Serial and UART Tutorial

Frank Durda
uhclem@FreeBSD.org

$FreeBSD: head/en_US.ISO8859-1/articles/serial-uart/ article.xml 41645 2013-05-17
18:49:527 gabor $

$FreeBSD: head/en_US.ISO8859-1/articles/serial-uart/ article.xml 41645 2013-05-17
18:49:527 gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.
Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windo ws Media and Windows NT are either

registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This article talks about using serial hardware with FreeBSD

Table of Contents

1 The UART: What it iS @nd hOW it WOTKSccoiiiiiiiiiiiiice ettt ettt snne e 1
A @%e 10 1o 18 1T To It TR I T o 1Y PSSR 13
A @0] 0o 18T aTo Rt g [T ol VAo | 1 1/= T SRS 17
4 CoNfIQUIING ThE ST AFIVET ...ttt e et e e ettt e ee e e e e e st b beeeeee s s nbbbeeeeaeaeeeaannnes 18

1 The UART: What it is and how it works
Copyright © 1996 Frank Durda IV ghcl em@r eeBSD. or g>, All Rights Reserved. 13 January 1996.

The Universal Asynchronous Receiver/Transmitter (UARINteoller is the key component of the serial
communications subsystem of a computer. The UART takesftdata and transmits the individual bits in a
sequential fashion. At the destination, a second UART sexables the bits into complete bytes.

Serial transmission is commonly used with modems and formeworked communication between computers,
terminals and other devices.

There are two primary forms of serial transmission: Synobts and Asynchronous. Depending on the modes that
are supported by the hardware, the name of the communicailmsystem will usually includeAif it supports
Asynchronous communications, an& & it supports Synchronous communications. Both forms ascdbed

below.

Serial and UART Tutorial

Some common acronyms are:
UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous-Asynchronous Receiver/iratier

1.1 Synchronous Serial Transmission

Synchronous serial transmission requires that the sendieregeiver share a clock with one another, or that the
sender provide a strobe or other timing signal so that theivecknows when to “read” the next bit of the data. In
most forms of serial Synchronous communication, if thergislata available at a given instant to transmit, a fill
character must be sent instead so that data is always baimgniitted. Synchronous communication is usually more
efficient because only data bits are transmitted betweeatesemd receiver, and synchronous communication can be
more costly if extra wiring and circuits are required to gharclock signal between the sender and receiver.

A form of Synchronous transmission is used with printersfaet disk devices in that the data is sent on one set of
wires while a clock or strobe is sent on a different wire. gnis and fixed disk devices are not normally serial
devices because most fixed disk interface standards sendiesveord of data for each clock or strobe signal by
using a separate wire for each bit of the word. In the PC inglustese are known as Parallel devices.

The standard serial communications hardware in the PC duesipport Synchronous operations. This mode is
described here for comparison purposes only.

1.2 Asynchronous Serial Transmission

Asynchronous transmission allows data to be transmittésowt the sender having to send a clock signal to the
receiver. Instead, the sender and receiver must agree orgtparameters in advance and special bits are added to
each word which are used to synchronize the sending and/iregeinits.

When a word is given to the UART for Asynchronous transmissj@ bit called the "Start Bit" is added to the
beginning of each word that is to be transmitted. The StarisRised to alert the receiver that a word of data is about
to be sent, and to force the clock in the receiver into synalzedgion with the clock in the transmitter. These two
clocks must be accurate enough to not have the frequeneygnifiore than 10% during the transmission of the
remaining bits in the word. (This requirement was set in tigsf mechanical teleprinters and is easily met by
modern electronic equipment.)

After the Start Bit, the individual bits of the word of dataeaent, with the Least Significant Bit (LSB) being sent
first. Each bit in the transmission is transmitted for exattte same amount of time as all of the other bits, and the
receiver “looks” at the wire at approximately halfway thgbuthe period assigned to each bit to determine if the bit is
al ora0. For example, if it takes two seconds to send each bit, threweicwill examine the signal to determine if it
is al or a0 after one second has passed, then it will wait two secondshemdexamine the value of the next bit, and
so on.

The sender does not know when the receiver has “looked” atahe of the bit. The sender only knows when the
clock says to begin transmitting the next bit of the word.

When the entire data word has been sent, the transmitter dubg Barity Bit that the transmitter generates. The
Parity Bit may be used by the receiver to perform simple ezhacking. Then at least one Stop Bit is sent by the
transmitter.

When the receiver has received all of the bits in the data wonday check for the Parity Bits (both sender and
receiver must agree on whether a Parity Bit is to be used)trerdthe receiver looks for a Stop Bit. If the Stop Bit

Serial and UART Tutorial

does not appear when it is supposed to, the UART consideestire word to be garbled and will report a Framing
Error to the host processor when the data word is read. Thad oguse of a Framing Error is that the sender and
receiver clocks were not running at the same speed, or taaiginal was interrupted.

Regardless of whether the data was received correctly othUART automatically discards the Start, Parity and
Stop bits. If the sender and receiver are configured iddhtjtaese bits are not passed to the host.

If another word is ready for transmission, the Start Bit foe hew word can be sent as soon as the Stop Bit for the
previous word has been sent.

Because asynchronous data is “self synchronizing”, iféli@no data to transmit, the transmission line can be idle.

1.3 Other UART Functions

In addition to the basic job of converting data from paraleserial for transmission and from serial to parallel on
reception, a UART will usually provide additional circufte signals that can be used to indicate the state of the
transmission media, and to regulate the flow of data in thetdhat the remote device is not prepared to accept more
data. For example, when the device connected to the UART isdem, the modem may report the presence of a
carrier on the phone line while the computer may be able touiosthe modem to reset itself or to not take calls by
raising or lowering one more of these extra signals. Thetfanof each of these additional signals is defined in the
EIA RS232-C standard.

