PMake — A Tutorial

Adam de Boor

PMake — A Tutorial
by Adam de Boor

Copyright © 1988, 1989 Adam de Boor
Copyright © 1989 Berkeley Softworks
Copyright © 1988, 1989, 1993 The Regents of the Universit@alifornia.

All rights reserved.
This code is derived from software contributed to BerkelgyAdam de Boor.
Redistribution and use in source and binary forms, with dhett modification, are permitted provided that the follog/conditions are met:

1. Redistributions of source code must retain the aboveragiptynotice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the ab@gydght notice, this list of conditions and the
following disclaimer in the documentation and/or other emi@ls provided with the distribution.

3. All advertising materials mentioning features or usehef software must display the following
acknowledgement: This product includes software develdgyethe University of California, Berkeley and its
contributors.

4. Neither the name of the University nor the names of itsrifoutiors may be used to endorse or promote products
derived from this software without specific prior writterrpassion.

Important: THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

01T (1T o o P 1
2 THEBASICS Of PIMBKE......ccuiiiiieieieeiie ettt st te e e e ne e s e seebesae st en e e saeneeseesesseaseseenseneesesneseenseseeennennens 2
P22 T I T o =T T [T T V0 TSRS 2.
P20 1= 1| I @0 T 13 = o Lo £ SRRSO 18
2 T - 4 - o] =SS 6...
2 T T o To= LN 7= 4 =T o 1= 1
2.3.2. Command-lNe VariabIes.........cccoooiiiiiiiiie et e e eene s 8
2.3.3. GlODAI ValiADIES.....ee e ettt re s 8
2.3.4. ENVIroNmMENt VariabIes..........ui oot e e 9
A 10114111 1=T o] £SO PUORPPPR 9.
ST o= 1= L[] 11 2 o PO PPPPRPPPRS 9..
2.6. Writing and Debugging @ MaKefile............ooo e 10
2.7 INVOKING PIMAKE. ...ttt ettt e e e e ettt e e e e e e s smnmee e e e e e e s annbbaeeeeaaeaeesann 13
P2 TS 1010 010 (=T YT 16.
3 Short-cutsand Other NICE THINGS.......couiiiieieee ettt bbbt b b e e b e e et e e nesae b e seeseeneens 18
3.1, TransformMation RUIES...........iiiiiiieeie ettt et e e e et e e e e e eeeeeeeae b e e eeeeeesbanes 18
3.2. Including Other MaKefilES.........ueeiiieieie ettt e e e e emmnne e e e e e nnees 21
3.3, SAVING COMMEANUS ...ttt e et e e e e e e e bbbt e e e e e e s e aaa bttt et e e e e e s eamnnmeeeeeeeeansbnbeeeeaaaans 22
R - Vo T A 4] 01U (=SSP 23
TR TS o1 To =TI = U o[- £ SEER 25
3.6. Modifying Variable EXPanSION............ociuuuiiiiiiieee st eeeeeseeeee e e e e s s s s aeeaaeeesesnntesteeeneenssenneees 27
T 1V o L= (T (o =SS 28
Y 1= o T £ 30
O ST T o I = PR 30
B N o 1)V TSR U Lo I] o = 1SS 31
0 TR @ o 1 1 7= T @ o 1o T SRR 32
4.4, A Shellis @ Shell iS @ SHEIL........c.coo i e e e e s e e e ee e e e aeeees 34
T @) '] o =] 1] 7R RRRRR 37
4.6. DEFCON 3 — Variable EXPanSION.........cuuiiiiiiiiiiiiiie st teeee e e st ee e e e e e s st e e e e e e e e e s nmnnnnee s 37
4.7. DEFCON 2 — The Number of the BEaSL............cccviiiiiiiei et ere et e e ee e e e e e 37.
4.8. DEFCON 1 — Imitation is the Not the Highest Form of Flgtte..............ccciiiieeee 38
4.9. The Way ThiNGS WOEK ...ttt e e e e ettt et e e e e s anne e e e e e e e ennneeeees 38
Y AN S R (N o (S LV = =TT 40
1Mo IS TR Vo) N = o o] o PSSP 41

Chapter 1 Introduction

PMakeis a program for creating other programs, or anything elsecgm think of for it to do. The basic idea behind
PMakeis that, for any given system, be it a program or a documentatever, there will be some files that depend
on the state of other files (on when they were last modifielllake takes these dependencies, which you must
specify, and uses them to build whatever it is you want it tiddbu

PMakeis almost fully-compatible wittM ake, with which you may already be familidPM ake’'s most important
feature is its ability to run several different jobs at onoeaking the creation of systems considerably faster. It also
has a great deal more functionality thislrake.

This tutorial is divided into three main sections correqiog to basic, intermediate and advan&dake usage. If
you already knowv ake well, you will only need to skinChapter Athere are some aspectsRifl ake that |

consider basic to its use that did not exisMrake). Things inChapter 3make life much easier, while those in
Chapter 4are strictly for those who know what they are doi@jossary of Jargon has definitions for the jargon | use
andChapter contains possible solutions to the problems presentedginaut the tutorial.

Chapter 2 The Basics of PMake

PMaketakes as input a file that tells which files depend on whichrdites to be complete and what to do about files
that are “out-of-date”. This file is known as a “makefile” asdisually kept in the top-most directory of the system
to be built. While you can call the makefile anything you wddit] ake will look for Makef i | e andnakefi | e (in

that order) in the current directory if you do not tell it otivése. To specify a different makefile, use thieflag, e.g.

% pmake -f program nk

A makefile has four different types of lines in it:

- File dependency specifications

« Creation commands

- Variable assignments

« Comments, include statements and conditional directives

Any line may be continued over multiple lines by ending ittwét backslash. The backslash, following newline and
any initial whitespace on the following line are compresised a single space before the input line is examined by
PMake.

2.1. Dependency Lines

As mentioned in the introduction, in any system, there apeddencies between the files that make up the system.
For instance, in a program made up of several C source filesrmtieader file, the C files will need to be
re-compiled should the header file be changed. For a docusheateral chapters and one macro file, the chapters
will need to be reprocessed if any of the macros changeseTdresdependencies and are specified by means of
dependency lines in the makefile.

