieeeee e 27
TestContext framework support for @Configuration classes and bean definition

010 11 1= U EUR SR 27
C: namespace for more concise CONSIrUCLOr INJECTIONoocvveeeiiiieeeeiiiieeeeas 28
Support for injection against non-standard JavaBeans Settersccccceeeeeeenen. 28
Support for Servlet 3 code-based configuration of Servlet Container 28
Support for Servliet 3 MUltipartRESOIVEYccoiiiiiiiii e 28
JPA EntityManagerFactory bootstrapping without persistence.xml 28

New HandlerMethod-based Support Classes For Annotated Controller Processing
... 29
"consumes' and "produces’ conditions in @RequestMappingccccoevvveeeens 30
Flash Attributes and RedireCtAttribUtesccoveiiiiii e 30
URI Template Variable ENhanCEmMENtScccvivieiiee e 30
@Vaid On @RequestBody Controller Method Argumentsccccceeeeeeeeennes 30
@RequestPart Annotation On Controller Method Argumentsccccceeeeeenes 31
UriComponentsBuilder and UriCOMPONENESccooivrrieeriiriee e e e 31
IR Oo =T 1=t o] 0] o = PPt 32
I 0 T= N Mo @ oo =] = USSR 33
4.1. Introduction to the Spring 10C container and beanscccceeveeeeeiiiciiiieneeenn, 33
4.2. CONLAINET OVEIVIEW ...eeiiiiiiiiieeeiteiee e sttt e e sttt e e s et e e e s ssbbe e e e asbe e e e s snabeeeessnbneeeeane 33
Configuration MELAAEEALvvveeeiiiii et 34
INStantialing @ CONAINENcccuiiiiiiee et e e e e e e s s e e e e e e e e e eanes 36
Composing XML-based configuration metadataooccvveeeiiiieeeennnnn. 37
USING the CONLAINESccoeieeee e 38
A.3. BEAN OVEIVIEW ..eieiieee ettt ee e e e e e ettt et e e e e e s e et e e e ae e e s s ansntb e s et aaeeessansnraeeeaaaenas 38
NaMING DEANS ... e e e e e e e annes 40
Aliasing a bean outside the bean definitionc..cccoooiciei e, 40
INSEANLIALING DEANSeiiiiiiiiie e 41
Instantiation With @ CONSLIUCIONcoiiuveiieiiiiiee e 42
Instantiation with a static factory methodccocceeeiiiiiiiiiie e, 42
Instantiation using an instance factory methodcccccvvviiiiiniiiiiiinn. 43
4.4, DEPENUENCIESeeeiiiiieiee ettt ettt sttt e e ettt e e et e e e e st e e e sbe e e e e anbe e e e s anbneeeeane 44
DEPEndenCy INJECTIONcoureieiiiiiiie ettt 44
Constructor-based dependency injeCtionccccvveeeeeeeeiiiiiiiieeeee e 44
Setter-based dependency INJECHIONccuevveiiiieiee e 47
Dependency reSolUtion PrOCESSceeeeeeiiiiiiiiiieeeee e e e e e e e e eeearaees 48
Examples of dependency iNJECtIONoooviiiiiiiiiiiiie e 49
Dependencies and configuration in detailcccvvviiiiiiiniiiiiiii. 51
Straight values (primitives, Strings, and SO 0N)ceevvveeeiiiciiiiereeeeee e, 51
References to other beans (Collaborators)cooccveveiiiiieeeinieee e, 53

31 Reference Documentation

Spring Framework

INNEF DEANS ...t e e et e e e naeee s 54
00 | 1= ox 1 o g RPRRRR 54
Null and empty StriNQ VAIUESuuvuiriuiiiiiiiiiiiiiirnirerrnrnrnrnnnm. 57
XML shortcut with the p-NameSPaCEceeeeeiiiiiiiiieiiee e 57
XML shortcut with the C-NaMESPACEccvvvveiiiiiiieeiieee e 58
Compound Property NAIMEScceeiiiciiiieeie e e e e ccirreee e e e e e s e ssnrrreeeeeeeeeannes 59
USING AEPENAS-OMN ..ottt e e e e 59
Lazy-initialiZEA DEANScooiiiiiiieie e 60
AUtOWITING CONTADOTAIONSeeeiiiiiiie et 61
Limitations and disadvantages of aUtOWITiNGevvvverrieerirenimimenmnnnn. 62
Excluding abean from autowWiringccoccviveerieeciiiiciiiieeeee e, 63
MELhOT INJECTION ... 63
Lookup Method iNJECHIONcccvviiiiiiee e 64
Arbitrary method replacementocceevieiiiiieeeie e 66
Y S I o0 o == P 67
The SINGIELON SCOPE ...cooiiiiiieeeei et 68
LILA(=T o010 1Y 1R olo] o 69
Singleton beans with prototype-bean dependenciesccoovvccvvveveeeee e, 70
Request, session, and global SESSION SCOPESccovvrrreeiiiiiieeeiiiiee e 70
Initial web configurationcccuvieiiie e 70
REQUESE SCOPE ...ttt nr e 71
S S 0] IS vl o RSP 72
GlODal SESSION SCOPE ...t 72
Scoped beans as dependeNCIESccuvviiirieee e 72
CUSIOM SCOPES ...iiiiiiiiiei ettt e e e e e e e e e e e e e e e e e aa e 74
Creating & CUSIOM SCOPE ...cceeuvriieeiiiieeeesiteee e et e e e et e e e st e e e s e e e e e 75
USING @ CUSEOM SCOPEvvveeereeeeeiiiitireeeeeeeesseintsreseeeesssesntsaneesasessssasnsneees 75
4.6. Customizing the nature of abean ... 77
LifecyCle CallDacKSuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiieiee e eeeeeeeeeeeererrrenrnrrrnnne 77
Initialization CallDACKSccooviiiiiiieiiie e 77
Destruction CallDaCKSoeiiiiieiiieieee e 78
Default initialization and destroy methods ..., 79
Combining lifecycle mechanismscccccoiiiiiiiiic e 80
Startup and shutdown Callbackscccveveeieeiiiiiiiee e, 80
Shutting down the Spring 10C container gracefully in non-web applications 82
ApplicationContextAware and BeanNamMEAWEIEuvvvverrrermvermmmmmnmmmmmnmnmnnn 83
Other AWare interfatesvuvivviiei e 84
4.7. Bean definition iNNEMTaNCEoooioeiiiiiiiiee e 86
4.8. Container EXtENSION POIMNEScvviiiiiiiiiieiiiiiie et e e 87
Customizing beans using a BeanPOStPrOCESSONcuvveeiiiireeeiiiiiee e 87
Example: Hello World, BeanPostProcessor-styleccccvvveeeeeeeeecccvnnneen. 89
Example: The RequiredAnnotationBeanPosStProcessorcvvveeeevvecevvennen. 90
Customizing configuration metadata with a BeanFactoryPostProcessor 90
Example: the PropertyPlaceholderConfigurerccooecvvveveeeeee v, 91
Example: the PropertyOverrideConfigurerooccveveviiieeenniieeeenieeeenn 93

Reference Documentation

Spring Framework

Customizing instantiation logic with a FactoryBeanccocvveeeeeiiiiicinnnen, 94
4.9. Annotation-based container CONfigUrationcceeeiriirieeiiiiiee e 95
(@0 =0 U 1= PPN 96
(@S 16 Y (= o IR 97
Fine-tuning annotation-based autowiring with qualifierscccccooceeiiinnnen. 99
CUStOMAULOWIFECONTIQUIEN ...eiiie ettt e e e 104
@RESOUICEceeeeeette et e ettt e e e e e e e ettt e et e e e e e e e es b e e s e eeeeeeeetbaaseeeeeeeessaanns 105
@PostConstruct and @PIEDESLIOYccceiiiiiuiiiiieiiee et 106
4.10. Classpath scanning and managed COMPONENTSccoviuereerriirieenniieeeesnineeens 107
@Component and further stereotype annotationseeeeeeeeeeieiniieninimn. 107
Automatically detecting classes and registering bean definitions 107
Using filters to CUStOMIZE SCANNINGocuvveeeiiiiiiee e et 109
Defining bean metadata within COMPONENEScoeveiiiiiiiiiiieeeeee e, 110
Naming autodetected COMPONENTSuvveeiiiiiie e e e 111
Providing a scope for autodetected COMPONENESevvvviviriririreriiiirnrnrnrnnnnn. 112
Providing qualifier metadata with annotationscccocveveeiiiiieeeiniiece e, 112
4.11. Using JSR 330 Standard ANNOLELIONSeeueeerererreemeererreenrerrrnrerrermnrrn. 113
Dependency Injection with @Inject and @Namedccccceveveeeeeiiiiiineeneeenn, 114
@Named: a standard equivalent to the @Component annotation 114
Limitations of the standard approachccccceeeeei i, 115
4.12. Java-based container CONfiQUIationcccuveeeiiiereeeiiiieeeesiiree e e 116
Basic concepts: @Configuration and @Beanevvveviviminiiiiininiiininieinnn. 116
Instantiating the Spring container using AnnotationConfigApplicationContext .116
SIMPIE CONSLIUCTION ... a e 117
Building the container programmatically using register(Class<?>...) 117
Enabling component scanning with scan(String...)ccooceveeeiiieeeennne. 117

Support for web applications with AnnotationConfigWebA pplicationContext
... 118
Composing Java-based configurationscccccceevveeei 119
Using the @IMport @NOLaLiONccoiiueereiiiiiiee e 119
Combining Javaand XML configurationccccveeereeeeiiiiciiiieneeenn. 122
Using the @Bean annOLationeeeveeeiiiiiiiiieieee e r e e e e 124
Declaring @bEanoooiiiiiiiiei 124
INjeCting dePENUENCIESceeeeiiciiieeee e 125
Receiving lifecycle callDacks ... 125
Specifying bean SCOPEccovvvvviiiie 126
Customizing bean NAMINGooiiiiiiiieiie e 128
BN @li@SINGevveeeiiiiei i 128
Further information about how Java-based configuration worksinternaly 128
4.13. Registering aLoadTimEWEAVESc..oeeiiiiiiieiiiiiee e 129
4.14. Additional Capabilities of the ApplicationContextccccceeeeeeeiiiciiiiienenenn. 130
Internationalization USINg MESSAgESOUICEcceiiurrrieeiiirieeeiiieeeessieeee s 130
Standard and CuStOM BEVENESoooiiiiiiiieeee e 133
Convenient access to |OW-1eVEl TESOUICESccueeeeviiiieeiiiiie e 136
Convenient ApplicationContext instantiation for web applications 137

Reference Documentation

Spring Framework

Deploying a Spring ApplicationContext as a J2EE RARfile ..., 138
4.15. ThE BEANFACIOIYeiiiiiiiiiee ettt 138
BeanFactory or AppliCatioNCONIEXL?uuvururrrururirrrinnrrinrrenrrrnrrnrerrn. 139
Glue code and the evil SINGIELONc.ovviveviie e, 140
B5.RESOUITES ... 142
ST I g1 0 [F o1 o o IR OUPRPRPPPRRRN 142
5.2. The RESOUICE INTEITACEeviiiie e 142
5.3. Built-in Resource implementationscocccvieieriee e iciiiee et 143
UFTRESOUICE ..eveviiieeeeieiiieiee e e e e e s et te it e e e e e s e sttt e e e e e e e s e et aaeeeaaeesssansstaaneaaaenas 143
ClassPathRESOUICE ... 144
FilESYSLEMRESOUICEuvviiiieeeeiiiiiiiiee e e e e s e e e e e e e s e et e e e e e e s s rraereaaee s 144
SErVIEICONEXIRESOUICEeveeieieeei e e e e e e e e e 144
INPUESIFEAIMRESOUITEcciiieieieiiiee ettt e et e e e e e e e et n e e e e e e enesnanns 144
BYEATITAYRESOUICEevvieririiiiiiiiiiiririeiiirnee e nrrrnenenenes 145
5.4. The RESOUICELOAOENoiiiiieieiiieieiieee e e e e 145
5.5. The Resourcel oaderAWare interfaceoocccvveieriee e 146
5.6. ResOUrces as dependenCieSocvueieiieeeee e eeeiiieiie e e e e e e e e e e 147
5.7. Application contexts and Resource pathscccevvveeeiiiiciiiiieeece e, 147
Constructing appliCation CONEXLSccccuurieiiiiireeiieieeesiree e e 147
Constructing ClassPathXml A pplicationContext instances - shortcuts 148
Wildcards in application context constructor resource pathsccccccveveenneee. 149
E N 1B Y (oY = 1= 1 1Nt 149
The classpath™: Prefix ... 150
Other notesrelating to wildcardsoveeeiieeeiiiiiieeee e, 150
FileSyStEMRESOUICE CAVEALSvvvvieiieeeesiciiiieiee e e e e e s eetrre e e e e e e e e snrrraeeeea e 151
6. Validation, Data Binding, and TYPe CONVEISIONccooiurrieiiiiiiieeiiiiiee e 153
L0 I g 0 [F o1 o o PRSP PPPRRRN 153
6.2. Validation using Spring's Validator interfacecoovvieeeiiieieiiiiee e 153
6.3. Resolving codest0 ErrOr MESSAGEScccevvvviiieieieeeeeeeeeee et 155
6.4. Bean manipulation and the BeanWrapperocceeeeiiiiieeeiiiiiee e 155
Setting and getting basic and nested propertiesccccceevveeeciiieeeeee e e, 156
Built-in PropertyEditor implementationsccccceeeeeiicciiieiee e, 157
Registering additional custom PropertyEditorscccoocvveeeiiiieecennnee. 160
6.5. SPring 3 TYPE CONVEISIONccoiiiiiiiiiieee e e e ettt e e e e s st e e e e e e s tnraee e e e e e 163
CONVEITEr SPL ... 163
LO00] 0117 4= = o (o Y/ 164
GENENTCCONVEITE ..oiieieiiiciiiiiei e e e e e sttt e e e e e e e s e e e e e e s e s e e e e e e e e e e nnnnreaees 165
Conditional GeNeriCCONVEITEScoiiieiiiiieeeee e e 165
CoNVErSIONSEIVICE AP ..o 166
Configuring 8 CONVErSIONSEIVICEceiiiiiiiieeiiiiee et e e e e e e 166
Using a ConversionService programatiCallyccccceeeeeeiiciiiiieeiee e, 167
6.6. Spring 3 Field FOrMattingoooiiiiiiieiiiiie e 167
FOrMELLEr SPL ...t ebeeeeebsbeneee 168
Annotation-driven FOrMattingccceeeviiiiiiiieieiiee e 169
Format ANNOtation APoooieee e 170

31 Reference Documentation Vi

Spring Framework

FOrmMatterREGISITY SPl ..eeeeiieeieeecee e 171
FormatterRegistrar SPIooiiiiiiie e 171
Configuring Formatting in Spring MV C ..., 172
6.7. SPring 3Validationcoeviieiiiiiiiieiie e 173
Overview of the JSR-303 Bean Validation APlcccoooeiiiiiieeeee, 173
Configuring a Bean Validation Implementationc..cccoeeeiieieeeeeeecccinnnnen, 174
INJECting @V alidaOrcoiuiiiieiiiei e 174
Configuring Custom CONSLraiNEScccvvveieeieeeeiiciiiee e 175
Additional Configuration OPLIONScccoiiuriieiiiiiie e 175
Configuring aDataBinderccoooviviviiiiii 175
Spring MV C 3Validationccoeiiiiiiiiiiiiie e 176
Triggering @Controller Input Validationcccceveiiiiiieiiniiieeenieeen, 176
Configuring aValidator for use by Spring MVCcocceevveiiiiiiiiiiieeeee, 176
Configuring a JSR-303 Validator for use by Spring MVCcccveeenee 177
7. Spring Expression Language (SPEL) ...oovvvvvveeeeeeeeeeeeeeee 178
725 TR 1 1 L1 o o o SRR 178
7.2, FEAUNE OVEIVIBIW ... e e ettt e e e e et e e e e e e e e et e e e e e e e e s ennnaneeeeaaeeas 178
7.3. Expression Evaluation using Spring's Expression Interfaceccccvvvveeeeenn. 179
The EvaluationContext iNterfaCeoocceviiiiiee e 182
TYPE CONVEISION ..uvveiiiieeeeiiciiiiiee e e e e e e et e e e e e e et e e e e e e e s s eanra e reaaeeas 182
7.4. Expression support for defining bean definitionsccccovvveeiiiiic e 183
XML based CONfIQUIaioNeeeeeereueeeeeeereeeeeserennenrerennnenrennnnnnnernnrnnnnnnnnnnne 183
Annotation-based CONfIQUIaLIONc.ueviiiiiiiee e 183
7.5. Language REFEIEINCEeiiiiie ettt e e e e e e nreeeeeaae s 185
Literal EXPrESSIONSuuviiiiieeeeeiiiiiiieeee e e e s s et e e e e e e e s s et ae e e e e e e e e e e eanberaereaaeeas 185
Properties, Arrays, Lists, Maps, INAEXErSuvvevieeeeiiiiiieiece e 185
INHNETISES e st e e e e 186
ATTEY CONSLIUCTION ...ttt e e e e 186
IMBLNOOS ... e e e e 187
(@ 0< 1= (o] ST PP O PPPTPRRPP 187
Relational OPEraorsSccoieeeiiiiiiieiie e e e 187
(oo [[or= e 0= = (0] ¢TSRS 188
MathematiCal OPEIELOISoveiiuiiieeiiii e 188
ASSIONMENT .o e e s e e e e e e e s e et e e e e e e e e s e e nntrarreeeaaeeas 189
LI 0T PP P PSP PP P PP PP PPPPPPPPPPPPPPPPR 189
CONSITUCLOS ... 189
VATADIES .. 190
The #this and #root Variables ... 190
FUNCLIONS ..iiiiiieie ettt st e et e e e e e e 190
BEAN FEfEIENCES ... 191
Ternary Operator (If-Then-ElISE)cooiiiiiiiiiie e 191
THE EIVIS OPEIEIONeiiiiiieie ettt 192
Safe Navigation OpEratorcccovvviiiiiii e 192
COllECION SEIECLION ... 193
COllECtiON PrOJECLIONveiieiiiiieee ittt 193

31 Reference Documentation Vii

Spring Framework

EXPression temMpPlatingeeoeeoeiiiiiiiee e 194
7.6. Classes used inthe @XamMPIESoooiiiiieiiie e 194
8. Aspect Oriented Programming With Spring ..., 198
LS8 g1 70 [F o1 o o T PP P PP PPUPPPPPPPRPN 198
A OP CONCEPLS ...ttt e et e e e e e e e e s e re e e e e s 198
Spring AOP capabilities and goalsc.c.ueeevieeiiiiiiiiiiee e 200
AOP PIOXIES .oiiieiiiiiiieiiiee ettt e e e s et r e e e e e e s e e e e e e e e e e e ntnnaaeeeaeeeas 201
8.2. @ASPECLI SUPPOIT ..o 202
Enabling @ASPECET SUPPOIT ..ottt 202
DS e Lo I I S o= o R 202
Declaring @POiNCULcoiiieiiiiciieiee e ea e 203
Supported PointCut DESIGNELONSvvveiiirieeeiiiieeesineee e e e 204
Combining poiNtCUt EXPrESSIONSccvvvriiiieeeeeiiiiiiree e e e e e e eesirrarereae e 206
Sharing common pointcut definitionscoocveiiiiiiee e 206
0] == PP 207
WIriting gOOd POINECULSvvveeeiiiiie ettt 210
D= o = 1] 1o I 1Y/ ol R 211
BEfOr@ adVICEevieiiieie e 211
ATLEr refurning @0VICEvviiiiiiiiie et 211
AFter throwing adVICEccooiiiiiiiieee e 212
After (finally) @0VICE ...oooiiieiieeee e 213
ATOUNT BAVICE ...ttt 213
AQVICE PAIBMELENSeeiiiiiiiiee ettt e 214
ACVICE OFUEITNG .. e e e e e 218
INEFOTUCTIONS ...ttt e e e neees 218
ASpect iNstantiation MOTEISvvveiiiiiiiie e 219
EXAMPIE .. 220
8.3. Schemarbased AOP SUPPOITviiiiiieieeiiiiie ettt 221
D= e 1o I IS o= o R 222
DeClaring @POINTCULcoivrreieiiiiiee et e e e e e e e 222
DeClaring @dVICeeeeiiiiiiee et 224
BEfOr@ adVICEeevieiiieie e 224
ATLEr refurning @0VICEvviieiiiiiee e 225
AFter throwing adVICecoooiiiiiiiieiee e 225
After (finally) @0VICE ...ooiiiiiiiee e 226
ATOUNT BAVICE ... 226
AQVICE PAIBIMELENSeeiiiiiiiiie ettt et e e 227
AGVICE OTUENING ettt e e 229
INEFOTUCTIONS ...ttt e e e e e e neees 229
ASpect instantiation MOTEISevviiiiiiiiie e 230
01V PP 230
EXAIMPIE .. 230
8.4. Choosing which AOP declaration Styleto USeccccovvvvvviiiii 232
Spring AOP or fUll ASPECLI? .eeveeee e 232
@Aspect or XML for SPring AOP?oeieiiiieeeeiee e 233

31 Reference Documentation Viii

Spring Framework

8.5. MiXiNG GSPECE tYPES .. uuviiiiiieie ettt e e e e e e e e et e e e e e e et rraeeaaaeeas 234
8.6. ProxXying MEChANISIMISuviiiiiiiiie ittt e e e e e aaes 234
Understanding AOP PIOXIESccceeeieiiiiiieieee e s s s s s s s s s s 235
8.7. Programmatic creation of @ASPECtI PrOXi€Sccevveeeeiiiiiiiiiiiee e, 238
8.8. Using AspectJ with Spring appliCationsccceeeeiriimiieeiiiie e 238
Using AspectJ to dependency inject domain objects with Springc......... 238
Unit testing @Configurable ODJECESoeeviiiiiiiiiiiiiie e 241
Working with multiple application CONtextscccovevvieeeee e, 241
Other Spring aspectSfOr ASPECETooviiiiiiieiiiiiie et 242
Configuring AspectJ aspectsusing Spring l10C ..., 242
L oad-time weaving with AspectJin the Spring Frameworkcccccvveeeee. 243
A TIrSt @XAMPIE ..o 244
AAGPECES ittt 247
"META-INF@OPXMI' e 247
Required libraries (JARS)uuiviuiiiiiiiiiiiiiiiiiiiiiiiienrrrennennneennnnn. 247
SPring CONFIGUIALTIONvvieiiiiiiee et 248
Environment-specific configurationcccceeveeeeriiiiiiiiiee e, 250
8.9. FUINEr RESDUITESeiiiiiiiiieeiiiiiee ettt ettt et e et e e nnbn e e e e aaes 253
9. SPIHNG AOP APIS ...t 254
LS8 g1 7 [F o1 o o PRSP PPPRRRN 254
9.2. POINECUL AP N SPIING .ottt 254
LO0] 000 o K= 254
OpErations 0N POINTCULScouvvrreeiiiiieeeisiieeee e st ee e s e e e s e e e s sbreeeesseneeeeanes 255
ASPECtI eXPressioN POINECULSvveiriieeees i iee e e e e s e e e e e e e e eeeaeeeeeaeeeas 255
Convenience pointcut implementationsccccvveerieeeeiicciiiieeee e 255
SEALTIC POINTCULS ...ttt e e 256
DYNaMIC POINTCULSvvveiieeeeiiiiiiiieiee e e e e e s e e e e s s e e e e e e e s e e saenenees 257
POINTCUL SUPEICIBSSESeeeiiieiieeiiieie ettt 257
CUSLOM POINICULScceeeeeeieeeee e 258
9.3, AQVICE AP 1N SPIING ittt ettt eeeeaaes 258
AAVICE IITECYCIES ... 258
AdVICELYPESIN SPIIMNG weveveieeeiiiiiiiiiee e e e e e r e e e e 258
Interception arouNd 80VICEccuuvieiiiiiiie e 258
BEfOr@ aVICEoeviiiiiiiiie e 259
TRIOWS BAVICEeeiiiiiiieee et e e ee e 260
After REIUMING @0VICEuvvvviiiiiiiiiiiiiiiiiiiiirniinrenrnrnennnerrrnnennr. 261
Fpirgelo (Ve Lo g Ir="o V7 Lor - SRR 262
9.4. AQVISOr API TN SPING .t 265
9.5. Using the ProxyFactoryBean to create AOP ProXi€sccccveeeeeeeeiiiiiivnnneneeeenn. 265
2= o PSSR 265
JAVaBEAN PIrOPEITIES ...coii e et e e e e e e e e aanes 266
JDK- and CGLIB-baSed ProXi€Seeieiiiiiieeiiiiiee e 267
ProXying iNtEIfaCESuuuiuiuiuiuiiiiiiiiiuiiiuiniiieenrrrrrrrrrrrrr . 268
ProXYiNg ClaSSESvviiiiiiiiee et e e e a e 270
USING 'GIoDaI" @OVISOIScoiiiiiiieiiiii et 270

31 Reference Documentation iX

Spring Framework

9.6. Concise Proxy definitioNSccciiiiiiee e 271
9.7. Creating AOP proxies programmatically with the ProxyFactorycc........ 272
9.8. Manipulating advised ObJECESccoovviiiiiii 272
9.9. Using the "autoproXy" faCilitycccveeieeeeeiiiiieiee e 274
Autoproxy bean definitionscoooiiiiiiiii 274
BeanNameAULOPIOXYCIEaLONcovvveeiieeiiiiiieieeeeeeeeeiinns e e e e e eeerrenn e 274
DefaultAdviSOTAULOPIOXYCIEEIONcc.vvveeiiiiieieeeiieee et 275
AbstractAdviSorAUtOPrOXYCIrEAtOrooccivirieeiee e e e et e 276
Using metadata-driven auto-proXyingceeeocveeeeeniieeeesiineeeesnieeeessneeeeesnnes 276
9.10. USING TArgEISOUICEScceeeeeieiieeeee et 278
Hot swappable target SOUICESuuviiiieeee it a e 279
POOIING tArgEL SOUMCES ...ttt 280
Prototype targel SOUICESccuvvuuiiiiieeiiieiiiiise e et e e e e e et e e e e eeeenanns 281
ThreadL OCal target SOUICESceiiiiiieie it e ettt 281
9.11. Defining New AQVICELYPESccoeeeeeeeeeeee e 282
0.12. FUINEY FTESOUICESevvvieieeieeeeseeiiitteeeee e e s e setatae e e aae e e s e ssntaaeeeeaaeessannssrnanraaaenas 282
0 1=] o SRR PUPRRR 283
10.1. Introduction t0 SPriNg TESHNGcevieeeeiiciieei e e e e 283
10.2. UNIE TESHNG ©vveeeiiiiieeeiiiieeeesiiee e e esiee e e e st e e e e ssaaee e e s nteaeessnneeeeeennaaaeeenssneeeeanns 283
MOCK ODJECLScooiiiiiiieiee et e e et e e e e e st ae e e e e e e e e e et bt reeeeaaeeas 283
IN D e 283
SEIVIEE APl ot 283
o)1 = 2 o PO PPPPPPPPRPPPPPRt 284
Unit Testing SUPPOrt CIESSESccceeviiiiieeee et e e e e e 284
GENEral ULTTITIES ...eeiiieiiieee e 284
SPHNG MV C et 284
10.3. INtEGration TESHNG ..vveeeeeeeiiiiiiiieiee e e e e e e e e s e et e e e e e e e s s sarrrae e e e e e e e e eaanes 284
OVEIVIBIW .ttt ettt e e e et e e e e e e e s st e e e e e e e s s annttaneeeaeeeeennnneeaees 284
Goasof Integration TESHING ...ccceeveveeiiiiieieeee 285
Context management and Cachingccccevviiiiiiiiiiee e 286
Dependency Injection of test fiXIUrescccveeeiiieeiiiii e, 286
Transaction MaNAgEMENTovueiieeeeiicciiier e e e e e e e e e e 287
Support classes for integration teSHINGovevviiirieiiiiiie e 287
JDBC TESHNG SUPPOIT ..ottt e e ettt e e e e s s et e e e e e e s s s snnrrreeeeeeeeeennnes 288
N 00 = 1 o SRS 288
Spring Testing ANNOLALiONScccevvviiiiiiiee e, 288
Standard ANNOatioN SUPPOITcoeiivreieiiiiiie et 292
Spring JUNit Testing ANNOLBLIONScccoiurieeeiiiiee e e 292
Spring TestContext FrameWOIKccc.vveieeeee e 294
Ky @DSITACHIONS ...t 294
Context MaNagEMENTvuiiie e e e e e e e e 295
Dependency injection of test fIXTUreSccccvveiiiiiieiiiiiee e 303
Transaction MaNBgEMENLeeuereueereeeeeerererrenreenrnrnnrrerrerrrrrnrrrnrrrnn 306
TestContext SUPPOIt ClASSESvvviiieeee it ee e e e a e sarare e e e 308
PetClinIC EXAMPIE ... 310

31 Reference Documentation

Spring Framework

10.4. FUINE RESOUICESceivveeeeiiiiieeeeiieee e s sttt e e s ssteea e e s nteeeesasaeeeeannneeeeeennseeeeeann 312
IV . DBLBLACCESS ...ceettieee e e e ettt e e e e et ettt e e e e e et et et b e e e e e e eeeeb bbb a e e e e e e e e e et bba e e e e e e e e eerrba e eas 313
11, Transaction ManagemENtccoooeiiiei i 314
11.1. Introduction to Spring Framework transaction managementcccccceeeenees 314
11.2. Advantages of the Spring Framework's transaction support model 314
GlODal tranSACtIONSc.vviiieiiiieiee e 315
LOCAl traNSACHIONSeveieiiieee et e e e e e e e e e e e e et rreeeeaeeeas 315
Spring Framework's consistent programming modelcccovveeeeeeiiiiinnneen, 315
11.3. Understanding the Spring Framework transaction abstractionccceeene. 316
11.4. Synchronizing resources With transactionscccceeeevvivv e, 320
High-level synchronization approachcccveeeviee i, 320
Low-level synchronization approachceeeeeirieeeiiieeee e 320
TransactioNAWareDataSOUrCEPIOXYcccuvvvvereeeeeiiiiiiiiereeeeeessssisrnrereeaeeseananes 321
11.5. Declarative transaction ManNagEMENTcceirurreerriireeeniiireeesnrreeessseeeeesaaes 321
Understanding the Spring Framework's declarative transaction implementation 323
Example of declarative transaction implementationcccoceeeeiiiiiee e, 324
Rolling back a declarative tranSactionccccccueeiriiiiinninrinen. 328
Configuring different transactional semantics for different beans 329
<EX:BAVICE> SEEUINGSvveeeeeiieie et e e e e e aaes 331
USING @TranSactionalc..ccoeiiiiiiiiiiiee e e e e snrrae e e e 332
@TransaCtional SELLINGSvvvveiiiiiiee e 336
Multiple Transaction Managers with @Transactionalcccccvvvevnnnn. 337
Custom shortCut aNNOLALIONSeeeeiieiiiieiee e e e e s e e e e 338
Transaction Propagaliioneeereeeeeiieiiieee e e e e eteeee e e e e e e s s seeeeeeeeeaeeeeannes 338
S 11T = PSR 339
REQUITESINEBIW ...t 339
=S = o PR PR 340
Advising transactional OPEraONSceeeiriereeiiiiiiiee et 340
Using @Transactional With ASPectdcoooeeiiiiiiii e, 343
11.6. Programmatic transaction Managementccueveevrireeeerineeeesnireeessnieneeeennes 344
Using the TransactionTemMPIatecooveeoiiiiiiiiieeee e 344
Specifying transaction SEtiNGSooovcvvviiiiiiee e 345
Using the PlatformTransactioNManagerccuveveeiiieieeniiireeeesiieee e 346
11.7. Choosing between programmatic and declarative transaction management 347
11.8. Application server-speCifiC iNtegrationccceeeeriieeeeiiiieee e 347
IBM WEDSPNEIE ...t 348
BEA WEDLOGIC SEIVES ...ttt 348
OFACIE OCAT ...ttt e e e e e e s e e e e e e e e e e e nnneeeeas 348
11.9. Solutions to common ProblEMScooiciiiiiiee e 348
Use of the wrong transaction manager for a specific DataSource 348
11.10. FUtNEr RESOUICESvviieeiiiiieeeeiieee e e et e e et e e e et e e s ssaee e e s nnneeeeeenneeeeeeanns 348
12. DAO SUPPOIT o eeeeeiiitttee et e e e ettt e e e e e ettt e e e e s s e bbb e e et e e e e e s s annbbrr et e e e e e s e e nrnrneeas 350
2280 R 1 £ [o 1 o) o USSR 350
12.2. Consistent exception hierarchyooccoiiiiiei e 350
12.3. Annotations used for configuring DAO or Repository classescccveeenee 351
31 Reference Documentation Xi

Spring Framework

13. DataaCCeSS With IDBCcoiiiiiiiie ettt e et ettt e e e st e e e e st e e e snnneeeeeanes 353
13.1. Introduction to Spring Framework JDBCcc.coeoiiiiiieiiiiee e 353
Choosing an approach for JIDBC database accesscccccvvvvvvvvviiiiiiiiiccccee, 353
Package hi€rarChyceeeiiiei i 354

13.2. Using the JDBC core classes to control basic JDBC processing and error handling
... 355
JADCTEMPIBEE ..ot 355
Examples of JdbcTemplate class USagecccveeeeeeeeiiiiiiiiineeeee e, 356
JdbcTemplate DESt PraCtiCeSoooiiiiiieeiiiiiee et 358
NamedParameterJABCTEMPIELEuvuvuivirieiiiiiiiiiiriiirieerrerrerererrererrr. 359
SIMPleJdbCTEMPIALE ... 361
SQLEXCEPLIONTIANS G0N ...ciieieieeeeiie ettt 363
EXECULING SLALEMENES ...vveiiiiieei it ee et s e e e e e e e et e e e e e e 364
RUNNING QUENTES ...ttt e 365
Updating the database ... 366
Retrieving auto-generated KEYSoooiiiieeiiiiiee e 366
13.3. Controlling database CONNECLIONScccoeeeeeiiii i 367
DELASOUICE ...ciiiiiiiiiiiit ittt e e e e et e e e e e e e e eeeeaeeeas 367
DataSoUrCEULIISeeeiiiiiiiiee e e e e et rrree e e e e 368
SMADEAIASOUICEccoeiiieieeee e 368
ADSITACIDEIASOUITEeveiiieeeiiiiiiieiee e e e e s st e e e e e e e s e sreee e e e e e e e s s ssntnaaaeeeaeeeas 369
SingleConNECtioNDEASOUICEcccevviviiieieeeceeeeeeeeee e 369
DriverManagerDataSOUICec.uueieiiiieiee it 369
TransactioNAWareDataSOUrCEPIOXYccvvreeeeeeeeeiiaeiiieeeeeeeeesaeeneeeeeeeeeeseannes 369
DataSourceTransaCtioNManNaQEYceeeiieeiirieiieeee e s eiciiree e e e e e e e ssirrrae e ee e 370
NatiVEIADCEXLIACION ... eeiiiieeiiiiciiiiei e e e e e e erreeeeae e 370
13.4. IDBC hatCh OPErationSccuvvvieiieeeiiiiiiiiee e e e et e e e e e e e e e e eanes 371
Basic batch operations with the JADCTEMPIAEeevveiiiiiiiiiieee e 371
Batch operationswith aList Of ODJECLScvvviviiiiiiiiiiiiiiiieees 372
Batch operations with multiple Datches ... 373
13.5. Simplifying JDBC operations with the Simpleddbc classesccccccveeeinees 374
Inserting data using SImpleddbCINSertcccvvveeviee i, 374
Retrieving auto-generated keys using SimpleJdbclinsertccccoeeeeeciiiienenenn. 375
Specifying columns for a Simpleddbclnsertcccceeeeeeeiiiiciiieeee e, 375
Using SglParameterSource to provide parameter Valuescccoeevvvvcevvvienenennn. 376
Calling a stored procedure with SimpleddbcCallcccoo 377
Explicitly declaring parameters to use for a SimpleJddbcCallcccvveeennnnnn. 379
How to define SQIParametersoooo i 380
Cdlling astored function using SimpleddbcCallc.cccooviiiiiiieeee e, 380
Returning ResultSet/REF Cursor from a SimpleJdbcCallccccoeeviiiieeinnnen. 381
13.6. Modeling JDBC operations as JAVA OLJECESccovveiuvviiieiieeeeiiiiiiiee e e e e 382
SOIQUETY .ttt e e e e e e e e aae 383
MaPPINGSOIQUENY ...uvuieieieiuiuiuiurutuenrnrnrrrrenenrrererrrrrrrrrrrrrrerrrrrrrrrrrrrrrrrrrrrrnrne 383
0| 10T = = PP 384
StOrEAPTOCEAUIEceiieeeieeieeee ettt e et e e e e e s e et e e e e e e e e nnneeeeas 385

31

Reference Documentation

Xii

Spring Framework

13.7. Common problems with parameter and datavalue handlingcccccoeeenne. 388
Providing SQL type information for parametersccoccuveeevriveeeeiniieee s e 388
Handling BLOB and CLOB ODJECESuuuuiuiiiiiiiiiiriinirinirinenenemm. 388
Passing in lists of valuesfor IN clauseccccovevieeiiiiccec e, 390
Handling complex types for stored procedure Calscccccvvivieeeiiciinennnnnnn. 390

13.8. Embedded datahase SUPPOItooivieiiiiiiiiiei e e 392
Why use an embedded database?cccooiiiiiiiiiiii e 392
Creating an embedded database instance using Spring XMLccccooeeviiiinnneen. 392
Creating an embedded database instance programmaticallycccccovcvveennee 392
Extending the embedded database SUPPOItuvuriirrmiiimimimineiinreinenrnnrnnnn. 392
USING HSQL oeeieiieei et e e e e e st e e e e e e e s e s raeeeaaee s 393
USING HZ oottt e e et e e e e st e e e e nnnae e e e ennreeeeeann 393
USING DEIDY v e e s e e 393
Testing data access logic with an embedded databaseccccevviiieeeiiineen, 393

13.9. InitializiNg @aDataSOoUICEcccoeeiee e 394
Initializing a database instance using SPring XMLcoocoviiiiiiiiiieniiiece e, 394

Initialization of Other Components that Depend on the Database 395
14. Object Relational Mapping (ORM) Data ACCESScccuvviviiieeeeeiisiiiieeee e e e e e 397

14.1. Introduction to ORM With SPIriNgccceviiiriiiiiiiiie e 397

14.2. General ORM integration CONSIAEratioNSceeeeiiiiiiiieeereeeeeeiiiireee e e e e e e eenes 398
Resource and transaction Managementc.eeeveiiiieeeeinieeee e 398
EXCEPLiON tranSIationeuvuueiuiuiiiuieriiuinrneeenrnenrnrereenerrnrrr—.. 399

G T o 1] o= = = SRR 400
SessionFactory setup in aSpring CoNtaiNErcc.uveeevieeeeiiiceeee e 400
Implementing DAOs based on plain Hibernate 3APIccovvvveeeiiiiiiiiiieeeeen, 401
Declarative transaction demarCationccccueveerieeeiiieciiieiee e 402
Programmatic transaction demarCationccceeeeeeeiiiiiiiieeee e 404
Transaction Management SIrAEJIESccoovurrieeiiieiee e 405
Comparing container-managed and locally defined resources 407
Spurious application server warnings with Hibernatecccoocoiiiiiiennne 408

I 5 1 RS OUSRRSPPRRR 409
PersistenceManagerFactory SELUDceeveeeiieciiiieiee et ee e e e 409
Implementing DAOs based on the plain IDO APlcooiiiiiiiiiieeeeeee 410
Transaction MAaNAgEMENTuuviiiiiee e e e e e s e et e e e e e e e s e srrrrre e e e e e e s esnnes 412
o (o] D T = U RRERR 413

LS. TP A e b e e e e et e e e anrae e e e nraeeeaaane 414
Three options for JPA setup in a Spring environmentccceeevvieveeeeniveeenn. 414

Local EntityManagerFactoryBeancoooiiieieiiiiiie e 414

Obtaining an EntityManagerFactory from JNDIcccccoeevviiiiiiiienenenn. 415

L ocal ContainerEntityM anagerFactoryBeancccccovvivveeeiiiieeeeniee. 415

Dealing with multiple persistence Unitscccccceeeeeeiiiiiiiieeee e, 418

Implementing DAOs based on plain JPAooiiiiiiiiieiieeee e 418

Transaction ManaQEMENTeeeeeeeeereeeeeeeeerererererenreerereerrrrrerrrrrrrrrrrrrrrrrrnrnrne 421

JPADHAIECT ...t 422

14.6. IBATIS SQL MAPS ..oeiiiiiiieeiiiiiiteeeiieee e e siieeeeasstaeaeessnteeeesanaeeaeasnneeeeeennsneeeaanns 422

31 Reference Documentation Xiii

Spring Framework

Setting up the SQIMapClHIENt ..o 422
Using SglMapClientTemplate and SglMapClientDaoSupportcccccceeeeeennee 424
Implementing DAOs based on plain IBATIS APIiiiiiiiiiiiiiiiiniiiiniennnn, 425

15. Marshaling XML using O/X MapPENSccccuvvrierieeeeiiiiiiieeee e e e e e s ssinsneeeeee e e s e ennennnnes 426
G0 I 1 4o [o 1) o OO SRR 426
15.2. Marshaller and Unmarshall@rc.coooiiiiiiiiiiiiiieeeieiee e 426
MAISNAITEYeeiiieeei e e e e e e e e e e 426
UNMAISNAITEN ..t e e e e e e e e e nnreeeeeanes 427
XMIMBPPINGEXCEPLIONeiiiiiiiieeiiieiee et e e anes 428

15.3. Using Marshaller and Unmarshaller ..., 428
15.4. XML Schemarbased Configurationc.eeeeeeeeiiiiiiiieees e ee e e 430
15,5, JAXB oottt e e e e e et e e e e nraeeeannraeeeaanns 431
JAXD2MAISNEAIIEr ... 431
XML Schema-based Configurationccoorieeeeiiiineeessiieeeeesiieee e 431

S O L o SR OUPRPPPRRR 432
CastOrMarSNall€Fooceeicieee e 432

LY/ F=" o o 1 o PSSR 432

15.7. XIMLBEANS ...oeiiiiiiiee ettt ettt e e e e e e e e aae 433
XMIBeaNSMarshallercooieiiiiieieee e e e e 433
XML Schemarbased Configurationcccceeeeiiiiiiiiieeeee e, 433

15,8, JIBX e ——————————— 434
JIDOXMArSNAIIEN ... 434
XML Schema-based Configurationcoovrieeeeiiiiieee e 434

15,9, XSIIEAIM ..uiiiieeeiiiiie ettt e e et e e e et e e e et e e e et e e e e e st e e e e snsneeeeeanseneeeennsnneeeanns 435
XSIrEAMMArSNAIEN ..o 435

RV 1 0T o PPNt 437
16. WED MV C FraMEBWOTKveeeeiiiiiiie ettt e e e s e nneaeeeeane 438
16.1. Introduction to Spring Web MV C frameworkccoceviiiiiiiiiiii e 438
Features of Spring Web MV Cuiiiiiiiiiiiiiiiiiiiiieineneeceeeeseeeeeeeeeennneennnnne 439
Pluggability of other MV C implementationscceveviieieeiiiiiee e 440

16.2. The DIiSpaCherSEIVIELcooeieieiee et e e e 440
Special Bean Types In the WebApplicationContextcccccvvvveeeeeeiiicinnnen, 443
Default DispatcherServiet Configurationooccveveeiiieeeeiniieee e 444
DispatcherServiet Processing SEQUENCEcvvieieiieeee it 444

16.3. Implementing CONLrOIIErSoooiiiiiiiiee e 446
Defining a controller with @CONtroller ..., 447
Mapping Requests With @RequestMappingcccvveeeiiirieeiniiiee e 447

New Support Classes for @ReguestMapping methods in Spring MVC 3.1 449

URI Template Patternsccoeeiiiiciiiieice et e et e e e e 450

URI Template Patterns with Regular EXpressionsccccceevvieveennnee. 451

Path PatternScooiiiiiiee e 452
Consumable Media TYPESvveieiiiiiiee e 452
Producible Media TYPESuuvuiriiiiiiiiiiiiiriiiireineninrnrnerrrenrnenerrrenerrnrr. 452

Request Parameters and Header ValUESovvevvveeiiiiciiiiieeee e, 453

Defining @ReguestMapping handler methods ... 453

31 Reference Documentation

Xiv

Spring Framework

Supported method argumeNt tyPESuvveeeeieeiiiiciiiee e 454
Supported Method return tYPESoeveeeeiiiiiiee e 456
Binding request parameters to method parameters with @RequestParam .. 457
Mapping the request body with the @RequestBody annotation 457
Mapping the response body with the @ResponseBody annotation 458
USING HEPENLITY<?> .o e 459
Using @ModelAttribute on amethodoccvvveiiiiiiiiiiieceeee e 459
Using @Moaodel Attribute on amethod argumentoooccvvieeeeeeeniinns 460
Using @SessionAttributes to store model attributesin the HTTP session
DEWEEN FEQUESES ... 462
Specifying redirect and flash attributescccccoeecviieieee e, 463
Working with "application/x-www-form-urlencoded” data 463
Mapping cookie values with the @CookieVaue annotation 464
Mapping request header attributes with the @RequestHeader annotation .. 465
Method Parameters And Type CONVErSIONcuvveeereernermnmmmmmnmnmmmnnnmnn. 465
Customizing WebDataBinder initializationoccoeveiiiiiieiiniiieennne 465
Support for the 'Last-Modified' Response Header To Facilitate Content
CaChiNG oo ——————— 467
16.4. HAaNAIEr MEPPINGS ..ceiiteeeeeiiiiiee et e e ar e e e e e s e e e e e enrneee s e 467
Intercepting requests with aHandlerInterceptorcccccveveeeeeiiiicciiieeeeeeenn, 468
16.5. RESOIVING VIBIWS ..ottt ettt e e 470
Resolving views with the ViewResolver interfacecccocvvvvvvviiniiiiniiiiiinnnn. 470
Chaining VIEWRESOIVENSuviiiiiiiiie ittt 472
ReAITECtiNg O VIBIWSeiiiiiieeeiee e a e 473
REJITECEVIBW .. 473
The redireCt: PrefiXooo e 474
Theforward: PrefiX .o 474
ContentNegotiatingVieWRESOIVENcocciiiiiiiiiee e 474
16.6. UsiNg flash altribULESccooeeei e 477
16.7. BUIIAING URIS ...ttt 478
16.8. USINGIOCAIES ...ttt et e e e e e e e e e e e e e annes 479
AcceptHeaderLoCalERESOIVESceeiiee i 479
CoOKieLOCAIERESOIVESuviiiiiieeei e 479
SESSIONLOCAIERESOIVESeiiiiiiiiiieiiiiiee ettt e e e e e e eeeeanes 480
Local eChangel NEErCEPLOTccoiiuuriieiiiiiiee ettt 480
16.9. USINGTNEIMES ... 481
Overview Of tNEMES ... 481
DEfiNING TREMES ... 481
THEME FESOIVEN'S ... et 482
16.10. Spring's multipart (file upload) SUPPOIccuvvieeiiiriee e 482
[F gL [N o1 o o PP 482
Using a MultipartResolver with Commons FileUploadcccccoeviviviiiennnennn. 482
Using a MultipartResolver with Servliet 3.0ooooeeiiieiiii, 483
Handling afileupload in aformcccccoooiiiiiiei e, 483
Handling afile upload request from programmatic clientscccccoveeeeeenn. 484
31 Reference Documentation XV

Spring Framework

16.11. Handling EXCEPLIONScocuiiiiieeie ettt et e e e e e sarrrre e e e e e e e eanes 485
HandlerEXCeptioNRESDIVEYcuviiiiiiiiiiee e 485

(@) o= o 1u Ko F=T0 o | = R 486
16.12. Convention over configuration SUPPOITceveeeiiiiiiiieieree e esisireer e e e e e 487
The Controller ControllerClassNameHandlerMappingccccceevvciveeeeninneeen. 487

The Model ModelMap (Model ANAVIEW)oeveeeeiiiiiieiee e 488

The View - RequestTOViewNameTranslalorccoocveeeeiiieeeeniiieee e 490
IO B o r="o IS o oo PPN 491
16.14. Configuring SPring MV Coiiiiiiieeeiieee et 492
Enabling MV C Java Config or the MV C XML Namespaceccccevvvvvvvevennnns 492
Customizing the Provided Configurationcccccevveeee i, 493
Configuring INEEICEPLOISveeeeiiiiiee et 494
Configuring View Controllersccccviiiieiee e 495
Configuring Serving Of RESOUICEScccuieieiiiiiieeiiiiiee e 495
mvc:default-serviet-handler ... 497
More Spring WeD MV C RESDUICEScvveeiiiiieeeiiiieeeseiieee e siiee e e 498
Advanced Customizations with MV C Java Configeevvvvvviinineninininininnnnn. 499
Advanced Customizations with the MV C Namespaceccccceveeeevviivvineeneeennn, 499

17. VIeW tECHNOIOGIESceeiiiiiee ettt s e e e e e e n e e e e anes 501
0 g 0o (8 o1 o IR OUPRPPPPRRRN 501
17.2. ISP & JSTL et aaaaeas 501
VIBW FESDIVENS ..ot e e e e e e e e et eeeeaeeeas 501
'Plain-old' JISPSVErSUS JSTL ..ovvvieeeiiiiiiiier ettt e e e e 502
Additional tags facilitating developmentcccooeiiiiiiiieie e, 502
Using Spring'sformtag libraryc.eeevveeiiiiiiiiicc e 502
CONFIQUIBLION .t e e reeaane 502
TheforMIag ..o 503

TREINPUL LAY .eeeeeeiiiii et 504

B I (ST e 11 010) = o Rt 504

The checkDOXES a0ooovvviiiiiiiii e 506

The radiobUtoN tagooeviiee e 506

The radiobUttoNStagccooiiiieee e 507

The PASSWOIT a0veeeeiiieiee et 507

TRESEIECL A0 ... 507

THE OPLION T8O ..eeieiiieiie et 508

B (ST e 0110 1S = o [Nt 508
TheteXtarEaTagc.vveee e 509

The NN TaQ .. .oooeeeeee e 509
TREEITOISTAY .ot et a e 510

HTTP Method CONVErSIONc.cevviiiiiieeeeieiiiiiee e e e e 512

HTIMLS TAOS eevieeeiiiiie e eeiiee ettt s s e e et e e e e e e ennees 512

I T 1 1=~ 513
D= 0= 0 U= o 513

HOW tO INtEGIatE TIIES ..vveeeeiee e a e 513
UrIBasedVieWRESOIVEYooiiiiiiiiiiiii e a e e 514

Reference Documentation XVi

Spring Framework

ResourceBundleViewRESDIVErcoccueiiiiiiiiiie e 514

SimpleSpringPreparerFactory and SpringBeanPreparerFactory 514

17.4. VelOCity & FreeMarkerccooooiieee e 515

DEPENAENCIES ...t e e s e e e e e et aa e 515

Context CONFIGUIALTONeeeiiiiiieeiiiie et e e e e e e e e 515

Creating tEMPIAES ... 516

Advanced CONFIGUIALTIONcceiiiirieeiiieee et 516

VEIOCITY.PrOPEIIESvviiieiiee e e 517

FrEEMarKer ...ooooeeiiiee e 517

Bind support and form handlingeeeeiiiiiniiiiii——. 517

The DINA MBCTOSeviiiiiiiiee e 518

SIMPIEDINGING .. 518

Form input generation MECIOSeeeveeeeeiiiiiiiiieeeeeeesseetirre e e e e e e e e seenaeeeas 519

HTML escaping and XHTML complianCecccoocvvveeiiiiineeeiiiieee e 523

ST R SR OUPRPSPPRRR 524

MY FFSEWOIAS ..ooiiiiiiiee et 524

Bean definitionseeiiiiiiiii e 524

Standard MV C controller COAEuevviiiiiiiiiiiiiee e 524

Convert the model datato XMLcooooieiiiiiiiiee e 525

Defining the VIew Propertieseeeveeeeiiiciiiiieceee et 526

Document transformationuveereeeeeiisciieiereee e e seiieee e e e e 526

RS 01117 Y 526

17.6. Document Views (PDF/EXCE)ooouveiiiiiiiie it 527

1110 o U Tox £ o o ISR 527

Configuration and SELUDvveieeeeeiiiiiiieiee e e e e s e e e e 527

Document view definitionSeeeeiieeiiiiiieee e 527

CONLIOHEr COURvvieeeeiieee ettt e e ane 528

SUDCIasSING FOr EXCEl VIBWScoiiiiiiiieiiiiie et 528

Subclassing for PDF VIEWScooovviiiiii 529

17.7. JASPEIREPOITS ... 530

(D= o1 10 L= o =PSSO 530

(O0 101 110 U1 (0] I PP 530

Configuring the VIeWRESOIVESNooviiiiiiiieciieec e 531

Configuring the VIBWScuviiieiiie e 531

ADOUL REPOI FIlES ... 531

Using JasperReportsMUultiFOrmatViewccoeeeveeeiiiiiiie e, 532

Populating the MOJElANAVIEWcooiiiiiiiiiiee e 533

Working With SUD-REPOIScvviiiiiiiieeeie e 533

Configuring SUb-RePOIt FIlEScoooiciiiieieeee e 534

Configuring Sub-Report Data SOUICESccovvereeiiiireeeiiiieeeeesieeee e 534

Configuring EXporter Parametersueeeeieeeiiiiiiiiieeee et 535

17.8. FEEA VIBWS ..o 535

17.9. XML MarshalliNg VIBWcccuueiieeiiiie et e e e e nneeeeeanee 536

17.20. JISON MaPPIiNG VIBW ...cccoiiiiiieieeie e e ettt e e e e e e e e e e e e s s santaaneeeeeesaannes 536

18. Integrating with other web frameworks ... 538
31 Reference Documentation XVii

Spring Framework

18. 1. INEFOTUCKION ..eiiiiiiiiee ettt et e e e et e e e st e e e e nnne e e e ennreeeeeanes 538
18.2. COMMON CONFIQUIBLIONeeiiuiiiiieeiiiiie ettt e 539
18.3. JavaServer Faces 1.1 @Nd 1.2ccccueieeiiiiiie et e et e e 540
DelegatingVariableResolver (JSF L.L/1.2) ...ccccvvvievieeeeiiciiieeeee et 540
SpringBeanV ariableResoIVer (JSF L.1/1.2)coocieeeeiiiiiee e 541
SpringBeanFacesEL ResoIVEr (JSF 1.2+4) ..o, 541
FaCeSCONEXIULISeviiiiiieee e a e 542
18.4. APaChe SIrULS 1.X @Nd 2.X ...uviiiiieiiie ettt e e s et e e e e eanes 542
ContextLoaderPlUGINcooiiiiiieiiiii e 543
DelegatiNngREJUESEPIOCESSOruvvvurrrrirrrrernrnerennnrnenrrenenererrnennnenrrennns 544
DelegatiNngACHIONPIOXYcccciiiieiiieiee e e e e e e e e e 544
ACLONSUPPOIT CIBSSES ...ttt 545
18.5. WEDWOIK 2.X 1.iiieieeeiiiiee ettt sttt e e e e sttt e e st e e e ennneeeeanns 545
18.6. TAPESITY 3.X NG 4.X .iiieieeeieiee ettt e e e e e e e aaee 546
Injecting Spring-managed DEaNSuuuuiiiiiiiiiiiiiiiii 547
Dependency Injecting Spring Beansinto Tapestry pagescceveeeevvvnen. 548
Component definition fIl@Soovi i 549
Adding aDSLraCt ACCESSOISoccvvviieiieeee e e cciieree e e e e s s e e e e e e 550
Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style
... 552
18.7. FUINEr RESOUICESvveiiieeeiiiiiiiiiieee e e e e ettt e e e e e e s s et eereaeesssnnsaaaeeeaeeesaannnes 553
19. Portlet MV C Frameworkceuueeiiiieee et e e e et 554
S I I 1 1 o (1 1) o SRR 554
Controllers- The CINMVC ..o 555
VIews- The V INIMVC .. 555
WeD-SCOPEA DEANSoiiiiiiiee e 556
19.2. The DISpatCherPOrtIEtccevviiiiiiee e 556
19.3. The VIeWRENAErerSEIVIELvvviiiiee et e e e e 558
19.4. CONLIOIEIS .ottt e e e e et e e e e e e e e s snebbeeeeeaeeeeeannes 559
AbstractController and PortletContentGeneratorccvveeviveeeeeiiiieeeeninen 559
Other SIMPIe CONLIOIEISeeiiieieeei e 561
Command CONLIOIEScooiiiiiie i 561
PortletWrappingCONIOH €ooueiiieiiieiee e 562
19.5. Handl€r MAPPINGS ..vvveieeeeei it e e s et e e e e s e s stbre e e e e e e e s s sanrraeeeeeeeesaannes 562
PortletModeHandlerMappingcoeoiierieeiiiiiee e 563
ParameterHandlerMapPinguueeuururuiminiuininirernernnnrnnnerenr .. 564
PortletM odeParameterHandlerMappingc.eeeeeiivieieniiieeee e 564
Adding HandlerTNtErCEPRLONSvvvieiiiiiie e 565
HandlerlNterceptorAdapterc..vuvieeieeee e 565
ParameterM appinglINtErCEPLONcoiiirieeiiiiiee e 565
19.6. Views and resolViNg theMeeeiiii i 566
19.7. Multipart (file upload) SUPPOITeeveeiiiiiieeiiiie et 566
Using the PortletM ultipartRESOIVErccoeeeieiiieiee e, 567
Handling afileupload in aformcccccoooiiiiiiei e, 567
19.8. HANAIING EXCEPLIONSoeiiiiiiiiieeiiieee et 570

31

Reference Documentation

XVili

Spring Framework

19.9. Annotation-based controller configurationccccovvveiiee e 571
Setting up the dispatcher for annotation SUPPOITcvvveeeiiiieeeiiieee e 571
Defining a controller with @COoNtrollercvvviiviiiiiiiiiiii. 571
Mapping requests with @ReqUEStMaPPINGvvvvrreeeeiiiiiiiieiee e e 572
Supported handler method arguMENESocoviiiieeiiiiiee e 573
Binding request parameters to method parameters with @RequestParam 575
Providing alink to data from the model with @M odelAttribute 576
Specifying attributes to store in a Session with @SessionAttributes 576
Customizing WebDataBinder initializationoccovveeiiiiiieiniiie i 577

Customizing data binding with @InitBindercccceevvviin, 577

Configuring a custom WebBindinglnitializercccccceveeeiiiiiciiiieneeenn, 577

19.10. Portlet application deploymMentcccviiiiiiiireeiiie e 578

RV I 1= (o) o SRR 579
20. Remoting and web ServiCeES USING SPING ...c.vvveeeiiiiiieeiiiiee e 580

P20 I I | g 0o 0o o) o I PP TP T PURR 580

20.2. EXposing ServiceS USING RMI ..o 581
Exporting the service using the RmiServiceExporterccccovveeiiiiiciiienenenn. 581
Linkingintheserviceat theclientccccciieiiie e, 582

20.3. Using Hessian or Burlap to remotely call servicesviaHTTPccceveiiiieeennne 583
Wiring up the DispatcherServlet for Hessian and Co.cccceeeeeeiiiiiiiiiieneeenn, 583
Exposing your beans by using the HessianServiceEXporterccccoovvvveeinen. 583
Linking inthe service onthe Clientcccccvviviiiiiiiiiiiiiiiireeeneneenren. 584
USING BUI@P e 584
Applying HTTP basic authentication to a service exposed through Hessian or
BUIAD <. e 585

20.4. Exposing services USINg HTTP INVOKEN'Scooiuiiiieiiiiiieeiiiee e 585
EXposing the Service ODJECEvvviiiiiei e 585
Linking inthe service at the CIent ... 586

20.5. WED SEIVICES ...oeiiiiiieiie ettt e e e e st e e e e e e e e b b e eeeaaaeeas 587
Exposing servlet-based web servicesusing JAX-RPCc.ccocoieiiiieiiiiennnnn, 588
Accessingweb services using JAX-RPC ... 588
Registering JAX-RPC Bean Mappingsccccvrvierieeeeiiiiiiieeee e e e e e eeeivineeeeae e 590
Registering your own JAX-RPC Handlerocooiiiiiiiiiiiiieeeeeeeee e 591
Exposing servlet-based web servicesusing JAX-WSccoovceeiiiiiiiiiiineeeeeeenn, 591
Exporting standalone web services using JAX-WS ..o, 592
Exporting web services using the JAX-WS RI's Spring SUPPOrteeeveeenns 593
Accessing web services uSINg JAX-WS ..o 593

20.6. IMS ...t e e e e e et e e e e e e e e e nraeeeaanraeeeaanns 594
Server-side CoNfigUIationcooiiiiiiiiiiiee e 595
Client-Side CONIGUIALIONuvveeiiiiiie et 596

20.7. Auto-detection is not implemented for remote interfacesccccccoevevvvveeneeenn. 597

20.8. Considerations when choosing atechnologyooccevviiiiiiiiniiiieiieee e 597

20.9. Accessing RESTful servicesontheClientccccoo 598
RESITEMPIALE ... e e e e e e et rrae e ee e 598

Working With the URIooiiicee e 600
31 Reference Documentation Xix

Spring Framework

Dealing with request and response headersccccoecvviieeeeeeee e, 601
HTTP MeESSa08 CONVEISION ...coiiiuiiiiieiiiiiieeesitiiee e st e et e st e e e e e 601
StringHttpM essageCoNVErtercooovvvvviiiiie e, 602
FOrmHttpM €SSageCONVEITESuvvuuriiriiiiiiiiiirieiireereerrrrennrrerrrrrrreerr. 602
ByteArrayHttpM essageCONVEITESccovviiirmiieiieee e 602
MarshallingHttpM essageCONVEIESrccccviiieiiee e 602
M appingJacksoNHttPM eSSageCONVENTESvvvveiiiieiee e 603
SourceHttpM essageCoONVEITErvveeiiiieeieeeeeice e e 603
BufferedlmageHttpM essageCoNVErteroccovveviiieieeniiiiee e 603
21. Enterprise JavaBeans (EJB) integralioncccccceviviiiiii 604
P20 00 T 1 g 10 To 8 1 o o PP UPP R OUPRPPPPRRP 604
21.2. ACCESSING EJIBS ...ttt 604
LO00] 0100 o] = R 604
ACCESSING |OCAl SLSBS ...t 605
ACCESSING reMOLE SLSBSuuvviiiiiiiiiiiiiiiiiiiiiiiiinirrrenenrrrrenrrrrerrrrnrrrrnr.. 606
Accessing EJB 2.Xx SLSBSVErSUSEIB 3 SLSBScovviviiiieiiiiieeeciieee e 607
21.3. Using Spring's EJB implementation SUPPOrt Classesc..vveveeeeeeiiiiiiiiieeeeenn. 607
EIB 2.X DBSE CIASSESeviiiiiiiii et 607
EJB 3 iNjeCtion INTEFCEPLONoiiiiiiiie ittt 609
22. IMS (JAVaAMESSAgE SEIVICE)ccciviiieiiee e e e ettt e e e e e e e e e e et e e e e e e e e enaaannaes 611
22728 W | g1 0o 1 o o o SRR 611
22.2.UsiNg Spring JMS ... 611
JMSTEMPIELEeeeeiieii ettt e et e e e nbre e s 611
1000101 ot 1 0] = PR 612
Caching Messaging RESOUICEScccuiiieieeiee e et e e e e e e eeineare e e e 613
SiNGIECONNECHIONFACIONYvveieiiiiiie e 613
CachingConneCtioNFACtOrYccooiiiiiiiiiieeie e 613
Destination ManaQEMENLccooourrieeiiiriee et e e e e s e 613
Message Listener CONLAINES'Suuuurururuiuinnnenenrnrnnnenrnnnenenrrrnrnenrenr. 614
SimpleM essageL i StenerCONtaINEYcoocuvveeeiiieeee e 615
DefaultM essagel itenerContaiNerooccveeieiereeeseeiiieeee e 615
Transaction MaNAgEMENTvviiiiiee i i e e e e s s s r e e e e e e s rrrr e e e e e e s e annes 615
22.3.SeNAING AIMESSAE ...ccoueeiieeiiiie ettt 616
USING MESSA0E CONVEITELS ...cceoeiiiiiiieiee e e e ettt e e e e e s etbrr e e e e e e s santrae e e e e e 617
SessionCallback and ProducerCallbackcccveeiiiiiiiiiiiiiieice e 618
22.4. RECEAIVING IMESSAZEceeieeeeeeeieeeee et e et e 618
SyNChroNOUS RECEPLIONcoiuiiiiiiiiiiiie et 618
Asynchronous Reception - Message-Driven POJOScceeeviiiieeeiiiieeeenne, 618
The SessionAwareM essagelistener interfaceccccovvvevieee e, 619
The MessagelisStenerAdapLErcooiiiiiieiiee e 619
Processing messages Within transactionsccccceeeviiiiiiiieeec e, 621
22.5. Support for JCA Message ENAPOINTSvvvveiiiiiieeeiiiiee e 622
22.6. IMS NamMESPACE SUPPOITceeeeieiiei e e e et eneannnnn 624
23 IMX e e e e b e e e b e e e e ba e e e e rea s 629
§22C T I | g1 0o 1 o o o PR 629
31 Reference Documentation XX

Spring Framework

23.2. EXporting Your BeaNSTO JIMXuuiiiiiieeiiiiiiiiieiee et 629
Creating an MBEaNSEIVEToviiiiiiiiie ettt 630
Reusing an existing MBEaANSEIVEYuuuuiuiuiuiniminiiinrnnnnrenrnrnnnmrenm. 631
Lazy-initialiZEd MBEANScccuviiieiiee et arae e 632
Automatic registration of MBEaNSccoviiiiiiiiiiiiieeceeee e 632
Controlling the registration bENAVIOrcccoviiiiiiiiiiiee e, 632

23.3. Controlling the management interface of your beansccccceevvviiiiiienenenn. 634
The MBeanInfoAssembler Interfaceccccveeiiiieiiii e 634
Using Source-Level Metadata (JDK 5.0 annotations)cccccceveeeiiicivivieneeenn. 634
Source-Level Metadata TYPESooovvviveiiiieeeeeee 636
The AutodetectCapableM BeanlnfoAssembler interfaceocccvvveeeeeeeniins 638
Defining management interfaces using Javainterfacescocceevvieeeennnn. 639
Using MethodNameBasedM BeaninfoAssemblerccccoveiieeiiiiciiieeeeen, 640

23.4. Controlling the ObjectNames for your beanscccocccviiveeiie i, 640
Reading ObjectNames from PropertieSuvuvviuiiiiiiiiiiiiiiiiiiineiiiieennnnnnnn. 641
Using the MetadataNamingSIralegyccuveeeiivrereiiiiiiee e e 642
The <context:mbean-export/> elementcccccoviiiiiiiee e 642

23.5. JSR-160 CONNECLOISeeveiieeeiiiiiiiieieae e e e e ettt e e e e e e e e s sibbbre e e e e e e s e s snbbreeeeeaaeeas 643
SErVer-Side CONNECLONSuueeiiieeeiiieiiieiee e e e e e e et e e e e e e e s e st e e e e e e e e e nnnneeees 643
Client-Side CONNECLOISccoeiiiiiee ittt ie e st e et e s e e e s e e e s seeeeeeanes 644
JMX over Burlap/HESSIaN/SOAPoeeiiiiiiiiee e 644

23.6. Accessing MBeans viaProXiescccccceevviveiii 645

PG T Lo 1) o= (o] 1 SRR 645
Registering Listenersfor NOtifiCationsc.c..eeeeiieeeiiiiiiiiiieeee e, 645
PUblishing NOtIfICaHIONSccooiiiiiieiiee e 649

23.8. FUINEr RESOUICESeeieiiiiiee e e ittt e e e e e e sttt e e e e e e e s s seneae e e e e e e e e s snsneneeeeeeeeas 650

B O N O O OSSPSR 651

22z | g 0o 1o o o SRR 651

24.2. Configuring CCl ...cooviiieiii 651
CoNNECLOr CONFIGUIALTIONcoiueiiieeiiiiiee ettt 651
ConnectionFactory configuration in SPringccceeeveeeeeiiicciieeee e 652
Configuring CCl CONNECLIONSocciiiieieeeee e e e 653
Using asingle CCl CONNECLIONuvveiiiiieie ettt 653

24.3. Using Spring's CCl aCCESS SUPPOIT ...veveeeeeiiiiiiiiiiee e e eeeecirireeee e e e e e e snrnrnneeeee e 654
(R w0 o oo 017/= £ o] o USSR 654
The CCITEMPIALEceeveeeieieeeeeieieeeeeeeeeeeeeeeeeeeeeeeeesereeesessseesseesnnsnsnsssesssnssrnnnnnes 655
DA O SUDPPOIT eeeeeeiiiitttee ettt e et e e e e s e e e e e e e s e anbb e e e e aeeeas 656
Automatic output record geNErationccceeeeerirrreerniieeee e e e e 657
SUMMBIY ettt ettt e e e e e e e ettt s s e e e e e e e e e bbb s e e e e e e e e e ebbaeeeas 657
Using a CCl Connection and Interaction directlycccoocvveeiiiiiiniiniiiineeene 658
Example for CCTemMPlate USBOEuevveeeeiiiiiiiieiee e e ettt e sarrree e e 659

24.4. Modeling CCI access as operation ODJECESceveeiiiiiieiiiiieceec e 661
MappiNgRECOrAOPEraLIONuuuuuururerurnrnineuenenenerrnrnenenrrerenrrerrrrrrrr.. 661
M appiNgCOMMATFEA0PEIALIONvveerieeeei ittt e s e e e 662
Automatic output record generationcceeeeerrrreeesniireee e e e 662

31 Reference Documentation XXi

Spring Framework

RS 01107 Y 662
Example for MappingRecordOperation USAQgEueveerurreeeriineeeeiniieee s 663
Example for MappingCommAreaOperation USAQEeeevrerrermmemmmemmmmmmmmnmnnnns 665

24.5. TIANSACHONSeeiiiiiiie ettt e et e et e e e e et e e e s snsb e e e e e nnbneeeeane 666
B2 1 7= 11 PO 668
P20 W 1 g 10 To 8 1 o o PRSP PPPRRRN 668
25.2. USAJE ...ttt e e e e e e e e 668
Basic MailSender and SimpleMaillMessage USagecccvvveeeeeeeeeeccvvvneeeeeeenn, 669
Using the JavaMail Sender and the MimeM essagePreparatorc.ccceveeennee 670

25.3. Using the JavaMail MimeMessageHelper ..., 671
Sending attachments and inliNE rESOUICEScccvvvvieveeeee i, 671
AtACMENTS .o 671
[NHNETESOUICES ...eiiiiiiieiee ettt e e e e e e 671

Creating email content using atemplating librarycccocoveeiiiieiniieeene 672

A Velocity-based eXample ... 673

26. Task Execution and SCNEAUIINGcoiuuiiieiiiiiie e 675
P22 T I | g 0o 1 o o o PR 675
26.2. The Spring TaskEXecutor abStraCtioncccveeeveeeeeiiciiiieree e 675
TASKEXECULOT TYPESeeeietieee ettt e e e s 675
USING @ TASKEXECULONuvvieiieeeeiiciiiiet et e e e e e sanrrre e e e 677

26.3. The Spring TaskScheduler aDStractioncccceeviiiiiieiiiiee e 678
The Trigger INTEITACE ...ovviiiiiiieeeeeieieieeeee ettt eeee e aeeereseeeeeeeeeeeeesesesenesnnnrnnnnnes 678
Trigger impIEMENTAiONScoiviiiieiiiii e 679
TaskScheduler implementationsccueeeiiiieeriiiiee e 679

26.4. TNE TaSK NGIMESPACEvveeiieeeeiieiiiiieriee e e e e et re e e e e e e s s st re e e e e e e e e s sensnraaeeaaaeeas 680
The'scheduler' €ement ..o 680

The 'eXeCULOr" BlEMENTeiiiiiiiiee e 680

The 'scheduled-tasks EemMeNntcooiiiiiiiiiiee e 681

26.5. Annotation Support for Scheduling and Asynchronous Execution 682
The @Scheduled ANNOLALIONuuuiiiiiiiiiieiie e e eaeeees 682

The @ASYNC ANNOLELION ..o e e e e e e e 683

The <annotation-driven> ElemMent ..o 684
Executor qualification With @ASYNCccooiiiiiiiiiiiiie e 684

26.6. Using the Quartz SCheduleroueveeeiiiiiiee e 684
Using the JODDELaIIBEANccooiiiiiiiiiiiie et 684
Using the MethodinvokingJobDetail FactoryBeanccceeeeeeeeiiiiiecceeeeeenn, 685
Wiring up jobs using triggers and the SchedulerFactoryBeancccco...... 686

27. DyNamicC 1aNnQUagE SUPPOITouureeeeiiieiee et e e et e s e e e s e e snnne e e s annneee s 688
P2 % W 1 g 10 To 8 1 o o PR OUPRPPPPPRPN 688
27.2. A TIrSt @XAMPIE ... 688
27.3. Defining beans that are backed by dynamic languagesc.ccccccoevevvvieeeeeennn. 690
COMIMON CONCEPLS .ttt e e e e e st e e e e e e e e e e e s e e e e e s e e nnnneeeas 690

The <lang:language/> elemMENtuueeieriiiiiieieieiirrererrrerrr. 691
RefreshableDeans ... 691

Inline dynamic language Source filescooovvveiiiiiie i 694

31

Reference Documentation

XXii

Spring Framework

Understanding Constructor Injection in the context of

dynamic-language-backed Deansccveveiiiiiiiiiiiiee e 694
JRUDY DEANS ...ttt te e ee e e te e aeeeeeeeeeeeesseeeseeeeenesesseeenennernnnnnes 695
GrOOVY DEANSvviieiiee et e s e e 697
Customising Groovy objectsviaacallbackccoocveiiiiiiiiiis 699
BeanNShell DEANS ... 700
o = 0= T oS PRRE 701
Scripted Spring MV C COntrollersueeeeeieiiiiiiiieeeeee e 701
SCHPtEd VaAlITELOIS ...t 702
27.5.BitSand BOBS ... 703
AOP - advising SCripted DEANScveeiiieeiiiiiiieiee e 703
S ole o 1o To [P PP PP PPPRPPRPPPPRP 703
27.6. FUINEr RESDUICESeeiiuiiiieeiiiiiiee e siieee et e ettt et e e s et e e s nnreeeeeaans 704
P22 S RO ox TSI AN oS 1 o 1 o o PR 705
b2 T | g 0o 0o o) o IR PURR 705
28.2. Understanding the cache abStraCtionoooueeeeiiiiieeeiiiieee e 705
28.3. Declarative annotation-based cachingcccccvv 706
@CaCheahl € ANNOLALIONceeeveee ettt e e e e e e s 706
Default Key GENEralioNccoiiiriieeiiiiiee e 707
Custom Key Generation Declarationcccccoovvviviiieeeee e, 707
Conditional CBCHINGvviiiiiiiie e 708
Available caching SpEL evaluation COntextccccvvvviviiieennnnennnnnnnn. 708
@CaChEPUL aNNOLAEIONcvvvviiiiieeei e e e e e s e e e e e e eeeaaaaas 709
@CAChEEVICE ANNOLALIONiieeieee ettt e et e e e e e e et e e e e erenas 709
@CAChiNG @NMNOLELIONeeeieeeeeiiciiiiee e e e e e e e e e e e e e e s ererrraeraeaees 710
Enable caching annotationscooiiiiiiiiiiiieeiee e 710
USING CUSIOM GNNOLELIONSccceiiiiiiiiieee e e s et e e e e e s rree e e e e e st e e e e e e 713
28.4. Declarative XML-based CaChingcoocuiiiiiiiiiieiiieeccec e 714
28.5. Configuring the cache Storageccoovvvvviiiii 715
JDK ConcurrentMap-based Cache ... 715
Ehcache-based CaChecoooiieiii e 715
Dealing with caches without abacking Storeccccocccviieieii e, 715
28.6. Plugging-in different back-end caches ... 716
28.7. How can | set the TTL/TTI/Eviction policy/XXX feature?c.cccecvvvvvevenennn. 716
VALY o] < g o [0l PP P S PPPPPPO 717
A. ClasSiC SPIiNG USBOE ...uuuuuuuuueuruiuiunuenunenrnnnnnennnnnmnenreermerrnm————————————————. 718
A.L ClasSIC ORM USAJEeeeiiiiiiiieiaiiiiieessiteee s sttt e e s ea e e ssbe e e e s sbeee e e s nnneeaeeennees 718
[110 7= = RSO 718
The HibernateTemplateoevevieeeiiiiieeeee e 718
Implementing Spring-based DAOs without callbacksccccocueenee 719
JDI0 ettt e e e pe e e e nraeee s 720
JdoTemplate and JAOD@OSUPPONTvveeeeriiriee it et 720
B SRS 721
JpaTemplate and JpaDaoSUPPOITocevviieiieeee e 721
A.2. ClassiC SPHING MV C ... 722
31 Reference Documentation xXiii

Spring Framework

F N N 1V ST U o T PP 723
JMSTEMPIELEeeeeieeie et e et e e e nneee s 723
Asynchronous Message RECEPLIONuuuuruiiiiiiiiiiiiiniiiirnrrrrrnrnrrnnerrrrr. 723
(000107 011 o] 0 TP PP PPPRRPRPPPPRP 724
Transaction ManNagEMENTeiiiiiiriieiiiieee e 724

B. Migrating to Spring Framework 3.1cc.ovveiiiiiii e 725

B.1. Component scanning against the "org" base packageccccvcvveeeiniieeceninn, 725

C. ClassiC SPriNg AOP USBHEcoo oottt ettt e e et e e e e e e e e e naaaraeeas 726

C.1. POINtCUt API IN SPITNG ..ot 726
LO0] 00 o K= 726
OperationS 0N POINLCULSuvveiieeeesiiciiieiee e e e e e eeee e e e e e e s s s e e e e e e e e nnnrreaes 727
ASPECLI EXPreSSION POIMECULSevveeeiiiiieeeeiieee e e st e e e e e e e e 727
Convenience pointcut implementationsccccvveeriee i e, 727

SEALTIC POINTCULS ...ttt e e e 727
DYNaMIC POINECULSvuvurereeeruiuieenenenenenenrnrernrnnnenrrerrrerenerenrnnnrnr. 729
POINTCUL SUPEICIBSSESeeeiiiiiieeiiitie ettt 729
CUSLOM POIMECULS ..eeieeeeiieeiiiee e et e e e e e e et e e e e e e e e nnneeeeas 730

C.2. AQVICE APL INSPIING ..vvvveieiieeeei et ee e e e e e e e s rrraeeaaa e 730
AQVICE IITECYCIES ... 730
AVICELYPESIN SPIIMNG weveeeeeeeiiicciiiiee e e e e aa e 730

Interception arouNd 80VICEccuueieiiiiiiee e 730
BEfOr@ aViCecooiee e 731
TRIOWS BAVICEeviieiiiie et a e 732
After REtUNING @0VICEoooiiiiiiieieee e 733
INErOdUCTION @OVICE ... 734

C.3. AQVISOr APLIN SPIING .ot 737

C.4. Using the ProxyFactoryBean to create AOP ProXi€scccvveveeeeeeeiicivvneeneeeenn, 737
7= o PP PPPPPPPPPPRt 737
JAVBBEAN PIrOPEITIESeeveeeeeeeeeieeeeeeeeereeeeeeeeeeerenneesereeeresnnnesnsennensressenrnsnnnrnnnnnes 738
JDK- and CGLIB-baSed ProXi€Sc.eeieiiiiiiieiiiiiie e 739
ProxXying iNEEITACESeeiiiiiei i e e e 740
ProXYiNg ClaSSESvviiiiiiiie e e e e a e 742
USING 'GIODEI" @OVISOIScoiiiiiiieiiiiiee e 742

C.5. Concise proxy defiNitioNScccuiiiiiiee e 743

C.6. Creating AOP proxies programmatically with the ProxyFactorycc........ 744

C.7. Manipulating advised ObJECEScoovviviiiiiii 744

C.8. Using the "autoproxy™ faCilityccceeiiiieieiiieiee e 746
Autoproxy bean definitionsooooiiiiiiii 746

BeanNameAULOPIOXYCIEaLONcivvviiieeiiiiiiiinieeeseeeviiinns e s e e eeeerinn s 746
DefaultAdviSOTAULOPTOXYCIEEIONcuvvveeiiiiiiee et e et 747
AbstractAdvisorAUtOPrOXYCIrEAtOrcccciivrrieieeeeeeecciiiee e 748
Using metadata-driven auto-proXyingccooceeeeeeriireeenrinreessniieeessneeeeesnnes 748

C.9.USING TAIGELSOUICESceeeeeeeee et 751
Hot swappable target SOUICESuuviiiiee e ettt e e 751
POOIING tArgEL SOUMCESeeeeeieiiiee ettt 752

Reference Documentation XXV

Spring Framework

Prototype targel SOUICEScovveeiiiie e e et e e e e et e e e e e e e eennnans 753
ThreadL OCal target SOUICESeeiiiiiiiiieiaiiie ettt 753
C.10. Defining new AQVICELYPES ...ccoeeeieieiieieeeeeeeee 754
C.11. FUINEI TESOUICESeiiiiueiiieeiiiteiee e sttt ee e ettt e e s et e e e s st b e e s s niae e e e s snsbe e e e ennbneeesane 754
D. XML Schema-based Configurationc.cecoirimieeoriiiie e 756
D 200 [g1 [F o o o IR 756
D.2. XML Schema-based configurationcooceeeieiiiiieeeniieiee e 757
Referencing the SChemas ... 757

The Util SCREMAoveeiiieeee e 758
SULTICONSEANT> ... e e e 758
<UtiL:property-path/>ccovvieeiieeee e 760
SULTPrOPEITIES/> ..o 761
SULTTISE/S e e e 762
SULTTIMBP/> oo e e 763

SULTISEL > e 763

THE JEE SCNEIMA ... 764
<jee;jndi-100KUP/> (SIMPIE) ...eeeeiiieeei e 764
<jeejndi-lookup/> (with single INDI environment setting)c........ 765
<jeejndi-lookup/> (with multiple INDI environment settings) 765
<jee;jndi-1ooKup/> (COMPIEX) ..oevieeeeiicieeee e 766
<jee:local-Slsh/> (SIMPIE) ...ccocuiieeeeceie et 766
<Sjeelocal-dsh/> (complex) ..oooovveeeeee 766
<JEETEMOLE-SIS/> ..ot 767

Thelang SCNEMAooi e e 767

THE JMS SCNEMA ... e e e e e s e aanes 768

The tx (tranSaction) SCNEMALooiiiiiiieiiie e 768
THEA0P SCNEMA ... e e e e e aanes 769

THhe CONtEXE SCNEIMA ..cviie e r e e e e s e ennes 769
<property-placeholder/>ccccoeii 770
<aNNOtatioN-CONfIG/>vviieiiiiiie e e 770
<COMPONENE-SCAN> ..ot e e e e e e e e e e e eeeaaee s 770
<I0B0-TIME-WEBVEI/> ...t 770
<SPrNG-CONFIGUIEH/IS ...t 770
<MDEAN-EXPOIT/> o.eeiiiiiii e e e e et eaa e 770

THE OO0l SCNEMAviiiiiiie e e e e e e e s e ennes 771
ThebeansS SCNEMAoo oo 771

E. Extensible XML @UthOINGcveeiiiiiiiieiiieee e 772
B I g oo U Tox 1 o o PRSP 772
E.2. Authoring the SChemaccueeiviiiii e 772
E.3. Coding aNamespaceHandIrccoiiiiiiiiiiiiieeiee e 774
E.4. Coding a BeanDefinitioNParsercccvveieeie et 774
E.5. Registering the handler and the schema ..., 775
'META-INF/spring.handlers ... 776
'META-INF/SPring.SChEMAS'coiiiiiiiiie e 776

E.6. Using a custom extension in your Spring XML configurationccccceveee. 776

Reference Documentation XXV

Spring Framework

E.7. MEati€r €XaMPIES ...oeiiieiiii e 777
Nesting custom tags Within CUSIOM tagSveveveiiiiiieiiiieee e 777
Custom attributes on 'normal’ elementsoooociiiiiee i 780

E.8. FUIhEr RESOUICESvvviiiiiiiiee et e 782

F. SPring-DEANS-2.0.080oeeieiiiiee s 783
LT 10 1o PP RSTP 794

L I [11 0o 1o o o PR 794

G.2. ThEDINA A weeeieee e 794

G.3. ThE €SCAPEBOAY TAJ ..eeeiiuvreieeiiiiiee ettt e ettt e st e e e e e nnrneeeeaaes 795

G.4. The hasBIindErrorstagcccceeeeeeeeiiie i 795

G.5. The htMIESCAPETAYvvvvvieeieeeii it ea e 795

G.6. TNEMESSAGE TAYveeeeiiuiriiee et e ettt et e e e e e e e s e e e e e e e 796

G.7. ThenestedPath tagcceviieiiiiiiiiiei e e e e 796

G.8. ThETNEME TG ..oeiiieiieeeitee e 797

G.9. Thetransformtagccooevveveeeee 797

G.10. TREUI LAY .veeeeiiitiiie ettt e e e e e e nnbn e e e e aae 798

GllL. Theeval tag ..o 798

L TR o o) o5 0 11 o PR 800

[00 11T [o 1 o o PRSP 800

H.2. The CheCKDOX ta0 ..vvvieeeiiiiiiiieiee e e 800

H.3. The CheCkDOXESTagcoiiiiiiiieii e 802

L 1 T o (= = RPN 804

H.5. TheTOrMIAg ..o 805

[B 0= g T (o = g N = PP 807

H.7. ThEINPUL TG ...evveieiiiee e e e e e e e e e e e e e e neneeees 807

H.8. Thelabel Tageveeeiiiie e 809

H.9. ThE OPLIONTAQ ...vvvviiiiee e e e e e e e e e 811

H.10. TNE OPLIONSTAY ...eeeiiitiieeiiiiiee e ettt e ettt e e e 812

L 00 O 0 T= 0= S o I = P 813

H.12. The radiobULtON tGccoivvrieeiiiiie et 815

H.13. The radiobUttoNStagccevveeieiieee e 817

[TR I TR o o 7 PRSP 819

H.15. TREIEXIAIEATAG .. eeeivveeeeeiiieee ettt 821

Reference Documentation XXVi

Part |. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. Y ou can use the 10C container, with Struts on top, but you can
also use only the Hibernate integration code or the JDBC abstraction layer. The Spring Framework
supports declarative transaction management, remote access to your logic through RMI or web services,
and various options for persisting your data. It offers a full-featured MV C framework, and enables you to
integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be easy
to isolate these dependencies from the rest of your code base.