1.4 The RS232-C and V.24 Standards

In most computer systems, the UART is connected to circthiay generates signals that comply with the EIA
RS232-C specification. There is also a CCITT standard nanittkiat mirrors the specifications included in
RS232-C.

1.4.1 RS232-C Bit Assignments (Marks and Spaces)

In RS232-C, a value df is called avar k and a value o0 is called aSpace. When a communication line is idle, the
line is said to be “Marking”, or transmitting continuotialues.

The Start bit always has a value®fa Space). The Stop Bit always has a valug ¢& Mark). This means that there
will always be a Mark (1) to Space (0) transition on the lin¢ghatstart of every word, even when multiple word are
transmitted back to back. This guarantees that sender anivee can resynchronize their clocks regardless of the
content of the data bits that are being transmitted.

The idle time between Stop and Start bits does not have to bgawt multiple (including zero) of the bit rate of the
communication link, but most UARTSs are designed this waysforplicity.

In RS232-C, the "Marking" signal (8) is represented by a voltage between -2 VDC and -12 VDC, aigpacing"
signal (a0) is represented by a voltage between 0 and +12 VDC. The ti#tesis supposed to send +12 VDC or

-12 VDC, and the receiver is supposed to allow for some veltags in long cables. Some transmitters in low power
devices (like portable computers) sometimes use only +5 @bB¢-5 VDC, but these values are still acceptable to a
RS232-C receiver, provided that the cable lengths are.short

Serial and UART Tutorial

1.4.2 RS232-C Break Signal

RS232-C also specifies a signal calleBr@ak, which is caused by sending continuous Spacing values @b &t
Stop bits). When there is no electricity present on the diatait, the line is considered to be sendiBigeak.

TheBr eak signal must be of a duration longer than the time it takes ol secomplete byte plus Start, Stop and
Parity bits. Most UARTSs can distinguish between a FramingiEand a Break, but if the UART cannot do this, the
Framing Error detection can be used to identify Breaks.

In the days of teleprinters, when numerous printers aron@adduntry were wired in series (such as news services),
any unit could cause Br eak by temporarily opening the entire circuit so that no curfeowed. This was used to
allow a location with urgent news to interrupt some otheatamn that was currently sending information.

In modern systems there are two types of Break signals. Btkak is longer than 1.6 seconds, it is considered a
"Modem Break", and some modems can be programmed to temrtimatonversation and go on-hook or enter the
modems’ command mode when the modem detects this signiaé Brieak is smaller than 1.6 seconds, it signifies a
Data Break and it is up to the remote computer to respond sastghal. Sometimes this form of Break is used as an
Attention or Interrupt signal and sometimes is acceptedsamatitute for the ASCIl CONTROL-C character.

Marks and Spaces are also equivalent to “Holes” and “No Habesaper tape systems.

Note: Breaks cannot be generated from paper tape or from any other byte value, since bytes are always sent
with Start and Stop bit. The UART is usually capable of generating the continuous Spacing signal in response to
a special command from the host processor.

1.4.3 RS232-C DTE and DCE Devices

The RS232-C specification defines two types of equipmenDtta Terminal Equipment (DTE) and the Data
Carrier Equipment (DCE). Usually, the DTE device is the tieah(or computer), and the DCE is a modem. Across
the phone line at the other end of a conversation, the rexpimodem is also a DCE device and the computer that is
connected to that modem is a DTE device. The DCE device regsignals on the pins that the DTE device
transmits on, and vice versa.

When two devices that are both DTE or both DCE must be condéatgether without a modem or a similar media
translator between them, a NULL modem must be used. The NUadlem electrically re-arranges the cabling so
that the transmitter output is connected to the receivertiop the other device, and vice versa. Similar translations
are performed on all of the control signals so that each éewilt see what it thinks are DCE (or DTE) signals from
the other device.

The number of signals generated by the DTE and DCE devicesoasymmetrical. The DTE device generates
fewer signals for the DCE device than the DTE device recdivas the DCE.

1.4.4 RS232-C Pin Assignments

The EIA RS232-C specification (and the ITU equivalent, V&dl)s for a twenty-five pin connector (usually a
DB25) and defines the purpose of most of the pins in that cdonec

In the IBM Personal Computer and similar systems, a subsR8@132-C signals are provided via nine pin
connectors (DB9). The signals that are not included on thed*@ector deal mainly with synchronous operation,
and this transmission mode is not supported by the UART Bistt $elected for use in the IBM PC.

Serial and UART Tutorial

Depending on the computer manufacturer, a DB25, a DB9, dr types of connector may be used for RS232-C
communications. (The IBM PC also uses a DB25 connector #p#rallel printer interface which causes some
confusion.)

Below is a table of the RS232-C signal assignments in the CB25DB9 connectors.