On a dependency line, there are targets and sources, sphyad one- or two-character operator. The targets
“depend” on the sources and are usually created from themmnamber of targets and sources may be specified on a
dependency line. All the targets in the line are made to déperall the sources. Targets and sources need not be
actual files, but every source must be either an actual fileather target in the makefile. If you run out of room, use
a backslash at the end of the line to continue onto the next one

Any file may be a target and any file may be a source, but theoesitip between the two (or however many) is
determined by the “operator” that separates them. Thresstgpoperators exist: one specifies that the datedness of a
target is determined by the state of its sources, while @naibecifies other files (the sources) that need to be dealt
with before the target can be re-created. The third opeigtaary similar to the first, with the additional condition

that the target is out-of-date if it has no sources. Theseabipes are represented by the colon, the exclamation point
and the double-colon, respectively, and are mutually eskedu Their exact semantics are as follows:

If a colon is used, a target on the line is considered to be
“out-of-date” (and in need of creation) if any of the
sources has been modified more recently than the target,
or the target does not exist. Under this operation, steps
will be taken to re-create the target only if it is found to

be out-of-date by using these two rules.

Chapter 2 The Basics of PMake

! If an exclamation point is used, the target will always be
re-created, but this will not happen until all of its sources
have been examined and re-created, if necessary.

If a double-colon is used, a target is “out-of-date” if any
of the sources has been modified more recently than the
target, or the target does not exist, or the target has no
sources. If the target is out-of-date according to these
rules, it will be re-created. This operator also does
something else to the targets, but | will go into that in the
next section (se8hell Commands

Enough words, now for an example. Take that C program | meeti@arlier. Say there are three C filesq, b. ¢
andc. c) each of which includes the fidef s. h. The dependencies between the files could then be expressed a
follows:

program . a.0 b.oc.o
a.o b.oc.o . defs.h

a.o a.c

b.o b.c

c.0 c.c

You may be wondering at this point, wheteo, b. o andc. o came in and why they depend daf s. h and the C

files do not. The reason is quite simppe:ogr amcannot be made by linking together files—it must be made from

. o files. Likewise, if you changeef s. h, it is not the. c files that need to be re-created, it is thefiles. If you think

of dependencies in these terms—which files (targets) nelee toeated from which files (sources)—you should have
no problems.

An important thing to notice about the above example, isdhidhe. o files appear as targets on more than one line.
This is perfectly all right: the target is made to depend dothal sources mentioned on all the dependency lines. For
examplea. o depends on bottief s. h anda. c.

The order of the dependency lines in the makefile is imparthatfirst target on the first dependency line in the
makefile will be the one that gets made if you do not say ottswihat is why program comes first in the example
makefile, above.

Both targets and sources may contain the standard C-Shedami character§ (},+, ?,[, and]), but the
non-curly-brace ones may only appear in the final componkatfie portion) of the target or source. The characters
mean the following things:

Chapter 2 The Basics of PMake

{} These enclose a comma-separated list of options and
cause the pattern to be expanded once for each element
of the list. Each expansion contains a different element.
For examplesrc/ {whi ffl e, beep, fi sh}. c expands
to the three wordsrc/ whi ffl e. c, src/ beep. ¢, and
src/fish. c. These braces may be nested and, unlike
the other wildcard characters, the resulting words need
not be actual files. All other wildcard characters are
expanded using the files that exist wheid ake is
started.

* This matches zero or more characters of any sort.
src/ *. c will expand to the same three words as above
as long as src contains those three files (and no other
files that end in c).>

? Matches any single character.

[1 This is known as a character class and contains either a
list of single characters, or a series of character ranges
(a- z, for example means all characters betwaemd
z), or both. It matches any single character contained in
the list. For exampld,A- Za- z] will match all letters,
while [0123456789] will match all numbers.

2.2. Shell Commands

“Is not that nice,” you say to yourself, “but how are files adty “re-created”, as he likes to spell it?” The re-creation
is accomplished by commands you place in the makefile. Th@senands are passed to the Bourne shell (better
known ag/ bi n/ sh) to be executed and are expected to do what is necessaryateithe target fileRM ake does

not actually check to see if the target was created. It jusirags it is there).

Shell commands in a makefile look a lot like shell commandswould type at a terminal, with one important
exception: each command in a makefile must be preceded bgsatdee tab.

Each target has associated with it a shell script made upe@bomaore of these shell commands. The creation script
for a target should immediately follow the dependency lmethat target. While any given target may appear on
more than one dependency line, only one of these dependarsynhay be followed by a creation script, unless the
.. operator was used on the dependency line.

If the double-colon was used, each dependency line for tigetanay be followed by a shell script. That script will
only be executed if the target on the associated dependiaedg lout-of-date with respect to the sources on that line,
according to the rules | gave earlier. I'll give you a goodregpée of this later on.

To expand on the earlier makefile, you might add commandsliasvi

program . a.0b.oc.o
cc a.0 b.o c.o -0 program

a.o b.oc.o . defs.h
a.o ©a.c

Chapter 2 The Basics of PMake

cc -c a.c
b.o b.c
cc -c b.c
c.0 c.c
cCcC -c c.C

Something you should remember when writing a makefile isctimemands will be executed if the target on the
dependency line is out-of-date, not the sources. In thimpka, the commandc -c a. ¢ will be executed ifa. o is
out-of-date. Because of theoperator, this means that shoaldc or def s. h have been modified more recently than
a. o, the command will be executed.(o will be considered out-of-date).

Remember how | said the only difference between a makefilkkstramand and a regular shell command was the
leading tab? I lied. There is another way in which makefile e@nds differ from regular ones. The first two
characters after the initial whitespace are treated sihedfahey are any combination afand- , they caus®M ake
to do different things.

In most cases, shell commands are printed before they arallgatxecuted. This is to keep you informed of what is
going on. If an@appears, however, this echoing is suppressed. In the caseszho command, say

echo Linki ng i ndex
it would be rather silly to see

echo Linki ng i ndex
Li nki ng i ndex

soPMake allows you to place a@before the command to prevent the command from being printed
@cho Linki ng i ndex

The other special character is theln case you did not know, shell commands finish with a ceriiit status”.