This document is areference guide to Spring Framework features. If you have any requests, comments, or
questions on this document, please post them on the user mailing list or on the support forums at
http://forum.springsource.org/.

http://forum.springsource.org/

Spring Framework

1. Introduction to Spring Framework

Spring Framework is a Java platform that provides comprehensive infrastructure support for developing
Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from “plain old Java objects’ (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to full
and partial Java EE.

Examples of how you, as an application devel oper, can use the Spring platform advantage:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
» Make alocal Java method a remote procedure without having to deal with remote APIs.

* Make alocal Java method a management operation without having to deal with IMX APIs.

» Makealoca Java method a message handler without having to deal with IMS APIs.

1.1 Dependency Injection and Inversion of Control

Background

“The question is, what aspect of control are [they] inverting?” Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency | njection.

For insight into loC and DI, refer to Fowler's article at
http://martinfowler.com/articles/injection.html.

Java applications -- a loose term that runs the gamut from constrained applets to n-tier server-side
enterprise applications -- typically consist of objects that collaborate to form the application proper. Thus
the objects in an application have dependencies on each other.

Although the Java platform provides awealth of application development functionality, it lacks the means
to organize the basic building blocks into a coherent whole, leaving that task to architects and developers.
True, you can use design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service
Locator to compose the various classes and object instances that make up an application. However, these
patterns are simply that: best practices given a name, with a description of what the pattern does, where to
apply it, the problems it addresses, and so forth. Patterns are formalized best practices that you must
implement yourself in your application.

The Spring Framework Inversion of Control (1oC) component addresses this concern by providing a

31 Reference Documentation 2

http://martinfowler.com/articles/injection.html

Spring Framework

formalized means of composing disparate components into a fully working application ready for use. The
Spring Framework codifies formalized design patterns as first-class objects that you can integrate into
your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

1.2 Modules

The Spring Framework consists of features organized into about 20 modules. These modules are grouped
into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, and Test, as shown in the following diagram.

' ™y
Spring Framework Runtime
! o 5
Data Access/Integration Web
(MVC / Remoting)
Web Servlet
., v -, A
™ ™
Portlet Struts
[Transactions J L J)
s AN 4
il - ™
AOP] Aspects] [Instrumentation
b \ J

Core Container

Expression
Language

(-]

Overview of the Spring Framework

Beans Core Context

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modul es.

31 Reference Documentation 3

Spring Framework

The Core and Beans modules provide the fundamental parts of the framework, including the 1oC and
Dependency Injection features. The BeanFact ory is a sophisticated implementation of the factory
pattern. It removes the need for programmatic singletons and allows you to decouple the configuration
and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a means to
access objects in a framework-style manner that is similar to a JNDI registry. The Context module
inherits its features from the Beans module and adds support for internationalization (using, for example,
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a servlet container. The Context module also supports Java EE features such as EJB, IMX ,and
basic remoting. The Appl i cat i onCont ext interface isthe focal point of the Context module.

The Expression Language module provides a powerful expression language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the context of arrays, collections and indexers, logical
and arithmetic operators, named variables, and retrieval of objects by name from Spring's 10C container.
It also supports list projection and selection as well as common list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JM S and Transaction modules.

The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding
and parsing of database-vendor specific error codes.

The ORM module provides integration layers for popular object-relational mapping APIs, including JPA,
JDO, Hibernate, and iBatis. Using the ORM package you can use all of these O/R-mapping frameworks
in combination with all of the other features Spring offers, such as the simple declarative transaction
management feature mentioned previously.

The OXM module provides an abstraction layer that supports Object/XML mapping implementations for
JAXB, Castor, XMLBeans, JiBX and X Stream.

The Java Messaging Service (JMS) module contains features for producing and consuming messages.

The Transaction module supports programmatic and declarative transaction management for classes that
implement special interfaces and for all your POJOs (plain old Java objects).

Web

The Web layer consists of the Web, Web-Servlet, Web-Struts, and Web-Portlet modules.

Spring's Web module provides basic web-oriented integration features such as multipart file-upload
functionality and the initialization of the 1oC container using servlet listeners and a web-oriented

31 Reference Documentation 4

Spring Framework

application context. It also contains the web-related parts of Spring's remoting support.

The Web-Serviet module contains Spring's model-view-controller (MVC) implementation for web
applications. Spring's MV C framework provides a clean separation between domain model code and web
forms, and integrates with al the other features of the Spring Framework.

The Web-Sruts module contains the support classes for integrating a classic Struts web tier within a
Spring application. Note that this support is now deprecated as of Spring 3.0. Consider migrating your
application to Struts 2.0 and its Spring integration or to a Spring MV C solution.

The Web-Portlet module provides the MVC implementation to be used in a portlet environment and
mirrors the functionality of Web-Servlet module.

AOP and Instrumentation

Spring's AOP module provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code that
implements functionality that should be separated. Using source-level metadata functionality, you can
aso incorporate behavioral information into your code, in amanner similar to that of .NET attributes.

The separate Aspects modul e provides integration with AspectJ.
The Instrumentation module provides class instrumentation support and classloader implementations to

be used in certain application servers.

Test

The Test module supports the testing of Spring components with JUnit or TestNG. It provides consistent
loading of Spring ApplicationContexts and caching of those contexts. It also provides mock objects that
you can use to test your code in isolation.

1.3 Usage scenarios

The building blocks described previously make Spring alogica choice in many scenarios, from applets to
full-fledged enterprise applications that use Spring's transaction management functionality and web
framework integration.

31 Reference Documentation 5

Spring Framework

- |l | Integration
Form Muiltipart Dynamic with JSP,
Binding to
Controllers Resolver Domain Model Velocity, SLT.
| | | | PDF Excel
WebApplication Context
Sending Remote
Email Access
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomcat Servlet Container Custom DAO/Repositories

Typical full-fledged Spring web application

Spring's declarative transaction management features make the web application fully transactional, just as
it would be if you used EJB container-managed transactions. All your custom business logic can be
implemented with simple POJOs and managed by Spring's 10C container. Additional services include
support for sending email and validation that is independent of the web layer, which lets you choose
where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the
web-layer with the domain model, removing the need for Act i onFor s or other classes that transform

HTTP parameters to values for your domain model.

31 Reference Documentation 6

Spring Framework

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions

for POJOs
ORM Mappings
Tomcat Serviet Container Custom DAO/Repositories

Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with WebWork, Struts, Tapestry, or other Ul frameworks can be integrated with a
Spring-based middle-tier, which allows you to use Spring transaction features. You simply need to wire
up your business logic using an Appl i cat i onCont ext and use aWebAppl i cati onCont ext to
integrate your web layer.

31 Reference Documentation 7

Spring Framework

JAX RPC Client Hessian Client Burlap Client RMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Remoting usage scenario

When you need to access existing code through web services, you can use Spring's Hessi an-,
Burl ap-, Rm - or JaxRpcProxyFact ory classes. Enabling remote access to existing applications
is not difficult.

31 Reference Documentation 8

Spring Framework

EJB Access Layer
fusing Sisbinvokers)

Spring-managed E.JBs
{using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WebLogic, JBoss)

EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans, enabling
you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable, fail-safe
web applications that might need declarative security.

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble al the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies are
not virtual components that are injected, but physical resourcesin afile system (typically). The process of
dependency management involves locating those resources, storing them and adding them to classpaths.
Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect (e.g. my
application depends on commons-dbcp which depends on comons-pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify and
manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of Spring
that you need. To make this easier Spring is packaged as a set of modules that separate the dependencies
as much as possible, so for example if you don't want to write a web application you don't need the
spring-web modules. To refer to Spring library modules in this guide we use a shorthand naming
convention spri ng-* or spring-*.jar, where"*" represents the short name for the module (e.g.
spring-core, spring-webmvc, spring-j s, etc.). The actual jar file name that you use may be

31 Reference Documentation 9

Spring Framework

n this form (see below) or it may not, and normally it also has a version number in the file name (e.g.

spring-core-3.0.0. RELEASE. j ar).

n general, Spring publishes its artifacts to four different places:

On the community download site http://www.springsource.org/download/community. Here you find all
the Spring jars bundled together into a zip file for easy download. The names of the jars here since
version 3.0 areintheformor g. spri ngf ranewor k. *- <ver si on>. j ar.

Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available from
Maven Central and alarge section of the Spring community uses Maven for dependency management,
so this is convenient for them. The names of the jars here ae in the form
spring-*-<versi on>. j ar andthe Maven groupldisor g. spri ngf r amewor k.

The Enterprise Bundle Repository (EBR), which is run by SpringSource and also hosts all the libraries
that integrate with Spring. Both Maven and lvy repositories are available here for all Spring jars and
their dependencies, plus a large number of other common libraries that people use in applications with
Spring. Both full releases and also milestones and development snapshots are deployed here. The
names of the jar files ae in the same form as the community download
(org. springframework. *-<version>. jar), and the dependencies are also in this "long"
form, with external libraries (not from SpringSource) having the prefix com spri ngsour ce. See
the FAQ for more information.

In a public Maven repository hosted on Amazon S3 for development snapshots and milestone releases
(a copy of the final releases is also held here). The jar file names are in the same form as Maven
Central, so this is a useful place to get development versions of Spring to use with other libraries
depoyed in Maven Central.

So the first thing you need to decide is how to manage your dependencies. most people use an automated
system like Maven or lvy, but you can also do it manually by downloading all the jars yourself. When
obtaining Spring with Maven or vy you have then to decide which place you'll get it from. In generd, if
you care about OSGI, use the EBR, since it houses OSGi compatible artifacts for al of Spring's
dependencies, such as Hibernate and Freemarker. If OSGi does not matter to you, either place works,
though there are some pros and cons between them. In general, pick one place or the other for your
project; do not mix them. This is particularly important since EBR artifacts necessarily use a different
naming convention than Maven Central artifacts.

Table 1.1. Comparison of Maven Central and SpringSource EBR Repositories

Feature Maven Central EBR

OSGi Compatible Not explicit Yes

Number of Artifacts Tens of thousands; all kinds Hundreds, those that Spring
integrates with

31 Reference Documentation 10

http://www.springsource.org/download/community
http://www.springsource.com/repository/app/faq

Spring Framework

Feature

Maven Central

EBR

Consistent Naming Conventions

Naming Convention: Groupld

Naming Convention: Artifactld

Naming Convention: Version

Publishing

Quality Assurance

Hosting

Search Utilities

Integration with SpringSource
Tools

No

Varies. Newer artifacts often use
domain name, e.g. org.df4j.
Older ones often just use the
artifact name, e.g. log4j.

Varies. Generally the project or
module name, using a hyphen "-"
Separator, e.g. spring-core, logj4.

Varies. Many new artifacts use
mmm or mmm.X (with
m=digit, X=text). Older ones use
m.m. Some neither. Ordering is
defined but not often relied on,
so not strictly reliable.

Usually automatic via rsync or
source control updates. Project
authors can upload individual
jarsto JRA.

By policy. Accuracy is
responsibility of authors.

Contegix. Funded by Sonatype
with several mirrors.

Various

Integration through STS with
Maven dependency management

Spring Dependencies and Depending on Spring

Yes

Domain name of origin or main
package root, eg.
org.springframework

Bundle Symbolic Name, derived
from the main package root, e.g.
org.springframework.beans. If
the jar had to be patched to
ensure OSGi compliance then
com.springsource is appended,
e.g.

com.springsource.org.apache.log4j

OSGi version number m.m.m.X,
e.g. 3.0.0.RC3. The text qualifier
imposes alphabetic ordering on
versions with the same numeric
values.

Manual (JRA processed by
SpringSource)

Extensive for OSGi manifest,
Maven POM and lvy metadata.
QA performed by Spring team.

S3 funded by SpringSource.

http://www.Springsource.com/repository

Extensive integration through
STS with Maven, Roo,
CloudFoundry

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn't have to locate

31

Reference Documentation

11

http://www.springsource.com/repository

Spring Framework

and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is for
logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Ivy. In al cases, if anything is unclear, refer to the documentation of your
dependency management system, or look at some sample code - Spring itself uses lvy to manage
dependencies when it is building, and our samples mostly use Maven.

Maven Dependency Management

If you are using Maven for dependency management you don't even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don't need to compile against Spring APIs,
which istypically the case for basic dependency injection use cases.

We used the Maven Central naming conventions in the example above, so that works with Maven Central
or the SpringSource S3 Maven repository. To use the S3 Maven repository (e.g. for milestones or
developer snaphots), you need to specify the repository location in your Maven configuration. For full
releases:

<repositories>
<reposi tory>
<i d>com springsource. repository. maven.rel ease</i d>
<url >http:// maven. spri ngframewor k. org/ rel ease/ </ url >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

<repositories>
<reposi tory>
<i d>com springsource.repository. maven. m | est one</i d>
<url >http:// maven. spri ngframewor k. org/ m | est one/ </ url| >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

And for snapshots.

3.1 Reference Documentation 12

Spring Framework

<repositories>
<r eposi tory>
<i d>com spri ngsource. reposi tory. maven. snapshot </ i d>
<url >http:// maven. spri ngf ramewor k. or g/ snapshot / </ ur| >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

To use the SpringSource EBR you would need to use a different naming convention for the dependencies.
The names are usually easy to guess, e.g. inthiscaseitis:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>org.springfranmework. context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

Y ou also need to declare the location of the repository explicitly (only the URL isimportant):

<repositories>
<r eposi tory>
<i d>com spri ngsource. reposi tory. bundl es. rel ease</i d>
<url>http://repository.springsource.conf maven/ bundl es/rel ease/ </ url >
</repository>
</repositories>

If you are managing your dependencies by hand, the URL in the repository declaration above is not
browseable, but there is a user interface at http://www.springsource.com/repository that can be used to
search for and download dependencies. It also has handy snippets of Maven and Ivy configuration that
you can copy and paste if you are using those tools.

Ivy Dependency Management
If you prefer to use lvy to manage dependencies then there are similar names and configuration options.

To configure lvy to point to the SpringSource EBR add the following resolvers to your
i vysettings. xm :
<resol ver s>
<url name="com spri ngsource.repository. bundl es. rel ease">
<ivy pattern="http://repository.springsource.coniivy/bundl es/rel ease/
[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.coniivy/bundles/rel ease/
[organi sation]/[nmodul e]/[revision]/[artifact]-[revision].[ext]" />
</url>
<url name="com springsource.repository.bundl es. external ">
<ivy pattern="http://repository.springsource.conlivy/bundl es/external/

[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.conm ivy/bundl es/external/

31 Reference Documentation 13

http://www.springsource.com/repository
http://ant.apache.org/ivy

Spring Framework

[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
</url>

</resol ver s>

The XML above is not valid because the lines are too long - if you copy-paste then remove the extraline
endings in the middle of the url patterns.

Once lvy is configured to look in the EBR adding a dependency is easy. Simply pull up the details page
for the bundle in question in the repository browser and you'll find an vy snippet ready for you to include
in your dependencies section. For example (ini vy. xm):

<dependency org="org. spri ngfranmewor k"
name="or g. spri ngf ramewor k. core" rev="3.0. 0. RELEASE" conf="conpil e->runtime"/>

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and ¢) Spring integrates
with lots of other tools all of which have a'so made a choice of logging dependency. One of the goals of
an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging APl (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework. It's
important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do thisis to
make one of the modules in Spring depend explicitty on commons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on
commons- | oggi ng, then it is from Spring and specifically from the central module called
spring-core.

The nice thing about cormons- | oggi ng isthat you don't need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging frameworks in well known places
on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to). If
nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL for
short). You should find that your Spring application works and logs happily to the console out of the box
in most situations, and that's important.

Not Using Commons Logging

Unfortunately, the runtime discovery algorithm in conmons- | oggi ng, while convenient for the
end-user, is problematic. If we could turn back the clock and start Spring now as a new project it would

3.1 Reference Documentation 14

Spring Framework

use a different logging dependency. The first choice would probably be the Simple Logging Facade for
Java (SLF4J), which is also used by a lot of other tools that people use with Spring inside their
applications.

Switching off conmons- | oggi ng is easy: just make sure it isn't on the classpath at runtime. In Maven
terms you exclude the dependency, and because of the way that the Spring dependencies are declared, you
only have to do that once.

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>conmmons- | oggi ng</ gr oupl d>
<artifactld>comons-| oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is probably broken because there is no implementation of the JCL APl on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an
alternative implementation of JCL using SLF4J as an example.

Using SLF4J

SLFAJis a cleaner dependency and more efficient at runtime than comrmons- | oggi ng because it uses
compile-time bindings instead of runtime discovery of the other logging frameworks it integrates. This
also means that you have to be more explicit about what you want to happen at runtime, and declare it or
configure it accordingly. SLF4J provides bindings to many common logging frameworks, so you can
usually choose one that you already use, and bind to that for configuration and management.

SLF4J provides bindings to many common logging frameworks, including JCL, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need to
replace the conmons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that then
logging calls from within Spring will be trandated into logging cals to the SLF4J API, so if other
librariesin your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4J. You need to supply 4 dependencies (and exclude the existing conmons- | oggi ng): the bridge,
the SLF4J API, the binding to Log4J, and the Log4J implementation itself. In Maven you would do that
like this

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
<excl usi ons>

31 Reference Documentation 15

http://www.slf4j.org

Spring Framework

<excl usi on>
<gr oupl d>conmmons- | oggi ng</ gr oupl d>
<artifactld>comons-| oggi ng</artifactld>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slfdj</artifactld>
<versi on>1. 5. 8</ versi on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>1. 5. 8</ versi on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1o0g4j1l2</artifactld>
<versi on>1. 5. 8</ versi on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j </artifactld>
<versi on>1. 2. 14</ ver si on>
<scope>runti me</ scope>

</ dependency>

</ dependenci es>

That might seem like a lot of dependencies just to get some logging. Well it is, but it is optional, and it
should behave better than the vanilla cormons- | oggi ng with respect to classloader issues, notably if
you are in a strict container like an OSGi platform. Allegedly there is also a performance benefit because
the bindings are at compile-time not runtime.

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer dependencies,
isto bind directly to Logback. This removes the extra binding step because Logback implements SLF4J
directly, so you only need to depend on two libaries not four (j ¢l - over - sl f 4j and| ogback). If you
do that you might also need to exlude the df4j-api dependency from other external dependencies (not
Spring), because you only want one version of that API on the classpath.

Using Log4J

Many people use Log4j as alogging framework for configuration and management purposes. It's efficient
and well-established, and in fact it's what we use at runtime when we build and test Spring. Spring also
provides some utilities for configuring and initializing Log4j, so it has an optiona compile-time
dependency on Log4j in some modules.

To make Log4j work with the default JCL dependency (comrmons- | oggi ng) all you need to do is put
Log4j on the classpath, and provide it with a configuration file (| og4j . properti es or | og4j . xm
in the root of the classpath). So for Maven usersthisis your dependency declaration:

<dependenci es>
<dependency>

31 Reference Documentation 16

http://logback.qos.ch
http://logging.apache.org/log4j

Spring Framework

<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>
<scope>runti me</ scope>

</ dependency>

</ dependenci es>

And here's a sample log4j.properties for logging to the console:

| 0g4j . r oot Cat egor y=I NFO, st dout

| 0g4j . appender. st dout =or g. apache. | og4j . Consol eAppender
| og4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout
| 0g4j . appender. stdout . | ayout. Conver si onPat t er n=%I{ ABSOLUTE} %p % %{2}:% - %rmn

| 0g4j . cat egory. org. spri ngf ramewor k. beans. f act or y=DEBUG

Runtime Containers with Native JCL

Many people run their Spring applications in a container that itself provides an implementation of JCL.
IBM Websphere Application Server (WAS) is the archetype. This often causes problems, and
unfortunately there is no silver bullet solution; simply excluding conmons- | oggi ng from your
application is not enough in most situations.

To be clear about this. the problems reported are usually not with JCL per se, or even with
commons- | oggi ng: rather they are to do with binding commons- 1 oggi ng to another framework
(often Log4Jd). This can faill because commons-| oggi ng changed the way they do the runtime
discovery in between the older versions (1.0) found in some containers and the modern versions that most
people use now (1.1). Spring does not use any unusual parts of the JCL API, so nothing breaks there, but
as soon as Spring or your application tries to do any logging you can find that the bindings to Log4J are
not working.

In such cases with WAS the easiest thing to do isto invert the class loader hierarchy (IBM callsit "parent
last") so that the application controls the JCL dependency, not the container. That option isn't aways
open, but there are plenty of other suggestions in the public domain for alternative approaches, and your
mileage may vary depending on the exact version and feature set of the container.

3.1 Reference Documentation 17

Part II. What's New in Spring 3

Spring Framework

2. New Features and Enhancements in Spring 3.0

If you have been using the Spring Framework for some time, you will be aware that Spring has undergone
two magjor revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007. It
isnow time for athird overhaul resulting in Spring 3.0.

Java SE and Java EE Support
The Spring Framework is now based on Java 5, and Java 6 is fully supported.

Furthermore, Spring is compatible with J2EE 1.4 and Java EE 5, while at the same time introducing
some early support for Java EE 6.

2.1Javab

The entire framework code has been revised to take advantage of Java 5 features like generics, varargs
and other language improvements. We have done our best to still keep the code backwards compatible.
We now have consistent use of generic Collections and Maps, consistent use of generic FactoryBeans,
and also consistent resolution of bridge methods in the Spring AOP API. Generic ApplicationListeners
automatically receive specific event types only. All callback interfaces such as TransactionCallback and
HibernateCallback declare a generic result value now. Overall, the Spring core codebase is now freshly
revised and optimized for Java 5.

Spring's TaskExecutor abstraction has been updated for close integration with Java 5's java.util.concurrent
facilities. We provide first-class support for Callables and Futures now, as well as ExecutorService
adapters, ThreadFactory integration, etc. This has been aligned with JSR-236 (Concurrency Utilities for
Java EE 6) as far as possible. Furthermore, we provide support for asynchronous method invocations
through the use of the new @Async annotation (or EJB 3.1's @Asynchronous annotation).

2.2 Improved documentation

The Spring reference documentation has also substantially been updated to reflect al of the changes and
new features for Spring 3.0. While every effort has been made to ensure that there are no errors in this
documentation, some errors may nevertheless have crept in. If you do spot any typos or even more serious
errors, and you can spare a few cycles during lunch, please do bring the error to the attention of the

Spring team by raising an issue.

2.3 New articles and tutorials

31 Reference Documentation 19

http://jira.springframework.org/

Spring Framework

There are many excellent articles and tutorials that show how to get started with Spring 3 features. Read
them at the Spring Documentation page.

The samples have been improved and updated to take advantage of the new features in Spring 3.
Additionally, the samples have been moved out of the source tree into a dedicated SVN repository
available at:

htt ps://anonsvn. spri ngfranewor k. org/ svn/ spri ng- sanpl es/

As such, the samples are no longer distributed alongside Spring 3 and need to be downloaded separately
from the repository mentioned above. However, this documentation will continue to refer to some
samples (in particular Petclinic) toillustrate various features.

Note

For more information on Subversion (or in short SVN), see the project homepage at:
htt p://subversi on. apache. or g/

2.4 New module organization and build system

The framework modules have been revised and are now managed separately with one source-tree per
modulejar:

* org.springframework.aop

* org.springframework.beans

* org.springframework.context

* org.springframewark.context.support
* org.springframework.expression
* org.springframework.instrument
* org.springframework.jdbc

* org.springframework.jms

* org.springframework.orm

* org.springframework.oxm

* org.springframework.test

* org.springframework.transaction

31 Reference Documentation 20

http://www.springsource.org/documentation
https://anonsvn.springframework.org/svn/spring-samples/

Spring Framework

* org.springframework.web
* org.springframework.web.portlet
* org.springframework.web.servlet

* org.springframework.web.struts

Note:

The spring.jar artifact that contained almost the entire framework is no longer provided.

We are now using a new Spring build system as known from Spring Web Flow 2.0. This gives us.
* |vy-based "Spring Build" system

 consistent deployment procedure

 consistent dependency management

» consistent generation of OSGi manifests

2.5 Overview of new features

This is a list of new features for Spring 3.0. We will cover these features in more detail later in this
section.

 Spring Expression Language

* |0C enhancements/Java based bean metadata

» General-purpose type conversion system and field formatting system

» Object to XML mapping functionality (OXM) moved from Spring Web Services project
» Comprehensive REST support

« @MVC additions

* Declarative model validation

 Early support for Java EE 6

» Embedded database support

3.1 Reference Documentation 21

Spring Framework

Core APIs updated for Java 5

BeanFactory interface returns typed bean instances as far as possible:

» T getBean(Class<T> requiredType)

» T getBean(String name, Class<T> requiredType)

* Map<String, T> getBeansOf Type(Class<T> type)

Spring's TaskExecutor interface now extendsj ava. uti | . concurrent. Execut or:
» extended AsyncTaskExecutor supports standard Callables with Futures

New Java 5 based converter APl and SPI:

» stateless ConversionService and Converters

 superseding standard JDK PropertyEditors

Typed ApplicationListener<eE>

Spring Expression Language

Spring introduces an expression language which is similar to Unified EL in its syntax but offers
significantly more features. The expression language can be used when defining XML and Annotation
based bean definitions and aso serves as the foundation for expression language support across the
Spring portfolio. Details of this new functionality can be found in the chapter Spring Expression
Language (SpEL).

The Spring Expression Language was created to provide the Spring community a single, well supported
expression language that can be used across all the products in the Spring portfolio. Its language features
are driven by the requirements of the projects in the Spring portfolio, including tooling requirements for
code completion support within the Eclipse based SpringSource Tool Suite.

The following is an example of how the Expression Language can be used to configure some properties
of a database setup

<bean cl ass="myconpany. Rewar dsTest Dat abase" >
<property nanme="dat abaseNane"
val ue="#{syst enProperties. dat abaseNane}"/ >
<property nanme="keyGenerator"
val ue="#{strat egyBean. dat abaseKeyGenerator}"/>
</ bean>

Thisfunctionality is also availableif you prefer to configure your components using annotations.

@reposi tory
public class RewardsTest Dat abase {

3.1 Reference Documentation 22

http://www.springsource.com/products/sts

Spring Framework

@/al ue("#{systenProperties. dat abaseNane}")
public voi d setDat abaseNane(String dbNane) { ...}

@/al ue("#{strat egyBean. dat abaseKeyGenerator}")
public void set KeyGener at or (KeyGenerator kg) { ...}

The Inversion of Control (loC) container

Java based bean metadata

Some core features from the JavaConfig project have been added to the Spring Framework now. This
means that the following annotations are now directly supported:

e @Configuration
* @Bean

* @DependsOn

* @Primary

.« @Lazy

e @Import

* @ImportResource
e @Vdue

Here is an example of a Java class providing basic configuration using the new JavaConfig features:

package org. exanpl e. confi g;

@conf i guration

public class AppConfig {
private @al ue("#{jdbcProperties.url}") String jdbcUrl;
private @/al ue("#{jdbcProperties.usernane}") String usernane;
private @al ue("#{jdbcProperties. password}") String password;

@Bean
publ i c FooService fooService() {

return new FooServi cel npl (f ooRepository());
}

@ean
publ i ¢ FooRepository fooRepository() {

return new Hi ber nat eFooReposi tory(sessi onFactory());
}

@ean
publ i c SessionFactory sessionFactory() {
/] wire up a session factory
Annot at i onSessi onFact or yBean asFact oryBean =
new Annot at i onSessi onFact or yBean() ;

31 Reference Documentation 23

http://www.springsource.org/javaconfig

Spring Framework

asFact or yBean. set Dat aSour ce(dat aSource());
/] additional config
return asFact oryBean. get Obj ect () ;

}

@ean
publ i c DataSource dataSource() {

return new Driver Manager Dat aSour ce(j dbcUrl, usernane, password);
}

}

To get this to work you need to add the following component scanning entry in your minimal application
context XML file.

<cont ext : conponent - scan base- package="or g. exanpl e. confi g"/>
<util:properties id="jdbcProperties" |ocation="classpath:org/exanple/config/jdbc.properties"/>

Or you can bootstrap a @Configuration class directly using
Annot at i onConf i gAppl i cati onCont ext:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (AppConfig.class);
FooServi ce fooService = ctx. get Bean(FooServi ce. cl ass);
fooService. doStuff();

}

See the section called * Instantiating the Spring container using AnnotationConfigApplicationContext” for
full information on Annot at i onConf i gAppl i cat i onCont ext .

Defining bean metadata within components

@ean annotated methods are also supported inside Spring components. They contribute a factory bean
definition to the container. See Defining bean metadata within components for more information

General purpose type conversion system and field formatting system

A general purpose type conversion system has been introduced. The system is currently used by SpEL for
type conversion, and may also be used by a Spring Container and DataBinder when binding bean property
values.

In addition, a formatter SPI has been introduced for formatting field values. This SPI provides a simpler
and more robust alternative to JavaBean PropertyEditors for use in client environments such as Spring
MVC.

The Data Tier

Object to XML mapping functionality (OXM) from the Spring Web Services project has been moved to
the core Spring Framework now. The functionality is found in the or g. spri ngf ranmewor k. oxm
package. More information on the use of the OXM module can be found in the Marshalling XML using

O/X Mappers chapter.

3.1 Reference Documentation 24

Spring Framework

The Web Tier

The most exciting new feature for the Web Tier is the support for building RESTful web services and
web applications. There are also some new annotations that can be used in any web application.

Comprehensive REST support

Server-side support for building RESTful applications has been provided as an extension of the existing
annotation driven MV C web framework. Client-side support is provided by the Rest Tenpl at e classin
the spirit of other template classes such as JdbcTenpl at e and Jns Tenpl at e. Both server and client
side REST functionality make use of Ht t pConver t er sto facilitate the conversion between objects and
their representation in HT TP requests and responses.

The Marshal | i ngHt t pMessageConverter uses the Object to XML mapping functionality
mentioned earlier.

Refer to the sections on MV C and the RestTemplate for more information.

@MVC additions
A mvc namespace has been introduced that greatly simplifies Spring MV C configuration.

Additional annotations such as @Cooki eVal ue and @Request Header s have been added. See
Mapping cookie values with the @CookieValue annotation and Mapping request header attributes with
the @ReguestHeader annotation for more information.

Declarative model validation

Severa validation enhancements, including JSR 303 support that uses Hibernate Validator as the default
provider.

Early support for Java EE 6

We provide support for asynchronous method invocations through the use of the new @A sync annotation
(or EJB 3.1's @A synchronous annotation).

JSR 303, JSF 2.0, JPA 2.0, etc

Support for embedded databases

Convenient support for embedded Java database engines, including HSQL, H2, and Derby, is now
provided.

31 Reference Documentation 25

Spring Framework

3. New Features and Enhancements in Spring 3.1

Building on the support introduced in Spring 3.0, Spring 3.1 is currently under development, and at the
time of thiswriting Spring 3.1 RC1 is being prepared for release.

3.1 Overview of new features

This is a list of new features for Spring 3.1. Most features do not yet have dedicated reference

documentation but do have Javadoc. In such cases, fully-qualified class names are given. See also
Appendix B, Migrating to Soring Framework 3.1

Cache Abstraction

» Chapter 28, Cache Abstraction

» Cache Abstraction (SpringSource team blog)

Bean Definition Profiles

» XML profiles (SpringSource Team Blog)

* Introducing @Profile (SpringSource Team Blog)
» See org.springframework.context.annotation.Configuration Javadoc

 See org.springframework.context.annotation.Profile Javadoc

Environment Abstraction

» Environment Abstraction (SpringSource Team Blog)

 See org.springframework.core.env.Environment Javadoc

PropertySource Abstraction

Unified Property Management (SpringSource Team Blog)

 See org.springframework.core.env.Environment Javadoc
 See org.springframework.core.env.PropertySource Javadoc

* See org.springframework.context.annotation.Property Source Javadoc

31 Reference Documentation 26

http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/14/spring-3-1-m1-introducing-profile/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/15/spring-3-1-m1-unified-property-management/

Spring Framework

Code equivalents for Spring's XML namespaces

Code-based equivalents to popular Spring XML namespace elements <context:component-scan/>,
<tx:annotation-driven/> and <mvc:annotation-driven> have been developed, most in the form of
@nabl e annotations. These are designed for use in conjunction with Spring's @onf i gur ati on
classes, which were introduced in Spring 3.0.

» See org.springframework.context.annotation.Configuration Javadoc

 See org.springframework.context.annotation.ComponentScan Javadoc

* See org.springframework.transaction.annotation.Enabl eTransactionM anagement Javadoc
* See org.springframework.cache.annotati on.EnableCaching Javadoc

» See org.springframework.web.servlet.config.annotation.EnableWebMvc Javadoc

* See org.springframework.scheduling.annotati on.EnableScheduling Javadoc

* See org.springframework.scheduling.annotation.EnableAsync Javadoc

 See org.springframework.context.annotati on.Enabl eA spectJA utoProxy Javadoc

* See org.springframework.context.annotati on.Enabl el oad TimeWeaving Javadoc

» See org.springframework.beans.factory.aspectj.EnableSpringConfigured Javadoc

Support for Hibernate 4.x

» See Javadoc for classes within the new org.springframework.orm.hibernate4 package

TestContext framework support for @Configuration classes and bean
definition profiles

The @ont ext Confi gur ati on annotation now supports supplying @onf i gur at i on classes for
configuring the Spring Test Cont ext . In addition, a new @A\ct i vePr of i | es annotation has been
introduced to support declarative configuration of active bean definition profiles in
Appl i cati onCont ext integration tests.

» Spring 3.1 M2: Testing with @Configuration Classes and Profiles (SpringSource Team Blog)

» Seethe section called “ Spring TestContext Framework”

e See the section called “Context configuration with @Configuration classes’ and
org. springframewor k. t est. cont ext. Cont ext Confi gurati on Javadoc

3.1 Reference Documentation 27

http://blog.springsource.com/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/

Spring Framework

e Seeorg. springframework.test.context. ActiveProfil es Javadoc
* Seeorg. springframework.test.context. Smart Cont ext Loader Javadoc
* See
org. springframewor k. t est. cont ext. support. Del egati ngSmart Cont ext Loader

Javadoc

* See
org. springframework. test.context. support. Annot ati onConfi gCont ext Loader
Javadoc

c: namespace for more concise constructor injection

* thesection called “XML shortcut with the c-namespace”

Support for injection against non-standard JavaBeans setters

Prior to Spring 3.1, in order to inject against a property method it had to conform strictly to JavaBeans
property signature rules, namely that any 'setter’ method must be void-returning. It is now possible in
Spring XML to specify setter methods that return any object type. This is useful when considering
designing APIs for method-chaining, where setter methods return areferenceto 'this.

Support for Servlet 3 code-based configuration of Servlet Container

The new WebApplicationlnitializer builds atop Servlet 3.0s
Servl et Containerlnitializer supportto provide a programmatic alternative to the traditional
web.xml.

 See org.springframework.web.WebA pplicationlnitializer Javadoc

» Diff from Spring's Greenhouse reference application demonstrating migration from web.xml to
WebApplicationlnitializer

Support for Servlet 3 MultipartResolver

 See org.springframework.web.multipart.support. StandardServletM ulti partResol ver Javadoc

JPA EntityManagerFactory bootstrapping without persistence.xml

In standard JPA, persistence units get defined through META- | NF/ per si st ence. xml files in
specific jar files which will in turn get searched for @nt ity classes. In many cases, persistence.xml

31 Reference Documentation 28

http://bit.ly/lrDHja

Spring Framework

does not contain more than a unit name and relies on defaults and/or external setup for all other concerns
(such as the DataSource to use, etc). For that reason, Spring 3.1 provides an alternative:
Local Cont ai ner Enti t yManager Fact or yBean accepts a 'packagesToScan' property, specifying
base packages to scan for @ntity classes. This is analogous to
Annot at i onSessi onFact or yBean's property of the same name for native Hibernate setup, and
also to Spring's component-scan feature for regular Spring beans. Effectively, this alows for XML-free
JPA setup at the mere expense of specifying a base package for entity scanning: a particularly fine match
for Spring applications which rely on component scanning for Spring beans as well, possibly even
bootstrapped using a code-based Servlet 3.0 initializer.

New HandlerMethod-based Support Classes For Annotated Controller
Processing

Spring 3.1 introduces a new set of support classes for processing requests with annotated controllers:
* Request Mappi ngHandl er Mappi ng

* Request Mappi ngHandl er Adapt er

» Excepti onHandl er Except i onResol ver

These classes are areplacement for the existing:

* Def aul t Annot at i onHandl er Mappi ng

e Annot at i onMet hodHandl er Adapt er

e Annot at i onMet hodHandl er Excepti onResol ver

The new classes were developed in response to many requests to make annotation controller support
classes more customizable and open for extension. Whereas previously you could configure a custom
annotated controller method argument resolver, with the new support classes you can customize the
processing for any supported method argument or return value type.

 See org.springframework.web.method.support.HandlerM ethodArgumentResol ver Javadoc
» See org.springframework.web.method.support.HandlerM ethodReturnV alueHandler Javadoc

A second notable difference is the introduction of a Handl er Met hod abstraction to represent an
@ReguestMapping method. This abstraction is used throughout by the new support classes as the
handl er instance. For example a Handl er | nt er cept or can cast the handl er from Qbj ect to
Handl er Met hod and get accessto the target controller method, its annotations, etc.

The new classes are enabled by default by the MV C namespace and by Javabased configuration via
@EnableWebMvc. The existing classes will continue to be available but use of the new classes is
recommended going forward.

31 Reference Documentation 29

Spring Framework

See the section called “New Support Classes for @RequestMapping methods in Spring MVC 3.1" for
additional details and alist of features not available with the new support classes.

"consumes" and "produces” conditions in @RequestMapping

Improved support for specifying media types consumed by a method through the ' Cont ent - Type'
header as well as for producible types specified through the ' Accept ' header. See the section called
“Consumable Media Types’ and the section called “Producible Media Types’

Flash Attributes and Redi rect Attri but es

Flash attributes can now be stored in a Fl ashMap and saved in the HTTP session to survive a redirect.
For an overview of the general support for flash attributes in Spring MV C see Section 16.6, “Using flash
attributes”.

In annotated controllers, an @Request Mappi ng method can add flash attributes by declaring a method
argument of type Redi rect Att ri but es. This method argument can now also be used to get precise
control over the attributes used in aredirect scenario. See the section called “ Specifying redirect and flash
attributes’ for more details.

URI Template Variable Enhancements
URI template variables from the current request are used in more places:

* URI template variables are used in addition to request parameters when binding a request to
@/mbdel At t ri but e method arguments.

» @PathVariable method argument values are merged into the model before rendering, except in views
that generate content in an automated fashion such as JSON serialization or XML marshalling.

e A redirect string can contain placeholders for URI variables (ed.
"redirect:/blog/{year}/{nonth}"). When expanding the placeholders, URI template
variables from the current request are automatically considered.

« An @vbdel Attri but e method argument can be instantiated from a URI template variable provided
there isaregistered Converter or PropertyEditor to convert from a String to the target object type.

@/al i d On @RequestBody Controller Method Arguments

An @RequestBody method argument can be annotated with @Valid to invoke automatic validation
similar to the support for @ModelAttribute method arguments. A resulting
Met hodAr gurrent Not Val i dExcepti on is handled in the
Def aul t Handl er Except i onResol ver and resultsin a400 response code.

31 Reference Documentation 30

Spring Framework

@Request Part Annotation On Controller Method Arguments

This new annotation provides access to the content of a"multipart/form-data’ request part. See the section
called “Handling afile upload request from programmatic clients” and Section 16.10, “ Spring's multipart
(file upload) support”.

Ur i Conponent sBui | der and Uri Conponent s

A new Uri Conponent s class has been added, which is an immutable container of URI components
providing access to all contained URI components. A new Uri Conponent sBui | der class is aso
provided to help create Ur i Conponent s instances. Together the two classes give fine-grained control
over al aspects of preparing a URI including construction, expansion from URI template variables, and
encoding.

In most cases the new classes can be used as a more flexible alternative to the existing Ur i Tenpl at e
especialy sinceUri Tenpl at e relies on those same classes internally.

A Servl et Uri Conrponent sBui | der sub-class provides static factory methods to copy information
from a Servlet request. See Section 16.7, “Building URIS’.

31 Reference Documentation 31

Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (IoC) container. A thorough
treatment of the Spring Framework's 10C container is closely followed by comprehensive coverage of
Spring's Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is
certainly advocated by the Spring team, and so coverage of Spring's support for integration testing is
covered (alongside best practices for unit testing). The Spring team has found that the correct use of 10C
certainly does make both unit and integration testing easier (in that the presence of setter methods and
appropriate constructors on classes makes them easier to wire together in a test without having to set up
service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully convince
you of thisaswell.

» Chapter 4, The 10C container

» Chapter 5, Resources

» Chapter 6, Validation, Data Binding, and Type Conversion
» Chapter 7, Soring Expression Language (SoEL)

» Chapter 8, Aspect Oriented Programming with Spring

» Chapter 9, Soring AOP APIs

» Chapter 10, Testing

Spring Framework

4. The loC container

4.1 Introduction to the Spring loC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (10C) lprinci ple.
loC is also known as dependency injection (DI). It is a process whereby objects define their dependencies,
that is, the other objects they work with, only through constructor arguments, arguments to a factory
method, or properties that are set on the object instance after it is constructed or returned from a factory
method. The container then injects those dependencies when it creates the bean. This process is
fundamentally the inverse, hence the name Inversion of Control (10C), of the bean itself controlling the
instantiation or location of its dependencies by using direct construction of classes, or a mechanism such
asthe Service Locator pattern.

The or g. spri ngf ramewor k. beans and or g. spri ngf ranewor k. cont ext packages are the
basis for Spring Framework's 10C container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appli cati onContext is a
sub-interface of BeanFactory. It adds easier integration with Spring's AOP features, message
resource handling (for use in internationalization), event publication; and application-layer specific
contexts such asthe WebAppl i cat i onCont ext for usein web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cat i onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions of
Spring's 10C container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, refer to Section 4.15, “ The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring 10C
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed by
a Spring 1oC container. Otherwise, a bean is simply one of many abjects in your application. Beans, and
the dependencies among them, are reflected in the configuration metadata used by a container.

4.2 Container overview

The interface or g. spri ngf ramewor k. cont ext . Appl i cati onCont ext represents the Spring
IoC container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies

1see Background

31 Reference Documentation 33

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework

between such aobjects.

Several implementations of the Appl i cati onCont ext interface are supplied out-of-the-box with
Spring. In standalone applications it is common to create an instance of
Gl assPat hXm ApplicationContext or Fil eSystenXn Applicati onContext. While
XML has been the traditional format for defining configuration metadata you can instruct the container to
use Java annotations or code as the metadata format by providng a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances of a
Spring 10C container. For example, in a web application scenario, a simple eight (or so) lines of
boilerplate J2EE web descriptor XML in the web. xm file of the application will typically suffice (see
the section called “Convenient ApplicationContext instantiation for web applications’). If you are using
the SpringSource Tool Suite Eclipse-powered development environment or Spring Roo this boilerplate
configuration can be easily created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Y our application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you
have afully configured and executable system or application.

Your Business Objects (POJOs)

> The Spari
Configuration ,:E ﬂtap”:lg E
Metadata
roduces

Fully configured system

Ready for Use

The Spring |oC container

Configuration metadata

As the preceding diagram shows, the Spring 10C container consumes a form of configuration metadata;

31 Reference Documentation 34

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html
http://www.springsource.com/produts/sts
http://www.springsource.org/roo

Spring Framework

this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assembl e the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what
most of this chapter uses to convey key concepts and features of the Spring 10C container.

Note

XML -based metadata is not the only allowed form of configuration metadata. The Spring 10C
container itself is totally decoupled from the format in which this configuration metadata is
actually written.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@configuration, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at |east one and typically more than one bean definition that the container
must manage. XML-based configuration metadata shows these beans configured as <bean/ > elements
inside atop-level <beans/ > element.

These bean definitions correspond to the actual objects that make up your application. Typicaly you
define service layer objects, data access objects (DAQs), presentation objects such as Struts Acti on
instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typicaly one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring's integration with AspectJ to configure objects that have been created outside the control of an [oC
container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="..." class="...">

<I-- col | aborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">

<I-- col | aborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions go here -->

31 Reference Documentation 35

http://www.springsource.org/javaconfig
http://www.springsource.org/javaconfig

Spring Framework

</ beans>

Thei d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers to
collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring 10C container is straightforward. The location path or paths supplied to an
Appl i cat i onCont ext constructor are actually resource strings that alow the container to load
configuration metadata from a variety of externa resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onContext (new String[] {"services.xm", "daos.xm"});

Note

After you learn about Spring's 10C container, you may want to know more about Spring's
Resour ce abstraction, as described in Chapter 5, Resources, which provides a convenient
mechanism for reading an InputSream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 5.7,
“ Application contexts and Resource paths’.

The following example shows the service layer objects (ser vi ces. xm) configuration file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<l-- services -->

<bean i d="pet St ore"
cl ass="org. spri ngfranmewor k. sanpl es. j pet store. servi ces. Pet St or eSer vi cel npl ">
<property name="account Dao" ref="account Dao"/>
<property name="itenDao" ref="itenDao"/>

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xmi file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

31 Reference Documentation 36

Spring Framework

<bean i d="account Dao"
cl ass="org. spri ngframewor k. sanpl es. j pet store. dao. i bati s. Sql MapAccount Dao" >
<l-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springframework. sanpl es. | petstore.dao.ibatis.Sql MapltenDao">

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two
data access objects of the type Sgl MapAccount Dao and SglMapltemDao are based on the iBatis
Object/Relational mapping framework. The property nane element refers to the name of the
JavaBean property, and the r ef element refers to the name of another bean definition. This linkage
between id and ref elements expresses the dependency between collaborating objects. For details of
configuring an object's dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individua XML
configuration file represents alogical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section.
Alternatively, use one or more occurrences of the <i nport/ > element to load bean definitions from
another file or files. For example:

<beans>
<inport resource="services.xm"/>

<i nport resource="resources/ messageSource. xm "/ >
<i nport resource="/resources/themeSource. xm "/ >

<bean id="beanl" class="..."/>
<bean id="bean2" class="..."/>
</ beans>

In the preceding example, external bean definitions are loaded from three files, servi ces. xni ,
messageSour ce. xm , and t hemeSour ce. xni . All location paths are relative to the definition file
doing the importing, so ser vi ces. xm must be in the same directory or classpath location as the file
doing the importing, while messageSource. xm and themeSource.xm must be in a
r esour ces location below the location of the importing file. As you can see, aleading slash isignored,
but given that these paths are relative, it is better form not to use the slash at all. The contents of the files
being imported, including the top level <beans/ > element, must be valid XML bean definitions
according to the Spring Schema or DTD.

Note

31 Reference Documentation 37

http://ibatis.apache.org/

Spring Framework

It is possible, but not recommended, to reference files in parent directories using a relative
"..[" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example,
"classpath:../servicesxml™), where the runtime resolution process chooses the "nearest”
classpath root and then looks into its parent directory. Classpath configuration changes may
lead to the choice of a different, incorrect directory.

You can aways use fully qualified resource locations instead of relative paths: for example,
"file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you
are coupling your application's configuration to specific absolute locations. It is generaly
preferable to keep an indirection for such absolute locations, for example, through "${...}"
placehol ders that are resolved against VM system properties at runtime.

Using the container

The Appl i cati onCont ext isthe interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T getBean(String nane,
O ass<T> requi redType) you can retrieve instances of your beans.

The Appl i cati onCont ext enablesyou to read bean definitions and access them as follows:

/'l create and configure beans
Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onCont ext (new String[] {"services.xm", "daos.xm"});

/'l retrieve configured instance
Pet St or eSer vi cel npl service = context.getBean("petStore", PetStoreServicelnpl.class);

/'l use configured instance
Li st userlList service. getUsernanelList();

You use get Bean() to retrieve instances of your beans. The Appl i cat i onCont ext interface has a
few other methods for retrieving beans, but ideally your application code should never use them. Indeed,
your application code should have no calls to the get Bean() method at all, and thus no dependency on
Spring APIs at all. For example, Spring's integration with web frameworks provides for dependency
injection for various web framework classes such as controllers and JSF-managed beans.

4.3 Bean overview

A Spring 1oC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni ti on objects, which
contain (among other information) the following metadata:

31 Reference Documentation 38

Spring Framework

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work; these references are also called
collaborators or dependencies.

» Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pooal, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 4.1. The bean definition

Property Explained in...

class
the section called “Instantiating beans’

name
the section called “Naming beans’

scope
Section 4.5, “Bean scopes’

constructor arguments
the section called “Dependency injection”

properties
the section called “Dependency injection”

autowiring mode
the section called “ Autowiring collaborators’

lazy-initialization mode
the section called “Lazy-initialized beans’

initialization method
the section called “Initialization callbacks’

destruction method
the section called “ Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's BeanFactory
via the method getBeanFactory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFact ory. Def aul t Li st abl eBeanFact ory supports this registration
through the methods registerSingleton(..) and registerBeanDefinition(..).
However, typical applications work solely with beans defined through metadata bean definitions.

31 Reference Documentation 39

Spring Framework

Naming beans

Every bean has one or more identifiers. These identifiers must be unigue within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can be
considered aliases.

In XML-based configuration metadata, you use the i d and/or nane attributes to specify the bean
identifier(s). The i d attribute alows you to specify exactly one id. Conventionally these names are
alphanumeric (‘myBean’, 'fooService, etc), but may special characters as well. If you want to introduce
other aliases to the bean, you can aso specify them in the nane attribute, separated by a comma (,),
semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, the i d attribute was
typed as an xsd: | D, which constrained possible characters. As of 3.1, it is now xsd: stri ng. Note
that bean id uniguenessis still enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the
container generates a unique name for that bean. However, if you want to refer to that bean by name,
through the use of the ref element or Service Locator style lookup, you must provide a name.
Motivations for not supplying a name are related to using inner beans and autowiring collaborators.

Bean naming conventions

The convention is to use the standard Java convention for instance field names when naming beans.
That is, bean names start with a lowercase letter, and are camel-cased from then on. Examples of
such names would be (without quotes) 'account Manager', 'account Service',
'userDao',' | ogi nControll er',andsoforth.

Naming beans consistently makes your configuration easier to read and understand, and if you are
using Spring AOP it helps alot when applying advice to a set of beans related by name.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination of up
to one name specified by the i d attribute, and any number of other names in the namne attribute. These
names can be equivalent aliases to the same bean, and are useful for some situations, such as allowing
each component in an application to refer to a common dependency by using a bean name that is specific
to that component itsalf.

Specifying al aliases where the bean is actually defined is not always adequate, however. It is sometimes
desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the case in large
systems where configuration is split amongst each subsystem, each subsystem having its own set of
object definitions. In XML-based configuration metadata, you can use the <al i as/ > element to
accomplish this.

<al i as nanme="fronNane" alias="toNane"/>

31 Reference Documentation 40

Spring Framework

In this case, a bean in the same container which is named f r onNane, may also after the use of this alias
definition, be referred to ast oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
'subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource via the
name 'subsystemB-dataSource'. When composing the main application that uses both these subsystems
the main application refers to the DataSource via the name 'myA pp-dataSource'. To have all three names
refer to the same object you add to the MyA pp configuration metadata the following aliases definitions:

<al i as nane="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSour ce"/>
<al i as nane="subsyst emA- dat aSour ce" al i as="nyApp- dat aSource" />

Now each component and the main application can refer to the dataSource through a name that is unique
and guaranteed not to clash with any other definition (effectively creating a namespace), yet they refer to
the same bean.

Instantiating beans

A bean definition essentialy is arecipe for creating one or more objects. The container looks at the recipe
for anamed bean when asked, and uses the configuration metadata encapsulated by that bean definition to
create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. Thiscl ass attribute, which internaly isa
Ol ass property on a BeanDefi niti on instance, is usually mandatory. (For exceptions, see the
section caled “Instantiation using an instance factory method” and Section 4.7, “Bean definition
inheritance”.) You usethe Cl ass property in one of two ways:

» Typicaly, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the new
operator.

» To specify the actua class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢, factory method on a class to
create the bean. The object type returned from the invocation of the st at i ¢ factory method may be
the same class or another class entirely.

Inner class names

If you want to configure a bean definition for a st at i ¢ nested class, you have to use the binary
name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class has
astati c inner class called Bar , the value of the' cl ass' attribute on a bean definition would
be...

3.1 Reference Documentation 41

Spring Framework

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer class
name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being developed does not need to implement any specific interfaces or to be
coded in a specific fashion. Simply specifying the bean class should suffice. However, depending on what
type of 10C you use for that specific bean, you may need a default (empty) constructor.

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can also
have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as
well.

With XM L-based configuration metadata you can specify your bean class as follows:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean nane="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo" / >

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- net hod to specify
the name of the factory method itself. Y ou should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through a
constructor. One use for such abean definitionisto call st at i ¢ factoriesin legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, thecr eat el nst ance() method must be a static method.

<bean id="client Service"
cl ass="exanpl es. d i ent Servi ce"
factory-nmet hod="creat el nst ance"/ >

public class ClientService {
private static CientService clientService = new dientService();
private CientService() {}

3.1 Reference Documentation 42

Spring Framework

public static OientService createlnstance() {
return clientService
}

}

For details about the mechanism for supplying (optional) arguments to the factory method and setting
object instance properties after the object is returned from the factory, see Dependencies and

configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leavethecl ass attribute empty, and inthef act or y- bean attribute, specify the name of
abean in the current (or parent/ancestor) container that contains the instance method that is to be invoked

to create the object. Set the name of the factory method itself with thef act or y- net hod attribute.

<l-- the factory bean, which contains a nethod called createlnstance()
<bean id="serviceLocator" cl ass="exanpl es. Def aul t Servi ceLocat or" >

<l-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean id="client Service"
factory-bean="servi ceLocator"
factory-nethod="creat eC i ent Servi cel nstance"/>

public class DefaultServiceLocator {
private static CientService clientService = new CientServicel npl();
private DefaultServiceLocator() {}

public CientService createCientServicel nstance() ({
return clientService
}
}

One factory class can also hold more than one factory method as shown here:

<bean id="serviceLocator" cl ass="exanpl es. Def aul t Servi ceLocat or" >
<!-- inject any dependencies required by this |ocator bean -->
</ bean>
<bean id="client Service"
factory-bean="servi ceLocator"
factory-nethod="creat eC i ent Servi cel nstance"/>

<bean i d="account Servi ce"

factory-bean="servi ceLocat or"
factory-nmet hod="cr eat eAccount Servi cel nst ance"/ >

public class DefaultServiceLocator {

private static CientService clientService = new CientServicel npl();
private static Account Service account Servi ce = new Account Servi cel npl () ;

private DefaultServiceLocator() {}

public CientService createCientServicelnstance() {

31 Reference Documentation

43

Spring Framework

return clientService;

}

publ i ¢ Account Servi ce createAccount Servi cel nstance() {
return account Servi ce;

}
}

This approach shows that the factory bean itself can be managed and configured through dependency
injection (DI). See Dependencies and configuration in detail.

Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring
container that will create objects through an instance or static factory method. By contrast,
Fact or yBean (notice the capitalization) refersto a Spring-specific Fact or yBean .

4.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand aloneto afully realized application where objects collaborate to achieve agoal.

Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence
the name Inversion of Control (1oC), of the bean itself controlling the instantiation or location of its
dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location or class
of the dependencies. As such, your classes become easier to test, in particular when the dependencies are
on interfaces or abstract base classes, which alow for stub or mock implementations to be used in unit
tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of

31 Reference Documentation 44

Spring Framework

arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to a
static factory method similarly. The following example shows a class that can only be
dependency-injected with constructor injection. Notice that there is nothing special about this class, itisa
POJO that has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMvielLister {

/1 the Sinpl eMvielLister has a dependency on a Myvi eFi nder
private Movi eFi nder novi eFi nder

/'l a constructor so that the Spring container can 'inject' a MpvieFinder

publ i c Si npl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder
}

/'l business |logic that actually 'uses' the injected MvieFinder is omtted..

Constructor argument resolution

Constructor argument resolution matching occurs using the argument's type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments are supplied to the appropriate
constructor when the bean is being instantiated. Consider the following class:

package Xx.y;

public class Foo {

public Foo(Bar bar, Baz baz) ({
...
}

}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus the
following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly inthe<const r uct or - ar g/ > element.

<beans>
<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <val ue>t r ue<val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es

public class Exanpl eBean {

31 Reference Documentation 45

Spring Framework

/'l No. of years to the calculate the Utinmte Answer
private int years;

/1 The Answer to Life, the Universe, and Everything
private String ultimteAnswer;

publ i ¢ Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimteAnswer = ultinateAnswer;

Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using thet ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Constructor argument index

Usethei ndex attribute to specify explicitly the index of constructor arguments. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0" val ue="7500000"/ >
<constructor-arg index="1" val ue="42"/>

</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is O based.

Constructor argument name

As of Spring 3.0 you can also use the constructor parameter name for value disambiguation:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg name="years" val ue="7500000"/>
<constructor-arg nanme="ul ti mat eanswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can't compile your
code with debug flag (or don't want to) you can use @Const r uct or Properti es JDK annotation to
explicitly name your constructor arguments. The sample class would then have to look as follows:

package exanpl es
public class Exanpl eBean {
// Fields omitted

@onstructorProperties({"years", "ultinateAnswer"})
publ i ¢ Exanpl eBean(int years, String ultinmteAnswer) {

31 Reference Documentation 46

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework

this.years = years;
this.ultimteAnswer = ulti mat eAnswer;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvieLister {

/1 the SinpleMvielLister has a dependency on the MovieFi nder
private MovieFi nder novi eFi nder;

/'l a setter nethod so that the Spring container can 'inject' a MyvieFi nder
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

}

/] business |logic that actually 'uses' the injected MyvieFinder is omtted...

The Appl i cati onCont ext supports constructor- and setter-based DI for the beans it manages. It aso
supports setter-based DI after some dependencies are already injected through the constructor approach.
You configure the dependencies in the form of a BeanDefi nition, which you use with
Propert yEdi t or instances to convert properties from one format to another. However, most Spring
users do not work with these classes directly (programmatically), but rather with an XML definition file
that is then converted internally into instances of these classes, and used to load an entire Spring 10C
container instance.

Constructor-based or setter-based DI?

Since you can mix both, Constructor- and Setter-based DI, it is a good rule of thumb to use
constructor arguments for mandatory dependencies and setters for optional dependencies. Note that
the use of a @Required annotation on a setter can be used to make setters required dependencies.

The Spring team generally advocates setter injection, because large numbers of constructor
arguments can get unwieldy, especially when properties are optional. Setter methods also make
objects of that class amenable to reconfiguration or re-injection later. Management through JMX
MBeans is a compelling use case.

Some purists favor constructor-based injection. Supplying all object dependencies means that the
object is always returned to client (calling) code in a totally initialized state. The disadvantage is
that the object becomes less amenable to reconfiguration and re-injection.

3.1 Reference Documentation 47

Spring Framework

Use the DI that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes to which you do not have the source, the choice is made for you. A legacy class
may not expose any setter methods, and so constructor injection is the only available DI.

Dependency resolution process

The container performs bean dependency resolution as follows:

1

The Appl i cat i onCont ext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code or annotations.

For each bean, its dependencies are expressed in the form of properties, constructor arguments, or
arguments to the static-factory method if you are using that instead of a normal constructor. These
dependencies are provided to the bean, when the bean is actually created.

Each property or constructor argument is an actual definition of the value to set, or a reference to
another bean in the container.

Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied in
string format to all built-in types, such asi nt, | ong, St ri ng, bool ean, etc.

The Spring container validates the configuration of each bean as the container is created, including the
validation of whether bean reference properties refer to valid beans. However, the bean properties
themselves are not set until the bean is actually created. Beans that are singleton-scoped and set to be
pre-instantiated (the default) are created when the container is created. Scopes are defined in Section 4.5,
“Bean scopes’ Otherwise, the bean is created only when it is requested. Creation of a bean potentially
causes a graph of beans to be created, as the bean's dependencies and its dependencies dependencies (and
S0 on) are created and assigned.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
reguires an instance of class A through constructor injection. If you configure beans for classes A
and B to be injected into each other, the Spring 10C container detects this circular reference at
runtime, and throwsaBeanCurr ent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters rather
than constructors. Alternatively, avoid constructor injection and use setter injection only. In other
words, although it is not recommended, you can configure circular dependencies with setter

31 Reference Documentation 48

Spring Framework

injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A and
bean B forces one of the beans to be injected into the other prior to being fully initialized itself (a
classic chicken/egg scenario).

Y ou can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you reguest an object if there
is aproblem creating that object or one of its dependencies. For example, the bean throws an exception as
aresult of amissing or invalid property. This potentially delayed visibility of some configuration issuesis
why Appl i cat i onCont ext implementations by default pre-instantiate singleton beans. At the cost of
some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cat i onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring 10C container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such as a
configured init method or the I nitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- setter injection using the nested <ref/> el enent -->
<property name="beanOne"><ref bean="anot her Exanpl eBean"/></ property>

<l-- setter injection using the neater 'ref' attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public voi d set BeanOne(Anot her Bean beanOne) ({
thi s. beanOne = beanOne;

31 Reference Documentation 49

Spring Framework

}

public voi d set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =i;

}

}

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI :

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- constructor injection using the nested <ref/> el enent -->
<constructor-arg>

<ref bean="anot her Exanpl eBean"/ >
</ constructor-arg>

<l-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" value="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean
t hi s. beanTwo yet Anot her Bean
this.i =1i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor of
the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to cal a
st at i ¢ factory method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory-met hod="creat el nst ance" >

<constructor-arg ref="anot her Exanpl eBean"/>

<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

31 Reference Documentation 50

Spring Framework

/'l a private constructor
private Exanpl eBean(...) {

_—

/] a static factory nethod; the argunments to this nmethod can be
/'l considered the dependenci es of the bean that is returned,
/'l regardl ess of how those argunments are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/| some other operations...
return eb;

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the st at i ¢ factory method,
athough in this example it is. An instance (non-static) factory method would be used in an essentialy
identical fashion (aside from the use of thef act or y- bean attribute instead of the cl ass attribute), so
details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring's XML-based
configuration metadata supports sub-element types within its <property/> and
<const ruct or - ar g/ > elementsfor this purpose.

Straight values (primitives, Stri ngs, and so on)

The val ue attribute of the <pr operty/ > element specifies a property or constructor argument as a
human-readable string representation. As mentioned previoudy, JavaBeans Pr opert yEdi t ors are
used to convert these string values from a St r i ng to the actual type of the property or argument.

<bean id="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">

<l-- results in a setDriverd assNane(String) call -->

<property name="driverd assNane" val ue="com nysql .jdbc.Driver"/>
<property name="url" val ue="j dbc: mysql://I ocal host: 3306/ mydb"/>
<property name="usernane" val ue="root"/>

<property name="password" val ue="nmasterkaoli"/>

</ bean>

The following example uses the p-namespace for even more succinct XML configuration.

<beans xm ns="http://wwm. spri ngfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

31 Reference Documentation 51

Spring Framework

<bean i d="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce"
destroy- nmet hod="cl ose"
p: dri ver G assName="com nysql . j dbc. Dri ver"
p: url="jdbc: nysqgl://1ocal host: 3306/ mydb"
p: user nane="r oot "
p: passwor d="nmast er kaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the SpringSource Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can aso configureaj ava. util . Properti es instanceas:

<bean i d="nmappi ngs"
cl ass="org. spri ngframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer" >

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc. driver.classNane=com nysql . j dbc. Dri ver
jdbc. url =jdbc: mysql ://1 ocal host: 3306/ mydb
</ val ue>
</ property>
</ bean>

The Spring container converts the text inside the <value/> é€ement into a
java. util . Properti es instance by using the JavaBeans Pr oper t yEdi t or mechanism. Thisisa
nice shortcut, and is one of afew places where the Spring team do favor the use of the nested <val ue/ >
element over theval ue attribute style.

The i dr ef element

Thei dr ef element is simply an error-proof way to passtheid (string value - not areference) of another
bean in the container to a<const r uct or - ar g/ > or <pr opert y/ > element.

<bean id="theTarget Bean" class="..."/>

<bean id="theC ientBean" class="...">
<property name="t ar get Nane">
<i dref bean="theTarget Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />
<bean id="client" class="...">

<property name="t arget Name" val ue="t heTar get Bean" />
</ bean>

The first form is preferable to the second, because using thei dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation is

31 Reference Documentation 52

http://www.jetbrains.com/idea/
http://www.springsource.com/products/sts

Spring Framework

performed on the value that is passed to thet ar get Nane property of thecl i ent bean. Typos are only
discovered (with most likely fatal results) when thecl i ent bean is actualy instantiated. If thecl i ent
bean is a prototype bean, this typo and the resulting exception may only be discovered long after the
container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean id, you can
use the | ocal attribute, which alows the XML parser itself to validate the bean id earlier, at XML
document parse time.

<property name="t ar get Nane">

<l-- a bean with id 'theTarget Bean' nust exist; otherw se an exception will be thrown -->
<idref |ocal ="theTarget Bean"/>

</ property>

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings value is
in the configuration of AOP_interceptors in a Pr oxyFact or yBean bean definition. Using <idref/>
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

Ther ef element is the final element inside a <const r uct or - ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another bean (a
collaborator) managed by the container. The referenced bean is a dependency of the bean whose property
will be set, and it is initialized on demand as needed before the property is set. (If the collaborator is a
singleton bean, it may be initialized already by the container.) All references are ultimately a reference to
another object. Scoping and validation depend on whether you specify the id/name of the other object
through thebean, | ocal , or par ent attributes.

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
alows creation of areference to any bean in the same container or parent container, regardless of whether
it isin the same XML file. The value of the bean attribute may be the same as the i d attribute of the
target bean, or as one of the valuesin the nane attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean through the | ocal attribute leverages the ability of the XML parser to
validate XML id references within the same file. The value of the | ocal attribute must be the same as
thei d attribute of the target bean. The XML parser issues an error if no matching element is found in the
same file. As such, using the local variant is the best choice (in order to know about errors as early as
possible) if the target bean isin the same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d
attribute of the target bean, or one of the values in the name attribute of the target bean, and the target
bean must be in a parent container of the current one. Y ou use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a

31 Reference Documentation 53

Spring Framework

proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean i d="account Servi ce" cl ass="com fo0o0. Si npl eAccount Servi ce">
<I-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean id="account Service" <-- bean nane is the same as the parent bean -->
cl ass="org. spri ngframewor k. aop. f r anewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
</ property>
<I-- insert other configuration and dependencies as required here -->
</ bean>
Inner beans

A <bean/ > element inside the <property/ > or <constructor-arg/ > elements defines a
so-called inner bean.

<bean id="outer" class="...">
<I-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">

<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property name="nanme" val ue="Fi ona Apple"/>
<property nanme="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also
ignores the scope flag. Inner beans are always anonymous and they are always scoped as prototypes. It
is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Collections

Inthe<li st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
theJavaCol | ecti on typesLi st, Set, Map, and Pr operti es, respectively.