DB25 DB9 IBM PC EIA Circuit CCITT Common Signal Description
RS232-C Pin Pin Symbol Circuit Name Source
Symbol

1 - AA 101 PG/FG - Frame/Protective
Ground

2 3 BA 103 TD DTE Transmit Data

3 2 BB 104 RD DCE Receive Data

4 7 CA 105 RTS DTE Request to
Send

5 8 CB 106 CTS DCE Clear to Send

6 6 CcC 107 DSR DCE Data Set
Ready

7 5 AV 102 SG/GND - Signal Ground

8 1 CF 109 DCD/CD DCE Data Carrier
Detect

9 - - - - - Reserved for
Test

10 - - - - - Reserved for
Test

11 - - - - - Reserved for
Test

12 - Cl 122 SRLSD DCE Sec. Recv.
Line Signal
Detector

13 - SCB 121 SCTS DCE Secondary
Clear to Send

14 - SBA 118 STD DTE Secondary
Transmit Data

15 - DB 114 TSET DCE Trans. Sig.
Element
Timing

16 - SBB 119 SRD DCE Secondary
Received Data

17 - DD 115 RSET DCE Receiver
Signal
Element
Timing

18 - - 141 LOOP DTE Local
Loopback

Serial and UART Tutorial

DB25 DB9 IBM PC EIA Circuit CCITT Common Signal Description
RS232-C Pin Pin Symbol Circuit Name Source
Symbol

19 - SCA 120 SRS DTE Secondary
Request to
Send

20 4 CD 108.2 DTR DTE Data Terminal
Ready

21 - - - RDL DTE Remote
Digital
Loopback

22 9 CE 125 RI DCE Ring Indicator

23 - CH 111 DSRS DTE Data Signal
Rate Selector

24 - DA 113 TSET DTE Trans. Sig.
Element
Timing

25 - - 142 - DCE Test Mode

1.5 Bits, Baud and Symbols

Baud is a measurement of transmission speed in asynchroaousunication. Because of advances in modem
communication technology, this term is frequently misustén describing the data rates in newer devices.

Traditionally, a Baud Rate represents the number of bitisateaactually being sent over the media, not the amount
of data that is actually moved from one DTE device to the offilee Baud count includes the overhead bits Start,
Stop and Parity that are generated by the sending UART anovexirby the receiving UART. This means that
seven-bit words of data actually take 10 bits to be compjétehsmitted. Therefore, a modem capable of moving
300 bits per second from one place to another can normaljyranlve 30 7-bit words if Parity is used and one Start
and Stop bit are present.

If 8-bit data words are used and Parity bits are also usediateerate falls to 27.27 words per second, because it now
takes 11 bits to send the eight-bit words, and the modenostiiyi sends 300 bits per second.

The formula for converting bytes per second into a baud nadevice versa was simple until error-correcting
modems came along. These modems receive the serial strdats fvtbm the UART in the host computer (even

when internal modems are used the data is still frequentiglezd) and converts the bits back into bytes. These
bytes are then combined into packets and sent over the pimenesing a Synchronous transmission method. This
means that the Stop, Start, and Parity bits added by the UARTeiDTE (the computer) were removed by the
modem before transmission by the sending modem. When tlyése dre received by the remote modem, the remote
modem adds Start, Stop and Parity bits to the words, conents to a serial format and then sends them to the
receiving UART in the remote computer, who then strips ttetSStop and Parity bits.

The reason all these extra conversions are done is so thatdhraodems can perform error correction, which means
that the receiving modem is able to ask the sending modensémdea block of data that was not received with the
correct checksum. This checking is handled by the modendsthenDTE devices are usually unaware that the
process is occurring.

Serial and UART Tutorial

By striping the Start, Stop and Parity bits, the additiontd bf data that the two modems must share between
themselves to perform error-correction are mostly corezkibm the effective transmission rate seen by the sending
and receiving DTE equipment. For example, if a modem sendg-tat words to another modem without including
the Start, Stop and Parity bits, the sending modem will be &bhdd 30 bits of its own information that the receiving
modem can use to do error-correction without impacting taresmission speed of the real data.

The use of the term Baud is further confused by modems th&impecompression. A single 8-bit word passed over
the telephone line might represent a dozen words that wenertritted to the sending modem. The receiving modem
will expand the data back to its original content and passdhta to the receiving DTE.

Modern modems also include buffers that allow the rate thathove across the phone line (DCE to DCE) to be a
different speed than the speed that the bits move betweddtBeand DCE on both ends of the conversation.
Normally the speed between the DTE and DCE is higher than € ©© DCE speed because of the use of
compression by the modems.

Because the number of bits needed to describe a byte vanigdydhe trip between the two machines plus the
differing bits-per-seconds speeds that are used preseheddTE-DCE and DCE-DCE links, the usage of the term
Baud to describe the overall communication speed causétepns and can misrepresent the true transmission
speed. So Bits Per Second (bps) is the correct term to usedtoiloke the transmission rate seen at the DCE to DCE
interface and Baud or Bits Per Second are acceptable teras®twhen a connection is made between two systems
with a wired connection, or if a modem is in use that is not @enfing error-correction or compression.

Modern high speed modems (2400, 9600, 14,400, and 19,2Didleslity still operate at or below 2400 baud, or
more accurately, 2400 Symbols per second. High speed moceabk to encode more bits of data into each
Symbol using a technique called Constellation Stuffing,clvlis why the effective bits per second rate of the modem
is higher, but the modem continues to operate within thetdichaudio bandwidth that the telephone system provides.
Modems operating at 28,800 and higher speeds have varighilb@ rates, but the technique is the same.

1.6 The IBM Personal Computer UART

Starting with the original IBM Personal Computer, IBM setgtthe National Semiconductor INS8250 UART for
use in the IBM PC Parallel/Serial Adapter. Subsequent geiogis of compatible computers from IBM and other
vendors continued to use the INS8250 or improved versiottssoNational Semiconductor UART family.

1.6.1 National Semiconductor UART Family Tree

There have been several versions and subsequent gengiadtibe INS8250 UART. Each major version is described
below.