This status is made available by the operating system toewbaprogram invoked the command. Normally this
status will bed if everything went ok and non-zero if something went wrongy. fhis reasonPM ake will consider
an error to have occurred if one of the shells it invokes retar non-zero status. When it detects an eRirake's
usual action is to abort whatever it is doing and exit with a-zero status itself (any other targets that were being
created will continue being made, but nothing new will betsth PM ake will exit after the last job finishes). This
behavior can be altered, however, by placingat the front of a command (e.gmv i ndex i ndex. ol d), certain
command-line arguments, or doing other things, to be dtadter. In such a case, the non-zero status is simply
ignored and®M ake keeps chugging along.

Because all the commands are given to a single shell to exesuth things as setting shell variables, changing
directories, etc., last beyond the command in which theyared. This also allows shell compound commands (like
for loops) to be entered in a natural manner. Since this coade problems for some makefiles that depend on each
command being executed by a single sHelllake has & B flag (it stands for backwards-compatible) that forces
each command to be given to a separate shell. It also doesbketreer things, all of which | discourage since they

are now old-fashioned.

A target’s shell script is fed to the shell on its (the shglfgut stream. This means that any commands, such as
that need to get input from the terminal will not work righthey will get the shell’'s input, something they probably
will not find to their liking. A simple way around this is to gha command like this:

Chapter 2 The Basics of PMake
ci $(SRCS) < /dev/tty

This would force the program'’s input to come from the terrhilfgyou cannot do this for some reason, your only
other alternative is to ud@Make in its fullest compatibility mode. See “Compatibility” i@hapter 4

2.3. Variables

PMake, like Make before it, has the ability to save text in variables to be lteddater at your convenience.
Variables inPM ake are used much like variables in the shell and, by traditionsést of all upper-case letters (you
do not have to use all upper-case letters. In fact there lmgto stop you from calling a variabt@ &$%%. Just
tradition). Variables are assigned-to using lines of thenfo

VARl ABLE = val ue

appended-to by:

VARI ABLE += val ue

conditionally assigned-to (if the variable is not alreadided) by:

VARI ABLE ?= val ue

and assigned-to with expansion (i.e. the value is exparsiifelow) before being assigned to the variable—useful
for placing a value at the beginning of a variable, or othargh) by:

VARI ABLE : = val ue

Any whitespace before value is stripped off. When appendirgpace is placed between the old value and the stuff
being appended.

The final way a variable may be assigned to is using:

VARI ABLE ! = shel | - command

In this case, shell-command has all its variables exparstitfelow) and is passed off to a shell to execute. The
output of the shell is then placed in the variable. Any neadifother than the final one) are replaced by spaces
before the assignment is made. This is typically used to fiecttirrent directory via a line like:

WD I'= pwd
Note: This is intended to be used to execute commands that produce small amounts of output (e.g. pwd). The
implementation is less than intelligent and will likely freeze if you execute something that produces thousands of

bytes of output (8 Kb is the limit on many UNIX® systems). The value of a variable may be retrieved by enclosing
the variable name in parentheses or curly braces and preceding the whole thing with a dollar sign.

For example, to set the variabllELAGS to the string | / sprite/src/lib/libc -0 youwould place a line:

CFLAGS = -I/sprite/src/lib/libc -O

Chapter 2 The Basics of PMake

in the makefile and use the wosd CFLAGS) wherever you would like the string / sprite/src/lib/libc -0
to appear. This is called variable expansion.

Note: Unlike Make, PMake will not expand a variable unless it knows the variable exists. E.g. if you have a ${i }
in a shell command and you have not assigned a value to the variable i (the empty string is considered a value,
by the way), where Make would have substituted the empty string, PMake will leave the ${i } alone. To keep
PMake from substituting for a variable it knows, precede the dollar sign with another dollar sign (e.g. to pass

${ HOVE} to the shell, use $${ HOVE}). This causes PMake, in effect, to expand the $ macro, which expands to a
single $.

For compatibilityM ake's style of variable expansion will be used if you invaREl ake with any of the

compatibility flags {V, - Bor- M The- V flag alters just the variable expansion). There are two mdiffetimes at
which variable expansion occurs: when parsing a dependergythe expansion occurs immediately upon reading
the line. If any variable used on a dependency line is undafiPd ake will print a message and exit. Variables in
shell commands are expanded when the command is executé&bl¥a used inside another variable are expanded
whenever the outer variable is expanded (the expansionioh@n variable has no effect on the outer variable. For
example, if the outer variable is used on a dependency lidénaa shell command, and the inner variable changes
value between when the dependency line is read and the sinefthand is executed, two different values will be
substituted for the outer variable).

Variables come in four flavors, though they are all expanedame and all look about the same. They are (in order
of expanding scope):

- Local variables.

« Command-line variables.
« Global variables.

- Environment variables.

The classification of variables does not matter much, extepthe classes are searched from the top (local) to the
bottom (environment) when looking up a variable. The firg éyund wins.

2.3.1. Local Variables

Each target can have as many as seven local variables. Tieegsriables that are only “visible” within that target’s
shell script and contain such things as the target’s narhef it sources (from all its dependency lines), those
sources that were out-of-date, etc. Four local variableslafined for all targets. They are:

. TARGET

The name of the target.

. OCDATE
The list of the sources for the target that were considerédbdate. The order in the list is not guaranteed to
be the same as the order in which the dependencies were given.

. ALLSRC

The list of all sources for this target in the order in whichythwere given.

Chapter 2 The Basics of PMake

. PREFI X

The target without its suffix and without any leading patly.Eor the target. /.. /1 i b/ conpat / f sRead. c,
this variable would contaifisRead.

Three other local variables are set only for certain targetier special circumstances. These are thePSRC,
. ARCHI VE, and. MEMBER variables. When they are set and how they are used is deddaiiee.

Four of these variables may be used in sources as well aslirsstipts. These areTARGET, . PREFI X, . ARCHI VE
and. MEMBER. The variables in the sources are expanded once for eadt targhe dependency line, providing what
is known as a “dynamic source,” allowing you to specify saldependency lines at once. For example:

$(OBJS) © $(.PREFIX).c

will create a dependency between each object file and itegponding C source file.