<bean i d="noreConpl exChj ect" cl ass="exanpl e. Conpl exChj ect " >

<l-- results in a set Adm nEmail s(java.util.Properties) call -->
<property name="adm nEmail s">
<pr ops>

<prop key="admi ni strator">adm ni strat or @xanpl e. or g</ pr op>
<prop key="support" >support @xanpl e. org</ prop>
<prop key="devel opnment " >devel oprment @xanpl e. or g</ pr op>

</ props>
</ property>
<I-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<value>a list elenent followed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a set SoneMap(java.util.Map) call -->
<property nanme="someMap">

<map>

31 Reference Documentation 54

Spring Framework

<entry key="an entry" val ue="just sone string"/>
<entry key ="a ref" val ue-ref="nyDat aSource"/>

</ map>
</ property>
<l-- results in a setSoneSet(java.util.Set) call -->
<property nanme="someSet">

<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</ set >
</ property>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

Collection merging

As of Spring 2.0, the container supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <props/ > element, and have child-style <l i st/ >,
<map/ >, <set/ > or <pr ops/ > elements inherit and override values from the parent collection. That
is, the child collection's values are the result of merging the elements of the parent and child collections,
with the child's collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent and
child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
<bean id="parent" abstract="true" cl ass="exanpl e. Conpl exCbj ect">
<property nanme="adm nEnail s">
<props>
<prop key="admi ni strator">adm ni strat or @xanpl e. conx/ pr op>
<prop key="support" >support @xanpl e. conx/ prop>
</ props>
</ property>
</ bean>
<bean id="child" parent="parent">
<property nanme="adm nEmail s">
<l-- the nerge is specified on the *child* collection definition -->
<props nerge="true">
<prop key="sal es">sal es@xanpl e. conx/ prop>
<prop key="support">support @xanpl e. co. uk</ pr op>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adni nEnwai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance hasan adm nEmai | s Properti es collection that contains the result of the merging
of the child'sadm nEmai | s collection with the parent'sadm nEmai | s collection.

admi ni strator=adm ni strator @xanpl e. com
sal es=sal es@xanpl e. com

31 Reference Documentation 55

Spring Framework

support =suppor t @xanpl e. co. uk

The child Pr oper ti es collection's value set inherits all property elements from the parent <pr ops/ >,
and the child's value for the suppor t value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent's values precede all of the child
list's values. In the case of the Map, Set , and Pr operti es coallection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Pr oper ti es implementation types that the container uses internally.

Limitations of collection merging

Y ou cannot merge different collection types (such asa Map and aLi st), and if you do attempt to do so
an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,
child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging. The merging feature is available only in Spring 2.0 and later.

Strongly-typed collection (Java 5+ only)

In Java 5 and later, you can use strongly typed collections (using generic types). That is, it is possible to
declare a Col | ect i on type such that it can only contain St ri ng elements (for example). If you are
using Spring to dependency-inject a strongly-typed Col | ect i on into abean, you can take advantage of
Spring's type-conversion support such that the elements of your strongly-typed Col | ect i on instances
are converted to the appropriate type prior to being added to the Col | ect i on.

public class Foo {
private Map<String, Float> accounts

public void setAccounts(Mp<String, Float> accounts) {
this.accounts = accounts
}
}

<beans>
<bean id="fo0" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f oo bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<St ri ng, Fl oat > isavailable by reflection. Thus Spring's
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the

31 Reference Documentation 56

Spring Framework

string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like asempty St r i ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St ri ng value (")

<bean cl ass="Exanpl eBean" >
<property name="email" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code: exanpl eBean. set Emai | ("") . The
<nul | / > element handlesnul | values. For example:

<bean cl ass="Exanpl eBean" >
<property name="emai | "><nul | / ></ pr operty>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Enai | (nul).

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element's attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring 2.0 and later supports extensible configuration formats with namespaces, which are based on an
XML Schemadefinition. The beans configuration format discussed in this chapter is defined in an XML
Schema document. However, the p-namespace is not defined in an XSD file and exists only in the core of

Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean nane="cl assi c" cl ass="com exanpl e. Exanpl eBean" >
<property name="email" val ue="foo@ar.conm'/>
</ bean>

<bean nane="p- nanespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | =" f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

31 Reference Documentation 57

Spring Framework

<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmewor k. org/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean nane="j ohn-cl assi ¢c" cl ass="com exanpl e. Person" >
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean nane="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nanme="jane" cl ass="com exanpl e. Person">
<property name="nanme" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can seeg, this example includes not only a property value using the p-namespace, but also uses a
special format to declare property references. Whereas the first bean definition uses <pr operty
nane="spouse" ref="jane"/ > to create areference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-ref ="j ane" as an atribute to do the exact same thing. In this case
spouse isthe property name, whereas the - r ef part indicates that thisis not a straight value but rather
areference to another bean.

Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard
XML format does not. We recommend that you choose your approach carefully and
communicate this to your team members, to avoid producing XML documents that use all
three approaches at the same time.

XML shortcut with the c-namespace

Similar to the the section caled “XML shortcut with the p-namespace’, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

Let's review the examples from the section called “ Constructor-based dependency injection” with the ¢
namespace:

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: c="http://ww. springframework. org/ schema/ c"
Xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean i d="baz" class="x.y.Baz"/>

31 Reference Documentation 58

Spring Framework

<-- 'traditional' declaration -->

<bean id="fo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="foo@ar.con'/>

</ bean>

<-- 'c-nanespace' declaration -->
<bean id="fo00" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:enmmil ="foo@ar.conl>

</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though it
isnot defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<-- 'c-nanmespace' index declaration -->
<bean id="foo0" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz">

Note
Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with anumber (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

Compound property names

Y ou can use compound or hested property hames when you set bean properties, aslong as al components
of the path except the final property name are not nul | . Consider the following bean definition.

<bean id="foo" class="foo.Bar">
<property nane="fred. bob. sammy" val ue="123" />
</ bean>

The f oo bean has af r ed property, which has a bob property, which has a samy property, and that
final sammy property is being set to the value 123. In order for this to work, the f r ed property of f oo,
and the bob property of fred must not be null after the bean is constructed, or a
Nul | Poi nt er Except i on isthrown.

Using depends- on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <ref/> element in XML-based configuration metadata.
However, sometimes dependencies between beans are less direct; for example, a static initializer in a
class needs to be triggered, such as database driver registration. The depends-on attribute can

31 Reference Documentation 59

Spring Framework

explicitly force one or more beans to be initialized before the bean using this element is initialized. The
following example usesthe depends- on attribute to express a dependency on a single bean:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nanager"/>

<bean i d="nmanager" cl ass="Manager Bean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the
depends- on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="nmanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean id="manager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.jdbc.JdbcAccount Dao" />

Note

The depends- on attribute in the bean definition can specify both an initialization time
dependency and, in the case of singleton beans only, a corresponding destroy time
dependency. Dependent beans that define adepends- on relationship with a given bean are
destroyed first, prior to the given bean itself being destroyed. Thus depends- on can aso
control shutdown order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generaly, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even days
later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the 10C container to create a
bean instance when it isfirst requested, rather than at startup.

In XML, thisbehavior is controlled by thel azy-i ni t attribute on the <bean/ > element; for example:

<bean id="lazy" class="com foo. Expensi veToCr eat eBean" | azy-init="true"/>

<bean name="not. |l azy" class="com f 0o. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cat i onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext isstarting up, whereasthenot . | azy
bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized, the
Appl i cati onCont ext creates the lazy-initidized bean at startup, because it must satisfy the
singleton's dependencies. The lazy-initialized bean is injected into a singleton bean el sewhere that is not
lazy-initialized.

31 Reference Documentation 60

Spring Framework

You can aso control lazy-initialization at the container level by using the defaul t-1azy-init
attribute on the <beans/ > element; for example:

<beans defaul t-lazy-init="true">
<l-- no beans will be pre-instantiated... -->
</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. Y ou can allow Spring to
resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cat i onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this

regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especialy useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata’, you specify autowire mode for a bean definition with

the aut owi r e attribute of the <bean/ > element. The autowiring functionality has five modes. You

specify autowiring per bean and thus can choose which ones to autowire.

Table 4.2. Autowiring modes

Mode Explanation

no
(Default) No autowiring. Bean references must be defined via a ref eement.

Changing the default setting is not recommended for larger deployments, because
specifying collaborators explicitly gives greater control and clarity. To some extent, it
documents the structure of a system.

byName
Autowiring by property name. Spring looks for a bean with the same name as the
property that needs to be autowired. For example, if a bean definition is set to
autowire by name, and it contains a master property (that is, it has a setMaster(..)
method), Spring looks for a bean definition named mast er, and uses it to set the
property.

byType

Allows a property to be autowired if exactly one bean of the property type existsin the
container. If more than one exists, a fatal exception is thrown, which indicates that

2See the section called Dependency injection”

31 Reference Documentation 61

Spring Framework

Mode Explanation

you may not use byType autowiring for that bean. If there are no matching beans,
nothing happens; the property is not set.

constructor
Analogous to byType, but applies to constructor arguments. If there is not exactly one

bean of the constructor argument type in the container, afatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases all
autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of al bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general, it
might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and Cl asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring isless exact than explicit wiring. Although, as noted in the above table, Spring is careful to
avoid guessing in case of ambiguity that might have unexpected results, the relationships between your
Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

» Multiple bean definitions within the container may match the type specified by the setter method or
constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a
problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:
» Abandon autowiring in favor of explicit wiring.

» Avoid autowiring for a bean definition by setting itsaut ow r e- candi dat e attributesto f al se as

31 Reference Documentation 62

Spring Framework

described in the next section.

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementtot r ue.

o If you are using Java 5 or later, implement the more fine-grained control available with
annotation-based configuration, as described in Section 4.9, “Annotation-based container
configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring's XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that
specific bean definition unavailable to the autowiring infrastructure (including annotation style
configurations such as @\ut owi r ed).

You can also limit autowire candidates based on pattern-matching against bean names. The top-level
<beans/ > eement accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring. It
does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean itself
is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs to
collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the other.
A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with anew instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cat i onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

/1 a class that uses a stateful Conmand-style class to perform sone processing
package fiona. appl e;

/'l Spring-APlI inports
i mport org. springframework. beans. BeansExcepti on;

31 Reference Documentation 63

Spring Framework

i mport org.springfranmework. cont ext. Appl i cati onCont ext ;
i nport org.springfranework. cont ext. Appl i cati onCont ext Awar e;

public class ConmandManager i npl enents ApplicationContext Anare {
private ApplicationContext applicationContext;

public Object process(Map comrandState) {
/1 grab a new instance of the appropriate Comrand
Command conmand = creat eComrand() ;
/'l set the state on the (hopefully brand new) Conmand i nstance
conmand. set St at e(comrandSt at e) ;
return command. execute();

}

protected Conmand creat eConmand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("comand", Conmand. cl ass);

}

public void setApplicationContext(ApplicationContext applicationContext)
t hrows BeansException {
thi s. applicationContext = applicationContext;
}
}

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring 10C container, alows this use
case to be handled in a clean fashion.

Y ou can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

L ookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typicaly involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a
subclass that overrides the method.

Note

For this dynamic subclassing to work, you must have the CGLIB jar(s) in your classpath. The
class that the Spring container will subclass cannot be fi nal , and the method to be
overridden cannot be fi nal either. Also, testing a class that has an abst ract method
requires you to subclass the class yourself and to supply a stub implementation of the
abst r act method. Finally, objects that have been the target of method injection cannot be
serialized.

Looking at the CommandManager class in the previous code snippet, you see that the Spring container

31 Reference Documentation 64

http://blog.springsource.com/2004/08/06/method-injection/

Spring Framework

will dynamically override the implementation of the creat eConmand() method. Your
CommandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e
/! no nmore Spring inmports
public abstract class CommandManager {

public Object process(Cbject conmandState) {
/'l grab a new instance of the appropriate Command interface
Command conmand = creat eCommrand() ;
/'l set the state on the (hopefully brand new) Conmand instance
comand. set St at e(comrandSt at e) ;
return comrand. execute();

}

/1 okay... but where is the inplenmentation of this nmethod?
protected abstract Command creat eComrand();

}

In the client class containing the method to be injected (the CommandManager in this case), the method
to be injected requires a signature of the following form:

<public| protected> [abstract] <return-type> theMet hodNane(no-arguments);

If the method is abst r act , the dynamically-generated subclass implements the method. Otherwise, the
dynamically-generated subclass overrides the concrete method defined in the original class. For example:

<l-- a stateful bean deployed as a prototype (non-singleton) -->

<bean id="comrand" cl ass="fi ona. appl e. AsyncComrand" scope="pr ot otype">
<!-- inject dependencies here as required -->

</ bean>

<l-- commandProcessor uses st ateful CommandHel per -->

<bean i d="conmmandManager" cl ass="fi ona. appl e. CoomandManager " >
<l ookup- net hod name="creat eConmand" bean="comrand"/ >
</ bean>

The bean identified as commandManager calls its own method cr eat eConmrand() whenever it needs
anew instance of the command bean. Y ou must be careful to deploy the conmand bean as a prototype, if
that is actually what is needed. If it is deployed as a singleton, the same instance of the command bean is
returned each time.

Tip

The interested reader may also find the Servi celLocat or Fact oryBean (in the
or g. spri ngframewor k. beans. factory. confi g package) to be of use. The
approach used in ServicelLocatorFactoryBean is similar to that of another utility class,
bj ect Fact oryCreati ngFact or yBean, but it allows you to specify your own
lookup interface as opposed to a Spring-specific lookup interface. Consult the JavaDocs for
these classes as well as this blog entry for additional information Servicel ocatorFactoryBean.

31 Reference Documentation 65

http://blog.arendsen.net/index.php/2006/10/05/on-the-servicelocatorfactorybean-dlas-and-the-sustainability-of-code-and-design/

Spring Framework

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of this
section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- nmet hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a
method computeV alue, which we want to override:

public class MyVal ueCal cul ator {

public String conputeVal ue(String input) {
/'l some real code...

}

/'l some other nethods...

}

A class implementing the
or g. spri ngframewor k. beans. fact ory. support. Met hodRepl acer interface provides the
new method definition.

/** meant to be used to override the existing conputeVal ue(String)
i mpl enentation in MyVal ueCal cul at or
*/
public cl ass Repl acenent Conput eVal ue i npl enents Met hodRepl acer {
public Object reinplenment(Object o, Method m Object[] args) throws Throwabl e {

/1 get the input value, work with it, and return a conputed result
String input = (String) args[0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="nyVal ueCal cul ator" class="x.y.z. MVal ueCal cul at or">

<l-- arbitrary nethod repl acenent -->

<repl aced- net hod nanme="conput eVal ue" repl acer="repl acenent Conput eVal ue" >
<arg-type>String</arg-type>

</ repl aced- net hod>

</ bean>

<bean id="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/>

You can use one or more contained <ar g-t ype/ > elements within the <r epl aced- et hod/ >
element to indicate the method signature of the method being overridden. The signature for the arguments
is necessary only if the method is overloaded and multiple variants exist within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For
example, the following al matchj ava. | ang. Stri ng:

31 Reference Documentation 66

Spring Framework

java.lang. String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by alowing you to type only the shortest string that will match an
argument type.

4.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined by
that bean definition. The idea that a bean definition is a recipe is important, because it means that, as with
aclass, you can create many object instances from a single recipe.

Y ou can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is powerful and flexible in that you can choose the scope of the
objects you create through configuration instead of having to bake in the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports five scopes, three of which are available only if you use a web-aware
Appl i cati onCont ext .

The following scopes are supported out of the box. Y ou can also create a custom scope.

Table 4.3. Bean scopes

Scope Description

singleton (Default) Scopes a single bean definition to a
single object instance per Spring 10C container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; that is, each HTTP request
has its own instance of a bean created off the back
of a single bean definition. Only valid in the
context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of
an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

31 Reference Documentation 67

Spring Framework

Scope Description

global session Scopes a single bean definition to the lifecycle of a
global HTTP Sessi on. Typicaly only valid
when used in a portlet context. Only valid in the
context of a web-aware Spring
Appl i cati onCont ext .

Thread-scoped beans

As of Spring 3.0, a thread scope is available, but is not registered by default. For more
information, see the documentation for SimpleThreadScope. For instructions on how to
register this or any other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and al requests for beans with an id or ids
matching that bean definition result in that one specific bean instance being returned by the Spring
container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring 10C
container creates exactly one instance of the object defined by that bean definition. This single instance is
stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
return the cached object.

Only one instance is ever created...

<bean id="accountDao" =lass=".__" />

... and this same shared instance is injected into each collaborating object

3.1 Reference Documentation 63

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework

Spring's concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only one
instance of a particular class is created per Cl assLoader . The scope of the Spring singleton is best
described as per container and per bean. This meansthat if you define one bean for a particular classin a
single Spring container, then the Spring container creates one and only one instance of the class defined
by that bean definition. The singleton scope is the default scope in Soring. To define a bean as a singleton
in XML, you would write, for example:

<bean id="account Servi ce" class="com foo. Def aul t Account Servi ce"/>

<l-- the following is equivalent, though redundant (singleton scope is the default) -->
<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" scope="si ngl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time arequest for that specific bean is made. That is, the bean is injected into another bean or you
request it through aget Bean() method call on the container. As a rule, use the prototype scope for al
stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for thisauthor to reuse the core of the singleton diagram.

A brand new bean instance is created...
‘ @
scope="prototype" />
< 1 3 '

... each and every time the prototype is referenced by collaborating beans

The following example defines a bean as a prototype in XML.:

<l-- using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" cl ass="com f o0o. Def aul t Account Servi ce" scope="prototype"/>

3.1 Reference Documentation 69

Spring Framework

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held by
prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans that
need to be cleaned up.

In some respects, the Spring container's role in regard to a prototype-scoped bean is a replacement for the
Javanew operator. All lifecycle management past that point must be handled by the client. (For details on
the lifecycle of abean in the Spring container, see the section called “Lifecycle callbacks’.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that dependencies
are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean into a
singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into the
singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-scoped
bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-scoped
bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your singleton
bean, because that injection occurs only once, when the Spring container is instantiating the singleton
bean and resolving and injecting its dependencies. If you need a new instance of a prototype bean at
runtime more than once, see the section called “Method injection”

Request, session, and global session scopes

Ther equest, sessi on, and gl obal sessi on scopes are only available if you use a web-aware
Spring Appl i cati onCont ext implementation (such as Xm WebAppl i cati onCont ext). If you
use these scopes with regular Spring loC containers such as the
Cl assPat hXm Appl i cati onCont ext, you get an ||| egal St at eExcepti on complaining
about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the request, session, and gl obal session levels
(web-scoped beans), some minor initial configuration is required before you define your beans. (This
initial setup is not required for the standard scopes, singleton and prototype.)

How you accomplish thisinitial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MV C, in effect, within a request that is processed by the

31 Reference Documentation 70

Spring Framework

Spring Di spat cher Servl et, or Di spatcherPortl et, then no specia setup is necessary:
Di spat cher Servl et and Di spat cher Port | et aready expose al relevant state.

If you use a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet
(for example, when wusing JSF or Struts), you need to add the following
j avax. servl et. Servl et Request Li st ener to the declarations in your web applications
web. xm file:

<web- app>

<| i stener>
<l i stener-class>
or g. springframewor k. web. cont ext. request . Request Cont ext Li st ener
</listener-class>
</l|istener>

</ web- app>

If you use an older web container (Servlet 2.3), use the provided j avax. servlet.Filter
implementation. The following snippet of XML configuration must be included in the web. xni file of
your web application if you want to access web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web
application configuration, so you must change it as appropriate.)

<web- app>

<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-nmppi ng>
<filter-nane>requestContextFilter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

;}er—app>
Di spat cher Servl et, Request Cont ext Li stener and Request ContextFilter al do

exactly the same thing, namely bind the HTTP request object to the Thr ead that is servicing that
request. This makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

<bean id="Iogi nActi on" class="com foo. Logi nActi on" scope="request"/>

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nActi on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. Y ou can change the internal state of the instance that is created as much as you want,
because other instances created from the same | ogi nAct i on bean definition will not see these changes
in state; they are particular to an individual request. When the request completes processing, the bean that

3.1 Reference Documentation 71

Spring Framework

is scoped to the request is discarded.

Session scope

Consider the following bean definition:

<bean i d="user Preferences" class="comfoo.UserPreferences" scope="session"/>

The Spring container crestes a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Preferences bean is effectively scoped at the HTTP Session level. As with
r equest - scoped beans, you can change the internal state of the instance that is created as much as
you want, knowing that other HTTP Sessi on instances that are also using instances created from the
same user Pr ef er ences bean definition do not see these changes in state, because they are particular
to an individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is
scoped to that particular HTTP Sessi on isalso discarded.

Global session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/>

The gl obal sessi on scopeissimilar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal sessi on scope, the standard HTTP Sessi on scopeis used, and no error is raised.

Scoped beans as dependencies

The Spring 10C container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject a
proxy abject that exposes the same public interface as the scoped object but that can aso retrieve the real,
target object from the relevant scope (for example, an HTTP request) and delegate method calls onto the
real object.

Note

You do not need to use the <aop: scoped- pr oxy/ > in conjunction with beans that are
scoped as si ngl et ons or prototypes. If you try to create a scoped proxy for a
singleton bean, the BeanCr eat i onExcept i on israised.

3.1 Reference Documentation 72

Spring Framework

The configuration in the following example is only one line, but it is important to understand the “why”
aswell asthe “how” behind it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframework. or g/ schema/ aop”
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmework. or g/ schema/ aop
http://ww. springframewor k. or g/ scherma/ aop/ spri ng- aop. xsd" >

<l-- an HTTP Sessi on-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. UserPreferences" scope="session">

<l-- instructs the container to proxy the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce">

<l-- a reference to the proxied userPreferences bean -->
<property name="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create such a proxy, you insert a child <aop: scoped- pr oxy/ > element into a scoped bean
definition. (If you choose class-based proxying, you also need the CGLIB library in your classpath. See
the section called “Choosing the type of proxy to create” and Appendix D, XML Schema-based
configuration.) Why do definitions of beans scoped at ther equest , sessi on, gl obal Sessi on and
custom-scope levels require the <aop: scoped- proxy/ > element ? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes. (The
following user Pr ef er ences bean definition as it stands is incomplete.)

<bean i d="user Preferences" class="comfoo.UserPreferences" scope="session"/>

<bean i d="user Manager" cl ass="com fo0o. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The sdlient point here is that the user Manager bean is
asingleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-lived scoped
bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a dependency into
singleton bean. Rather, you need a single user Manager object, and for the lifetime of an HTTP
Sessi on, you need a user Pr ef er ences object that is specific to said HTTP Sessi on. Thus the
container creates an object that exposes the exact same public interface asthe User Pr ef er ences class

31 Reference Documentation 73

Spring Framework

(ideally an object that isa User Pr ef er ences instance) which can fetch thereal User Pr ef er ences
object from the scoping mechanism (HTTP request, Sessi on, etc.). The container injects this proxy
object into the user Manager bean, which is unaware that this User Pr ef er ences reference is a
proxy. In this example, when a User Manager instance invokes a method on the dependency-injected
User Pr ef er ences object, it actually is invoking a method on the proxy. The proxy then fetches the
real User Pr ef er ences object from (in this case) the HTTP Sessi on, and delegates the method
invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest -,
sessi on-, and gl obal Sessi on- scoped beansinto collaborating objects:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean i d="user Manager" cl ass="com foo. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created. This means that you need to
have the CGLIB library in the classpath of your application.

Note: CGLIB proxies only intercept public method calls! Do not call non-public methods on such a
proxy; they will not be delegated to the scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies for
such scoped beans, by specifying f al se for the value of the pr oxy-t ar get - cl ass attribute of the
<aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it a'so means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean isinjected must reference the bean through one of itsinterfaces.

<l -- Defaul tUserPreferences inplenents the UserPreferences interface -->

<bean id="userPreferences" class="com foo. Defaul t User Preferences" scope="sessi on">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com foo. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 8.6,
“Proxying mechanisms’.

Custom scopes

As of Spring 2.0, the bean scoping mechanism is extensible. You can define your own scopes, or even

3.1 Reference Documentation 74

Spring Framework

redefine existing scopes, although the latter is considered bad practice and you cannot override the
built-in si ngl et on and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org. spri ngframewor k. beans. fact ory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope Javadoc, which explains the methods you need
to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope, and
allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

hj ect get(String name, ObjectFactory object Factory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

bj ect renove(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Refer to the Javadoc or a Spring scope implementation for
more information on destruction callbacks.

voi d regi sterDestructionCall back(String name, Runnable destructionCall back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, thisidentifier can be the session identifier.

String get Conversationl d()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact or y interface, which is available on most of

31 Reference Documentation 75

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework

the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory
property.

The first argument to the r egi st er Scope(..) method is the unique name associated with a scope;
examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The second
argument to the regi sterScope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

Note

The example below uses Si npl eThr eadScope which is included with Spring, but not
registered by default. The instructions would be the same for your own custom Scope
implementations.

Scope threadScope = new Si npl eThr eadScope() ;
beanFactory. regi st er Scope("thread", threadScope);

Y ou then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
Y ou can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframework. org/ schema/ aop”
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ aop
http://ww. springframewor k. or g/ scherma/ aop/ spri ng- aop. xsd" >

<bean cl ass="org. spri ngframewor k. beans. f act ory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<n’ap>
<entry key="thread">
<bean cl ass="org. spri ngframewor k. cont ext . support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean id="foo0" class="x.y.Foo">
<property name="bar" ref="bar"/>
</ bean>

</ beans>

31 Reference Documentation 76

Spring Framework

Note

When you place <aop:scoped-proxy/> in a Fact or yBean implementation, it is the factory
bean itself that is scoped, not the object returned from get Cbj ect () .

4.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement the Spring
InitializingBean and Di sposabl eBean interfaces. The container cals
after PropertiesSet () fortheformer and destroy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans. You can aso achieve the same
integration with the container without coupling your classes to Spring interfaces through the use of
init-method and destroy method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 4.8, “ Container Extension Points’.

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container's own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

Theor g. spri ngframewor k. beans. factory. I nitializi ngBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container. The
Initializi ngBean interface specifies asingle method:

void afterPropertiesSet() throws Exception

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, specify a POJO initialization method. In the case of
XML-based configuration metadata, you use the i ni t - net hod attribute to specify the name of the
method that has a void no-argument signature. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>

public class Exanpl eBean {

3.1 Reference Documentation 77

Spring Framework

public void init() {
/'l do some initialization work

}
}

..Isexactly thesame as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

publ i c cl ass Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/] do sone initialization work

}
}

... but does not couple the code to Spring.

Destruction callbacks

Implementing the org. springfranework. beans. factory. Di sposabl eBean interface
allows a bean to get a callback when the container containing it is destroyed. The Di sposabl eBean
interface specifies a single method:

voi d destroy() throws Exception

It is recommended that you do not use the Di sposabl eBean calback interface because it
unnecessarily couples the code to Spring. Alternatively, specify a generic method that is supported by
bean definitions. With XML-based configuration metadata, you use the dest r oy- net hod attribute on
the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- nmet hod="cl eanup"/>

public class Exanpl eBean {

public void cleanup() {
/1 do sone destruction work (like releasing pooled connections)
}

}
..Isexactly thesame as...
<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like releasing pooled connections)

}
}

... but does not couple the code to Spring.

31 Reference Documentation 78

Spring Framework

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and Di sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),di spose(),andsoon. |dedly, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names and
ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application classes
and wuse an initidlization callback caled init(), without having to configure an
i nit-method="init" attribute with each bean definition. The Spring 10C container cals that
method when the bean is created (and in accordance with the standard lifecycle callback contract
described previoudly). This feature aso enforces a consistent naming convention for initialization and
destroy method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your classwill resemble the class in the following example.

public class Defaul tBl ogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public voi d setBl ogDao(Bl ogDao bl ogDao) {
t hi s. bl ogDao = bl ogDao;
}

/1l this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbDao == null) {
throw new || | egal St at eException("The [bl ogDao] property nust be set.");
}

<beans default-init-nethod="init">

<bean id="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property name="bl ogbDao" ref="bl ogDao" />
</ bean>

</ beans>

The presence of the def aul t - i ni t - met hod attribute on the top-level <beans/ > element attribute
causes the Spring 1oC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it isinvoked at the
appropriate time.

You configure destroy method callbacks similaly (in XML, that is) by using the
def aul t - dest r oy- net hod attribute on the top-level <beans/ > element.

Where existing bean classes aready have callback methods that are named at variance with the

31 Reference Documentation 79

Spring Framework

convention, you can override the default by specifying (in XML, that is) the method name using the
i nit-methodanddestroy- net hod attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after a
bean is supplied with al dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target bean
is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the target
bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
InitializingBean and Di sposabl eBean callback interfaces; customi nit () and dest roy()
methods;, and the @Post Construct and @Pr eDestr oy annotations. You can combine these
mechanisms to control a given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is executed in the
order listed below. However, if the same method name is configured - for example, i ni t ()
for an initialization method - for more than one of these lifecycle mechanisms, that method is
executed once, as explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called asfollows:

» Methods annotated with @ost Const r uct

o afterPropertiesSet () asdefinedbythel niti alizi ngBean callback interface
* A custom configuredi ni t () method

Destroy methods are called in the same order:

» Methods annotated with @r eDest r oy

» destroy() asdefined by the Di sposabl eBean callback interface

» A custom configured dest r oy () method

Startup and shutdown callbacks

31 Reference Documentation 80

Spring Framework

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):
public interface Lifecycle {
void start();
voi d stop();

bool ean i sRunni ng();

}

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself
starts and stops, it will cascade those callsto al Lifecycle implementations defined within that context. It
doesthisby delegatingtoali f ecycl ePr ocessor:

public interface LifecycleProcessor extends Lifecycle {

voi d onRefresh();

voi d ond ose();

}

Noticethat theLi f ecycl ePr ocessor isitsalf an extension of theLi f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. Y ou may only know that objects of
a certain type should start prior to objects of another type. In those cases, the Smart Li f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

public interface Phased {

i nt getPhase();

public interface SmartlLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

}

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements Snart Li f ecycl e and whose getPhase() method
returns| nt eger . M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering the

31 Reference Documentation 81

Spring Framework

phase value, it's also important to know that the default phase for any "normal" Li f ecycl e object that
does not implement Smart Li f ecycl e would be 0. Therefore, any negative phase value would indicate
that an object should start before those standard components (and stop after them), and vice versafor any
positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback's run() method after that implementation's shutdown process is complete. That
enables asynchronous shutdown where necessary since the default implementation of the
Li f ecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout
value for the group of objects within each phase to invoke that callback. The default per-phase timeout is
30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the
following would be sufficient:

<bean id="Iifecycl eProcessor" class="org.springframework. context.support.DefaultLifecycleProcessor">
<I-- timeout value in mlliseconds -->
<property name="ti meout Per Shut dowmnPhase" val ue="10000"/>

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if stop() had been
caled explicitly, but it will happen when the context is closing. The 'refresh’ callback on the other hand
enables another feature of Smart Li f ecycl e beans. When the context is refreshed (after all objects
have been instantiated and initialized), that callback will be invoked, and at that point the default lifecycle
processor will check the boolean value returned by each SmartlLifecycle object's
i sAut oSt art up() method. If "true", then that object will be started at that point rather than waiting
for an explicit invocation of the context's or its own start() method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well as
any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring loC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring's web-based
Appl i cati onCont ext implementations already have code in place to shut down the
Spring 10C container gracefully when the relevant web application is shut down.

If you are using Spring's 10C container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the VM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call ther egi st er Shut downHook () method that is declared on the
Abst ract Appl i cati onCont ext class:

i nport org.springfranmework. cont ext. support. Abstract Appl i cati onCont ext ;

31 Reference Documentation 82

Spring Framework

i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
public final class Boot ({

public static void main(final String[] args) throws Exception {
Abstract Appl i cati onCont ext ctx
= new Cl assPat hXm Appl i cati onCont ext(new String []{"beans.xm "});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/'l app runs here...

/1 main nethod exits, hook is called prior to the app shutting down...

Appl i cati onCont ext Awar e and BeanNaneAwar e

When an Appl i cat i onCont ext creates a class that implements the
org. spri ngfranmewor k. cont ext. Appl i cati onCont ext Awar e interface, the class is
provided with areference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set Appli cati onCont ext (Applicati onCont ext applicationContext) throws BeansExcepti on;
}

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Conf i gur abl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion of
Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a
MessageSource. These additional features are described in Section 4.14, “Additional Capahilities of the
ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cat i onCont ext .
The "traditional” construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators’) can provide a dependency of type Appli cati onContext for a
constructor argument or setter method parameter, respectively. For more flexibility, including the ability
to autowire fields and multiple parameter methods, use the new annotation-based autowiring features. If
you do, the Appl i cati onCont ext is autowired into a field, constructor argument, or method
parameter that is expecting the Appl i cati onCont ext type if the field, constructor, or method in
guestion carries the @Aut owi red annotation. For more information, see the section called
“@Autowired”.

When an ApplicationContext creates a class that implements the
or g. spri ngframewor k. beans. f act ory. BeanNaneAwar e interface, the class is provided
with areference to the name defined in its associated object definition.

31 Reference Documentation 83

Spring Framework

public interface BeanNaneAware {

voi d set BeanNane(string nane) throws BeansException;

}

The callback is invoked after population of normal bean properties but before an initialization callback
suchasl ni ti al i zi ngBeansafterPropertiesSet or a custom init-method.

Other Awar e interfaces

Besides Appl i cati onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers arange
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the nameis
agood indication of the dependency type:

Table 4.4. Awar e interfaces

Name

I njected Dependency

Appl i cat i onCont ext Awar e Declaring

Appl i cat i onCont ext

Appl i cati onEvent Publ i sheEvanapablisher of the enclosing

BeanC assLoader Awar e

Appl i cati onCont ext

Class loader used to load the
bean classes.

Explained in...

the section caled
“ApplicationContextAware and
BeanNameAware”

Section 414, “Additional
Capabilities of the

ApplicationContext”

the section called “Instantiating
beans’

BeanFact or yAwar e Declaring BeanFact ory the section called
“ApplicationContextAware and
BeanNameAware”
BeanNaneAwar e Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”
Boot st rapCont ext Aware Resource adapter Chapter 24, JCA CCl
Boot st r apCont ext the
container runs in. Typicaly

available only in JCA aware
Appl i cationCont exts

31

Reference Documentation

Spring Framework

Name

LoadTi meWeaver Awar e

MessageSour ceAwar e

Noti fi cati onPubl i sher Ana®mring

I njected Dependency

Defined weaver for processing
class definition at load time

Configured strategy for resolving
messages (with support for
parametrization and
internationalization)
IMX notification
publisher

Explained in...

the section called “Load-time
weaving with Aspectd in the
Spring Framework”

Section 414, “Additional
Capabilities of the
ApplicationContext”

Section 23.7, “Notifications”

Port | et Confi gAwar e

Por t | et Cont ext Awar e

Resour ceLoader Awar e

Ser vl et Conf i gAwar e

Ser vl et Cont ext Awar e

Current Portl et Config the
container runsin. Vaid only ina
web-aware Spring
Appl i cat i onCont ext

Current Por t | et Cont ext the
container runsin. Valid only in a
web-aware Spring
Appl i cati onCont ext

Configured loader for low-level
access to resources

Current Servl et Confi g the
container runsin. Valid only in a
web-aware Spring
Appl i cat i onCont ext

Current Ser vl et Cont ext the
container runsin. Vaid only in a
web-aware Spring
Appl i cat i onCont ext

Chapter 19, Portlet MVC
Framework
Chapter 19, Portlet MVC
Framework

Chapter 5, Resources

Chapter 16, Web MVC
framework
Chapter 16, Web MVC
framework

Note again that usage of these interfaces ties your code to the Spring APl and does not follow the
Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmeatic access to the container.

31

Reference Documentation

85

Spring Framework

4.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments,
property values, and container-specific information such as initialization method, static factory method
name, and so on. A child bean definition inherits configuration data from a parent definition. The child
definition can override some values, or add others, as needed. Using parent and child bean definitions can
save alot of typing. Effectively, thisis aform of templating.

If you work with an Appl i cati onCont ext interface programmatically, child bean definitions are
represented by the Chi | dBeanDefi ni ti on class. Most users do not work with them on this level,
instead configuring bean definitions declaratively in something like the
C assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value of
this attribute.

<bean id="inheritedTestBean" abstract="true"
cl ass="org. spri ngframewor k. beans. Test Bean" >
<property name="nanme" val ue="parent"/>

</ bean>

<bean id="inheritsWthDifferentC ass"
cl ass="org. spri ngframewor k. beans. Deri vedTest Bean"
parent="inheritedTest Bean" init-method="initialize">

<property nanme="nanme" val ue="override"/>
<l-- the age property value of 1 will be inherited from parent -->

</ bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent's property values.

A child bean definition inherits constructor argument values, property values, and method overrides from
the parent, with the option to add new values. Any initialization method, destroy method, and/or st at i c
factory method settings that you specify will override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, scope, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition as
abstract isrequired, asfollows:

<bean id="inheritedTest BeanWt hout Cl ass" abstract="true">
<property name="name" val ue="parent"/>
<property name="age" val ue="1"/>

</ bean>

<bean id="inheritsWthd ass" class="org. spri ngfranework. beans. Deri vedTest Bean"
parent ="inheritedTest BeanWt hout Cl ass" init-nethod="initialize">

31 Reference Documentation 86

Spring Framework

<property nanme="nanme" val ue="override"/>
<I-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it isincomplete, and it is also explicitly marked
as abstract. When a definition is abst r act like this, it is usable only as a pure template bean
definition that serves as a parent definition for child definitions. Trying to use such an abst r act parent
bean on its own, by referring to it as aref property of another bean or doing an explicit get Bean() call
with the parent bean id, returns an error. Similarly, the container's interna
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

Note

Appl i cat i onCont ext pre-instantiates all singletons by default. Therefore, it isimportant
(at least for singleton beans) that if you have a (parent) bean definition which you intend to
use only as a template, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actualy (attempt to)
pre-instantiate the abst r act bean.

4.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 1oC container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPost Processor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container's default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Pr ocessor instances, and you can control the order in which
these BeanPost Pr ocessor s execute by setting the or der property. You can set this property only if
the BeanPost Processor implements the O dered interface; if you write your own
BeanPost Pr ocessor you should consider implementing the Or der ed interface too. For further
details, consult the Javadoc for the BeanPost Processor and Or der ed interfaces. See dso the note
below on programmatic registration of BeanPost Pr ocessor s

Note

BeanPost Pr ocessor soperate on bean (or object) instances; that isto say, the Spring 10C
container instantiates a bean instance and then BeanPost Pr ocessor sdo their work.

31 Reference Documentation 87

Spring Framework

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPost Pr ocessor in one container, it will only
post-process the beans in that container. In other words, beans that are defined in one
container are not post-processed by a BeanPost Pr ocessor defined in another container,
even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Processor as described in the section caled
“Customizing configuration metadata with a BeanFactoryPostProcessor” .

The org. springfranework. beans. factory. confi g. BeanPost Processor interface
consists of exactly two callback methods. When such a class is registered as a post-processor with the
container, for each bean instance that is created by the container, the post-processor gets a callback from
the container both before container initialization methods (such as InitializingBean's after PropertiesSet()
and any declared init method) are called as well as after any bean initialization calbacks. The
post-processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typicaly checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide

proxy-wrapping logic.

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Processor interface. The Appli cati onCont ext
registers these beans as post-processors so that they can be called later upon bean creation. Bean
post-processors can be deployed in the container just like any other beans.

Programmatically registering BeanPost Pr ocessor s

While the recommended approach for BeanPost Processor registration is through
Appl i cati onCont ext auto-detection (as described above), it is aso possible to register
them programmatically against a Confi gurabl eBeanFactory using the
addBeanPost Processor method. This can be useful when needing to evauate
conditional logic before registration, or even for copying bean post processors across contexts
in a hierarchy. Note however that BeanPost Pr ocessor s added programmatically do not
respect the Or der ed interface. Here it is the order of registration that dictates the order of
execution. Note also that BeanPost Pr ocessor s registered programmatically are always
processed before those registered through auto-detection, regardless of any explicit ordering.

BeanPost Processor s and AOP auto-proxying

Classes that implement the BeanPost Processor interface are special and are treated
differently by the container. All BeanPost Processor s and beans that they reference
directly are instantiated on startup, as part of the specia startup phase of the
Appl i cati onCont ext. Next, all BeanPost Processor s are registered in a sorted

31 Reference Documentation 838

Spring Framework

fashion and applied to al further beans in the container. Because AOP auto-proxying is
implemented as a BeanPost Pr ocessor itself, neither BeanPost Pr ocessor s nor the
beans they reference directly are eligible for auto-proxying, and thus do not have aspects
woven into them.

For any such bean, you should see an informational log message: “Bean foo is not eligible for
getting processed by all BeanPostProcessor interfaces (for example: not digible for
auto-proxying)”.

The following examples show how to write, register, and use BeanPost Processors in an
Appl i cati onCont ext .

Example: Hello World, BeanPost Pr ocessor -style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokesthet oSt ri ng() method of each bean asit is created by the container and
prints the resulting string to the system console.

Find below the custom BeanPost Pr ocessor implementation class definition:

package scripting;

i mport org.springframework. beans. factory. confi g. BeanPost Processor ;
i mport org.springframework. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor i npl enents BeanPost Processor {

/1 simply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean, String beanNane)
t hrows BeansException {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean, String beanNane)
throws BeansException {
Systemout.printin("Bean '" + beanNane + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: | ang="htt p://ww. spri ngfranewor k. or g/ schema/ | ang"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. org/ schema/ | ang
http://ww. springframework. org/ schema/ | ang/ spri ng-| ang. xsd" >

<l ang: groovy i d="messenger"
script-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger . gr oovy" >
<l ang: property nanme="nessage" val ue="Fiona Apple |Is Just So Dreany."/>
</ | ang: gr oovy>

<l--
when the above bean (nessenger) is instantiated, this custom

31 Reference Documentation 89

Spring Framework

BeanPost Processor inplenmentation will output the fact to the system consol e
-->
<bean cl ass="scripting.|nstantiati onTraci ngBeanPost Processor"/>

</ beans>

Notice how the I nstanti ati onTraci ngBeanPost Processor is simply defined. It does not
even have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring 2.0 dynamic
language support is detailed in the chapter entitled Chapter 27, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

i mport org.springfranmework. cont ext. Appl i cati onCont ext ;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport org.springfranmework. scripting. Messenger

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXnl Appli cati onCont ext ("scripting/beans.xm ");
Messenger nessenger = (Messenger) ctx.getBean("nmessenger");
System out . printl n(messenger);

The output of the preceding application resembles the following:

Bean ' nessenger' created : org.springframework.scripting.groovy. GoovyMessenger @72961
org. springframework. scripting. groovy. GoovyMessenger @72961

Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using calback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring 10C container. An example is Spring's
Requi r edAnnot at i onBeanPost Processor — a BeanPost Processor implementation that
ships with the Spring distribution which ensures that JavaBean properties on beans that are marked with
an (arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a
BeanFact or yPost Processor

The next extension point that we will look at is the
or g. spri ngframewor k. beans. fact ory. confi g. BeanFact or yPost Processor. The
semantics of thisinterface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Pr ocessor s operate on the bean configuration metadata; that is, the Spring 10C
container allows BeanFact or yPost Processor s to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Processors.

Y ou can configure multiple BeanFact or yPost Pr ocessor s, and you can control the order in which
these BeanFact or yPost Processor s execute by setting the or der property. However, you can

31 Reference Documentation 90

Spring Framework

only set this property if the BeanFact or yPost Processor implements the Or der ed interface. If
you write your own BeanFact or yPost Processor, you should consider implementing the
Or der ed interface too. Consult the Javadoc for the BeanFact or yPost Pr ocessor and Or der ed
interfaces for more details.

Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Pr ocessor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor
(e.g., using BeanFact ory. get Bean()), doing so causes premature bean instantiation,
violating the standard container lifecycle. This may cause negative side effects such as
bypassing bean post processing.

Also, BeanFact or yPost Processor s are scoped per-container. Thisis only relevant if
you are using container hierarchies. If you define a BeanFact or yPost Pr ocessor in
one container, it will only be applied to the bean definitionsin that container. Bean definitions
in one container will not be post-processed by BeanFact or yPost Processors in
another container, even if both containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
Appl i cati onCont ext, in order to apply changes to the configuration metadata that define the
container. Spring includes a number of predefined bean factory post-processors, such as
PropertyQOverrideConfigurer and PropertyPl acehol derConfigurer. A custom
BeanFact or yPost Processor can aso be used, for example, to register custom property editors.

An Appl i cati onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Processor interface. It uses these beans as bean factory post-processors, at
the appropriate time. Y ou can deploy these post-processor beans as you would any other bean.

Note

As with BeanPost Processors, you typicaly do not want to configure
BeanFact or yPost Processor s for lazy initidization. If no other bean references a
Bean(Fact or y) Post Processor, that post-processor will not get instantiated at all.
Thus, marking it for lazy initidlization will be ignored, and the
Bean(Fact ory) Post Processor will be instantiated eagerly even if you set the
defaul t-1azy-init attributetot r ue onthe declaration of your <beans /> element.

Example: the Pr opert yPl acehol der Confi gur er

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr oper ti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and

31 Reference Documentation 91

Spring Framework

passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, aPr opert yPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
¥ property-name} which followsthe Ant / logdj / ISP EL style.

<bean cl ass="org. spri ngframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer" >
<property nanme="| ocati ons" val ue="cl asspat h: con f oo/ j dbc. properti es"/>
</ bean>

<bean i d="dat aSour ce" destroy-nmethod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property name="driverC assNanme" val ue="${j dbc. dri ver assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernanme" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr oper ti es format:

jdbc. dri verd assNane=or g. hsql db. j dbcDri ver
jdbc. url =jdbc: hsqgl db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. user nane} is replaced at runtime with the value 'sa, and the same
applies for other placeholder values that match keys in the properties file The
Pr opert yPl acehol der Confi gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a commarseparated list
inthel ocat i on attribute.

<cont ext: property-pl acehol der | ocation="cl asspath: com foo/j dbc. properties"/>

The Pr opert yPl acehol der Conf i gur er not only looks for properties in the Properti es file
you specify. By default it also checks against the Java Syst emproperties if it cannot find a property in
the specified properties filess You can customize this behavior by setting the
syst enProperti esMode property of the configurer with one of the following three supported integer
values:

» never (0): Never check system properties

+ fallback (1): Check system properties if not resolvable in the specified properties files. This is the
defauilt.

» override (2): Check system properties first, before trying the specified properties files. This alows

31 Reference Documentation 92

Spring Framework

system properties to override any other property source.

Consult the Javadoc for the Pr oper t yPl acehol der Conf i gur er for more information.

Class name substitution

You can use the Pr oper t yPl acehol der Confi gur er to substitute class names, which
is sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer" >
<property name="| ocati ons">
<val ue>cl asspat h: cont f oo/ strat egy. properties</val ue>
</ property>
<property name="properties">
<val ue>cust om strategy. cl ass=com f 0o. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when it
is about to be created, which is during the pr el nst ant i at eSi ngl et ons() phase of an
Appl i cat i onCont ext for anon-lazy-init bean.

Example: the PropertyOverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
Pr opert yPl acehol der Confi gur er, but unlike the latter, the origina definitions can have default
values or no values at al for bean properties. If an overriding Pr oper ti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious from the
XML definition file that the override configurer is being used. In case of multiple
PropertyOQOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanNane. property=val ue

For example:

dat aSour ce. dri ver Cl assNanme=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nysql : mydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

31 Reference Documentation 93

Spring Framework

Compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this
example...

f oo. fred. bob. sanmy=123

... the sanmy property of the bob property of the f r ed property of the f oo bean is set to the scalar
value123.

Note

Specified override values are always literal values, they are not translated into bean
references. This convention also applies when the original value in the XML bean definition
specifies a bean reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<context:property-override | ocation="cl asspath: override. properties"/>

Customizing instantiation logic with a Fact or yBean

Implement the or g. spri ngframewor k. beans. fact ory. Fact or yBean interface for objects
that are themselves factories.

The Fact or yBean interface is apoint of pluggability into the Spring 10C container's instantiation logic.
If you have complex initidization code that is better expressed in Java as opposed to a (potentialy)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization
inside that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

« (hj ect getObject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

* boolean isSingleton(): returns true if this Fact or yBean returns singletons, f al se
otherwise.

 Class get bj ect Type() : returns the object type returned by the get Cbj ect () method or
nul | if the typeis not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean it

31 Reference Documentation 94

Spring Framework

produces, preface the bean's id with the ampersand symbol (&) when calling the get Bean() method of
the Appl i cati onContext. So for a given Fact oryBean with an id of nyBean, invoking
get Bean(" nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean(" &ryBean") returnsthe Fact or yBean instanceitself.

4.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach is
‘better' than XML. The short answer is it depends. The long answer is that each approach has its
pros and cons, and usually it is up to the developer to decide which strategy suits her better. Due to
the way they are defined, annotations provide alot of context in their declaration, leading to shorter
and more concise configuration. However, XML excels at wiring up components without touching
their source code or recompiling them. Some developers prefer having the wiring close to the
source while others argue that annotated classes are no longer POJOs and, furthermore, that the
configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring alows annotations to be used in a
non-invasive way, without touching the target components source code and that in terms of tooling,
al configuration styles are supported by the SpringSource Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section caled
“Example: The RequiredAnnotationBeanPostProcessor”, using aBeanPost Pr ocessor in conjunction
with annotations is a common means of extending the Spring 10C container. For example, Spring 2.0
introduced the possibility of enforcing required properties with the @Required annotation. Spring 2.5
made it possible to follow that same genera approach to drive Spring's dependency injection. Essentidlly,
the @\ut owi r ed annotation provides the same capabilities as described in the section called
“Autowiring collaborators’ but with more fine-grained control and wider applicability. Spring 2.5 also
added support for JSR-250 annotations such as @Post Const ruct, and @'r eDest r oy. Spring 3.0
added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @Naned. Details about those annotations can be found in the relevant
section.

Note

Annotation injection is performed before XML injection, thus the latter configuration will
override the former for properties wired through both approaches.

As aways, you can register them as individual bean definitions, but they can also be implicitly registered

31 Reference Documentation 95

http://www.springsource.com/products/sts

Spring Framework

by including the following tag in an XML-based Spring configuration (notice the inclusion of the
cont ext namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schenma/ cont ext "
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. springfranmewor k. or g/ schema/ cont ext/ spri ng-cont ext.xsd">

<cont ext : annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Pr ocessor,

Per si st enceAnnot at i onBeanPost Processor, as wdl as the aforementioned
Requi r edAnnot at i onBeanPost Processor .)

Note

<cont ext : annot ati on- confi g/ > only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put
<context:annotation-config/> in a WbApplicationContext for a
Di spat cher Ser vl et , it only checks for @Aut owi r ed beansin your controllers, and not
your services. See Section 16.2, “ The DispatcherServlet” for more information.

@Requi red

The @Requi r ed annotation applies to bean property setter methods, as in the following example:

public class SinpleMvielLister {
private MovieFi nder novi eFi nder;

@Requi red

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}

...

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this alows for eager and explicit failure,
avoiding Nul | Poi nt er Excepti ons or the like later on. It is ill recommended that you put
assertions into the bean class itself, for example, into an init method. Doing so enforces those required
references and values even when you use the class outside of a container.

31 Reference Documentation 96

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework

@\ut ow r ed

As expected, you can apply the @\ut owi r ed annotation to "traditional” setter methods:

public class SinpleMuvieLister {
private MovieFi nder novi eFi nder;
@\ut owi r ed

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

}
11

Note

JSR 330's @Inject annotation can be used in place of Spring's @\ut owi r ed annotation in
the examples below. See here for more details

Y ou can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;
@\ut owi red
public void prepare(MyvieCatal og novi eCat al og,
Cust omer Pr ef erenceDao cust orer Pr ef er enceDao) {

thi s. movi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pref er enceDao;

/'l

Y ou can apply @Aut owi r ed to constructors and fields:

public class Myvi eRecommender {

@\ut owi r ed
private MovieCatal og novi eCat al og;

private CustonerPreferenceDao custoner PreferenceDao;
@\ut owi red

publ i ¢ Movi eRecommender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t his. cust oner Pref erencebDao = cust oner Pref er enceDao;

}
11

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding

31 Reference Documentation 97

Spring Framework

the annotation to afield or method that expects an array of that type:

public class Myvi eRecormender {

@\ut owi r ed
private MovieCatal og[] novi eCat al ogs;

1. ..
}

The same applies for typed collections:

public class Myvi eRecormender {
private Set<Mpvi eCatal og> novi eCat al ogs;
@\ut owi r ed

public void set Mvi eCat al ogs(Set <Mbvi eCat al og> novi eCat al ogs) {
t hi s. movi eCat al ogs = novi eCat al ogs;
}

...

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:
public class Myvi eReconmender {
private Map<String, MvieCatal og> novi eCat al ogs;
@\ut owi red
public void setMvieCatal ogs(Map<String, MovieCatal og> novi eCat al ogs) {

t hi s. movi eCat al ogs = novi eCat al ogs;

}
1. ..

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior can
be changed as demonstrated below.
public class SinpleMvieLister {
private MovieFi nder novi eFi nder;
@\ut owi red(required=fal se)

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;
}

...

Note

Only one annotated constructor per-class can be marked as required, but multiple
non-required constructors can be annotated. In that case, each is considered among the

31 Reference Documentation 98

Spring Framework

candidates and Spring uses the greediest constructor whose dependencies can be satisfied,
that is the constructor that has the largest number of arguments.

@A\ut owi r ed's required attribute is recommended over the @Requi r ed annotation. The
required attribute indicates that the property is not required for autowiring purposes, the
property is ignored if it cannot be autowired. @Requi r ed, on the other hand, is stronger in
that it enforces the property that was set by any means supported by the container. If no value
isinjected, a corresponding exception is raised.

You can aso use @\utow red for interfaces that are well-known resolvable dependencies:
BeanFact ory, Appl i cati onCont ext, Envi ronnent , Resour celLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce. These interfaces and their extended
interfaces, such as Conf i gur abl eAppl i cati onCont ext or Resour cePat t er nResol ver, are
automatically resolved, with no special setup necessary.

public class Myvi eReconmender {

@\ut owi r ed
private ApplicationContext context;

publ i c Movi eRecommender () {

}
1. ..

Note

@\t owi r ed, @ nj ect, @Resour ce, and @/al ue annotations are handled by a Spring
BeanPost Processor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or
BeanFact or yPost Pr ocessor types (if any). These types must be 'wired up' explicitly
viaXML or using a Spring @ean method.

Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control
over the selection process. One way to accomplish this is with Spring's @ual i fi er annotation. You
can associate qualifier values with specific arguments, narrowing the set of type matches so that a specific
bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class Myvi eRecormender {

@\ut owi r ed
@ualifier("min")
private MovieCatal og novi eCat al og;

...
}

31 Reference Documentation 99

Spring Framework

The @ual i fi er annotation can aso be specified on individual constructor arguments or method
parameters:

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi r ed
public void prepare(@ualifier("min") MyvieCatal og novi eCat al og,
Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
thi s. movi eCat al og = novi eCat al og;
this. custonerPreferenceDao = cust oner Pref er enceDao;

/1

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://ww. spri ngfranewor k. or g/ schenma/ cont ext "
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<qual i fier val ue="main"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qual i fier value="action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender" cl ass="exanpl e. Movi eReconmrender "/ >

</ beans>

For afallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @A\ut owi r ed is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main” or "EMEA" or
"persistent”, expressing characteristics of a specific component that are independent from the bean id,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al 0g>.

31 Reference Documentation 100

Spring Framework

In this case, al matching beans according to the declared qualifiers are injected as a collection. This
implies that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For
example, you can define multiple Movi eCat al og beans with the same qualifier value "action”; all of
which would be injected into a Set <Movi eCat al og> annotated with @ual i fi er("action").

Tip

If you intend to express annotation-driven injection by name, do not primarily use
@\ut owi r ed, even if is technically capable of referring to a bean name through
@ualifier vaues Instead, use the JSR-250 @Resour ce annotation, which is
semantically defined to identify a specific target component by its unique name, with the
declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans that are themselves defined as a
collection or map type cannot be injected through @Aut owi r ed, because type matching is
not properly applicable to them. Use @Resour ce for such beans, referring to the specific
collection or map bean by unigue name.

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for
narrowing through qualifier annotations at the parameter level. By contrast, @Resour ce is
supported only for fields and bean property setter methods with a single argument. As a
consequence, stick with qualifiersif your injection target is a constructor or a multi-argument
method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@ar get ({ El enent Type. Fl ELD, El ement Type. PARAVETER})
@ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@ualifier

public @nterface Genre {

}

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi r ed
@zenre("Action")
private MvieCatal og acti onCat al og;

private MovieCatal og conedyCat al og;

@\ut owi red
public voi d set ConedyCat al og(@nre(" Conmedy") Movi eCat al og conmedyCat al og) {

}

...

t hi s. conedyCat al og = conedyCat al og;

31

Reference Documentation 101

Spring Framework

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify thet ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches are
demonstrated in the following example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://wwmv springfranmewor k. or g/ schema/ cont ext "
xsi:schemaLocati on="http://wwm. spri ngframework. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext . xsd">

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<qual i fier type="Genre" val ue="Action"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual i fier type="exanple. Genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecomrender" cl ass="exanpl e. Movi eReconmrender" />

</ beans>

In Section 4.10, “Classpath scanning and managed components’, you will see an annotation-based
aternative to providing the qualifier metadata in XML. Specificaly, see the section called “Providing
qualifier metadata with annotations’.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the
annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet
connection is available. First define the simple annotation:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@ualifier
public @nterface Ofline {
}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecormender {
@\ut owi r ed
@fline
private MovieCatal og of flineCatal og

/1

3.1 Reference Documentation 102

Spring Framework

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<qualifier type="Ofline"/>

<I-- inject any dependencies required by this bean -->
</ bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead of
the simple val ue attribute. If multiple attribute values are then specified on a field or parameter to be
autowired, a bean definition must match all such attribute values to be considered an autowire candidate.
As an example, consider the following annotation definition:

@ar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@ualifier
public @nterface MvieQualifier {

String genre();

Format format ();

}

In this case For mat isan enum:

public enum Format {

VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre andf or mat .

public class Myvi eRecormender {

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Action")
private MovieCatal og actionVhsCat al og;

@\ut owi r ed
@bvi eQual i fier(format=Format.VHS, genre="Conedy")
private MovieCatal og conedyVhsCat al og;

@\ut owi red
@bvi eQual i fier(format=Format.DVD, genre="Action")
private MovieCatal og acti onDvdCat al og;

@\ut owi red
@nbvi eQual i fier(format=For mat. BLURAY, genre="Conedy")
private MovieCatal og conedyBl uRayCat al og;

...

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i fi er/ > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <met a/ > tags if no such quaifier is present, as in the last two bean

31 Reference Documentation 103

Spring Framework

definitions in the following example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: cont ext ="htt p://ww. spri ngfranmewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http: //wwv. spri ngfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd

http://ww. springframework. or g/ schema/ cont ext

http://ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >
<qualifier type="MovieQualifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<!-- inject any dependencies required by this bean
</ bean>

<bean cl ass="exanpl e. Si npl eMbvi eCat al 0og" >
<qual i fier type="MovieQualifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<l-- inject any dependencies required by this bean
</ bean>

<bean cl ass="exanpl e. Si npl eMbvi eCat al 0og" >

<nmeta key="format" val ue="DVD'/>

<nmeta key="genre" val ue="Action"/>

<l-- inject any dependencies required by this bean
</ bean>

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<nmeta key="format" val ue="BLURAY"/>

<neta key="genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean
</ bean>

</ beans>

Cust omAut owi r eConfi gurer

The Cust omAut owi r eConfi gurer is a BeanFact or yPost Processor that enables you to
register your own custom qualifier annotation types even if they are not annotated with Spring's
@ual i fi er annotation.

<bean i d="cust omAut owi r eConfi gurer"
cl ass="org. spri ngframewor k. beans. f act ory. annot at i on. Cust omAut owi r eConf i gurer" >

<property name="customQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set >
</ property>

</ bean>

The particular implementation of Aut ow r eCandi dat eResol ver

that

is activated for the

application context depends on the Java version. In versions earlier than Java 5, the qualifier annotations

31

Reference Documentation

104

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework

are not supported, and therefore autowire candidates are solely determined by the
autowi re-candidate vaue of each bean definition as wel as by any
def aul t - aut owi r e- candi dat es pattern(s) available on the <beans/ > element. In Java 5 or
later, the presence of @ual ifier annotations and any custom annotations registered with the
Cust omAut owi r eConf i gur er will also play arole.

Regardless of the Java version, when multiple beans qualify as autowire candidates, the determination of
a"primary" candidate is the same: if exactly one bean definition among the candidates has a pri mary
attribute set to t r ue, it will be selected.

@Resour ce

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans or
JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SinpleMvielLister {
private MovieFi nder novi eFi nder;

@Resour ce(nane="nyMvi eFi nder")
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;

}
}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of afield, it takes the field name; in case of a setter method, it takes the bean property name. So the
following exampleis going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMyvieLister {
private MovieFi nder novi eFi nder;

@Rresour ce
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
}

Note

The name provided with the annotation is resolved as a bean name by the
Appl i cat i onCont ext of which the ConmonAnnot ati onBeanPost Processor is
aware. The names can be resolved through JNDI if you configure Spring's
Si npl eJndi BeanFact ory explicitly. However, it is recommended that you rely on the
default behavior and simply use Spring's INDI lookup capabilities to preserve the level of
indirection.

31 Reference Documentation 105

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework

In the exclusive case of @Resource usage with no explicit name specified, and similar to
@\ut owi r ed, @Resour ce finds a primary type match instead of a specific named bean and resolves
well-known resolvable dependencies. the BeanFactory, Appl i cati onCont ext,
Resour ceLoader, Appli cati onEvent Publi sher,and MessageSour ce interfaces.

Thus in the following example, the cust oner Pr ef er enceDao field first looks for a bean named
customerPreferenceDao, then falls back to a primary type mach for the type
Cust orrer Pr ef er enceDao. The "context” field is injected based on the known resolvable
dependency type Appl i cat i onCont ext .

public class Myvi eReconmender {

@Resour ce
private CustonerPreferenceDao custoner PreferenceDao;

@Rresour ce
private ApplicationContext context;

publ i ¢ Movi eRecommender () {
}

...

@ost Construct and @r eDestr oy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these annotations
offers yet another alternative to those described in initialization callbacks and destruction callbacks.
Provided that the CommonAnnot at i onBeanPost Processor is registered within the Spring
Appl i cat i onCont ext , amethod carrying one of these annotations is invoked at the same paint in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method. In
the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class Cachi ngMvi eLister {

@ost Const ruct
public void popul at eMdovi eCache() {
/| popul ates the novie cache upon initialization...

}

@r eDest r oy
public void clearMyvieCache() {

/'l clears the novie cache upon destruction...
}

}

Note

For details about the effects of combining various lifecycle mechanisms, see the section
called “ Combining lifecycle mechanisms’.

31 Reference Documentation 106

Spring Framework

4.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 4.9, “ Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base" bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration, instead
you can use annotations (for example @Component), Aspect] type expressions, or your own custom filter
criteriato select which classes will have bean definitions registered with the container.

Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @Confi gurati on, @ean, @ nport, and
@ependsOn annotations for examples of how to use these new features.

@onponent and further stereotype annotations

In Spring 2.0 and later, the @Reposi t ory annotation is a marker for any class that fulfills the role or
stereotype (also known as Data Access Object or DAO) of arepository. Among the uses of this marker is
the automatic tranglation of exceptions as described in the section called “Exception trandation”.

Spring 2.5 introduces further stereotype annotations: @Conponent , @er vi ce, and @ontrol | er.
@Conponent isageneric stereotype for any Spring-managed component. @Reposi t ory, @er vi ce,
and @ontrol | er are speciaizations of @onponent for more specific use cases, for example, in the
persistence, service, and presentation layers, respectively. Therefore, you can annotate your component
classes with @onponent, but by annotating them with @Repository, @ervice, or
@cont r ol | er instead, your classes are more properly suited for processing by tools or associating with
aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also possible that
@Repository, @ervice, and @ontrol | er may carry additional semantics in future releases of
the Spring Framework. Thus, if you are choosing between using @Conponent or @er vi ce for your
service layer, @Ber vi ce is clearly the better choice. Similarly, as stated above, @Repository is
aready supported as a marker for automatic exception translation in your persistence layer.

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni t i onswith
the ApplicationContext. For example, the following two classes are eligible for such

3.1 Reference Documentation 107

http://www.springsource.org/javaconfig

Spring Framework

autodetection:

@ser vi ce
public class SinpleMvieLister {

private MvieFi nder novi eFi nder;

@\ut owi r ed
publ i c Si mpl eMovi eLi st er (Movi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
}

@Reposi tory
public class JpaMvi eFi nder inplenents MvieFi nder {
/1 inmplenentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to include the following
element in XML, where the base-package element is a common parent package for the two classes.
(Alternatively, you can specify a comma-separated list that includes the parent package of each class.)

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranmewor k. or g/ schema/ cont ext/ spri ng-cont ext . xsd">

<cont ext : conponent - scan base- package="org. exanpl e"/ >

</ beans>

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the
files-only switch of the JAR task.

Furthermore, the Aut owi r edAnnot at i onBeanPost Pr ocessor and
CommonAnnot at i onBeanPost Processor are both included implicitty when you use the
component-scan element. That means that the two components are autodetected and wired together - all
without any bean configuration metadata provided in XML.

Note

Y ou can disable the registration of Aut owi r edAnnot at i onBeanPost Pr ocessor and
CommonAnnot at i onBeanPost Pr ocessor by including the annotation-config attribute
with avalue of false.

31 Reference Documentation 108

Spring Framework

Using filters to customize scanning

By default, classes annotated with @onponent , @Reposi tory, @ervi ce, @ontrol l er, or a
custom annotation that itself is annotated with @Conponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters. Add
them as include-filter or exclude-filter sub-elements of the conponent - scan element. Each filter
element requires the t ype and expr essi on attributes. The following table describes the filtering

options.

Table 4.5. Filter Types

Filter Example Expression Description

Type

annotation | or g. exanpl e. SomeAnnot at i on An annotation to be present at the type level in
target components.

assignable | or g. exanpl e. Soned ass A class (or interface) that the target components
are assignable to (extend/implement).

aspectj org. exanpl e. . *Servi ce+ An Aspect] type expression to be matched by the
target components.

regex org\.exanpl e\.Defaul t.* A regex expression to be matched by the target
components class names.

custom org. exanpl e. MyTypeFi | ter A custom implementation of the

org. springframework. core. type
. TypeFi | t er interface.

The following example shows the XML configuration ignoring al @Reposi t or y annotations and using
"stub" repositories instead.

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex" expression=".*Stub.*Repository"/>
<cont ext: exclude-filter type="annotation"

expressi on="org. spri ngframewor k. st er eot ype. Reposi tory"/>

</ cont ext : conponent - scan>

</ beans>

Note

Y ou can aso disable the default filters by providing use-default-filters="false" as an attribute
of the <component-scan/> element. This will in effect disable automatic detection of classes

annotated with @Conponent , @Reposi t ory, @er vi ce, or @ontrol | er.

31

Reference Documentation 109

Spring Framework

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur ati on annotated classes.
Hereis asimple example:

@conponent
public class FactoryMet hodConponent {

@ean @ualifier("public")
publ i c TestBean publiclnstance() {

return new Test Bean("publiclnstance");
}

public void dowrk() {
/'l Conponent nethod inplenentation omtted
}

}

This class is a Spring component that has application-specific code contained in its doWr k() method.
However, it aso contributes a bean definition that has a factory method referring to the method
publ i cl nstance(). The @ean annotation identifies the factory method and other bean definition
properties, such as a qualifier value through the @ual i fi er annotation. Other method level
annotations that can be specified are @cope, @azy, and custom qualifier annotations. Autowired
fields and methods are supported as previously discussed, with additional support for autowiring of
@Bean methods:

@conponent
public class FactoryMet hodConponent {

private static int i;

@Bean @ualifier("public")
publ i c TestBean publiclnstance() {

return new TestBean(" publicl nstance");
}

/] use of a custom qualifier and autow ring of nethod paraneters

@ean
protected TestBean protectedl nstance(@ualifier("public") TestBean spouse,
@al ue("#{privatel nstance. age}") String country) {
TestBean tb = new Test Bean("prot ect edl nstance", 1);
tb. set Spouse(tbh);
tb. set Country(country);
return tb;

}

@Bean @cope(BeanDefinition. SCOPE_S|I NGLETON)
private TestBean privatelnstance() {

return new Test Bean("privatel nstance", i++);
}

@ean @cope(val ue = WebAppl i cati onCont ext. SCOPE_SESS| ON,
proxyMbde = ScopedPr oxyMode. TARGET CLASS)
publ i c TestBean request Scopedl nstance() {
return new Test Bean("request Scopedl nst ance", 3);
}

}

3.1 Reference Documentation 110

Spring Framework

The example autowires the St r i ng method parameter count ry to the value of the Age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value of
the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

The @ean methods in a Spring component are processed differently than their counterparts inside a
Spring @onf i gur ati on class. The difference is that @onponent classes are not enhanced with
CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @onf i gur ati on classes @ean methods create bean metadata
references to collaborating objects. Methods are not invoked with normal Java semantics. In contrast,
calling amethod or field within a @Conponent classes @ean method has standard Java semantics.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNanmeCener at or strategy known to that scanner. By default, any Spring stereotype annotation
(@onponent , @Reposi tory, @ervi ce, and @ontrol | er) that contains a nanme value will
thereby provide that name to the corresponding bean definition.

If such an annotation contains no nane value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following two components were detected, the names would be
myMovieLister and movieFinderimpl:

@er vi ce("nmyMovi eLi ster™)
public class SinpleMvieLister {
1.

}

@reposi tory
public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom
bean-naming strategy. First, implement the BeanNaneGener at or_interface, and be sure to
include a default no-arg constructor. Then, provide the fully-qualified class name when
configuring the scanner:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
name- gener at or =" or g. exanpl e. MyNaneGenerator" />

</ beans>

3.1 Reference Documentation 111

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

Spring Framework

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever the
container isresponsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected
components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with a
new @scope annotation. Simply provide the name of the scope within the annotation:

@scope(" prototype")

@reposi tory

public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResol ver interface, and be sure to include a
default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. MyScopeResol ver" />

</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects.
The reasoning is described in the section called “ Scoped beans as dependencies’. For this purpose, a
scoped-proxy attribute is available on the component-scan element. The three possible values are: no,
interfaces, and targetClass. For example, the following configuration will result in standard JDK dynamic
proxies:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
scoped- proxy="interfaces" />

</ beans>

Providing qualifier metadata with annotations

The @al i fi er annotation is discussed in the section called “ Fine-tuning annotation-based autowiring
with qualifiers’. The examples in that section demonstrate the use of the @ual i fi er annotation and
custom qualifier annotations to provide fine-grained control when you resolve autowire candidates.

3.1 Reference Documentation 112

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework

Because those examples were based on XML bean definitions, the qualifier metadata was provided on the
candidate bean definitions using the qual i fi er or met a sub-elements of the bean element in the
XML. When relying upon classpath scanning for autodetection of components, you provide the qualifier
metadata with type-level annotations on the candidate class. The following three examples demonstrate
this technique:

@Conponent

@ualifier("Action")

public class ActionMyvieCatal og i npl enents Myvi eCat al og {
1.

}

@Conponent

@enre("Action")

public class ActionMyvieCatal og i npl enents Mvi eCat al og {
...

}

@Conponent

@xfline

public class Cachi ngMvi eCat al og i npl enents Myvi eCat al og {
...

}

Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans of the
same type to provide variations in their qualifier metadata, because that metadata is provided
per-instance rather than per-class.

4.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency Injection).
Those annotations are scanned in the same way as the Spring annotations. You just need to have the
relevant jarsin your classpath.

Note

If you are using Maven, the j avax. i nj ect artifact is available in the standard Maven
repository (http://repol.maven.org/maven?/javax/inject/javax.inject/1/). You can add the
following dependency to your file pom.xml:

<dependency>
<groupl d>j avax. i nj ect </ groupl d>
<artifactld> avax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

3.1 Reference Documentation 113

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework

Dependency Injection with @ nj ect and @Naned

Instead of @Aut owi red, @ avax. i nj ect. | nj ect may beused asfollows:

i mport javax.inject.|nject;
public class SinpleMvieLister {

private MovieFi nder novi eFi nder;

@ nj ect
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;

}
...

As with @\ut owi r ed, it is possible to use @ nj ect at the class-level, field-level, method-level and
constructor-argument level. If you would like to use a qualified name for the dependency that should be
injected, you should use the @Naned annotation as follows:

i nport javax.inject.|nject;
i mport javax.inject. Naned;

public class SinpleMvielLister {
private MovieFi nder novi eFi nder;
@ nj ect

public void setMvieFi nder (@laned("mai n") Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
...

@\aned: a standard equivalent to the @onponent annotation

Instead of @onponent , @ avax. i nj ect. Naned may be used as follows:

i nport javax.inject.|nject;
i mport javax.inject. Naned;

@ anmed(" novi eLi stener")
public class SinpleMvielLister {

private MovieFi nder novi eFi nder;
@ nj ect
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {

thi s. movi eFi nder = novi eFi nder;
}

...

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in asimilar fashion:

3.1 Reference Documentation 114

Spring Framework

i nport javax.inject.l|nject;
i mport javax.inject.Named

@\aned

public class SinpleMvieLister {

private MvieFi nder novi eFi nder

@ nj ect

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder

}
...

When using @Named, it is possible to use component-scanning in the exact same way as when using

Spring annotations:

<beans>

<cont ext : conponent - scan base- package="org. exanpl e"/ >

</ beans>

Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

Table 4.6. Spring annotations vs. standard annotations

Spring javax.inject.* javax.inject restrictions/ comments

@Autowired @Inject @Inject has no 'required' attribute

@Component @Named —

@Scope("singleton™) @Singleton
The JSR-330 default scope is like Spring's
pr ot ot ype. However, in order to keep it consistent
with Spring's general defaults, a JSR-330 bean
declared in the Spring container is a si ngl et on by
default. In order to use a scope other than
singl eton, you should use Spring's @scope
annotation.
j avax. i nj ect aso provides a @Scope annotation.
Nevertheless, this one is only intended to be used for
creating your own annotations.

@Qualifier @Named —

@Vaue — no equivalent

31 Reference Documentation 115

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework

Spring javax.inject.* javax.inject restrictions/ comments
@Required — no equivalent
@Lazy — no equivalent

4.12 Java-based container configuration

Basic concepts: @onfi gurati on and @ean

The centra artifact in Spring's new Java-configuration support is the @onf i gur at i on-annotated
class. These classes consist principally of @Bean-annotated methods that define instantiation,
configuration, and initialization logic for objects to be managed by the Spring 10C container.

Annotating a class with the @onf i gur at i on indicates that the class can be used by the Spring 10C
container as a source of bean definitions. The simplest possible @onf i gur at i on class would read as
follows:

@conf i guration
public class AppConfig {

@Bean

public MyService nyService() {
return new MyServicel npl ();

}

}

For those more familiar with Spring <beans/ > XML, the AppConf i g class above would be equivalent
to:

<beans>
<bean id="nyService" class="com acne. services. MyServicel npl"/>
</ beans>

As you can see, the @ean annotation plays the same role as the <bean/ > element. The @ean
annotation will be discussed in depth in the sections below. First, however, we'll cover the various ways
of creating a spring container using Java-based configuration.

Instantiating the Spring container using
Annot ati onConfi gAppl i cati onCont ext

The sections below document Spring's Annot at i onConf i gAppl i cati onCont ext, new in Spring
3.0. This versatile Applicati onContext implementation is capable of accepting not only
@Confi gurati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

When @Configuration classes are provided as input, the @Confi guration class itself is

3.1 Reference Documentation 116

Spring Framework

registered as a bean definition, and all declared @ean methods within the class are also registered as
bean definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it is
assumed that DI metadata such as @A\ut owi red or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
O assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when
instantiating an Annot at i onConf i gAppl i cati onCont ext . Thisalowsfor completely XML-free
usage of the Spring container:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (AppConfi g.cl ass);
MyServi ce nyService = ctx.getBean(M/Service. cl ass);
mySer vi ce. doSt uf f ()

}

As mentioned above, Annot at i onConf i gAppl i cati onCont ext is not limited to working only
with @onf i gurati on classes. Any @onponent or JSR-330 annotated class may be supplied as
input to the constructor. For example:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cationContext(M/Servicel npl.class, Dependencyl.cl ass, Depen
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nmySer vi ce. doSt uf f ()

}

The above assumes that MyServi cel npl, Dependencyl and Dependency2 use Spring
dependency injection annotations such as @\ut owi r ed.

Building the container programmatically using r egi st er (C ass<?>...)

An Annot at i onConf i gAppl i cati onCont ext may be instantiated using a no-arg constructor and
then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConf i gAppl i cati onCont ext .

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ct x. regi ster (AppConfig.class, OherConfig.class)
ctx. regi ster(Additional Config.class);
ctx.refresh();
MyServi ce nyService = ctx.getBean(M/Service. cl ass);
mySer vi ce. doSt uf f () ;

Enabling component scanning with scan(String...)

Experienced Spring users will be familiar with the following commonly-used XML declaration from
Spring'scont ext : namespace

<beans>

3.1 Reference Documentation 117

Spring Framework

</

<cont ext : conponent - scan base- package="com acme"/>
beans>

In the example above, the com acne package will be scanned, looking for any @onponent -annotated
classes, and those classes will be registered as Spring bean definitions within the container.
Annot at i onConf i gAppl i cati onCont ext exposes the scan(String...) method to alow
for the same component-scanning functionality:

public static void main(String[] args) {

}

Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.scan("com acne");

ctx.refresh();

MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);

Note

Remember that @Conf i gur at i on classes are meta-annotated with @onponent , so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acmne package (or any package underneath), it will be picked up
during the call to scan() , and upon r ef resh() al its @ean methods will be processed

and registered as bean definitions within the container.

