Writing a GEOM Class

lvan Voras
ivoras@FreeBSD.org

$FreeBSD: head/en_US.ISO8859-1/articles/geom-class/a rticle.xml 41645
2013-05-17 18:49:52Z gabor $

$FreeBSD: head/en_US.ISO8859-1/articles/geom-class/a rticle.xml 41645
2013-05-17 18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.

Intel, Celeron, EtherExpress, i386, i486, Itanium, Pentium, and Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This text documents some starting points in developing GE#dses, and kernel modules in general. It is
assumed that the reader is familiar with C userland progriaigim

Table of Contents

L INEE OOUCTION ...ttt 2 £k h et E et Rt b et e b b e bt bbb 1
2 PIEIIMINAITIES ...ttt h ettt e b e bbbt h b e e E e e Rt R b E R AE b 1E bR e e R e R et Rt R bt e Rt b e b b 2
30N FrecBSD KerNEl Progr @MMIINGcoooeeeeeerieree et seeseseesestessesseseesessessesaessessesseseaseasessesssssansessesessessensessessssessens 4
Vi@ N T =I@]\Y I o T ole or=Ta 410 0 Lo o FO OSSPSR 5

1 Introduction

1.1 Documentation

Documentation on kernel programming is scarce — it is onewfdreas where there is nearly nothing in the way of
friendly tutorials, and the phrase “use the source!” reltids true. However, there are some bits and pieces (some
of them seriously outdated) floating around that should beistl before beginning to code:

« The FreeBSD Developer’s Handbook
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/bookséliopers-handbook/index.html) — part of the

Writing a GEOM Class

documentation project, it does not contain anything spetfkernel programming, but rather some general useful
information.

« The FreeBSD Architecture Handbook
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boatkighandbook/index.html) — also from the
documentation project, contains descriptions of sevewalleével facilities and procedures. The most important
chapter is 13, Writing FreeBSD device drivers
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boatkdighandbook/driverbasics.html).

- The Blueprints section of FreeBSD Diary (http://www.fredbiary.org) web site — contains several interesting
articles on kernel facilities.

- The man pages in section 9 — for important documentation omekéunctions.

« The geom(4) man page and PHK’s GEOM slides (http:/phkosdedk/pubs/) — for general introduction of the
GEOM subsystem.

- Man pages g_bio(9), g_event(9), g_data(9), g_geom(9yoyiger(9) g_consumer(9), g_access(9) & others
linked from those, for documentation on specific functidties.

- The style(9) man page — for documentation on the codinge styhventions which must be followed for any code
which is to be committed to the FreeBSD Subversion tree.

2 Preliminaries

The best way to do kernel developmentis to have (at leastsgparate computers. One of these would contain the
development environment and sources, and the other woulddmkto test the newly written code by
network-booting and network-mounting filesystems fromfttet one. This way if the new code contains bugs and
crashes the machine, it will not mess up the sources (and ‘tithe® data). The second system does not even require
a proper display. Instead, it could be connected with alsealale or KVM to the first one.

But, since not everybody has two or more computers handre e a few things that can be done to prepare an
otherwise “live” system for developing kernel code. Thitupes also applicable for developing in a VMWare
(http://mwww.vmware.com/) or QEmu (http://www.qemu.grgiftual machine (the next best thing after a dedicated
development machine).

2.1 Modifying a system for development

For any kernel programming a kernel witRVARI ANTS enabled is a must-have. So enter these in your kernel
configuration file:

opti ons | NVARI ANT_SUPPORT
options | NVARI ANTS

For more debugging you should also include WITNESS suppdrith will alert you of mistakes in locking:

opti ons W TNESS_SUPPCORT
opti ons W TNESS

For debugging crash dumps, a kernel with debug symbols watke

makeopti ons DEBUG=- g

Writing a GEOM Class

With the usual way of installing the kernetdke i nst al | ker nel) the debug kernel will not be automatically
installed. It is calledker nel . debug and located irt usr/ obj / usr/ src/ sys/ KERNELNAVE/ . For convenience it
should be copied tbboot / ker nel / .

Another convenience is enabling the kernel debugger so gnexamine a kernel panic when it happens. For this,
enter the following lines in your kernel configuration file:

opti ons KDB
opti ons DDB
opti ons KDB_TRACE

For this to work you might need to set a sysctl (if it is not ondafault):
debug. debugger _on_pani c=1

Kernel panics will happen, so care should be taken with tesyftem cache. In particular, having softupdates might
mean the latest file version could be lost if a panic occureredt is committed to storage. Disabling softupdates
yields a great performance hit, and still does not guaragdés consistency. Mounting filesystem with the “sync”
option is needed for that. For a compromise, the softupdateise delays can be shortened. There are three sysctl's
that are useful for this (best to be set it ¢/ sysct | . conf):

kern. fil edel ay=5
kern. dirdel ay=4
kern. net adel ay=3

The numbers represent seconds.