2.3.2. Command-line Variables

Command-line variables are set whel ake s first invoked by giving a variable assignment as one of the
arguments. For example:

pmake "CFLAGS = -I/sprite/src/lib/libc -O

would makeCFLAGS be a command-line variable with the given value. Any assigms1toCFLAGS in the makefile
will have no effect, because once it is set, there is (alnmamt)ing you can do to change a command-line variable
(the search order, you see). Command-line variables magthesing any of the four assignment operators, though
only = and?= behave as you would expect them to, mostly because assightoemommand-line variables are
performed before the makefile is read, thus the values sheimbkefile are unavailable at the time.is the same
as=, because the old value of the variable is sought only in tbpesin which the assignment is taking place (for
reasons of efficiency that | will not get into here} and?= will work if the only variables used are in the
environment! = is sort of pointless to use from the command line, since theeseffect can no doubt be
accomplished using the shell's own command substitutiochaeisms (backquotes and all that).

2.3.3. Global Variables

Global variables are those set or appended-to in the makEfikre are two classes of global variables: those you set
and thosé’M ake sets. As | said before, the ones you set can have any name yauthean to have, except they may
not contain a colon or an exclamation point. The variablgske sets (almost) always begin with a period and
always contain upper-case letters, only. The variableasfellows:

. PMAKE
The name by whiclPM ake was invoked is stored in this variable. For compatibilibhe hame is also stored in
the MAKE variable.

. MAKEFLAGS

All the relevant flags with whicl®PM ake was invoked. This does not include such thingsfasr variable
assignments. Again for compatibility, this value is stoirethe MFLAGS variable as well.

Two other variables,| NCLUDES and. LI BS, are covered in the section on special targeGhiapter 3

Chapter 2 The Basics of PMake

Global variables may be deleted using lines of the form:

#undef vari abl e

The# must be the first character on the line. Note that this may balgtone on global variables.

2.3.4. Environment Variables

Environment variables are passed by the shell that invekédke and are given byPM aketo each shell it invokes.
They are expanded like any other variable, but they cannattbe=d in any way.

One special environment variabVAKE, is examined byM ake for command-line flags, variable assignments,
etc., it should always use. This variable is examined befeactual arguments M ake are. In addition, all flags
given toPM ake, either through th@MAKE variable or on the command line, are placed in this envirartmariable

and exported to each sh&M ake executes. Thus recursive invocationd$M ake automatically receive the same
flags as the top-most one.

Using all these variables, you can compress the sample rteakedin more:

oBJS = a.ob.oc.o
program : $(0BIS)

cc $(.ALLSRC) -0 $(. TARGET)
$(OBIS) . defs.h
a.o . a.c

cc -c a.c
b.o b.c

cc -c b.c
c.0 c.c

cc -c c.C

2.4. Comments

Comments in a makefile start withvacharacter and extend to the end of the line. They may appgatene you

want them, except in a shell command (though the shell veilittit as a comment, too). If, for some reason, you need
to use thet in a variable or on a dependency line, put a backslash in &biht PM ake will compress the two into a
single#.

Note: This is not true if PMake is operating in full-compatibility mode).

Chapter 2 The Basics of PMake

2.5. Parallelism

PMake was specifically designed to re-create several targetscat ehen possible. You do not have to do anything
special to cause this to happen (unlBbsake was configured to not act in parallel, in which case you willdt
make use of theL and- J flags (see below)), but you do have to be careful at times.

There are several problems you are likely to encounter. ©tfeat some makefiles (and programs) are written in
such a way that it is impossible for two targets to be made e¢ ofihe programstr, for example, always modifies
the filesst ri ngs andx. c. There is no way to change it. Thus you cannot run two of theomeé without
something being trashed. Similarly, if you have commandbeérmakefile that always send output to the same file,
you will not be able to make more than one target at once uglmsshange the file you use. You can, for instance,
add a$$$$ to the end of the file name to tack on the process ID of the sketiiging the command (eaéi$

expands to a singlg, thus giving you the shell variab#s). Since only one shell is used for all the commands, you
will get the same file name for each command in the script.

The other problem comes from improperly-specified depetidsnhat worked itM ake because of its sequential,
depth-first way of examining them. While | do not want to gmidepth on howM ake works (look inChapter 4f
you are interested), | will warn you that files in two diffetéevels of the dependency tree may be examined in a
different order inPM ake than they were itM ake. For example, given the makefile:

a
bchb o d

PMake will examine the targets in the orderd, b, a. If the makefile’s author expectdM ake to abort before
makingc if an error occurred while makinig, or if b needed to exist beforewas made, (s)he will be sorely
disappointed. The dependencies are incomplete, sincdlirifrse cases,would depend oib. So watch out.

Another problem you may face is that, whid akeis set up to handle the output from multiple jobs in a graceful
fashion, the same is not so for input. It has no way to regurget to different jobs, so if you use the redirection
from/ dev/ tty | mentioned earlier, you must be careful not to run two of thitesjat once.

2.6. Writing and Debugging a Makefile

Now you know most of what is in Bakef i | e, what do you do next? There are two choices: use one of the
uncommonly-available makefile generators or write your owakefile (I leave out the third choice of ignoring
PMake and doing everything by hand as being beyond the bounds oframsense).

When faced with the writing of a makefile, it is usually besstart from first principles: just what are you trying to
do? What do you want the makefile finally to produce? To begih wisomewhat traditional example, let's say you
need to write a makefile to create a progranyr , that takes standard infix expressions and converts themefix p
form (for no readily apparent reason). You have got threecsfiles, in C, that make up the programai n. c,

par se. ¢, andout put . c. Harking back to my pithy advice about dependency lines,wate the first line of the

file:

expr : main.o parse.o output.o
because you remembexpr is made from o files, not. c files. Similarly for the. o files you produce the lines:

mai n. o . main.c

10

Chapter 2 The Basics of PMake
par se. o . parse.c
out put.o . output.c
main.o parse.o output.o : defs.h

Great. You have now got the dependencies specified. Whateedi mow is commands. These commands,
remember, must produce the target on the dependency linallyiby using the sources you have listed. You
remember about local variables? Good, so it should comeu@gmo surprise when you write:

expr : main.o parse.o output.o
cc -0 $(.TARGET) $(.ALLSRO)

