
Introduction to NanoBSD
Daniel Gerzo

$FreeBSD: head/en_US.ISO8859-1/articles/nanobsd/arti cle.xml 41645 2013-05-17
18:49:52Z gabor $

Copyright © 2006 The FreeBSD Documentation Project
$FreeBSD: head/en_US.ISO8859-1/articles/nanobsd/arti cle.xml 41645 2013-05-17

18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This document provides information about theNanoBSD tools, which can be used to create FreeBSD
system images for embedded applications, suitable for use on a Compact Flash card (or other mass storage
medium).

Table of Contents
1 Introduction to NanoBSD..1

2 NanoBSD Howto ..2

1 Introduction to NanoBSD
NanoBSD is a tool currently developed by Poul-Henning Kamp <phk@FreeBSD.org>. It creates a FreeBSD system
image for embedded applications, suitable for use on a Compact Flash card (or other mass storage medium).

It can be used to build specialized install images, designedfor easy installation and maintenance of systems
commonly called “computer appliances”. Computer appliances have their hardware and software bundled in the
product, which means all applications are pre-installed. The appliance is plugged into an existing network and can
begin working (almost) immediately.

The features ofNanoBSD include:

• Ports and packages work as in FreeBSD — Every single application can be installed and used in aNanoBSD
image, the same way as in FreeBSD.

• No missing functionality — If it is possible to do something with FreeBSD, it is possible to do the same thing with
NanoBSD, unless the specific feature or features were explicitly removed from theNanoBSD image when it was
created.

1

Introduction to NanoBSD

• Everything is read-only at run-time — It is safe to pull the power-plug. There is no necessity to run fsck(8) after a
non-graceful shutdown of the system.

• Easy to build and customize — Making use of just one shell script and one configuration file it is possible to build
reduced and customized images satisfying any arbitrary setof requirements.

2 NanoBSD Howto

2.1 The design of NanoBSD

Once the image is present on the medium, it is possible to bootNanoBSD. The mass storage medium is divided into
three parts by default:

• Two image partitions:code#1 andcode#2.

• The configuration file partition, which can be mounted under the/cfg directory at run time.

These partitions are normally mounted read-only.

The/etc and/var directories are md(4) (malloc) disks.

The configuration file partition persists under the/cfg directory. It contains files for/etc directory and is briefly
mounted read-only right after the system boot, therefore itis required to copy modified files from/etc back to the
/cfg directory if changes are expected to persist after the system restarts.

Example 1. Making persistent changes to /etc/resolv.conf

vi /etc/resolv.conf

[...]
mount /cfg

cp /etc/resolv.conf /cfg

umount /cfg

Note: The partition containing /cfg should be mounted only at boot time and while overriding the configuration
files.

Keeping /cfg mounted at all times is not a good idea, especially if the NanoBSD system runs off a mass storage
medium that may be adversely affected by a large number of writes to the partition (i.e. when the filesystem
syncer flushes data to the system disks).

2.2 Building a NanoBSD image

A NanoBSD image is built using a simplenanobsd.sh shell script, which can be found in the
/usr/src/tools/tools/nanobsd directory. This script creates an image, which can be copiedon the storage
medium using the dd(1) utility.

The necessary commands to build aNanoBSD image are:

cd /usr/src/tools/tools/nanobsd ➊

2

Introduction to NanoBSD

sh nanobsd.sh ➋

cd /usr/obj/nanobsd.full ➌

dd if=_.disk.full of=/dev/da0 bs=64k ➍

➊ Change the current directory to the base directory of theNanoBSD build script.

➋ Start the build process.

➌ Change the current directory to the place where the built images are located.

➍ Install NanoBSD onto the storage medium.

2.3 Customizing a NanoBSD image

This is probably the most important and most interesting feature ofNanoBSD. This is also where you will be
spending most of the time when developing withNanoBSD.

Invocation of the following command will force thenanobsd.sh to read its configuration from themyconf.nano
file located in the current directory:

sh nanobsd.sh -c myconf.nano

Customization is done in two ways:

• Configuration options

• Custom functions

2.3.1 Configuration options

With configuration settings, it is possible to configure options passed to both thebuildworld andinstallworld
stages of theNanoBSD build process, as well as internal options passed to the mainbuild process ofNanoBSD.
Through these options it is possible to cut the system down, so it will fit on as little as 64MB. You can use the
configuration options to trim down FreeBSD even more, until it will consists of just the kernel and two or three files
in the userland.

The configuration file consists of configuration options, which override the default values. The most important
directives are:

• NANO_NAME — Name of build (used to construct the workdir names).

• NANO_SRC — Path to the source tree used to build the image.

• NANO_KERNEL — Name of kernel configuration file used to build kernel.

• CONF_BUILD — Options passed to thebuildworld stage of the build.

• CONF_INSTALL — Options passed to theinstallworld stage of the build.

• CONF_WORLD — Options passed to both thebuildworld and theinstallworld stage of the build.

• FlashDevice — Defines what type of media to use. Check theFlashDevice.sub file for more details.