For debugging kernel panics, kernel core dumps are requiade a kernel panic might make filesystems unusable,
this crash dump is first written to a raw partition. Usualhjstis the swap partition. This partition must be at least as
large as the physical RAM in the machine. On the next bootdthep is copied to a regular file. This happens after
filesystems are checked and mounted, and before swap isenabis is controlled with twoet ¢/ r c. conf

variables:

dunpdev="/dev/ ad0s4b"
dunpdi r="/usr/core

Thedunpdev variable specifies the swap partition ahdmpdi r tells the system where in the filesystem to relocate
the core dump on reboot.

Writing kernel core dumps is slow and takes a long time soif lgave lots of memory (>256M) and lots of panics it
could be frustrating to sit and wait while it is done (twice —rsfito write it to swap, then to relocate it to filesystem).
It is convenient then to limit the amount of RAM the systemlwse via & boot / | oader . conf tunable:

hw. physmens" 256 M'

If the panics are frequent and filesystems large (or you simplnot trust softupdates+background fsck) it is
advisable to turn background fsck off viat c/ r c. conf variable:

background_f sck="NO'

This way, the filesystems will always get checked when needete that with background fsck, a new panic could
happen while it is checking the disks. Again, the safest wayot to have many local filesystems by using another
computer as an NFS server.

Writing a GEOM Class

2.2 Starting the project

For the purpose of creating a new GEOM class, an empty sudtdigehas to be created under an arbitrary
user-accessible directory. You do not have to create thaulaatirectory undefusr/ src.

2.3 The Makefile

Itis good practice to createakef i | es for every nontrivial coding project, which of course inbhs kernel modules.
Creating thevakef i | e is simple thanks to an extensive set of helper routines geal/by the system. In short, here
is how a minimalvakef i | e looks for a kernel module:

SRCS=g_j ournal . c
KMOD=geom j our nal

.include <bsd. knod. nk>

ThisMakef i | e (with changed filenames) will do for any kernel module, ande20M class can reside in just one
kernel module. If more than one file is required, list it in BRCS variable, separated with whitespace from other
flenames.

3 On FreeBSD kernel programming

3.1 Memory allocation

See malloc(9). Basic memory allocation is only slightlyfeliént than its userland equivalent. Most notably,
mal | oc() andf r ee() accept additional parameters as is described in the nga pa

A “malloc type” must be declared in the declaration sectiba source file, like this:

static MALLOC DEFI NE(M_ GIOURNAL, "gjournal data", "CGEOM JOURNAL Data");

To use this macragys/ par am h, sys/ ker nel . h andsys/ mal | oc. h headers must be included.

There is another mechanism for allocating memory, the UMAiYErsal Memory Allocator). See uma(9) for details,
but it is a special type of allocator mainly used for speethycaltion of lists comprised of same-sized items (for
example, dynamic arrays of structs).

3.2 Lists and queues

See queue(3). There are a LOT of cases when a list of thingisnede maintained. Fortunately, this data structure
is implemented (in several ways) by C macros included in yiséesn. The most used list type is TAILQ because it is
the most flexible. It is also the one with largest memory regaents (its elements are doubly-linked) and also the
slowest (although the speed variation is on the order ofraé@PU instructions more, so it should not be taken
seriously).

If data retrieval speed is very important, see tree(3) astiing(9).

Writing a GEOM Class

3.3 BIOs

Structure bio is used for any and all Input/Output operaticoncerning GEOM. It basically contains information
about what device ('provider’) should satisfy the requesguest type, offset, length, pointer to a buffer, and a bunc
of “user-specific” flags and fields that can help implemeniowes hacks.

The important thing here is that bios are handled asynclugipor hat means that, in most parts of the code, there is
no analogue to userland’s read(2) and write(2) calls thatad@eturn until a request is done. Rather, a
developer-supplied function is called as a naotification mvthee request gets completed (or results in error).

The asynchronous programming model (also called “eveiment) is somewhat harder than the much more used
imperative one used in userland (at least it takes a whiletaiged to it). In some cases the helper routines
g_write_data()andg_read_dat a() can be used, butot always. In particular, they cannot be used when a mutex
is held; for example, the GEOM topology mutex or the intematex held during thest ar t () and. st op()

functions.