Why use the variables? If your program grows to produce postfpressions too (which, of course, requires a name
change or two), it is one fewer place you have to change thevfile cannot do this for the object files, however,
because they depend on their corresponding source filegedisd h, thus if you said:

cc -c¢ $(.ALLSRO)
you will get (formai n. o0):
cc -c main.c defs.h

which is wrong. So you round out the makefile with these lines:

mai n. o . main.c
cCcC -c main.c

parse. o . parse.cC
CC -C parse.cC

output.o : output.c
cc -c output.c

The makefile is now complete and will, in fact, create the progyou want it to without unnecessary compilations
or excessive typing on your part. There are two things wroitly iy however (aside from it being altogether too
long, something | will address i@hapter J3:

1. The stringmai n. o parse. o out put. o is repeated twice, necessitating two changes when you astfixpoo
(you were planning on that, were not you?). This is in diréctation of de Boor’s First Rule of writing
makefiles:

Anything that needs to be written more than once should beegla a variable. | cannot emphasize this enough
as being very important to the maintenance of a makefile amatégram.

2. There is no way to alter the way compilations are perforstext of editing the makefile and making the change
in all places. This is evil and violates de Boor’s Second Rwigch follows directly from the first:

Any flags or programs used inside a makefile should be placadamiable so they may be changed,
temporarily or permanently, with the greatest ease.

The makefile should more properly read:

oBJS = nain.o parse.o output.o

11

Chapter 2 The Basics of PMake

expr : $(OBIg)
$(CC) $(CFLAGS) -0 $(.TARGET) $(.ALLSRO)

mai n. o . main.c
$(CC) $(CFLAGS) -c main.c

parse. o . parse.c
$(CC) $(CFLAGS) -c parse.c

out put. o : output.c
$(CC) $(CFLAGS) -c output.c

$(OBJIS) . defs.h
Alternatively, if you like the idea of dynamic sources mentd inSection 2.3.lyou could write it like this:

oBJS = nmain.o parse.o output.o

expr © $(0BIg)
$(CO) $(CFLAGS) -0 $(. TARGET) $(.ALLSRQ)

$(0BIS) : $(.PREFIX).c defs.h
$(CC $(CFLAGS) -c 3$(.PREFIX).cC

These two rules and examples lead to de Boor’s First CoyolNriables are your friends.

Once you have written the makefile comes the sometimesudtffacsk of making sure the darn thing works. Your
most helpful tool to make sure the makefile is at least syit@bt correct is the n flag, which allows you to see if
PMake will choke on the makefile. The second thing theflag lets you do is see wh&t ake would do without it
actually doing it, thus you can make sure the right commaragddvoe executed were you to giPd ake its head.

When you find your makefile is not behaving as you hoped, thedfirsstion that comes to mind (after “What time is
it, anyway?”) is “Why not?” In answering this, two flags wikisre you well:- d mand “-p 2". The first causes
PMaketo tell you as it examines each target in the makefile and ateiahy it is deciding whatever it is deciding.
You can then use the information printed for other targese®mwhere you went wrong. The “-p 2" flag makes
PMake print out its internal state when it is done, allowing you ée shat you forgot to make that one chapter
depend on that file of macros you just got a new version of. Thut from “-p 2” is intended to resemble closely a
real makefile, but with additional information provided amith variables expanded in those commaRd&ake
actually printed or executed.

Something to be especially careful about is circular depaoigs. For example:

a b
b ccd
d ©a

In this case, because of hd®iM ake works,c is the only thingPM ake will examine, because anda will effectively
fall off the edge of the universe, making it impossible torexaeb (or them, for that matterPM ake will tell you (if
run in its normal mode) all the targets involved in any cytledoked at (i.e. if you have two cycles in the graph
(naughty, naughty), but only try to make a target in one ofrthieéM ake will only tell you about that one. You will

12

Chapter 2 The Basics of PMake

have to try to make the other to find the second cycle). Whemsluhake, it will only print the first target in the
cycle.

2.7. Invoking PMake

PMake comes with a wide variety of flags to choose from. They may apjpeany order, interspersed with
command-line variable assignments and targets to crelgefldgs are as follows:

-d what

This cause®M ake to spew out debugging information that may prove useful 1. ybyou cannot figure out
why PMake is doing what it is doing, you might try using this flag. Thieat parameter is a string of single
characters that tePM ake what aspects you are interested in. Most of what | descriienaike little sense to
you, unless you have dealt withake before. Just remember where this table is and come backsydwaread
on. The characters and the information they produce arélas/fo

a Archive searching and caching.
Conditional evaluation.
The searching and caching of directories.

j Various snippets of information related to the running
of the multiple shells. Not particularly interesting.

m The making of each target: what target is being
examined; when it was last modified; whether it is
out-of-date; etc.

p Makefile parsing.

r Remote execution.

s The application of suffix-transformation rules. (See
Chapter 3

t The maintenance of the list of targets.

v Variable assignment.

Of these all, thenands letters will be most useful to you. If thed is the final argument or the argument from
which it would get these key letters (see below for a note alich argument would be used) begins with a —,
all of these debugging flags will be set, resulting in masaweunts of output.

-f makefile

Specify a makefile to read different from the standard magefilakef i | e or nakef i | e). If makefile is-,
PMake uses the standard input. This is useful for making quick artgl chakefiles.

Prints out a summary of the various fldgjgl ake accepts. It can also be used to find out what level of
concurrency was compiled into the versiorRil ake you are using (look atJ and- L) and various other
information on howPM ake was configured.

If you give this flag,PM ake will ignore non-zero status returned by any of its shellss like placing & before

13

Chapter 2 The Basics of PMake

all the commands in the makefile.

This is similar to-i in that it allowsPM ake to continue when it sees an error, but unlke wherePM ake
continues blithely as if nothing went wrongk causes it to recognize the error and only continue work oseho
things that do not depend on the target, either directly diractly (through depending on something that
depends on it), whose creation returned the error.kTis€for “keep going”.

PMake has the ability to lock a directory against other people etiag it in the same directory (by means of a
file calledLOCK. nake that it creates and checks for in the directory). This is adsblaing because two people
doing the same thing in the same place can be disastrouseféinti product (too many cooks and all that).
Whether this locking is the default is up to your system adstiator. If locking is on; | will turn it off, and

vice versa. Note that this locking will not prevent you fromakingPM ake twice in the same place—if you
own the lock file,PM ake will warn you about it but continue to execute.