1 NS8250 -> | NS8250B
\
\
\-> I NS8250A -> | NS82C50A
\
\
\-> NS16450 -> NS16C450
\
\
\-> NS16550 -> NS16550A -> PC16550D

Serial and UART Tutorial

INS8250

This part was used in the original IBM PC and IBM PC/XT. Thegaral name for this part was the INS8250
ACE (Asynchronous Communications Element) and it is madmfiNMOS technology.

The 8250 uses eight I/0 ports and has a one-byte send andlaytmeeceive buffer. This original UART has
several race conditions and other flaws. The original IBM 8li@cludes code to work around these flaws, but
this made the BIOS dependent on the flaws being present, segubnt parts like the 8250A, 16450 or 16550
could not be used in the original IBM PC or IBM PC/XT.

INS8250-B

This is the slower speed of the INS8250 made from NMOS teduyyolt contains the same problems as the
original INS8250.

INS8250A

An improved version of the INS8250 using XMOS technologyhwiarious functional flaws corrected. The
INS8250A was used initially in PC clone computers by venddre used “clean” BIOS designs. Because of
the corrections in the chip, this part could not be used wBh@S compatible with the INS8250 or INS8250B.

INS82C50A

This is a CMOS version (low power consumption) of the INS825@d has similar functional characteristics.

NS16450

Same as NS8250A with improvements so it can be used withrf@stel bus designs. IBM used this partin the
IBM AT and updated the IBM BIOS to no longer rely on the bugshia tNS8250.

NS16C450
This is a CMOS version (low power consumption) of the NS16450

NS16550

Same as NS16450 with a 16-byte send and receive buffer bbtffer design was flawed and could not be
reliably be used.

NS16550A

Same as NS16550 with the buffer flaws corrected. The 1655@Ats1successors have become the most
popular UART design in the PC industry, mainly due to itsiptb reliably handle higher data rates on
operating systems with sluggish interrupt response times.

NS16C552
This component consists of two NS16C550A CMOS UARTSs in alsipgckage.

PC16550D

Same as NS16550A with subtle flaws corrected. This is raviBiof the 16550 family and is the latest design
available from National Semiconductor.

Serial and UART Tutorial

1.6.2 The NS16550AF and the PC16550D are the same thing

National reorganized their part numbering system a fews/ago, and the NS16550AFN no longer exists by that
name. (If you have a NS16550AFN, look at the date code on thieyplaich is a four digit number that usually starts
with a nine. The first two digits of the number are the year, thiedast two digits are the week in that year when the
part was packaged. If you have a NS16550AFN, it is probabénayfears old.)

The new numbers are like PC16550DV, with minor differencabe suffix letters depending on the package
material and its shape. (A description of the numberingssgstan be found below.)

Itis important to understand that in some stores, you mayi&yus) for a NS16550AFN made in 1990 and in the
next bin are the new PC16550DN parts with minor fixes thatdveti has made since the AFN part was in
production, the PC16550DN was probably made in the past sixtlns and it costs half (as low as $5(US) in
volume) as much as the NS16550AFN because they are readilglale.

As the supply of NS16550AFN chips continues to shrink, thegowill probably continue to increase until more
people discover and accept that the PC16550DN really hasathe function as the old part number.

1.6.3 National Semiconductor Part Numbering System
The older N&nnnnr gp part numbers are now of the format R@innr gp.
Ther is the revision field. The current revision of the 16550 froatiNnal Semiconductor B.

Thep is the package-type field. The types are:

" QFP (quad flat pack) L lead type

"N" DIP (dual inline package) through hole
straight lead type

"V LPCC (lead plastic chip carrier) J lead type

Theg is the product grade field. If dnprecedes the package-type letter, it indicates an “indlisgrade part, which
has higher specs than a standard part but not as high asriyiffifeecification (Milspec) component. This is an
optional field.

So what we used to call a NS16550AFN (DIP Package) is nowdalRC16550DN or PC16550DIN.

1.7 Other Vendors and Similar UARTS

Over the years, the 8250, 8250A, 16450 and 16550 have begrséd or copied by other chip vendors. In the case of
the 8250, 8250A and 16450, the exact circuit (the “megaleis licensed to many vendors, including Western
Digital and Intel. Other vendors reverse-engineered thequgproduced emulations that had similar behavior.

In internal modems, the modem designer will frequently exteithe 8250A/16450 with the modem microprocessor,
and the emulated UART will frequently have a hidden buffansisting of several hundred bytes. Because of the size
of the buffer, these emulations can be as reliable as a 165b0wir ability to handle high speed data. However,
most operating systems will still report that the UART isyal8250A or 16450, and may not make effective use of
the extra buffering present in the emulated UART unlessiapddvers are used.

Some modem makers are driven by market forces to abandorngmdleat has hundreds of bytes of buffer and
instead use a 16550A UART so that the product will comparerthly in market comparisons even though the

Serial and UART Tutorial

effective performance may be lowered by this action.

A common misconception is that all parts with “16550A” weitton them are identical in performance. There are
differences, and in some cases, outright flaws in most o&th6550A clones.

When the NS16550 was developed, the National Semicondolstained several patents on the design and they also
limited licensing, making it harder for other vendors toyade a chip with similar features. Because of the patents,
reverse-engineered designs and emulations had to avaialgimg the claims covered by the patents. Subsequently,
these copies almost never perform exactly the same as the@388A or PC16550D, which are the parts most
computer and modem makers want to buy but are sometimeslungvtd pay the price required to get the genuine
part.