Support for web applications with Annot ati onConf i gWebAppl i cati onCont ext

A

WebAppl i cati onCont ext variant of Annot ati onConfi gAppli cati onCont ext

is

available with Annot at i onConf i gWebAppl i cati onCont ext . This implementation may be used
when configuring the Spring Cont ext LoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What followsisaweb. xm snippet that configures atypical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

<web- app>

<l-- Configure ContextLoaderlListener to use Annotati onConfi g\WebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<cont ext - par an>
<par am name>cont ext Cl ass</ par am nanme>
<par am val ue>
org. springfranmewor k. web. cont ext. support. Annot ati onConf i gWebAppl i cat i onCont ext
</ par am val ue>
</ cont ext - par an®>

<!-- Configuration |ocations nust consist of one or nore comma- or space-delimted
fully-qualified @onfiguration classes. Fully-qualified packages nay al so be
speci fied for conponent-scanning -->

<cont ext - par an>
<par am nanme>cont ext Confi gLocat i on</ par am nane>
<par am val ue>com acne. AppConf i g</ par am val ue>

</ cont ext - par an>

<l-- Bootstrap the root application context as usual using ContextLoaderListener -->
<listener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener</|i st ener-cl ass>

</listener>

<l-- Declare a Spring M/C Di spatcherServl et as usual -->

31

Reference Documentation

118

Spring Framework

<servl et >
<servl et - nanme>di spat cher </ ser vl et - nane>
<servl et -cl ass>org. spri ngfranewor k. web. servl et. Di spat cher Servl et </ servl et-cl ass>
<l-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<i nit-parane
<par am name>cont ext Cl ass</ par am nanme>
<par am val ue>
org. spri ngframewor k. web. cont ext . support. Annot ati onConf i gWebAppl i cat i onCont ext
</ par am val ue>
</init-paran>
<l-- Again, config |locations nust consist of one or nore comma- or space-delinited
and fully-qualified @onfiguration classes -->
<i nit-parane
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>com acne. web. MrcConfi g</ par am val ue>
</init-paran>
</servl et>

<I-- map all requests for /app/* to the dispatcher servliet -->
<ser vl et - mappi ng>

<servl et - name>di spat cher </ ser vl et - name>

<url - pattern>/app/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

Composing Java-based configurations

Using the @ nport annotation

Much asthe <i npor t / > element is used within Spring XML filesto aid in modularizing configurations,
the @ npor t annotation allows for loading @ean definitions from another configuration class:

@Conf i guration
public class ConfigA {

}

public @ean A a() { return new A(); }

@Conf i guration
@ nport (Confi gA. cl ass)
public class ConfigB {

}

public @ean B b() { return new B(); }

Now, rather than needing to specify both Conf i gA. cl ass and Confi gB. cl ass when instantiating
the context, only Conf i gB needsto be supplied explicitly:

public static void main(String[] args) {

}

Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (ConfigB. cl ass);

/1 now both beans A and B will be available...
A a = ctx.getBean(A. class);
B b = ctx. get Bean(B. cl ass);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onf i gur ati on classes during
construction.

31

Reference Documentation 119

Spring Framework

Injecting dependencies on imported @ean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies on
one another across configuration classes. When using XML, this is not an issue, per se, because there is
no compiler involved, and one can simply declare r ef =" soneBean" and trust that Spring will work it
out during container initialization. Of course, when using @onf i gur at i on classes, the Java compiler
places constraints on the configuration model, in that references to other beans must be valid Java syntax.

Fortunately, solving this problem is simple. Remember that @onf i gur ati on classes are ultimately
just another bean in the container - this means that they can take advantage of @\ut owi r ed injection
metadata just like any other bean!

Let's consider a more real-world scenario with several @onf i gur ati on classes, each depending on
beans declared in the others:

@Configuration
public class ServiceConfig {
private @\utow red Account Repository account Repository;

public @ean TransferService transferService() {
return new Transfer Servi cel npl (account Repository);

}
}

@Conf i guration
public class RepositoryConfig {
private @\utow red DataSource dataSource;

publ i c @ean Account Repository account Repository() {
return new JdbcAccount Reposi t or y(dat aSource);
}

}

@conf i guration
@ nport ({ServiceConfig.class, RepositoryConfig.class})
public class SystenTest Config {
publ i c @ean DataSource dataSource() { /* return new DataSource */ }

}

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (Syst enilest Confi g. cl ass);
/] everything wires up across configuration classes...
TransferService transferService = ctx. getBean(TransferService. cl ass);
transferService.transfer(100.00, "A123", "C456");

}

Fully-qualifying imported beans for ease of navigation

In the scenario above, using @\ut owi r ed works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Servi ceConfi g, how do you know exactly where the
@\ut owi red Account Reposit ory bean is declared? It's not explicit in the code, and this may be
just fine. Remember that the SpringSource Tool Suite provides tooling that can render graphs showing
how everything is wired up - that may be al you need. Also, your Java IDE can easily find all
declarations and uses of the Account Reposi t ory type, and will quickly show you the location of

3.1 Reference Documentation 120

http://www.springsource.com/products/sts

Spring Framework

@Bean methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within your
IDE from one @Confi gurati on class to another, consider autowiring the configuration classes
themselves:

@Conf i guration
public class ServiceConfig {
private @\utow red RepositoryConfig repositoryConfig;

public @ean TransferService transferService() {
/] navigate 'through' the config class to the @ean nethod!
return new Transfer Servicel npl (repositoryConfig.accountRepository());
}
}

In the situation above, it is completely explicit where Account Reposi t ory is defined. However,
Servi ceConfi g is now tightly coupled to Reposi t oryConfi g; that's the tradeoff. This tight
coupling can be somewhat mitigated by using interface-based or abstract class-based
@Conf i gur at i on classes. Consider the following:

@Configuration
public class ServiceConfig {
private @\wutow red RepositoryConfig repositoryConfig;

public @ean TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.account Repository());
}

}

@Configuration
public interface RepositoryConfig {
@ean Account Repository account Repository();

}

@conf i guration
public class Defaul t RepositoryConfig inplenents RepositoryConfig {
public @ean Account Repository account Repository() ({
return new JdbcAccount Repository(...);
}
}

@Configuration
@ nport ({Servi ceConfig.class, DefaultRepositoryConfig.class}) // inport the concrete config!
public class SystenTest Config {

publ i c @ean DataSource dataSource() { /* return DataSource */ }

}

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (Systenilest Confi g. cl ass);
TransferService transferService = ctx. getBean(TransferService. cl ass);
transferService.transfer(100.00, "A123", "C456");

}
Now ServiceConfig is loosely coupled with respect to the concrete
Def aul t Reposi t or yConf i g, and built-in IDE tooling is still useful: it will be easy for the developer
to get a type hierarchy of RepositoryConfig implementations. In this way, navigating
@confi guration classes and their dependencies becomes no different than the usual process of
navigating interface-based code.

3.1 Reference Documentation 121

Spring Framework

Combining Java and XML configuration

Spring's @Conf i gur at i on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container. In
cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, C assPat hXm Applicati onContext, or in a
"Java-centric" fashion using Annot ati onConfi gAppl i cati onCont ext and the
@ npor t Resour ce annotation to import XML as needed.

XML-centric use of @onf i gur ati on classes

It may be preferable to bootstrap the Spring container from XML and include @onfi gurati on
classes in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be
easier to create @onfi gur ati on classes on an as-nheeded basis and include them from the existing
XML files. Below you'll find the options for using @onfi guration classes in this kind of
"XML-centric" situation.

Declaring @onf i gur ati on classes as plain Spring <bean/ > elements

Remember that @Conf i gur ati on classes are ultimately just bean definitions in the container. In this
example, we create a @onfiguration class named AppConfig and include it within
systemtest-config.xnl as a <bean/ >definition. Because
<cont ext:annotation-config/> is switched on, the container will recognize the
@Conf i gur at i on annotation, and process the @ean methods declared in AppConf i g properly.

@conf i guration
public class AppConfig {
private @\wutow red DataSource dataSource

public @ean Account Repository account Repository() ({
return new JdbcAccount Reposi t ory(dat aSour ce) ;
}

public @ean TransferService transferService() {
return new Transfer Servi ce(account Repository());
}

}

systemtest-config. xmn

<beans>
<l-- enabl e processing of annotations such as @wutow red and @onfiguration -->
<cont ext : annot ati on- confi g/ >
<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>

<bean cl ass="com acne. AppConfig"/>

<bean cl ass="org. spri ngfranmework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

j dbc. properties

3.1 Reference Documentation 122

Spring Framework

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa
j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Cl assPat hXml Appli cati onCont ext ("cl asspat h:/conf acne/ systemtest-config.xm");
Transf er Servi ce transferService = ctx. get Bean(Tr ansf er Servi ce. cl ass) ;
I/

}

Note

In systemtest-config.xm above the AppConfi g<bean/ > does not declare an
i d element. While it would be acceptable to do so, it is unnecessary given that no other bean
will ever refer to it, and it is unlikely that it will be explicitly fetched from the container by
name. Likewise with the Dat aSour ce bean - it is only ever autowired by type, so an
explicit bean id is not strictly required.

Using <cont ext : conmponent - scan/ > to pick up @onfi gurati on classes

Because @Confi gurati on is metaannotated with @onponent, @Confi gur at i on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above, we can
redefine systemt est - confi g. xm to take advantage of component-scanning. Note that in this
case, we don't need to explicitly declare <context:annotati on-config/ >, because
<cont ext : conponent - scan/ > enables al the same functionality.

systemtest-config. xmn
<beans>
<!-- picks up and registers AppConfig as a bean definition -->
<cont ext : conponent - scan base- package="com acme"/>
<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>

<bean cl ass="org. spri ngfranmework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

@conf i gurati on class-centric use of XML with @ nport Resour ce

In applications where @Conf i gurati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ npor t Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric”
approach to configuring the container and keeps XML to a bare minimum.

@Configuration
@ nport Resour ce("cl asspat h: / conf acne/ properties-config.xm")
public class AppConfig {
private @alue("${jdbc.url}") String url;
private @/al ue("${jdbc.usernane}") String usernane
private @al ue("${jdbc. password}") String password;

publ i c @ean Dat aSource dataSource() {

3.1 Reference Documentation 123

Spring Framework

return new Driver Manager Dat aSour ce(url, username, password);

properties-config.xmn
<beans>

<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>
</ beans>

j dbc. properties

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (AppConfi g.cl ass);
TransferService transferService = ctx. get Bean(Transf er Servi ce. cl ass) ;
...

}

Using the @ean annotation

@Bean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: i ni t - net hod, dest r oy- net hod,

aut owi ri ng and nane.

You can use the @ean annotation in a @onf i gur at i on-annotated or in a @onponent -annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. Y ou use this method to register
a bean definition within an Appl i cat i onCont ext of the type specified as the method's return value.
By default, the bean name will be the same as the method name. The following is a smple example of a
@Bean method declaration:

@conf i guration
public class AppConfig {

@ean
public TransferService transferService() {
return new Transfer Servicel npl ();

}

The preceding configuration is exactly equivalent to the following Spring XML.:

<beans>
<bean id="transferService" class="com acne. Transfer Servi cel npl "/ >
</ beans>

Both declarations make a bean named t r ansf er Ser vi ce available in the Appl i cat i onCont ext ,

3.1 Reference Documentation 124

Spring Framework

bound to an object instance of type Tr ansf er Ser vi cel npl :

transferService -> com acne. Transf er Servi cel npl

Injecting dependencies

When @eans have dependencies on one another, expressing that dependency is as smple as having one
bean method call another:

@conf i guration
public class AppConfig {

@ean
public Foo foo() {
return new Foo(bar());

}

@Bean

public Bar bar() {
return new Bar ();

}

}

In the example above, the f 00 bean receives areference to bar via constructor injection.

Receiving lifecycle callbacks

Beans declared in a @onf i gur at i on-annotated class support the regular lifecycle callbacks. Any
classes defined with the @ean annotation can use the @ost Construct and @ eDestroy
annotations from JSR-250, see JSR-250 annotations for further details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, Di sposabl eBean, or Li f ecycl e, their respective methods are called by
the container.

The standard set of *Awar e interfaces such as BeanFact or vAwar e, BeanNameAwar e,
MessageSour ceAwar e, Appl i cat i onCont ext Awar e, and so on are also fully supported.

The @Bean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML'si ni t - met hod and dest r oy- net hod attributes on the bean element:

public class Foo {
public void init() {
/1 initialization |ogic
}

}

public class Bar {
public void cleanup() {
/| destruction |ogic

}
}

3.1 Reference Documentation 125

Spring Framework

@conf i guration
public class AppConfig {
@ean(initMethod = "init")
public Foo foo() {
return new Foo();
}

@Bean(destroyMet hod = "cl eanup")
public Bar bar() {
return new Bar ();

}
}

Of course, in the case of Foo above, it would be equally as valid to call thei ni t () method directly
during construction:

@Configuration
public class AppConfig {
@Bean
public Foo foo() {
Foo foo = new Foo();
foo.init();
return foo;

...

Tip

When you work directly in Java, you can do anything you like with your objects and do not
always need to rely on the container lifecycle!

Specifying bean scope

Using the @cope annotation

You can specify that your beans defined with the @ean annotation should have a specific scope. You
can use any of the standard scopes specified in the Bean Scopes section.

The default scopeissi ngl et on, but you can override this with the @c ope annotation:

@Configuration
public class MyConfiguration {
@ean
@cope(" prototype")
public Encryptor encryptor() {
...
}
}

@cope and scoped- proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The easiest
way to create such a proxy when using the XML configuration is the <aop: scoped- pr oxy/ >

3.1 Reference Documentation 126

Spring Framework

element. Configuring your beans in Java with a @Scope annotation offers equivalent support with the
proxyMode attribute. The default is no proxy (ScopedProxyMode. NO), but you can specify
ScopedPr oxyMode. TARGET _CLASS or ScopedPr oxyMode. | NTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to our
@Bean using Java, it would look like the following:

/1 an HTTP Sessi on-scoped bean exposed as a proxy

@ean

@cope(val ue = "session", proxyMbde = ScopedProxyMde. TARGET CLASS)
public UserPreferences userPreferences() {

return new User Preferences();

}

@Bean

public Service userService() {
User Servi ce service = new Si npl eUser Servi ce();
/] a reference to the proxied userPreferences bean
servi ce. set User Pref erences(user Preferences());
return service;

}

Lookup method injection

As noted earlier, |lookup method injection is an advanced feature that you should use rarely. It is useful in
cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this
type of configuration provides a natural means for implementing this pattern.

public abstract class ConmandManager {
public Object process(Cbject conmandState) {
/1 grab a new instance of the appropriate Command interface
Command conmand = creat eComrand() ;

/'l set the state on the (hopefully brand new) Conmand i nstance
comand. set St at e(comrandSt at e) ;
return conmand. execut e();

}
/] okay... but where is the inplenentation of this method?
protected abstract Command creat eComrand();

}

Using Java-configuration support , you can create a subclass of CommandManager where the abstract
cr eat eConmand() method is overridden in such a way that it looks up a new (prototype) command
object:

@ean

@scope(" prototype")

publ i c AsyncConmmand asyncCommand() {
AsyncConmmand conmand = new AsyncConmand() ;
/1 inject dependencies here as required
return conmand,;

}
@Bean

publ i ¢ CommandManager conmandManager () {
/1 return new anonynous inplenmentati on of CommandManager with command() overridden
/1 to return a new prototype Command obj ect
return new ConmandManager () {

3.1 Reference Documentation 127

Spring Framework

protect ed Conmand creat eConmand() {
return asyncCommand();
}

Customizing bean naming

By default, configuration classes use a @ean method's name as the name of the resulting bean. This
functionality can be overridden, however, with the nane attribute.

@conf i guration
public class AppConfig {

@Bean(nanme = "nmyFoo")
public Foo foo() {

return new Foo();
}

Bean aliasing

As discussed in the section called “Naming beans’, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The nane attribute of the @ean annotation accepts
a String array for this purpose.

@Configuration
public class AppConfig {

@ean(nane = { "dataSource", "subsystemA-dataSource", "subsystenB-dataSource" })
publ i ¢ Dat aSource dataSource() ({

/'l instantiate, configure and return DataSource bean...
}

Further information about how Java-based configuration works
internally

The following example shows a @ean annotated method being called twice:

@conf i guration
public class AppConfig {

@Bean

public CientService clientServicel() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setClientDao(clientDao());
return clientService;

}

@Bean

public CientService clientService2() {
ClientServicelnpl clientService = new CientServicel npl();
clientService.setClientDao(clientDao());

3.1 Reference Documentation 128

Spring Framework

return clientService

}

@ean
public CientDao clientDao() {
return new C i ent Daol npl ()

}
}

clientDao() has been caled oncein cl i ent Servi cel() and oncein cli ent Service2().
Since this method creates a new instance of Cl i ent Daol npl and returnsit, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a si ngl et on scope by default. This is where the magic comesin: All @onfi gurati on
classes are subclassed at startup-time with CGLI B. In the subclass, the child method checks the container
first for any cached (scoped) beans before it calls the parent method and creates a new instance.

Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

Note

Beware that, in order for JavaConfig to work, you must include the CGLIB jar in your list of
dependencies.

Note

There are a few regtrictions due to the fact that CGLIB dynamically adds features at
startup-time:

» Configuration classes should not befinal

» They should have a constructor with no arguments

4.13 Registering a LoadTi neWaver

Thecont ext namespace introduced in Spring 2.5 providesal oad- t i me- weaver element.

<beans>
<cont ext : | oad-ti me- weaver/ >

</ beans>

Adding this element to an XML-based Spring configuration file activates a Spring LoadTi neWaver

3.1 Reference Documentation 129

Spring Framework

for the Appl i cati onCont ext. Any bean within that Appl i cati onCont ext may implement
LoadTi meWeaver Awar e, thereby receiving a reference to the load-time weaver instance. This is
particularly useful in combination with Spring's JPA support where load-time weaving may be necessary
for JPA class transformation. Consult the Local Cont ai ner Entit yManager Fact or yBean
Javadoc for more detail. For more on AspectJ load-time weaving, see the section called “Load-time
weaving with Aspect]in the Spring Framework”.

4.14 Additional Capabilities of the Appl i cati onCont ext

As was discussed in the chapter introduction, the or g. spri ngf ranewor k. beans. factory
package provides basic functionality for managing and manipulating beans, including in a programmatic
way. Theor g. spri ngf ranmewor k. cont ext package adds the Appl i cat i onCont ext interface,
which extends the BeanFact ory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
Appl i cat i onCont ext inacompletely declarative fashion, not even creating it programmatically, but
instead relying on support classes such as Cont ext Loader to automatically instantiate an
Appl i cati onCont ext as part of the normal startup process of a J2EE web application.

To enhance BeanFact or y functionality in a more framework-oriented style the context package aso
provides the following functionality:

» Accessto messagesin i18n-style, through the MessageSour ce interface.
» Accessto resources, such as URLs and files, through the Resour ceLoader interface.

» Event publication to beans implementing the Appl i cat i onLi st ener interface, through the use of
the Appl i cat i onEvent Publ i sher interface.

» Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
asthe web layer of an application, through the Hi er ar chi cal BeanFact ory interface.

Internationalization using MessageSour ce

The Appl i cati onCont ext interface extends an interface called MessageSour ce, and therefore
provides internationalization (i18n) functionality. Spring aso provides the interface
Hi er ar chi cal MessageSour ce, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined on
these interfaces include:

e String getMessage(String code, oject[] args, String default, Locale
| oc) : The basic method used to retrieve a message from the MessageSour ce. When no message is
found for the specified locale, the default message is used. Any arguments passed in become
replacement values, using the MessageFor mat functionality provided by the standard library.

« String getMessage(String code, Object[] args, Locale |oc): Essentidly the

31 Reference Documentation 130

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework

same as the previous method, but with one difference: no default message can be specified; if the
message cannot be found, aNoSuchMessageExcept i on isthrown.

 String get Message(MessageSour ceResol vabl e resol vabl e, Local e |ocal e):
All properties used in the preceding methods are aso wrapped in a class named
MessageSour ceResol vabl e, which you can use with this method.

When an Appl i cat i onCont ext is loaded, it automatically searches for a MessageSour ce bean
defined in the context. The bean must have the name nessageSour ce. If such abean isfound, al calls
to the preceding methods are delegated to the message source. If no message source is found, the
Appl i cat i onCont ext attempts to find a parent containing a bean with the same name. If it does, it
uses that bean as the MessageSour ce. If the Appl i cat i onCont ext cannot find any source for
messages, an empty Del egat i ngMessageSour ce isinstantiated in order to be able to accept calls to
the methods defined above.

Spring provides two MessageSour ce implementations, Resour ceBundl eMessageSour ce and
St ati cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested
messaging. The St ati cMessageSour ce is rardly used but provides programmatic ways to add
messages to the source. The Resour ceBundl eMessageSour ce isshown in the following example:

<beans>
<bean i d="nessageSour ce"
cl ass="org. spri ngframewor k. cont ext . support. Resour ceBundl eMessageSour ce" >
<property nanme="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

In the example it is assumed you have three resource bundles defined in your classpath called f or mat ,
excepti ons and wi ndows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundlefiles are...

in format. properties
message=Al | i gators rock!

in exceptions. properties
argunent . requi red=The '{0}' argunment is required.

A program to execute the MessageSour ce functionality is shown in the next example. Remember that
al Appl i cati onCont ext implementations are also MessageSour ce implementations and so can
be cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String nmessage = resources. get Message("nmessage", null, "Default", null);
System out . printl n(message) ;

3.1 Reference Documentation 131

Spring Framework

The resulting output from the above program will be...

Al'ligators rock

So to summarize, the MessageSour ce is defined in afile called beans. xni , which exists at the root
of your classpath. The nessageSour ce bean definition refers to a number of resource bundles through
its basenamnes property. The three files that are passed in the list to the basenanes property exist as
files a the root of your classpath and ae caled format. properties,
exceptions. properties,andw ndows. properti es respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted into
Strings and inserted into placeholders in the lookup message.

<beans>

<l-- this MessageSource is being used in a web application -->

<bean i d="nessageSource" class="org.springfranmework. context.support.ResourceBundl eMessageSour ce" >
<property name="basenane" val ue="excepti ons"/>

</ bean>

<l-- lets inject the above MessageSource into this PQJO -->
<bean i d="exanpl e" cl ass="com fo0o0. Exanpl e" >

<property nanme="nessages" ref="messageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nmessages

public void set Messages(MessageSour ce nessages) {
thi s. messages = nessages
}

public void execute() {
String nmessage = this.nessages. get Message("argunent. required"
new Cbject [] {"userDao"}, "Required", null);
System out . printl n(message) ;

The resulting output from the invocation of the execut e() method will be...

The userDao argument is required

With regard to internationalization (i18n), Spring's various MessageResour ce implementations follow
the same locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and
continuing with the example messageSour ce defined previoudly, if you want to resolve messages
against the British (en-GB) locale, you would create files called f or mat _en_GB. properti es,
exceptions_en_GB. properties,andwi ndows_en_GB. properti es respectively.

3.1 Reference Documentation 132

Spring Framework

Typicaly, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

in exceptions_en_GB. properties
argunent . requi red=Ebagum | ad, the '{0}' argument is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new O assPat hXm Appl i cati onCont ext (" beans. xm ") ;
String message = resources. get Message("argunent.required",

new Cbject [] {"userDao"}, "Required", Locale.UK);

System out . printl n(message) ;

}

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argunent is required, | say, required.

You can aso use the MessageSourceAware interfface to acquire a reference to any
MessageSour ce that has been defined. Any bean that is defined in an Appl i cat i onCont ext that
implements the MessageSour ceAwar e interface is injected with the application context's
MessageSour ce when the bean is created and configured.

Note

As an alternative to ResourceBundl eMessageSource, Soring provides a
Rel oadabl eResour ceBundl eMessageSour ce class. This variant supports the same
bundle file format but is more flexible than the standard JDK based
Resour ceBundl eMessageSour ce implementation. In particular, it allows for reading
files from any Spring resource location (not just from the classpath) and supports hot
reloading of bundle property files (while efficiently caching them in between). Check out the
Rel oadabl eResour ceBundl eMessageSour ce javadoc for details.

Standard and Custom Events

Event handling in the Appl i cat i onCont ext is provided through the Appl i cati onEvent class
and Appl i cati onLi st ener interface. If a bean that implements the Appl i cati onLi st ener
interface is deployed into the context, every time an Appl i cati onEvent gets published to the
Appl i cat i onCont ext, that bean is notified. Essentially, thisis the standard Observer design pattern.
Spring provides the following standard events:

Table 4.7. Built-in Events

Event

Explanation

Cont ext Ref r eshedEventPublished when the Appl i cat i onCont ext isinitialized or refreshed,

for example, wusing the refresh() method on the
Confi gurabl eAppl i cati onCont ext interface. "Initialized" here

31

Reference Documentation 133

Spring Framework

Event

Explanation

means that all beans are loaded, post-processor beans are detected and
activated, singletons are pre-instantiated, and the
Appl i cat i onCont ext object isready for use. Aslong as the context
has not been closed, a refresh can be triggered multiple times, provided
that the chosen Appl i cati onCont ext actually supports such "hot"
refreshes. For example, Xm WebAppl i cat i onCont ext supports hot
refreshes, but Gener i cAppl i cati onCont ext doesnot.

Cont ext St art edEvent

Cont ext St oppedEvent

Published when the Appli cati onCont ext is sarted, using the
start() method on the Confi gur abl eAppli cati onCont ext
interface. "Started” here means that all Li f ecycl e beans receive an
explicit start signal. Typically this signal is used to restart beans after an
explicit stop, but it may also be used to start components that have not
been configured for autostart , for example, components that have not
aready started on initialization.

Published when the Appl i cati onCont ext is stopped, using the
stop() method on the Confi gurabl eApplicati onCont ext
interface. "Stopped” here means that all Li f ecycl e beans receive an
explicit stop signal. A stopped context may be restarted through a
start() cal.

Cont ext Cl osedEvent

Request Handl edEvent

Published when the Appl i cati onCont ext is closed, using the
cl ose() method on the Confi gur abl eAppl i cati onCont ext
interface. "Closed" here means that all singleton beans are destroyed. A
closed context reachesits end of life; it cannot be refreshed or restarted.

A web-specific event telling all beans that an HTTP request has been
serviced. This event is published after the request is complete. This event
is only applicable to web applications using Spring's
Di spat cher Servl et .

You can aso create and publish your own custom events. This example demonstrates a simple class that
extends Spring's Appl i cat i onEvent base class:

public class Bl ackLi st Event extends ApplicationEvent {
private final String address;
private final String test;

}

public Bl ackLi st Event ((bj ect source, String address, String test) {

}

super (source);

thi s. address = address;

this.test = test;

/'l accessor and ot her nethods...

31

Reference Documentation 134

Spring Framework

To publish a custom ApplicationEvent, cal the publishEvent() method on an
Appl i cati onEvent Publ i sher. Typically this is done by creating a class that implements
Appl i cati onEvent Publ i sher Awar e and registering it as a Spring bean. The following example
demonstrates such aclass:

public class Email Service inplenents ApplicationEvent Publ i sher Aware {

private List<String> bl ackLi st;
private Applicati onEvent Publisher publisher;

public void setBl ackLi st (List<String> bl ackList) {
this. blackLi st = bl ackLi st;
}

public void set ApplicationEvent Publ i sher (Appli cati onEvent Publ i sher publisher) {
thi s. publisher = publisher;
}

public void sendEnmmil (String address, String text) {
i f (bl ackLi st.contains(address)) {
Bl ackLi st Event event = new Bl ackLi st Event (this, address, text);
publ i sher. publ i shEvent (event);
return;

}

/'l send email. ..

At configuration time, the Spring container will detect that Emai | Servi ce implements
Appl i cati onEvent Publ i sher Awar e and will automatically call
set Appl i cati onEvent Publ i sher (). In redity, the parameter passed in will be the Spring
container itself; youre sSmply interacting with the application context via @ its
Appl i cati onEvent Publ i sher interface.

To receive the custom ApplicationEvent, «create a class that implements

Appl i cationLi st ener and register it as a Spring bean. The following example demonstrates such a
class:

public class Bl ackListNotifier inplenents ApplicationListener<Bl ackLi st Event > {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) ({
this.notificati onAddress = notificati onAddress;
}

public void onApplicationEvent (Bl ackLi st Event event) {
/'l notify appropriate parties via notificationAddress...
}

}

Notice that Appl i cati onLi st ener isgenerically parameterized with the type of your custom event,
Bl ackLi st Event . This means that the onAppl i cati onEvent () method can remain type-safe,
avoiding any need for downcasting. Y ou may register as many event listeners as you wish, but note that
by default event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event. One advantage of this synchronous and

31 Reference Documentation 135

Spring Framework

single-threaded approach is that when a listener recelves an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event publication
becomes necessary, refer to the JavaDoc for Spring's Appl i cati onEvent Mul ti cast er interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

<bean id="email Servi ce" cl ass="exanpl e. Emai | Servi ce">
<property nanme="bl ackLi st">
<list>
<val ue>known. spanmmer @xanpl e. or g</ val ue>
<val ue>known. hacker @xanpl e. or g</ val ue>
<val ue>j ohn. doe@xanpl e. or g</ val ue>

</list>
</ property>
</ bean>

<bean id="bl ackLi stNotifier" class="exanple.Bl ackLi stNotifier">
<property name="notificati onAddress" val ue="bl ackl i st @xanpl e. org"/>
</ bean>

Putting it all together, when the sendEmai | () method of the errai | Ser vi ce bean is called, if there
are any emails that should be blacklisted, a custom event of type Bl ackLi st Event is published. The
bl ackLi st Noti fi er bean is registered as an Appl i cati onLi st ener and thus receives the
Bl ackLi st Event , at which point it can notify appropriate parties.

Note

Spring's eventing mechanism is designed for simple communication between Spring beans
within the same application context. However, for more sophisticated enterprise integration
needs, the separately-maintained Spring Integration project provides complete support for
building lightweight, pattern-oriented, event-driven architectures that build upon the
well-known Spring programming model.

Convenient access to low-level resources

For optima usage and understanding of application contexts, users should generally familiarize
themselves with Spring's Resour ce abstraction, as described in the chapter Chapter 5, Resources.

An application context is a Resour ceLoader , which can be used to load Resour ces. A Resour ce
is essentially a more feature rich version of the JDK classj ava. net . URL, in fact, the implementations
of the Resour ce wrap an instance of j ava. net . URL where appropriate. A Resour ce can obtain
low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a simple path without any special prefixes, where those resources come from is specific
and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, Resour ceLoader Awar e, to be automatically called back at initialization time with the

31 Reference Documentation 136

http://springsource.org/spring-integration
http://www.enterpriseintegrationpatterns.com

Spring Framework

application context itself passed in as the Resour ceLoader . You can also expose properties of type
Resour ce, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resour ce properties as ssimple String paths, and rely on a specia JavaBean
Propert yEdi t or that isautomatically registered by the context, to convert those text strings to actual
Resour ce objects when the bean is deployed.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
O assPat hXm Appl i cati onCont ext treats asimple location path as a classpath location. Y ou can
also use location paths (resource strings) with specia prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

Convenient Appl i cati onCont ext instantiation for web applications

You can create Applicati onContext instances declaratively by using, for example, a
Cont ext Loader . Of course you can also create Appl i cat i onCont ext instances programmatically
by using one of the Appl i cat i onCont ext implementations.

The Cont ext Loader mechanism comes in two flavors. the Cont ext Loader Li st ener and the
Cont ext Loader Ser vl et . They have the same functionality but differ in that the listener version is
not reliable in Servlet 2.3 containers. In the Servlet 2.4 specification, Serviet context listeners must
execute immediately after the Servlet context for the web application is created and is available to service
the first request (and also when the Servlet context is about to be shut down). As such a Servlet context
listener is an ideal place to initialize the Spring Appl i cat i onCont ext . All things being equal, you
should probably prefer Cont ext Loader Li st ener ; for more information on compatibility, have a
look at the Javadoc for the Cont ext Loader Ser vl et .

You can register an Appl i cat i onCont ext using the Cont ext Loader Li st ener asfollows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<l i stener>
<l i stener-class>org. springframework. web. cont ext. Cont ext Loader Li stener</|i stener-cl ass>
</listener>

<l-- or use the ContextLoaderServlet instead of the above I|istener

<servl et >

<servl et - nane>cont ext </ ser vl et - nane>

<servl et-cl ass>org. spri ngfranmewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et -cl ass>
<l oad-on-startup>1</1| oad-on-startup>

</servlet>

-=->

The listener inspects the cont ext Conf i gLocat i on parameter. If the parameter does not exist, the
listener uses / VEEB- | NF/ appl i cat i onCont ext . xim as a default. When the parameter does exist,
the listener separates the String by using predefined delimiters (comma, semicolon and whitespace) and
uses the values as locations where application contexts will be searched. Ant-style path patterns are
supported as well. Examples are / VEEB- | NF/ * Cont ext . xm for al files with names ending with

3.1 Reference Documentation 137

Spring Framework

"Context.xml", residing in the "WEB-INF" directory, and / VEB- | NF/ **/ * Cont ext . xni , for all
such filesin any subdirectory of "WEB-INF".

You can use Cont ext Loader Ser vl et instead of Cont ext Loader Li st ener . The Servlet uses
thecont ext Confi gLocat i on parameter just as the listener does.

Deploying a Spring ApplicationContext as a J2EE RAR file

In Spring 2.5 and later, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating
the context and al of its required bean classes and library JARs in a J2EE RAR deployment unit. Thisis
the equivalent of bootstrapping a standalone ApplicationContext, just hosted in J2EE environment, being
able to access the J2EE servers facilities. RAR deployment is a more natural aternative to scenario of
deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for
bootstrapping a Spring ApplicationContext in a J2EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather consist
only of message endpoints and scheduled jobs. Beans in such a context can use application server
resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may aso register with the platform's IMX server - al through Spring's
standard transaction management and JNDI and IMX support facilities. Application components can also
interact with the application server's JCA WorkManager through Spring's TaskExecut or abstraction.

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved
in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a J2EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/raxml" deployment descriptor (as
shown in Spri ngCont ext Resour ceAdapt er s JavaDoc) and the corresponding Spring XML bean
definition file(s) (typicaly "META-INF/applicationContext.xml"), and drop the resulting RAR file into
your application server's deployment directory.

Note

Such RAR deployment units are usually self-contained; they do not expose components to the
outside world, not even to other modules of the same application. Interaction with a
RAR-based ApplicationContext usually occurs through JMS destinations that it shares with
other modules. A RAR-based ApplicationContext may also, for example, schedule some jobs,
reacting to new files in the file system (or the like). If it needs to alow synchronous access
from the outside, it could for example export RMI endpoints, which of course may be used by
other application modules on the same machine.

4.15 The BeanFactory

31 Reference Documentation 138

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

Spring Framework

The BeanFact ory provides the underlying basis for Spring's 10C functionality but it is only used
directly in integration with other third-party frameworks and is now largely historical in nature for most
users of Spring. The BeanFactory and related interfaces, such as BeanFact or yAwar e,
InitializingBean, Di sposabl eBean, are still present in Spring for the purposes of backward
compatibility with the large number of third-party frameworks that integrate with Spring. Often
third-party components that can not use more modern equivalents such as @ost Construct or
@°r eDest r oy in order to remain compatible with JDK 1.4 or to avoid a dependency on JSR-250.

This section provides additional background into the differences between the BeanFact ory and
Appl i cati onCont ext and how one might access the 10C container directly through a classic
singleton lookup.

BeanFact ory or Appl i cati onCont ext ?

Usean Appl i cat i onCont ext unlessyou have agood reason for not doing so.

Because the Appl i cat i onCont ext includes al functionality of the BeanFact ory, it is generaly
recommended over the BeanFact ory, except for a few situations such as in an Appl et where
memory consumption might be critical and a few extra kilobytes might make a difference. However, for
most typical enterprise applications and systems, the Appl i cat i onCont ext iswhat you will want to
use. Spring 2.0 and later makes heavy use of the BeanPost Pr ocessor extension point (to effect
proxying and so on). If you use only a plain BeanFact ory, a fair amount of support such as
transactions and AOP will not take effect, at least not without some extra steps on your part. This
situation could be confusing because nothing is actually wrong with the configuration.

The following table lists features provided by the BeanFact ory and Appli cati onCont ext
interfaces and implementations.

Table 4.8. Feature Matrix

Feature BeanFact ory Appl i cat i onCont ext
Bean instantiation/wiring Yes Yes
Automatic No Yes
BeanPost Pr ocessor
registration
Automatic No Yes
BeanFact or yPost Pr ocessor
registration
Convenient MessageSour ce No Yes

access (for i18n)

31 Reference Documentation 139

Spring Framework

Feature BeanFact ory Appl i cat i onCont ext

|'i cati onEvent No Yes
App
publication

To explicitly register a bean post-processor with a BeanFact or y implementation, you must write code
likethis:

Confi gur abl eBeanFactory factory = new Xm BeanFactory(...);

/'l now regi ster any needed BeanPost Processor instances
MyBeanPost Processor post Processor = new MyBeanPost Processor () ;
factory. addBeanPost Processor (post Processor) ;

/'l now start using the factory

To explicitly register a BeanFactoryPost Processor when using a BeanFactory
implementation, you must write code like this:

Xm BeanFactory factory = new Xml BeanFact ory(new Fi | eSyst enResour ce("beans. xm ")) ;

/1 bring in sone property values froma Properties file
PropertyPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setLocation(new Fi |l eSyst enmResource("j dbc. properties"));

/1 now actually do the repl acenent
cf g. post ProcessBeanFact ory(factory);

In both cases, the explicit registration step is inconvenient, which is one reason why the various
Appl i cat i onCont ext implementations are preferred above plain BeanFact or y implementations
in the vast maority of Spring-backed applications, especidly when using
BeanFact or yPost Processors and BeanPost Processors. These mechanisms implement
important functionality such as property placeholder replacement and AOP.

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served
out of a Spring 10C container, has its own dependencies supplied by the container when it is created, and
is completely unaware of the container. However, for the small glue layers of code that are sometimes
needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access to a
Spring 10C container. For example, third-party code may try to construct new objects directly
(Cl ass. for Narre() style), without the ability to get these objects out of a Spring 10C container. If the
object constructed by the third-party code is a small stub or proxy, which then uses a singleton style
access to a Spring 10C container to get areal object to delegate to, then inversion of control has still been
achieved for the majority of the code (the object coming out of the container). Thus most code is till
unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing
benefits. EIBs may also use this stub/proxy approach to delegate to a plain Java implementation object,
retrieved from a Spring 10C container. While the Spring 10C container itself ideally does not have to be a

3.1 Reference Documentation 140

Spring Framework

singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in the
Spring 10C container such as a Hibernate Sessi onFact ory) for each bean to use its own,
non-singleton Spring 1oC container.

Looking up the application context in a service locator style is sometimes the only option for accessing
shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share a
single ApplicationContext as a parent to WebA pplicationContexts across WAR files. In this case you
should ook into using the utility class Cont ext Si ngl et onBeanFact or yLocat or locator that is
described in this SpringSource team blog entry.

3.1 Reference Documentation 141

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://blog.springsource.com/2007/06/11/using-a-shared-parent-application-context-in-a-multi-war-spring-application/

Spring Framework

5. Resources

5.1 Introduction

Javas standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are
not quite adequate enough for all access to low-level resources. For example, there is no standardized
URL implementation that may be used to access a resource that needs to be abtained from the classpath,
or relative to a Ser vl et Cont ext . While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixessuch asht t p:), thisis generaly quite complicated, and
the URL interface till 1acks some desirable functionality, such as a method to check for the existence of
the resource being pointed to.

5.2 The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting access to low-level
resources.
public interface Resource extends | nput StreanSource {
bool ean exists();
bool ean i sOpen();
URL get URL() throws | OException;
File getFile() throws | OException;
Resource createRel ative(String relativePath) throws | OException;
String getFilenane();

String getDescription();

public interface |nputStreanSource {

I nput Stream get | nput Strean{) throws | CExcepti on;
}

Some of the most important methods from the Resour ce interface are:

e get | nput St ream() : locates and opens the resource, returning an | nput St r eamfor reading from
the resource. It is expected that each invocation returns afresh | nput St r eam It is the responsibility
of the caller to close the stream.

* exi sts():returnsabool ean indicating whether this resource actually existsin physical form.

* i sQpen(): returns a bool ean indicating whether this resource represents a handle with an open

3.1 Reference Documentation 142

Spring Framework

stream. If t r ue, the | nput St r eamcannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be f al se for al usua resource implementations, with the
exception of | nput St r eanResour ce.

e getDescription(): returns a description for this resource, to be used for error output when
working with the resource. Thisis often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fi | e object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is heeded. Other methods in some Spring APIs (such as the constructors to
various Appl i cat i onCont ext implementations), takea St r i ng which in unadorned or simple form
is used to create a Resour ce appropriate to that context implementation, or via special prefixes on the
St ri ng path, allow the caller to specify that a specific Resour ce implementation must be created and
used.

While the Resour ce interface is used alot with Spring and by Spring, it's actually very useful to use as
a genera utility class by itself in your own code, for access to resources, even when your code doesn't
know or care about any other parts of Spring. While this couples your code to Spring, it realy only
couples it to this small set of utility classes, which are serving as a more capable replacement for URL,
and can be considered equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where
possible. For example, aUr | Resour ce wrapsaURL, and uses the wrapped URL to do its work.

5.3 Built-in Resour ce implementations

There are anumber of Resour ce implementations that come supplied straight out of the box in Spring:

Ur | Resource

The Ur | Resour ce wraps aj ava. net. URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLSs have a standardized
St ri ng representation, such that appropriate standardized prefixes are used to indicate one URL type
from another. Thisincludesf i | e: for accessing filesystem paths, ht t p: for accessing resources viathe
HTTP protocol, f t p: for accessing resources via FTP, etc.

A Ur | Resour ce iscreated by Java code explicitly using the Ur | Resour ce constructor, but will often
be created implicitly when you call an APl method which takes a St r i ng argument which is meant to
represent a path. For the latter case, a JavaBeans Pr oper t yEdi t or will ultimately decide which type
of Resour ce to create. If the path string contains a few well-known (to it, that is) prefixes such as
cl asspat h: , it will create an appropriate specialized Resour ce for that prefix. However, if it doesn't
recognize the prefix, it will assume the this is just a standard URL string, and will create a

3.1 Reference Documentation 143

Spring Framework

Ur | Resour ce.

Cl assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or agiven class for loading resources.

This Resour ce implementation supports resolution as j ava. i 0. Fi | e if the class path resource
residesin the file system, but not for classpath resources which reside in ajar and have not been expanded
(by the serviet engine, or whatever the environment is) to the filesystem. To address this the various
Resour ce implementations always support resolution asaj ava. net . URL.

A C assPat hResource is created by Java code explicitly using the Cl assPat hResour ce
constructor, but will often be created implicitly when you call an APl method which takes a Stri ng
argument which is meant to represent a path. For the latter case, a JavaBeans Pr oper t yEdi t or will
recognize the special prefix cl asspat h: on the string path, and create a C assPat hResour ce in
that case.

Fi | eSyst enResour ce

ThisisaResour ce implementation for j ava. i 0. Fi | e handles. It obviously supports resolution as a
File,andasaURL.

Ser vl et Cont ext Resour ce

This is a Resour ce implementation for Ser vl et Cont ext resources, interpreting relative paths
within the relevant web application's root directory.

This always supports stream access and URL access, but only allowsj ava. i 0. Fi | e access when the
web application archive is expanded and the resource is physically on the filesystem. Whether or not it's
expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB
(it'sconceivable) is actually dependent on the Servlet container.

| nput St r eanResour ce

A Resour ce implementation for a given | nput St r eam This should only be used if no specific
Resour ce implementation is applicable. In particular, prefer Byt eAr r ayResour ce or any of the
file-based Resour ce implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource -
therefore returning t r ue from i sOpen() . Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

3.1 Reference Documentation 144

Spring Framework

Byt eArr ayResour ce

ThisisaResour ce implementation for a given byte array. It creates aByt eAr r ayl nput St r eamfor
the given byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nput St r eanResour ce.

5.4 The Resour ceLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resour ce instances.

public interface ResourceLoader {

Resour ce get Resource(String |ocation);
}

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn't have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
C assPat hXm Appl i cati onCont ext instance:

Resource tenpl ate = ctx. get Resource("sone/ resource/ path/ nyTenpl ate.txt");

What would be returned would be a Cl assPat hResour ce; if the same method was executed against a
Fi | eSyst emXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For
aWebAppl i cati onCont ext , you'd get back aSer vl et Cont ext Resour ce, and so on.

As such, you can load resources in afashion appropriate to the particular application context.

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

Resource tenplate = ctx. get Resource("cl asspat h: sone/ resour ce/ pat h/ myTenpl ate. txt");

Similarly, one can forceaUr | Resour ce to be used by specifying any of the standard j ava. net . URL
prefixes:

Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenplate.txt");

Resource tenpl ate = ctx. get Resource("http://nyhost.coniresource/ path/ nyTenpl ate.txt");

The following table summarizes the strategy for converting St ri ngsto Resour ces:

3.1 Reference Documentation 145

Spring Framework

Table 5.1. Resource strings

Prefix Example Explanation
classpath: cl asspat h: com nyapp/ confli@pdedfrom the classpath.
file: file:/datal/config.xm Loaded as a URL, from the
filesystem. !
http: http://myserver/| ogo. png-oaded asa URL.
(none) [dat a/ config. xm Depends on the underlying

Appl i cati onCont ext .

But see al'so the section called * FileSystemResource caveats’.

5.5 The Resour ceLoader Awar e interface

The Resour ceLoader Awar e interface is a specia marker interface, identifying objects that expect to
be provided with aResour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour ceLoader (Resour ceLoader resourcelLoader);

}

When a class implements Resour ceLoader Awar e and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour ceLoader Awar e by the application context. The
application context will then invoke the set Resour ceLoader (Resour ceLoader), supplying
itself as the argument (remember, all application contexts in Spring implement the Resour ceLoader
interface).

Of course, since an Appl i cat i onCont ext isaResour ceLoader , the bean could also implement
the Appl i cat i onCont ext Awar e interface and use the supplied application context directly to load
resources, but in general, it's better to use the specialized Resour ceLoader interface if that's all that's
needed. The code would just be coupled to the resource loading interface, which can be considered a
utility interface, and not the whole Spring Appl i cat i onCont ext interface.

As of Spring 2.5, you can rely upon autowiring of the Resour ceLoader as an alternative to
implementing the Resour ceLoader Awar e interface. The "traditional” const r uct or and by Type
autowiring modes (as described in the section caled “Autowiring collaborators’) are now capable of
providing a dependency of type Resour ceLoader for either a constructor argument or setter method
parameter respectively. For more flexibility (including the ability to autowire fields and multiple
parameter methods), consider using the new annotation-based autowiring features. In that case, the

3.1 Reference Documentation 146

Spring Framework

Resour ceLoader will be autowired into a field, constructor argument, or method parameter that is
expecting the Resour ceLoader type aslong as the field, constructor, or method in question carries the
@\ut owi r ed annotation. For more information, see the section called “ @Autowired”.

5.6 Resour ces as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the Resour ceLoader interface to load resources.
Consider as an example the loading of atemplate of some sort, where the specific resource that is needed
depends on the role of the user. If the resources are static, it makes sense to eliminate the use of the
Resour ceLoader interface completely, and just have the bean expose the Resour ce properties it
needs, and expect that they will beinjected into it.

What makes it trivial to then inject these properties, is that al application contexts register and use a
special JavaBeans Pr opert yEdi t or which can convert St ri ng paths to Resour ce objects. So if
myBean has a template property of type Resour ce, it can be configured with a smple string for that
resource, as follows:

<bean id="nyBean" class="...">
<property name="tenpl ate" val ue="sone/ resource/ path/ myTenpl ate.txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as
the Resour ceLoader, the resource itself will be loaded via a C assPat hResource,
Fi | eSyst enResour ce, or Ser vl et Cont ext Resour ce (as appropriate) depending on the exact
type of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following
two examples show how to force aCl assPat hResour ce and aUr | Resour ce (the latter being used
to access afilesystem file).

<property name="tenpl ate" val ue="cl asspat h: some/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" val ue="file:/sone/resourcel/ path/ myTenpl ate.txt"/>

5.7 Application contexts and Resour ce paths

Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or
array of strings as the location path(s) of the resource(s) such as XML files that make up the definition of
the context.

When such a location path doesn't have a prefix, the specific Resour ce type built from that path and

3.1 Reference Documentation 147

Spring Framework

used to load the bean definitions, depends on and is appropriate to the specific application context. For
example, if you create aC assPat hXni Appl i cati onCont ext asfollows:

Appl i cationContext ctx = new C assPat hXml Appl i cati onCont ext (" conf/appContext.xm ");

The bean definitions will be loaded from the classpath, asa C assPat hResour ce will be used. But if
you createaFi | eSyst enXm Appl i cat i onCont ext asfollows:

Appl i cationContext ctx =
new Fi |l eSyst emXm Appl i cati onCont ext (" conf/appCont ext.xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will
override the default type of Resource created to load the definition. So this
Fi | eSyst enXml Appl i cati onCont ext ...

ApplicationContext ctx =
new Fi | eSyst emXm Appl i cati onCont ext (" cl asspat h: conf/appCont ext. xm ") ;

will actually load its bean definitions from the classpath. However, it is dill a
Fi | eSyst enXml Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader , any
unprefixed paths will still be treated as filesystem paths.

Constructing Cl assPat hXn Appl i cati onCont ext instances - shortcuts

The d assPat hXm Appl i cati onCont ext exposes a humber of constructors to enable convenient
instantiation. The basic ideais that one supplies merely a string array containing just the filenames of the
XML files themselves (without the leading path information), and one also supplies a d ass; the
Cl assPat hXm Appl i cati onCont ext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
services. xm
daos. xm
Messenger Servi ce. cl ass

A O assPat hXm Appl i cationCont ext instance composed of the beans defined in the
"services.xm' and' daos. xm ' could beinstantiated like so...

Appl i cationContext ctx = new O assPat hXm Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Service. cl ass);

Please do consult the Javadocs for the O assPat hXm Appl i cati onCont ext classfor details of the
various constructors.

3.1 Reference Documentation 148

Spring Framework

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown above)
which has a one-to-one mapping to a target Resource, or alternately may contain the special "classpath* :"
prefix and/or internal Ant-style regular expressions (matched using Spring's Pat hivat cher utility).
Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can
‘publish’ context definition fragments to a well-known location path, and when the final application
context is created using the same path prefixed via cl asspat h*: , al component fragments will be
picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when
using the Pat hMat cher utility class hierarchy directly), and is resolved at construction time. It has
nothing to do with the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to
construct an actual Resour ce, as aresource pointsto just one resource at atime.

Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/ WWEB- | NF/ *- cont ext . xni

com nyconpany/ **/ appl i cati onCont ext . xm

file:C /sone/path/*-context.xnl

cl asspat h: conf myconpany/ **/ appl i cati onCont ext . xmi

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If thisURL isnot a
"jar:" URL or container-specific variant (e.g. "zi p: " in WebLogic, "wsj ar " in WebSphere, etc.), then a
java.io. Fil e isobtained from it and used to resolve the wildcard by traversing the filesystem. In the
case of a jar URL, the resolver either gets aj ava. net . Jar URLConnect i on from it or manually
parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is aready a file URL (either explicitly, or implicitly because the base
Resour ceLoader isafilesystem one, then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL viaad assl oader . get Resour ce() call. Sincethisisjust anode of the path (not the
file a the end) it is actually undefined (in the C assLoader Javadocs) exactly what sort of a URL is
returned in this case. In practice, it is always aj ava. i 0. Fi | e representing the directory, where the
classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath
resource resolvesto ajar location. Still, thereis a portability concern on this operation.

If ajar URL is obtained for the last non-wildcard segment, the resolver must be able to get a

3.1 Reference Documentation 149

Spring Framework

j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the
contents of the jar, and resolve the wildcard. This will work in most environments, but will fail in others,
and it is strongly recommended that the wildcard resolution of resources coming from jars be thoroughly
tested in your specific environment before you rely on it.

The cl asspat h*: prefix

When constructing an XML-based application context, a location string may use the specid
cl asspat h*: prefix:

ApplicationContext ctx =
new C assPat hXm Appl i cati onCont ext ("cl asspat h*: conf/appCont ext. xm ");

This special prefix specifies that al classpath resources that match the given name must be obtained
(internally, this essentially happens via a C assLoader. get Resources(...) cal), and then
merged to form the final application context definition.

Classpath*: portability

The wildcard classpath relies on the get Resources() method of the underlying
classloader. As most application servers nowadays supply their own classloader
implementation, the behavior might differ especially when dealing with jar files. A simple

test to check if cl asspat h* worksis to use the classloader to load a file from within a jar

on the classpath:

get d ass() . get C assLoader (). get Resour ces("<soneFi | el nsi deTheJar>").
Try this test with files that have the same name but are placed inside two different locations.

In case an inappropriate result is returned, check the application server documentation for
settings that might affect the classloader behavior.

The "cl asspat h*: " prefix can also be combined with a Pat hMat cher pattern in the rest of the
location path, for example "cl asspat h*: META- | NF/ *- beans. xm ". In this case, the resolution
strategy is fairly simple: a ClassL oader.getResources() call is used on the last non-wildcard path segment
to get al the matching resources in the class loader hierarchy, and then off each resource the same
PathMatcher resoltion strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that "cl asspat h*: " when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file system.
This meansthat apattern like "cl asspat h*: *. xm " will not retrieve files from the root of jar files but
rather only from the root of expanded directories. This originates from a limitation in the JDK's
Cl assLoader. get Resour ces() method which only returns file system locations for a passed-in
empty string (indicating potential roots to search).

Ant-style patterns with "cl asspat h: " resources are not guaranteed to find matching resources if the
root package to search is available in multiple class path locations. Thisis because aresource such as

31 Reference Documentation 150

Spring Framework

com nyconpany/ packagel/ servi ce- cont ext . xmi

may be in only one location, but when a path such as

cl asspat h: conf myconpany/ **/ servi ce- cont ext . xm

is used to try to resolve it, the resolver will work off the (first) URL returned by
get Resour ce("com myconpany") ;. If this base package node exists in multiple classloader
locations, the actual end resource may not be underneath. Therefore, preferably, use "cl asspat h*: "
with the same Ant-style pattern in such a case, which will search al class path locations that contain the
root package.

Fi | eSyst enResour ce caveats

A Fi | eSyst enResour ce that isnot attached to aFi | eSyst emAppl i cati onCont ext (thatis, a
Fi | eSyst emAppl i cati onCont ext is not the actua Resour ceLoader) will treat absolute vs.
relative paths as you would expect. Relative paths are relative to the current working directory, while
absolute paths are relative to the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes when the
Fi | eSyst emAppl i cat i onCont ext is the Resour ceLoader . The
Fi | eSyst emAppl i cati onCont ext simply forces all attached Fi | eSyst emResour ce instances
to treat all location paths as relative, whether they start with aleading slash or not. In practice, this means
the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst emXm Appl i cati onCont ext ("conf/context.xm");

Appl i cationContext ctx =
new Fi |l eSyst emXm Appl i cati onCont ext ("/conf/context.xm");

As are the following: (Even though it would make sense for them to be different, as one case is relative
and the other absolute.)

Fi | eSyst enXm Appl i cati onContext ctx = ...;
ct x. get Resour ce("sone/ resour ce/ path/ nyTenpl ate. txt");

Fi | eSyst enXm Appl i cati onContext ctx = ...;
ct x. get Resour ce("/ some/ resour ce/ pat h/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
Fi | eSyst enResource / Fil eSyst enXm Appl i cati onCont ext, and just force the use of a
Ur | Resour ce, by usingthefi | e: URL prefix.

/] actual context type doesn't matter, the Resource will always be Url Resource
ctx. get Resource("file:/sonme/ resource/ path/ myTenpl ate. txt");

/'l force this FileSystemXm ApplicationContext to load its definition via a Ul Resource

3.1 Reference Documentation 151

Spring Framework

ApplicationContext ctx =

new Fi | eSyst enXm Appl i cati onContext ("file:/conf/context.xm");

31

Reference Documentation

152

Spring Framework

6. Validation, Data Binding, and Type Conversion

6.1 Introduction

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation should not
be tied to the web tier, should be easy to localize and it should be possible to plug in any validator
available. Considering the above, Spring has come up with a Val i dat or interface that is both basic
ands eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an
application (or whatever objects you use to process user input). Spring provides the so-caled
Dat aBi nder to do exactly that. The Val i dat or and the Dat aBi nder make up the val i dati on
package, which is primarily used in but not limited to the MV C framework.

The BeanW apper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanW apper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will explain the
BeanW apper in this chapter since, if you were going to use it at all, you would most likely do so when
trying to bind data to objects.

Spring's DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format
property values. The Pr opert yEdi t or concept is part of the JavaBeans specification, and is also
explained in this chapter. Spring 3 introduces a "core.convert” package that provides a genera type
conversion facility, as well as a higher-level "format" package for formatting Ul field values. These new
packages may be used as simpler aternatives to PropertyEditors, and will aso be discussed in this
chapter.

6.2 Validation using Spring's Val i dat or interface

Spring features a Val i dat or interface that you can use to validate objects. The Val i dat or interface
works using an Err or s object so that while validating, validators can report validation failures to the
Er r or s object.

Let's consider asmall data object:

public class Person {

private String nane;
private int age;

/'l the usual getters and setters...

}

31 Reference Documentation 153

Spring Framework

WEe're going to provide validation behavior for the Per son class by implementing the following two

methods of theor g. spri ngf r amewor k. val i dati on. Val i dat or interface:

e supports(d ass) - CanthisVal i dat or validate instances of the supplied Cl ass?

« val i dat e(Obj ect, org.springfranmework. validation. Errors) - vaidatesthe given
object and in case of validation errors, registers those with the given Er r or s object

Implementing a Val i dator is farly straightforward, especially when you know of the
Val i dati onUti | s helper class that the Spring Framework also provides.

public class PersonValidator inplenents Validator {

/**
* This Validator validates just Person instances
*/
publ i c bool ean supports(d ass clazz) {
return Person. cl ass. equal s(cl azz);
}

public void validate(Qbject obj, Errors e) {
ValidationUils.rejectlfEnmpty(e, "nane", "name.enmpty");
Person p = (Person) obj
if (p.getAge() < 0) {

e.reject Val ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rej ectVal ue("age", "too.darn.old");

}

Asyou can see thestaticreject|fEnmpty(..) methodontheVal i dationUtil s classisused
to rgject the ' nane' property if it is nul | or the empty string. Have a look at the Javadoc for the
Val i dati onUti | s classto see what functionality it provides besides the example shown previoudly.

While it is certainly possible to implement a single Val i dat or class to validate each of the nested
objectsin arich object, it may be better to encapsulate the validation logic for each nested class of object
initsown Val i dat or implementation. A simple example of a'rich' object would be a Cust omrer that
is composed of two St ri ng properties (a first and second name) and a complex Addr ess object.
Addr ess objects may be used independently of Customer objects, and so a distinct
Addr essVal i dat or has been implemented. If you want your Cust orrer Val i dat or to reuse the
logic contained within the Addr essVal i dat or class without resorting to copy-and-paste, you can
dependency-inject or instantiate an Addr essVal i dat or within your Cust oner Val i dat or, and
useit like so:

public class CustonerValidator inplenents Validator {
private final Validator addressVali dator

publ i c CustonerValidator(Validator addressValidator) {

if (addressValidator == null) {
throw new ||| egal Argunent Excepti on(
"The supplied [Validator] is required and nust not be null.");

if (!addressVali dator. supports(Address.class)) {
throw new |11 egal Argunent Excepti on(
"The supplied [Validator] nust support the validation of [Address] instances.");

31 Reference Documentation 154

Spring Framework

thi s. addressVal i dator = addressVal i dator;

}
/**
* This Validator validates Custoner instances, and any subcl asses of Custoner too
*/
publ i c bool ean supports(d ass clazz) {
return Custoner.cl ass.isAssi gnabl eFron{cl azz);
}

public void validate(Ooject target, Errors errors) {
Val idationUils.rejectlfEnptyO Witespace(errors, "firstNane", "field.required");

Val idationUils.rejectlfEnmptyO Wiitespace(errors, "surnanme", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("addr ess") ;
Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);

} finally {
errors. popNest edPat h() ;
}

}

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MVC
you can use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect the
errors object yourself. More information about the methods it offers can be found from the Javadoc.

6.3 Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errorsis
the last thing we need to discuss. In the example we've shown above, we rejected the nane and the age
field. If we're going to output the error messages by using a MessageSour ce, we will do so using the
error code weve given when regjecting the field (‘name' and 'age’ in this case). When you call (either
directly, or indirectly, using for example the Val i dati onUti | s class) r ej ect Val ue or one of the
other r ej ect methods from the Er r or s interface, the underlying implementation will not only register
the code you've passed in, but also a number of additional error codes. What error codes it registers is
determined by the MessageCodesResolver that is used By default, the
Def aul t MessageCodesResol ver isused, which for example not only registers a message with the
code you gave, but also messages that include the field hame you passed to the reject method. So in case
you regect a field using rejectValue("age", "too.darn.old"), apat from the
too. darn. ol d code, Spring will aso register t 0oo. darn. ol d. age and
t 0o. darn. ol d. age. i nt (sothefirst will include the field name and the second will include the type
of the field); thisis done as a convenience to aid devel opersin targeting error messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online with
the Javadocs for M essageCodesResolver and DefaultM essageCodesResolver respectively.

6.4 Bean manipulation and the BeanW apper

Theor g. spri ngf ramewor k. beans package adheres to the JavaBeans standard provided by Sun. A

31 Reference Documentation 155

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/MessageCodesResolver.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html

Spring Framework

JavaBean is simply a class with a default no-argument constructor, which follows a naming convention
where (by way of an example) a property named bi ngoMadness would have a setter method
set Bi ngoMadness(..) and a getter method get Bi ngoMadness() . For more information about
JavaBeans and the specification, please refer to Sun's website (java.sun.com/products/javabeans).

One quite important class in the beans package is the BeanW apper interface and its corresponding
implementation (BeanW apper | npl). As quoted from the Javadoc, the BeanW apper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and to query
properties to determine if they are readable or writable. Also, the BeanW apper offers support for
nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then, the
BeanW apper supports the ability to add standard JavaBeans Pr opert yChangeli st eners and
Vet oabl eChangeli st ener s, without the need for supporting code in the target class. Last but not
least, the BeanW apper provides support for the setting of indexed properties. The BeanW apper
usually isn't used by application code directly, but by the Dat aBi nder and the BeanFact ory.

The way the BeanW apper worksis partly indicated by its name: it wraps a bean to perform actions on
that bean, like setting and retrieving properties.

Setting and getting basic and nested properties

Setting and getting properties is done using the setPropertyVvalue(s) and
get Propert yVal ue(s) methods that both come with a couple of overloaded variants. They're all
described in more detail in the Javadoc Spring comes with. What's important to know is that there are a
couple of conventions for indicating properties of an object. A couple of examples:

Table 6.1. Examples of properties

Expression Explanation

nane Indicates the property nanme corresponding to the methods get Narme() or
i sName() andset Narme(. .)

account . nane Indicates the nested property nane of the property account corresponding
eg. to the methods get Account () . set Nane() or
get Account () . get Nane()

account [2] Indicates the third element of the indexed property account. Indexed
properties can be of typear ray, | i st or other naturally ordered collection

account [COVPANYNAMHEHI cates the value of the map entry indexed by the key COMPANYNAME of
the Map property account

Below you'll find some examples of working with the BeanW apper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the BeanW apper
directly. If you're just using the Dat aBi nder and the BeanFact ory and their out-of-the-box

31 Reference Documentation 156

http://java.sun.com/products/javabeans/

Spring Framework

implementation, you should skip ahead to the section about Pr oper t yEdi t or s.)

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee managi ngDirector;

public String get Name() ({
return this.nane;
}

public void setNane(String nanme) {
thi s. nane = nane;

}

publ i c Enpl oyee get Managi ngDi rector () {
return this.nmanagi ngDirector;

}

public voi d set Managi ngDirect or (Enpl oyee managi ngbDirector) {
t hi s. managi ngDi rect or = nanagi ngDi rector;

}

public class Enpl oyee {
private String nane;
private float salary;

public String get Name() ({
return this.nane;
}

public void setNane(String nanme) {
this. name = name;

}

public float getSalary() {
return sal ary;

}

public void setSalary(float salary) {
this.salary = salary;

}

The following code snippets show some examples of how to retrieve and manipulate some of the
properties of instantiated Conpani es and Enpl oyees:

BeanW apper conpany = BeanW apper | npl (new Conpany());
/] setting the conpany nane..

conpany. set PropertyVal ue("nane", "Sone Conpany Inc.");
/1 ... can also be done like this:
PropertyVal ue val ue = new PropertyVal ue("nane", "Sone Conpany Inc.");

conpany. set PropertyVal ue(val ue) ;

/1 ok, let's create the director and tie it to the conpany:

BeanW apper jim = BeanW apper| npl (new Enpl oyee());

jimsetPropertyVal ue("nane", "Jim Stravinsky");

conpany. set PropertyVal ue(" managi ngDirector", jim getWappedl nstance());

/] retrieving the salary of the nanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.getPropertyVal ue("managi ngDi rector.salary");

Built-in PropertyEditor implementations

3.1 Reference Documentation 157

Spring Framework

Spring uses the concept of Pr opert yEdi t ors to effect the conversion between an Cbj ect and a
String. If you think about it, it sometimes might be handy to be able to represent properties in a
different way than the object itself. For example, a Dat e can be represented in a human readable way (as
the String '2007- 14- 09", while were still able to convert the human readable form back to the
original date (or even better: convert any date entered in a human readable form, back to Dat e objects).
This behavior can be achieved by registering custom editors, of type
j ava. beans. Propert yEdi t or . Registering custom editors on a BeanW apper or aternately in a
specific 10C container as mentioned in the previous chapter, gives it the knowledge of how to convert
properties to the desired type. Read more about PropertyEditors in the Javadoc of the
j ava. beans package provided by Sun.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done using PropertyEditors. When mentioning
java. |l ang. Stri ng asthe value of a property of some bean you're declaring in XML file, Spring
will (if the setter of the corresponding property has a O ass-parameter) use the Cl assEdi t or totry
to resolve the parameter to aCl ass object.

e parsing HTTP request parameters in Spring's MVC framework is done using al kinds of
Pr opert yEdi t or s that you can manualy bind in all subclasses of the CommandCont r ol | er.

Spring has a number of built-in Pr oper t yEdi t or s to make life easy. Each of those is listed below and
they are all located in the or g. spri ngf ramewor k. beans. propertyedit ors package. Most,
but not al (as indicated below), are registered by default by BeanW apper | npl . Where the property
editor is configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 6.2. Built-in Pr opert yEdi t or s

Class Explanation

Byt eArrayPropertyEditor Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanW apper | npl .

Cl assEdit or Parses Strings representing classes to actual classes and the
other way around. When a class is not found, an
1l egal Argunent Excepti on is thrown. Registered by
default by BeanW apper | npl .

Cust onBool eanEdi t or Customizable property editor for Bool ean properties.
Registered by default by BeanW apper | npl , but, can be
overridden by registering custom instance of it as custom editor.

Cust omCol | ecti onEdi t or Property editor for Collections, converting any source
Col | ecti on toagiventarget Col | ecti on type.

Cust onDat eEdi t or Customizable property editor for java.util.Date, supporting a
custom DateFormat. NOT registered by default. Must be user

31 Reference Documentation 158

Spring Framework

Class Explanation
registered as needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number subclass like
I nt eger, Long, Fl oat, Doubl e. Registered by default by
BeanW apper | npl , but can be overridden by registering
custom instance of it as a custom editor.

Fi | eEditor Capable of resolving Strings to j ava.io. Fil e abjects.
Registered by default by BeanW apper | npl .

| nput St reankdi t or One-way property editor, capable of taking a text string and
producing (via an intermediate Resour ceEdi tor and
Resource) anl nput St ream so | nput St r eamproperties
may be directly set as Strings. Note that the default usage will
not close the | nput St r eamfor you! Registered by default by
BeanW apper | npl .

Local eEdi t or Capable of resolving Strings to Local e objects and vice versa
(the String format is [language] _[country]_[variant], which is
the same thing the toString() method of Locale provides).
Registered by default by BeanW apper | npl .

Pat t er nEdi t or Capable of resolving Strings to JDK 1.5 Pat t er n objects and
vice versa.
PropertiesEditor Capable of converting Strings (formatted using the format as

defined in the Javadoc for the javalang.Properties class) to
Properties objects. Registered by default by
BeanW apper | npl .

StringTrimrer Edi tor Property editor that trims Strings. Optionally allows
transforming an empty string into a null vaue. NOT
registered by default; must be user registered as needed.

URLEdi t or Capable of resolving a String representation of a URL to an
actual URL object. Registered by default by
BeanW apper | npl .

Spring usesthe j ava. beans. Propert yEdi t or Manager to set the search path for property editors
that might be needed. The search path aso includes sun. bean. editors, which includes
Propert yEdi t or implementations for types such as Font , Col or, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover Pr opert yEdi t or
classes (without you having to register them explicitly) if they are in the same package as the class they
handle, and have the same name as that class, with ' Edi t or' appended; for example, one could have
the following class and package structure, which would be sufficient for the FooEdi t or class to be
recognized and used asthe Pr oper t yEdi t or for Foo-typed properties.

31 Reference Documentation 159

Spring Framework

com
chank

pop
Foo
FooEdi t or /1 the PropertyEditor for the Foo class

Note that you can also use the standard Beanl nf o JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly
registering one or more Pr oper t yEdi t or instances with the properties of an associated class.

com
chank

pop
Foo
FooBeanl nf o /! the Beanlnfo for the Foo class

Here is the Java source code for the referenced FooBeanl nf o class. This would associate a
Cust omNunber Edi t or with theage property of the Foo class.

public cl ass FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {

try {
final PropertyEditor number PE = new Cust omNunber Edi t or (| nt eger. cl ass, true);

PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
publ i c PropertyEditor createPropertyEditor(Object bean) {
return nunber PE;

b
H
return new PropertyDescriptor[] { ageDescriptor };

catch (IntrospectionException ex) {
throw new Error(ex.toString());
}

Registering additional custom Pr opert yEdi t ors

When setting bean properties as a string value, a Spring 10C container ultimately uses standard JavaBeans
Pr opert yEdi t or s to convert these Strings to the complex type of the property. Spring pre-registers a
number of custom Pr opert yEdi t or s (for example, to convert a classname expressed as a string into a
real Cl ass object). Additionally, Javas standard JavaBeans Pr opert yEdi t or lookup mechanism
alows a Propert yEdi tor for a class simply to be named appropriately and placed in the same
package as the classit provides support for, to be found automatically.

If there is a need to register other custom Pr oper t yEdi t or s, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use the
regi st er Cust ondi t or () method of the Confi gur abl eBeanFact ory interface, assuming
you have a BeanFact or y reference. Another, slightly more convenient, mechanism is to use a specia
bean factory post-processor caled CustonEditorConfigurer. Although bean factory
post-processors can be used with BeanFact or y implementations, the Cust onEdi t or Conf i gur er
has a nested property setup, so it is strongly recommended that it is used with the

31 Reference Documentation 160

http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html
http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html

Spring Framework

Appl i cati onCont ext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a BeanW apper to handle property conversions. The
standard property editors that the BeanW apper registers are listed in the previous section.
Additionally, Appl i cat i onCont ext s aso override or add an additional number of editors to handle
resource lookups in a manner appropriate to the specific application context type.

Standard JavaBeans Pr opert yEdi t or instances are used to convert property values expressed as
strings to the actual complex type of the property. Cust onEdi t or Conf i gur er, a bean factory
post-processor, may be used to conveniently add support for additional Pr oper t yEdi t or instances to
an Appl i cati onCont ext .

Consider a user class Exoti cType, and another class DependsOnExoti cType which needs
Exoti cType set asaproperty:
package exanpl e;
public class ExoticType {
private String nane;

public ExoticType(String nanme) ({
thi s. nane = nane;
}

}
public class DependsOnExoticType {
private ExoticType type;

public void set Type(ExoticType type) {
this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Proper t yEdi t or will behind the scenes convert into an actual Exot i c Ty pe instance:

<bean id="sanpl e" cl ass="exanpl e. DependsOnExot i cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

ThePr oper t yEdi t or implementation could look similar to this:

/'l converts string representation to ExoticType object
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText(String text) {
set Val ue(new Exoti cType(text.toUpperCase()));
}

3.1 Reference Documentation 161

Spring Framework

Finally, we use Cust onEdi t or Confi gurer to register the new PropertyEditor with the
Appl i cat i onCont ext , which will then be able to use it as needed:

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="cust onkditors">
<map>
<entry key="exanpl e. Exoti cType" val ue="exanpl e. Exoti cTypeEdi tor"/>
</ map>
</ property>
</ bean>

Using Propert yEdi t or Regi strars

Another mechanism for registering property editors with the Spring container is to create and use a
Propert yEdi t or Regi strar . Thisinterfaceis particularly useful when you need to use the same set
of property editors in several different situations. write a corresponding registrar and reuse that in each
case. PropertyEditorRegistrars work in conjunction with an interfface caled
Propert yEdi t or Regi stry, an interface that is implemented by the Spring BeanW apper (and
Dat aBi nder). PropertyEditorRegistrars are particularly convenient when used in
conjunction with the Cust onedi t or Conf i gur er (introduced here), which exposes a property called
setPropertyEditorRegi strars(..): PropertyEditorRegistrars added to a
Cust onEdi t or Confi gur er in this fashion can easily be shared with Dat aBi nder and Spring
MVC Control | ers. Furthermore, it avoids the need for synchronization on custom editors: a
Propert yEdi t or Regi strar is expected to create fresh Propert yEdi t or instances for each
bean creation attempt.

Using aPr opert yEdi t or Regi st r ar is perhaps best illustrated with an example. First off, you need
to create your own Pr oper t yEdi t or Regi st r ar implementation:
package com fo0o. editors. spring;
public final class CustonPropertyEditorRegistrar inplenents PropertyEditorRegistrar {
public void registerCustontditors(PropertyEditorRegistry registry) {

/1 it is expected that new PropertyEditor instances are created
regi stry. regi st er Cust onkdi t or (Exoti cType. cl ass, new ExoticTypeEditor());

/'l you could register as many custom property editors as are required here...

See also the or g. spri ngframewor k. beans. support. Resour ceEdi t or Regi strar for an
example Propert yEdi t or Regi st rar implementation. Notice how in its implementation of the
regi ster Cust onkdi t or s(. .) method it creates new instances of each property editor.

Next we configure a CustonkditorConfigurer and inject an instance of our
Cust onPr opert yEdi t or Regi st rar intoit:

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="propertyEditorRegistrars">
<list>
<ref bean="custonPropertyEditorRegistrar"/>

3.1 Reference Documentation 162

Spring Framework

</list>
</ property>
</ bean>

<bean i d="cust onPropertyEdi tor Regi strar"
cl ass="com f 0o. edi tors. spri ng. Cust onPr opert yEdi t or Regi strar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC
web framework, using PropertyEditorRegi strars in conunction with data-binding
Control |l ers (suchas Si npl eFor nCont r ol | er) can be very convenient. Find below an example
of usingaPr opert yEdi t or Regi st rar intheimplementation of ani ni t Bi nder (..) method:

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;
publ i c Regi sterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
thi s. cust onPropertyEdi torRegi strar = propertyEditorRegistrar;
}

protected void initBinder(HttpServl et Request request, ServletRequest DataBi nder bi nder)
throws Exception {
t hi s. cust onPropertyEdi t or Regi strar.regi sterCustontEditors(binder);
}

/1 other methods to do with registering a User

This style of PropertyEditor registration can lead to concise code (the implementation of
i ni tBi nder(..) isjustonelinelong!), and allows common Pr opert yEdi t or registration code to
be encapsulated in a class and then shared amongst as many Cont r ol | er s as needed.

6.5 Spring 3 Type Conversion

Spring 3 introduces a cor e. convert package that provides a general type conversion system. The
system defines an SPI to implement type conversion logic, as well as an API to execute type conversions
at runtime. Within a Spring container, this system can be used as an alternative to PropertyEditors to
convert externalized bean property value strings to required property types. The public APl may also be
used anywhere in your application where type conversion is needed.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org. springfranmework. core. convert. converter;
public interface Converter<S, T> {

T convert (S source);

31 Reference Documentation 163

Spring Framework

To create your own Converter, smply implement the interface above. Parameterize S as the type you are
converting from, and T as the type you are converting to. For each call to convert(S), the source argument
is guaranteed to be NOT null. Your Converter may throw any Exception if conversion fails. An
I11legal ArgumentException should be thrown to report an invalid source value. Take care to ensure your
Converter implementation is thread-safe.