-mdirectory

Tells PM ake another place to search for included makefiles via thd €nane> style. Several moptions can
be given to form a search path. If this construct is used tlfeuitesystem makefile search path is completely
overridden.

This flag tellsPM ake not to execute the commands needed to update the out-ofadgéts in the makefile.
Rather,PM ake will simply print the commands it would have executed and.&Xiis is particularly useful for
checking the correctness of a makefilePM ake does not do what you expect it to, it is a good chance the
makefile is wrong.

-p nunber

This cause®M ake to print its input in a reasonable form, though not necelysanie that would make
immediate sense to anyone but me. The number is a bitwise QRuad 2, where 1 means it should print the
input before doing any processing and 2 says it should grafter everything has been re-created. Thpis3
would print it twice-a-once before processing and once &fteu might find the difference between the two
interesting). This is mostly useful to me, but you may finahformative in some bizarre circumstances.

If you give PM ake this flag, it will not try to re-create anything. It will juses if anything is out-of-date and
exit non-zero if so.

WhenPM ake starts up, it reads a default makefile that tells it what sbsyetem it is on and gives it some idea
of what to do if you do not tell it anything. | will tell you aboit in Chapter 31f you give this flagPM ake will
not read the default makefile.

This cause®M ake to not print commands before they are executed. It is thevatgrit of putting an “@”
before every command in the makefile.

14

Chapter 2 The Basics of PMake

Rather than try to re-create a targe ake will simply “touch” it so as to make it appear up-to-date.Hét
target did not exist before, it will whelAM ake finishes, but if the target did exist, it will appear to havebe
updated.

Targets can still be created in parallel, however. ThiséstiodePM ake will enter if it is invoked either as
smake orvimake.

This tellsPMakeit is OK to export jobs to other machines, if they are ava#altlis used when running in
Make mode, as exporting in this mode tends to make thingslowes than if the commands were just executed
locally.

ForcesPM aketo be as backwards-compatible withake as possible while still being itself. This includes:
. Executing one shell per shell command

- Expanding anything that looks even vaguely like a variabith the empty string replacing any variable
PMake does not know.

- Refusing to allow you to escapeétawith a backslash.

- Permitting undefined variables on dependency lines anditomnals (see below). Normally this causes
PMaketo abort.

This nullifies any and all compatibility mode flags you may @éawen or implied up to the time theCis
encountered. It is useful mostly in a makefile that you wrotdM ake to avoid bad things happening when
someone runBM ake asmake or has things set in the environment that tell it to be contybati Cis not placed
in the PMAKE environment variable or theMAKEFLAGS or MFLAGS global variables.

-D variable

Allows you to define a variable to have “1” as its value. Thdalale is a global variable, not a command-line
variable. This is useful mostly for people who are used tdQlwmpiler arguments and those using
conditionals, which | will get into irSection 4.3

-1 directory

Tells PM ake another place to search for included makefiles. Yet anottireg to be explained iChapter 3
(Section 3.2to be precise).

-J nunber

Gives the absolute maximum number of targets to create & @mboth local and remote machines.

15

Chapter 2 The Basics of PMake

-L nunber

This specifies the maximum number of targets to create orotta inachine at once. This may dethough
you should be wary of doing this, &M ake may hang until a remote machine becomes available, if onetis n
available when it is started.

This is the flag that provides absolute, complete, full cobiay with Make. It still allows you to use all but a
few of the features dPMake, but it is non-parallel. This is the modM ake enters if you call itrake.

When creating targets in parallel, several shells are exerat once, each wanting to write its own two
cents’-worth to the screen. This output must be capturdeNbgke in some way in order to prevent the screen
from being filled with garbage even more indecipherable §mnusually seePM ake has two ways of doing
this, one of which provides for much cleaner output and ardeparation between the output of different jobs,
the other of which provides a more immediate response soamét what is really happening. The former is
done by notifying you when the creation of a target startgturéng the output and transferring it to the screen
all at once when the job finishes. The latter is done by catrthia output of the shell (and its children) and
buffering it until an entire line is received, then printitigat line preceded by an indication of which job
produced the output. Since | prefer this second methodthei®ne used by default. The first method will be
used if you give the P flag toPM ake.

As mentioned before, thev flag tellsPM ake to useM ake's style of expanding variables, substituting the
empty string for any variable it does not know.

There are several times whe&i ake will print a message at you that is only a warning, i.e. it cantiue to
work in spite of your having done something silly (such agjfdten a leading tab for a shell command).
Sometimes you are well aware of silly things you have donevemdd like PM ake to stop bothering you. This
flag tells it to shut up about anything non-fatal.

This flag causeBM ake to not attempt to export any jobs to another machine.

Several flags may follow a single Those flags that require arguments take them from sucegsarameters. For
example:

pmeke -fDnl server.mnk DEBUG / chi p2/ X/ server/incl ude

will causePM aketo readser ver . mk as the input makefile, define the variabEBUG as a global variable and look
for included makefiles in the directorghi p2/ X/ server /i ncl ude.

2.8. Summary

A makefile is made of four types of lines:

- Dependency lines

16

Chapter 2 The Basics of PMake

. Creation commands
- Variable assignments
. Comments, include statements and conditional directives

A dependency line is a list of one or more targets, an ope(ator. , or!), and a list of zero or more sources.
Sources may contain wildcards and certain local variables.

A creation command is a regular shell command preceded ly. &ntaddition, if the first two characters after the tab
(and other whitespace) are a combinatior@of - , PM ake will cause the command to not be printed (if the
character ig9) or errors from it to be ignored (). A blank line, dependency line or variable assignment teates

a creation script. There may be only one creation scriptdchearget with a or! operator.

Variables are places to store text. They may be unconditjoassigned-to using the operator, appended-to using
the+= operator, conditionally (if the variable is undefined) gasid-to with the?= operator, and assigned-to with
variable expansion with the= operator. The output of a shell command may be assigned toabieausing the =
operator. Variables may be expanded (their value insebigéhclosing their name in parentheses or curly braces,
preceded by a dollar sign. A dollar sign may be escaped withan dollar sign. Variables are not expanded if
PMake does not know about them. There are seven local variabl@RGET, . ALLSRC, . OODATE, . PREFI X,

. MPSRC, . ARCHI VE, and. MEMBER. Four of them (TARGET, . PREFI X, . ARCHI VE, and. MEMBER) may be used to
specify “dynamic sources”. Variables are good. Know theowve them. Live them.