3

Introduction to NanoBSD

2.3.2 Custom functions

It is possible to fine-tuneNanoBSD using shell functions in the configuration file. The following example illustrates
the basic model of custom functions:

cust_foo () (
echo "bar=baz" > \

${NANO_WORLDDIR}/etc/foo
)
customize_cmd cust_foo

A more useful example of a customization function is the following, which changes the default size of the/etc

directory from 5MB to 30MB:

cust_etc_size () (
cd ${NANO_WORLDDIR}/conf
echo 30000 > default/etc/md_size

)
customize_cmd cust_etc_size

There are a few default pre-defined customization functionsready for use:

• cust_comconsole — Disables getty(8) on the VGA devices (the/dev/ttyv* device nodes) and enables the
use of the COM1 serial port as the system console.

• cust_allow_ssh_root — Allow root to login via sshd(8).

• cust_install_files — Installs files from thenanobsd/Files directory, which contains some useful scripts
for system administration.

2.3.3 Adding packages

Packages can be added to aNanoBSD image using a custom function. The following function will install all the
packages located in/usr/src/tools/tools/nanobsd/packages:

install_packages () (
mkdir -p ${NANO_WORLDDIR}/packages
cp /usr/src/tools/tools/nanobsd/packages/* ${NANO_WORLDDIR}/packages
chroot ${NANO_WORLDDIR} sh -c ’cd packages; pkg_add -v *;cd ..;’
rm -rf ${NANO_WORLDDIR}/packages
)
customize_cmd install_packages

2.3.4 Configuration file example

A complete example of a configuration file for building a custom NanoBSD image can be:

NANO_NAME=custom
NANO_SRC=/usr/src
NANO_KERNEL=MYKERNEL
NANO_IMAGES=2

4

Introduction to NanoBSD

CONF_BUILD=’
NO_KLDLOAD=YES
NO_NETGRAPH=YES
NO_PAM=YES
’

CONF_INSTALL=’
NO_ACPI=YES
NO_BLUETOOTH=YES
NO_CVS=YES
NO_FORTRAN=YES
NO_HTML=YES
NO_LPR=YES
NO_MAN=YES
NO_SENDMAIL=YES
NO_SHAREDOCS=YES
NO_EXAMPLES=YES
NO_INSTALLLIB=YES
NO_CALENDAR=YES
NO_MISC=YES
NO_SHARE=YES
’

CONF_WORLD=’
NO_BIND=YES
NO_MODULES=YES
NO_KERBEROS=YES
NO_GAMES=YES
NO_RESCUE=YES
NO_LOCALES=YES
NO_SYSCONS=YES
NO_INFO=YES
’

FlashDevice SanDisk 1G

cust_nobeastie() (
touch ${NANO_WORLDDIR}/boot/loader.conf
echo "beastie_disable=\"YES\"" >> ${NANO_WORLDDIR}/boot/loader.conf

)

customize_cmd cust_comconsole
customize_cmd cust_install_files
customize_cmd cust_allow_ssh_root
customize_cmd cust_nobeastie

5

Introduction to NanoBSD

2.4 Updating NanoBSD

The update process ofNanoBSD is relatively simple:

1. Build a newNanoBSD image, as usual.

2. Upload the new image into an unused partition of a runningNanoBSD appliance.

The most important difference of this step from the initialNanoBSD installation is that now instead of using the
.disk.full file (which contains an image of the entire disk), the.disk.image image is installed (which
contains an image of a single system partition).

3. Reboot, and start the system from the newly installed partition.

4. If all goes well, the upgrade is finished.

5. If anything goes wrong, reboot back into the previous partition (which contains the old, working image), to
restore system functionality as fast as possible. Fix any problems of the new build, and repeat the process.

To install new image onto the runningNanoBSD system, it is possible to use either theupdatep1 or updatep2
script located in the/root directory, depending from which partition is running the current system.

According to which services are available on host serving new NanoBSD image and what type of transfer is
preferred, it is possible to examine one of these three ways:

2.4.1 Using ftp(1)

If the transfer speed is in first place, use this example:

ftp myhost

get _.disk.image "| sh updatep1"

2.4.2 Using ssh(1)

If a secure transfer is preferred, consider using this example:

ssh myhost cat _.disk.image.gz | zcat | sh updatep1

2.4.3 Using nc(1)

Try this example if the remote host is not running neither ftpd(8) or sshd(8) service:

1. At first, open a TCP listener on host serving the image and make it send the image to client:

myhost# nc -l 2222 < _.disk.image

Note: Make sure that the used port is not blocked to receive incoming connections from NanoBSD host by
firewall.

2. Connect to the host serving new image and executeupdatep1 script:

nc myhost 2222 | sh updatep1

6

	Table of Contents
	1 Introduction to NanoBSD
	2 NanoBSD Howto
	2.1 The design of NanoBSD
	2.2 Building a NanoBSD image
	2.3 Customizing a NanoBSD image
	2.3.1 Configuration options
	2.3.2 Custom functions
	2.3.3 Adding packages
	2.3.4 Configuration file example

	2.4 Updating NanoBSD
	2.4.1 Using ftp(1)
	2.4.2 Using ssh(1)
	2.4.3 Using nc(1)