Severa converter implementations are provided in the core. convert. support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringTol nt eger asan example Converter implementation:

package org. springfranework. core. convert. support;

final class StringTolnteger inplenments Converter<String, Integer> {

public Integer convert(String source) {
return | nteger.val ue (source);

}

ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy, for example, when
converting from String to java.lang.Enum objects, implement Convert er Fact ory:

package org. springframework. core. convert. converter;

public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(Cl ass<T> targetType);

Parameterize S to be the type you are converting from and R to be the base type defining the range of
classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the St r i ngToEnumConverterFactory as an example:

package org. springframework. core. convert. support;

final class StringToEnunConverterFactory inplenents ConverterFactory<String, Enuns {

public <T extends Enunt Converter<String, T> getConverter(C ass<T> target Type) {
return new StringToEnunConverter (targetType);
}

private final class StringToEnunConverter<T extends Enun® inplenents Converter<String, T> {
private O ass<T> enunilype;

public StringToEnunConverter(d ass<T> enunmlype) {
t hi s. enunfType = enuniype;

}

public T convert(String source) {
return (T) Enum val ueOf (this. enunilype, source.trin());

31

Reference Documentation 164

Spring Framework

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter interface.
With a more flexible but less strongly typed signature, a GenericConverter supports converting between
multiple source and target types. In addition, a GenericConverter makes available source and target field
context you can use when implementing your conversion logic. Such context allows a type conversion to
be driven by afield annotation, or generic information declared on afield signature.

package org. springframework. core. convert. converter;
public interface GenericConverter {
publ i c Set<Converti bl ePair> get Converti bl eTypes();

bj ect convert (Cbject source, TypeDescriptor sourceType, TypeDescriptor targetType);

To implement a GenericConverter, have getConvertibleTypes() return the supported source->target type
pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your conversion
logic. The source TypeDescriptor provides access to the source field holding the value being converted.
Thetarget TypeDescriptor provides access to the target field where the converted value will be set.

A good example of a GenericConverter is a converter that converts between a Java Array and a
Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection
type to resolve the Collection's element type. This allows each element in the source array to be converted
to the Collection element type before the Collection is set on the target field.

Note

Because GenericConverter is a more complex SPI interface, only use it when you need it.
Favor Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Converter to execute if a specific condition holds true. For example, you
might only want to execute a Converter if a specific annotation is present on the target field. Or you might
only want to execute a Converter if a specific method, such as static valueOf method, is defined on the
target class. ConditionalGenericConverter is an subinterface of GenericConverter that allows you to
define such custom matching criteria:

public interface Conditional GenericConverter extends GenericConverter {

bool ean mat ches(TypeDescri ptor sourceType, TypeDescriptor targetType);

31 Reference Documentation 165

Spring Framework

A good example of a Conditional GenericConverter is an EntityConverter that converts between an
persistent entity identifier and an entity reference. Such a EntityConverter might only match if the target
entity type declares a static finder method e.g. findAccount(Long). You would perform such a finder
method check in the implementation of matches(TypeDescriptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime. Converters
are often executed behind this facade interface:
package org.springframework. core. convert;
public interface ConversionService {
bool ean canConvert (Cl ass<?> sourceType, C ass<?> target Type);
<T> T convert (Cbject source, C ass<T> targetType);
bool ean canConvert (TypeDescri ptor sourceType, TypeDescriptor targetType);

Obj ect convert(Ohject source, TypeDescriptor sourceType, TypeDescriptor targetType);

}

Most ConversionService implementations also implement ConverterRegistry, which provides an SPI for
registering converters. Internally, a ConversionService implementation delegates to its registered
convertersto carry out type conversion logic.

A robust ConversionService implementation is provided in the cor e. convert. support package.
Ceneri cConver si onServi ce is the general-purpose implementation suitable for use in most
environments. Conver si onSer vi ceFact ory provides a convenient factory for creating common
ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then shared
between multiple threads. In a Spring application, you typicaly configure a ConversionService instance
per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and
then used whenever a type conversion needs to be performed by the framework. Y ou may also inject this
ConversionService into any of your beans and invoke it directly.

Note

If no ConversionService is registered with Spring, the original PropertyEditor-based system
isused.

To register a default ConversionService with Spring, add the following bean definition with id

31 Reference Documentation 166

Spring Framework

conver si onServi ce:

<bean id="conversionService"
cl ass="org. spri ngframewor k. cont ext . support. Conversi onServi ceFact or yBean"/ >

A default ConversionService can convert between strings, numbers, enums, collections, maps, and other
common types. To suppliment or override the default converters with your own custom converter(s), set
the convert er s property. Property values may implement either of the Converter, ConverterFactory,
or GenericConverter interfaces.

<bean i d="conversionService"
cl ass="org. spri ngframewor k. cont ext . support . Conver si onSer vi ceFact or yBean" >
<property nanme="converters">
<list>
<bean cl ass="exanpl e. MyCust onConverter"/>
</list>
</ property>
</ bean>

It is also common to use a ConversionService within a Spring MV C application. See the section called
“Configuring Formatting in Spring MV C” for details on use with <mvc: annot ati on-dri ven/ >.

In certain situations you may wish to apply formatting during conversion. See the section called
“FormatterRegistry SPI” for detailson using For mat t i ngConver si onSer vi ceFact or yBean.

Using a ConversionService programatically

To work with a ConversionService instance programatically, simply inject a reference to it like you
would for any other bean:

@ervi ce
public class MyService {

@\ut owi r ed
public MyServi ce(Conversi onServi ce conversionService) {
thi s. conversi onService = conversi onServi ce

public void dolt() {
t hi s. conversi onService. convert(...)
}

6.6 Spring 3 Field Formatting

As discussed in the previous section, cor e. convert is a genera-purpose type conversion system. It
provides a unified ConversionService APl as well as a strongly-typed Converter SPI for implementing
conversion logic from one type to another. A Spring Container uses this system to bind bean property
values. In addition, both the Spring Expression Language (SpEL) and DataBinder use this system to bind
field values. For example, when SpEL needs to coerce a Short to a Long to complete an

3.1 Reference Documentation 167

Spring Framework

expressi on. set Val ue(Obj ect bean, bject value) attempt, the core.convert system
performs the coercion.

Now consider the type conversion requirements of atypical client environment such as aweb or desktop
application. In such environments, you typically convert from String to support the client postback
process, as well as back to Sring to support the view rendering process. In addition, you often need to
localize String values. The more genera core.convert Converter SPl does not address such formatting
requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPlI when you need to implement general -purpose type conversion logic; for
example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI when
you're working in a client environment, such as a web application, and need to parse and print localized
field values. The ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org. springframework. f or mat ;

public interface Formatter<T> extends Printer<T> Parser<T> {

}

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {
String print(T fieldValue, Locale |ocale);
}

i mport java.text.ParseException;

public interface Parser<T> {
T parse(String clientValue, Locale |ocale) throws ParseException;

To create your own Formatter, simply implement the Formatter interface above. Parameterize T to be the
type of object you wish to format, for example, j ava. uti | . Dat e. Implement the pri nt () operation
to print an instance of T for display in the client locale. Implement the par se() operation to parse an
instance of T from the formatted representation returned from the client locale. Your Formatter should
throw a ParseException or Illegal ArgumentException if a parse attempt fails. Take care to ensure your
Formatter implementation is thread-safe.

Several Formatter implementations are provided in f or mat subpackages as a convenience. The nunber
package provides a NumberFormatter, CurrencyFormatter, and PercentFormatter to format
javalang.Number objects using a javatext.NumberFormat. The dat eti nme package provides a
DateFormatter to format java.util.Date objects with a javatext.DateFormat. The dat eti ne. j oda
package provides comprehensive datetime formatting support based on the Joda Time library.

31 Reference Documentation 168

http://joda-time.sourceforge.net

Spring Framework

Consider Dat eFor mat t er asan example For nmat t er implementation:

package org. springframework. format. datetime;
public final class DateFormatter inplenents Formatter<Date> {
private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;
}

public String print(Date date, Locale |ocale) {
if (date == null) {
return ""
}

return get Dat eFornat (| ocal e) . format (date);

}

public Date parse(String formatted, Locale |ocale) throws ParseException {
if (formatted.length() == 0) {
return null;
}

return get Dat eFornat (| ocal e) . parse(formatted);

}

protected DateFornmat get Dat eFor nat (Local e | ocal e) {
Dat eFor mat dat eFormat = new Si npl eDat eFormat (thi s. pattern, |ocale);
dat eFor mat . set Leni ent (f al se);
return dateFor mat;

The Spring team welcomes community-driven Formatter contributions; See
http://jira.springframework.org to contribute.

Annotation-driven Formatting

Asyou will see, field formatting can be configured by field type or annotation. To bind an Annotation to
aformatter, implement AnnotationFormatterFactory:
package org. springframework. f or mat ;
public interface AnnotationFornatterFactory<A extends Annotation> {
Set <Cl ass<?>> get Fi el dTypes();
Printer<?> getPrinter(A annotation, O ass<?> fieldType);

Par ser <?> get Parser (A annotation, C ass<?> fieldType);

Parameterize A to be the field annotationType you wish to associate formatting logic with, for example
org. spri ngframewor k. f or mat . annot ati on. Dat eTi neFor mat . Have
get Fi el dTypes() return the types of fields the annotation may be used on. Have get Pri nt er ()

return a Printer to print the value of an annotated field. Have get Par ser () return a Parser to parse a

31 Reference Documentation 169

http://jira.springframework.org

Spring Framework

clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat Annotation
to aformatter. This annotation allows either anumber style or pattern to be specified:

public final class NumberFormat Annot ati onFor matt er Factory
i npl enents Annot ati onFor mat t er Fact or y<Nunber For mat > {

publ i c Set<d ass<?>> get Fi el dTypes() {
return new HashSet <Cl ass<?>>(asLi st (new C ass<?>[] {
Short.class, Integer.class, Long.class, Float.class,
Doubl e. cl ass, Bi gDeci mal .class, Biglnteger.class }));

}

public Printer<Nunber> getPrinter(Nunber Format annotation, d ass<?> fieldType) {
return configureFormatterFrom annotation, fieldType);

}

publ i ¢ Parser <Number > get Par ser (Nunber For mat annotati on, C ass<?> fiel dType) {
return configureFormatterFromannot ation, fieldType);

}

private Fornmatter<Nunmber> confi gureFormatter Fr om(Nunber For mat annot ati on,
C ass<?> fiel dType) {
if (lannotation.pattern().isEmty()) {
return new Nunber For matter (annotation. pattern());
} else {
Style style = annotation.style();
if (style == Style. PERCENT) ({
return new Percent Formatter();
} else if (style == Style. CURRENCY) {
return new CurrencyFormatter();
} else {
return new Nunber Formatter();
}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyMdel {

@\unber For mat (st yl e=Styl e. CURRENCY)
private BigDeci mal deci nal;

Format Annotation API

A portable format annotation APl exists in the or g. spri ngf ramewor k. f or mat . annot ati on
package. Use @NumberFormat to format javalang.Number fields. Use @DateTimeFormat to format
java.util.Date, java.util.Calendar, java.util.Long, or Joda Time fields.

The example below uses @DateTimeFormat to format ajava.util.Date as al SO Date (yyyy-MM-dd):

public class MyMdel {

@at eTi meFor mat (i so=| SO DATE)
private Date date;

3.1 Reference Documentation 170

Spring Framework

FormatterRegistry SPI

The FormatterRegistry is an SPI for registering formatters and converters.
For mat ti ngConver si onSer vi ce is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programatically or declaratively as a Spring bean
using Formatti ngConver si onServi ceFact or yBean. Because this implemementation aso
implements Conver si onSer vi ce, it can be directly configured for use with Spring's DataBinder and
the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:

package org. springfranmework. f or mat ;

public interface FormatterRegi stry extends ConverterRegistry {
voi d addFor mat t er For Fi el dType(d ass<?> fiel dType, Printer<?> printer, Parser<?> parser);
voi d addFor mat t er For Fi el dType(d ass<?> fiel dType, Formatter<?> fornatter);
voi d addFor mat t er For Fi el dType(Formatter<?> fornatter);

voi d addFor matt er For Annot at i on(Annot ati onFor matt er Fact ory<?, ?> factory);

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI alows you to configure Formatting rules centrally, instead of duplicating such
configuration across your Controllers. For example, you might want to enforce that all Date fields are
formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared
FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the FormatterRegistry:

package org. springframework. f or mat ;
public interface FormatterRegi strar {

voi d registerFormatters(FormatterRegistry registry);

A FormatterRegistrar is useful when registering multiple related converters and formatters for a given
formatting category, such as Date formatting. It can also be useful where declarative registration is
insufficient. For example when a formatter needs to be indexed under a specific field type different from
its own <T> or when registering a Printer/Parser pair. The next section provides more information on

3.1 Reference Documentation 171

Spring Framework

converter and formatter registration.

Configuring Formatting in Spring MVC

In a Spring MV C application, you may configure a custom ConversionService instance explicity as an
attribute of the annot ati on-dri ven element of the MVC namespace. This ConversionService will
then be used anytime a type conversion is required during Controller model binding. If not configured
explicitly, Spring MVC will automaticaly register default formatters and converters for common types
such as numbers and dates.

To rely on default formatting rules, no custom configuration is required in your Spring MVC config
XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: mve="http://ww. springfranmewor k. or g/ schema/ mvc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ m/c
http://ww. spri ngfranewor k. or g/ schema/ mvc/ spri ng- mvc. xsd" >

<nvc: annot ati on-driven/>

</ beans>

With this one-line of configuation, default formatters for Numbers and Date types will be installed,
including support for the @NumberFormat and @DateTimeFormat annotations. Full support for the Joda
Time formatting library isaso installed if Joda Time is present on the classpath.

To inject a ConversionService instance with custom formatters and converters registered, set the
conversion-service attribute and then specify custom converters, formatters, or FormatterRegistrars as
properties of the FormattingConversionServiceFactoryBean:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm springfranmewor k. or g/ schema/ beans"
xm ns: mve="http://ww. springfranmewor k. or g/ schema/ mvc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ mvc
http://ww. spri ngfranewor k. or g/ schema/ mvc/ spring- mvc. xsd" >

<mvc: annot ati on-driven conversi on-servi ce="conversi onServi ce"/>

<bean i d="conversionService"
cl ass="org. spri ngframewor k. f or mat. support. For matti ngConver si onServi ceFact or yBean" >

<property nanme="converters">

<set >

<bean cl ass="org. exanpl e. MyConverter"/>

</set>
</ property>
<property name="formatters">

<set >

3.1 Reference Documentation 172

Spring Framework

<bean cl ass="org. exanpl e. MyFor matter"/>
<bean cl ass="org. exanpl e. \yAnnot ati onFor matt er Factory"/>
</ set>
</ property>
<property name="formatterRegistrars">

<set >
<bean cl ass="org. exanpl e. \yFor matt er Regi strar"/>
</ set >
</ property>
</ bean>
</ beans>
Note
See the section caled “FormatterRegistrar SPI” and the

For mat t i ngConver si onSer vi ceFact or yBean for more information on when to
use FormatterRegistrars.

6.7 Spring 3 Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean Validation
API is now fully supported. Second, when used programatically, Spring's DataBinder can now validate
objects as well as bind to them. Third, Spring MVC now has support for declaratively validating
@Controller inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this
API, you annotate domain model properties with declarative validation constraints and the runtime
enforces them. There are a number of built-in constraints you can take advantage of. Y ou may also define
your own custom constraints.

Toillustrate, consider a simple PersonForm model with two properties:

public class PersonForm {
private String nane;
private int age;

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

@\ot Nul |
@i ze(max=64)
private String nane;

@ n(0)

private int age;

3.1 Reference Documentation 173

Spring Framework

When an instance of this classis validated by a JSR-303 Validator, these constraints will be enforced.

For genera information on JSR-303, see the Bean Validation Specification. For information on the
specific capabilities of the default reference implementation, see the Hibernate Validator documentation.
To learn how to setup a JSR-303 implementation as a Spring bean, keep reading.

Configuring a Bean Validation Implementation

Spring provides full support for the JISR-303 Bean Validation API. This includes convenient support for
bootstrapping a JSR-303 implementation as a Spring bean. This alows for a
javax.val i dation. Val i dat or Factory orj avax. val i dati on. Val i dat or to beinjected
wherever validation is needed in your application.

UsethelLocal Val i dat or Fact or yBean to configure a default JSR-303 Validator as a Spring bean:

<bean id="validator"
class="org. springframework. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

The basic configuration above will trigger JSR-303 to initialize using its default bootstrap mechanism. A
JSR-303 provider, such as Hibernate Validator, is expected to be present in the classpath and will be
detected automatically.

Injecting a Validator

Local Val i dat or Fact or yBean implements both j avax. val i dati on. Val i dat or Fact ory
and javax.validation. Val i dat or, as well as Spring's
org. springfranmework. val i dati on. Val i dat or . You may inject areference to either of these
interfaces into beans that need to invoke validation logic.

Inject areferenceto j avax. val i dati on. Val i dat or if you prefer to work with the JSR-303 API
directly:

i mport javax.validation. Validator;

@ser vi ce
public class MService {

@\ut owi r ed

private Validator validator;

Inject areferenceto or g. spri ngf ranewor k. val i dat i on. Val i dat or if your bean requires the
Spring Validation API:
i mport org.springframework. val i dati on. Val i dat or;

@ervi ce
public class MyService {

@\ut owi r ed
private Validator validator;

3.1 Reference Documentation 174

http://jcp.org/en/jsr/detail?id=303
https://www.hibernate.org/412.html

Spring Framework

Configuring Custom Constraints

Each JSR-303 validation constraint consists of two parts. First, a @Constraint annotation that declares the
constraint and its configurable properties. Second, an implementation of the
j avax. val i dati on. Constrai nt Val i dat or interface that implements the constraint's behavior.
To associate a declaration with an implementation, each @Constraint annotation references a
corresponding ValidationConstraint implementation class. At runtime, a
Constrai nt Val i dat or Fact ory instantiates the referenced implementation when the constraint
annotation is encountered in your domain model.

By defauilt, the Local Val i dat or Fact or yBean configures a
Spri ngConst rai nt Val i dat or Fact ory that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring
bean.

Shown below is an example of a custom @Constraint declaration, followed by an associated
Constrai nt Val i dat or implementation that uses Spring for dependency injection:

@ar get ({ El enent Type. METHOD, El ement Type. FI ELD})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@onstrai nt (val i dat edBy=MyConstrai nt Val i dat or . cl ass)
public @nterface MyConstraint {

}

i mport javax.validation. ConstraintValidator;
public class MyConstraintValidator inplenments ConstraintValidator {

@\ut ow r ed;
private Foo aDependency;

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any
other Spring bean.

Additional Configuration Options

The default Local Val i dat or Fact or yBean configuration should prove sufficient for most cases.
There are a number of other configuration options for various JSR-303 constructs, from message
interpolation to traversal resolution. See the JavaDocs of Local Val i dat or Fact or yBean for more
information on these options.

Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the Validator

3.1 Reference Documentation 175

Spring Framework

may be invoked by calling bi nder . val i dat e() . Any validation Errors are automatically added to
the binder's BindingResult.

When working with the DataBinder programatically, this can be used to invoke validation logic after
binding to atarget object:

Foo target = new Foo()
Dat aBi nder bi nder = new Dat aBi nder (target);
bi nder . set Val i dat or (new FooVal i dator ());

/'l bind to the target object
bi nder . bi nd(propertyVal ues);

/] validate the target object
bi nder. val i date();

/'l get BindingResult that includes any validation errors
Bi ndi ngResult results = binder. getBi ndi ngResul t ();

Spring MVC 3 Validation

Beginning with Spring 3, Spring MV C has the ability to automatically validate @Controller inputs. In
previous versions it was up to the developer to manually invoke validation logic.

Triggering @Controller Input Validation

To trigger validation of a @Controller input, simply annotate the input argument as @Valid:

@ontroller
public class MyController {

@Request Mappi ng("/foo", nethod=Request Met hod. POST)
public void processFoo(@/alid Foo foo) { /* ... */ }

Spring MV C will validate a @Valid object after binding so-long as an appropriate Validator has been
configured.

Note

The @Valid annotation is part of the standard JSR-303 Bean Validation API, and is not a
Spring-specific construct.

Configuring a Validator for use by Spring MVC

The Validator instance invoked when a @Valid method argument is encountered may be configured in
two ways. First, you may call binder.setValidator(Validator) within a @Controller's @InitBinder
callback. This allows you to configure a VValidator instance per @Controller class:

@ontroll er
public class MyController {

3.1 Reference Documentation 176

Spring Framework

@ ni t Bi nder
protected void initBinder(WbDat aBi nder bi nder) {
bi nder . set Val i dat or (new FooVal i dator ());

}
@Request Mappi ng("/foo", nethod=Request Met hod. POST)
public void processFoo(@/alid Foo foo) { ... }

Second, you may call setValidator(Validator) on the global WebBindinglnitiaizer. This allows you to
configure a Validator instance across all @Controllers. This can be achieved easily by using the Spring
MV C namespace:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: mve="http://ww. springframework. org/ schema/ mvc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocat i on="
http://ww. springfranework. org/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ nvc
http://ww. springframewor k. or g/ scherma/ mvc/ spri ng-mvc. xsd" >

<mvc: annot ati on-driven val i dator="gl obal Val i dator"/ >

</ beans>

Configuring a JSR-303 Validator for use by Spring MVC

With JSR-303, a single j avax. val i dati on. Val i dat or instance typicaly vaidates all model
objects that declare validation constraints. To configure a JSR-303-backed Validator with Spring MV C,
simply add a JSR-303 Provider, such as Hibernate Validator, to your classpath. Spring MV C will detect it
and automatically enable JSR-303 support across all Controllers.

The Spring MV C configuration required to enable JSR-303 support is shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: mvc="http://wwm. springfranmewor k. or g/ schema/ mvc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://ww. springfranework. or g/ schema/ beans
http: //wwv spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmework. org/ schema/ mvc
http://ww. springframework. or g/ schema/ mvc/ spring-mvc. xsd" >

<I-- JSR-303 support will be detected on classpath and enabl ed automatically -->
<mvc: annot ati on-driven/>

</ beans>

With this minimal configuration, anytime a @Valid @Controller input is encountered, it will be validated
by the JSR-303 provider. JSR-303, in turn, will enforce any constraints declared against the input. Any
ConstraintViolations will automatically be exposed as errors in the BindingResult renderable by standard
Spring MV C form tags.

3.1 Reference Documentation 177

Spring Framework

7. Spring Expression Language (SpEL)

7.1 Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
guerying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but
offers additional features, most notably method invocation and basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to name
a few, the Spring Expression Language was created to provide the Spring community with a single well
supported expression language that can be used across al the products in the Spring portfolio. Its
language features are driven by the requirements of the projects in the Spring portfolio, including tooling
requirements for code completion support within the eclipse based SpringSource Tool Suite. That said,
SpEL is based on a technology agnostic APl allowing other expression language implementations to be
integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not
directly tied to Spring and can be used independently. In order to be self contained, many of the examples
in this chapter use SpEL as if it were an independent expression language. This requires creating a few
bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this
infrastructure and will instead only author expression strings for evaluation. An example of this typical
use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the
section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In severa
places an Inventor and Inventor's Society class are used as the target objects for expression evauation.
These class declarations and the data used to populate them are listed at the end of the chapter.

7.2 Feature Overview

The expression language supports the following functionality
 Literal expressions

» Boolean and relational operators

* Regular expressions

» Class expressions

» Accessing properties, arrays, lists, maps

* Method invocation

3.1 Reference Documentation 178

Spring Framework

» Relational operators
* Assignment
 Calling constructors
» Bean references

» Array construction

* Inlinelists

» Ternary operator

» Variables

* User defined functions
* Collection projection
* Collection selection

» Templated expressions

7.3 Expression Evaluation using Spring's Expression
Interface

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression '‘Hello World'.

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("' Hello Wrld ");
String nmessage = (String) exp.getVal ue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org.springframework.expression and its sub packages and spel .support.

The interface Expr essi onPar ser isresponsible for parsing an expression string. In this example the
expression string is a string literal denoted by the surrounding single quotes. The interface Expr essi on
is responsible for evaluating the previously defined expression string. There are two exceptions that can
be thrown, Par seExcepti on and Eval uati onException when calling
'‘par ser . par seExpr essi on'and 'exp. get Val ue' respectively.

3.1 Reference Documentation 179

Spring Framework

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the ‘concat’ method on the string literal.

Expressi onPar ser parser = new Spel Expressi onParser ();
Expressi on exp = parser. parseExpression("' Hello Wrld' .concat('!")");
String message = (String) exp.getVal ue();

The value of message is now 'Hello World!".

As an example of calling a JavaBean property, the String property '‘Bytes can be called as shown below.

Expressi onPar ser parser = new Spel Expressi onParser();

/'l invokes 'getBytes()'
Expressi on exp = parser. parseExpression("' Hello World'.bytes");

byte[] bytes = (byte[]) exp.getValue();

SpEL also supports nested properties using standard 'dot' notation, i.e. propl.prop2.prop3 and the setting
of property values

Public fields may also be accessed.

Expr essi onPar ser parser = new Spel Expressi onParser();

/'l invokes 'getBytes().!length'
Expressi on exp = parser. parseExpression("' Hello Wrld' .bytes.length");

int length = (Integer) exp.getValue();

The String's constructor can be called instead of using a string literal.

Expressi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("new String('hello world"').toUpperCase()");
String message = exp.getVal ue(String. class);

Note the wuse of the generic method public <T> T getValue(d ass<T>
desi r edResul t Type) . Using this method removes the need to cast the value of the expression to the
desired result type. An Eval uat i onExcept i on will be thrown if the value cannot be cast to the type
T or converted using the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a specific
object instance (called the root object). There are two options here and which to choose depends on
whether the object against which the expression is being evaluated will be changing with each call to
evaluate the expression. In the following example we retrieve the name property from an instance of the
Inventor class.

/] Create and set a cal endar
Gregori anCal endar ¢ = new G egori anCal endar () ;
c.set (1856, 7, 9);

31 Reference Documentation 180

Spring Framework

/1 The constructor arguments are nanme, birthday, and nationality.
I nventor tesla = new I nventor("Ni kola Tesla", c.getTine(), "Serbian");

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Expressi on exp = parser. parseExpressi on("nane");
Eval uat i onCont ext context = new St andar dEval uati onCont ext (tesl a);

String nane = (String) exp.getVal ue(context);

In the last ling, the value of the string variable 'name’ will be set to "Nikola Teda'. The class
StandardEvaluationContext is where you can specify which object the "name" property will be evaluated
against. Thisis the mechanism to use if the root object is unlikely to change, it can simply be set once in
the evaluation context. If the root object is likely to change repeatedly, it can be supplied on each call to
get Val ue, asthis next example shows:

/| Create and set a cal endar
Gregori anCal endar ¢ = new G egori anCal endar () ;
c.set (1856, 7, 9);

/1 The constructor arguments are nanme, birthday, and nationality.
Inventor tesla = new Inventor ("N kola Tesla", c.getTime(), "Serbian");

Expressi onPar ser parser = new Spel Expressi onParser () ;
Expressi on exp = parser. parseExpressi on("nane");

String name = (String) exp.getValue(tesla);

In this case the inventor t esl a has been supplied directly to get Val ue and the expression evaluation
infrastructure creates and manages a default evaluation context internally - it did not require one to be
supplied.

The StandardEvaluationContext is relatively expensive to construct and during repeated usage it builds up
cached state that enables subsequent expression eval uations to be performed more quickly. For this reason
it is better to cache and reuse them where possible, rather than construct a new one for each expression
evaluation.

In some cases it can be desirable to use a configured evaluation context and yet still supply a different
root object on each call to get Val ue. get Val ue alows both to be specified on the same call. In these
situations the root object passed on the call is considered to override any (which maybe null) specified on
the evaluation context.

Note

In standalone usage of SpEL there is a need to create the parser, parse expressions and
perhaps provide evaluation contexts and a root context object. However, more common usage
is to provide only the SpEL expression string as part of a configuration file, for example for
Spring bean or Spring Web Flow definitions. In this case, the parser, evaluation context, root
object and any predefined variables are all set up implicitly, requiring the user to specify
nothing other than the expressions.

3.1 Reference Documentation 181

Spring Framework

As afina introductory example, the use of a boolean operator is shown using the Inventor object in the
previous example.

Expressi on exp
bool ean result

par ser. par seExpression("nane == 'Ni kola Tesla'");
exp. get Val ue(cont ext, Bool ean.class); // evaluates to true

The EvaluationContext interface

The interface Eval uati onCont ext is used when evaluating an expression to resolve properties,
methods, fields, and to help perform type conversion. The out-of-the-box implementation,
St andar dEval uat i onCont ext , uses reflection to manipulate the object, caching javalang.reflect's
Met hod, Fi el d, and Const r uct or instances for increased performance.

The St andar dEval uat i onCont ext iswhere you may specify the root object to evaluate against via
the method set Root Qbj ect () or passing the root object into the constructor. You can aso specify
variables and functions that will be used in the expression using the methods set Vari abl e() and
regi ster Functi on(). The use of variables and functions are described in the language reference
sections Variables and Functions. The St andar dEval uat i onCont ext is also where you can
register custom Construct or Resol vers, Met hodResol vers, and PropertyAccessors to
extend how SpEL evaluates expressions. Please refer to the JavaDoc of these classes for more details.

Type Conversion

By default SpEL uses the converson service avalable in Spring core
(or g. springfranmework. core. convert. Conversi onServi ce). This conversion service
comes with many converters built in for common conversions but is aso fully extensible so custom
conversions between types can be added. Additionally it has the key capability that it is generics aware.
This means that when working with generic types in expressions, SpEL will attempt conversions to
maintain type correctness for any objects it encounters.

What does this mean in practice? Suppose assignment, using set Val ue(), isbeing used to set aLi st
property. The type of the property is actually Li st <Bool ean>. SpEL will recognize that the elements
of thelist need to be converted to Bool ean before being placed in it. A simple example:

class Sinple {
publ i c List<Bool ean> bool eanLi st = new ArrayLi st <Bool ean>();
}
Sinple sinple = new Si npl e()
si npl e. bool eanLi st . add(true);
St andar dEval uati onCont ext si npl eCont ext = new St andar dEval uati onCont ext (si npl e) ;
/| false is passed in here as a string. SpEL and the conversion service will
/] correctly recognize that it needs to be a Bool ean and convert it

par ser . par seExpr essi on(" bool eanLi st[0] "). set Val ue(si npl eContext, "fal se");

/1 b wll be fal se
Bool ean b = si npl e. bool eanLi st. get (0);

3.1 Reference Documentation 182

Spring Framework

7.4 Expression support for defining bean definitions

SpEL expressions can be used with XML or annotation based configuration metadata for defining
BeanDefinitions. In both cases the syntax to define the expression is of the form #{ <expr essi on
string> }.

XML based configuration

A property or constructor-arg value can be set using expressions as shown below

<bean i d="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property nanme="randomNunber" val ue="#{ T(java.l ang. Math).random() * 100.0 }"/>

<l-- other properties -->

</ bean>

The variable 'systemProperties’ is predefined, so you can use it in your expressions as shown below. Note
that you do not have to prefix the predefined variable with the '# symbol in this context.

<bean id="taxCal cul ator" cl ass="org. spring. sanpl es. TaxCal cul at or ">
<property name="defaul t Local e" val ue="#{ systenProperties['user.region'] }"/>

<l-- other properties -->

</ bean>

Y ou can aso refer to other bean properties by name, for example.

<bean i d="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randomNunber" val ue="#{ T(java.l ang. Math).randon() * 100.0 }"/>

<l-- other properties -->
</ bean>
<bean i d="shapeCuess" cl ass="org. spring. sanpl es. ShapeCuess" >

<property name="initial ShapeSeed" val ue="#{ nunber Guess.randomN\unber }"/>

<l-- other properties -->
</ bean>

Annotation-based configuration

The @/al ue annotation can be placed on fields, methods and method/constructor parameters to specify a
default value.

Here is an example to set the default value of afield variable.

public static class FieldVal ueTest Bean

@/al ue("#{ systenProperties['user.region'] }")
private String defaultlLocal e

31 Reference Documentation 183

Spring Framework

public void setDefaultLocal e(String defaultLocal e)

this. defaul t Local e = def aul t Local e;

}
public String getDefaultLocal e()
{
return this.defaultLocal e;
}

The equivalent but on a property setter method is shown below.

public static class PropertyVal ueTest Bean
private String defaultlLocal e;

@/al ue("#{ systenProperties['user.region'] }")
public void setDefaultLocal e(String defaultLocal e)
{

this.defaultLocal e = defaul tLocal e;

}

public String getDefaultLocal e()
{

return this.defaultlLocal e;

}

Autowired methods and constructors can aso use the @/al ue annotation.

public class SinpleMvieLister {

private MovieFi nder novi eFi nder;
private String defaultlocal e;

@\ut owi r ed
public void configure(MvieFinder novi eFi nder,
@/al ue("#{ systenProperties['user.region'] }"} String defaultLocale) {
thi s. novi eFi nder = novi eFi nder;
this.defaul tLocal e = defaul t Local e;

/1

public class Myvi eRecormender {
private String defaultlLocal e;
private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi red
publ i ¢ Movi eRecommender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao,
@/al ue("#{systenProperties['user.country']}"} String defaultlLocale) {
t hi s. cust oner Pref erenceDao = cust oner Pref er enceDao;
this.defaul tLocal e = defaul t Local e;

31 Reference Documentation 184

Spring Framework

...

7.5 Language Reference

Literal expressions

The types of literal expressions supported are strings, dates, numeric values (int, real, and hex), boolean
and null. Strings are delimited by single quotes. To put a single quote itself in a string use two single
guote characters. The following listing shows simple usage of literals. Typically they would not be used
inisolation like this, but as part of a more complex expression, for example using aliteral on one side of a
logical comparison operator.

Expressi onPar ser parser = new Spel Expressi onParser();

[/l evals to "Hello Wrld"
String helloWrld = (String) parser.parseExpression("'Hello Wrld' ").getVal ue();

doubl e avogadr osNunmber = (Doubl e) parser. parseExpression("6.0221415E+23") . get Val ue();

/'l evals to 2147483647
int maxVal ue = (I nteger) parser.parseExpression("Ox7FFFFFFF") . get Val ue();

bool ean trueVal ue = (Bool ean) parser. parseExpression("true"). getVal ue();

bj ect null Val ue = parser. parseExpression("null"). getVal ue();

Numbers support the use of the negative sign, exponential notation, and decimal points. By default rea
numbers are parsed using Double.parseDoubl e().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy, just use a period to indicate a nested property value. The
instances of Inventor class, pupin and tesla, were populated with data listed in the section Classes used in
the examples. To navigate "down" and get Tesas year of birth and Pupin's city of birth the following
expressions are used.

/'l evals to 1856
int year = (lnteger) parser.parseExpression("Birthdate.Year + 1900").get Val ue(context);

String city = (String) parser.parseExpression("placeOBirth.City"). getVal ue(context);

Case insengitivity is allowed for the first letter of property names. The contents of arrays and lists are
obtained using sgquare bracket notation.
Expressi onPar ser parser = new Spel Expressi onParser();

/'l lnventions Array
St andar dEval uat i onCont ext tesl aContext = new Standar dEval uati onCont ext (tesl a);

31 Reference Documentation 185

Spring Framework

/] evaluates to "Ilnduction notor"
String invention = parser. parseExpression("inventions[3]"). getVal ue(tesl aCont ext,
String.cl ass);

/1 Menbers List
St andar dEval uati onCont ext soci et yCont ext = new St andar dEval uati onCont ext (i eee) ;

/'l evaluates to "N kola Tesl a"
String nane = parser. par seExpressi on(" Menber s[0] . Nane") . get Val ue(soci etyContext, String.class);

/] List and Array navigation
/] evaluates to "Wrel ess comunication"

String invention = parser. parseExpressi on("Menbers[0].|nventions[6]").getVal ue(soci etyCont ext,
String. cl ass);

The contents of maps are obtained by specifying the literal key value within the brackets. In this case,
because keys for the Officers map are strings, we can specify string literals.
/]l Oficer's Dictionary

I nventor pupin = parser. parseExpression("Oficers['president']").getVal ue(soci etyContext,
I nventor. cl ass);

/'l evaluates to "ldvor"
String city =
par ser. parseExpression("O ficers[' president'].PlaceOBirth. City"). getVal ue(soci etyCont ext,
String.cl ass);

/'l setting val ues
par ser. parseExpression("O ficers['advisors'][0].PlaceCBirth. Country"). set Val ue(soci et yCont ext,
"Croatia");

Inline lists

Lists can be expressed directly in an expression using {} notation.

// evaluates to a Java |ist containing the four nunbers
Li st numbers = (List) parser.parseExpression("{1,2,3,4}").getVal ue(context);

List listOLists = (List) parser.parseExpression("{{"a",'b"},{"'x","y'}}").getVal ue(context);

{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of fixed
literals then a constant list is created to represent the expression, rather than building a new list on each
evaluation.

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the array
populated at construction time.

int[] nunmbersl = (int[]) parser.parseExpression("new int[4]").getVal ue(context);

/'l Array with initializer

31 Reference Documentation 186

Spring Framework

int[] numbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getVal ue(context);

/1 Multi dinmensional array
int[][] nunbers3 = (int[][]) parser.parseExpression("new int[4][5]"). getVal ue(context)

It isnot currently allowed to supply an initializer when constructing a multi-dimensional array.

Methods

Methods are invoked using typical Java programming syntax. Y ou may also invoke methods on literals.
Varargs are a so supported.

/1 string literal, evaluates to "bc"
String ¢ = parser. parseExpression("'abc'.substring(2, 3)").getValue(String.class);

/'l evaluates to true
bool ean i sMenber = parser. parseExpression("i sMenber (' M hajlo Pupin')").getVal ue(soci et yCont ext
Bool ean. cl ass) ;

Operators

Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than or
equal are supported using standard operator notation.

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("2 == 2"). get Val ue(Bool ean. cl ass);

/'l evaluates to false
bool ean fal seVal ue = parser. parseExpression("2 < -5.0"). get Val ue(Bool ean. cl ass);

/'l evaluates to true
bool ean trueVal ue = parser. parseExpression("'black' < 'block'").getVal ue(Bool ean. cl ass);

In addition to standard relational operators SpEL supports the 'instanceof' and regular expression based
'matches’ operator.

/'l evaluates to false
bool ean fal seVal ue = parser. parseExpression("'xyz' instanceof T(int)").getValue(Boolean.class);

/'l evaluates to true
bool ean trueVal ue =
par ser. par seExpression("'5.00" matches "A-2\\d+(\\.\\d{2})?%$""). get Val ue(Bool ean. cl ass);

// eval uates to false
bool ean fal seVal ue =
par ser. par seExpression("'5.0067" matches '~-2\\d+(\\.\\d{2})?$"). get Val ue(Bool ean. cl ass);

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids problems
where the symbols used have special meaning for the document type in which the expression is embedded
(eg. an XML document). The textua equivalents are shown here: It ('<), gt (>, le ('<="), ge (>=), eq

3.1 Reference Documentation 187

Spring Framework

('==", ne("'="), div ('), mod ('%"), not ('!"). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

/1 -- AND --

/'l evaluates to false
bool ean fal seVal ue = parser. parseExpression("true and fal se"). get Val ue(Bool ean. cl ass);

/] evaluates to true

String expression = "isMenber(' N kola Tesla') and i sMenber(' M hajlo Pupin')";

bool ean trueVal ue = parser. parseExpressi on(expression). get Val ue(soci et yCont ext, Bool ean. cl ass);
/Il -- OR --

/] evaluates to true
bool ean trueVal ue = parser. parseExpression("true or false").getVal ue(Bool ean. cl ass);

/| evaluates to true

String expression = "isMenber(' N kola Tesla') or isMenber(' Al bert Einstien')";

bool ean trueVal ue = parser. par seExpr essi on(expressi on). get Val ue(soci et yCont ext, Bool ean. cl ass);
[l -- NOT --

/| evaluates to false

bool ean fal seVal ue = parser. parseExpression("!true"). get Val ue(Bool ean. cl ass);

/1 -- AND and NOT --
String expression = "isMenber(' N kola Tesla') and !isMenber('Mhajlo Pupin')";
bool ean fal seVal ue = parser. par seExpr essi on(expr essi on) . get Val ue(soci et yCont ext, Bool ean. cl ass);

Mathematical operators

The addition operator can be used on numbers, strings and dates. Subtraction can be used on numbers and
dates. Multiplication and division can be used only on numbers. Other mathematical operators supported
are modulus (%) and exponential power (*). Standard operator precedence is enforced. These operators
are demonstrated below.

// Addition
int two = parser.parseExpression("1 + 1").getVal ue(lnteger.class); // 2

String testString =
parser. parseExpression("'test' + ' ' + "string' ").getValue(String.class); // 'test string

/1l Subtraction
int four = parser.parseExpression("1 - -3").getValue(lnteger.class); // 4

doubl e d = parser. parseExpression("1000. 00 - 1e4"). get Val ue(Doubl e. cl ass); // -9000

/1 Multiplication
int six = parser.parseExpression("-2 * -3").getValue(lnteger.class); // 6

doubl e twentyFour = parser.parseExpression("2.0 * 3e0 * 4").getVal ue(Double.class); // 24.0

[/ Division

31 Reference Documentation 188

Spring Framework

int mnusTwo = parser.parseExpression("6 / -3").getValue(lnteger.class); // -2
doubl e one = parser. parseExpression("8.0 / 4e0 / 2").getVal ue(Double.class); // 1.0

/1 NModul us
int three = parser.parseExpression("7 % 4").getValue(lnteger.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(lnteger.class); // 1

/'l Operator precedence
int mnusTwentyOne = parser. parseExpression("1+2-3*8"). getVal ue(lnteger.class); // -21

Assignment

Setting of a property is done by using the assignment operator. This would typically be done within a call
toset Val ue but can also be doneinside acall to get Val ue.

I nventor inventor = new I nventor();
St andar dEval uati onCont ext i nvent or Cont ext = new St andar dEval uati onCont ext (i nventor);

par ser . par seExpr essi on(" Nanme") . set Val ue(i nvent or Cont ext, "Al exander Seovic2");
/] alternatively

String al eks = parser. parseExpression("Nane = ' Al exandar Seovic'").getVal ue(i nvent or Cont ext,
String. cl ass);

Types

The specia "T' operator can be used to specify an instance of java.lang.Class (the 'type). Static methods
are invoked using this operator as well. The St andar dEval uat i onCont ext usesaTypelLocat or
to find types and the St andar dTypeLocat or (which can be replaced) is built with an understanding
of the java.lang package. This means T() references to types within javalang do not need to be fully
qualified, but al other type references must be.

Cl ass dateC ass = parser. parseExpression("T(java.util.Date)").getVal ue(d ass. cl ass);
C ass stringC ass = parser. parseExpression("T(String)").getVal ue(d ass. cl ass);
bool ean trueVal ue =

par ser . par seExpr essi on(" T(j ava. mat h. Roundi ngibde) . CEl LI NG < T(j ava. mat h. Roundi nghbde) . FLOOR")
. get Val ue(Bool ean. cl ass);

Constructors

Constructors can be invoked using the new operator. The fully qualified class name should be used for all
but the primitive type and String (whereint, float, etc, can be used).

I nventor einstein =
p. par seExpressi on("new org. spring. sanpl es. spel .inventor.|nventor('Al bert Einstein',
"CGerman')")
.get Val ue(l nventor.cl ass);

31 Reference Documentation 189

Spring Framework

//create new inventor instance within add nmethod of Li st

p. par seExpr essi on(" Menber s. add(new org. spri ng. sanpl es. spel . i nventor. | nventor(' Al bert Einstein',
"German'))")
. get Val ue(soci et yCont ext) ;

Variables

Variables can be referenced in the expression using the syntax #variableName. Variables are set using the
method setVariable on the StandardEval uationContext.

Inventor tesla = new I nventor("Ni kola Tesla", "Serbian");
St andar dEval uati onCont ext context = new Standar dEval uati onCont ext (tesl a);
cont ext . set Vari abl e("newNane", "M ke Tesl a");

par ser. par seExpr essi on(" Nane = #newNane"). get Val ue(cont ext);

Systemout.println(tesla.getName()) // "M ke Tesla"

The #this and #root variables

The variable #this is dways defined and refers to the current evaluation object (against which unqualified
references are resolved). The variable #root is aways defined and refers to the root context object.
Although #this may vary as components of an expression are evaluated, #root always refersto the root.

/| create an array of integers
Li st<lnteger> prines = new Arrayli st<lnteger>();
primes. addAl | (Arrays. asList(2,3,5,7,11, 13, 17));

/] create parser and set variable 'prines' as the array of integers
Expr essi onPar ser parser = new Spel Expressi onParser () ;

St andar dEval uat i onCont ext context = new Standar dEval uati onCont ext ();
context.setVariabl e("prinmes", prines);

/1 all prime nunbers > 10 fromthe list (using selection ?{...})
/'l evaluates to [11, 13, 17]

Li st<lnteger> prinesG eat er ThanTen =
(Li st<lnteger>) parser.parseExpression("#prines.?[#t his>10]").get Val ue(context);

Functions

Y ou can extend SpEL by registering user defined functions that can be called within the expression string.
The function is registered with the St andar dEval uat i onCont ext using the method.

public void registerFunction(String nane, Method m

A reference to a Java Method provides the implementation of the function. For example, a utility method
to reverse a string is shown below.
public abstract class StringUils {

public static String reverseString(String input) {
StringBui |l der backwards = new StringBuilder();

31 Reference Documentation 190

Spring Framework

for (int i =0; i <input.length(); i++)
backwar ds. append(i nput. charAt (i nput.length() - 1 - i));
}

return backwards.toString();
}

}

This method is then registered with the evaluation context and can be used within an expression string.

Expressi onPar ser parser = new Spel Expressi onParser();
St andar dEval uat i onCont ext context = new Standar dEval uati onCont ext () ;

context.regi sterFunction("reverseString",
StringWils. cl ass. get Decl ar edMet hod(" reverseString",
new Cass[] { String.class }));

String hell oWrl dReversed =
par ser. par seExpr essi on("#reverseString(' hello')").getVal ue(context, String.class);

Bean references

If the evaluation context has been configured with a bean resolver it is possible to lookup beans from an
expression using the (@) symbol.

Expressi onParser parser = new Spel Expressi onParser();
St andar dEval uati onCont ext context = new St andar dEval uati onCont ext () ;
cont ext . set BeanResol ver (new MyBeanResol ver());

/1 This will end up calling resol ve(context,"foo") on MyBeanResol ver during eval uati on
bj ect bean = parser. par seExpressi on(" @o0"). get Val ue(cont ext);

Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression. A
minimal exampleis:

String falseString =
par ser. par seExpression("fal se ? '"trueExp' : 'falseExp'").getValue(String.class);

In this case, the boolean false results in returning the string value ‘falseExp’. A more redistic exampleis
shown below.

par ser . par seExpr essi on(" Nanme") . set Val ue(soci etyContext, "I|EEE");
soci et yCont ext . set Vari abl e("queryNane", "Ni kola Tesla");
expression = "i sMenber (#queryNane) ? #queryName + ' is a nmenber of the ' " +
"+ Name + ' Society' : #queryName + ' is not a nenber of the ' + Nane + ' Society'";

String queryResultString =
par ser . par seExpr essi on(expr essi on) . get Val ue(soci et yContext, String.class);
/] queryResultString = "N kola Tesla is a nmenber of the | EEE Society"

Also see the next section on the Elvis operator for an even shorter syntax for the ternary operator.

3.1 Reference Documentation 191

Spring Framework

The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the Groovy language. With
the ternary operator syntax you usually have to repeat a variable twice, for example:

String name = "Elvis Presley";
String displayNane = nane != null ? name : "Unknown";

Instead you can use the Elvis operator, named for the resemblance to Elvis hair style.

Expr essi onPar ser parser = new Spel Expressi onParser () ;
String name = parser. parseExpression("null ?:' Unknown' ") . get Val ue(String. cl ass);

System out. println(nane); // ' Unknown'

Hereisamore complex example.

Expressi onPar ser parser = new Spel Expressi onParser();

Inventor tesla = new I nventor("Ni kola Tesla", "Serbian");
St andar dEval uati onCont ext context = new Standar dEval uati onCont ext (tesl a);

String nane = parser. parseExpression("Nanme?:' Elvis Presley'").getVal ue(context, String.class);
System out. println(nane); // M ke Tesla

tesl a. set Name(null);

name = parser. parseExpression("Nanme?:' Elvis Presley'").getVal ue(context, String.class);

Systemout.println(nanme); // Elvis Presley

Safe Navigation operator

The Safe Navigation operator is used to avoid a Nul | Poi nt er Excepti on and comes from the
Groovy language. Typically when you have a reference to an object you might need to verify that it is not
null before accessing methods or properties of the object. To avoid this, the safe navigation operator will
simply return null instead of throwing an exception.

Expressi onPar ser parser = new Spel Expressi onParser();

Inventor tesla = new I nventor("Ni kola Tesla", "Serbian");
tesla.setPlaceOBirth(new PlaceOBirth("Sniljan"));

St andar dEval uati onCont ext context = new St andar dEval uati onCont ext (tesl a);

String city = parser. parseExpression("PlaceOBirth?. Cty").getValue(context, String.class);
Systemout.println(city); // Smljan

tesla.setPlaceOBirth(null);
city = parser. parseExpression("PlaceOBirth?. City"). getValue(context, String.class);

Systemout.printin(city); // null - does not throw Nul | PointerException!!!

3.1 Reference Documentation 192

http://groovy.codehaus.org/Operators#Operators-ElvisOperator(%3F%3A)
http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(%3F.)

Spring Framework

Note

The Elvis operator can be used to apply default values in expressions, e.g. in an @/al ue
expression:

@/al ue("#{systenProperties[' pop3.port'] ?: 25}")

Thiswill inject asystem property pop3. port if itisdefined or 25if not.

Collection Selection

Selection is a powerful expression language feature that allows you to transform some source collection
into another by selecting from its entries.

Selection usesthe syntax ?[sel ect i onExpr essi on] . Thiswill filter the collection and return a new
collection containing a subset of the original elements. For example, selection would allow us to easily
get alist of Serbian inventors:

Li st<lnventor> list = (List<lnventor>)
par ser. par seExpr essi on("Menbers. ?[Nationality == 'Serbian']").get Val ue(soci et yCont ext);

Selection is possible upon both lists and maps. In the former case the selection criteria is evaluated
against each individual list element whilst against a map the selection criteria is evaluated against each
map entry (objects of the Java type Map. Ent ry). Map entries have their key and value accessible as
properties for use in the selection.

This expression will return a new map consisting of those elements of the original map where the entry
valueislessthan 27.

Map newMap = parser. par seExpressi on(" nmap. ?[val ue<27]"). get Val ue();

In addition to returning all the selected elements, it is possible to retrieve just the first or the last value. To
obtain the first entry matching the selection the syntax is ~[.. .] whilst to obtain the last matching
selectionthe syntax is$[. . .] .

Collection Projection

Projection alows a collection to drive the evaluation of a sub-expression and the result is a new
collection. The syntax for projection is ! [proj ecti onExpressi on]. Most easily understood by
example, suppose we have a list of inventors but want the list of cities where they were born. Effectively
we want to evaluate 'placeOfBirth.city' for every entry in the inventor list. Using projection:

/1 returns ["Smiljan', 'ldvor']
Li st placesOBirth = (List)parser. parseExpression("Mnbers.![placeOBirth.city]");

31 Reference Documentation 193

Spring Framework

A map can also be used to drive projection and in this case the projection expression is evaluated against
each entry in the map (represented as a Java Map. Ent r y). The result of a projection across a map is a
list consisting of the evaluation of the projection expression against each map entry.

Expression templating

Expression templates allow a mixing of literal text with one or more evaluation blocks. Each evaluation
block is delimited with prefix and suffix characters that you can define, a common choiceisto use #{ }
asthe delimiters. For example,

String randonPhrase =
par ser . par seExpr essi on("random nunber is #{T(java.lang. Math).random()}",
new Tenpl at ePar ser Cont ext ()). get Val ue(String. cl ass) ;

/'l evaluates to "random nunber is 0.7038186818312008"

The string is evaluated by concatenating the literal text 'random number is ' with the result of evaluating
the expression inside the #{ } delimiter, in this case the result of calling that random() method. The
second argument to the method par seExpressi on() is of the type Parser Cont ext. The
Par ser Cont ext interface is used to influence how the expression is parsed in order to support the
expression templating functionality. The definition of Tenpl at ePar ser Cont ext isshown below.

public class Tenpl at ePar ser Cont ext i npl ements Parser Cont ext {

public String get ExpressionPrefix() {
return "#{";

}

public String get ExpressionSuffix() {
return "}";

}

public bool ean isTenmplate() {
return true;

}
}

7.6 Classes used in the examples

Inventor.java

package org.spring.sanpl es. spel . inventor;

import java.util.Date;
inport java.util.G egorianCal endar;

public class Inventor {

private String nane;

private String nationality;
private String[] inventions;
private Date birthdate;

private PlaceOBirth placeOBirth;

3.1 Reference Documentation 194

Spring Framework

public Inventor(String name, String nationality)

{

Gregori anCal endar c= new Gregori anCal endar () ;

thi
thi
thi

publ i
t hi
t hi
t hi

}

publ i
}

publ i

S.
S.
S

C
S.
S
S

C

c

nane = nane;
nationality = nationality;
birthdate = c.getTi me();

name = nane;
.nationality = nationality;
.birthdate = birthdate;

I nventor () {

String getName() {

return nanme;

}
publ i
t hi

}
publ i

C
S

c

voi d set Name(String name) {
.name = nane;

String getNationality() {

return nationality;

}

publ i
t hi

}

publ i

Cc
S

C

voi d setNationality(String nationality) {
.nationality = nationality;

Date getBirthdate() {

return birthdate;

}
publ i

t hi

}
publ i

Cc
S

C

voi d setBirthdate(Date birthdate) {
.birthdate = birthdate;

Pl aceO Birth getPlaceO Birth() {

return placeOBirth;

}

publ i
thi

}

publ i
t hi

C
S

Cc
S

voi d setPlaceOBirth(PlaceOBirth placeOBirth) {
.placeOBirth = placeOBirth;

voi d setlnventions(String[] inventions) {
.inventions = inventions;

public String[] getlnventions() {
return inventions;

}
}

PlaceOfBirth.java

package org.spring.sanpl es. spel .inventor;

public class PlaceOBirth {

private String city;
private String country;

public PlaceOBirth(String city) {
this.city=city;

}
public PlaceOBirth(String city, String country)

this(city);
this.country = country;

Inventor(String name, Date birthdate, String nationality) {

31

Reference Documentation

195

Spring Framework

public String getGity() {
return city;
}

public void setGty(String s) {
this.city = s;

}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;
}

Society.java

package org.spring.sanpl es. spel . inventor;

import java.util.*;

public class Society {

private String nane;

public static String Advisors = "advi sors";
public static String President = "president";

private List<lnventor> nenbers = new Arrayli st<lnventor>();

private Map officers = new HashMap();

public List getMenbers() {
return menbers;
}

public Map getOficers() {
return of ficers;
}

public String getNane() {
return nane;
}

public void setNane(String nane) {
thi s. nane = nang;
}

publ i c bool ean i sMenber (String namne)
{

bool ean found = fal se;
for (Inventor inventor : menbers) {

if (inventor.getNane().equal s(nane))

{

found = true;
br eak;

}
}

return found;

31

Reference Documentation

196

Spring Framework

31

Reference Documentation

197

Spring Framework

8. Aspect Oriented Programming with Spring

8.1 Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas
in AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as
transaction management that cut across multiple types and objects. (Such concerns are often termed
crosscutting concernsin AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring 10C container does not
depend on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring
IoC to provide a very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schema-based approach or the @Aspect]J annotation style. Both of these styles offer fully typed
advice and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @A spectJ-based AOP support is discussed in this chapter. Spring 2.0
AOP remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support
offered by the Spring 1.2 APIs is discussed in the following chapter.

AOP isused in the Spring Framework to...

... provide declarative enterprise services, especially as areplacement for EJB declarative services. The
most important such service is declarative transaction management.

... dlow usersto implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you do not need to work directly with Soring AOP, and can skip most of this
chapter.

AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not
Spring-specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even
more confusing if Spring used its own terminology.

» Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is a

31 Reference Documentation 198

Spring Framework

good example of a crosscutting concern in enterprise Java applications. In Spring AOP, aspects are
implemented using regular classes (the schema-based approach) or regular classes annotated with the
@\spect annotation (the @Aspect J style).

Join point: a point during the execution of a program, such as the execution of a method or the
handling of an exception. In Spring AOP, ajoin point always represents a method execution.

Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including
Spring, model an advice as an interceptor, maintaining a chain of interceptors around the join point.

Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and runs
at any join point matched by the pointcut (for example, the execution of a method with a certain name).
The concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the
Aspect] pointcut expression language by default.

Introduction: declaring additional methods or fields on behalf of a type. Spring AOP alows you to
introduce new interfaces (and a corresponding implementation) to any advised object. For example,
you could use an introduction to make a bean implement an | shbdi fi ed interface, to simplify
caching. (An introduction is known as an inter-type declaration in the AspectJ community.)

Target object: object being advised by one or more aspects. Also referred to as the advised object.
Since Spring AOP isimplemented using runtime proxies, this object will always be a proxied object.

AOP proxy: an object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic
proxy or a CGLIB proxy.

Weaving: linking aspects with other application types or objects to create an advised object. This can be
done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP,
like other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

Before advice: Advice that executes before ajoin point, but which does not have the ability to prevent
execution flow proceeding to the join point (unless it throws an exception).

After returning advice: Advice to be executed after a join point completes normally: for example, if a
method returns without throwing an exception.

After throwing advice: Advice to be executed if amethod exits by throwing an exception.

After (finally) advice: Advice to be executed regardless of the means by which a join point exits
(normal or exceptional return).

Around advice: Advice that surrounds a join point such as a method invocation. This is the most
powerful kind of advice. Around advice can perform custom behavior before and after the method

31 Reference Documentation 199

Spring Framework

invocation. It is also responsible for choosing whether to proceed to the join point or to shortcut the
advised method execution by returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range
of advice types, we recommend that you use the least powerful advice type that can implement the
required behavior. For example, if you need only to update a cache with the return value of a method, you
are better off implementing an after returning advice than an around advice, athough an around advice
can accomplish the same thing. Using the most specific advice type provides a simpler programming
model with less potential for errors. For example, you do not need to invoke the pr oceed() method on
the Joi nPoi nt used for around advice, and hence cannot fail to invokeit.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than Cbj ect
arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the
Object-Oriented hierarchy. For example, an around advice providing declarative transaction management
can be applied to a set of methods spanning multiple objects (such as all business operationsin the service

layer).

Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP
does not need to control the class loader hierarchy, and is thus suitable for use in a Servlet container or
application server.

Spring AOP currently supports only method execution join points (advising the execution of methods on
Spring beans). Field interception is not implemented, although support for field interception could be
added without breaking the core Spring AOP APIs. If you need to advise field access and update join
points, consider alanguage such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The am is not to
provide the most complete AOP implementation (although Spring AOP is quite capable); it is rather to
provide a close integration between AOP implementation and Spring 10C to help solve common problems
in enterprise applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the
Spring 1oC container. Aspects are configured using normal bean definition syntax (although this allows
powerful "autoproxying" capabilities): thisisacrucial difference from other AOP implementations. There
are some things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained
objects (such as domain objects typicaly): Aspect] is the best choice in such cases. However, our
experience is that Spring AOP provides an excellent solution to most problems in enterprise Java
applications that are amenable to AOP.

31 Reference Documentation 200

Spring Framework

Spring AOP will never strive to compete with Aspect] to provide a comprehensive AOP solution. We
believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ
are vauable, and that they are complementary, rather than in competition. Spring 2.0 seamlessly
integrates Spring AOP and 10C with AspectJ, to enable all uses of AOP to be catered for within a
consistent Spring-based application architecture. This integration does not affect the Spring AOP API or
the AOP Alliance API: Spring AOP remains backward-compatible. See the following chapter for a
discussion of the Spring AOP APIs.

Note

One of the central tenets of the Spring Framework is that of non-invasiveness; thisis the idea
that you should not be forced to introduce framework-specific classes and interfaces into your
business’7domain model. However, in some places the Spring Framework does give you the
option to introduce Spring Framework-specific dependencies into your codebase: the
rationale in giving you such options is because in certain scenarios it might be just plain
easier to read or code some specific piece of functionality in such a way. The Spring
Framework (almost) always offers you the choice though: you have the freedom to make an
informed decision as to which option best suits your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which
AORP style) to choose. Y ou have the choice of Aspectd and/or Spring AOP, and you aso have
the choice of either the @Aspect) annotation-style approach or the Spring XML
configuration-style approach. The fact that this chapter chooses to introduce the
@A spectJ-style approach first should not be taken as an indication that the Spring team
favors the @A spectJ annotation-style approach over the Spring XML configuration-style.

See Section 8.4, “Choosing which AOP declaration style to use” for a more complete
discussion of the whys and wherefores of each style.

AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface
(or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces.
CGLIB is used by default if a business object does not implement an interface. As it is good practice to
program to interfaces rather than classes, business classes normally will implement one or more business
interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where you need to
advise a method that is not declared on an interface, or where you need to pass a proxied object to a
method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section called “Understanding
AOP proxies’ for athorough examination of exactly what thisimplementation detail actually means.

3.1 Reference Documentation 201

Spring Framework

8.2 @Aspectd support

@A spect] refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations.
The @Aspect] style was introduced by the Aspect] project as part of the Aspectd 5 release. Spring 2.0
interprets the same annotations as AspectJ 5, using alibrary supplied by AspectJ for pointcut parsing and
matching. The AOP runtime is still pure Spring AOP though, and there is no dependency on the AspectJ
compiler or weaver.

Using the AspectJ compiler and weaver enables use of the full Aspectd language, and is discussed in
Section 8.8, *“ Using AspectJ with Spring applications” .

Enabling @AspectJ Support

To use @Aspect] aspects in a Spring configuration you need to enable Spring support for configuring
Spring AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are
advised by those aspects. By autoproxying we mean that if Spring determines that a bean is advised by
one or more aspects, it will automatically generate a proxy for that bean to intercept method invocations
and ensure that advice is executed as needed.

The @A spectJ support is enabled by including the following element inside your spring configuration:

<aop: aspect j - aut opr oxy/ >

This assumes that you are using schema support as described in Appendix D, XML Schema-based
configuration. See the section called “ The aop schema’ for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @Aspectd support by adding the following
definition to your application context:

<bean cl ass="org. spri ngframewor k. aop. aspectj . annot ati on. Annot ati onAwar eAspect JAut oPr oxyCreator" />

You will also need AspectJs aspectj weaver.j ar library on the classpath of your application,
version 1.6.8 or later. Thislibrary isavailableinthe' 1i b' directory of an AspectJ distribution or viathe
Maven Central repository.

Declaring an aspect

With the @A spectJ support enabled, any bean defined in your application context with a class that is an
@A spect] aspect (has the @Aspect annotation) will be automatically detected by Spring and used to
configure Spring AOP. The following example shows the minimal definition required for a
not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @Aspect
annotation:

3.1 Reference Documentation 202

http://www.eclipse.org/aspectj

Spring Framework

<bean id="nyAspect" cl ass="org.xyz. Not VeryUsef ul Aspect ">
<I-- configure properties of aspect here as nornal -->
</ bean>

And the Not Ver yUsef ul Aspect class definition, annotated with
org. aspectj .| ang. annot ati on. Aspect annotation;

package org. xyz;
i nport org.aspectj.|ang.annotation. Aspect;

@\spect
public class Not VeryUsef ul Aspect {

}

Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They
may also contain pointcut, advice, and introduction (inter-type) declarations.

Autodetecting aspects through component scanning

You may register aspect classes as regular beans in your Spring XML configuration, or
autodetect them through classpath scanning - just like any other Spring-managed bean.
However, note that the @Aspect annotation is not sufficient for autodetection in the
classpath: For that purpose, you need to add a separate @Component annotation (or
aternatively a custom stereotype annotation that qualifies, as per the rules of Spring's
component scanner).

Advising aspects with other aspects?

In Spring AORP, it is not possible to have aspects themselves be the target of advice from
other aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it
from auto-proxying.

Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Soring AOP only supports method execution join points for Soring beans, so you can think of a pointcut
as matching the execution of methods on Spring beans. A pointcut declaration has two parts: a signature
comprising a name and any parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @Aspect] annotation-style of AOP, a pointcut signature is
provided by aregular method definition, and the pointcut expression is indicated using the @ oi nt cut

annotation (the method serving as the pointcut signature must have avoi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear.
The following example defines a pointcut named ' anyQ dTr ansf er ' that will match the execution of
any method named ' t r ansfer' :

31 Reference Documentation 203

Spring Framework

@Poi nt cut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @Poi nt cut annotation is a regular Aspect] 5
pointcut expression. For a full discussion of AspectJ's pointcut language, see the AspectJ Programming

Guide (and for Java 5 based extensions, the Aspect] 5 Developers Notebook) or one of the books on

AspectJ such as “Eclipse AspectJ’ by Colyer et. al. or “AspectJin Action” by Ramnivas Laddad.

Supported Pointcut Designhators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full AspectJ pointcut language supports additional pointcut designators that are not supported
in Spring. These are cal |, get , set, preinitialization,
staticinitialization, initialization, handl er, advi ceexecuti on,
W t hi ncode, cflow, cflowbelow, if, @his, and @v t hi ncode. Use of these
pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
I'I'l egal Argunment Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases to
support more of the AspectJ pointcut designators.

execution - for matching method execution join points, thisis the primary pointcut designator you will
use when working with Spring AOP

within - limits matching to join points within certain types (simply the execution of a method declared
within a matching type when using Spring AOP)

this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

target - limits matching to join points (the execution of methods when using Spring AOP) where the
target object (application object being proxied) is an instance of the given type

args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

@ ar get - limits matching to join points (the execution of methods when using Spring AOP) where
the class of the executing object has an annotation of the given type

@r gs - limits matching to join points (the execution of methods when using Spring AOP) where the
runtime type of the actual arguments passed have annotations of the given type(s)

31 Reference Documentation 204

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Spring Framework

e @i t hi n - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

e @annotation - limits matching to join points where the subject of the join point (method being
executed in Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives a narrower definition than you will find in the Aspectd programming guide. In
addition, AspectJ itself has type-based semantics and at an execution join point both 't hi s' and
't ar get ' refer to the same object - the object executing the method. Spring AOP is a proxy-based system
and differentiates between the proxy object itself (bound to 't hi s') and the target object behind the proxy
(bound to 't ar get).

Note

Due to the proxy-based nature of Spring's AOP framework, protected methods are by
definition not intercepted, neither for JDK proxies (where thisisn't applicable) nor for CGLIB
proxies (where this is technically possible but not recommendable for AOP purposes). As a
consequence, any given pointcut will be matched against public methods only!

If your interception needs include protected/private methods or even constructors, consider
the use of Spring-driven native Aspect) weaving instead of Spring's proxy-based AOP
framework. This constitutes a different mode of AOP usage with different characteristics, so
be sure to make yourself familiar with weaving first before making a decision.

Spring AOP aso supports an additional PCD named 'bean’. This PCD alows you to limit the matching
of join points to a particular named Spring bean, or to a set of named Spring beans (when using
wildcards). The'bean’ PCD has the following form:

bean(i dOr NameOr Bean)

The'i dOr NameOf Bean' token can be the name of any Spring bean: limited wildcard support using the
"' character is provided, so if you establish some naming conventions for your Spring beans you can
quite easily write a 'bean' PCD expression to pick them out. As is the case with other pointcut
designators, the 'bean’' PCD can be & &'ed, |['ed, and ! (negated) too.

Note

Please note that the '‘bean' PCD is only supported in Spring AOP - and not in native AspectJ
weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines.

The 'bean’ PCD operates at the instance level (building on the Spring bean name concept)
rather than at the type level only (which is what weaving-based AOP is limited to).
Instance-based pointcut designators are a specia capability of Spring's proxy-based AOP
framework and its close integration with the Spring bean factory, where it is natural and

31 Reference Documentation 205

Spring Framework

straightforward to identify specific beans by name.

Combining pointcut expressions

Pointcut expressions can be combined using '&&"', '||' and "!". It is also possible to refer to pointcut
expressions by name. The following example shows three pointcut expressions.
anyPubl i cOper at i on (which matches if a method execution join point represents the execution of
any public method); i nTr adi ng (which matches if a method execution is in the trading module), and
t radi ngOper ati on (which matches if a method execution represents any public method in the
trading module).

@oi ntcut ("execution(public * *(.

)"
private void anyPublicOperation() {}

@oi ntcut ("wi thin(comxyz. someapp. trading..*)")
private void inTradi ng() {}

@Poi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as
shown above. When referring to pointcuts by name, normal Java visibility rules apply (you can see
private pointcuts in the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so
on). Visibility does not affect pointcut matching.

Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and
particular sets of operations from within several aspects. We recommend defining a " SystemArchitecture”
aspect that captures common pointcut expressions for this purpose. A typical such aspect would look as
follows:

package com xyz.soneapp;

i nport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annotation. Pointcut;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the nethod is defined

* in atype in the comxyz. soneapp. web package or any sub-package
* under that.

*/

@oi ntcut ("within(com xyz. someapp. web. . *)")

public void i nWebLayer () {}

/**

* Ajoin point is in the service layer if the nmethod is defined

* in a type in the com xyz. soneapp. servi ce package or any sub-package
* under that.

*/

@oi ntcut ("wi thin(com xyz. someapp. service..*)")

31 Reference Documentation 206

Spring Framework

public void inServiceLayer() {}

/**
* Ajoin point is in the data access layer if the nmethod is defined
* in a type in the comxyz. soneapp. dao package or any sub-package
* under that.
*/
@Poi ntcut ("wi thi n(com xyz. soneapp. dao. . *)")
public void inDataAccessLayer() {}

/**
* A business service is the execution of any nmethod defined on a service
* interface. This definition assumes that interfaces are placed in the
* "service" package, and that inplenentation types are in sub-packages
*
* |f you group service interfaces by functional area (for exanple
* in packages com xyz.sonmeapp. abc. servi ce and com xyz. def. servi ce) then
* the pointcut expression "execution(* com xyz.soneapp..service.*.*(..))"
* coul d be used instead
*
* Alternatively, you can wite the expression using the 'bean
* PCD, like so "bean(*Service)". (This assunes that you have
* named your Spring service beans in a consistent fashion.)
*/

@Poi nt cut ("execution(* com xyz.soneapp. service.*.*(..))")
public voi d businessService() {}

/**
* A data access operation is the execution of any nethod defined on a
* dao interface. This definition assunmes that interfaces are placed in the
* "dao" package, and that inplenmentation types are in sub-packages
*/
@oi nt cut ("execution(* com xyz.sonmeapp.dao.*.*(..))")
public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression.
For example, to make the service layer transactional, you could write:

<aop: confi g>
<aop: advi sor
poi nt cut =" com xyz. someapp. Syst emAr chi t ect ur e. busi nessService()"
advi ce-ref ="t x-advi ce"/>
</ aop: confi g>

<t x: advi ce id="tx-advice">
<tx:attributes>
<t x: met hod name="*" propagati on="REQUI RED"/ >
</tx:attributes>
</t x: advi ce>

The <aop: confi g> and <aop: advi sor > elements are discussed in Section 8.3, “Schema-based
AOP support”. The transaction elements are discussed in Chapter 11, Transaction Management.

Examples

Spring AOP users are likely to use the execut i on pointcut designator the most often. The format of an
execution expression is:

execution(nodifiers-pattern? ret-type-pattern declaring-type-pattern? name-pattern(param pattern)

3.1 Reference Documentation 207

Spring Framework

throws- pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and
parameters pattern are optional. The returning type pattern determines what the return type of the method
must be in order for a join point to be matched. Most frequently you will use * as the returning type
pattern, which matches any return type. A fully-qualified type name will match only when the method
returns the given type. The name pattern matches the method name. Y ou can use the * wildcard as al or
part of a name pattern. The parameters pattern is slightly more complex: () matches a method that takes
no parameters, whereas (. .) matches any number of parameters (zero or more). The pattern (*)
matches a method taking one parameter of any type, (*, String) matches a method taking two
parameters, the first can be of any type, the second must be a String. Consult the Language Semantics
section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

* the execution of any public method:

execution(public * *(..))

* the execution of any method with a name beginning with "set":

execution(* set*(..))

+ the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. service. Account Service.*(..))

« the execution of any method defined in the service package:

execution(* comxyz.service.*.*(..))

« the execution of any method defined in the service package or a sub-package:
execution(* com xyz.service..*.*(..))
* any join point (method execution only in Spring AOP) within the service package:

wi t hi n(com xyz. service. *)

any join point (method execution only in Spring AOP) within the service package or a sub-package:

wi t hi n(com xyz. service..*)

e any join point (method execution only in Spring AOP) where the proxy implements the
Account Ser vi ce interface:

thi s(com xyz. servi ce. Account Servi ce)

31 Reference Documentation 208

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Spring Framework

‘this' is more commonly used in a binding form :- see the following section on advice for how to make
the proxy object available in the advice body.

e any join point (method execution only in Spring AOP) where the target object implements the
Account Ser vi ce interface:

target (com xyz. servi ce. Account Servi ce)

'target' is more commonly used in a binding form :- see the following section on advice for how to
make the target object available in the advice body.

» any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtimeisSeri al i zabl e:

args(java.io. Serializable)

‘args is more commonly used in a binding form :- see the following section on advice for how to make
the method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(*
*(java.io. Serializabl e)): the args version matches if the argument passed at runtime is
Serializable, the execution version matches if the method signature declares a single parameter of type
Seri al i zabl e.

e any join point (method execution only in Spring AOP) where the target object has an
@r ansact i onal annotation:

@ ar get (org. springframework. transacti on. annotati on. Transacti onal)

'‘@target’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

» any join point (method execution only in Spring AOP) where the declared type of the target object has
an @r ansact i onal annotation:

@\ t hin(org. springframework.transacti on. annotati on. Transacti onal)

‘@within' can also be used in a binding form ;- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the executing method has an
@r ansact i onal annotation:

@nnot at i on(org. springfranmework.transaction. annotation. Transacti onal)

‘@annotation’ can also be used in a binding form :- see the following section on advice for how to
make the annotation object available in the advice body.

31 Reference Documentation 209

Spring Framework

» any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed hasthe @l assi f i ed annotation:

@rgs(com xyz. security. Classified)

‘@args can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

« any join point (method execution only in Spring AOP) on a Spring bean named 't r adeSer vi ce"

bean(tradeService)

e any join point (method execution only in Spring AOP) on Spring beans having names that match the
wildcard expression * Ser vi ce":

bean(*Servi ce)

Writing good pointcuts

During compilation, AspectJ processes pointcuts in order to try and optimize matching performance.
Examining code and determining if each join point matches (statically or dynamically) a given pointcut is
a costly process. (A dynamic match means the match cannot be fully determined from static analysis and
atest will be placed in the code to determine if there is an actual match when the code is running). On
first encountering a pointcut declaration, AspectJ will rewrite it into an optimal form for the matching
process. What does this mean? Basically pointcuts are rewritten in DNF (Digunctive Normal Form) and
the components of the pointcut are sorted such that those components that are cheaper to evauate are
checked first. This means you do not have to worry about understanding the performance of various
pointcut designators and may supply them in any order in a pointcut declaration.

However, Aspectd can only work with what it is told, and for optima performance of matching you
should think about what they are trying to achieve and narrow the search space for matches as much as
possible in the definition. The existing designators naturally fall into one of three groups: kinded, scoping
and context:

» Kinded designators are those which select a particular kind of join point. For example: execution, get,
set, call, handler

» Scoping designators are those which select a group of join points of interest (of probably many kinds).
For example: within, withincode

» Contextual designators are those that match (and optionally bind) based on context. For example: this,
target, @annotation

A well written pointcut should try and include at least the first two types (kinded and scoping), whilst the
contextual designators may be included if wishing to match based on join point context, or bind that
context for use in the advice. Supplying either just a kinded designator or just a contextual designator will

3.1 Reference Documentation 210

Spring Framework

work but could affect weaving performance (time and memory used) due to all the extra processing and
analysis. Scoping designators are very fast to match and their usage means AspectJ can very quickly
dismiss groups of join points that should not be further processed - that is why a good pointcut should
alwaysinclude oneif possible.

Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions
matched by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or
a pointcut expression declared in place.

Before advice

Before adviceis declared in an aspect using the @ef or e annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang. annotati on. Bef ore;

@\spect
public class BeforeExanple {

@ef ore("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public voi d doAccessCheck() {
...

}

If using an in-place pointcut expression we could rewrite the above example as:

i nport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annotation. Before;

@\spect
public class BeforeExanple {

@Bef ore("execution(* com xyz. nyapp.dao.*.*(..))")
public void doAccessCheck() {
...

}

After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@Af t er Ret ur ni ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturningExanple {

3.1 Reference Documentation 211

Spring Framework

@\f t er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()")
public void doAccessCheck() ({
...

}
}
Note: it is of course possible to have multiple advice declarations, and other members as well, all inside
the same aspect. We're just showing a single advice declaration in these examples to focus on the issue
under discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You can use the
form of @Af t er Ret ur ni ng that binds the return value for this:

i mport org.aspectj.|ang.annotation. Aspect;
i nport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturningExanple {

@Af t er Ret ur ni ng(
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
returni ng="retVal")

public void doAccessCheck(Object retVal) {
...

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice
method. When a method execution returns, the return value will be passed to the advice method as the
corresponding argument value. A ret ur ni ng clause aso restricts matching to only those method
executions that return a value of the specified type (Obj ect in this case, which will match any return
value).