Some of the differences in the clone 16550A parts are unitapgmwhile others can prevent the device from being
used at all with a given operating system or driver. Thedemifices may show up when using other drivers, or when
particular combinations of events occur that were not vesiied or considered in the Windows® driver. This is
because most modem vendors and 16550-clone makers usedtwesddt drivers from Windows for Workgroups

3.11 and the Microsoft® MS-DOS® utility as the primary tefstscompatibility with the NS16550A. This
over-simplistic criteria means that if a different opemgtsystem is used, problems could appear due to subtle
differences between the clones and genuine components.

National Semiconductor has made available a program n&@MTEST that performs compatibility tests
independent of any OS drivers. It should be rememberedhbgiurpose of this type of program is to demonstrate
the flaws in the products of the competition, so the progralhreport major as well as extremely subtle differences
in behavior in the part being tested.

In a series of tests performed by the author of this docunmeb®94, components made by National Semiconductor,
TI, StarTech, and CMD as well as megacells and emulationgdddd in internal modems were tested with
COMTEST. A difference count for some of these componenistisd below. Because these tests were performed in
1994, they may not reflect the current performance of thengiveduct from a vendor.

It should be noted that COMTEST normally aborts when an esteesiumber or certain types of problems have
been detected. As part of this testing, COMTEST was modifietiat it would not abort no matter how many
differences were encountered.

Vendor Part Number Errors (aka "differences"
reported)

National (PC16550DV) 0

National (NS16550AFN) 0

National (NS16C552V) 0

TI (TL16550AFN) 3

CMD (16C550PE) 19

StarTech (ST16C550) 23

Rockwell Reference modem with internal 117

16550 or an emulation
(RC144DPi/C3000-25)

Sierra Modem with an internal 16550 91
(SC11951/SC11351)

Note: To date, the author of this document has not found any non-National parts that report zero differences
using the COMTEST program. It should also be noted that National has had five versions of the 16550 over the

10

Serial and UART Tutorial

years and the newest parts behave a bit differently than the classic NS16550AFN that is considered the
benchmark for functionality. COMTEST appears to turn a blind eye to the differences within the National product
line and reports no errors on the National parts (except for the original 16550) even when there are official erratas
that describe bugs in the A, B and C revisions of the parts, so this bias in COMTEST must be taken into account.

It is important to understand that a simple count of diffeenfrom COMTEST does not reveal a lot about what
differences are important and which are not. For examplayhelf of the differences reported in the two modems
listed above that have internal UARTs were caused by theedldkRTs not supporting five- and six-bit character
modes. The real 16550, 16450, and 8250 UARTSs all support tmesles and COMTEST checks the functionality of
these modes so over fifty differences are reported. Howalragst no modern modem supports five- or six-bit
characters, particularly those with error-correction aochpression capabilities. This means that the differences
related to five- and six-bit character modes can be discdunte

Many of the differences COMTEST reports have to do with tignim many of the clone designs, when the host
reads from one port, the status bits in some other port mayputte in the same amount of time (some faster, some
slower) as aeal NS16550AFN and COMTEST looks for these differences. Thiamsdhat the number of

differences can be misleading in that one device may onlg bae or two differences but they are extremely serious,
and some other device that updates the status registezs dasiower than the reference part (that would probably
never affect the operation of a properly written driver) Icbwave dozens of differences reported.

COMTEST can be used as a screening tool to alert the adnaittsto the presence of potentially incompatible
components that might cause problems or have to be handiedecial case.

If you run COMTEST on a 16550 that is in a modem or a modem isla¢ta to the serial port, you need to first issue
a ATEO&W command to the modem so that the modem will not eclyawédithe test characters. If you forget to do
this, COMTEST will report at least this one difference:

Error (6)...Tineout interrupt failed: IR =c¢l1 LSR = 61

1.8 8250/16450/16550 Registers

The 8250/16450/16550 UART occupies eight contiguous I/@ gadresses. In the IBM PC, there are two defined
locations for these eight ports and they are known collebtimsCoML andCOVR. The makers of PC-clones and
add-on cards have created two additional areas knovades andCow4, but these extra COM ports conflict with
other hardware on some systems. The most common conflictisagieo adapters that provide IBM 8514
emulation.

COML is located from 0x3f8 to Ox3ff and normally uses IRQCOM is located from 0x2f8 to 0x2ff and normally
uses IRQ 3COMB is located from 0x3e8 to 0x3ef and has no standardized R is located from 0x2e8 to 0x2ef
and has no standardized IRQ.

A description of the 1/O ports of the 8250/16450/16550 UARpiovided below.

I/O Port Access Allowed Description

+0x00 write (DLAB==0) Transmit Holding Register (THR).
Information written to this port are
treated as data words and will be
transmitted by the UART.

11

1/0 Port
+0x00

+0x00

+0x01

+0x01
+0x02
+0x02
+0x03
+0x04
+0x05
+0x06
+0x07

1.9 Beyond the 16550A UART

Access Allowed
read (DLAB==0)

write/read (DLAB==1)

write/read (DLAB==1)

write/read (DLAB==0)
write

read

write/read

write/read

write/read

write/read

write/read

Serial and UART Tutorial

Description

Receive Buffer Register (RBR).
Any data words received by the
UART form the serial link are
accessed by the host by reading this
port.

Divisor Latch LSB (DLL)
This value will be divided from the
master input clock (in the IBM PC,
the master clock is 1.8432MHz) and
the resulting clock will determine
the baud rate of the UART. This
register holds bits O thru 7 of the
divisor.

Divisor Latch MSB (DLH)
This value will be divided from the
master input clock (in the IBM PC,
the master clock is 1.8432MHz) and
the resulting clock will determine
the baud rate of the UART. This
register holds bits 8 thru 15 of the
divisor.