4 On GEOM programming

4.1 Ggate

If maximum performance is not needed, a much simpler way dfimgea data transformation is to implementit in
userland via the ggate (GEOM gate) facility. Unfortunatéigre is no easy way to convert between, or even share
code between the two approaches.

4.2 GEOM class

GEOM classes are transformations on the data. These traratfons can be combined in a tree-like fashion.
Instances of GEOM classes are calgeoms.

Each GEOM class has several “class methods” that get cahed there is no geom instance available (or they are
simply not bound to a single instance):

« .init is called when GEOM becomes aware of a GEOM class (e.g. wieeketimel module gets loaded.)
. .fini gets called when GEOM abandons the class (e.g. when the egéditd unloaded)

- .tast e is called next, once for each provider the system has aVailllapplicable, this function will usually
create and start a geom instance.

- . destroy_geomis called when the geom should be disbhanded

« . ctlconf is called when user requests reconfiguration of existingrgeo

Also defined are the GEOM event functions, which will get eapio the geom instance.
Field. geomin the g_class structure is a LIST of geoms instantiated fitoartlass.

These functions are called from the g_event kernel thread.

Writing a GEOM Class

4.3 Softc

The name “softc” is a legacy term for “driver private datahelname most probably comes from the archaic term
“software control block”. In GEOM, it is a structure (moreggise: pointer to a structure) that can be attached to a
geom instance to hold whatever data is private to the geotarios. Most GEOM classes have the following
members:

« struct g_provider =provider : The “provider”this geom instantiates
« uint16_t n_di sks : Number of consumer this geom consumes

« struct g_consuner =*xdi sks:Array ofstruct g_consuner . (Itis not possible to use just single
indirection because struct g_consumer* are created onehalbby GEOM).

The softc structure contains all the state of geom instdfery geom instance has its own softc.

4.4 Metadata

Format of metadata is more-or-less class-dependent, b8 itart with:

+ 16 byte buffer for null-terminated signature (usually theesss name)

+ uint32 version ID

It is assumed that geom classes know how to handle metadataavsion ID’s lower than theirs.
Metadata is located in the last sector of the provider (and thust fit in it).

(All this is implementation-dependent but all existing eadlorks like that, and it is supported by libraries.)

4.5 Labeling/creating a geom

The sequence of eventsiis:

- user calls geom(8) utility (or one of its hardlinked friejhds

- the utility figures out which geom class it is supposed to leadd searches fgeom CLASSNAME. so library
(usually in/ 1'i b/ geom).

- it dlopen(3)-s the library, extracts the definitions of coamd-line parameters and helper functions.

In the case of creating/labeling a new geom, this is what bagp

« geom(8) looks in the command-line argument for the commasddllyl abel), and calls a helper function.
- The helper function checks parameters and gathers metaduath it proceeds to write to all concerned providers.

- This “spoils” existing geoms (if any) and initializes a nesund of “tasting” of the providers. The intended geom
class recognizes the metadata and brings the geom up.

(The above sequence of events is implementation-depebdeall existing code works like that, and it is supported
by libraries.)

Writing a GEOM Class

4.6 Geom command structure

The helpegeom CLASSNAME. so library exports class_commands structure, which is aryadfratruct g_command
elements. Commands are of uniform format and look like:

verb [-options] geomane [other]

Common verbs are:

- label — to write metadata to devices so they can be recogaiztagting and brought up in geoms
- destroy — to destroy metadata, so the geoms get destroyed

Common options are:

. -v :beverbose
. -f :force

Many actions, such as labeling and destroying metadataegetiormed in userland. For this, struct g_command
provides fieldgc_f unc that can be set to a function (in the sanms) that will be called to process a verb. If
gc_func is NULL, the command will be passed to kernel module,¢ol r eq function of the geom class.

4.7 Geoms

Geoms are instances of GEOM classes. They have internaladstditc structure) and some functions with which
they respond to external events.

The event functions are:

- . access : calculates permissions (read/write/exclusive)

« . dunpconf :returns XML-formatted information about the geom

- . or phan : called when some underlying provider gets disconnected
- . spoil ed: called when some underlying provider gets written to

. .start :handles /O

These functions are called from thedown kernel thread and there can be no sleeping in this conted,dsfinition
of sleeping elsewhere) which limits what can be done quiti, &t forces the handling to be fast.