Please note that it is not possible to return atotally different reference when using after-returning advice.

After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is
declared using the @Af t er Thr owi ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annot ation. Af t er Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Aft er Throwi ng("com xyz. myapp. Syst emAr chi t ect ure. dat aAccessOperation()")
public void doRecoveryActions() {
...

}

Often you want the advice to run only when exceptions of a given type are thrown, and you also often
need access to the thrown exception in the advice body. Use the t hr owi ng attribute to both restrict

3.1 Reference Documentation 212

Spring Framework

matching (if desired, use Thr owabl e as the exception type otherwise) and bind the thrown exception to
an advice parameter.

i mport org.aspectj.|ang.annot ation. Aspect;
i mport org.aspectj.|ang.annotation. AfterThrow ng;

@\spect
public class AfterThrow ngExanpl e {

@A t er Thr owi ng(
poi nt cut ="com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()",
t hr owi ng="ex")

public void doRecoveryActi ons(Dat aAccessException ex) {
...

}

The name used in the t hr owi ng attribute must correspond to the name of a parameter in the advice
method. When a method execution exits by throwing an exception, the exception will be passed to the
advice method as the corresponding argument value. A t hr owi ng clause also restricts matching to only
those method executions that throw an exception of the specified type (Dat aAccessExcepti on in
this case).

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @Af t er
annotation. After advice must be prepared to handle both normal and exception return conditions. It is
typically used for releasing resources, etc.

i mport org.aspectj.|ang.annot ati on. Aspect;
i mport org.aspectj.lang.annotation.After;

@\spect
public class AfterFinallyExanple {

@\fter("com xyz. nyapp. SystemArchi t ect ure. dat aAccessOperation()")
public voi d doRel easeLock() {
...

}

Around advice

The fina kind of advice is around advice. Around advice runs "around” a matched method execution. It
has the opportunity to do work both before and after the method executes, and to determine when, how,
and even if, the method actually gets to execute at al. Around advice is often used if you need to share
state before and after a method execution in a thread-safe manner (starting and stopping a timer for
example). Always use the least powerful form of advice that meets your requirements (i.e. don't use
around advice if simple before advice would do).

Around advice is declared using the @\r ound annotation. The first parameter of the advice method must
be of type Pr oceedi ngJoi nPoi nt. Within the body of the advice, calling pr oceed() on the

3.1 Reference Documentation 213

Spring Framework

Pr oceedi ngJoi nPoi nt causes the underlying method to execute. The pr oceed method may also
be called passing in an Obj ect [] - the valuesin the array will be used as the arguments to the method
execution when it proceeds.

The behavior of proceed when called with an Qbj ect [] isalittle different than the behavior of proceed
for around advice compiled by the AspectJ compiler. For around advice written using the traditional
Aspect] language, the number of arguments passed to proceed must match the number of arguments
passed to the around advice (not the number of arguments taken by the underlying join point), and the
value passed to proceed in a given argument position supplants the original value at the join point for the
entity the value was bound to (Don't worry if this doesn't make sense right now!). The approach taken by
Soring is simpler and a better match to its proxy-based, execution only semantics. You only need to be
aware of this difference if you are compiling @AspectJ aspects written for Soring and using proceed with
arguments with the Aspectd compiler and weaver. There is a way to write such aspects that is 100%
compatible across both Soring AOP and AspectJ, and this is discussed in the following section on advice
parameters.

i nport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annotation. Around;
i nport org.aspectj .| ang. Proceedi ngJoi nPoi nt;

@\spect
public class AroundExanpl e {

@\r ound("com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce()")
publ i c Object doBasicProfiling(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
/] start stopwatch
Obj ect retVal = pjp.proceed();
/] stop stopwatch
return retVal;

}
}

The value returned by the around advice will be the return value seen by the caller of the method. A
simple caching aspect for example could return avalue from a cache if it has one, and invoke proceed() if
it does not. Note that proceed may be invoked once, many times, or not at all within the body of the
around advice, al of these are quite legal.

Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice
signature (as we saw for the returning and throwing examples above) rather than work with Cbj ect []
arrays all the time. We'll see how to make argument and other contextual values available to the advice
body in amoment. First let's take alook at how to write generic advice that can find out about the method
the adviceis currently advising.

Access to the current Joi nPoi nt

Any advice method may declare as its first parameter, a parameter of type
org. aspectj .|l ang. Joi nPoi nt (please note that around advice is required to declare a first
parameter of type Pr oceedi ngJoi nPoi nt, which is a subclass of Joi nPoi nt. The Joi nPoi nt
interface provides a number of useful methods such as get Args() (returns the method arguments),

3.1 Reference Documentation 214

Spring Framework

get Thi s() (returnsthe proxy object), get Tar get () (returns the target object), get Si gnat ur e()
(returns a description of the method that is being advised) andt oSt ri ng() (prints a useful description
of the method being advised). Please do consult the Javadocs for full details.

Passing parameters to advice

We've aready seen how to bind the returned value or exception value (using after returning and after
throwing advice). To make argument values available to the advice body, you can use the binding form of
ar gs. If a parameter name is used in place of atype name in an args expression, then the value of the
corresponding argument will be passed as the parameter value when the advice is invoked. An example
should make this clearer. Suppose you want to advise the execution of dao operations that take an
Account object as the first parameter, and you need access to the account in the advice body. Y ou could
write the following:

@ef ore("com xyz. nyapp. Syst emAr chi t ect ure. dat aAccessQperation() &&' +
"args(account,..)")
public void validateAccount (Account account) {
...

}

The args(account,..) part of the pointcut expression serves two purposes. firstly, it restricts
matching to only those method executions where the method takes at least one parameter, and the
argument passed to that parameter is an instance of Account ; secondly, it makes the actual Account
object available to the advice viatheaccount parameter.

Another way of writing this is to declare a pointcut that "provides' the Account object value when it
matches a join point, and then just refer to the named pointcut from the advice. This would look as
follows:

@Poi ntcut ("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation() &&"' +
"args(account,..)")
private void account Dat aAccessOper ati on(Account account) {}

@Bef or e("account Dat aAccessOper ati on(account)")
public void validateAccount (Account account) {
...

}

The interested reader is once more referred to the Aspectd programming guide for more details.

The proxy object (t his), target object (target), and annotations (@v thin, @ arget,
@nnot ati on, @r gs) canal be boundinasimilar fashion. The following example shows how you
could match the execution of methods annotated with an @A\udi t abl e annotation, and extract the audit
code.

First the definition of the @A\udi t abl e annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI VE)
@rar get (El ement Type. METHOD)
public @nterface Auditable {
Audi t Code val ue();
}

3.1 Reference Documentation 215

Spring Framework

And then the advice that matches the execution of @\udi t abl e methods:

@efore("comxyz. |ib. Pointcuts. anyPublicMethod() && " +
"@nnot ati on(audi tabl e)")
public void audit(Auditable auditable) {
Audi t Code code = auditable.val ue();
...

}

Advice parameters and generics

Spring AOP can handle generics used in class declarations and method parameters. Suppose you have a
generic type likethis:

public interface Sanpl e<T> {

voi d sanpl eGeneri cMet hod(T param;

voi d sanpl eGeneri cCol | ecti onMet hod(Col | ecti on>T> paranj;
}

You can restrict interception of method types to certain parameter types by simply typing the advice
parameter to the parameter type you want to intercept the method for:

@Bef ore("execution(* ..Sanpl e+. sanpl eGeneri cMet hod(*)) && args(param")
public void beforeSanpl eMet hod(My Type param) {
/1 Advice inplenentation

}

That thisworks is pretty obvious as we already discussed above. However, it's worth pointing out that this
won't work for generic collections. So you cannot define a pointcut like this:

@Bef ore("execution(* ..Sanpl e+. sanpl eGeneri cCol | ecti onMet hod(*)) && args(param")
public voi d beforeSanpl eMet hod(Col | ecti on<MyType> param {
/1 Advice inplenentation

}

To make this work we would have to inspect every element of the collection, which is not reasonable as
we also cannot decide how to treat nul | valuesin general. To achieve something similar to this you have
to type the parameter to Col | ect i on<?> and manually check the type of the elements.

Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions to
declared parameter names in (advice and pointcut) method signatures. Parameter names are not available
through Java reflection, so Spring AOP uses the following strategies to determine parameter names:

1. If the parameter names have been specified by the user explicitly, then the specified parameter names
are used: both the advice and the pointcut annotations have an optional "argNames" attribute which
can be used to specify the argument names of the annotated method - these argument names are
available at runtime. For example:

@Bef or e(
val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target(bean) && @nnotation(auditable)",

3.1 Reference Documentation 216

Spring Framework

ar gNames="bean, audi t abl e")
public void audit(Object bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
[/l ... use code and bean

}

If the first parameter is of the JoinPoint, ProceedingJoinPoint, or
Joi nPoi nt. Stati cPart type, you may leave out the name of the parameter from the value of the
"argNames' attribute. For example, if you modify the preceding advice to receive the join point object,
the "argNames" attribute need not includeit:

@Bef or e(
val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target(bean) && @nnotation(auditable)",
ar gNames="bean, audi t abl e")
public void audit(JoinPoint jp, Object bean, Auditable auditable) {
Audi t Code code = auditabl e. val ue();
/1 ... use code, bean, and jp

}

The specia treatment given to the first parameter of the Joi nPoi nt, Pr oceedi ngJoi nPoi nt,
and Joi nPoi nt. Stati cPart typesis particularly convenient for advice that do not collect any
other join point context. In such situations, you may simply omit the "argNames' attribute. For
example, the following advice need not declare the "argNames" attribute:

@ef or e(
"com xyz. | ib. Pointcuts. anyPubl i cMet hod()")
public void audit(JoinPoint jp) {
Il ... usejp

}

2. Using the ' ar gNamres' attribute is a little clumsy, so if the ' ar gNanes' attribute has not been
specified, then Spring AOP will look at the debug information for the class and try to determine the
parameter names from the local variable table. This information will be present as long as the classes
have been compiled with debug information (' - g: vars' a a minimum). The consequences of
compiling with this flag on are: (1) your code will be dlightly easier to understand (reverse engineer),
(2) the class file sizes will be very dlightly bigger (typically inconsequential), (3) the optimization to
remove unused local variables will not be applied by your compiler. In other words, you should
encounter no difficulties building with this flag on.

If an @Aspect] aspect has been compiled by the Aspectd compiler (ajc) even without the debug
information then there is no need to add the ar gNanes attribute as the compiler will retain the
needed information.

3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt
to deduce the pairing of binding variables to parameters (for example, if only one variable is bound in
the pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If
the binding of variables is ambiguous given the available information, then an
Anmbi guousBi ndi ngExcept i on will be thrown.

4. If al of the above strategiesfail thenan | | | egal Ar gunent Except i on will be thrown.

3.1 Reference Documentation 217

Spring Framework

Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works
consistently across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature
binds each of the method parameters in order. For example:

@\r ound("execution(List<Account> find*(..)) &&" +
"com xyz. nyapp. Syst emAr chi t ect ure. i nDat aAccessLayer () && " +
"args(account Hol der NanePattern)")
publ i c Object preProcessQueryPattern(Proceedi ngJoi nPoint pjp, String accountHol der NamePat t er n)
throws Throwabl e {
String newPattern = preProcess(account Hol der NanePat t ern) ;
return pjp.proceed(new Cbject[] {newPattern});

}

In many cases you will be doing this binding anyway (as in the example above).

Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows
the same precedence rules as AspectJ to determine the order of advice execution. The highest precedence
advice runs first "on the way in" (so given two pieces of before advice, the one with highest precedence
runs first). "On the way out" from a join point, the highest precedence advice runs last (so given two
pieces of after advice, the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point, unless you
specify otherwise the order of execution is undefined. You can control the order of execution by
specifying precedence. This is done in the normal Spring way by either implementing the
org. spri ngframewor k. core. Or der ed interface in the aspect class or annotating it with the
O der annotation. Given two aspects, the aspect returning the lower value from
Or der ed. get Val ue() (or the annotation value) has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the
ordering is undefined (since there is no way to retrieve the declaration order via reflection for
javac-compiled classes). Consider collapsing such advice methods into one advice method per join point
in each aspect class, or refactor the pieces of advice into separate aspect classes - which can be ordered at
the aspect level.

Introductions

Introductions (known as inter-type declarations in Aspect]) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of those
objects.

An introduction is made using the @ecl ar ePar ent s annotation. This annotation is used to declare
that matching types have a new parent (hence the name). For example, given an interface
UsageTr acked, and an implementation of that interface Def aul t UsageTr acked, the following

3.1 Reference Documentation 218

Spring Framework

aspect declares that all implementors of service interfaces also implement the UsageTr acked interface.
(In order to expose statistics viaJM X for example.)

@\spect
public class UsageTracking {

@ecl ar ePar ent s(val ue="com xzy. nyapp. servi ce. *+",
def aul t | npl =Def aul t UsageTr acked. cl ass)
public static UsageTracked mi xin;

@Bef ore("com xyz. nyapp. Syst emArchi t ect ure. busi nessService() &&" +
"t hi s(usageTracked)")
public void recordUsage(UsageTracked usageTracked) ({
usageTr acked. i ncrenent UseCount () ;
}

The interface to be implemented is determined by the type of the annotated field. The val ue attribute of
the @ecl ar ePar ent s annotation is an AspectJ type pattern :- any bean of a matching type will
implement the UsageTracked interface. Note that in the before advice of the above example, service
beans can be directly used as implementations of the UsageTr acked interface. If accessing a bean
programmatically you would write the following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models
(Thisisan advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. Aspect] calls this
the singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring
supports AspectJspert hi s and pert ar get instantiation models (per cf | ow, per cfl owbel ow,
and per t ypew t hi n are not currently supported).

A "perthis" aspect is declared by specifying apert hi s clausein the @\spect annotation. Let's look at
an example, and then we'll explain how it works.

@\spect ("perthi s(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())")
public class MyAspect {

private int soneState;

@Bef ore(com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce())
public void recordServi ceUsage() {
...

}

The effect of the' pert hi s' clause is that one aspect instance will be created for each unique service
object executing a business service (each unique object bound to 'this at join points matched by the
pointcut expression). The aspect instance is created the first time that a method is invoked on the service
object. The aspect goes out of scope when the service object goes out of scope. Before the aspect instance

3.1 Reference Documentation 219

Spring Framework

is created, none of the advice within it executes. As soon as the aspect instance has been created, the
advice declared within it will execute at matched join points, but only when the service object is the one
this aspect is associated with. See the AspectJ programming guide for more information on per-clauses.

The' pertarget' instantiation model worksin exactly the same way as perthis, but creates one aspect
instance for each unique target object at matched join points.

Example

Now that you have seen how all the constituent parts work, let's put them together to do something useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation isretried, it is quite likely to succeed next time round. For business services where
it is appropriate to retry in such conditions (idempotent operations that don't need to go back to the user
for conflict resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi mi sti cLocki ngFai | ur eExcepti on. Thisisarequirement that clearly cuts across multiple
servicesin the service layer, and hence isideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed
multiple times. Here's how the basic aspect implementation looks:

@\spect

public class Concurrent Operati onExecutor inplenents O dered {
private static final int DEFAULT_MAX RETRI ES = 2;

private int nmaxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void set MaxRetries(int nmaxRetries) {
this. maxRetries = naxRetries;

}

public int getOder() {
return this.order;
}

public void setOrder(int order) {
this.order = order;
}

@\round("com xyz. myapp. Syst emAr chi t ect ure. busi nessService()")
publ i c Obj ect doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numittenpts = O;
Pessi m sti cLocki ngFai | ureException | ockFai |l ureExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();
}

cat ch(Pessi m sti cLocki ngFai | ureException ex) {
| ockFai | ureException = ex;
}
}

whi | e(numAttenpts <= this. maxRetries);
throw | ockFai | ur eExcepti on;

}

3.1 Reference Documentation 220

Spring Framework

Note that the aspect implements the Or der ed interface so we can set the precedence of the aspect higher
than the transaction advice (we want a fresh transaction each time we retry). The maxRet ri es and
order properties will both be configured by Spring. The man action happens in the
doConcurrent Oper at i on around advice. Notice that for the moment we're applying the retry logic
to al businessService()s. We try to proceed, and if we fal with an
Pessi mi sti cLocki ngFai | ureExcepti on we simply try again unless we have exhausted all of
our retry attempts.

The corresponding Spring configuration is:

<aop: aspectj - aut opr oxy/ >

<bean i d="concurrent Operati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurrent Qper ati onExecut or">
<property name="maxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

To refine the aspect so that it only retries idempotent operations, we might define an | denpot ent
annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)
public @nterface |denpotent {
/] marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the aspect to
only retry idempotent operations simply involves refining the pointcut expression so that only
@ denpot ent operations match:

@\r ound("com xyz. myapp. Syst emAr chi t ect ur e. busi nessService() &k " +
"@nnot ati on(com xyz. myapp. servi ce. | denpotent)")
publ i c Obj ect doConcurrent Operation(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {

i

8.3 Schema-based AOP support

If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers
support for defining aspects using the new "aop" namespace tags. The exact same pointcut expressions
and advice kinds are supported as when using the @A spectJ style, hence in this section we will focus on
the new syntax and refer the reader to the discussion in the previous section (Section 8.2, “ @AspectJ
support”) for an understanding of writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema as
described in Appendix D, XML Schema-based configuration. See the section called “ The aop schema” for
how to import the tags in the aop namespace.

3.1 Reference Documentation 221

Spring Framework

Within your Spring configurations, all aspect and advisor elements must be placed within an
<aop: confi g> element (you can have more than one <aop: confi g> element in an application
context configuration). An <aop: conf i g> element can contain pointcut, advisor, and aspect elements
(note these must be declared in that order).

. Warning

The <aop: confi g> style of configuration makes heavy use of Spring's auto-proxying
mechanism. This can cause issues (such as advice not being woven) if you are already using
explicit auto-proxying via the use of BeanNaneAut oPr oxyCr eat or or suchlike. The
recommended usage pattern is to use either just the <aop: confi g> style, or just the
Aut oPr oxyCr eat or style.

Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in your Spring
application context. The state and behavior is captured in the fields and methods of the object, and the
pointcut and advice information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the r ef
attribute:

<aop: confi g>
<aop: aspect id="myAspect" ref="aBean">

</ aop: aspect >
</ aop: confi g>

<bean i d="aBean" class="...">

</Béén>
The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected
just like any other Spring bean.

Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be
shared across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as
follows:
<aop: confi g>

<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: confi g>

3.1 Reference Documentation 222

Spring Framework

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as
described in Section 8.2, “ @Aspect] support”. If you are using the schema based declaration style with
Java 5, you can refer to named pointcuts defined in types (@Aspects) within the pointcut expression, but
this feature is not available on JDK 1.4 and below (it relies on the Java 5 specific Aspectd reflection
APIs). On JDK 1.5 therefore, another way of defining the above pointcut would be:

<aop: confi g>

<aop: poi ntcut i d="busi nessService"
expr essi on="com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()"/>

</ aop: confi g>

Assuming you have a Syst emAr chi t ect ur e aspect as described in the section caled “Sharing
common pointcut definitions”.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:

<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

<aop: poi ntcut i d="busi nessServi ce"
expressi on="execution(* com xyz. nmyapp.service.*.*(..))"/>

</ aop: aspect >

</ aop: confi g>

Much the same way in an @AspectJ aspect, pointcuts declared using the schema based definition style
may collect join point context. For example, the following pointcut collects the 'this object as the join
point context and passesit to advice:
<aop: confi g>
<aop: aspect id="nmyAspect" ref="aBean">
<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..)) &anp; &np; this(service)"/>
<aop: bef ore pointcut-ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

The advice must be declared to receive the collected join point context by including parameters of the
matching names:

public void nonitor(Object service) {

}

When combining pointcut sub-expressions, '&&" is awkward within an XML document, and so the

3.1 Reference Documentation 223

Spring Framework

keywords 'and', 'or' and 'not' can be used in place of '&&"', || and 'I" respectively. For example, the
previous pointcut may be better written as:
<aop: confi g>
<aop: aspect id="nmyAspect" ref="aBean">
<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..)) and this(service)"/>
<aop: bef ore pointcut-ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named
pointcuts to form composite pointcuts. The named pointcut support in the schema based definition styleis
thus more limited than that offered by the @A spectd style.

Declaring advice

The same five advice kinds are supported as for the @AspectJ style, and they have exactly the same
semantics.

Before advice

Before advice runs before a matched method execution. It is declared inside an <aop: aspect > using
the <aop:before> el ement.
<aop: aspect id="bef oreExanpl e" ref="aBean">
<aop: bef ore

poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doAccessCheck"/ >

</ aop: aspect >

Here dat aAccessQper at i on istheid of a pointcut defined at the top (<aop: confi g>) level. To
define the pointcut inline instead, replace the poi nt cut - r ef attribute with apoi nt cut attribute:

<aop: aspect id="beforeExanpl e" ref="aBean">

<aop: bef ore
poi nt cut ="executi on(* com xyz. nyapp. dao.*.*(..))"
met hod="doAccessCheck" />

</ aop: aspect >

Aswe noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve the

3.1 Reference Documentation 224

Spring Framework

readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This
method must be defined for the bean referenced by the aspect element containing the advice. Before a
data access operation is executed (a method execution join point matched by the pointcut expression), the
"doAccessCheck" method on the aspect bean will be invoked.

After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside
an <aop: aspect > in the same way as before advice. For example:
<aop: aspect id="afterReturni ngExanpl e" ref="aBean">
<aop: after-returning

poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doAccessCheck"/ >

</ aop: aspect >

Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use the
returning attribute to specify the name of the parameter to which the return value should be passed:
<aop: aspect id="afterReturni ngexanpl e" ref="aBean">
<aop: after-returning
poi nt cut - r ef =" dat aAccessOper ati on"

returni ng="retVal"
met hod="doAccessCheck" />

</ aop: aspect >

The doAccessCheck method must declare a parameter named r et Val . The type of this parameter
constrains matching in the same way as described for @AfterReturning. For example, the method
signature may be declared as:

public void doAccessCheck(Object retVal) {...

After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop: aspect > using the after-throwing element:

<aop: aspect id="after Throw ngExanpl e" ref="aBean">
<aop: after-throw ng

poi nt cut - r ef =" dat aAccessOper ati on"
met hod="doRecover yActi ons"/ >

3.1 Reference Documentation 225

Spring Framework

</ aop: aspect >

Just as in the @AspectJ style, it is possible to get hold of the thrown exception within the advice body.
Use the throwing attribute to specify the name of the parameter to which the exception should be passed:

<aop: aspect id="after Throw ngExanpl e" ref="aBean">

<aop: after-throw ng
poi nt cut - r ef =" dat aAccessOper ati on"
t hr owi ng="dat aAccessEx"
met hod="doRecover yActi ons"/ >

</ aop: aspect >

The doRecoveryActions method must declare a parameter named dat aAccessEx. The type of this
parameter constrains matching in the same way as described for @AfterThrowing. For example, the
method signature may be declared as:

public void doRecoveryActi ons(Dat aAccessExcepti on dataAccessEx) {...

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the af t er
element:

<aop: aspect id="afterFinallyExanple" ref="aBean">

<aop: after
poi nt cut - r ef =" dat aAccessOper ati on"
net hod="doRel easelLock"/ >

</ aop: aspect >

Around advice

The fina kind of advice is around advice. Around advice runs "around” a matched method execution. It
has the opportunity to do work both before and after the method executes, and to determine when, how,
and even if, the method actually gets to execute at al. Around advice is often used if you need to share
state before and after a method execution in a thread-safe manner (starting and stopping a timer for
example). Always use the least powerful form of advice that meets your requirements; don't use around
adviceif simple before advice would do.

Around advice is declared using the aop: ar ound element. The first parameter of the advice method
must be of type Pr oceedi ngJoi nPoi nt . Within the body of the advice, calling pr oceed() on the
Pr oceedi ngJoi nPoi nt causes the underlying method to execute. The pr oceed method may also
be calling passing inan Obj ect [] - the values in the array will be used as the arguments to the method
execution when it proceeds. See the section called “Around advice” for notes on calling proceed with an

3.1 Reference Documentation 226

Spring Framework

oj ect[].

<aop: aspect id="aroundExanmpl e" ref="aBean">

<aop: ar ound
poi nt cut - r ef =" busi nessServi ce"
met hod="doBasi cProfiling"/>

</ aop: aspect >

The implementation of the doBasi cPr of i | i ng advice would be exactly the same as in the @A spectJ
example (minus the annotation of course):

publ i c Object doBasicProfiling(Proceedi ngJoi nPoint pjp) throws Throwabl e {
/] start stopwatch
Obj ect retVal = pjp.proceed();
/] stop stopwatch
return retVal

Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the
@A spectJ support - by matching pointcut parameters by name against advice method parameters. See the
section called “Advice parameters’ for details. If you wish to explicitly specify argument names for the
advice methods (not relying on the detection strategies previously described) then this is done using the
ar g- nanmes attribute of the advice element, which is treated in the same manner to the "argNames"
attribute in an advice annotation as described in the section called “Determining argument names’. For
example:

<aop: bef ore
poi nt cut ="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() and @nnot ati on(auditable)"
met hod="audi t"
ar g- nanes="audi t abl e"/ >

Thear g- nanes attribute accepts a comma-delimited list of parameter names.

Find below a dightly more involved example of the XSD-based approach that illustrates some around
advice used in conjunction with a number of strongly typed parameters.

package Xx.y.service

public interface FooService {

Foo get Foo(String fooNanme, int age);
}

public class DefaultFooService inplenments FooService {

public Foo getFoo(String name, int age) {
return new Foo(nane, age);
}

}

3.1 Reference Documentation 227

Spring Framework

Next up is the aspect. Notice the fact that the pr of i | e(. .) method accepts a number of strongly-typed

parameters, the first of which happens to be the join point used to proceed with the method call: the

presence of this parameter isan indication that thepr of i | e(. .) isto beused asar ound advice:
package Xx.y;

i mport org.aspectj .| ang. Proceedi ngJoi nPoi nt ;
i mport org.springframework. util.StopWatch

public class SinpleProfiler {

public Object profile(Proceedi ngloinPoint call, String nane, int age) throws Throwabl e {
St opWat ch cl ock = new St opWat ch(
"Profiling for '" + nane + "' and '" + age + "'");
try {

clock.start(call.toShortString());
return call.proceed();
} finally {
cl ock. stop();
System out . println(clock.prettyPrint());

Finally, here is the XML configuration that is required to effect the execution of the above advice for a
particular join point:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: aop="http://ww. springframework. or g/ schema/ aop”

xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ aop http://ww. springfranmework. or g/ schena/ aop/ spri ng-aop. xsd" >

<l-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean id="fooService" class="x.y.service. Defaul t FooService"/>

<l-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SinpleProfiler"/>

<aop: confi g>
<aop: aspect ref="profiler">

<aop: poi ntcut id="theExecuti onOf SomeFooServi ceMet hod"
expressi on="execution(* Xx.y.service.FooService.getFoo(String,int))
and args(nanme, age)"/>

<aop: around poi ntcut-ref="theExecuti onO SoneFooSer vi ceMet hod"
met hod="profile"/>

</ aop: aspect >
</ aop: confi g>

</ beans>

If we had the following driver script, we would get output something like this on standard output:

i nport org.springframework. beans. factory. BeanFact ory;
i mport org.springfranmework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
i nport Xx.y.service. FooService

public final class Boot {

3.1 Reference Documentation 228

Spring Framework

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new O assPat hXm Appli cati onContext ("x/y/plain.xm");
FooService foo = (FooService) ctx.getBean("fooService");
f 0o. get Foo(" Pengo", 12);

StopWatch 'Profiling for 'Pengo’ and '12'': running time (mllis) =0

00000 ? execution(getFoo)

Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are as
described in the section called “Advice ordering”. The precedence between aspects is determined by
either adding the Or der annotation to the bean backing the aspect or by having the bean implement the
O der ed interface.

Introductions

Introductions (known as inter-type declarations in Aspect]) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of those
objects.

An introduction is made using the aop: decl ar e- par ent s element inside an aop: aspect This
element is used to declare that matching types have a new parent (hence the name). For example, given an
interface UsageTr acked, and an implementation of that interface Def aul t UsageTr acked, the
following aspect declares that all implementors of service interfaces also implement the UsageTr acked
interface. (In order to expose statistics viaJM X for example.)

<aop: aspect id="usageTrackerAspect" ref="usageTracking">

<aop: decl ar e- parent s
types- mat chi ng="com xzy. myapp. servi ce. *+"
i mpl enent -i nt erface="com xyz. myapp. servi ce. tracki ng. UsageTr acked"
def aul t-i npl =" com xyz. nyapp. servi ce. tracki ng. Def aul t UsageTr acked"/ >

<aop: bef ore
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce()
and thi s(usageTracked) "
met hod="r ecor dUsage"/ >

</ aop: aspect >

The class backing the usageTr acki ng bean would contain the method:

public void recordUsage(UsageTracked usageTracked) ({
usageTr acked. i ncrenent UseCount () ;

}

3.1 Reference Documentation 229

Spring Framework

The interface to be implemented is determined by i npl enent - i nt er f ace attribute. The value of the
t ypes- mat chi ng attribute is an AspectJ type pattern :- any bean of a matching type will implement
the UsageTr acked interface. Note that in the before advice of the above example, service beans can be
directly used as implementations of the UsageTr acked interface. If accessing a bean programmatically
you would write the following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other
instantiation models may be supported in future rel eases.

Advisors

The concept of "advisors' is brought forward from the AOP support defined in Spring 1.2 and does not
have adirect equivalent in AspectJ. An advisor is like asmall self-contained aspect that has a single piece
of advice. The advice itsdf is represented by a bean, and must implement one of the advice interfaces
described in the section called “ Advice typesin Spring”. Advisors can take advantage of AspectJ pointcut
expressions though.

Spring 2.0 supports the advisor concept with the <aop: advi sor > element. You will most commonly
see it used in conjunction with transactional advice, which also has its own namespace support in Spring
2.0. Here's how it looks:

<aop: confi g>

<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: advi sor
poi nt cut - r ef =" busi nessServi ce"
advi ce-ref ="t x-advi ce"/>

</ aop: confi g>

<t x:advi ce id="tx-advi ce">
<tx:attributes>
<t x: met hod name="*" propagati on="REQUI RED"/ >
</tx:attributes>
</t x: advi ce>

As well as the poi nt cut - r ef attribute used in the above example, you can also use the poi nt cut
attribute to define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering, use the or der
attribute to define the Or der ed value of the advisor.

Example

31 Reference Documentation 230

Spring Framework

Let's see how the concurrent locking failure retry example from the section called “ Example” |ooks when
rewritten using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely it will succeed next time round. For business services
where it is appropriate to retry in such conditions (idempotent operations that don't need to go back to the
user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing a
Pessi mi sti cLocki ngFai | ur eExcepti on. Thisisarequirement that clearly cuts across multiple
servicesin the service layer, and hence isideal for implementing via an aspect.

Because we want to retry the operation, well need to use around advice so that we can call proceed
multiple times. Here's how the basic aspect implementation looks (it's just a regular Java class using the
schema support):

public class Concurrent OperationExecutor inplenents Ordered {
private static final int DEFAULT_MAX RETRI ES = 2;

private int maxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void setMaxRetries(int nmaxRetries) {
this. maxRetries = naxRetries;
}

public int getOrder() {
return this.order;
}

public void setOrder(int order) {
this.order = order;
}

publ i ¢ Object doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi m sti cLocki ngFai | ureException | ockFail ureExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();
}

cat ch(Pessi m sticLocki ngFai | ureException ex) {
| ockFai | ureException = ex;
}

}
whi | e(numAtt enpts <= this. maxRetries);
throw | ockFai | ur eExcepti on;

}

Note that the aspect implements the Or der ed interface so we can set the precedence of the aspect higher
than the transaction advice (we want a fresh transaction each time we retry). The maxRet ri es and
order properties will both be configured by Spring. The man action happens in the
doConcurrent Operati on around advice method. We try to proceed, and if we fail with a
Pessi mi sti cLocki ngFai | ureExcepti on we simply try again unless we have exhausted all of
our retry attempts.

3.1 Reference Documentation 231

Spring Framework

This classisidentical to the one used in the @Aspect] example, but with the annotations removed.

The corresponding Spring configuration is:

<aop: confi g>
<aop: aspect id="concurrentQperationRetry" ref="concurrent Qperati onExecutor">

<aop: poi ntcut id="i denpot ent Oper ati on"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: ar ound
poi nt cut - ref ="i denpot ent Oper ati on"
met hod="doConcurr ent Operati on"/>

</ aop: aspect >
</ aop: confi g>

<bean id="concurrent Operati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurrent Qper ati onExecut or">
<property name="maxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

Notice that for the time being we assume that all business services are idempotent. If thisis not the case
we can refine the aspect so that it only retries genuinely idempotent operations, by introducing an
| denpot ent annotation:;

@ret ent i on(Ret enti onPol i cy. RUNTI ME)
public @nterface |denpotent {
/'l marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the aspect to
retry only idempotent operations simply involves refining the pointcut expression so that only
@ denpot ent operations match:

<aop: poi ntcut id="idenpotent Operation"
expressi on="execution(* com xyz. myapp.service.*.*(..)) and
@nnot ati on(com xyz. myapp. service. | denpotent)"/>

8.4 Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how do
you decide between using Spring AOP or Aspect, and between the Aspect language (code) style,
@Aspect] annotation style, or the Spring XML style? These decisions are influenced by a number of
factors including application requirements, devel opment tools, and team familiarity with AOP.

Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full Aspectd as there is no
requirement to introduce the AspectJ compiler / weaver into your development and build processes. If

3.1 Reference Documentation 232

Spring Framework

you only need to advise the execution of operations on Spring beans, then Spring AOP is the right choice.
If you need to advise objects not managed by the Spring container (such as domain objects typically),
then you will need to use Aspect]. You will also need to use Aspect] if you wish to advise join points
other than simple method executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the AspectJ language syntax (also known as the "code style")
or the @A spectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been made for
you... use the code style. If aspects play alarge role in your design, and you are able to use the AspectJ]
Development Tools (AJDT) plugin for Eclipse, then the Aspect] language syntax is the preferred option:
it is cleaner and simpler because the language was purposefully designed for writing aspects. If you are
not using Eclipse, or have only a few aspects that do not play a major role in your application, then you
may want to consider using the @A spectJ style and sticking with a regular Java compilation in your 1DE,
and adding an aspect weaving phase to your build script.

@Aspectd or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @Aspect] or XML style. Clearly if you
are not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there are
various tradeoffs to consider.

The XML style will be most familiar to existing Spring users. It can be used with any JDK level
(referring to named pointcuts from within pointcut expressions does still require Java 5+ though) and is
backed by genuine POJOs. When using AOP as atool to configure enterprise services then XML can be a
good choice (a good test is whether you consider the pointcut expression to be a part of your
configuration you might want to change independently). With the XML style arguably it is clearer from
your configuration what aspects are present in the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single,
unambiguous, authoritative representation of any piece of knowledge within a system. When using the
XML style, the knowledge of how a requirement is implemented is split across the declaration of the
backing bean class, and the XML in the configuration file. When using the @AspectJ style there is a
single module - the aspect - in which this information is encapsulated. Secondly, the XML styleis dightly
more limited in what it can express than the @AspectJ style: only the "singleton” aspect instantiation
model is supported, and it is not possible to combine named pointcuts declared in XML. For example, in
the @A spectJ style you can write something like:

@oi nt cut (execution(* get*()))
public void propertyAccess() {}

@oi nt cut (execution(org. xyz. Account+ *(..))
public void operationReturni ngAnAccount () {}

@oi nt cut (propertyAccess() && operationReturni ngAnAccount ())
public voi d account PropertyAccess() {}

Inthe XML style | can declare the first two pointcuts:

31 Reference Documentation 233

http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

Spring Framework

<aop: poi ntcut id="propertyAccess"
expressi on="execution(* get*())"/>

<aop: poi ntcut id="operationReturni ngAnAccount"
expressi on="execution(org. xyz. Account+ *(..))"/>

The downside of the XML approach is that you cannot define the 'account Pr opert yAccess'
pointcut by combining these definitions.

The @A spectJ style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @A spectJ aspects can be
understood (and thus consumed) both by Spring AOP and by Aspect] - so if you later decide you need the
capabilities of Aspect] to implement additional requirements then it is very easy to migrate to an
AspectJ-based approach. On balance the Spring team prefer the @AspectJ style whenever you have
aspects that do more than simple "configuration” of enterprise services.

8.5 Mixing aspect types

It is perfectly possible to mix @Aspect] style aspects using the autoproxying support, schema-defined
<aop: aspect > aspects, <aop: advi sor > declared advisors and even proxies and interceptors
defined using the Spring 1.2 style in the same configuration. All of these are implemented using the same
underlying support mechanism and will co-exist without any difficulty.

8.6 Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object.
(JDK dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be
used. All of the interfaces implemented by the target type will be proxied. If the target object does not
implement any interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the
target object, not just those implemented by its interfaces) you can do so. However, there are some issues
to consider:

» final methods cannot be advised, as they cannot be overriden.

* You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the
JDK. Spring will automatically warn you when it needs CGLIB and the CGLIB library classes are not
found on the classpath.

» The constructor of your proxied object will be called twice. This is a natural consequence of the
CGLIB proxy model whereby a subclass is generated for each proxied object. For each proxied
instance, two objects are created: the actual proxied object and an instance of the subclass that

31 Reference Documentation 234

Spring Framework

implements the advice. This behavior is not exhibited when using JDK proxies. Usually, calling the
constructor of the proxied type twice, is not an issue, as there are usually only assignments taking place
and no real logic isimplemented in the constructor.

To force the use of CGLIB proxies set the value of the proxy-t arget-cl ass attribute of the
<aop: conf i g> element to true:

<aop: confi g proxy-target-class="true">
<l-- other beans defined here... -->
</ aop: confi g>

To force CGLIB proxying when wusing the @Aspect] autoproxy support, set the
' proxy-target-class' atributeof the<aop: aspectj - aut opr oxy> elementtot r ue:

<aop: aspectj - aut opr oxy proxy-target-class="true"/>

Note

Multiple <aop: conf i g/ > sections are collapsed into a single unified auto-proxy creator at
runtime, which applies the strongest proxy settings that any of the <aop: confi g/ >
sections (typically from different XML bean definition files) specified. This also applies to
the<t x: annot ati on-dri ven/ > and <aop: aspect j - aut opr oxy/ > elements.

To be clear: using 'proxy-target-class="true"' on
<t x:annotation-driven/ >, <aop: aspectj - aut opr oxy/ > or
<aop: confi g/ > elementswill force the use of CGLIB proxiesfor all three of them.

Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement
actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied
with the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight
object reference, asillustrated by the following code snippet.

public class SinplePojo inplenents Pojo {

public void foo() {
/1 this next nethod invocation is a direct call on the "this' reference

this.bar();
}

public void bar() {
/'l some logic..

}
}

If you invoke a method on an object reference, the method is invoked directly on that object reference, as

31 Reference Documentation 235

Spring Framework

can be seen below.

pojo.foo ()

Plain Object > foo() on the object

public class Main {

public static void main(String[] args) {
Poj o pojo = new Si npl ePoj o();

/1 this is a direct nethod call on the 'pojo' reference
poj 0. foo();

}

Things change slightly when the reference that client code hasis a proxy. Consider the following diagram
and code snippet.

pojo.foo ()

foo() on the proxy

Plain Object then foo() on the cbject

public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());

factory. addl nterface(Pojo.cl ass);
factory. addAdvi ce(new RetryAdvice());

3.1 Reference Documentation 236

Spring Framework

Poj o pojo = (Pojo) factory.getProxy();

/1 this is a nethod call on the proxy!
poj 0. foo();

}

The key thing to understand here is that the client code inside the mai n(. .) of the Mai n class has a
reference to the proxy. This means that method calls on that object reference will be calls on the proxy,
and as such the proxy will be able to delegate to all of the interceptors (advice) that are relevant to that
particular method call. However, once the call has finally reached the target object, the Si npl ePoj o
reference in this case, any method calls that it may make on itself, such as this. bar() or
this.foo(), are going to be invoked against the t hi s reference, and not the proxy. This has
important implications. It means that self-invocation is not going to result in the advice associated with a
method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to
refactor your code such that the self-invocation does not happen. For sure, this does entail some work on
your part, but it is the best, least-invasive approach. The next approach is absolutely horrendous, and | am
almost reticent to point it out precisely because it is so horrendous. Y ou can (choke!) totally tie the logic
within your class to Spring AOP by doing this:

public class SinplePojo inplenents Pojo {

public void foo() {
/'l this works, but... gah!
((Poj o) AopContext.currentProxy()).bar();

public void bar() {
/'l sone |ogic..
}
}

This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is
being used in an AOP context, which flies in the face of AOP. It also requires some additional
configuration when the proxy is being created:

public class Main {
public static void main(String[] args) {

ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. adddl nt erface(Poj o. cl ass);

factory. addAdvi ce(new RetryAdvice())
factory. set ExposeProxy(true);

Poj o pojo = (Pojo) factory.getProxy();

/'l this is a nethod call on the proxy!
poj o. foo();
}
}

Finally, it must be noted that Aspect] does not have this self-invocation issue because it is not a
proxy-based AOP framework.

3.1 Reference Documentation 237

Spring Framework

8.7 Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop:config> or
<aop: aspect j - aut opr oxy>, it isalso possible programmatically to create proxies that advise target
objects. For the full details of Spring's AOP API, see the next chapter. Here we want to focus on the
ability to automatically create proxies using @A spectJ aspects.

The class org. springfranmework. aop. aspectj.annotati on. Aspect JProxyFact ory
can be used to create a proxy for atarget object that is advised by one or more @A spectJ aspects. Basic
usage for thisclassis very ssimple, asillustrated below. See the Javadocs for full information.

/] create a factory that can generate a proxy for the given target object
Aspect JProxyFactory factory = new Aspect JProxyFactory(target Object);

/'l add an aspect, the class nust be an @\spectJ aspect
/'l you can call this as many tinmes as you need with different aspects
factory. addAspect (Securi t yManager. cl ass) ;

/'l you can al so add existing aspect instances, the type of the object supplied nust be an @\spectJ aspect
factory. addAspect (usageTracker);

/1 now get the proxy object...
M/l nterfaceType proxy = factory. getProxy();

8.8 Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at
how you can use the Aspect]J compiler/weaver instead of, or in addition to, Spring AOP if your needs go
beyond the facilities offered by Spring AOP aone.

Spring ships with a small AspectJ aspect library, which is available standalone in your distribution as
spring-aspects.jar; youll need to add this to your classpath in order to use the aspects in it. the
section called “Using Aspect] to dependency inject domain objects with Spring” and the section called
“Other Spring aspects for AspectJ’ discuss the content of this library and how you can use it. the section
called “Configuring Aspectd aspects using Spring 10C” discusses how to dependency inject AspectJ
aspects that are woven using the AspectJ compiler. Finally, the section called “Load-time weaving with
Aspect] in the Spring Framework” provides an introduction to load-time weaving for Spring applications
using AspectJ.

Using AspectJ to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application context. It is also
possible to ask a bean factory to configure a pre-existing object given the name of a bean definition
containing the configuration to be applied. The spri ng- aspect s. j ar contains an annotation-driven
aspect that exploits this capability to alow dependency injection of any object. The support is intended to
be used for objects created outside of the control of any container. Domain objects often fall into this

31 Reference Documentation 238

Spring Framework

category because they are often created programmatically using the new operator, or by an ORM tool asa
result of a database query.

The @Confi gur abl e annotation marks a class as €ligible for Spring-driven configuration. In the
simplest case it can be used just as a marker annotation:

package com xyz. myapp. donai n;
i nport org.springfranmework. beans. factory. annot ati on. Confi gurabl e

@Confi gurabl e

public class Account {
...

}

When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a prototype-scoped bean definition with the same name as the
fully-qualified type name (com xyz. nyapp. domai n. Account). Since the default name for a bean
is the fully-qualified name of its type, a convenient way to declare the prototype definition is simply to
omit thei d attribute:

<bean cl ass="com xyz. nmyapp. domai n. Account" scope="pr ot otype">
<property name="fundsTransfer Servi ce" ref="fundsTransfer Service"/>
</ bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly
in the annotation:

package com xyz. nyapp. domai n;
i mport org.springframework. beans. factory. annot ati on. Confi gurabl e

@conf i gurabl e("account")

public class Account {
...

}

Spring will now look for a bean definition named "account " and use that as the definition to configure
new Account instances.

Y ou can also use autowiring to avoid having to specify a prototype-scoped bean definition at all. To have
Spring apply autowiring use the 'aut owi r e' property of the @onf i gur abl e annotation: specify
either @Conf i gur abl e(aut owi r e=Aut owi re. BY_TYPE) or
@conf i gur abl e(aut owi r e=Aut owi re. BY NAME for autowiring by type or by name
respectively. As an aternative, as of Spring 2.5 it is preferable to specify explicit, annotation-driven
dependency injection for your @onfi gur abl e beans by using @\ut owi red or @ nj ect at the
field or method level (see Section 4.9, “ Annotation-based container configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the newly created and
configured object by using the dependencyCheck attribute (for example:
@Conf i gur abl e(aut owi r e=Aut owi r e. BY_NAME, dependencyCheck=true)). If this
attribute is set to true, then Spring will validate after configuration that all properties (which are not

31 Reference Documentation 239

Spring Framework

primitives or collections) have been set.

Using the annotation on its own does nothing of course. It is the
Annot at i onBeanConf i gur er Aspect in spring-aspects.jar that acts on the presence of
the annotation. In essence the aspect says "after returning from the initialization of a new object of atype
annotated with @onf i gur abl e, configure the newly created object using Spring in accordance with
the properties of the annotation". In this context, initialization refers to newly instantiated objects (e.g.,
objects instantiated with the 'new operator) as well asto Seri al i zabl e objects that are undergoing
deserialization (e.g., viareadResolve()).

Note

One of the key phrases in the above paragraph is 'in essence’. For most cases, the exact
semantics of 'after returning from the initialization of a new object’ will be fine... in this
context, ‘after initialization' means that the dependencies will be injected after the object has
been constructed - this means that the dependencies will not be available for use in the
constructor bodies of the class. If you want the dependencies to be injected before the
constructor bodies execute, and thus be available for use in the body of the constructors, then
you need to define this on the @onf i gur abl e declaration like so:

@onf i gur abl e(preConstruction=true)

You can find out more information about the language semantics of the various pointcut
typesin AspectJ in this appendix of the AspectJ Programming Guide.

For this to work the annotated types must be woven with the Aspect] weaver - you can either use a
build-time Ant or Maven task to do this (see for example the Aspect] Development Environment Guide)
or load-time weaving (see the section called “Load-time weaving with Aspect] in the Spring
Framework™). The Annot ati onBeanConfi gur er Aspect itself needs configuring by Spring (in
order to obtain a reference to the bean factory that is to be used to configure new objects). The Spring
cont ext namespace defines a convenient tag for doing this: just include the following in your
application context configuration:

<cont ext: spri ng- confi gured/ >

If you are using the DTD instead of schema, the equivalent definitioniis:

<bean
cl ass="org. spri ngframewor k. beans. f act ory. aspectj . Annot at i onBeanConf i gur er Aspect "
factory-net hod="aspect O "/ >

Instances of @Confi gur abl e objects created before the aspect has been configured will result in a
warning being issued to the log and no configuration of the object taking place. An example might be a
bean in the Spring configuration that creates domain objects when it is initialized by Spring. In this case
you can use the "depends-on" bean attribute to manually specify that the bean depends on the
configuration aspect.

3.1 Reference Documentation 240

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

Spring Framework

<bean id="nyService"
cl ass="com xzy. nyapp. servi ce. MySer vi ce"
depends- on="or g. spri ngf ramewor k. beans. f act ory. aspectj . Annot at i onBeanConf i gur er Aspect " >

<<l-- ... -->

</ bean>

Note

Do not activate @onf i gur abl e processing through the bean configurer aspect unless you
really mean to rely on its semantics at runtime. In particular, make sure that you do not use
@conf i gur abl e on bean classes which are registered as regular Spring beans with the
container: Y ou would get double initialization otherwise, once through the container and once
through the aspect.

Unit testing @onfi gur abl e objects

One of the goals of the @Conf i gur abl e support isto enable independent unit testing of domain objects
without the difficulties associated with hard-coded lookups. If @onf i gur abl e types have not been
woven by AspectJ then the annotation has no affect during unit testing, and you can simply set mock or
stub property references in the object under test and proceed as normal. If @onf i gur abl e types have
been woven by AspectJ then you can still unit test outside of the container as normal, but you will see a
warning message each time that you construct an @onf i gur abl e object indicating that it has not been
configured by Spring.

Working with multiple application contexts

The Annot at i onBeanConf i gur er Aspect used to implement the @Conf i gur abl e support isan
Aspect] singleton aspect. The scope of a singleton aspect is the same as the scope of st at i ¢ members,
that is to say there is one aspect instance per classloader that defines the type. This means that if you
define multiple application contexts within the same classloader hierarchy you need to consider where to
define the <cont ext : spri ng- conf i gur ed/ > bean and where to place spri ng- aspects. j ar
on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining
common business services and everything needed to support them, and one child application context per
servlet containing definitions particular to that serviet. All of these contexts will co-exist within the same
classoader hierarchy, and so the Annot at i onBeanConf i gur er Aspect can only hold a reference
to one of them. In this case we recommend defining the <cont ext : spri ng- confi gur ed/ > beanin
the shared (parent) application context: this defines the services that you are likely to want to inject into
domain objects. A consequence is that you cannot configure domain objects with references to beans
defined in the child (servlet-specific) contexts using the @Configurable mechanism (probably not
something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads the

3.1 Reference Documentation 241

Spring Framework

types in spring-aspects.jar using its own clasdoader (for example, by placing
spring-aspects.jar in'VEB-INF/lib"). If spring-aspects.jar is only added to the
container wide classpath (and hence loaded by the shared parent classloader), all web applications will
share the same aspect instance which is probably not what you want.

Other Spring aspects for AspectJ

In addition to the @onf i gur abl e aspect, spri ng- aspects. j ar contains an AspectJ aspect that
can be used to drive Spring's transaction management for types and methods annotated with the
@ransacti onal annotation. This is primarily intended for users who want to use the Spring
Framework's transaction support outside of the Spring container.

The aspect that interprets @ransacti onal annotations is the
Annot ati onTr ansacti onAspect . When using this aspect, you must annotate the implementation
class (and/or methods within that class), not the interface (if any) that the class implements. AspectJ
follows Java's rule that annotations on interfaces are not inherited.

A @ransact i onal annotation on a class specifies the default transaction semantics for the execution
of any public operation in the class.

A @ransacti onal annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Methods with publ i ¢, pr ot ect ed, and default
visibility may all be annotated. Annotating pr ot ect ed and default visibility methods directly is the
only way to get transaction demarcation for the execution of such methods.

For AspectJ programmers that want to use the Spring configuration and transaction management support
but don't want to (or cannot) use annotations, spri ng- aspects.jar aso contains abstract
aspects you can extend to provide your own pointcut definitions. See the sources for the
Abst ract BeanConf i gur er Aspect and Abstract Transacti onAspect aspects for more
information. As an example, the following excerpt shows how you could write an aspect to configure all
instances of objects defined in the domain model using prototype bean definitions that match the
fully-qualified class names:

publ i c aspect Donmi nObj ect Confi guration extends Abstract BeanConfi gurer Aspect {

publ i ¢ Domai nObj ect Confi guration() {
set BeanW ri ngl nf oResol ver (new Cl assNameBeanW ri ngl nf oResol ver());

}

/'l the creation of a new bean (any object in the domai n nodel)
protected pointcut beanCreati on(Obj ect beanlnstance) :
initialization(new..)) &&
Syst emAr chi t ect ure. i nDomai nhWodel () &&
t hi s(beanl nst ance) ;

Configuring AspectJ aspects using Spring loC

3.1 Reference Documentation 242

Spring Framework

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and the
means of configuring the AspectJ created aspects via Spring depends on the Aspect] instantiation model
(the 'per - xxx' clause) used by the aspect.

The majority of Aspect] aspects are singleton aspects. Configuration of these aspectsis very easy: simply
create a bean definition referencing the aspect type as normal, and include the bean attribute
'factory-net hod="aspect O "' . This ensures that Spring obtains the aspect instance by asking
Aspect] for it rather than trying to create an instance itself. For example:

<bean id="profiler" class="com xyz.profiler.Profiler"
factory-net hod="aspect O " >
<property name="profilingStrategy" ref="janmonProfilingStrategy"/>
</ bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype bean
definitions and using the @onf i gur abl e support from spri ng- aspects. j ar to configure the
aspect instances once they have bean created by the AspectJ runtime.

If you have some @A spect] aspects that you want to weave with Aspectd (for example, using load-time
weaving for domain model types) and other @A spectJ aspects that you want to use with Spring AOP, and
these aspects are all configured using Spring, then you will need to tell the Spring AOP @A spectJ
autoproxying support which exact subset of the @A spectJ aspects defined in the configuration should be
used for autoproxying. You can do this by using one or more <i ncl ude/ > elements inside the
<aop: aspect j - aut opr oxy/ > declaration. Each <i ncl ude/ > element specifies a name pattern,
and only beans with names matched by at least one of the patterns will be used for Spring AOP autoproxy
configuration:

<aop: aspect j - aut opr oxy>
<aop: i ncl ude nane="t hi sBean"/>
<aop:incl ude name="t hat Bean"/ >
</ aop: aspectj - aut opr oxy>

Note

Do not be misled by the name of the <aop: aspectj - aut opr oxy/ > element: using it
will result in the creation of Sporing AOP proxies. The @A spectJ style of aspect declaration is
just being used here, but the Aspect] runtime is not involved.

Load-time weaving with AspectJ in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an application’s class
files as they are being loaded into the Java virtual machine (JVM). The focus of this section is on
configuring and using LTW in the specific context of the Spring Framework: this section is not an
introduction to LTW though. For full details on the specifics of LTW and configuring LTW with just
AspectJ (with Spring not being involved at all), see the LTW section of the AspectJ Development

3.1 Reference Documentation 243

Spring Framework

Environment Guide.

The value-add that the Spring Framework brings to Aspectd LTW is in enabling much finer-grained
control over the weaving process. 'Vanilla Aspectd LTW is effected using a Java (5+) agent, which is
switched on by specifying a VM argument when starting up a VM. It is thus a IV M-wide setting, which
may be fine in some situations, but often is alittle too coarse. Spring-enabled LTW enables you to switch
on LTW on aper-Cl assLoader basis, which obviously is more fine-grained and which can make more
sense in a 'single-JVM-multiple-application’ environment (such asis found in a typical application server
environment).

Further, in_certain environments, this support enables load-time weaving without making any
modifications to the application server's launch script that will be needed to add
-j avaagent : pat h/ t o/ aspectjweaver.jar or (as we describe later in this section)
-j avaagent : path/to/org. spri ngframework.instrunent-{version}.jar

(previously named spri ng- agent . j ar). Developers simply modify one or more files that form the
application context to enable load-time weaving instead of relying on administrators who typically arein
charge of the deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of AspectJ LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete
example, please see the Petclinic sample application.

A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of
some performance problems in a system. Rather than break out a profiling tool, what we are going to do
is switch on asimple profiling aspect that will enable us to very quickly get some performance metrics, so
that we can then apply afiner-grained profiling tool to that specific areaimmediately afterwards.

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@A spectJ-style of aspect declaration.

package foo;

i mport org.aspectj .| ang. Proceedi ngJoi nPoi nt ;

i nport org.aspectj.|ang.annotation. Aspect;

i mport org.aspectj.|ang.annotation. Around;

i nport org.aspectj.|ang. annotation. Poi ntcut;

i mport org.springframework. util.StopWatch;

i mport org.springframework. core. annot ati on. Order;

@\spect
public class ProfilingAspect {

@\r ound(" net hodsToBeProfiled()")
public Object profile(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
St op\Wat ch sw = new St opWat ch(get O ass(). get Si npl eNane()) ;
try {
sw. start (pj p. get Si gnature().getNanme());
return pjp.proceed();
} finally {
sw. stop();
System out. println(sw. prettyPrint());

3.1 Reference Documentation 244

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Spring Framework

}

@oi ntcut ("execution(public * foo..*.*(..))")
public void nethodsToBeProfiled(){}

We will also need to create an 'META- | NF/ aop. xm ' file, to inform the Aspect] weaver that we want to
weave our Prof i | i ngAspect into our classes. This file convention, namely the presence of afile (or
files) on the Java classpath called ' META- | NF/ aop. xm ' is standard AspectJ.

<I DOCTYPE aspectj PUBLIC
"-//AspectJ//DTD// EN' "http://ww. ecli pse. org/aspectj/dtd/ aspectj.dtd">
<aspectj >

<weaver >

<I-- only weave classes in our application-specific packages -->
<include wthin="foo.*"/>

</ weaver >
<aspect s>

<l-- weave in just this aspect -->
<aspect nane="foo. ProfilingAspect"/>

</ aspect s>

</ aspectj >

Now to the Spring-specific portion of the configuration. We need to configure aLoadTi meWaver (al
explained later, just take it on trust for now). This load-time weaver is the essential component
responsible for weaving the aspect configuration in one or more '"META- | NF/ aop. xm ' files into the
classes in your application. The good thing is that it does not require alot of configuration, as can be seen
below (there are some more options that you can specify, but these are detailed later).

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xsi : schemalLocat i on="
http://ww. springfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext. xsd">

<l-- a service object; we will be profiling its nethods -->
<bean id="entitl enment Cal cul ati onServi ce"
cl ass="fo0o0. St ubEntitl ement Cal cul ati onServi ce"/>

<l-- this switches on the |oad-time weaving -->
<cont ext: | oad-ti ne- weaver/ >

</ beans>

Now that all the required artifacts are in place - the aspect, the 'META- | NF/ aop. xml ' file, and the
Spring configuration -, let us create a simple driver class with amai n(. .) method to demonstrate the
LTW in action.

3.1 Reference Documentation 245

Spring Framework

package foo;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext;
public final class Main {
public static void nmain(String[] args) {
Appl i cati onContext ctx = new O assPat hXnl Appl i cati onCont ext (" beans. xml ", Mi n. cl ass);

Entitl enent Cal cul ati onService entitlenmentCal cul ati onServi ce
= (EntitlementCal cul ati onServi ce) ctx.getBean("entitlenmentCal cul ati onService");

/1 the profiling aspect is 'woven' around this nethod execution
entitlement Cal cul ati onService. cal cul ateEntitlement();

There is one last thing to do. The introduction to this section did say that one could switch on LTW
selectively on a per-Cl assLoader basis with Spring, and this is true. However, just for this example,
we are going to use a Java agent (supplied with Spring) to switch on the LTW. Thisis the command line
we will use to run the above Mai n class:

java -javaagent: C. /projects/foo/lib/global/spring-instrument.jar foo.Min

The'-j avaagent ' is a Java 5+ flag for specifying and enabling agents to instrument programs running
on the WM. The Spring Framework ships with such an agent, the | nst r unent at i onSavi ngAgent ,
which is packaged in the spring-instrument.jar that was supplied as the value of the
- j avaagent argument in the above example.

The output from the execution of the Mai n program will look something like that below. (I have
introduced a Thr ead. sl eep(..) statement into the cal cul at eEnti t| enent () implementation
so that the profiler actually captures something other than O milliseconds - the 01234 millisecondsis not
an overhead introduced by the AOP:))

Cal cul ating entitlenment

StopWatch ' ProfilingAspect': running time (mllis) = 1234

01234 100% cal cul ateEntitl enment

SincethisLTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans; the
following dlight variation on the Mai n program will yield the same resullt.
package foo;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
new Cl assPat hXm Appl i cati onCont ext ("beans. xm ", Min. cl ass);

Entitl ement Cal cul ati onServi ce entitl enent Cal cul ati onService =

3.1 Reference Documentation 246

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html

Spring Framework

new St ubEntitl| ement Cal cul ati onService();

/1 the profiling aspect will be 'woven' around this nethod execution
entitl ement Cal cul ati onServi ce. cal cul ateEntitl ement();

}

Notice how in the above program we are simply bootstrapping the Spring container, and then creating a
new instance of the St ubEntitl enment Cal cul ati onServi ce totaly outside the context of
Spring... the profiling advice still gets wovenin.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the 'why' behind each bit of
configuration and usage in detail.

Note

The Profil i ngAspect used in this example may be basic, but it is quite useful. It is a
nice example of a development-time aspect that developers can use during development (of
course), and then quite easily exclude from builds of the application being deployed into
UAT or production.

Aspects

The aspects that you use in LTW have to be AspectJ aspects. They can be written in either the AspectJ
language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only an
option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and Spring
AOP aspects. Furthermore, the compiled aspect classes need to be available on the classpath.

'META- | NF/ aop. xm '

The Aspect] LTW infrastructure is configured using one or more 'META- | NF/ aop. xm ' files, that are
on the Java classpath (either directly, or more typically injar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader is referred to that resource. (I appreciate that this section is brief, but the 'aop. xm ' file
is 100% AspectJ - there is no Spring-specific information or semantics that apply to it, and so there is no
extra value that | can contribute either as a result), so rather than rehash the quite satisfactory section that
the AspectJ developers wrote, | am just directing you there.)

Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework's support for AspectJ
LTW:

1. spring-aop.jar (version 2.5 or later, plus al mandatory dependencies)

3.1 Reference Documentation 247

http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

Spring Framework

2. aspect jweaver.j ar (version 1.6.8 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

1. spring-instrunent.jar

Spring configuration

The key component in Spring's LTW support is the LoadTi neWeaver interface (in the
org. springframework.instrument. cl assl oading package), and the numerous
implementations of it that ship with the Spring distribution. A LoadTi neWeaver is responsible for
adding one or more j ava. | ang. i nstrument . Cl assFi | eTransf ornmers to aC assLoader
at runtime, which opens the door to all manner of interesting applications, one of which happens to be the
LTW of aspects.

Tip

If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to
read the Javadoc APl documentation for the j ava. | ang. i nst runment package before
continuing. This is not a huge chore because there is - rather annoyingly - precious little
documentation there... the key interfaces and classes will at least be laid out in front of you
for reference as you read through this section.

Configuring aLoadTi meWeaver using XML for a particular Appl i cat i onCont ext can be as easy
as adding one line. (Please note that you almost certainly will need to be using an
Appl i cati onCont ext as your Spring container - typically a BeanFact ory will not be enough
because the LTW support makes use of BeanFact or yPost Processors.)

To enable the Spring Framework's LTW support, you need to configure a LoadTi mreWeaver , which
typically is done using the <context: | oad-ti nme-weaver/> eement. Find below a valid
<cont ext : | oad-ti me- weaver/ > definition that uses default settings.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranmewor k. or g/ schena/ cont ext "
xsi : schemalLocat i on="
http://ww. springfranework. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext. xsd">

<cont ext : | oad-ti me- weaver/ >

</ beans>

The above <cont ext : | oad-ti me- weaver/ > bean definition will define and register a number of
LTW-specific infrastructure beans for you automatically, such as a LoadTi mreWeaver and an
Aspect JWeavi ngEnabl er . Notice how the <cont ext : | oad-ti me- weaver/ > isdefined in the

3.1 Reference Documentation 248

Spring Framework

‘cont ext ' namespace; note also that the referenced XML Schema file is only available in versions of
Spring 2.5 and later.

What the above configuration does is define and register adefault LoadTi neWeaver bean for you. The
default LoadTi meWeaver is the Def aul t Cont ext LoadTi mreWeaver class, which attempts to
decorate an automatically detected LoadTi neVWeaver : the exact type of LoadTi neWeaver that will
be 'automaticaly detected' is dependent upon your runtime environment (summarised in the following
table).

Table 8.1. Def aul t Cont ext LoadTi nreWeaver LoadTi neWeaver s

Runtime Environment LoadTi neWeaver implementation

Running in BEA's Weblogic 10 WebLogi cLoadTi meWeaver

Running in IBM WebSphere Application Server 7 WebSpher eLoadTi neWeaver

Running in Oracle's OC4J OC4JLoadTi neWeaver

Running in GlassFish d assFi shLoadTi nreWaver
Runningin JBossAS JBossLoadTi mneWwaver

JVM started with Spring I nstrunment at i onLoadTi meWaver

I nst runment at i onSavi ngAgent

(java
-j avaagent : pat h/to/ spring-instrument.jar)

Fallback, expecting the underlying ClassLoader to Ref| ecti veLoadTi neWeaver
follow common conventions (e.g. applicable to

Tonctat | nstrunent abl eCl assLoader and

Resin)

Note that these are just the LoadTi mneWeavers that are autodetected when using the
Def aul t Cont ext LoadTi meWeaver: it is of course possible to specify exactly which
LoadTi meWeaver implementation that you wish to use by specifying the fully-qualified classname as
the value of the 'weaver - cl ass' attribute of the <cont ext : | oad-ti me- weaver /> element. Find
below an example of doing just that:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xsi : schemalLocati on="

3.1 Reference Documentation 249

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/server
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.oracle.com/technology/products/oc4j/index.html
http://glassfish.dev.java.net/
http://www.jboss.org/jbossas/
http://www.caucho.com/

Spring Framework

http://ww. springframework. or g/ schema/ beans

http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext

http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext. xsd" >

<cont ext: | oad-ti ne- weaver
weaver - cl ass="org. spri ngf ramewor k. i nstrument . cl assl oadi ng. Ref | ecti veLoadTi mreWeaver"/ >

</ beans>

The LoadTi neWeaver that is defined and registered by the <cont ext : | oad-ti ne- weaver/ >
glement can be later retrieved from the Spring container using the well-known name
' oadTi mreWeaver '. Remember that the LoadTi neWeaver exists just as a mechanism for Spring's
LTW infrastructure to add one or more C assFileTransforners. The actua
Cl assFi | eTransf or mer that doesthe LTW isthe Cl assPr ePr ocessor Agent Adapt er (from
the org. aspectj.weaver. | oadti ne package) class. See the class-level Javadoc for the
O assPreProcessor Agent Adapt er class for further details, because the specifics of how the
weaving is actually effected is beyond the scope of this section.

There is one fina attribute of the <context:|oad-tinme-weaver/> left to discuss: the
‘aspect | - weavi ng' attribute. Thisis a simple attribute that controls whether LTW is enabled or not, it
is as simple as that. It accepts one of three possible values, summarised below, with the default value if
the attribute is not present being ' aut odet ect

Table 8.2. 'aspect j - weavi ng' attribute values

Attribute Value Explanation

on Aspect] weaving is on, and aspects will be woven
at load-time as appropriate.

of f LTW isoff... no aspect will be woven at 1oad-time.

aut odet ect If the Spring LTW infrastructure can find at least
one 'META-| NF/ aop. xm ' file, then Aspect]
weaving is on, else it is off. This is the default
value.

Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using Spring's
LTW support in environments such as application servers and web containers.

Tomcat

Apache Tomcat's default class loader does not support class transformation which is why Spring provides

31 Reference Documentation 250

http://tomcat.apache.org/

Spring Framework

an enhanced implementation that addresses this need. Named
Tontat | nst runent abl eCl assLoader, the loader works on Tomcat 5.0 and above and can be
registered individually for each web application as follows:

» Tomcat 6.0.x or higher

1. Copy org.springframework.instrument.tontat.jar into $CATALINA HOME/lib,
where $CATALINA_HOME represents the root of the Tomcat installation)

2. Instruct Tomcat to use the custom class loader (instead of the default) by editing the web application
context file:

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader
| oader Cl ass="or g. spri ngf ramewor k. i nst runment . cl assl oadi ng. t ontat . Tontat | nst runent abl eCl assLoader"/ >
</ Cont ext >

Apache Tomcat 6.0.x (similar to 5.0.x/5.5.x) series supports several context locations:
* server configuration file - SCATALINA_HOME/conf/server .xmi

* default context configuration - $CATALINA _HOME/conf/context.xml - that affects al deployed
web applications

» per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname] /[webapp] -context.xml or embedded inside
the web-app archive at META-INF/context.xml

For efficiency, the embedded per-web-app configuration style is recommended because it will
impact only applications that use the custom class loader and does not require any changes to the
server configuration. See the Tomcat 6.0.x documentation for more details about available context
locations.

e Tomcat 5.0.x/5.5.x

1. Copy org. springframework.instrunent.toncat.jar into
$CATALINA _HOME/server/lib, where $CATALINA HOME represents the root of the Tomcat
installation.

2. Instruct Tomcat to use the custom class loader instead of the default one by editing the web
application context file:

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocation">
<Loader
| oader C ass="org. spri ngfranewor k. i nstrunent. cl assl oadi ng. t ontat. Tontat | nst runent abl eCl assLoader"/ >
</ Cont ext >

Tomcat 5.0.x and 5.5.x series supports several context locations:

« server configuration file - SCATALINA_HOME/conf/server .xml

3.1 Reference Documentation 251

http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

Spring Framework

 default context configuration - $SCATALINA _HOME/conf/context.xml - that affects all deployed
web applications

o per-web application configuration which can be deployed either on the server-side at
$CATALINA _HOME/conf/[enginename] /[hostname] /[webapp] -context.xml or embedded inside
the web-app archive at META-INF/context.xml

For efficiency, the embedded web-app configuration style is recommended recommended because it
will impact only applications that use the class loader. See the Tomcat 5.x documentation for more
detail s about available context locations.

Tomcat versions prior to 5.5.20 contained a bug in the XML configuration parsing that prevented
usage of the Loader tag inside server.xml configuration, regardliess of whether a class loader is
specified or whether it isthe official or a custom one. See Tomcat's bugzilla for more details.

In Tomcat 5.5.x, versions 5.5.20 or later, you should set useSystemClassLoaderAsParent to f al se
to fix this problem:

<Cont ext pat h="/nmyWebApp" docBase="/ny/webApp/| ocation">
<Loader
| oader Cl ass="or g. spri ngf ramewor k. i nstrunent . cl assl oadi ng. t ontat . Tontat | nst runent abl eCl assLoader "
useSyst enCl assLoader AsPar ent ="f al se"/ >
</ Cont ext >

This setting is not needed on Tomcat 6 or higher.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's
launch script (see above). This will make instrumentation available to all deployed web applications, no
matter what ClasslL oader they happen to run on.

WebLogic, WebSphere, OC4J, Resin, GlassFish, JBoss

Recent versions of BEA WebL ogic (version 10 and above), IBM WebSphere Application Server (version
7 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and above), Resin (3.1 and above) and JBoss
(5.x or above) provide a ClassLoader that is capable of local instrumentation. Spring's native LTW
leverages such ClassLoaders to enable Aspectd weaving. You can enable LTW by simply activating
cont ext: | oad-ti me-weaver as described earlier. Specifically, you do not need to modify the
launch script to add - | avaagent : pat h/t o/ spring-i nstrunent.jar.

Note that GlassFish instrumentation-capable ClassLoader is available only in its EAR environment. For
GlasskFish web applications, follow the Tomcat setup instructions as outlined above.

Note that on JBoss 6.x, the app server scanning needs to be disabled to prevent it from loading the classes
before the application actually starts. A quick workaround is to add to your artifact a file named
VEB- | NF/ j boss- scanni ng. xm with the following content:

<scanni ng xm ns="urn:j boss: scanni ng: 1. 0"/ >

3.1 Reference Documentation 252

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://issues.apache.org/bugzilla/show_bug.cgi?id=39704

Spring Framework

Generic Java applications

When class instrumentation is required in environments that do not support or are not supported by the
existing LoadTi neWeaver implementations, a JDK agent can be the only solution. For such cases,
Spring provides | nst runent at i onLoadTi meWeaver , which requires a Spring-specific (but very
general) VM agent, or g. spri ngframewor k. i nstrunent - {versi on}.jar (previousy named
spring-agent.jar).

To use it, you must start the virtual machine with the Spring agent, by supplying the following VM
options:

-javaagent :/path/to/ org. springframework.instrument-{version}.jar

Note that this requires modification of the VM launch script which may prevent you from using this in
application server environments (depending on your operation policies). Additionally, the JDK agent will
instrument the entire VM which can prove expensive.

For performance reasons, it is recommended to use this configuration only if your target environment
(such as Jetty) does not have (or does not support) a dedicated LTW.

8.9 Further Resources

More information on AspectJ can be found on the AspectJ website.

The book Eclipse Aspect] by Adrian Colyer et. a. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book AspectJ in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the focus
of the book ison AspectJ, but alot of general AOP themes are explored (in some depth).

31 Reference Documentation 253

http://www.eclipse.org/jetty/
http://www.eclipse.org/aspectj

Spring Framework

9. Spring AOP APIs

9.1 Introduction

The previous chapter described the Spring 2.0 and later version's support for AOP using @A spectJ and
schema-based aspect definitions. In this chapter we discuss the lower-level Spring AOP APIs and the
AOP support used in Spring 1.2 applications. For new applications, we recommend the use of the Spring
2.0 and later AOP support described in the previous chapter, but when working with existing applications,
or when reading books and articles, you may come across Spring 1.2 style examples. Spring 3.0 is
backwards compatible with Spring 1.2 and everything described in this chapter is fully supported in

Spring 3.0.

9.2 Pointcut APl in Spring

Let'slook at how Spring handles the crucial pointcut concept.

Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target
different advice using the same pointcut.

The or g. spri ngframewor k. aop. Poi nt cut interface is the central interface, used to target
advices to particular classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getClassFilter();

Met hodMat cher get Met hodMat cher () ;

}

Splitting the Poi nt cut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a"union™" with another method matcher).

The O assFi | t er interface is used to restrict the pointcut to a given set of target classes. If the
mat ches() method always returns true, all target classes will be matched:

public interface dassFilter {

bool ean mat ches(d ass cl azz);

}

The Met hodMat cher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {

31 Reference Documentation 254

Spring Framework

bool ean mat ches(Method m Cl ass targetd ass);
bool ean i sRunti me();

bool ean matches(Method m C ass targetC ass, Object[] args);
}

The mat ches(Met hod, Cl ass) method is used to test whether this pointcut will ever match a
given method on atarget class. This evaluation can be performed when an AOP proxy is created, to avoid
the need for atest on every method invocation. If the 2-argument matches method returns true for a given
method, and the i sRunti me() method for the MethodMatcher returns true, the 3-argument matches
method will be invoked on every method invocation. This enables a pointcut to look at the arguments
passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i sRunt i me() method returns false. In this case,
the 3-argument matches method will never be invoked.

Tip

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and inter section.
» Union means the methods that either pointcut matches.

* Intersection means the methods that both pointcuts match.

* Unionisusually more useful.

 Pointcuts can be composed using the static methods in the org.springframewor k.aop.support.Pointcuts
class, or using the ComposablePointcut class in the same package. However, using AspectJ pointcut
expressionsis usually asimpler approach.

AspectJ expression pointcuts

Since 20, the most important type @ of pointcut used by Spring s
or g. spri ngframewor k. aop. aspectj . Aspect JExpr essi onPoi nt cut . This is a pointcut
that uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

Convenience pointcut implementations

31 Reference Documentation 255

Spring Framework

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's
arguments. Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a
static pointcut only once, when a method is first invoked: after that, there is no need to evaluate the
pointcut again with each method invocation.

Let's consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible.
or g. spri ngframewor k. aop. support. JdkRegexpMet hodPoi nt cut is a generic regular
expression pointcut, using the regular expression support in JDK 1.4+,

Using the JdkRegexpMet hodPoi nt cut class, you can provide a list of pattern Strings. If any of
these is a match, the pointcut will evaluate to true. (So the result is effectively the union of these
pointcuts.)

The usage is shown below:

<bean i d="settersAndAbsquat ul at ePoi nt cut"
cl ass="org. spri ngframewor k. aop. support . JdkRegexpMet hodPoi nt cut ">
<property name="patterns">
<list>
<val ue>. *set. *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor, that allows us to also
reference an Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.).
Behind the scenes, Spring will use a JdkRegexpMet hodPointcut. Using
RegexpMet hodPoi nt cut Advi sor simplifieswiring, as the one bean encapsulates both pointcut and
advice, as shown below:

<bean id="settersAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngframewor k. aop. support. RegexpMet hodPoi nt cut Advi sor ">
<property name="advi ce">
<ref | ocal ="beanNameCf AopAl | i ancel nterceptor"/>
</ property>
<property name="patterns">
<list>
<val ue>. *set. *</ val ue>
<val ue>. *absquat ul at e</ val ue>

31 Reference Documentation 256

Spring Framework

</list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method
arguments, as well as static information. This means that they must be evaluated with every method
invocation; the result cannot be cached, as arguments will vary.

The main exampleisthecont r ol f | ow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.
(There is currently no way to specify that a pointcut executes below a join point matched by another
pointcut.) A control flow pointcut matches the current call stack. For example, it might fire if the join
point was invoked by a method in the com nmyconpany. web package, or by the SoneCal | er class.
Control flow pointcuts are specified using the
org. spri ngfranmewor k. aop. support. Cont r ol FIl owPoi nt cut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even
other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic
pointcuts.

Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it's possible to override
other methods to customize behavior):

class Test StaticPointcut extends StaticMethodMat cher Pointcut {

publ i c bool ean matches(Method m C ass targetC ass) {
/] return true if customcriteria match

3.1 Reference Documentation 257

Spring Framework

}
}
There are also superclasses for dynamic pointcuts.

Y ou can use custom pointcuts with any advice typein Spring 1.0 RC2 and above.

Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's
possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be
arbitrarily complex. However, using the Aspect] pointcut expression language is recommended if
possible.

Note

Later versions of Spring may offer support for "semantic pointcuts' as offered by JAC: for
example, "all methods that change instance variables in the target object.”

9.3 Advice APl in Spring

Let's now look at how Spring AOP handles advice.

Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to
each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the method
and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state
to the proxied object.

It's possible to use amix of shared and per-instance advice in the same AOP proxy.

Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types.
Let uslook at the basic concepts and standard advice types.

Interception around advice

31 Reference Documentation 258

Spring Framework

The most fundamental advice type in Spring isinterception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
M ethodl nterceptors implementing around advice should implement the following interface:

public interface Methodlnterceptor extends |nterceptor {

Obj ect i nvoke(Met hodl nvocati on invocation) throws Throwabl e;

The Met hodl nvocat i on argument to thei nvoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. Thei nvoke() method should return
the invocation's result: the return value of the join point.

A simple Met hodl nt er cept or implementation looks as follows:

public class Debuglnterceptor inplenents Methodlnterceptor {

publ i c Object invoke(Methodlnvocation invocation) throws Throwabl e {
Systemout. println("Before: invocation=[" + invocation + "]");
Obj ect rval = invocation. proceed();
System out. printIn("Invocation returned");
return rval;

Note the call to the Methodinvocation's pr oceed() method. This proceeds down the interceptor chain
towards the join point. Most interceptors will invoke this method, and return its return value. However, a
M ethodl nterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Note

Methodinterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using
the most specific advice type, stick with Methodl nterceptor around advice if you are likely to
want to run the aspect in another AOP framework. Note that pointcuts are not currently
interoperable between frameworks, and the AOP Alliance does not currently define pointcut
interfaces.

Before advice

A simpler advice type is a before advice. This does not need a Met hodl nvocat i on object, since it
will only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the pr oceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

31 Reference Documentation 259

Spring Framework

The Met hodBef or eAdvi ce interface is shown below. (Spring's APl design would alow for field
before advice, although the usual objects apply to field interception and it's unlikely that Spring will ever
implement it).

public interface MethodBeforeAdvi ce extends BeforeAdvice {

voi d before(Method m Object[] args, Object target) throws Throwabl e;

Note the return typeisvoi d. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of
the interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on
the signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped
in an unchecked exception by the AOP proxy.

An example of abefore advice in Spring, which counts all method invocations:

public class CountingBeforeAdvi ce inplenents MethodBef oreAdvice {
private int count;
public void before(Method m Cbject[] args, Object target) throws Throwabl e {

++count ;
}

public int getCount() {
return count;
}

Tip

Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring
offers typed throws advice. Note that this means that the
org. springframewor k. aop. Thr owsAdvi ce interface does not contain any methods: It is a tag
interface identifying that the given object implements one or more typed throws advice methods. These
should be in the form of:

af t er Throwi ng([Met hod, args, target], subclassO Throwabl e)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

The advice below isinvoked if aRenpt eExcept i on isthrown (including subclasses):

31 Reference Documentation 260

Spring Framework

public class RenoteThrowsAdvi ce i npl enents ThrowsAdvi ce {

public void afterThrow ng(Renot eException ex) throws Throwabl e {
/1 Do sonething with renote exception
}

The following advice is invoked if a Ser vl et Excepti on is thrown. Unlike the above advice, it
declares 4 arguments, so that it has access to the invoked method, method arguments and target object:

public class Servl et ThrowsAdvi ceW t hArgunents i npl enents ThrowsAdvi ce {

public void afterThrow ng(Method m OCbject[] args, Object target, ServletException ex) {
/1 Do sonething with all argunents
}

The fina example illustrates how these two methods could be used in a single class, which handles both
Renot eExcepti on and Servl et Excepti on. Any number of throws advice methods can be
combined in asingle class.

public static class Conmbi nedThrowsAdvi ce inplenments ThrowsAdvi ce {

public void afterThrow ng(Renot eException ex) throws Throwabl e {
/1 Do sonething with renote exception
}

public void afterThrowi ng(Method m Object[] args, Object target, ServletException ex) {
/1 Do sonething with all argunents
}

Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e.
change the exception thrown to the user). The overriding exception will typically be a RuntimeException;
this is compatible with any method signature. However, if a throws-advice method throws a checked
exception, it will have to match the declared exceptions of the target method and is hence to some degree
coupled to specific target method signatures. Do not throw an undeclared checked exception that is
incompatible with the target method's signature!

Tip

Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the org.springframewor k.aop.After Retur ningAdvice
interface, shown below:
public interface AfterReturningAdvice extends Advice {

voi d afterReturning(Qbject returnValue, Method m bject[] args, Object target)
throws Throwabl e;

3.1 Reference Documentation 261

Spring Framework

An after returning advice has access to the return value (which it cannot modify), invoked method,
methods arguments and target.

The following after returning advice counts all successful method invocations that have not thrown
exceptions:
public class Counti ngAfterReturni ngAdvi ce i npl enents AfterReturni ngAdvi ce {
private int count;
public void afterReturning(Qbject returnValue, Method m Object[] args, Object target)

throws Throwabl e {
++count ;

}

public int getCount() {
return count;
}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

Tip

After returning advice can be used with any pointcut.

Introduction advice
Spring treats introduction advice as a special kind of interception advice.

Introduction requires an | ntroducti onAdvi sor, and an I ntroductionlnterceptor,
implementing the following interface:
public interface Introductionlnterceptor extends Methodlnterceptor {

bool ean i nmpl ementsinterface(C ass intf);

The i nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must
implement the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, asit applies only at class, rather than method, level.
You can only use introduction advice with the | nt r oduct i onAdvi sor, which has the following
methods:
public interface IntroductionAdvi sor extends Advisor, Introductionlnfo {
ClassFilter getdassFilter();

voi d validatelnterfaces() throws Il egal Argument Excepti on

3.1 Reference Documentation 262

Spring Framework

public interface Introductionlnfo {

Class[] getlnterfaces();

}

There is no Met hodMat cher, and hence no Poi nt cut , associated with introduction advice. Only
classfiltering islogical.

Theget | nt erfaces() method returns the interfaces introduced by this advisor.
The val i datel nterfaces() method is used internally to see whether or not the introduced
interfaces can be implemented by the configured | nt r oduct i onl nt er cept or .

Let's look at a smple example from the Spring test suite. Let's suppose we want to introduce the
following interface to one or more objects:

public interface Lockable {
voi d | ock();
voi d unl ock();
bool ean | ocked();

}

Thisillustrates a mixin. We want to be able to cast advised objects to L ockable, whatever their type, and
call lock and unlock methods. If we call the lock() method, we want all setter methods to throw a
LockedExcepti on. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, well need an | nt roducti onl nt er cept or that does the heavy lifting. In this case, we
extend the
org. springframewor k. aop. support. Del egati ngl ntroductionl nterceptor
convenience class. We could implement Introductioninterceptor directly, but using
Del egati ngl ntroducti onl nt er cept or isbest for most cases.

The Del egat i ngl nt roduct i onl nt er cept or isdesigned to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The delegate
can be set to any object using a constructor argument; the default delegate (when the no-arg constructor is
used) is this. Thus in the example below, the delegate is the LockM xin subclass of
Del egati ngl ntroductionlnterceptor. Given a delegae (by default itself), a
Del egati ngl ntroducti onl nt er cept or instance looks for al interfaces implemented by the
delegate (other than Introductionlinterceptor), and will support introductions against any of them. It's
possible for subclasses such as LockM xi n to cal the suppressinterface(C ass intf)
method to suppress interfaces that should not be exposed. However, no matter how many interfaces an
I ntroducti onl nterceptor is prepared to support, the | nt roducti onAdvi sor used will
control which interfaces are actually exposed. An introduced interface will conceal any implementation of
the same interface by the target.

Thus LockMixin subclasses Del egat i ngl nt r oducti onl nt er cept or and implements Lockable
itself. The superclass automatically picks up that Lockable can be supported for introduction, so we don't

31 Reference Documentation 263

Spring Framework

need to specify that. We could introduce any number of interfacesin thisway.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the
target object.

public class LockM xi n extends Del egati ngl ntroducti onl nt er cept or
i npl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;
}

public void unlock() {
this.locked = fal se;
}

publ i c bool ean | ocked() {
return this.|ocked;
}

public Object invoke(Methodl nvocation invocation) throws Throwabl e {
if (locked() && invocation.getMthod().getName().indexOr("set") == 0)
t hrow new LockedException();
return super.invoke(invocation);

Often it isn't necessary to override the i nvoke() method: the
Del egati ngl ntroducti onl nt er cept or implementation - which calls the delegate method if the
method is introduced, otherwise proceeds towards the join point - is usually sufficient. In the present case,
we need to add a check: no setter method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockM Xi n instance,
and specify the introduced interfaces - in this case, just Lockabl e. A more complex example might take
areference to the introduction interceptor (which would be defined as a prototype): in this case, there's no
configuration relevant for aLockM Xi n, so we simply create it using new.

public class LockM xi nAdvi sor extends Defaul tlntroducti onAdvi sor {

public LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e.cl ass);

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's
impossible to use an | nt r oduct i onl nt er cept or without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockM xi nAdvi sor, and hence LockM xi n, for each advised object. The advisor comprises part of
the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the

31 Reference Documentation 264

Spring Framework

recommended way) in XML configuration, like any other advisor. All proxy creation choices discussed
below, including "auto proxy creators,” correctly handle introductions and stateful mixins.

9.4 Advisor APl in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Apart from the speciad case of introductions, any advisor can be used with any advice.
or g. spri ngframewor k. aop. support . Def aul t Poi nt cut Advi sor is the most commonly
used advisor class. For example, it can be used with a Met hodl nt er cept or, Bef or eAdvi ce or
Thr owsAdvi ce.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could
use ainterception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.

9.5 Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring 10C container (an ApplicationContext or BeanFactory) for your business
objects - and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a
factory bean introduces a layer of indirection, enabling it to create abjects of a different type.)

Note

The Spring 2.0 AOP support also uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframewor k.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts
and advice that will apply, and their ordering. However, there are simpler options that are preferable if
you don't need such control.

Basics

The Pr oxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of
indirection. If you define a Pr oxyFact or yBean with name f oo, what objects referencing f 0o seeis
not the Pr oxyFact or yBean instance itself, but an object created by the Pr oxyFact or yBean's
implementation of theget Cbj ect () method. This method will create an AOP proxy wrapping atarget
object.

One of the most important benefits of using a Pr oxyFact or yBean or another |oC-aware class to
create AOP proxies, is that it means that advices and pointcuts can also be managed by 1oC. Thisis a
powerful feature, enabling certain approaches that are hard to achieve with other AOP frameworks. For

31 Reference Documentation 265

Spring Framework

example, an advice may itself reference application objects (besides the target, which should be available
in any AOP framework), benefiting from all the pluggability provided by Dependency Injection.

JavaBean properties

In common with most FactoryBean implementations provided with Spring, the
Pr oxyFact or yBean classisitself a JavaBean. Its properties are used to:

» Specify the target you want to proxy.

» Specify whether to use CGLIB (see below and also the section caled “JDK- and CGLIB-based
proxies’).

Some key properties are inherited from
or g. spri ngframewor k. aop. f ranmewor k. ProxyConfi g (the superclass for al AOP proxy
factoriesin Spring). These key properties include:

* proxyTarget Cl ass: true if the target class is to be proxied, rather than the target class
interfaces. If this property value is set to t r ue, then CGLIB proxies will be created (but see also the
section called “ JDK- and CGL1B-based proxies”).

e optim ze: controls whether or not aggressive optimizations are applied to proxies created via
CGLIB. One should not blithely use this setting unless one fully understands how the relevant AOP
proxy handles optimization. This is currently used only for CGLIB proxies; it has no effect with JDK
dynamic proxies.

» frozen:if aproxy configuration isf r ozen, then changes to the configuration are no longer allowed.
Thisis useful both as a dight optimization and for those cases when you don't want callers to be able to
manipulate the proxy (viathe Advi sed interface) after the proxy has been created. The default value
of this property isf al se, so changes such as adding additional advice are allowed.

» exposePr oxy: determines whether or not the current proxy should be exposed in a Thr eadLocal
so that it can be accessed by the target. If atarget needs to obtain the proxy and the exposePr oxy
property isset tot r ue, thetarget can use the AopCont ext . cur r ent Proxy() method.

Other properties specific to Pr oxyFact or yBean include:

* proxyl nterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the
target class will be used (but see aso the section called “ JDK- and CGL1B-based proxies’).

* i nterceptorNanes: String array of Advi sor, interceptor or other advice names to apply.
Ordering is significant, on afirst come-first served basis. That is to say that the first interceptor in the
list will be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You
can't mention bean references here since doing so would result in the Pr oxyFact or yBean ignoring
the singleton setting of the advice.

31 Reference Documentation 266

Spring Framework

You can append an interceptor name with an asterisk (*). This will result in the application of all
advisor beans with names starting with the part before the asterisk to be applied. An example of using
this feature can be found in the section called “Using 'global’ advisors”’.

» singleton: whether or not the factory should return a single object, no matter how often the
get Obj ect () method is called. Several Fact or yBean implementations offer such a method. The
default value is t rue. If you want to use stateful advice - for example, for stateful mixins - use
prototype advices along with asingleton value of f al se.

JDK-and CGLIB-based proxies

This section serves as the definitive documentation on how the Pr oxyFact or yBean chooses to create
one of either a JDK- and CGL|B-based proxy for a particular target object (that is to be proxied).

Note

The behavior of the Pr oxyFact or yBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The Pr oxyFact or yBean now
exhibits similar semantics with regard to auto-detecting interfaces as those of the
Transact i onProxyFact or yBean class.

If the class of atarget object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. Thisis the easiest scenario, because
JDK proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply
plugs in the target bean, and specifies the list of interceptors via the i nt er cept or Nanmes property.
Note that a CGLIB-based proxy will be created even if the pr oxyTar get Cl ass property of the
Pr oxyFact or yBean has been set to f al se. (Obviously this makes no sense, and is best removed
from the bean definition because it is at best redundant, and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on
the configuration of the Pr oxyFact or yBean.

If the proxyTar get O ass property of the ProxyFact or yBean has been set to true, then a
CGLIB-based proxy will be created. This makes sense, and is in keeping with the principle of least
surprise. Even if the pr oxyl nt er f aces property of the Pr oxyFact or yBean has been set to one or
more fully qualified interface names, the fact that the pr oxy Tar get C ass property issettot r ue will
cause CGLIB-based proxying to bein effect.

If the proxyl nt er f aces property of the Pr oxyFact or yBean has been set to one or more fully
qualified interface names, then a JDK-based proxy will be created. The created proxy will implement all
of the interfaces that were specified in the pr oxyl nt er f aces property; if the target class happens to
implement a whole lot more interfaces than those specified in the pr oxyl nt er f aces property, that is
al well and good but those additional interfaces will not be implemented by the returned proxy.

3.1 Reference Documentation 267

Spring Framework

If the pr oxyl nt er f aces property of the Pr oxyFact or yBean has not been set, but the target class
does implement one (or more) interfaces, then the Pr oxyFact or yBean will auto-detect the fact that
the target class does actually implement at least one interface, and a JDK-based proxy will be created.
The interfaces that are actually proxied will be all of the interfaces that the target class implements; in
effect, this is the same as simply supplying a list of each and every interface that the target class
implements to the pr oxyl nt er f aces property. However, it is significantly less work, and less prone
to typos.

Proxying interfaces

Let'slook at asimple example of Pr oxyFact or yBean in action. This example involves:

» A target bean that will be proxied. Thisisthe "personTarget" bean definition in the example below.
» An Advisor and an Interceptor used to provide advice.

* An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces
to proxy, along with the advices to apply.

<bean i d="personTarget" class="com nyconpany. Personl npl ">
<property nanme="name" val ue="Tony"/>
<property name="age" val ue="51"/>

</ bean>

<bean id="nyAdvi sor" class="com myconpany. \yAdvi sor" >
<property name="sonmeProperty" val ue="Custom string property val ue"/>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranework. aop.interceptor.Debugl nterceptor">
</ bean>

<bean i d="person"
cl ass="org. spri ngframewor k. aop. f ranewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces" val ue="com myconpany. Person"/ >

<property name="target" ref="personTarget"/>
<property name="intercept or Names" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that thei nt er cept or Nanes property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice objects
can be used. The ordering of advisorsis significant.

Note

Y ou might be wondering why the list doesn't hold bean references. The reason for thisis that
if the ProxyFactoryBean's singleton property is set to fase, it must be able to return

31 Reference Documentation 268

Spring Framework

independent proxy instances. If any of the advisors is itself a prototype, an independent
instance would need to be returned, so it's necessary to be able to obtain an instance of the
prototype from the factory; holding areference isn't sufficient.

The"person” bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory. getBean("person");

Other beans in the same 10C context can express a strongly typed dependency on it, as with an ordinary
Javaobject:

<bean i d="personUser" class="com myconpany. Per sonUser">
<property name="person"><ref | ocal ="person"/></property>
</ bean>

The Per sonUser classin this example would expose a property of type Person. Asfar asit's concerned,
the AOP proxy can be used transparently in place of a "rea" person implementation. However, its class
would be a dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed
below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as
follows. Only the ProxyFact or yBean definition is different; the advice is included only for
completeness:

<bean id="nyAdvi sor" class="com myconpany. M\yAdvi sor" >
<property name="soneProperty" val ue="Custom string property val ue"/>
</ bean>

<bean id="debugl nterceptor" class="org.springframework. aop.interceptor.Debuglnterceptor"/>

<bean id="person" class="org.springframework. aop. framewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces" val ue="com myconpany. Person"/>
<l-- Use inner bean, not local reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Personl npl ">
<property name="name" val ue="Tony"/>
<property nane="age" val ue="51"/>
</ bean>
</ property>
<property nanme="interceptor Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there's only one object of type Per son: useful if we want to prevent users of
the application context from obtaining a reference to the un-advised object, or need to avoid any
ambiguity with Spring loC autowiring. There's also arguably an advantage in that the ProxyFactoryBean

31 Reference Documentation 269

Spring Framework

definition is self-contained. However, there are times when being able to obtain the un-advised target
from the factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise a class called
Per son that didn't implement any business interface. In this case, you can configure Spring to use
CGLIB proxying, rather than dynamic proxies. Simply set the pr oxyTar get C ass property on the
ProxyFactoryBean above to true. While it's best to program to interfaces, rather than classes, the ability to
advise classes that don't implement interfaces can be useful when working with legacy code. (In general,
Spring isn't prescriptive. While it makes it easy to apply good practices, it avoids forcing a particular
approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement the
Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:
» Fi nal methods can't be advised, as they can't be overridden.
* You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are slightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before
the asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set
of 'global' advisors:

<bean id="proxy" class="org.springframework. aop. framewor k. ProxyFact or yBean" >
<property name="target" ref="service"/>
<property nanme="interceptor Nanes" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean id="gl obal _debug" cl ass="org. spri ngframework. aop. i nterceptor. Debuglnterceptor"/>
<bean id="gl obal _perfornmance" class="org.springframework. aop. i nterceptor.PerformanceMonitorlnterceptor"/>

3.1 Reference Documentation 270

Spring Framework

9.6 Concise proxy definitions

Especialy when defining transactional proxies, you may end up with many similar proxy definitions. The
use of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and
more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="t xProxyTenpl ate" abstract="true"
cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="transacti onManager"/>
<property nanme="transacti onAttributes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be
created is just a child bean definition, which wraps the target of the proxy as an inner bean definition,
since the target will never be used on its own anyway.

<bean id="nyServi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MyServi cel npl ">
</ bean>
</ property>
</ bean>

It isof course possible to override properties from the parent template, such asin this case, the transaction
propagation settings:

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl at e">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property name="transacti onAttributes">
<pr ops>
<prop key="get *">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="|oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="store*" >PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using
the abstract attribute, as described previously, so that it may not actually ever be instantiated. Application
contexts (but not smple bean factories) will by default pre-instantiate all singletons. It is therefore
important (at least for singleton beans) that if you have a (parent) bean definition which you intend to use
only as atemplate, and this definition specifies a class, you must make sure to set the abstract attribute to
true, otherwise the application context will actually try to pre-instantiate it.

3.1 Reference Documentation 271

Spring Framework

9.7 Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring loC.

The following listing shows creation of a proxy for atarget object, with one interceptor and one advisor.
The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(mnmyBusi nesslnterfacel npl);
factory. addAdvi ce(nyMet hodl nt erceptor);

factory. addAdvi sor (nyAdvi sor) ;

M/Busi nesslinterface tb = (M/Busi nesslnterface) factory.getProxy();

The first step is to construct an object of type
or g. spri ngframewor k. aop. f ramewor k. ProxyFact ory. You can create this with a target
object, asin the above example, or specify the interfaces to be proxied in an aternate constructor.

You can add advices (with interceptors as a specialized kind of advice) and/or advisors, and manipulate
them for the life of the ProxyFactory. If you add an IntroductionlnterceptionAroundAdvisor, you can
cause the proxy to implement additiona interfaces.

There are also convenience methods on ProxyFactory (inherited from Advi sedSuppor t) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of both
ProxyFactory and ProxyFactoryBean.

Tip

Integrating AOP proxy creation with the loC framework is best practice in most applications.
We recommend that you externalize configuration from Java code with AOP, asin general.

9.8 Manipulating advised objects

However you create AOP proxiess, you can manipulate them using the
org. springframewor k. aop. f ramewor k. Advi sed interface. Any AOP proxy can be cast to
this interface, whichever other interfaces it implements. This interface includes the following methods:
Advi sor[] get Advi sors();
voi d addAdvi ce(Advi ce advice) throws AopConfi gExcepti on;

voi d addAdvi ce(i nt pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

3.1 Reference Documentation 272

Spring Framework

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gException
int indexOf (Advi sor advisor);

bool ean renpveAdvi sor (Advi sor advi sor) throws AopConfi gException

voi d renpoveAdvi sor (i nt index) throws AopConfi gException

bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gException

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice type
that has been added to the factory. If you added an Advisor, the returned advisor at this index will be the
object that you added. If you added an interceptor or other advice type, Spring will have wrapped thisin
an advisor with a pointcut that always returns true. Thus if you added a Met hodl nt er cept or, the
advisor returned for this index will be an Defaul t Poi nt cut Advi sor returning your
Met hodl nt er cept or and apointcut that matches al classes and methods.

TheaddAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic Def aul t Poi nt cut Advi sor, which can be used with any advice or
pointcut (but not for introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The
only restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from
the factory will not show the interface change. (Y ou can obtain a new proxy from the factory to avoid this
problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating
its advice:

Advi sed advi sed = (Advi sed) nmyQhj ect;

Advi sor[] advisors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors.|ength

System out . println(ol dAdvi sor Count + " advi sors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WIIl match all proxied nethods

/] Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

/'l Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s(" Added two advi sors"
ol dAdvi sor Count + 2, advi sed. get Advi sors() .l ength);

Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business
object in production, although there are no doubt legitimate usage cases. However, it can be
very useful in development: for example, in tests. | have sometimes found it very useful to be
able to add test code in the form of an interceptor or other advice, getting inside a method

3.1 Reference Documentation 273

Spring Framework

invocation | want to test. (For example, the advice can get inside a transaction created for that
method: for example, to run SQL to check that a database was correctly updated, before
marking the transaction for roll back.)

Depending on how you created the proxy, you can usualy set a frozen flag, in which case the
Advi sed i sFrozen() method will return true, and any attempts to modify advice through addition or
removal will result in an AopConf i gExcept i on. The ability to freeze the state of an advised object is
useful in some cases, for example, to prevent calling code removing a security interceptor. It may also be
used in Spring 1.1 to alow aggressive optimization if runtime advice modification is known not to be
required.

9.9 Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean or similar
factory bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of
any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to configure the
auto proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't
need to use Pr oxyFact or yBean.

There are two waysto do this:

» Using an autoproxy creator that refers to specific beans in the current context.

» A specia case of autoproxy creation that deserves to be considered separately; autoproxy creation
driven by source-level metadata attributes.

Autoproxy bean definitions

The org. springfranewor k. aop. framewor k. aut opr oxy package provides the following
standard autoproxy creators.

BeanNameAutoProxyCreator

The BeanNaneAut oPr oxyCr eat or class is a BeanPost Processor that automatically creates
AOP proxies for beans with names matching literal values or wildcards.

<bean cl ass="org. spri ngframewor k. aop. f r amewor k. aut opr oxy. BeanNanmeAut oPr oxyCr eat or " >
<property name="beanNanes" val ue="j dk*, onl yJdk"/>

3.1 Reference Documentation 274

Spring Framework

<property name="interceptor Nanes" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

As with ProxyFact or yBean, there is an i nt er cept or Nanmes property rather than a list of
interceptors, to allow correct behavior for prototype advisors. Named "interceptors' can be advisors or
any advice type.

As with auto proxying in general, the main point of using BeanNaneAut oPr oxyCr eat or isto apply
the same configuration consistently to multiple objects, with minima volume of configuration. It is a
popular choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are
plain old bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNaneAut oPr oxyCr eat or . The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply differently to
different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is
Def aul t Advi sor Aut oPr oxyCr eat or. This will automagically apply eligible advisors in the
current context, without the need to include specific bean names in the autoproxy advisor's bean
definition. It offers the same merit of consistent configuration and avoidance of duplication as
BeanNaneAut oPr oxyCr eat or .

Using this mechanism involves:
» Specifying aDef aul t Advi sor Aut oPr oxyCr eat or bean definition.

» Specifying any number of Advisorsin the same or related contexts. Note that these must be Advisors,
not just interceptors or other advices. Thisis necessary because there must be a pointcut to evaluate, to
check the dligibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or will automatically evaluate the pointcut contained in
each advisor, to see what (if any) advice it should apply to each business object (such as
"businessObjectl" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be proxied. As
bean definitions are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain
an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP
proxy, not the target business object. (The "inner bean” idiom shown earlier also offers this benefit.)

3.1 Reference Documentation 275

Spring Framework

<bean cl ass="org. spri ngframework. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >

<bean cl ass="org. spri ngframework.transaction.interceptor. Transacti onAttri but eSourceAdvi sor" >
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="cust omAdvi sor" cl ass="com nyconpany. M/Advi sor"/>

<bean i d="busi nessbj ect 1" cl ass="com myconpany. Busi nessObj ect 1" >
<l-- Properties onmtted -->
</ bean>

<bean i d="busi nessObj ect 2" cl ass="com myconpany. Busi nessObj ect 2"/ >

The Def aul t Advi sor Aut oPr oxyCr eat or is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place, you can simply add
new business objects without including specific proxy configuration. You can aso drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change to
configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, adlowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
or g. spri ngframewor k. cor e. O der ed interface to ensure correct ordering if thisis an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the default
setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. Y ou can create your own autoproxy creators
by subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to
the behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar
programming model to .NET Ser vi cedConponent s. Instead of using XML deployment descriptors
as in EJB, configuration for transaction management and other enterprise services is held in source-level
attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or, in combination with Advisors that
understand metadata attributes. The metadata specifics are held in the pointcut part of the candidate
advisors, rather than in the autoproxy creation classitself.

This is really a special case of the Def aul t Advi sor Aut oPr oxyCr eat or, but deserves
consideration on its own. (The metadata-aware code is in the pointcuts contained in the advisors, not the
AOP framework itself.)

3.1 Reference Documentation 276

Spring Framework

The /attri but es directory of the JPetStore sample application shows the use of attribute-driven
autoproxying. In this case, there's no need to use the Tr ansact i onPr oxyFact or yBean. Simply
defining transactional attributes on business objects is sufficient, because of the use of metadata-aware
pointcuts. The bean definitions include the following code, in
/ VEEB- | NF/ decl ar ati veServi ces. xnl . Note that this is generic, and can be used outside the
JPetStore:

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. spri ngframework.transaction.interceptor. Transacti onAttri but eSourceAdvi sor" >
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean id="transactionl nterceptor"”
class="org. springframework.transaction.interceptor. Transacti onlnterceptor">
<property nanme="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttri buteSource">
<bean cl ass="org. springframework. transaction.interceptor.AttributesTransactionAttributeSource">
<property name="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springfranework. netadat a. cormons. ConmonsAttri butes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it can
even be omitted) will pick up all eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type Transacti onAttri but eSour ceAdvi sor, will
apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor
depends on a Transactioninterceptor, via constructor dependency. The example resolves this via
autowiring. The Att ri but esTransacti onAttri but eSour ce depends on an implementation of
the or g. spri ngframewor k. net adat a. At t ri but es interface. In this fragment, the "attributes"
bean satisfies this, using the Jakarta Commons Attributes APl to obtain attribute information. (The
application code must have been compiled using the Commons Attributes compilation task.)

The / annot at i on directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection
of Spring's Transacti onal annotation, leading to implicit proxies for beans containing that
annotation:

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreat or"/ >

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean id="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttri buteSource">
<bean cl ass="org. spri ngfranmework. transacti on. annot ati on. Annot ati onTr ansacti onAttri but eSource"/>
</ property>
</ bean>

3.1 Reference Documentation 277

Spring Framework

The Transact i onl nt er cept or defined here depends on a Pl at f or niTr ansact i onManager
definition, which is not included in this generic file (although it could be) because it will be specific to the
application's transaction requirements (typically JTA, asin this example, or Hibernate, JDO or JDBC):

<bean id="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/>

Tip

If you require only declarative transaction management, using these generic XML definitions
will result in Spring automatically proxying al classes or methods with transaction attributes.
Y ou won't need to work directly with AOP, and the programming model is similar to that of
.NET ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. Y ou need to:

» Define your custom attribute.

» Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of
the custom attribute on a class or method. You may be able to use an existing advice, merely
implementing a static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need
to be defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n
introduction interceptor from the Spring test suite, shown above, could be used in conjunction with an
attribute-driven pointcut to target a mixin, as shown here. We use the generic
Def aul t Poi nt cut Advi sor , configured using JavaBean properties:

<bean id="1ockM xi n" class="org. springfranmewor k. aop. LockM xi n"
scope="prototype"/>

<bean id="I ockabl eAdvi sor" cl ass="org. spri ngframewor k. aop. support. Def aul t Poi nt cut Advi sor"
scope="pr ot ot ype">
<property name="pointcut" ref="nmyAttri buteAwarePointcut"/>
<property nanme="advi ce" ref="1ockM xin"/>
</ bean>

<bean id="anyBean" cl ass="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin
will be applied. Note that both | ockM xi n and | ockabl eAdvi sor definitions are prototypes. The
myAt t ri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for
individual advised abjects.

9.10 Using TargetSources

3.1 Reference Documentation 278

Spring Framework

Spring offers the concept of a TargetSource, expressed in the
or g. spri ngframewor k. aop. Tar get Sour ce interface. Thisinterface is responsible for returning
the "target object" implementing the join point. The Tar get Sour ce implementation is asked for a
target instance each time the AOP proxy handles a method invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides
a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a
pooling TargetSource can return a different target instance for each invocation, using a pool to manage
instances.

If you do not specify a TargetSource, a default implementation is used that wraps alocal object. The same
target isreturned for each invocation (as you would expect).

Let'slook at the standard target sources provided with Spring, and how you can use them.
Tip

When using a custom target source, your target will usually need to be a prototype rather than
asingleton bean definition. This allows Spring to create a new target instance when required.

Hot swappable target sources

Theor g. spri ngfranmewor k. aop. t ar get . Hot Swappabl eTar get Sour ce exists to allow the
target of an AOP proxy to be switched while allowing callers to keep their referencesto it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce is
threadsafe.

Y ou can change the target viathe swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean(" swapper");
bj ect ol dTarget = swapper. swap(newTar get) ;

The XML definitions required look as follows:

<bean id="initial Target" class="myconpany.d dTarget"/>

<bean id="swapper" cl ass="org.springframework. aop.target. Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean id="swappabl e" cl ass="org. spri ngframewor k. aop. f ramewor k. Pr oxyFact or yBean" >

<property name="t arget Source" ref="swapper"/>
</ bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that

3.1 Reference Documentation 279

Spring Framework

bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a
Tar get Sour ce - of course any Tar get Sour ce can be used in conjunction with arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which a
pool of identical instances is maintained, with method invocations going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to
any POJO. Aswith Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides a fairly efficient
pooling implementation. You'll need the commons-pool Jar on your application's classpath to use this
feature. It's aso possible to subclass
org. springframewor k. aop. target. Abstract Pool i ngTar get Sour ce to support any
other pooling API.

Sample configuration is shown below:

<bean i d="busi nessCbj ect Target" cl ass="com nyconpany. M/Busi nessChj ect"
scope="pr ot ot ype">
. properties omitted

</ bean>

<bean i d="pool Tar get Source" cl ass="org. spri ngfranework. aop. t arget. ConmonsPool Tar get Sour ce" >
<property name="t arget BeanNane" val ue="busi nessCbj ect Target"/>
<property name="nmaxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessObj ect" cl ass="org. springframework. aop. f ranewor k. Pr oxyFact or yBean" >
<property nanme="t ar get Source" ref="pool Tar get Source"/>
<property nanme="interceptorNanes" val ue="nylnterceptor"/>

</ bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool as
necessary. See the javadoc for Abst ract Pool i ngTar get Sour ce and the concrete subclass you
wish to use for information about its properties. "maxSize" is the most basic, and always guaranteed to be
present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the same 10C
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and
no other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
or g. spri ngframewor k. aop. t ar get . Pool i ngConfi g interface, which exposes information
about the configuration and current size of the pool through an introduction. You'll need to define an
advisor like this:

31 Reference Documentation 280

Spring Framework

<bean i d="pool Confi gAdvi sor" class="org. spri ngfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="t arget Obj ect" ref="pool Target Source"/>
<property name="t ar get Met hod" val ue="get Pool i ngConfi gM xi n"/>

</ bean>

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce
class, hence the use of MethodlnvokingFactoryBean. This advisor's name (*pool ConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look asfollows:

Pool i ngConfig conf = (PoolingConfig) beanFactory.getBean("busi nessObject");
System out. println("Max pool size is " + conf.get MaxSi ze())

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the
default choice, as most stateless objects are naturally thread safe, and instance pooling is
problematic if resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any
autoproxy creator.

Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of
the target will be created on every method invocation. Although the cost of creating a new object isn't
high in a modern VM, the cost of wiring up the new object (satisfying its 10C dependencies) may be
more expensive. Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've aso
changed the name, for clarity.)

<bean i d="prototypeTarget Source" cl ass="org.springframework. aop.target. PrototypeTar get Source">
<property name="t ar get BeanNane" ref="busi nessCbj ect Target"/>
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean must be a
prototype bean definition.

Thr eadLocal target sources

Thr eadLocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a Thr eadLocal provide a JDK-wide facility to transparently store

3.1 Reference Documentation 281

Spring Framework

resource alongside a thread. Setting up a Thr eadLocal Tar get Sour ce is pretty much the same as
was explained for the other types of target source:

<bean i d="t hreadl ocal Tar get Source" cl ass="org. spri ngfranework. aop. target. ThreadLocal Tar get Sour ce"
<property name="t ar get BeanNane" val ue="busi nessCbj ect Target"/>
</ bean>

Note

ThreadLocals come with serious issues (potentially resulting in memory leaks) when
incorrectly using them in a multi-threaded and multi-classloader environments. One should
aways consider wrapping a threadlocal in some other class and never directly use the
ThreadLocal itself (except of course in the wrapper class). Also, one should aways
remember to correctly set and unset (where the latter simply involved a call to
ThreadLocal . set (nul 1)) the resource local to the thread. Unsetting should be done in
any case since not unsetting it might result in problematic behavior. Spring's Threadl ocal
support does this for you and should always be considered in favor of using ThreadLocals
without other proper handling code.

9.11 Defining new Advi ce types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception
around advice, before, throws advice and after returning advice.

The or g. spri ngf ramewor k. aop. f ranewor k. adapt er package is an SPI package allowing
support for new custom advice types to be added without changing the core framework. The only
constraint on a custom Advi ce typeisthat it must implement the or g. aopal | i ance. aop. Advi ce
tag interface.

Please refer to the or g. spri ngf ramewor k. aop. f r anewor k. adapt er package's Javadocs for
further information.

9.12 Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

» The JPetStore's default configuration illustrates the use of the Tr ansact i onPr oxyFact or yBean
for declarative transaction management.

« The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative
transaction management.

3.1 Reference Documentation 282

Spring Framework

10. Testing

10.1 Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on the value-add of
the 10C principle to unit testing and on the benefits of the Spring Framework's support for integration
testing. (A thorough treatment of testing in the enterprise is beyond the scope of this reference manual.)

10.2 Unit Testing

Dependency Injection should make your code less dependent on the container than it would be with
traditional Java EE development. The POJOs that make up your application should be testable in JUnit or
TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. Y ou can use mock objects (in conjunction with other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations for Spring, the resulting clean layering
and componentization of your codebase will facilitate easier unit testing. For example, you can test
service layer objects by stubbing or mocking DAO or Repository interfaces, without needing to access
persistent data while running unit tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure to set up.
Emphasizing true unit tests as part of your development methodology will boost your productivity. Y ou
may not need this section of the testing chapter to help you write effective unit tests for your |oC-based
applications. For certain unit testing scenarios, however, the Spring Framework provides the following
mock objects and testing support classes.

Mock Objects

JNDI

The or g. spri ngf ranewor k. nock. j ndi package contains an implementation of the JNDI SPI,
which you can use to set up a simple INDI environment for test suites or stand-alone applications. If, for
example, JDBC Dat aSour ces get bound to the same JNDI names in test code as within a Java EE
container, you can reuse both application code and configuration in testing scenarios without
modification.

Servlet API

The or g. spri ngf ramewor k. nock. web package contains a comprehensive set of Serviet API
mock abjects, targeted at usage with Spring's Web MV C framework, which are useful for testing web
contexts and controllers. These mock objects are generally more convenient to use than dynamic mock
objects such as EasyMock or existing Servlet APl mock objects such as MockObjects.

31 Reference Documentation 283

http://www.easymock.org
http://www.mockobjects.com

Spring Framework

Portlet API
The or g. spri ngf ramewor k. nock. web. port | et package contains a set of Portlet APl mock

objects, targeted at usage with Spring's Portlet MV C framework.

Unit Testing support Classes

General utilities

Theorg. springframework. test. util packagecontainsRef| ecti onTest Util s, whichisa
collection of reflection-based utility methods. Developers use these methods in unit and integration
testing scenarios in which they need to set a non-publ i ¢ field or invoke a non-publ i ¢ setter method
when testing application code involving, for example:

* ORM frameworks such as JPA and Hibernate that condone pr i vat e or pr ot ect ed field access as
opposed to publ i ¢ setter methods for propertiesin a domain entity.

» Spring's support for annotations such as @\ut owi r ed, @ nj ect , and @Resour ce, which provides
dependency injection for pri vat e or pr ot ect ed fields, setter methods, and configuration methods.

Spring MVC

The or g. spri ngf ranmewor k. t est . web package contains Mbdel AndVi ewAsser t, which you
can use in combination with JUnit, TestNG, or any other testing framework for unit tests dealing with
Spring MVC Mbdel AndVi ew objects.

Unit testing Spring MV C Controllers

To test your Spring MVC Control | ers, use Model AndVi ewAssert combined with
MockHt t pSer vl et Request, MockHttpSession, and so on from the
org. springfranmewor k. nock. web package.

10.3 Integration Testing

Overview

It is important to be able to perform some integration testing without requiring deployment to your
application server or connecting to other enterprise infrastructure. This will enable you to test things such
as.

* The correct wiring of your Spring 1oC container contexts.

31 Reference Documentation 284

Spring Framework

» Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first-class support for integration testing in the spr i ng- t est module.
The name of the actual JAR file might include the release version and might also be in the long
org. spri ngframewor k. test form, depending on where you get it from (see the section on
Dependency M anagement for an explanation). This library includes the
or g. spri ngf ramewor k. t est package, which contains valuable classes for integration testing with
a Spring container. This testing does not rely on an application server or other deployment environment.
Such tests are slower to run than unit tests but much faster than the equivalent Cactus tests or remote tests
that rely on deployment to an application server.

In Spring 2.5 and later, unit and integration testing support is provided in the form of the
annotation-driven Spring TestContext Framework. The TestContext framework is agnostic of the actual
testing framework in use, thus allowing instrumentation of tests in various environments including JUnit,
TestNG, and so on.

. JUnit 3.8 support is deprecated

As of Spring 3.0, the legacy JUnit 38 base class hierarchy (i.e,
Abst r act Dependencyl nj ecti onSpri ngCont ext Test s,

Abstract Transact i onal Dat aSour ceSpri ngCont ext Test s, etc.) is officidly
deprecated and will be removed in alater release. Any test classes based on this code should
be migrated to the Spring TestContext Framework.

As of Spring 3.1, the JUnit 3.8 base classes in the Spring TestContext Framework (i.e.,
Abst ract JUni t 38Spri ngCont ext Test s and
Abst ract Transact i onal JUni t 38Spri ngCont ext Test s) and
@xpect edExcept i on have been officially deprecated and will be removed in a later
release. Any test classes based on this code should be migrated to the JUnit 4 or TestNG
support provided by the Spring TestContext Framework. Similarly, any test methods
annotated with @xpect edExcept i on should be modified to use the built-in support for
expected exceptionsin JUnit and TestNG.

Goals of Integration Testing
Spring's integration testing support has the following primary goals:

» To manage Spring |oC container caching between test execution.

» To provide Dependency Injection of test fixture instances.

» To provide transaction management appropriate to integration testing.

» To supply Spring-specific base classes that assist developersin writing integration tests.

31 Reference Documentation 285

Spring Framework

The next few sections describe each goal and provide links to implementation and configuration details.

Context management and caching

The Spring TestContext Framework provides consistent loading of Spring Appl i cat i onCont ext s
and caching of those contexts. Support for the caching of loaded contexts is important, because startup
time can become an issue — not because of the overhead of Spring itself, but because the objects
instantiated by the Spring container take time to instantiate. For example, a project with 50 to 100
Hibernate mapping files might take 10 to 20 seconds to load the mapping files, and incurring that cost
before running every test in every test fixture leads to dower overall test runs that could reduce
productivity.

Test classes can provide either an array containing the resource locations of XML configuration metadata
— typicaly in the classpath — or an array containing @onfi gur ati on classes that is used to
configure the application. These locations or classes are the same as or similar to those specified in
web. xm or other deployment configuration files.

By default, once loaded, the configured Appl i cat i onCont ext isreused for each test. Thus the setup
cost isincurred only once (per test suite), and subsequent test execution is much faster. In this context, the
term test suite means all tests run in the same VM — for example, all tests run from an Ant or Maven
build for a given project or module. In the unlikely case that a test corrupts the application context and
requires reloading — for example, by modifying a bean definition or the state of an application object —
the TestContext framework can be configured to reload the configuration and rebuild the application
context before executing the next test.

See context management and caching with the TestContext framework.

Dependency Injection of test fixtures

When the TestContext framework loads your application context, it can optionally configure instances of
your test classes via Dependency Injection. This provides a convenient mechanism for setting up test
fixtures using preconfigured beans from your application context. A strong benefit here is that you can
reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed object
graphs, transactional proxies, Dat aSour ces, etc.), thus avoiding the need to duplicate complex test
fixture set up for individual test cases.

As an example, consider the scenario where we have a class, Hi ber nat eTi t | eReposi t ory, that
performs data access logic for a Ti t | e domain entity. We want to write integration tests that test the
following areas:

« The Spring configuration: basicaly, is everything related to the configuration of the
H bernat eTi t | eReposi t or y bean correct and present?

» The Hibernate mapping file configuration: is everything mapped correctly, and are the correct
lazy-loading settings in place?

31 Reference Documentation 286

Spring Framework

» Thelogic of the Hi ber nat eTi t | eReposi t or y: does the configured instance of this class perform
as anticipated?

See dependency injection of test fixtures with the TestContext framework.

Transaction management

One common issue in tests that access a real database is their affect on the state of the persistence store.
Even when you're using a devel opment database, changes to the state may affect future tests. Also, many
operations — such as inserting or modifying persistent data— cannot be performed (or verified) outside
atransaction.

The TestContext framework addresses this issue. By default, the framework will create and roll back a
transaction for each test. Y ou simply write code that can assume the existence of atransaction. If you call
transactionally proxied objects in your tests, they will behave correctly, according to their configured
transactional semantics. In addition, if test methods delete the contents of selected tables while running
within a transaction, the transaction will roll back by default, and the database will return to its state prior
to execution of the test. Transactional support is provided to your test class via a
Pl at f or milr ansact i onManager bean defined in the test's application context.

If you want a transaction to commit — unusual, but occasionally useful when you want a particular test to
populate or modify the database — the TestContext framework can be instructed to cause the transaction
to commit instead of roll back via the @ransactionConfiguration and @Roll back
annotations.

See transaction management with the TestContext framework.

Support classes for integration testing

The Spring TestContext Framework provides several abst r act support classes that simplify the writing
of integration tests. These base test classes provide well-defined hooks into the testing framework as well
as convenient instance variables and methods, which enable you to access:

» The Appl i cati onCont ext , for performing explicit bean lookups or testing the state of the context
asawhole.

* A Si npl eJdbcTenpl at e, for executing SQL statements to query the database. Such queries can be
used to confirm database state both prior to and after execution of database-related application code,
and Spring ensures that such queries run in the scope of the same transaction as the application code.
When used in conjunction with an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with instance variables
and methods specific to your project.

See support classes for the TestContext framework.

3.1 Reference Documentation 287

Spring Framework

JDBC Testing Support

Theorg. spri ngframewor k. t est . j dbc package contains Si npl eJdbcTest Uti | s, whichisa
collection of JDBC related utility functions intended to simplify standard database testing scenarios. Note
that Abst ract Transacti onal JUni t 4Spri ngCont ext Test s and
Abst ract Transact i onal Test NGSpri ngCont ext Test s provide convenience methods which
delegateto Si npl eJdbcTest Ut i | s internally.

Annotations

Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that you can use in your
unit and integration tests in conjunction with the TestContext framework. Refer to the respective Javadoc
for further information, including default attribute values, attribute aliases, and so on.

e @cont ext Configuration

Defines class-level metadata that is used to determine how to load and configure an
Appl i cati onCont ext for test classes. Specifically, @Cont ext Conf i gur at i on declares either
the application context resource | ocat i ons or the @onf i gur ati on cl asses (but not both) to
load as well asthe Cont ext Loader strategy to use for loading the context. Note, however, that you
typically do not need to explicitly configure the loader since the default loader supports either resource
| ocat i ons or configuration cl asses.

@Cont ext Confi guration(l ocati ons="exanpl e/test-context.xm ", | oader=CustonContextLoader. cl ass)
public class Xm ApplicationContext Tests {
/'l class body. ..

}

@ont ext Confi guration(cl asses=M/Confi g.cl ass)
public class Configd assAppl i cationCont ext Tests {
/'l class body. ..

}

Note

@cont ext Confi gurati on provides support for inheriting resource locations or
configuration classes declared by superclasses by default.

See Context management and caching and Javadoc for examples and further details.

e @ctiveProfiles

A class-level annotation that is used to declare which bean definition profiles should be active when
loading an Appl i cati onCont ext for test classes.

31 Reference Documentation 288

Spring Framework

@Cont ext Confi gurati on

@ActiveProfiles("dev")

public class Devel oper Tests {
/'l class body...

}

@Cont ext Confi guration

@A\ctiveProfiles({"dev", "integration"})

public class Devel operlntegrationTests {
/'l class body. ..

}

Note

@ActiveProfil es provides support for inheriting active bean definition profiles
declared by superclasses classes by default.

See Context configuration with environment profiles and the Javadoc for @A\ct i veProfi |l es for
examples and further details.

e @i rtiesContext

Indicates that the underlying Spring Appl i cati onCont ext has been dirtied (i.e.,, modified or
corrupted in some manner) during the execution of atest and should be closed, regardiess of whether
thetest passed. @i rti esCont ext issupported in the following scenarios:

» After the current test class, when declared on a class with class mode set to AFTER _CLASS, which
is the default class mode.

» After each test method in the current test class, when declared on a class with class mode set to
AFTER_EACH_TEST_METHOD.

» After the current test, when declared on a method.

Use this annotation if a test has modified the context (for example, by replacing a bean definition).
Subsequent tests are supplied a new context.

With JUnit 4.5+ or TestNG you can use @i r t i esCont ext as both a class-level and method-level
annotation within the same test class. In such scenarios, the Appl i cati onCont ext is marked as
dirty after any such annotated method as well as after the entire class. If the Cl assMbde is set to
AFTER_EACH TEST_METHOD, the context is marked dirty after each test method in the class.

@i rti esCont ext
public class ContextDirtyingTests {

/] some tests that result in the Spring container being dirtied
}

@i rtiesContext(classMde = C assMde. AFTER EACH TEST_ METHOD)
public class ContextDirtyingTests {
/] some tests that result in the Spring container being dirtied

31 Reference Documentation 289

Spring Framework

@i rtiesCont ext

@est
public void testProcessWichDirtiesAppC x() {

/'l some logic that results in the Spring container being dirtied
}

When an application context is marked dirty, it is removed from the testing framework's cache and
closed; thus the underlying Spring container is rebuilt for any subsequent test that requires a context
with the same set of resource locations.

@est Executi onLi st eners

Defines class-level metadata for configuring which Test Execut i onLi st eners should be
registered with the Test Cont ext Manager . Typically, @est Execut i onLi st eners isusedin
conjunction with @ont ext Conf i gur ati on.

@ont ext Confi guration
@est Execut i onLi st ener s({Cust onTest Executi onLi st ener. cl ass, Anot her Test Executi onLi st ener. cl ass})
public class CustonTest Executi onLi stenerTests {
/'l class body. ..
}

@est Execut i onLi st ener s supports inherited listeners by default. See the Javadoc for an
example and further details.

@ransacti onConfiguration

Defines class-level metadata for configuring transactional tests. Specifically, the bean name of the
Pl at f or nilr ansact i onManager that is to be used to drive transactions can be explicitly
configured if the bean name of the desired Pl atfornlransacti onManager is not
"transactionManager”. In addition, you can change the def aul t Rol | back flag to fal se.
Typicaly, @ransacti onConfiguration is used in conjunction with
@Cont ext Conf i gur ati on.

@Cont ext Confi guration
@ransacti onConfi gurati on(transacti onManager="txMr", defaul t Rol | back=fal se)
public class CustontConfiguredTransactional Tests {
/'l class body. ..
}

Note

If the default conventions are sufficient for your test configuration, you can avoid using
@ransacti onConfiguration atogether. In other words, if your transaction
manager bean is named "transactionManager" and if you want transactions to roll back
automatically, there is no need to annotate your test class with
@ransacti onConfiguration.

31 Reference Documentation 290

Spring Framework

e @0l | back

Indicates whether the transaction for the annotated test method should be rolled back after the test
method has completed. If t r ue, the transaction is rolled back; otherwise, the transaction is committed.
Use @Rol | back to override the default rollback flag configured at the class level.

@Rol | back(fal se)

@est

public void testProcessWthoutRollback() {
1.

}

e @eforeTransacti on

Indicates that the annotated publ i ¢ voi d method should be executed before a transaction is started
for test methods configured to run within atransaction viathe @r ansact i onal annotation.

@Bef or eTr ansact i on
public void beforeTransaction() {
/1 logic to be executed before a transaction is started

}

e @XfterTransaction

Indicates that the annotated publ i ¢ voi d method should be executed after a transaction has ended
for test methods configured to run within atransaction viathe @r ansact i onal annotation.

@\fterTransaction
public void afterTransaction() ({
/'l logic to be executed after a transacti on has ended

}

« @\ot Transacti onal

The presence of this annotation indicates that the annotated test method must not execute in a
transactional context.

@\ot Tr ansact i onal
@rest

public void testProcessWthoutTransaction() ({
...

}

. @NotTransactional is deprecated

As of Spring 3.0, @Not Transacti onal is deprecated in favor of moving the
non-transactional test method to a separate (non-transactional) test class or to a
@ef oreTransaction or @fterTransacti on method. As an aternative to
annotating an entire class with @vransacti onal , consider annotating individual
methods with @ ansacti onal ; doing so alows a mix of transactional and
non-transactional methods in the same test class without the need for using

3.1 Reference Documentation 291

Spring Framework

@\ot Tr ansacti onal .

Standard Annotation Support

The following annotations are supported with standard semantics for al configurations of the Spring
TestContext Framework. Note that these annotations are not specific to tests and can be used anywherein
the Spring Framework.

e @A\utow red

e @ualifier

e @Resour ce (javax.annotation) if JSR-250 is present

* @nject (javax.inject) if JSR-330 is present

o @\aned (javax.inject) if JSR-330 is present

e @ersi st enceCont ext (javax.persistence) if JPA is present
* @Persi stencelnit (javax.persistence) if JPAis present

e @Required

e @ransacti onal

Spring JUnit Testing Annotations

The following annotations are only supported when used in conjunction with the
SpringJUnit4ClassRunner or the JUnit support classes.

e @fProfileVal ue

Indicates that the annotated test is enabled for a specific testing environment. If the configured
Pr of i | eVal ueSour ce returns a matching val ue for the provided nane, the test is enabled. This
annotation can be applied to an entire class or to individual methods. Class-level usage overrides
method-level usage.

@fProfil eval ue(nane="j ava. vendor", val ue="Sun M crosystens |Inc.")

@est
public void testProcessWi chRunsOnl yOnSunJvi() {

/1 some logic that should run only on Java VMs from Sun M crosystens
}

Alternatively, you can configure @ f Pr of i | eVal ue with alist of val ues (with OR semantics) to
achieve TestNG-like support for test groups in a JUnit environment. Consider the following example:

3.1 Reference Documentation 292

Spring Framework

@f ProfileVal ue(name="test-groups", values={"unit-tests", "integration-tests"})

@est
public void testProcessWi chRunsFor Unit Ol ntegrationTest Goups() {
/1 some logic that should run only for unit and integration test groups

}

e @rofil eVal ueSourceConfiguration

Class-level annotation that specifies what type of Pr of i | eVal ueSour ce to use when retrieving
profile values configured through the @fProfil eval ue annotation. If
@r of i | evVal ueSour ceConfi gurati on is not declared for a test,
Syst enPr of i | eVal ueSour ce isused by default.

@r of i | eVal ueSour ceConfi gurati on(Cust onProf i | eVal ueSour ce. cl ass)
public class CustonProfil eVal ueSourceTests {
/'l class body. ..

}
e @i ned

Indicates that the annotated test method must finish execution in a specified time period (in
milliseconds). If the text execution time exceeds the specified time period, the test fails.

The time period includes execution of the test method itself, any repetitions of the test (see @Repeat),
aswell as any set up or tear down of the test fixture.

@i med(m|1is=1000)
public void testProcessWthOneSecondTi neout () {
/'l some logic that should not take |onger than 1 second to execute

}

Spring's @i med annotation has different semantics than JUnit's @est (ti meout =...) support.
Specifically, due to the manner in which JUnit handles test execution timeouts (that is, by executing the
test method in a separate Thr ead), @est (ti meout =...) appliesto each iteration in the case of
repetitions and preemptively fails the test if the test takes too long. Spring's @i ned, on the other
hand, times the total test execution time (including al repetitions) and does not preemptively fail the
test but rather waits for the test to complete before failing.

* @Repeat

Indicates that the annotated test method must be executed repeatedly. The number of times that the test
method isto be executed is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as well as any set up
or tear down of the test fixture.

@Repeat (10)

@rest

public void testProcessRepeatedl y() {
...

}

31 Reference Documentation 293

Spring Framework

Spring TestContext Framework

The Spring Test Cont ext Framework (located in the or g. spri ngf ramewor k. t est . cont ext

package) provides generic, annotation-driven unit and integration testing support that is agnostic of the
testing framework in use, whether JUnit or TestNG. The TestContext framework also places a great deal
of importance on convention over configuration with reasonable defaults that can be overridden through
annotation-based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for
JUnit and TestNG in the form of abst ract support classes. For JUnit, Spring also provides a custom
JUnit Runner that alows one to write so called POJO test classes. POJO test classes are not required to
extend a particular class hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are
only interested in using the framework and not necessarily interested in extending it with your own
custom listeners or custom loaders, feel free to go directly to the configuration (context management,
dependency injection, transaction management), support classes, and annotation support sections.

Key abstractions

The core of the framework consists of the Test Cont ext and Test Cont ext Manager classes and the
Test Execut i onLi st ener, Cont ext Loader, and Snart Cont ext Loader interfaces. A
Test Cont ext Manager is created on a per-test basis (e.g., for the execution of a single test method in
JUnit). The Test Cont ext Manager in turn manages a Test Cont ext that holds the context of the
current test. The Test Cont ext Manager aso updates the state of the Test Cont ext as the test
progresses and delegates to Test Execut i onLi st ener s, which instrument the actual test execution
by providing dependency injection, managing transactions, and so on. A Cont ext Loader (or
Smar t Cont ext Loader) isresponsible for loading an Appl i cat i onCont ext for agiven test class.
Consult the Javadoc and the Spring test suite for further information and examples of various
implementations.

» Test Cont ext : Encapsulates the context in which a test is executed, agnostic of the actual testing
framework in use, and provides context management and caching support for the test instance for
which it is responsible. The Test Context aso delegates to a Cont ext Loader (or
Snmar t Cont ext Loader) toload an Appl i cat i onCont ext if requested.

» Test Cont ext Manager: The main entry point into the Sporing TestContext Framework, which
manages a single Test Cont ext and signals events to all registered Test Execut i onLi st eners
at well-defined test execution points:

 prior to any before class methods of a particular testing framework
* test instance preparation

* prior to any before methods of a particular testing framework

3.1 Reference Documentation 294

Spring Framework

« after any after methods of a particular testing framework
« after any after class methods of a particular testing framework

» Test Executi onLi st ener : Defines a listener API for reacting to test execution events published
by the Test Cont ext Manager with which the listener is registered.

Spring provides three Test Execut i onLi st ener implementations that are configured by default:
Dependencyl nj ecti onTest Execut i onLi st ener,

Di rti esCont ext Test Execut i onLi st ener, and
Transact i onal Test Execut i onLi st ener . Respectively, they support dependency injection of
the test instance, handling of the @i rti esCont ext annotation, and transactional test execution
with default rollback semantics.

e Cont ext Loader: Strategy interface introduced in Spring 25 for loading an
Appl i cat i onCont ext for an integration test managed by the Spring TestContext Framework.

As of Spring 3.1, implement Smar t Cont ext Loader instead of this interface in order to provide
support for configuration classes and active bean definition profiles.

» Smart Cont ext Loader : Extension of the Cont ext Loader interface introduced in Spring 3.1.

The Smart Cont ext Loader SPI supersedes the Cont ext Loader SPI that was introduced in
Spring 2.5. Specifically, a Smart Cont ext Loader can choose to process either resource
| ocati ons or configuration cl asses. Furthermore, a Sar t Cont ext Loader can set active
bean definition profiles in the context that it |oads.

Spring provides the following out-of-the-box implementations:

* Del egati ngSmart Cont ext Loader : the default loader which delegates internally to an
Annot at i onConf i gCont ext Loader or a Generi cXm Cont ext Loader depending either
on the configuration declared for the test class or on the presence of default locations or default
configuration classes.

* Annot at i onConfi gCont ext Loader : loads an application context from @Conf i gur ati on
classes.

» Generi cXm Cont ext Loader : loads an application context from XML resource locations.
* GenericPropertiesCont ext Loader : loads an application context from Java Properties files.

The following sections explain how to configure the Test Cont ext framework through annotations and
provide working examples of how to write unit and integration tests with the framework.

Context management

31 Reference Documentation 295

Spring Framework

Each Test Cont ext provides context management and caching support for the test instance it is
responsible for. Test instances do not automatically receive access to the configured
Appl i cati onCont ext . However, if a test class implements the Appl i cat i onCont ext Awar e
interface, a reference to the Appl i cati onCont ext is supplied to the test instance. Note that
AbstractJUni t 4Spri ngCont ext Tests and Abstract Test NGSpri ngCont ext Tests
implement Appl i cati onCont ext Aware and therefore provide access to the
Appl i cat i onCont ext out-of-the-box.

@Autowired ApplicationContext

As an dternative to implementing the Appl i cati onCont ext Awar e interface, you can
inject the application context for your test class through the @\ut owi r ed annotation on
either afield or setter method. For example:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@cont ext Confi gurati on
public class MyTest {

@\ut owi r ed
private ApplicationContext applicationContext;

/'l class body. ..

Dependency injection via @\t owi r ed is provided by the
Dependencyl nj ect i onTest Execut i onLi st ener which is configured by default
(see the section called “ Dependency injection of test fixtures”).

Test classes that use the TestContext framework do not need to extend any particular class or implement a
specific interface to configure their application context. Instead, configuration is achieved smply by
declaring the @ont ext Confi gur ati on annotation at the class level. If your test class does not
explicitly declare application context resource | ocat i ons or configuration cl asses, the configured
Cont ext Loader determines how to load a context from a default location or default configuration
classes.

The following sections explain how to configure an Appl i cat i onCont ext via XML configuration
filesor @Conf i gur at i on classesusing Spring's @ont ext Conf i gur at i on annotation.

Context configuration with XML resources

To load an Appl i cati onCont ext for your tests using XML configuration files, annotate your test
class with @ont ext Conf i gurati on and configure the | ocat i ons attribute with an array that
contains the resource locations of XML configuration metadata. A plain path — for example
"cont ext.xm " — will be treated as a classpath resource that is relative to the package in which the
test class is defined. A path starting with a slash is treated as an absolute classpath location, for example
"/ org/ exanpl e/ confi g.xm ". A path which represents a resource URL (i.e., a path prefixed with
classpath: ,file:,http:,etc) will beused asis. Alternatively, you can implement and configure

31 Reference Documentation 296

Spring Framework

your own custom Cont ext Loader or Smar t Cont ext Loader for advanced use cases.

@RunW't h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be |oaded from"/app-config.xm" and
/'l "/test-config.xm" in the root of the classpath
@Cont ext Confi guration(l ocati ons={"/app-config.xm", "/test-config.xm"})
public class MyTest {
/'l class body. ..
}

@cont ext Confi gur at i on supports an alias for thel ocat i ons attribute through the standard Java
val ue attribute. Thus, if you do not need to configure a custom Cont ext Loader , you can omit the
declaration of the | ocat i ons attribute name and declare the resource locations by using the shorthand
format demonstrated in the following example.

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)
@ont ext Configuration({"/app-config.xm", "/test-config.xm"})
public class MyTest {
/'l class body. ..
}

If you omit both the | ocati ons and val ue attributes from the @Cont ext Confi gurati on
annotation, the TestContext framework will attempt to detect a default XML resource location.
Specifically, Generi cXm Cont ext Loader detects a default location based on the name of the test
class. If your class is named com exanpl e. MyTest, Generi cXm Cont ext Loader loads your
application context from" ¢l asspat h: / com exanpl e/ MyTest - cont ext . xm ".

package com exanpl e;

@RunW't h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be | oaded from "cl asspath:/con exanpl e/ MyTest - cont ext. xm "
@cont ext Confi gurati on
public class MyTest {
/'l class body. ..
}

Context configuration with @Configuration classes

Toload an Appl i cat i onCont ext for your tests using @Conf i gur at i on classes (see Section 4.12,
“Javarbased container configuration”), annotate your test class with @ont ext Confi gurati on and
configure the cl asses attribute with an array that contains references to configuration classes.
Alternatively, you can implement and configure your own custom ContextLoader or
Smar t Cont ext Loader for advanced use cases.

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be | oaded from AppConfig and Test Config
@Cont ext Confi gurati on(cl asses={ AppConfi g.cl ass, TestConfig.class})
public class MyTest {

/'l class body...
}

If you omit the cl asses attribute from the @ont ext Conf i gur at i on annotation, the TestContext
framework will attempt to detect the presence of default configuration classes. Specificaly,
Annot at i onConf i gCont ext Loader will detect al static inner classes of the annotated test class

3.1 Reference Documentation 297

Spring Framework

that meet the requirements for configuration class implementations as specified in the Javadoc for
@Conf i gurati on. In the following example, the Or der Ser vi ceTest class declares a static inner
configuration class named Conf i g that will be automatically used to load the Appl i cat i onCont ext
for the test class. Note that the name of the configuration class is arbitrary. In addition, a test class can
contain more than one static inner configuration classif desired.

package com exanpl e;

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)

/1 ApplicationContext will be |oaded fromthe static inner Config class
@ont ext Confi guration

public class O derServiceTest {

@onfiguration
static class Config {

/1l this bean will be injected into the O derServiceTest class
@Bean
public OrderService orderService() {

Order Servi ce orderService = new O derServicelnpl ();

/'l set properties, etc.

return orderService;

}

@\ut owi r ed
private O derService orderService;

@est

public void testOderService() {
/]l test the orderService

}

Mixing XML resources and @Configuration classes

It may sometimes be desirable to mix XML resources and @Conf i gur at i on classes to configure an
Appl i cati onCont ext for your tests. For example, if you use XML configuration in production, you
may decide that you want to use @onfi gurati on classes to configure specific Spring-managed
components for your tests, or vice versa. As mentioned in the section called “ Spring Testing Annotations”
the TestContext framework does not allow you to declare both via @ont ext Confi gur ati on, but
this does not mean that you cannot use both.

If you want to use XML and @onf i gur ati on classes to configure your tests, you will have to pick
one as the entry point, and that one will have to include or import the other. For example, in XML you
can include @onf i gur at i on classes via component scanning or define them as hormal Spring beans
in XML; whereas, in a @onfi gurati on class you can use @ nport Resour ce to import XML
configuration files. Note that this behavior is semantically equivalent to how you configure your
application in production: in production configuration you will define either a set of XML resource
locations or a set of @Conf i gur at i on classes that your production Appl i cati onCont ext will be
loaded from, but you still have the freedom to include or import the other type of configuration.

Context configuration inheritance

31 Reference Documentation 298

Spring Framework

@cont ext Confi gur ati on supportsabooleani nherit Locat i ons attribute that denotes whether
resource locations or configuration classes declared by superclasses should be inherited. The default
valueist r ue. This means that an annotated class inherits the resource locations or configuration classes
declared by any annotated superclasses. Specifically, the resource locations or configuration classes for an
annotated test class are appended to the list of resource locations or configuration classes declared by
annotated superclasses. Thus, subclasses have the option of extending the list of resource locations or
configuration classes.

If @ontext Configuration'sinheritlLocations attribute is set to fal se, the resource
locations or configuration classes for the annotated class shadow and effectively replace any resource
locations or configuration classes defined by superclasses.

In the following example that uses XML resource locations, the Appl i cati onCont ext for
Ext endedTest will be loaded from "base-config.xml" and "extended-config.xml", in that order. Beans
defined in "extended-config.xml" may therefore override (i.e., replace) those defined in "base-config.xml".

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/'l ApplicationContext will be |oaded from"/base-config.xm" in the root of the classpath
@Cont ext Confi guration("/base-config.xm")
public class BaseTest {
/] class body. ..
}

/'l ApplicationContext will be |oaded from"/base-config.xm" and "/extended-config.xm"
/1 in the root of the classpath
@cont ext Confi guration("/extended-config.xm")
public class ExtendedTest extends BaseTest {
/'l class body. ..
}

Similarly, in the following example that uses configuration classes, the Appl i cati onCont ext for
Ext endedTest will beloaded from the BaseConf i g and Ext endedConf i g configuration classes,
in that order. Beans defined in Ext endedConf i g may therefore override (i.e., replace) those defined in
BaseConfi g.

@RunW 't h(Spri ngJUni t 4C assRunner. cl ass)
/'l ApplicationContext will be |oaded from BaseConfig
@Cont ext Confi guration(cl asses=BaseConfi g. cl ass)
public class BaseTest {

/'l class body. ..
}

/'l ApplicationContext will be |oaded from BaseConfig and ExtendedConfig
@Cont ext Confi gurati on(cl asses=Ext endedConfi g. cl ass)
public class ExtendedTest extends BaseTest ({
/'l class body. ..
}

Context configuration with environment profiles

Spring 3.1 introduces first-class support in the framework for the notion of environments and profiles
(ak.a., bean definition profiles), and integration tests can now be configured to activate particular bean
definition profiles for various testing scenarios. This is achieved by annotating a test class with the new

31 Reference Documentation 299

Spring Framework

@cti veProfil es annotation and supplying a list of profiles that should be activated when loading
the Appl i cati onCont ext for thetest.

Note
@\ctiveProfiles may be wused with any implementation of the new
Smar t Cont ext Loader SPI, but @ActiveProfiles is not supported with
implementations of the older Cont ext Loader SPI.
Let'stake alook at some examples with XML configuration and @onf i gur at i on classes.
<l-- app-config.xm -->
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:jdbc="http://wwm. springfranmework. org/ schema/ j dbc"
xm ns:jee="http://ww.springframework. org/schena/jee"
xsi : schenalLocation="...">
<bean id="transferService"
cl ass="com bank. servi ce. i nternal . Def aul t Transf er Servi ce" >
<constructor-arg ref="account Repository"/>
<constructor-arg ref="feePolicy"/>
</ bean>
<bean i d="account Repository"
cl ass="com bank. reposi tory.internal.JdbcAccount Repository">
<constructor-arg ref="dataSource"/>
</ bean>
<bean i d="feePolicy"
cl ass="com bank. servi ce. i nt ernal . Zer oFeePol i cy"/>
<beans profile="dev">
<j dbc: enbedded- dat abase i d="dat aSour ce" >
<j dbc: scri pt
| ocati on="cl asspat h: coni bank/ confi g/ sql / schema. sql "/ >
<j dbc: scri pt
| ocati on="cl asspat h: coni bank/ confi g/ sql /test-data.sql"/>
</ j dbc: enbedded- dat abase>
</ beans>
<beans profil e="production">
<j ee:jndi -1 ookup id="dataSource"
j ndi - name="j ava: conp/ env/ j dbc/ dat asour ce"/ >
</ beans>
</ beans>
package com bank. service
@RunW't h(Spri ngJUni t 4Cl assRunner. cl ass)
/'l ApplicationContext will be |oaded from "cl asspath:/app-config.xm"
@cont ext Confi guration("/app-config.xm")
@ActiveProfil es("dev")
public class TransferServiceTest {
@\wut owi r ed
private TransferService transferService
@est
public void testTransferService() {
/'l test the transferService
31 Reference Documentation 300

Spring Framework

When Transf er Servi ceTest is run, its Applicati onCont ext will be loaded from the
app-confi g. xnm configuration file in the root of the classpath. If you inspect app- confi g. xm

you'll notice that the account Reposi tory bean has a dependency on a dat aSour ce bean;
however, dat aSour ce is not defined as atop-level bean. Instead, dat aSour ce is defined twice: once
in the production profile and once in the dev profile.

By annotating Tr ansf er Servi ceTest with @A\ctiveProfil es("dev") we instruct the Spring
TestContext Framework to load the Appl i cat i onCont ext with the active profiles set to { "dev"}.
As aresult, an embedded database will be created, and the account Reposi t or y bean will be wired
with areference to the development Dat aSour ce. And that's likely what we want in an integration test.

The following code listings demonstrate how to implement the same configuration and integration test but
using @onf i gur ati on classesinstead of XML.

@Configuration
@rofile("dev")
public class Standal oneDat aConfig {

@Bean
publ i c Dat aSource dataSource() ({
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: comf bank/ confi g/ sql / schena. sql ")
.addScri pt ("cl asspat h: com bank/ confi g/ sql /test-data.sql")
.build();

@Conf i guration
@rofile("production")
public class Jndi Dat aConfig {

@ean
publ i c DataSource dataSource() throws Exception {
Context ctx = new |nitial Context();
return (DataSource) ctx.l|ookup("java: conp/env/jdbc/datasource");

@Configuration
public class TransferServiceConfig {

@\ut owi red Dat aSour ce dat aSour ce;

@ean
public TransferService transferService() {
return new Defaul t Transf er Servi ce(account Repository(),
feePolicy());

}
@Bean

publ i c Account Repository account Repository() {
return new JdbcAccount Reposi t ory(dat aSource);
}

@Bean

31 Reference Documentation 301

Spring Framework

public FeePolicy feePolicy() {
return new Zer oFeePolicy();
}

package com bank. servi ce;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Cont ext Conf i gurati on(
cl asses={
Transf er Servi ceConfi g. cl ass,
St andal oneDat aConfi g. cl ass,
Jndi Dat aConfi g. cl ass})
@\ctiveProfil es("dev")
public class TransferServiceTest {

@\ut owi r ed
private TransferService transferService;

@est

public void testTransferService() {
/'l test the transferService

}

}

In this variation, we have split the XML configuration into three independent @onfi gurati on
classes:

» TransferServiceConfig: acquires a dataSource via dependency injection using
@A\ut owi r ed

» St andal oneDat aConfi g: defines a dat aSource for an embedded database suitable for
developer tests

» Jndi Dat aConfi g: definesadat aSour ce that isretrieved from JNDI in a production environment

As with the XML-based configuration example, we still annotate Tr ansf er Ser vi ceTest with
@\ctiveProfiles("dev"), but this time we specify al three configuration classes via the
@Cont ext Confi gurati on annotation. The body of the test class itsedf remains completely
unchanged.

Context caching

Once the TestContext framework loads an Appl i cati onCont ext for a test, that context will be
cached and reused for all subsequent tests that declare the same unique context configuration within the
same test suite. To understand how caching works, it is important to understand what is meant by unique
and test suite.

An Appl i cati onCont ext can be uniquely identified by the combination of configuration parameters
that are used to load it. Consequently, the unique combination of configuration parameters are used to
generate a key under which the context is cached. The TestContext framework uses the following
configuration parameters to build the context cache key:

31 Reference Documentation 302

Spring Framework

* | ocat i ons (from @ContextConfiguration)

cl asses (from @ContextConfiguration)

cont ext Loader (from @ContextConfiguration)
e activeProfil es (from @ActiveProfiles)

For example, if Test Cl assA specifies {"app-config.xm ", "test-config.xm "} for the
| ocati ons (or val ue) attribute of @ont ext Confi gur ati on, the TestContext framework will
load the corresponding Appl i cati onCont ext and storeit in ast ati ¢ context cache under a key
that is based solely on those locations. So if Test Cl assB aso defines {"app-config. xm",

"test-config.xm "} foritslocations (either explicitly or implicitly through inheritance) and does
not define a different Cont ext Loader or different active profiles, then the same
Appl i cati onCont ext will be shared by both test classes. This means that the setup cost for loading
an application context isincurred only once (per test suite), and subsequent test execution is much faster.

Test suitesand forked processes

The Spring TestContext framework stores application contexts in a static cache. This means
that the context is literally stored in a st ati ¢ variable. In other words, if tests execute in
separate processes the static cache will be cleared between each test execution, and this will
effectively disable the caching mechanism.

To benefit from the caching mechanism, all tests must run within the same process or test
suite. This can be achieved by executing all tests as a group within an IDE. Similarly, when
executing tests with a build framework such as Ant or Maven it isimportant to make sure that
the build framework does not fork between tests. For example, if the forkMode for the Maven
Surefire plug-in is set to al ways or pert est, the TestContext framework will not be able
to cache application contexts between test classes and the build process will run significantly
slower as aresult.

In the unlikely case that atest corrupts the application context and requires reloading — for example, by
modifying a bean definition or the state of an application object — you can annotate your test class or test
method with @Di rti esCont ext (see the discussion of @i rti esCont ext in the section caled
“Spring Testing Annotations”). This instructs Spring to remove the context from the cache and rebuild the
application context before executing the next test. Note that support for the @i rti esCont ext
annotation is provided by the Di rti esCont ext Test Executi onLi st ener which is enabled by
default.

Dependency injection of test fixtures

When you use the Dependencyl nj ect i onTest Execut i onLi st ener — which is configured by
default — the dependencies of your test instances are injected from beans in the application context that
you configured with @ont ext Confi gurati on. You may use setter injection, field injection, or

31 Reference Documentation 303

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode

Spring Framework

both, depending on which annotations you choose and whether you place them on setter methods or
fields. For consistency with the annotation support introduced in Spring 2.5 and 3.0, you can use Spring's
@A\ut owi r ed annotation or the @ nj ect annotation from JSR 300.

Tip

The TestContext framework does not instrument the manner in which a test instance is
instantiated. Thus the use of @Aut owi red or @ nj ect for constructors has no effect for
test classes.

Because @\ut owi r ed is used to perform autowiring by type, if you have multiple bean definitions of
the same type, you cannot rely on this approach for those particular beans. In that case, you can use
@\ut owi r ed in conjunction with @ual i fi er. As of Spring 3.0 you may also choose to use
@ nj ect in conjunction with @Named. Alternatively, if your test class has access to its
Appl i cationCont ext, you can perform an explicit lookup by using (for example) a call to
appl i cati onCont ext.getBean("titl eRepository").

If you do not want dependency injection applied to your test instances, simply do not annotate fields or
setter methods with @\ut owi red or @ nj ect . Alternatively, you can disable dependency injection
altogether by explicitly configuring your class with @est Executi onLi st eners and omitting
Dependencyl nj ecti onTest Execut i onLi st ener. cl ass fromthelist of listeners.

Consider the scenario of testing a Hi ber nat eTi t| eReposi t ory class, as outlined in the Goals
section. The next two code listings demonstrate the use of @\ut owi r ed on fields and setter methods.
The application context configuration is presented after all sample code listings.