ENTRYTBL not supported.
ENTRYTBL not supported.
ENTRYTBL not supported.
ENTRYTBL not supported.
ENTRYTBL not supported.
ENTRYTBL not supported.
ENTRYTBL not supported.

Scratch Register (SCR). This register
performs no function in the UART.

Any value can be written by the host
to this location and read by the host

later on.

Although National Semiconductor has not offered any congptsmicompatible with the 16550 that provide
additional features, various other vendors have. Somesstthomponents are described below. It should be
understood that to effectively utilize these improvemeditizers may have to be provided by the chip vendor since
most of the popular operating systems do not support feahagond those provided by the 16550.

12

Serial and UART Tutorial

ST16650
By default this part is similar to the NS16550A, but an exexh82-byte send and receive buffer can be
optionally enabled. Made by StarTech.

TIL16660
By default this part behaves similar to the NS16550A, butdareled 64-byte send and receive buffer can be
optionally enabled. Made by Texas Instruments.

Hayes ESP

This proprietary plug-in card contains a 2048-byte sendrandive buffer, and supports data rates to
230.4Kbit/sec. Made by Hayes.

In addition to these “dumb” UARTS, many vendors produceliigtent serial communication boards. This type of
design usually provides a microprocessor that interfacssgveral UARTS, processes and buffers the data, and
then alerts the main PC processor when necessary. BecaudARTs are not directly accessed by the PC processor
in this type of communication system, it is not necessarytfervendor to use UARTSs that are compatible with the
8250, 16450, or the 16550 UART. This leaves the designettdreemponents that may have better performance
characteristics.

2 Configuring the si o driver

Thesi o driver provides support for NS8250-, NS16450-, NS16550M886550A-based EIA RS-232C (CCITT
V.24) communications interfaces. Several multiport canmgssupported as well. See the sio(4) manual page for
detailed technical documentation.

2.1 Digi International (DigiBoard) PC/8
Contributed by Andrew Websteawebst er @ubni x. net >. 26 August 1995.

Here is a config snippet from a machine with a Digi Internald®C/8 with 16550. It has 8 modems connected to
these 8 lines, and they work just great. Do not forget toggtd ons COM MULTI PORT or it will not work very well!

devi ce si 04 at isa? port 0x100 flags Oxb05
devi ce si 05 at isa? port 0x108 flags Oxh05
devi ce si 06 at isa? port 0x110 flags Oxh05
devi ce si o7 at isa? port 0x118 flags Oxb05
devi ce si 08 at isa? port 0x120 flags Oxbh05
devi ce si 09 at isa? port 0x128 flags Oxb05
devi ce siol0 at isa? port 0x130 flags Oxbh05
devi ce sioll at isa? port 0x138 flags Oxb05 irq 9

The trick in setting this up is that the MSB of the flags repnésiee last SIO port, in this case 11 so flags are 0xb05.

2.2 Boca 16
Contributed by Don Whitesidewi t esi de@cm or g>. 26 August 1995.

13

Serial and UART Tutorial

The procedures to make a Boca 16 port board with FreeBSD ety gtraightforward, but you will need a couple
things to make it work:

1. You either need the kernel sources installed so you cammgite the necessary options or you will need
someone else to compile it for you. The 2.0.5 default kernekdot come with multiport support enabled and
you will need to add a device entry for each port anyways.

2. Two, you will need to know the interrupt and IO setting fouy Boca Board so you can set these options
properly in the kernel.

One important note — the actual UART chips for the Boca 16matheé connector box, not on the internal board
itself. So if you have it unplugged, probes of those port$fail. | have never tested booting with the box unplugged
and plugging it back in, and | suggest you do not either.

If you do not already have a custom kernel configuration fitaiperefer to Kernel Configuration
(http:/lwww.FreeBSD.org/doc/en_US.1ISO8859-1/booérttbook/kernelconfig.html) chapter of the FreeBSD
Handbook for general procedures. The following are theipsdor the Boca 16 board and assume you are using
the kernel name MYKERNEL and editing with vi.

1. Addtheline

opti ons COM _MULTI PORT
to the config file.

2. Where the currentevi ce si on lines are, you will need to add 16 more devices. The follovargmple is for
a Boca Board with an interrupt of 3, and a base |0 address T0®hlO address for Each portis +8
hexadecimal from the previous port, thus the 100h, 108hh118ddresses.

device siol at isa? port 0x100 flags 0x1005
device sio02 at isa? port 0x108 flags 0x1005
devi ce sio3 at isa? port 0x110 flags 0x1005
device sio4 at isa? port 0x118 flags 0x1005

devi ce siol5 at isa? port 0x170 flags 0x1005
devi ce siol6 at isa? port 0x178 flags 0x1005 irq 3

The flags entrynustbe changed from this example unless you are using the exaetsia assignments. Flags
are set according to 0&Y whereM indicates the minor number of the master port (the last poe Boca 16)
andYY indicates if FIFO is enabled or disabled(enabled), IRQislyds used(yes) and if there is an AST/4
compatible IRQ control register(no). In this example,

flags

0x1005

indicates that the master port is sio16. If | added anothardand assigned sio17 through sio28, the flags for all
16 ports orthatboard would be 0x1C05, where 1C indicates the minor numb#reofnaster port. Do not
change the 05 setting.