Of these, the most important function for doing actual ulsefurk is the. st ar t () function, which is called when a
BIO request arrives for a provider managed by a instanceahggass.

4.8 Geom threads
There are three kernel threads created and run by the GEQhwark:

- g_down : Handles requests coming from high-level entities (such aserland request) on the way to physical
devices

- g_up : Handles responses from device drivers to requests madigbgrHevel entities

Writing a GEOM Class

g_event : Handles all other cases: creation of geom instances, sicoasiting, “spoil” events, etc.

When a user process issues “read data X at offset Y of a filefegigthis is what happens:

The filesystem converts the request into a struct bio instand passes it to the GEOM subsystem. It knows what
geom instance should handle it because filesystems aredhtistetly on a geom instance.

The request ends up as a call to thse ar t () function made on the g_down thread and reaches the t@bdeom
instance.

This top-level geom instance (for example the partitioces)i determines that the request should be routed to a
lower-level instance (for example the disk driver). It makecopy of the bio request (bio requeAtsVAYS need

to be copied between instances, withcl one_bi o()!), modifies the data offset and target provider fields and
executes the copy witth i o_r equest ()

The disk driver gets the bio request also as a calktoar t () on theg_down thread. It talks to hardware, gets the
data back, and calts i o_del i ver () on the bio.

Now, the notification of bio completion “bubbles up” in theup thread. First the partition slicer getdone()
called in theg_up thread, it uses information stored in the bio to free the etbbio structure (with
g_destroy_bi o()) and callsg_i o_del i ver () on the original request.

The filesystem gets the data and transfers it to userland.

See g_bio(9) man page for information how the data is passekidnd forth in the bio structure (note in particular
thebi o_par ent andbi o_chi | dr en fields and how they are handled).

One important feature iITHERE CAN BE NO SLEEPING IN G_UP AND G_DOWN THREADS. This means that
none of the following things can be done in those threadsli@his of course not complete, but only informative):

Calls tons! eep() andt sl eep(), obviously.

Calls tog_wri t e_dat a() andg_r ead_dat a(), because these sleep between passing the data to cossumder
returning.

Waiting for 1/0.
Calls to malloc(9) andima_zal | oc() with M_ WAl TOK flag set

sx and other sleepable locks

This restriction is here to stop GEOM code clogging the I/Quest path, since sleeping is usually not time-bound
and there can be no guarantees on how long will it take (threreame other, more technical reasons also). It also
means that there is not much that can be done in those thfeagsample, almost any complex thing requires
memory allocation. Fortunately, there is a way out: crepsidditional kernel threads.

4.9 Kernel threads for use in geom code

Kernel threads are created with kthread_create(9) fumctind they are sort of similar to userland threads in
behaviour, only they cannot return to caller to signify taration, but must call kthread_exit(9).

In GEOM code, the usual use of threads is to offload processirgpguests frony_down thread (the st art ()
function). These threads look like “event handlers”: thayéa linked list of event associated with them (on which
events can be posted by various functions in various threadsnust be protected by a mutex), take the events from
the list one by one and process them in adigt ch() statement.

Writing a GEOM Class

The main benefit of using a thread to handle 1/0 requestsistttan sleep when needed. Now, this sounds good, but
should be carefully thought out. Sleeping is well and vemnwamient but can very effectively destroy performance of
the geom transformation. Extremely performance-semsifizsses probably should do all the work #t ar t ()

function call, taking great care to handle out-of-memorg aimilar errors.

The other benefit of having a event-handler thread like thtd serialize all the requests and responses coming from
different geom threads into one thread. This is also veryeoient but can be slow. In most cases, handling of
. done() requests can be left to thye up thread.

Mutexes in FreeBSD kernel (see mutex(9)) have one distinétom their more common userland cousins — the
code cannot sleep while holding a mutex). If the code needieap a lot, sx(9) locks may be more appropriate. On
the other hand, if you do almost everything in a single thygad may get away with no mutexes at all.

	Table of Contents
	1 Introduction
	1.1 Documentation
	2 Preliminaries
	2.1 Modifying a system for development
	2.2 Starting the project
	2.3 The Makefile

	3 On FreeBSD kernel programming
	3.1 Memory allocation
	3.2 Lists and queues
	3.3 BIOs

	4 On GEOM programming
	4.1 Ggate
	4.2 GEOM class
	4.3 Softc
	4.4 Metadata
	4.5 Labeling/creating a geom
	4.6 Geom command structure
	4.7 Geoms
	4.8 Geom threads
	4.9 Kernel threads for use in geom code