Debugging of makefiles is best accomplished using the d m and-p 2 flags.

17

Chapter 3 Short-cuts and Other Nice Things

Based on what | have told you so far, you may have gotten thesissjpn thaPM ake is just a way of storing away
commands and making sure you do not forget to compile sonmet@ood. That is just what it is. However, the ways
| have described have been inelegant, at best, and paihfubrat. This chapter contains things that make the writing
of makefiles easier and the makefiles themselves shorteraaiet €0 modify (and, occasionally, simpler). In this
chapter, | assume you are somewhat more familiar with S@it&NIX, if that is what you are using) than | did in
Chapter 2just so you are on your toes. So without further ado. ..

3.1. Transformation Rules

As you know, a file’s name consists of two parts: a base namiehvglives some hint as to the contents of the file,
and a suffix, which usually indicates the format of the filee®the years, as UNIX has developed, naming
conventions, with regard to suffixes, have also developaidhtéive become almost as incontrovertible as Law. E.g. a
file ending in. c is assumed to contain C source code; one with auffix is assumed to be a compiled, relocatable
object file that may be linked into any program; a file withras suffix is usually a text file to be processedTyoff

with the- ns macro package, and so on. One of the best aspects olMbaklk andPM ake comes from their
understanding of how the suffix of a file pertains to its cotg@md their ability to do things with a file based solely
on its suffix. This ability comes from something known as asfarmation rule. A transformation rule specifies how
to change a file with one suffix into a file with another suffix.

A transformation rule looks much like a dependency line ggtthe target is made of two known suffixes stuck
together. Suffixes are made knownRbl ake by placing them as sources on a dependency line whose taithet i
special target SUFFI XES. E.g.:

. SUFFI XES .0 .C
.C.0 .
$(CC) $(CFLAGS) -c¢ $(. | MPSRC)

The creation script attached to the target is used to trans ddfile with the first suffix (in this casec) into a file
with the second suffix (herep). In addition, the target inherits whatever attributesenagen applied to the
transformation rule. The simple rule given above says thaginsform a C source file into an object file, you
compile it usingcc with the- c flag. This rule is taken straight from the system makefile. }taansformation rules
(and suffixes) are defined there, and | refer you to it for maesmgles (typenmake - h to find out where it is).

There are several things to note about the transformatiergiven above:

1. The. | MPSRC variable. This variable is set to the “implied source” (tHe from which the target is being
created; the one with the first suffix), which, in this cas¢hés c file.

2. TheCFLAGS variable. Almost all of the transformation rules in the systmakefile are set up using variables
that you can alter in your makefile to tailor the rule to youed In this case, if you want all your C files to be
compiled with the g flag, to provide information for dbx, you would set tBELAGS variable to contain g
(CFLAGS = -g) andPMake would take care of the rest.

To give you a quick example, the makefileSection 2.3.40uld be changed to this:
oBJS = a.ob.oc.o

program : $(OBIS)
$(C0) -0 $(.TARGET) $(.ALLSRC)

18

Chapter 3 Short-cutsand Other Nice Things
$(0BIS) : defs.h

The transformation rule | gave above takes the place of thee6'

a.o . a.c
cc -c a.c

b.o : b.c
cc -c b.c

c.0 c.c
cc -c c.cC

Now you may be wondering about the dependency betweenctlaad. c files — it is not mentioned anywhere in the
new makefile. This is because it is not needed: one of theteféé@pplying a transformation rule is the target comes
to depend on the implied source. That's why it is called thplied source.

For a more detailed example. Say you have a makefile like this:

a. out : a.0 b.o
$(CC $(.ALLSRO

and a directory set up like this:

total 4

-rwrwr-- 1 deboor 34 Sep 7 00:43 Makefile
-rwrwr-- 1 deboor 119 Cct 3 19:39 a.c
-rwrwr-- 1 deboor 201 Sep 7 00:43 a.o
-rwrwr-- 1 deboor 69 Sep 7 00:43 b.c

While just typingpmake will do the right thing, it is much more informative to typeake -d s. This will show
you whatPMake is up to as it processes the files. In this cd®dake prints the following:

Suf f _Fi ndDeps (a. out)
using existing source a.o
applying .o -> .out to "a.o"
Suf f _Fi ndDeps (a. 0)
trying a.c...got it
applying .c -> .0 to "a.c"
Suf f _Fi ndDeps (b. 0)
trying b.c...got it

applying .c -> .0 to "b.c"
Suf f _Fi ndDeps (a.c)
trying a.y...not there
trying a.l...not there
trying a.c,v...not there
trying a.y,v...not there
trying a.l,v...not there
Suf f _Fi ndDeps (b. c)
trying b.y...not there
trying b.l...not there
trying b.c,v...not there
trying b.y,v...not there
trying b.l,v...not there
- - ao - -

19

Chapter 3 Short-cutsand Other Nice Things

Suf f _Fi ndDeps is the name of a function iRM ake that is called to check for implied sources for a target using
transformation rules. The transformations it tries aréyradly enough, limited to the ones that have been defined (a
transformation may be defined multiple times, by the waydmly the most recent one will be used). You will

notice, however, that there is a definite order to the suffixasare tried. This order is set by the relative positions of
the suffixes on the SUFFI XES line — the earlier a suffix appears, the earlier it is checlesitha source of a
transformation. Once a suffix has been defined, the only wakidage its position in the pecking order is to remove
all the suffixes (by having aSUFFI XES dependency line with no sources) and redefine them in the godewant.
(Previously-defined transformation rules will be autorcety redefined as the suffixes they involve are re-entered.)
Another way to affect the search order is to make the depaydeplicit. In the above example, out depends on

a. o andb. o. Since a transformation exists fram to . out , PMake uses that, as indicated by thei ng

exi sting source a.o message.