Note

The dependency injection behavior in the following code listings is not specific to JUnit. The
same DI techniques can be used in conjunction with any testing framework.

The following examples make calls to static assertion methods such asassert Not Nul | ()
but without prepending the call with Assert . In such cases, assume that the method was
properly imported through an i mport static declaration that is not shown in the
example.

The first code listing shows a JUnit-based implementation of the test class that uses @\ut owi r ed for
field injection.

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)

/'l specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration("repository-config.xm")

public class HibernateTitl eRepositoryTests {

/] this instance will be dependency injected by type
@\ut owi r ed
private H bernateTitl eRepository titleRepository;

@rest

31 Reference Documentation 304

Spring Framework

public void findByld() {
Title title = titleRepository.findByld(new Long(10));
assertNotNul | (title);

Alternatively, you can configure the class to use @\ut owi r ed for setter injection as seen below.

@RunW't h(Spri ngJUni t 4Cl assRunner. cl ass)

/'l specifies the Spring configuration to load for this test fixture
@cont ext Confi guration("repository-config.xm")

public class HibernateTitl eRepositoryTests {

/1 this instance will be dependency injected by type
private H bernateTitl eRepository titleRepository;

@\ut owi red
public void setTitl eRepository(H bernateTitleRepository titleRepository) {
this.titleRepository = titl eRepository;

}

@est

public void findByld() {
Title title = titleRepository.findByld(new Long(10));
assertNot Nul | (title);

The preceding code listings use the same XML context file referenced by the
@Cont ext Confi gurati on annotation (that is, repository-config. xm), which looks like
this:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http: //ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<l-- this bean will be injected into the Hi bernateTitl eRepositoryTests class -->

<bean id="titl eRepository" class="com foo.repository.hibernate.H bernateTitl eRepository">
<property nanme="sessi onFactory" ref="sessionFactory"/>

</ bean>

<bean i d="sessi onFactory"
cl ass="org. spri ngframewor k. orm hi ber nat e3. Local Sessi onFact or yBean" >
<!-- configuration elided for brevity -->
</ bean>

</ beans>

Note

If you are extending from a Spring-provided test base class that happens to use
@\ut owi r ed on one of its setter methods, you might have multiple beans of the affected
type defined in your application context: for example, multiple Dat aSour ce beans. In such
a case, you can override the setter method and use the @Qual i fi er annotation to indicate a
specific target bean as follows, but make sure to delegate to the overridden method in the
superclass as well.

31 Reference Documentation 305

Spring Framework

...

@\ut owi red

@verride

public voi d setDataSource(@ualifier("nyDataSource") DataSource dataSource) ({
super . set Dat aSour ce(dat aSour ce) ;

}

...

The specified qualifier value indicates the specific Dat aSour ce bean to inject, narrowing
the set of type matches to a specific bean. Its value is matched against <qual i fi er >
declarations within the corresponding <bean> definitions. The bean name is used as a
fallback qualifier value, so you may effectively also point to a specific bean by name there (as
shown above, assuming that "myDataSource" is the bean id).

Transaction management

In the TestContext framework, transactions are managed by the
Transact i onal Test Executi onLi st ener. Note that
Transact i onal Test Execut i onLi st ener isconfigured by default, even if you do not explicitly
declare @est Execut i onLi st ener s on your test class. To enable support for transactions, however,
you must provide a Pl at f or milr ansact i onManager bean in the application context loaded by
@Cont ext Confi gur ati on semantics. In addition, you must declare @r ansact i onal either at
the class or method level for your tests.

For class-level transaction configuration (i.e., setting the bean name for the transaction manager and the
default rollback flag), see the @ransacti onConfi gurati on entry in the annotation support
section.

If transactions are not enabled for the entire test class, you can annotate methods explicitly with
@r ansacti onal . To control whether a transaction should commit for a particular test method, you
can usethe @Rol | back annotation to override the class-level default rollback setting.

Abstract Transact i onal JUni t 4Spri ngCont ext Test s and
Abstract Transact i onal Test NGSpri ngCont ext Test s are preconfigured for transactional
support at the class level.

Occasionally you need to execute certain code before or after a transactional test method but outside the
transactional context, for example, to verify the initial database state prior to execution of your test or to
verify expected transactional commit behavior after test execution (if the test was configured not to roll
back the transaction). Transact i onal Test Executi onLi st ener supports the
@ef oreTransacti on and @\t er Tr ansact i on annotations exactly for such scenarios. Simply
annotate any public void method in your test class with one of these annotations, and the
Transact i onal Test Executi onLi st ener ensures that your before transaction method or after
transaction method is executed at the appropriate time.

31 Reference Documentation 306

Spring Framework

Tip

Any before methods (such as methods annotated with JUnit's @Bef or e) and any after
methods (such as methods annotated with JUnit's @Af t er) are executed within atransaction.
In addition, methods annotated with @ef or eTr ansacti on or @\f t er Tr ansacti on
are naturally not executed for tests annotated with @\ot Tr ansacti onal . However,
@Not Tr ansact i onal isdeprecated as of Spring 3.0.

The following JUnit-based example displays a fictitious integration testing scenario highlighting several
transaction-related annotations. Consult the annotation support section for further information and
configuration examples.

@RunW't h(Spri ngJUni t 4Cl assRunner. cl ass)

@Cont ext Confi guration

@ransacti onConfigurati on(transacti onManager="txMr", defaul t Rol | back=fal se)
@r ansact i onal

public class FictitiousTransactional Test {

@Bef or eTr ansact i on
public void verifylnitial Dat abaseState() {
/] logic to verify the initial state before a transaction is started

}

@Bef ore
public void setUpTest DataW t hi nTransaction() {
/] set up test data within the transaction

}
@rest

/'l overrides the class-level defaultRollback setting
@Rol | back(true)
public voi d nodifyDat abaseW t hi nTransaction() {
/'l logic which uses the test data and nodifi es database state

}

@\ ter
public void tearDownW thinTransaction() {
/| execute "tear down" logic within the transaction

}

@\ft er Transacti on
public void verifyFi nal Dat abaseState() {
/1 logic to verify the final state after transaction has rolled back

}

Avoid false positives when testing ORM code

When you test application code that manipulates the state of the Hibernate session, make sure
to flush the underlying session within test methods that execute that code. Failing to flush the
underlying session can produce false positives: your test may pass, but the same code throws
an exception in a live, production environment. In the following Hibernate-based example
test case, one method demonstrates a false positive, and the other method correctly exposes
the results of flushing the session. Note that this applies to JPA and any other ORM

31

Reference Documentation 307

Spring Framework

frameworks that maintain an in-memory unit of work.

...

@\ut owi r ed
private SessionFactory sessionFactory;

@est // no expected exception!

public void fal sePositive() {
updat eEnti tyl nHi ber nat eSessi on() ;
/] Fal se positive: an exception will be thrown once the session is
/1 finally flushed (i.e., in production code)

}

@est (expected = Generi cJDBCException. cl ass)

public void updat eWthSessi onFl ush() {
updat eEnt i tyl nHi ber nat eSessi on();
/1 Manual flush is required to avoid fal se positive in test
sessi onFact ory. get Current Sessi on().flush();

...

TestContext support classes

JUnit support classes

Theorg. spri ngframewor k. t est. cont ext . j unit 4 package provides support classes for JUnit
4.5+ based test cases.

* AbstractJUni t 4Spri ngCont ext Test s: Abstract base test class that integrates the Spring
TestContext Framework with explicit Appl i cati onCont ext testing support in a JUnit 4.5+
environment.

When you extend Abstract JUni t 4Spri ngCont ext Tests, you can access the following
pr ot ect ed instance variable:

» applicati onCont ext : Use this variable to perform explicit bean lookups or to test the state of
the context as awhole.

» Abstract Transacti onal JUni t 4Spri ngCont ext Test s: Abstract transactional extension
of Abstract JUnit4Spri ngCont ext Test s that also adds some convenience functionality for
JDBC access. Expects a j avax. sql . Dat aSour ce bean and a
Pl at f or nifr ansact i onManager bean to be defined in the Appl i cat i onCont ext . When you
extend Abstract Transacti onal JUnit 4Spri ngCont ext Tests you can access the
following pr ot ect ed instance variables:

e applicationContext: Inherited from the AbstractJUnit4SpringContextTests
superclass. Use this variable to perform explicit bean lookups or to test the state of the context as a
whole.

31 Reference Documentation 308

Spring Framework

» sinpl eJdbcTenpl at e: Use this variable to execute SQL statements to query the database. Such
gueries can be used to confirm database state both prior to and after execution of database-related
application code, and Spring ensures that such queries run in the scope of the same transaction as the
application code. When used in conjunction with an ORM tool, be sure to avoid false positives.

Tip

These classes are a convenience for extension. If you do not want your test classes to be tied
to a Spring-specific class hierarchy — for example, if you want to directly extend the class
you are testing — you can configure your own custom test classes by using
@unW t h(SpringJuUnit4d assRunner. cl ass), @ontext Configuration,
@est Executi onLi st ener s, and so on.

Spring JUnit Runner

The Spring TestContext Framework offers full integration with JUnit 4.5+ through a custom runner
(tested on JUnit 45 - 4.9). By annotating test classes with
@RunW t h(SpringJUni t 4Cl assRunner. cl ass), developers can implement standard
JUnit-based unit and integration tests and simultaneously reap the benefits of the TestContext framework
such as support for loading application contexts, dependency injection of test instances, transactional test
method execution, and so on. The following code listing displays the minimal requirements for
configuring a test class to run with the custom Spring Runner. @est Executi onLi st eners is
configured with an empty list in order to disable the default listeners, which otherwise would require an
ApplicationContext to be configured through @ont ext Conf i gur ati on.

@RunW't h(Spri ngJUni t 4Cl assRunner. cl ass)
@est Executi onLi steners({})
public class SinpleTest {

@est

public void testMethod() {
/| execute test logic...

}

TestNG support classes

The org. springframework. test.context.testng package provides support classes for
TestNG based test cases.

» Abstract Test NGSpri ngCont ext Test s: Abstract base test class that integrates the Spring
TestContext Framework with explicit Appl i cati onCont ext testing support in a TestNG
environment.

When you extend Abstract Test NGSpri ngCont ext Tests, you can access the following
pr ot ect ed instance variable:

31 Reference Documentation 309

Spring Framework

e appl i cati onCont ext : Use this variable to perform explicit bean lookups or to test the state of
the context as awhole.

» Abstract Transacti onal Test NGSpri ngCont ext Test s: Abstract transactional extension
of Abst ract Test NGSpri ngCont ext Test s that adds some convenience functionality for JDBC
access. Expects a j avax. sql . Dat aSour ce bean and a Pl at f or miTr ansact i onManager
bean to be defined in the ApplicationContext. When you extend
Abstract Transact i onal Test NGSpri ngCont ext Tests, you can access the following
pr ot ect ed instance variables:

e applicationContext: Inherited from the Abstract Test NGSpri ngCont ext Tests
superclass. Use this variable to perform explicit bean lookups or to test the state of the context as a
whole.

» si npl eJdbcTenpl at e: Use this variable to execute SQL statements to query the database. Such
gueries can be used to confirm database state both prior to and after execution of database-related
application code, and Spring ensures that such queries run in the scope of the same transaction as the
application code. When used in conjunction with an ORM tool, be sure to avoid false positives.

Tip

These classes are a convenience for extension. If you do not want your test classes to be tied
to a Spring-specific class hierarchy — for example, if you want to directly extend the class
you are testing — you can configure your own custom test classes by using
@Cont ext Confi gurati on, @estExecutionListeners, and so on, and by
manually instrumenting your test classwith aTest Cont ext Manager . See the source code
of Abst ract Test NGSpri ngCont ext Test s for an example of how to instrument your
test class.

PetClinic Example

The PetClinic application, available from the samples repository, illustrates several features of the Spring
TestContext Framework in a JUnit 4.5+ environment. Most test functionality is included in the
Abstract d i ni cTest s, for which apartial listing is shown below:

inmport static org.junit.Assert.assertEquals;
/1 inmport ...

@cont ext Confi gurati on
public abstract class AbstractdinicTests extends Abstract Transacti onal JUni t 4Spri ngCont ext Tests {

@\ut owi r ed
protected Cinic clinic;

@est
public void getVets() {
Col | ection<Vet> vets = this.clinic.getVets();
assert Equal s("JDBC query must show t he sane nunber of vets",

31 Reference Documentation 310

Spring Framework

super . count Rowsl nTabl e("VETS"), vets.size());
Vet vl = EntityUtils.getByld(vets, Vet.class, 2);
assert Equal s("Leary", vl.getLastNane());
assert Equal s(1, v1.getNrOf Specialties());
assert Equal s("radi ol ogy", (vl1.getSpecialties().get(0)).getNane());
...

...

Notes:

» This test case extends the Abst ract Transacti onal JUni t 4Spri ngCont ext Test s class,
from which it inherits configuration for Dependency Injection (through the
Dependencyl nj ecti onTest Execut i onLi st ener) and transactional behavior (through the
Transact i onal Test Execut i onLi st ener).

e Thecl i ni ¢ instance variable — the application object being tested — is set by Dependency Injection
through @A\ut owi r ed semantics.

* Thet est Get Vet s() method illustrates how you can use the inherited count Rows| nTabl e()
method to easily verify the number of rows in a given table, thus verifying correct behavior of the
application code being tested. This allows for stronger tests and lessens dependency on the exact test
data. For example, you can add additional rows in the database without breaking tests.

» Like many integration tests that use a database, most of the testsin Abst ract Cl i ni cTest s depend
on a minimum amount of data already in the database before the test cases run. Alternatively, you
might choose to populate the database within the test fixture set up of your test cases — again, within
the same transaction as the tests.

The PetClinic application supports three data access technologies: JDBC, Hibernate, and JPA. By
declaring @Cont ext Confi gurati on without any specific resource locations, the
Abstract Cini cTests class will have its application context loaded from the default location,
Abstract d i ni cTests-context.xm , which declares a common Dat aSour ce. Subclasses
specify additional context locations that must declare a Pl at f or nTr ansact i onManager and a
concrete implementation of C i ni c.

For example, the Hibernate implementation of the PetClinic tests contains the following implementation.
For this example, Hi ber nat ed i ni cTest s does not contain a single line of code: we only need to
declare @Cont ext Confi gurati on, and the tests are inherited from Abstract Cl i ni cTests.
Because @ont ext Confi gur ati on is declared without any specific resource locations, the Spring
TestContext Framework loads an application context from al the beans defined in
Abstract dini cTests-context.xm (i.e, the inherited locations) and
H bernated ini cTests-context.xm , with Hi bernated i nicTests-context.xnl

possibly overriding beans defined in Abst ract Cl i ni cTest s-cont ext . xm .

@cont ext Confi gurati on
public class Hibernated inicTests extends AbstractdinicTests { }

3.1 Reference Documentation 311

Spring Framework

In a large-scale application, the Spring configuration is often split across multiple files. Consequently,
configuration locations are typically specified in a common base class for all application-specific
integration tests. Such a base class may also add useful instance variables — populated by Dependency
Injection, naturally — such asa Sessi onFact or y in the case of an application using Hibernate.

Asfar as possible, you should have exactly the same Spring configuration files in your integration tests as
in the deployed environment. One likely point of difference concerns database connection pooling and
transaction infrastructure. If you are deploying to a full-blown application server, you will probably use
its connection pool (available through JNDI) and JTA implementation. Thus in production you will use a
Jndi Obj ect FactoryBean or <jee:jndi-lookup> for the DataSource and
Jt aTransacti onManager . JINDI and JTA will not be available in out-of-container integration tests,
so you should use a combination like the Commons DBCP Basi cDataSource and
Dat aSour ceTr ansact i onManager or H ber nat eTransacti onManager for them. You can
factor out this variant behavior into asingle XML file, having the choice between application server and a
'local’ configuration separated from all other configuration, which will not vary between the test and
production environments. In addition, it is advisable to use properties files for connection settings. See the
PetClinic application for an example.

10.4 Further Resources

Consult the following resources for more information about testing:

» JUnit: “A programmer-oriented testing framework for Java”. Used by the Spring Framework in its test
suite.

» TestNG: A testing framework inspired by JUnit with added support for Java 5 annotations, test groups,
data-driven testing, distributed testing, etc.

» MockObjects.com: Web site dedicated to mock objects, a technique for improving the design of code
within test-driven devel opment.

* "Mock Objects': Articlein Wikipedia.

» EasyMock: Java library “that provides Mock Objects for interfaces (and objects through the class
extension) by generating them on the fly using Java's proxy mechanism.” Used by the Spring
Framework in its test suite.

» JMock: Library that supports test-driven development of Java code with mock objects.
» Maockito: Javamock library based on the test spy pattern.

» DbuUnit: JUnit extension (also usable with Ant and Maven) targeted for database-driven projects that,
among other things, puts your database into a known state between test runs.

» Grinder: Javaload testing framework.

3.1 Reference Documentation 312

http://www.junit.org/
http://testng.org/
http://www.mockobjects.com/
http://en.wikipedia.org/wiki/Mock_Object
http://www.easymock.org/
http://www.jmock.org/
http://mockito.org/
http://xunitpatterns.com/Test%20Spy.html
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

Part IV. Data Access

This part of the reference documentation is concerned with data access and the interaction between the
data access layer and the business or service layer.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough
coverage of the various data access frameworks and technologies that the Spring Framework integrates
with.

» Chapter 11, Transaction Management

Chapter 12, DAO support

Chapter 13, Data access with JDBC

Chapter 14, Object Relational Mapping (ORM) Data Access

Chapter 15, Marshalling XML using O/X Mappers

Spring Framework

11. Transaction Management

11.1 Introduction to Spring Framework transaction
management

Comprehensive transaction support is among the most compelling reasons to use the Spring Framework.
The Spring Framework provides a consistent abstraction for transaction management that delivers the
following benefits:

Consistent programming model across different transaction APIs such as Java Transaction APl (JTA),
JDBC, Hibernate, Java Persistence API (JPA), and Java Data Objects (JDO).

Support for declarative transaction management.

Simpler API for programmatic transaction management than complex transaction APIs such as JTA.

Excellent integration with Spring's data access abstractions.

The following sections describe the Spring Framework's transaction value-adds and technologies. (The
chapter aso includes discussions of best practices, application server integration, and solutions to
common problems.)

Advantages of the Spring Framework's transaction support model describes why you would use the
Spring Framework's transaction abstraction instead of EJB Container-Managed Transactions (CMT) or
choosing to drive local transactions through a proprietary APl such as Hibernate.

Understanding the Spring Framework transaction abstraction outlines the core classes and describes
how to configure and obtain Dat aSour ce instances from avariety of sources.

Synchronizing resources with transactions describes how the application code ensures that resources
are created, reused, and cleaned up properly.

Declarative transaction management describes support for declarative transaction management.

Programmatic_transaction management covers support for programmatic (that is, explicitly coded)
transaction management.

11.2 Advantages of the Spring Framework's transaction
support model

Traditionally, Java EE developers have had two choices for transaction management: global or local
transactions, both of which have profound limitations. Global and local transaction management is

3.1 Reference Documentation 314

Spring Framework

reviewed in the next two sections, followed by a discussion of how the Spring Framework's transaction
management support addresses the limitations of the global and local transaction models.

Global transactions

Globa transactions enable you to work with multiple transactional resources, typicaly relational
databases and message queues. The application server manages global transactions through the JTA,
which is a cumbersome APl to use (partly due to its exception model). Furthermore, a JTA
User Tr ansact i on normally needs to be sourced from JNDI, meaning that you also need to use JNDI
in order to use JTA. Obvioudy the use of globa transactions would limit any potential reuse of
application code, as JTA isnormally only available in an application server environment.

Previoudly, the preferred way to use global transactions was via EJB CMT (Container Managed
Transaction): CMT is a form of declarative transaction management (as distinguished from
programmatic transaction management). EJB CMT removes the need for transaction-related JNDI
lookups, athough of course the use of EJB itself necessitates the use of JNDI. It removes most but not all
of the need to write Java code to control transactions. The significant downsideisthat CMT istied to JTA
and an application server environment. Also, it is only available if one chooses to implement business
logic in EJBs, or at least behind a transactional EJB facade. The negatives of EJB in general are so great
that this is not an attractive proposition, especialy in the face of compelling alternatives for declarative
transaction management.

Local transactions

Local transactions are resource-specific, such as a transaction associated with a JDBC connection. Local
transactions may be easier to use, but have significant disadvantages: they cannot work across multiple
transactional resources. For example, code that manages transactions using a JDBC connection cannot run
within a global JTA transaction. Because the application server is not involved in transaction
management, it cannot help ensure correctness across multiple resources. (It is worth noting that most
applications use a single transaction resource.) Another downside is that local transactions are invasive to
the programming model.

Spring Framework's consistent programming model

Spring resolves the disadvantages of global and local transactions. It enables application devel opersto use
a consistent programming model in any environment. Y ou write your code once, and it can benefit from
different transaction management strategies in different environments. The Spring Framework provides
both declarative and programmatic transaction management. Most users prefer declarative transaction
management, which is recommended in most cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative
model, developers typically write little or no code related to transaction management, and hence do not
depend on the Spring Framework transaction API, or any other transaction API.

31 Reference Documentation 315

Spring Framework

Do you need an application server for transaction management?

The Spring Framework's transaction management support changes traditional rules as to when an
enterprise Java application requires an application server.

In particular, you do not need an application server simply for declarative transactions through
EJBs. In fact, even if your application server has powerful JTA capabilities, you may decide that the
Spring Framework's declarative transactions offer more power and a more productive programming
model than EJB CMT.

Typically you need an application server's JTA capability only if your application needs to handle
transactions across multiple resources, which is not a requirement for many applications. Many
high-end applications use a single, highly scalable database (such as Oracle RAC) instead.
Standalone transaction managers such as Atomikos Transactions and JOTM are other options. Of
course, you may need other application server capabilities such as Java Message Service (IMS) and
J2EE Connector Architecture (JCA).

The Spring Framework gives you the choice of when to scale your application to a fully loaded
application server. Gone are the days when the only aternative to using EJB CMT or JTA was to
write code with local transactions such as those on JDBC connections, and face a hefty rework if
you need that code to run within global, container-managed transactions. With the Spring
Framework, only some of the bean definitions in your configuration file, rather than your code,
need to change.

11.3 Understanding the Spring Framework transaction
abstraction

The key to the Spring transaction abstraction is the notion of atransaction strategy. A transaction strategy
is defined by the or g. spri ngfranmework. transacti on. Pl at f or nifr ansact i onManager
interface:

public interface Platfornlransacti onManager {

TransactionStatus get Transacti on(Transacti onDefinition definition)
throws Transacti onExcepti on;

void conmit(TransactionStatus status) throws Transacti onExcepti on;

voi d roll back(TransactionStatus status) throws Transacti onExcepti on;

}

This is primarily a service provider interface (SPI), although it can be used programmatically from your
application code. Because Pl at f or nifr ansact i onManager is an interface, it can be easily mocked
or stubbed as necessary. It is not tied to a lookup strategy such as JNDI.
Pl at f or nilr ansact i onManager implementations are defined like any other object (or bean) in the

31 Reference Documentation 316

http://www.atomikos.com/
http://jotm.objectweb.org/

Spring Framework

Spring Framework 10C container. This benefit alone makes Spring Framework transactions a worthwhile
abstraction even when you work with JTA. Transactional code can be tested much more easily than if it
used JTA directly.

Again in keeping with Spring's philosophy, the Tr ansact i onExcept i on that can be thrown by any
of the Pl at f or milr ansact i onManager interface's methods is unchecked (that is, it extends the
java. |l ang. Runti neExcepti on class). Transaction infrastructure failures are aimost invariably
fatal. In rare cases where application code can actually recover from a transaction failure, the application
developer can ill choose to catch and handle Tr ansact i onExcepti on. The salient point is that
developers are not forced to do so.

The get Transaction(..) method returns a Transacti onSt at us object, depending on a
Transact i onDefi ni ti on parameter. The returned Tr ansact i onSt at us might represent a new
transaction, or can represent an existing transaction if a matching transaction exists in the current call
stack. The implication in this latter case is that, as with Java EE transaction contexts, a
Transact i onSt at us isassociated with athread of execution.

TheTr ansact i onDef i ni ti on interface specifies:

* Isolation: The degree to which this transaction is isolated from the work of other transactions. For
example, can this transaction see uncommitted writes from other transactions?

» Propagation: Typically, al code executed within a transaction scope will run in that transaction.
However, you have the option of specifying the behavior in the event that a transactional method is
executed when a transaction context already exists. For example, code can continue running in the
existing transaction (the common case); or the existing transaction can be suspended and a new
transaction created. Spring offers all of the transaction propagation options familiar from EJB CMT.
To read about the semantics of transaction propagation in Spring, see the section called “ Transaction
propagation”.

e Timeout: How long this transaction runs before timing out and being rolled back automatically by the
underlying transaction infrastructure.

» Read-only status: A read-only transaction can be used when your code reads but does not modify data.
Read-only transactions can be a useful optimization in some cases, such as when you are using
Hibernate.

These settings reflect standard transactional concepts. If necessary, refer to resources that discuss
transaction isolation levels and other core transaction concepts. Understanding these concepts is essential
to using the Spring Framework or any transaction management solution.

The Transacti onSt at us interface provides a smple way for transactional code to control
transaction execution and query transaction status. The concepts should be familiar, as they are common
to all transaction APIs:

public interface TransactionStatus extends Savepoi nt Manager {

bool ean i sNewTransaction();

3.1 Reference Documentation 317

Spring Framework

bool ean hasSavepoi nt () ;
voi d set Rol | backOnl y();
bool ean i sRol | backOnl y();
void flush();

bool ean i sConpl et ed();

Regardless of whether you opt for declarative or programmatic transaction management in Spring,
defining the correct Pl at f or miTr ansact i onManager implementation is absolutely essential. You
typically define thisimplementation through dependency injection.

Pl at f or nilr ansact i onManager implementations normally require knowledge of the environment
in which they work: JDBC, JTA, Hibernate, and so on. The following examples show how you can define
aloca Pl at f or mMTr ansact i onManager implementation. (This example works with plain JDBC.)

Y ou define aJDBC Dat aSour ce

<bean id="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">
<property name="driverC assNane" val ue="${j dbc. driverC assNanme}" />
<property name="url" val ue="${jdbc.url}" />
<property nanme="usernanme" val ue="${j dbc. usernanme}" />
<property name="password" val ue="${j dbc. password}" />
</ bean>

The related Pl at f or nifr ansact i onManager bean definition will then have a reference to the
Dat aSour ce definition. It will look like this:

<bean id="txManager" class="org. springframework.jdbc. dat asource. Dat aSour ceTr ansact i onManager" >
<property name="dat aSource" ref="dataSource"/>
</ bean>

If you use JTA in a Java EE container then you use a container Dat aSour ce, obtained through JNDI, in
conjunction with Spring's Jt aTr ansact i onManager . Thisiswhat the JTA and JNDI lookup version
would look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:jee="http://ww.springframework. org/schena/jee"
xsi : schemalLocat i on="
http://ww. springframewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ j ee
http://ww. springframework. org/ schema/ j ee/ spring-j ee. xsd">

<j ee:jndi -1 ookup id="dataSource" jndi-nanme="jdbc/jpetstore"/>
<bean id="txManager" cl ass="org.springframework.transaction.jta.JtaTransacti onManager" />
<!-- other <bean/> definitions here -->

</ beans>

31 Reference Documentation 318

Spring Framework

TheJt aTr ansact i onManager does not need to know about the Dat aSour ce, or any other specific
resources, because it uses the container's global transaction management infrastructure.

Note

The above definition of the dat aSour ce bean uses the <j ndi - | ookup/ > tag from the
j ee namespace. For more information on schema-based configuration, see Appendix D,
XML Schema-based configuration, and for more information on the <j ee/ > tags see the
section entitled the section called “ The jee schema’.

You can aso use Hibernate local transactions easily, as shown in the following examples. In this case,
you need to define a Hibernate Local Sessi onFact or yBean, which your application code will use
to obtain Hibernate Sessi on instances.

The Dat aSour ce bean definition will be similar to the local JIDBC example shown previously and thus
is not shown in the following example.

Note

If the Dat aSour ce, used by any non-JTA transaction manager, is looked up via JINDI and
managed by a Java EE container, then it should be non-transactional because the Spring
Framework, rather than the Java EE container, will manage the transactions.

The t xManager bean in this case is of the Hi ber nat eTr ansact i onManager type. In the same
way as the Dat aSour ceTr ansacti onManager needs a reference to the Dat aSour ce, the
Hi ber nat eTr ansact i onManager needs areferenceto the Sessi onFact ory.

<bean i d="sessi onFactory" class="org.springframework.orm hi bernat e3. Local Sessi onFact or yBean" >
<property nanme="dat aSource" ref="dataSource" />
<property nanme="nmappi ngResour ces" >
<list>
<val ue>or g/ spri ngf ramewor k/ sanpl es/ pet cl i ni ¢/ hi ber nat e/ pet cl i ni c. hbm xm </ val ue>
</list>
</ property>
<property name="hi bernat eProperties">
<val ue>
hi ber nat e. di al ect =${ hi ber nat e. di al ect}
</val ue>
</ property>
</ bean>

<bean id="txManager" cl ass="org. springframework. orm hi bernat e3. H ber nat eTransacti onManager" >

<property name="sessi onFactory" ref="sessionFactory" />
</ bean>

If you are using Hibernate and Java EE container-managed JTA transactions, then you should simply use
thesame Jt aTr ansact i onManager asinthe previous JTA example for JDBC.

<bean id="txManager" class="org.springfranework.transaction.jta.JtaTransacti onManager"/>

31 Reference Documentation 319

Spring Framework

Note

If you use JTA , then your transaction manager definition will look the same regardless of
what data access technology you use, be it JDBC, Hibernate JPA or any other supported
technology. This is due to the fact that JTA transactions are global transactions, which can
enlist any transactional resource.

In all these cases, application code does not need to change. You can change how transactions are
managed merely by changing configuration, even if that change means moving from local to global
transactions or vice versa.

11.4 Synchronizing resources with transactions

It should now be clear how you create different transaction managers, and how they are linked to related
resources that need to be synchronized to transactions (for example
Dat aSour ceTr ansact i onManager to a JDBC Dat aSour ce,
H ber nat eTr ansact i onManager to a Hibernate Sessi onFact ory, and so forth). This section
describes how the application code, directly or indirectly using a persistence APl such as JDBC,
Hibernate, or JDO, ensures that these resources are created, reused, and cleaned up properly. The section
aso discusses how transaction synchronization is triggered (optionally) through the relevant
Pl at f or nilr ansact i onManager .

High-level synchronization approach

The preferred approach is to use Spring's highest level template based persistence integration APIs or to
use native ORM APIs with transaction- aware factory beans or proxies for managing the native resource
factories. These transaction-aware solutions internally handle resource creation and reuse, cleanup,
optional transaction synchronization of the resources, and exception mapping. Thus user data access code
does not have to address these tasks, but can be focused purely on non-boilerplate persistence logic.
Generally, you use the native ORM API or take a template approach for JDBC access by using the
JdbcTenpl at e. These solutions are detailed in subsequent chapters of this reference documentation.

Low-level synchronization approach

Classes such as Dat aSourceUtils (for JDBC), EntityManager FactoryUtils (for JPA),
Sessi onFactoryUti | s (for Hibernate), Per si st enceManager Fact oryUti | s (for JDO), and
SO on exist at alower level. When you want the application code to deal directly with the resource types
of the native persistence APIs, you use these classes to ensure that proper Spring Framework-managed
instances are obtained, transactions are (optionally) synchronized, and exceptions that occur in the
process are properly mapped to a consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling the

31 Reference Documentation 320

Spring Framework

get Connecti on() method on the DataSource, you instead use Spring's
org. springfranmework. j dbc. dat asour ce. Dat aSour ceUti | s classasfollows:

Connecti on conn = DataSourceltils. get Connecti on(dat aSource);

If an existing transaction already has a connection synchronized (linked) to it, that instance is returned.
Otherwise, the method call triggers the creation of a new connection, which is (optionally) synchronized
to any existing transaction, and made available for subsequent reuse in that same transaction. As
mentioned, any SQLException is wrapped in a Spring Framework
Cannot Get JdbcConnect i onExcepti on, one of the Spring Framework's hierarchy of unchecked
DataA ccessExceptions. This approach gives you more information than can be obtained easily from the
SQLException, and ensures portability across databases, even across different persistence
technologies.

This approach also works without Spring transaction management (transaction synchronization is
optional), so you can use it whether or not you are using Spring for transaction management.

Of course, once you have used Spring's JDBC support, JPA support or Hibernate support, you will
generally prefer not to use Dat aSour ceUt i | s or the other helper classes, because you will be much
happier working through the Spring abstraction than directly with the relevant APIs. For example, if you
use the Spring JdbcTenpl at e or j dbc. obj ect package to simplify your use of JDBC, correct
connection retrieval occurs behind the scenes and you won't need to write any special code.

Transact i onAwar eDat aSour cePr oxy

At the very lowest level existsthe Tr ansact i onAwar eDat aSour cePr oxy class. Thisisaproxy for
a target Dat aSour ce, which wraps the target Dat aSour ce to add awareness of Spring-managed
transactions. In this respect, it is similar to a transactional INDI Dat aSour ce as provided by a Java EE
server.

It should almost never be necessary or desirable to use this class, except when existing code must be
called and passed a standard JDBC Dat aSour ce interface implementation. In that case, it is possible
that this code is usable, but participating in Spring managed transactions. It is preferable to write your
new code by using the higher level abstractions mentioned above.

11.5 Declarative transaction management

Note

Most Spring Framework users choose declarative transaction management. This option has
the least impact on application code, and hence is most consistent with the ideals of a
non-invasive lightweight container.

The Spring Framework's declarative transaction management is made possible with Spring

3.1 Reference Documentation 321

Spring Framework

aspect-oriented programming (AOP), although, as the transactional aspects code comes with the Spring
Framework distribution and may be used in a boilerplate fashion, AOP concepts do not generally have to
be understood to make effective use of this code.

The Spring Framework's declarative transaction management is similar to EJB CMT in that you can
specify transaction behavior (or lack of it) down to individual method level. It is possible to make a
set Rol | backOnl y() cal within atransaction context if necessary. The differences between the two
types of transaction management are:

» Unlike EJB CMT, which is tied to JTA, the Spring Framework's declarative transaction management
works in any environment. It can work with JTA transactions or local transactions using JDBC, JPA,
Hibernate or JDO by simply adjusting the configuration files.

* You can apply the Spring Framework declarative transaction management to any class, not merely
special classes such as EJBs.

» The Spring Framework offers declarative rollback rules, a feature with no EJB equivalent. Both
programmeatic and declarative support for rollback rulesis provided.

» The Spring Framework enables you to customize transactional behavior, by using AOP. For example,
you can insert custom behavior in the case of transaction rollback. You can also add arbitrary advice,
along with the transactional advice. With EJB CMT, you cannot influence the container's transaction
management except with set Rol | backOnl y() .

» The Spring Framework does not support propagation of transaction contexts across remote calls, as do
high-end application servers. If you need this feature, we recommend that you use EJB. However,
consider carefully before using such a feature, because normally, one does not want transactions to
span remote calls.

Where is Tr ansact i onPr oxyFact or yBean?

Declarative transaction configuration in versions of Spring 2.0 and above differs considerably from
previous versions of Spring. The main difference is that there is no longer any need to configure
Transact i onPr oxyFact or yBean beans.

The pre-Spring 2.0 configuration style is still 100% valid configuration; think of the new
<t x: t ags/ > assimply defining Tr ansact i onPr oxyFact or yBean beans on your behalf.

The concept of rollback rules isimportant: they enable you to specify which exceptions (and throwabl es)
should cause automatic rollback. You specify this declaratively, in configuration, not in Java code. So,
although you can still call set Rol | backOnl y() on the Transact i onSt at us abject to roll back
the current transaction back, most often you can specify arule that MyAppl i cati onExcepti on must
aways result in rollback. The significant advantage to this option is that business objects do not depend
on the transaction infrastructure. For example, they typically do not need to import Spring transaction
APIsor other Spring APIs.

3.1 Reference Documentation 322

Spring Framework

Although EJB container default behavior automatically rolls back the transaction on a system exception
(usualy a runtime exception), EJB CMT does not roll back the transaction automatically on an
application exception (that is, a checked exception other than j ava. r mi . Renot eExcept i on). While
the Spring default behavior for declarative transaction management follows EJB convention (roll back is
automatic only on unchecked exceptions), it is often useful to customize this behavior.

Understanding the Spring Framework's declarative transaction
implementation

It is not sufficient to tell you simply to annotate your classes with the @r ansact i onal annotation,
add the line (<t x: annot ati on- dri ven/ >) to your configuration, and then expect you to understand
how it al works. This section explains the inner workings of the Spring Framework's declarative
transaction infrastructure in the event of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework's declarative transaction
support are that this support is enabled via AOP proxies, and that the transactional advice is driven by
metadata (currently XML- or annotation-based). The combination of AOP with transactional metadata
yields an AOP proxy that uses a Tr ansact i onl nt er cept or in conjunction with an appropriate
Pl at f or nilr ansact i onManager implementation to drive transactions around method invocations.

Note

Spring AOP is covered in Chapter 8, Aspect Oriented Programming with Spring.

Conceptually, calling a method on atransactional proxy looks like this...

31 Reference Documentation 323

Spring Framework

Control flows back through

interceptor chain to return
/ result to caller

:‘: = | Transaction

Adsor

Caller invokes proxy,
not target
Transaction created on way

in, committed or rolled
back on way out

Custom

Advisor(s)

Business logic invoked

Custom interceptors may run
before or after transaction advisor

Example of declarative transaction implementation

Consider the following interface, and its attendant implementation. This example uses Foo and Bar
classes as placeholders so that you can concentrate on the transaction usage without focusing on a
particular domain model. For the purposes of this example, the fact that the Def aul t FooSer vi ce
class throws Unsupport edOper at i onExcepti on instances in the body of each implemented
method is good; it alows you to see transactions created and then rolled back in response to the

Unsuppor t edOper at i onExcept i on instance.

/1 the service interface that we want to nake transactiona
package x.y.service;
public interface FooService {

Foo get Foo(String fooNane);

Foo get Foo(String fooName, String barNane);

voi d i nsert Foo(Foo foo);

voi d updat eFoo(Foo fo00);

/1 an inplenmentation of the above interface
package X.y.service;

public class Defaul t FooService inplenents FooService {

3.1 Reference Documentation

324

Spring Framework

public Foo get Foo(String fooNane) {
t hrow new Unsupport edOper ati onException();

}

public Foo getFoo(String fooNane, String barNane) {
t hrow new Unsupport edOper ati onException();

}

public void insertFoo(Foo foo) ({
t hrow new Unsupport edOper ati onException();

}

public voi d updat eFoo(Foo foo) ({
t hrow new Unsupport edOper ati onException();

}

Assume that the first two methods of the FooServi ce interfface, getFoo(String) and
get Foo(String, String), mustexecutein the context of atransaction with read-only semantics,
and that the other methods, i nsert Foo(Foo) and updat eFoo(Foo), must execute in the context
of a transaction with read-write semantics. The following configuration is explained in detail in the next
few paragraphs.

<l-- fromthe file 'context.xm"' -->
<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. springfranmewor k. or g/ schema/ aop"
xm ns: tx="http://ww.springframework. org/ schema/tx"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springframework. org/ schema/t x/ spring-tx. xsd
http://ww. springframework. or g/ schema/ aop
http://ww. spri ngfranewor k. or g/ schema/ aop/ spri ng- aop. xsd" >

<l-- this is the service object that we want to nake transactional -->
<bean id="fooService" class="x.y.service. Defaul t FooServi ce"/>

<l-- the transactional advice (what 'happens'; see the <aop:advi sor/> bean bel ow) -->
<t x:advi ce id="txAdvi ce" transacti on-manager ="t xManager">
<!-- the transactional semantics... -->
<tx:attributes>
<l-- all nmethods starting with 'get' are read-only -->
<t x: met hod name="get*" read-only="true"/>
<!-- other nethods use the default transaction settings (see below) -->

<t x: net hod nane="*"/>
</tx:attributes>
</t x: advi ce>

<l-- ensure that the above transactional advice runs for any execution
of an operation defined by the FooService interface -->
<aop: confi g>
<aop: poi ntcut id="fooServi ceOperation" expressi on="execution(* x.y.service.FooService.*(..))"/>
<aop: advi sor advi ce-ref ="t xAdvi ce" pointcut-ref="fooServi ceCperation"/>
</ aop: confi g>

<l-- don't forget the DataSource -->

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">
<property name="driverd assNane" val ue="oracle.jdbc.driver. O acleDriver"/>

<property name="url" val ue="jdbc:oracle:thin: @j-t42:1521: el vis"/>

31 Reference Documentation 325

Spring Framework

<property name="usernane" val ue="scott"/>
<property nanme="password" val ue="tiger"/>
</ bean>

<I-- simlarly, don't forget the Platfornmlransacti onManager -->

<bean id="txManager" class="org.springfranework.jdbc. datasource. Dat aSour ceTr ansact i onManager ">
<property name="dat aSource" ref="dataSource"/>

</ bean>

<l-- other <bean/> definitions here -->

</ beans>

Examine the preceding configuration. You want to make a service object, the f ooSer vi ce bean,
transactional. The transaction semantics to apply are encapsulated in the <t x: advi ce/ > definition. The
<t x: advi ce/ > definition readsas “... all methods on starting with' get' areto execute in the context
of a read-only transaction, and all other methods are to execute with the default transaction semantics’.
The transacti on- manager attribute of the <t x: advi ce/ > tag is set to the name of the
Pl at f or nilr ansact i onManager bean that is going to drive the transactions, in this case, the
t xManager bean.

Tip

You can omit the transaction-nanager attribute in the transactional advice
(<t x: advi ce/ >) if the bean name of the Pl at f or nifr ansact i onManager that you
want to wire in has the name transactionManager. If the
Pl at f or nilr ansact i onManager bean that you want to wire in has any other name,
then you must use the t r ansact i on- manager attribute explicitly, as in the preceding
example.

The <aop: conf i g/ > definition ensures that the transactional advice defined by the t xAdvi ce bean
executes at the appropriate points in the program. First you define a pointcut that matches the execution
of any operation defined in the FooServi ce interface (f ooSer vi ceQper ati on). Then you
associate the pointcut with thet x Advi ce using an advisor. The result indicates that at the execution of a
f ooSer vi ceOper at i on, the advice defined by t xAdvi ce will berun.

The expression defined within the <aop: poi nt cut / > element is an Aspect] pointcut expression; see
Chapter 8, Aspect Oriented Programming with Spring for more details on pointcut expressions in Spring
2.0.

A common requirement is to make an entire service layer transactional. The best way to do thisis ssimply
to change the pointcut expression to match any operation in your service layer. For example:

<aop: confi g>
<aop: poi ntcut id="fooServi ceMet hods" expressi on="execution(* x.y.service.*.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="fooServi ceMet hods"/>

</ aop: confi g>

Note

31 Reference Documentation 326

Spring Framework

In this example it is assumed that all your service interfaces are defined in the
X.Yy.service package, see Chapter 8, Aspect Oriented Programming with Spring for
more details.

Now that we've analyzed the configuration, you may be asking yourself, “Okay... but what does all this
configuration actually do?”.

The above configuration will be used to create a transactional proxy around the object that is created from
the f ooSer vi ce bean definition. The proxy will be configured with the transactional advice, so that
when an appropriate method is invoked on the proxy, a transaction is started, suspended, marked as
read-only, and so on, depending on the transaction configuration associated with that method. Consider
the following program that test drives the above configuration:

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new O assPat hXnl Appl i cati onCont ext ("context.xnml ", Boot.cl ass);
FooServi ce fooService = (FooService) ctx.getBean("fooService");
fooService.insertFoo (new Foo());
}
}

The output from running the preceding program will resemble the following. (The Log4J output and the
stack trace from the UnsupportedOperationException thrown by the insertFoo(..) method of the
DefaultFooService class have been truncated for clarity.)

<l-- the Spring container is starting up... -->
[Aspect JI nvocat i onCont ext Exposi ngAdvi sor Aut oProxyCreator] - Creating inplicit proxy
for bean 'fooService' with O common interceptors and 1 specific interceptors
<l-- the Defaul t FooService is actually proxied -->
[JdkDynam cAopProxy] - Creating JDK dynam c proxy for [x.y.service. DefaultFooService]

<l-- ... the insertFoo(..) method is now being i nvoked on the proxy -->

[Transactionlnterceptor] - Getting transaction for X.y.service.FooService.insertFoo
<l-- the transactional advice kicks in here... -->
[Dat aSour ceTr ansact i onManager] - Creating new transaction with name [X.y.service. FooService. insertFoo]
[Dat aSour ceTr ansact i onManager] - Acquired Connection
[org. apache. conmons. dbcp. Pool abl eConnecti on@53de4] for JDBC transaction

<l-- the insertFoo(..) nethod from Defaul t FooService throws an exception... -->
[Rul eBasedTransactionAttribute] - Applying rules to deternine whether transaction shoul d
rol | back on java.l ang. UnsupportedOperati onExcepti on
[Transactionlnterceptor] - Invoking rollback for transaction on X.y.service. FooService.insertFoo
due to throwabl e [java.l ang. UnsupportedQperati onExcepti on]

<l-- and the transaction is rolled back (by default, RuntinmeException instances cause rollback) -->
[Dat aSour ceTr ansact i onManager] - Rolling back JDBC transacti on on Connection
[org. apache. commons. dbcp. Pool abl eConnecti on@53de4]
[Dat aSour ceTr ansact i onManager] - Rel easi ng JDBC Connection after transaction
[Dat aSourceUtils] - Returning JDBC Connection to DataSource

Exception in thread "mai n" java.l ang. UnsupportedOperati onException
at x.y.service. Defaul t FooServi ce. i nsert Foo(Def aul t FooSer vi ce. j ava: 14)
<l-- ACP infrastructure stack trace el enents renoved for clarity -->
at $Proxy0. i nsert Foo(Unknown Source)

3.1 Reference Documentation 327

Spring Framework

at Boot . mai n(Boot . j ava: 11)

Rolling back a declarative transaction

The previous section outlined the basics of how to specify transactional settings for classes, typically
service layer classes, declaratively in your application. This section describes how you can control the
rollback of transactions in a simple declarative fashion.

The recommended way to indicate to the Spring Framework's transaction infrastructure that a
transaction's work is to be rolled back is to throw an Except i on from code that is currently executing in
the context of a transaction. The Spring Framework's transaction infrastructure code will catch any
unhandled Except i on as it bubbles up the call stack, and make a determination whether to mark the
transaction for rollback.

In its default configuration, the Spring Framework's transaction infrastructure code only marks a
transaction for rollback in the case of runtime, unchecked exceptions; that is, when the thrown exception
is an instance or subclass of Runti meExcepti on. (Errors will aso - by default - result in a
rollback). Checked exceptions that are thrown from a transactional method do not result in rollback in the
default configuration.

You can configure exactly which Except i on types mark a transaction for rollback, including checked
exceptions. The following XML snippet demonstrates how you configure rollback for a checked,
application-specific Except i on type.

<t x:advi ce id="txAdvi ce" transacti on-manager ="t xManager">
<tx:attributes>
<t x: net hod name="get*" read-only="true" roll back-for="NoProduct|nStockException"/>
<t x: met hod name="*"/>
</tx:attributes>
</t x: advi ce>

Y ou can also specify 'no rollback rules, if you do not want a transaction rolled back when an exception is
thrown. The following example tells the Spring Framework's transaction infrastructure to commit the
attendant transaction even in the face of an unhandled | nst r unent Not FoundExcept i on.

<t x: advi ce id="t xAdvi ce">
<tx:attributes>
<t x: met hod name="updat eSt ock" no-rol | back-for="Instrunment Not FoundExcepti on"/>
<t x: net hod name="*"/>
</tx:attributes>
</tx: advi ce>

When the Spring Framework's transaction infrastructure catches an exception and is consults configured
rollback rules to determine whether to mark the transaction for rollback, the strongest matching rule wins.
So in the case of the following configuration, any exception other than an
I nst runment Not FoundExcept i on resultsin arollback of the attendant transaction.

<t x: advi ce i d="txAdvi ce">
<tx:attributes>
<t x: net hod nanme="*" rol | back-for="Throwabl e* no-rol | back-for="1Instrunent Not FoundExcepti on"/>
</[tx:attributes>

31 Reference Documentation 328

Spring Framework

</t x: advi ce>

You can also indicate a required rollback programmatically. Although very simple, this process is quite
invasive, and tightly couples your code to the Spring Framework's transaction infrastructure:

public void resol vePosition() {

try {
/'l sonme business |ogic..

} catch (NoProduct | nSt ockException ex) ({
/1 trigger rollback programmatically
Transact i onAspect Support. current Transacti onStatus(). set Rol | backOnly();

}
}

You are strongly encouraged to use the declarative approach to rollback if at all possible. Programmatic
rollback is available should you absolutely need it, but its usage flies in the face of achieving a clean
POJO-based architecture.

Configuring different transactional semantics for different beans

Consider the scenario where you have a number of service layer objects, and you want to apply a totally
different transactional configuration to each of them. You do this by defining distinct
<aop: advi sor/ > elements with differing poi nt cut and advi ce-r ef attribute values.

As a point of comparison, first assume that all of your service layer classes are defined in a root
X.Y.servi ce package. To make al beans that are instances of classes defined in that package (or in
subpackages) and that have names ending in Ser vi ce have the default transactional configuration, you
would write the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframewor k. or g/ schema/ aop"
xm ns: tx="http://wwm. springfranmewor k. org/ schema/ t x"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springfranework. org/ schema/tx/spring-tx.xsd
http://ww. springfranmework. or g/ schema/ aop
http://ww. springframework. or g/ schema/ aop/ spri ng- aop. xsd" >

<aop: confi g>

<aop: poi ntcut id="servi ceOperation"
expressi on="execution(* x.y.service..*Service.*(..))"/>

<aop: advi sor pointcut-ref="servi ceQperati on" advi ce-ref="txAdvi ce"/>
</ aop: confi g>
<l-- these two beans will be transactional... -->
<bean id="fooService" class="x.y.service. Defaul t FooService"/>

<bean id="bar Servi ce" class="x.y.service.extras. Si npl eBar Servi ce"/>

<l-- ... and these two beans won't -->
<bean i d="anot her Servi ce" cl ass="org.xyz. SomeService"/> <!-- (not in the right package) -->

31 Reference Documentation 329

Spring Framework

<bean id="bar Manager" cl ass="x.y.service. Si npl eBar Manager"/> <!-- (doesn't end in 'Service') -->

<t x: advi ce id="t xAdvi ce">
<tx:attributes>
<t x: met hod name="get*" read-only="true"/>
<t x: net hod nanme="*"/>
</tx:attributes>
</t x: advi ce>

<I-- other transaction infrastructure beans such as a Pl atfornlransacti onManager onmtted... -->

</ beans>

The following example shows how to configure two distinct beans with totally different transactional
Settings.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframework. org/ schema/ aop"
xm ns: tx="http://ww. springframework. org/ schema/t x"
xsi : schemalLocat i on="
http://ww. springfranework. org/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springframework. org/ schema/t x/ spring-tx. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springframework. or g/ scherma/ aop/ spri ng- aop. xsd" >

<aop: confi g>

<aop: poi ntcut id="defaultServiceOperation"
expressi on="execution(* x.y.service.*Service.*(..))"/>

<aop: poi ntcut id="noTxServi ceCperation"
expressi on="execution(* x.y.service.ddl.DefaultDdl Manager.*(..))"/>

<aop: advi sor pointcut-ref="defaul tServi ceOperation" advice-ref="defaul t TxAdvi ce"/>
<aop: advi sor pointcut-ref="noTxServi ceQperation" advi ce-ref="noTxAdvi ce"/>
</ aop: confi g>

<l-- this bean will be transactional (see the 'defaultServiceOperation' pointcut) -->
<bean id="fooService" class="x.y.service. Defaul t FooService"/>

<l-- this bean will also be transactional, but with totally different transacti onal settings -->
<bean i d="anot her FooServi ce" cl ass="x.y.service. ddl . Def aul t Ddl Manager "/ >

<t x: advi ce id="defaul t TXAdvi ce" >
<tx:attributes>
<t x: met hod name="get*" read-only="true"/>
<t x: net hod name="*"/>
</tx:attributes>
</tx: advi ce>

<t x: advi ce i d="noTxAdvi ce">
<tx:attributes>
<t x: met hod name="*" propagati on="NEVER'/ >
</tx:attributes>
</t x: advi ce>

<I-- other transaction infrastructure beans such as a Pl atfornilransacti onManager omtted... -->

</ beans>

31 Reference Documentation 330

Spring Framework

<t x: advi ce/ > settings

This section summarizes the various transactional settings that can be specified using the
<t x: advi ce/ > tag. The default <t x: advi ce/ > settings are:

» Propagation setting is REQUI RED.

Isolation level is DEFAULT.

e Transaction is read/write.

» Transaction timeout defaults to the default timeout of the underlying transaction system, or none if
timeouts are not supported.

Any Runt i meExcept i on triggersrollback, and any checked Except i on does not.

Y ou can change these default settings; the various attributes of the <t x: et hod/ > tags that are nested
within<t x: advi ce/ >and <t x: at t ri but es/ > tags are summarized below:

Table 11.1. <t x: net hod/ > settings

Attribute RequiredDefault Description

nanme Yes
Method name(s) with which the transaction
attributes are to be associated. The wildcard (*)
character can be used to associate the same
transaction attribute settings with a number of
methods, for example, get*, handle*,
on* Event , and so forth.

propagati on No REQUIRED Transaction propagation behavior.

i sol ation No DEFAULT Transaction isolation level.

ti meout No -1 Transaction timeout value (in seconds).

read-only No false Is this transaction read-only?

rol | back-for No
Exception(s) that trigger rollback;
comma-delimited. For example,
com f oo. MyBusi nessExcepti on, Servl et Excepti on.

no-rol | back-for No

Exception(s) that do not trigger rollback;
comma-delimited. For example,
com f oo. MyBusi nessExcepti on, Ser vl et Excepti on.

31

Reference Documentation 331

Spring Framework

Using @r ansact i onal

In addition to the XML-based declarative approach to transaction configuration, you can use an
annotation-based approach. Declaring transaction semantics directly in the Java source code puts the
declarations much closer to the affected code. There is not much danger of undue coupling, because code
that is meant to be used transactionally is ailmost always deployed that way anyway.

The ease-of-use afforded by the use of the @Tr ansact i onal annotation is best illustrated with an
example, which is explained in the text that follows. Consider the following class definition:

/] the service class that we want to nmake transacti onal
@r ansacti onal
public class Defaul t FooService inplenments FooService {

Foo get Foo(String fooNane);
Foo get Foo(String fooNane, String barNane);
voi d i nsertFoo(Foo foo0);

voi d updat eFoo(Foo fo00);

When the above POJO is defined as a bean in a Spring 10C container, the bean instance can be made
transactional by adding merely one line of XML configuration:

<l-- fromthe file 'context.xm"' -->
<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww:. springframework. or g/ schema/ aop"
xm ns: tx="http://ww. springframework. org/ schema/t x"
xsi : schemaLocat i on="
http://ww. springfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springframework. org/ schema/t x/ spring-tx. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springframework. or g/ scherma/ aop/ spri ng- aop. xsd" >

<l-- this is the service object that we want to nake transactional -->
<bean id="fooService" class="x.y.service. Defaul t FooServi ce"/>

<I-- enable the configuration of transactional behavior based on annotations -->
<t x:annotation-driven transaction-nmanager="t xManager"/>

<!-- a Platfornfransacti onManager is still required -->
<bean id="t xManager" class="org. springfranework.jdbc. dat asource. Dat aSour ceTr ansact i onManager ">
<l-- (this dependency is defined sonewhere else) -->
<property nanme="dat aSource" ref="dataSource"/>
</ bean>
<!-- other <bean/> definitions here -->
</ beans>
- Tip
1

31 Reference Documentation 332

Spring Framework

You can omit the transacti on- manager attribute in the
<t x:annot ati on-driven/> tag if the bean name of the
Pl at f or milr ansact i onManager that you want to wire in has the name
transacti onManager . If the Pl at f or nifr ansact i onManager bean that you want
to dependency-inject has any other name, then you have to use the
transacti on- manager attribute explicitly, asin the preceding example.

Method visibility and @r ansact i onal

When using proxies, you should apply the @r ansact i onal annotation only to methods with
public visibility. If you do annotate protected, private or package-visible methods with the
@r ansact i onal annotation, no error is raised, but the annotated method does not exhibit the
configured transactional settings. Consider the use of AspectJ (see below) if you need to annotate
non-public methods.

You can place the @r ansacti onal annotation before an interface definition, a method on an
interface, a class definition, or a public method on a class. However, the mere presence of the
@ransacti onal annotation is not enough to activate the transactional behavior. The
@r ansact i onal annotation is simply metadata that can be consumed by some runtime infrastructure
that is @r ansact i onal -aware and that can use the metadata to configure the appropriate beans with
transactiona behavior. In the preceding example, the <t x: annot at i on-dri ven/ > element switches
on the transactional behavior.

Tip

Spring recommends that you only annotate concrete classes (and methods of concrete classes)
with the @ ansact i onal annotation, as opposed to annotating interfaces. Y ou certainly
can place the @r ansact i onal annotation on an interface (or an interface method), but
this works only as you would expect it to if you are using interface-based proxies. The fact
that Java annotations are not inherited from interfaces means that if you are using class-based
proxies (proxy-target-class="true") or the weaving-based aspect
(mode="aspect "), then the transaction settings are not recognized by the proxying and
weaving infrastructure, and the object will not be wrapped in a transactional proxy, which
would be decidedly bad.

Note

In proxy mode (which is the default), only external method calls coming in through the proxy
are intercepted. This means that self-invocation, in effect, a method within the target object
calling another method of the target object, will not lead to an actual transaction at runtime

31 Reference Documentation 333

Spring Framework

even if theinvoked method is marked with @ ansacti onal .

Consider the use of Aspect] mode (see mode attribute in table below) if you expect self-invocations to be
wrapped with transactions as well. In this case, there will not be a proxy in the first place; instead, the
target class will be weaved (that is, its byte code will be modified) in order to turn @r ansact i onal

into runtime behavior on any kind of method.

Table 11.2. <t x: annot at i on- dri ven/ > settings

Attribute

transacti on- manager

node

proxy-target-class

Default

transactionM anager

proxy

fase

Description

Name of transaction manager to
use. Only required if the name of
the transaction manager is not
transacti onManager, asin
the example above.

The default mode "proxy"
processes annotated beans to be
proxied using Spring's AOP
framework (following proxy
semantics, as discussed above,
applying to method calls coming
in through the proxy only). The
dternative mode "aspectj"
instead weaves the affected
classes with Spring's Aspect]
transaction aspect, modifying the
target class byte code to apply to
any kind of method call. AspectJ
weaving requires
spring-aspects.jar in the classpath
as well as load-time weaving (or
compile-time weaving) enabled.
(See the section caled “Spring
configuration” for details on how
to set up load-time weaving.)

Applies to proxy mode only.
Controls what type of
transactional proxies are created
for classes annotated with the

31

Reference Documentation

334

Spring Framework

Attribute

Default Description

or der

@ransacti onal annotation.
If the proxy-target-cl ass
atribute is set to true, then
class-based proxies are created.
If proxy-target-class is
fal se or if the attribute is
omitted, then standard JDK
interface-based proxies are
created. (See Section 8.6,
“Proxying mechanisms’ for a
detailed examination of the
different proxy types.)

Ordered.LOWEST_PRECEDENCE
Defines the order of the

transaction advice that is applied
to beans annotated with
@ransacti onal . (For more
information about the rules
related to ordering of AOP
advice, see the section called
“Advice ordering”.) No specified
ordering means that the AOP
subsystem determines the order
of the advice.

Note

The proxy-target-cl ass attribute on the <t x: annot at i on-dri ven/ > element
controls what type of transactional proxies are created for classes annotated with the
@ransacti onal annotation. If proxy-target-class attribute is set to true,
class-based proxies are created. If proxy-t arget -cl ass isfal se or if the attribute is
omitted, standard JDK interface-based proxies are created. (See Section 8.6, “Proxying
mechanisms’ for a discussion of the different proxy types.)

Note

<t x: annot ati on-dri ven/ > only looks for @r ansacti onal on beans in the same
application context it is defined in. This means that, if you put
<tx:annotation-driven/> in a \WbApplicationContext for a
Di spat cher Ser vl et , it only checks for @Tr ansact i onal beansin your controllers,
and not your services. See Section 16.2, “ The DispatcherServlet” for more information.

31

Reference Documentation 335

Spring Framework

The most derived location takes precedence when evaluating the transactional settings for a method. In
the case of the following example, the Def aul t FooSer vi ce classis annotated at the class level with
the settings for a read-only transaction, but the @ransacti onal annotation on the
updat eFoo(Foo) method in the same class takes precedence over the transactional settings defined at
the classlevel.

@ransactional (readOnly = true)
public class Defaul t FooService inplenents FooService {

public Foo get Foo(String fooNane) {
/] do sonething

}

/'l these settings have precedence for this nethod
@ransactional (readOnly = fal se, propagati on = Propagati on. REQUI RES_NEW
public voi d updat eFoo(Foo foo) ({

/1 do sonet hing

}
}

@r ansacti onal settings

The @r ansacti onal annotation is metadata that specifies that an interface, class, or method must
have transactional semantics; for example, “start a brand new read-only transaction when this method is
invoked, suspending any existing transaction”. The default @ ansact i onal settings are as follows:

» Propagation setting is PROPAGATI ON_REQUI RED.

Isolation level is| SOLATI ON_DEFAULT.
* Transaction is read/write.

» Transaction timeout defaults to the default timeout of the underlying transaction system, or to none if
timeouts are not supported.

* Any Runt i neExcepti on triggersrollback, and any checked Except i on does not.

These default settings can be changed; the various properties of the @r ansact i onal annotation are
summarized in the following table:

Table11.3. @Tr ansact i onal properties

Property Type Description

val ue String Optional qualifier specifying the
transaction manager to be used.

propagati on enum: Pr opagat i on Optiona propagation setting.

i sol ation enum: | sol ati on Optional isolation level.

31 Reference Documentation 336

Spring Framework

Property Type Description

readOnly boolean Read/write VS. read-only
transaction

ti meout int (in seconds granul arity) Transaction timeout.

rol | backFor Array of O ass objects, which Optional array of exception

rol | backFor Cl assnane

noRol | backFor

must be derived from

Thr owabl e.

Array of class names. Classes
must be deived from
Thr owabl e.

Array of Cl ass objects, which
must be derived from
Thr owabl e.

classes that must cause rollback.

Optional array of names of
exception classes that must
cause rollback.

Optional array of exception
classes that must not cause
rollback.

noRol | backFor Cl assnane

Array of String class names,
which must be derived from
Thr owabl e.

Optional array of names of
exception classes that must not
cause rollback.

Currently you cannot have explicit control over the name of a transaction, where 'name’ means the
transaction name that will be shown in a transaction monitor, if applicable (for example, WebL ogic's
transaction monitor), and in logging output. For declarative transactions, the transaction name is always
the fully-qualified class name + "." + method name of the transactionally-advised class. For example, if
the handl ePaynent (. .) method of the Busi nessSer vi ce class started a transaction, the name of

the transaction would be: com f 00. Busi nessSer vi ce. handl ePaynent .

Multiple Transaction Managers with @r ansact i onal

Most Spring applications only need a single transaction manager, but there may be situations where you
want multiple independent transaction managers in a single application. The value attribute of the
@ransacti onal annotation can be wused to optionally specify the identity of the
Pl at f or nilr ansact i onManager to be used. This can either be the bean name or the qualifier value
of the transaction manager bean. For example, using the qualifier notation, the following Java code

public class Transactional Service {

@r ansacti onal ("order")
public void setSonething(String nane) { ... }

@ransacti onal ("account")
public void doSonething() { ... }

}
could be combined with the following transaction manager bean declarations in the application context.

31 Reference Documentation 337

Spring Framework

<t x: annot ati on-driven/>
<bean id="transacti onManager 1" cl ass="org. spri ngframework.j dbc. Dat aSour ceTr ansact i onManager " >

<qual i fier value="order"/>
</ bean>

<bean id="transacti onManager2" cl ass="org. spri ngfranmewor k. j dbc. Dat aSour ceTr ansact i onManager " >

<qual i fier val ue="account"/>
</ bean>

In this case, the two methods on Tr ansacti onal Servi ce will run under separate transaction
managers, differentiated by the “"orde” and “account" qudifiers. The default
<t x: annot ati on-dri ven> target bean name tr ansact i onManager will still be used if no
specifically qualified PlatformTransactionManager bean is found.

Custom shortcut annotations

If you find you are repeatedly using the same attributes with @r ansacti onal on many different
methods, then Spring's meta-annotation support allows you to define custom shortcut annotations for your
specific use cases. For example, defining the following annotations

@ar get ({ El enent Type. METHOD, El enent Type. TYPE})
@Ret enti on(Ret enti onPol i cy. RUNTI MVE)

@r ansactional ("order")

public @nterface O derTx {

}

@rar get ({ El ement Type. METHOD, El ement Type. TYPE})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@r ansactional ("account")

public @nterface Account Tx {

}
allows us to write the example from the previous section as

public class Transactional Service {

@ der Tx

public void setSonething(String nane) { ... }
@\ccount Tx

public void doSonething() { ... }

}

Here we have used the syntax to define the transaction manager qualifier, but could also have included
propagation behavior, rollback rules, timeouts etc.

Transaction propagation

This section describes some semantics of transaction propagation in Spring. Please note that this section
is not an introduction to transaction propagation proper; rather it details some of the semantics regarding

31 Reference Documentation 338

Spring Framework

transaction propagation in Spring.

In Spring-managed transactions, be aware of the difference between physical and logical transactions, and
how the propagation setting applies to this difference.

Required
REQUIRED Transaction
Caller Transactional method 1 I _ Transactional method 2 \

/ /

Method 2 executes in the existing transaction. ‘

Transaction created,
committed or rolled back as
needed

PROPAGATION_REQUIRED

When the propagation setting is PROPAGATI ON_REQUI RED, a logical transaction scope is created for
each method upon which the setting is applied. Each such logical transaction scope can determine
rollback-only status individually, with an outer transaction scope being logicaly independent from the
inner transaction scope. Of course, in case of standard PROPAGATI ON_REQUI RED behavior, al these
scopes will be mapped to the same physical transaction. So a rollback-only marker set in the inner
transaction scope does affect the outer transaction's chance to actually commit (as you would expect it to).

However, in the case where an inner transaction scope sets the rollback-only marker, the outer transaction
has not decided on the rollback itself, and so the rollback (silently triggered by the inner transaction
scope) is unexpected. A corresponding Unexpect edRol | backExcepti on is thrown at that point.
This is expected behavior so that the caller of a transaction can never be misled to assume that a commit
was performed when it really was not. So if an inner transaction (of which the outer caller is not aware)
silently marks a transaction as rollback-only, the outer caller still calls commit. The outer caller needs to
receive an Unexpect edRol | backExcepti on to indicate clearly that a rollback was performed
instead.

RequiresNew

31 Reference Documentation 339

Spring Framework

REQUIRES_NEW Transaction 1 .
Q : Transaction 2
Caller : Transactional method 1 Transactional method 2
Transaction created, Method 2 executes in a new transaction, and the
committed or rolled back as outer transaction is suspended.
needed

PROPAGATION_REQUIRES NEW

PROPAGATI ON_REQUI RES_NEW in contrast to PROPAGATION_REQUIRED, uses a completely
independent transaction for each affected transaction scope. In that case, the underlying physical
transactions are different and hence can commit or roll back independently, with an outer transaction not
affected by an inner transaction's rollback status.

Nested

PROPAGATI ON_NESTED uses a single physical transaction with multiple savepoints that it can roll back
to. Such partial rollbacks alow an inner transaction scope to trigger arollback for its scope, with the outer
transaction being able to continue the physical transaction despite some operations having been rolled
back. This setting is typically mapped onto JDBC savepoints, so will only work with JDBC resource
transactions. See Spring's Dat aSour ceTr ansact i onManager .

Advising transactional operations

Suppose you want to execute both transactional and some basic profiling advice. How do you effect this
in the context of <t x: annot ati on-dri ven/ >?

When you invoke the updat eFoo(Foo) method, you want to see the following actions:
1. Configured profiling aspect starts up.

2. Transactional advice executes.

3. Method on the advised object executes.

4. Transaction commits.

5. Profiling aspect reports exact duration of the whole transactional method invocation.

31 Reference Documentation 340

Spring Framework

Note

This chapter is not concerned with explaining AOP in any great detail (except asit appliesto
transactions). See Chapter 8, Aspect Oriented Programming with Spring for detailed coverage
of the following AOP configuration and AOP in general .

Here is the code for a simple profiling aspect discussed above. The ordering of advice is controlled
through the Or der ed interface. For full details on advice ordering, see the section called “Advice
ordering”.

package Xx.y;

i mport org.aspectj .| ang. Proceedi ngJoi nPoi nt ;
i mport org.springframework. util.StopWatch;
i mport org.springframework. core. O der ed;

public class SinpleProfiler inmplements Ordered {

}

private int order;

/'l allows us to control the ordering of advice
public int getOder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

/1 this nethod is the around advice
public Object profile(Proceedi ngJoi nPoint call) throws Throwabl e {
bj ect returnVal ue;
St opWat ch cl ock = new St opWat ch(get G ass(). get Nanme());
try {
clock.start(call.toShortString());
returnVal ue = call.proceed();
} finally {
cl ock. stop();
System out . println(clock.prettyPrint());
}

return returnVal ue;

}

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: aop="http://ww. springframework. or g/ schenma/ aop"

xm ns: tx="http://ww. springfranmework. org/ schema/t x"

xsi : schemaLocat i on="
http://ww. springframewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranework. org/ schena/ t x
http://ww. springframework. org/ schema/t x/ spring-tx. xsd
http://ww. spri ngfranewor k. or g/ schema/ aop
http://ww. springfranmework. or g/ schema/ aop/ spri ng- aop. xsd" >

<bean id="fooService" class="x.y.service. Defaul t FooServi ce"/>

<l-- this is the aspect -->
<bean id="profiler" class="x.y.SinpleProfiler">

31

Reference Documentation 341

Spring Framework

<I-- execute before the transactional advice (hence the |ower order nunber) -->
<property nanme="order" val ue="1"/>
</ bean>

<t x:annotation-driven transaction-manager="t xManager" order="200"/>

<aop: confi g>
<l-- this advice will execute around the transactional advice -->
<aop: aspect id="profilingAspect" ref="profiler">
<aop: poi ntcut id="serviceMet hodW t hRet ur nVval ue"
expressi on="execution(!void x.y..*Service.*(..))"/>
<aop: around met hod="profile" pointcut-ref="serviceMet hodW thRet urnVal ue"/>
</ aop: aspect >
</ aop: confi g>

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-met hod="cl ose">
<property nanme="driverd assNane" val ue="oracle.jdbc.driver. O acleDriver"/>
<property name="url" value="jdbc:oracle:thin: @j-t42:1521: el vis"/>
<property nanme="usernane" val ue="scott"/>
<property name="password" val ue="tiger"/>
</ bean>

<bean id="t xManager" class="org.springfranework.jdbc. datasource. Dat aSour ceTr ansact i onManager ">
<property name="dat aSource" ref="dataSource"/>
</ bean>

</ beans>

The result of the above configurationisaf ooSer vi ce bean that has profiling and transactional aspects
applied to it in the desired order. Y ou configure any number of additional aspectsin similar fashion.

The following example effects the same setup as above, but uses the purely XML declarative approach.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngfranmewor k. or g/ schema/ aop"
xm ns: tx="http://ww. springframewor k. org/ schena/t x"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springfranework. org/ schema/tx/spring-tx.xsd
http://ww. springframework. or g/ schema/ aop
http://ww. springframework. or g/ schema/ aop/ spri ng- aop. xsd" >

<bean id="fooService" class="x.y.service. Defaul t FooServi ce"/>

<l-- the profiling advice -->

<bean id="profiler" class="x.y.SinpleProfiler">
<I-- execute before the transactional advice (hence the |ower order nunber) -->
<property name="order" val ue="1"/>

</ bean>

<aop: confi g>
<aop: poi ntcut id="entryPoi nt Met hod" expressi on="execution(* x.y..*Service.*(..))"/>

<I-- will execute after the profiling advice (c.f. the order attribute) -->
<aop: advi sor

advi ce-ref ="t xAdvi ce"

poi nt cut - r ef =" ent r yPoi nt Met hod"

order="2"/> <!-- order value is higher than the profiling aspect -->

<aop: aspect id="profilingAspect" ref="profiler">

31 Reference Documentation 342

Spring Framework

<aop: poi ntcut id="serviceMet hodW t hRet ur nVval ue"
expressi on="execution(!void x.y..*Service.*(..))"/>
<aop: around met hod="profile" pointcut-ref="serviceMet hodW t hRet urnVal ue"/>
</ aop: aspect >

</ aop: confi g>

<t x:advi ce id="txAdvi ce" transacti on-manager ="t xManager">
<tx:attributes>
<t x: met hod name="get*" read-only="true"/>
<t x: met hod name="*"/>
</tx:attributes>
</t x: advi ce>

<!-- other <bean/> definitions such as a DataSource and a Pl atfornilransacti onManager here -->

</ beans>

The result of the above configuration will be af ooSer vi ce bean that has profiling and transactional
aspects applied to it in that order. If you want the profiling advice to execute after the transactional
advice on the way in, and before the transactional advice on the way out, then you simply swap the value

of the profiling aspect bean's or der property so that it is higher than the transactional advice's order
value.

Y ou configure additional aspectsin similar fashion.

Using @r ansact i onal with AspectJ

It is also possible to use the Spring Framework's @r ansacti onal support outside of a Spring
container by means of an AspectJ aspect. To do so, you first annotate your classes (and optionally your
classes methods) with the @r ansact i onal annotation, and then you link (weave) your application
with the
org. springframewor k. transacti on. aspectj. Annot ati onTransacti onAspect
defined in the spri ng- aspects.jar file. The aspect must also be configured with a transaction
manager. You can of course use the Spring Framework's 10C container to take care of
dependency-injecting the aspect. The simplest way to configure the transaction management aspect is to
use the <t x: annot ati on-dri ven/ > element and specify the node attribute to aspectj as
described in the section called “Using @Transactional”. Because we're focusing here on applications
running outside of a Spring container, we'll show you how to do it programmatically.

Note

Prior to continuing, you may want to read the section called “Using @Transactional” and
Chapter 8, Aspect Oriented Programming with Spring respectively.

/] construct an appropriate transacti on nanager
Dat aSour ceTr ansact i onManager txManager = new Dat aSour ceTr ansact i onManager (get Dat aSource());

/'l configure the AnnotationTransacti onAspect to use it; this nmust be done before executing any transactional ne

Annot at i onTr ansact i onAspect . aspect O (). set Transact i onManager (t xManager) ;

31 Reference Documentation 343

Spring Framework

Note

When using this aspect, you must annotate the implementation class (and/or methods within
that class), not the interface (if any) that the class implements. Aspect] follows Javas rule
that annotations on interfaces are not inherited.

The @ransacti onal annotation on a class specifies the default transaction semantics for the
execution of any method in the class.

The @ransacti onal annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Any method may be annotated, regardiess of
visibility.

To weave your applications with the Annot at i onTr ansact i onAspect you must either build your
application with AspectJ (see the AspectJ Development Guide) or use load-time weaving. See the section
called “Load-time weaving with AspectJ in the Spring Framework” for a discussion of load-time weaving
with AspectJ.

11.6 Programmatic transaction management

The Spring Framework provides two means of programmatic transaction management:

* UsingtheTr ansacti onTenpl at e.
* UsingaPl at f or niTr ansact i onManager implementation directly.

The Spring team generally recommends the Tr ansact i onTenpl at e for programmatic transaction
management. The second approach is similar to using the JTA User Tr ansacti on API, athough
exception handling is less cumbersome.

Using the Transacti onTenpl at e

The Transacti onTenpl at e adopts the same approach as other Spring templates such as the
JdbcTenpl at e. It uses a callback approach, to free application code from having to do the boilerplate
acquisition and release of transactional resources, and results in code that is intention driven, in that the
code that is written focuses solely on what the devel oper wantsto do.

Note

Asyou will seein the examples that follow, using the Tr ansact i onTenpl at e absolutely
couples you to Spring's transaction infrastructure and APIs. Whether or not programmatic
transaction management is suitable for your development needs is a decision that you will
have to make yourself.

31 Reference Documentation 344

http://www.eclipse.org/aspectj/doc/released/devguide/index.html

Spring Framework

Application code that must execute in a transactional context, and that will use the
Transact i onTenpl at e explicitly, looks like the following. Y ou, as an application developer, write a
Transacti onCal | back implementation (typically expressed as an anonymous inner class) that
contains the code that you need to execute in the context of a transaction. You then pass an instance of
your custom TransactionCallback to the execute(..) method exposed on the
Transacti onTenpl at e.

public class SinpleService inplenents Service {

/'l single Transacti onTenpl ate shared anongst all nethods in this instance
private final TransactionTenpl ate transacti onTenpl at e;

/'l use constructor-injection to supply the Pl atformlransacti onManager

public SinpleService(Pl atfornlransacti onManager