3. Save and complete the kernel configuration, recompialirand reboot. Presuming you have successfully
installed the recompiled kernel and have it set to the coaddress and IRQ, your boot message should indicate
the successful probe of the Boca ports as follows: (obvjoiha sio numbers, 10 and IRQ could be different)
siol at 0x100-0x107 flags 0x1005 on isa
siol: type 16550A (multiport)

si 02 at 0x108-0x10f flags 0x1005 on isa
si02: type 16550A (nmultiport)

14

Serial and UART Tutorial

si 03 at 0x110-0x117 flags 0x1005 on isa
si 03: type 16550A (multiport)

si 04 at 0x118-0x11f flags 0x1005 on isa
sio04: type 16550A (multiport)

si o5 at 0x120-0x127 flags 0x1005 on isa
si 05: type 16550A (multiport)

si 06 at 0x128-0x12f flags 0x1005 on isa
si 06: type 16550A (multiport)

si 07 at 0x130-0x137 flags 0x1005 on isa
sio7: type 16550A (multiport)

si 08 at 0x138-0x13f flags 0x1005 on isa
si08: type 16550A (nmultiport)

si 09 at 0x140-0x147 flags 0x1005 on isa
si 09: type 16550A (nmultiport)

si 010 at 0x148-0x14f flags 0x1005 on isa
si 010: type 16550A (multiport)

sioll at 0x150-0x157 flags 0x1005 on isa
sioll: type 16550A (multiport)

sio0l2 at 0x158-0x15f flags 0x1005 on isa
si0l2: type 16550A (multiport)

sio0l3 at 0x160-0x167 flags 0x1005 on isa
si0l3: type 16550A (multiport)

sio0ld at 0x168-0x16f flags 0x1005 on isa
siol4: type 16550A (multiport)

si 015 at 0x170-0x177 flags 0x1005 on isa
si0l5: type 16550A (multiport)

si0l6 at 0x178-0x17f irg 3 flags 0x1005 on isa
si0l6: type 16550A (multiport master)

If the messages go by too fast to see,

dmesg | nore
will show you the boot messages.

Next, appropriate entries irdev for the devices must be made using thiev/ MAKEDEV script. This step can
be omitted if you are running FreeBSD 5.X with a kernel that Havfs(5) support compiled in.

If you do need to create thalev entries, run the following asoot :

cd /dev

./ NMAKEDEV ttyl

./ MAKEDEV cual
(everything in between)
./ MAKEDEV ttyg

./ MAKEDEV cuag

If you do not want or need call-out devices for some reason,cgm dispense with making th@a* devices.

If you want a quick and sloppy way to make sure the devicesvarking, you can simply plug a modem into
each port and (as root)

echo at > ttydx
for each device you have made. Yshouldsee the RX lights flash for each working port.

15

Serial and UART Tutorial

2.3 Support for Cheap Multi-UART Cards
Contributed by Helge Oldachiro@ep. hanbur g. con>, September 1999

Ever wondered about FreeBSD support for your 20$ multi-B@ avith two (or more) COM ports, sharing IRQs?
Here is how:

Usually the only option to support these kind of boards isge a distinct IRQ for each port. For example, if your
CPU board has an on-boapdMi port (akasi 00—I/O address 0x3F8 and IRQ 4) and you have an extension board
with two UARTS, you will commonly need to configure them@®we (akasi 01-1/O address 0x2F8 and IRQ 3),
and the third port (akai 02) as I/0 0x3E8 and IRQ 5. Obviously this is a waste of IRQ resesiras it should be
basically possible to run both extension board ports usisiggle IRQ with theCOM MULTI PORT configuration
described in the previous sections.

Such cheap I/0 boards commonly have a 4 by 3 jumper matribhB€OM ports, similar to the following:

O O o «*

Port A |
o * o0 =*
Port B |
0O * 0 O
I RQ 2 3 4 5

Shown here is port A wired for IRQ 5 and port B wired for IRQ 3.€TIRQ columns on your specific board may
vary—other boards may supply jumpers for IRQs 3, 4, 5, andtead.

One could conclude that wiring both ports for IRQ 3 using adtwaafted wire-made jumper covering all three
connection points in the IRQ 3 column would solve the issuénb. You cannot duplicate IRQ 3 because the output
drivers of each UART are wired in a “totem pole” fashion, sorie of the UARTSs drives IRQ 3, the output signal

will not be what you would expect. Depending on the impleragah of the extension board or your motherboard,
the IRQ 3 line will continuously stay up, or always stay low.

You need to decouple the IRQ drivers for the two UARTS, sotihe@tiRQ line of the board only goes up if (and only
if) one of the UARTSs asserts a IRQ, and stays low otherwise.Sdhution was proposed by Joerg Wunsch

<j @da.interface-busi ness. de>: To solder up a wired-or consisting of two diodes (Germanar
Schottky-types strongly preferred) and a 1 kOhm resisterehk the schematic, starting from the 4 by 3 jumper field
above:

Di ode
Focemeeaaa- >l ------- +
/ I
O * 0 O | 1 kOhm
Port A e | BHHHHH] - - - - - - - +
O * 0 O | |
Port B BRI + ==+==
O * 0 O | Ground
\ I
S Sl ------- +
I RQ 2 3 4 5 Di ode

The cathodes of the diodes are connected to a common paether with a 1 kOhm pull-down resistor. It is
essential to connect the resistor to ground to avoid floatfrige IRQ line on the bus.

Now we are ready to configure a kernel. Staying with this eXanpe would configure:

16

Serial and UART Tutorial

standard on-board COML port

devi ce si 00 at isa? port "I O COM" flags 0x10

patched-up multi-1/0O extension board

options COM_MULTI PORT

devi ce siol at isa? port "1 O COW" flags 0x205

devi ce si 02 at isa? port "1O COM3" flags 0x205 irq 3

Note that thef | ags setting forsi 01 andsi 02 is truly essential; refer to sio(4) for details. (Generglhe 2 in the
"flags" attribute refers tei 02 which holds the IRQ, and you surely waré éow nibble.) With kernel verbose mode
turned on this should yield something similar to this:

sio0: irq maps: Ox1 Ox11 Ox1 Ox1

si o0 at O0x3f8-0x3ff irq 4 flags 0x10 on isa
si 00: type 16550A

siol: irq maps: Ox1 0x9 Ox1 Ox1

siol at 0Ox2f8-0x2ff flags 0x205 on isa

siol: type 16550A (rmultiport)

sio2: irgq maps: O0x1 0x9 Ox1 Ox1

si 02 at 0x3e8-0x3ef irq 3 flags 0x205 on isa
si02: type 16550A (rultiport naster)

Though/ sys/ i 386/ i sal si 0. ¢ is somewhat cryptic with its use of the “irq maps” array ahdtie basic idea is

that you observex1 in the first, third, and fourth place. This means that theegponding IRQ was set upon output
and cleared after, which is just what we would expect. If ykennel does not display this behavior, most likely there
is something wrong with your wiring.

3 Configuring the cy driver
Contributed by Alex Nash. 6 June 1996.

The Cyclades multiport cards are based onctheriver instead of the usual o driver used by other multiport
cards. Configuration is a simple matter of:

1. Add thecy device to your kernel configuration (note that your irq andémn settings may differ).
device cy0O at isa? irq 10 i onem 0xd4000 i osiz 0x2000

2. Rebuild and install the new kernel.

3. Make the device nodes by typing (the following exampleiasss an 8-port boartl)

cd /dev
for i in 0123456 7;do ./MAKEDEV cuac$i ttyc$i;done

4. If appropriate, add dialup entries/tet c/ t t ys by duplicating serial device yd) entries and usingt yc in
place oft t yd. For example:

ttycO “lusr/libexec/getty std.38400" unknown on insecure
ttycl “lusr/libexec/getty std.38400" unknown on insecure
ttyc2 "/usr/libexec/getty std.38400" unknown on insecure
ttyc7 "/usr/libexec/getty std.38400" unknown on insecure

5. Reboot with the new kernel.

17

Serial and UART Tutorial

4 Configuring the si driver
Contributed by Nick Sayernsayer @r eeBSD. or g>. 25 March 1998.

The Specialix SI/XIO and SX multiport cards use #iedriver. A single machine can have up to 4 host cards. The
following host cards are supported:

ISA SI/XIO host card (2 versions)
EISA SI/XIO host card

PCI SI/XIO host card

ISA SX host card

PCI SX host card

Although the SX and SI/XIO host cards look markedly diffdreheir functionality are basically the same. The host
cards do not use 1/O locations, but instead require a 32Kkbfimemaory. The factory configuration for ISA cards
places this abxd0000- 0xd7f f f . They also require an IRQ. PCI cards will, of course, autofigure themselves.

You can attach up to 4 external modules to each host card.xbémeal modules contain either 4 or 8 serial ports.
They come in the following varieties:

Sl 4 or 8 port modules. Up to 57600 bps on each port supported.

XIO 8 port modules. Up to 115200 bps on each port supported.tgpe of XIO module has 7 serial and 1 parallel
port.

SXDC 8 port modules. Up to 921600 bps on each port supporike XIO, a module is available with one
parallel port as well.

To configure an ISA host card, add the following line to youmied configuration file, changing the numbers as
appropriate:

device si 0 at isa? i omem 0xd0000 irq 11

Valid IRQ numbers are 9, 10, 11, 12 and 15 for SX ISA host candsld, 12 and 15 for SI/XIO ISA host cards.

To configure an EISA or PCI host card, use this line:

device si0

After adding the configuration entry, rebuild and installyaew kernel.

Note: The following step, is not necessary if you are using devfs(5) in FreeBSD 5.X.

After rebooting with the new kernel, you need to make theckewiodes iri dev. The MAKEDEV script will take care
of this for you. Count how many total ports you have and type:

cd /dev
./ MAKEDEV ttyAnn cuaAnn

(wherenn is the number of ports)

If you want login prompts to appear on these ports, you widchtd add lines like this tbet c/ t tys:

18

Serial and UART Tutorial
ttyAO1l "/usr/libexec/getty std.9600" vt 100 on insecure

Change the terminal type as appropriate. For moddires,up or unknown is fine.

Notes

1. You can omit this part if you are running FreeBSD 5.X withvid$é5).

19

	Table of Contents
	1 The UART: What it is and how it works
	1.1 Synchronous Serial Transmission
	1.2 Asynchronous Serial Transmission
	1.3 Other UART Functions
	1.4 The RS232C and V.24 Standards
	1.4.1 RS232C Bit Assignments (Marks and Spaces)
	1.4.2 RS232C Break Signal
	1.4.3 RS232C DTE and DCE Devices
	1.4.4 RS232C Pin Assignments

	1.5 Bits, Baud and Symbols
	1.6 The IBM Personal Computer UART
	1.6.1 National Semiconductor UART Family Tree
	1.6.2 The NS16550AF and the PC16550D are the same thing
	1.6.3 National Semiconductor Part Numbering System

	1.7 Other Vendors and Similar UARTs
	1.8 8250/16450/16550 Registers
	1.9 Beyond the 16550A UART

	2 Configuring the sio driver
	2.1 Digi International (DigiBoard) PC/8
	2.2 Boca 16
	2.3 Support for Cheap MultiUART Cards

	3 Configuring the cy driver
	4 Configuring the si driver