The search for a transformation starts from the suffix of #inget and continues through all the defined
transformations, in the order dictated by the suffix rankingil an existing file with the same base (the target name
minus the suffix and any leading directories) is found. At th@int, one or more transformation rules will have been
found to change the one existing file into the target.

For example, ignoring what's in the system makefile for nay, gou have a makefile like this:

. SUFFI XES co.out .o .c .y .|
.l.c :

I ex $(. 1 MPSRC)

m/ | ex.yy.c $(. TARGET)

.y.c :

yacc $(. | MPSRC)

mv/ y.tab.c $(. TARGET)
.C.0 :

cc -c¢ $(. I MPSRC)
. 0. out :

cc -0 $(. TARGET) $(.|NMPSRQ)

and the single fil¢i ve. | . If you were to typeomake -rd nms jive. out, you would get the following output for
jive.out:

Suf f _Fi ndDeps (jive.out)
trying jive.o...not there
trying jive.c...not there
trying jive.y...not there

.

trying jive ..got it
applying .l ->.c to "jive.l"
applying .c -> .0 to "jive.c"
applying .o -> .out to "jive.o"

and this is whyPM ake starts with the targgti ve. out , figures out its suffix.(out) and looks for things it can
transform to a out file. In this case, it only findso, so it looks for the filg i ve. o. It fails to find it, so it looks for
transformations into ao file. Again it has only one choicec. So it looks forj i ve. c and, as you know, fails to
find it. At this point it has two choices: it can create thefile from either a y file or a. | file. Since. y came first

20

Chapter 3 Short-cutsand Other Nice Things

on the. SUFFI XES line, it checks fojj i ve. y first, but can not find it, so it looks fgri ve. | and, lo and behold,
there it is. At this point, it has defined a transformatiorhped follows:

.l ->.¢c ->.0 ->.o0ut

and applies the transformation rules accordingly. For detepess, and to give you a better idea of whidtake
actually did with this three-step transformation, this isatPM ake printed for the rest of the process:

Suf f _Fi ndDeps (jive.0)
using existing source jive.c
applying .c -> .0 to "jive.c"
Suf f _Fi ndDeps (jive.c)
using existing source jive.l

applying .1 ->.c to "jive.l"
Suf f _Fi ndDeps (jive.l)
Examining jive.l...nodified 17:16: 01 Cct 4, 1987...up-to-date
Exam ning jive.c...non-existent...out-of-date
--- jive.c ---
lex jive.l

nmeani ngl ess | ex output deleted ...
nv lex.yy.c jive.c
Exam ning jive.o...non-existent...out-of-date
--- jive.0o ---
cc -c jive.c
Exam ning jive.out...non-existent...out-of-date
--- jive.out ---
cc -0 jive.out jive.o

One final question remains: what dd@g ake do with targets that have no known suffiR®l ake simply pretends it
actually has a known suffix and searches for transformatonsrdingly. The suffix it chooses is the source for the
. NULL target mentioned later. In the system makefileyt is chosen as the “null suffix” because most people use
PMaketo create programs. You are, however, free and welcome tagehiito a suffix of your own choosing. The
null suffix is ignored, however, whePM ake is in compatibility mode (se€hapter 4.

3.2. Including Other Makefiles

Just as for programs, it is often useful to extract certaitspaf a makefile into another file and just include it in other
makefiles somehow. Many compilers allow you say somethkeg li

#i ncl ude "defs. h"

to include the contents affef s. h in the source filePM ake allows you to do the same thing for makefiles, with the
added ability to use variables in the filenames. An includedtive in a makefile looks either like this:

#i ncl ude <fil e>
or this:

#i nclude "file"

21

Chapter 3 Short-cutsand Other Nice Things

The difference between the two is whétil ake searches for the file: the first wa3ivl ake will look for the file only
in the system makefile directory (or directories) (to find whit that directory is, giveM ake the- h flag). The
system makefile directory search path can be overriddemgiantoption. For files in double-quotes, the search is
more complex:

1. The directory of the makefile that’s including the file.
2. The current directory (the one in which you invokeld ake).
3. The directories given by you using flags, in the order in which you gave them.
4. Directories given by PATHdependency lines (s&hapter 4.
5. The system makefile directory.
in that order.

You are free to usPMake variables in the filename PM ake will expand them before searching for the file. You
must specify the searching method with either angle braakedouble-quotes outside of a variable expansion. l.e.
the following:

SYSTEM = <command. nk>
#i ncl ude $(SYSTEM

will not work.

3.3. Saving Commands

There may come a time when you will want to save certain contisigmbe executed when everything else is done.
For instance: you are making several different librariesnet time and you want to create the members in parallel.
Problem isranlib is another one of those programs that can not be run more ti@mio the same directory at the
same time (each one creates a file calledSYNMDEF into which it stuffs information for the linker to use. Two of
them running at once will overwrite each other’s file and #sult will be garbage for both parties). You might want
a way to save the ranlib commands til the end so they can beneiafter the other, thus keeping them from trashing
each other’s filePM ake allows you to do this by inserting an ellipsis (“...”) as a aoand between commands to be
run at once and those to be run later.

So for theranlib case above, you might do this:

libl.a © $(LI BLOBIS)
rm-f $(. TARGET)
ar cr $(.TARGET) $(.ALLSRO)
ranl i b $(. TARGET)

lib2. a © $(LI B20BJS)
rm-f $(. TARGET)
ar cr $(.TARGET) $(.ALLSRC)
ranl i b $(. TARGET)

This would save both

22

Chapter 3 Short-cutsand Other Nice Things

ranlib $(. TARGET)

commands until the end, when they would run one after ther §tising the correct value for theTARGET variable,
of course).

Commands saved in this manner are only executBilibke manages to re-create everything without an error.

3.4. Target Attributes

PMake allows you to give attributes to targets by means of speoiaices. Like everything eldeM ake uses, these
sources begin with a period and are made up of all upper-etised. There are various reasons for using them, and |
will try to give examples for most of them. Others you will leato find uses for yourself. Think of it as “an exercise
for the reader”. By placing one (or more) of these as a sounaeaependency line, you are “marking the target(s)
with that attribute”. That is just the way | phrase it, so yoow.

Any attributes given as sources for a transformation rudesgqplied to the target of the transformation rule when the
rule is applied.

. DONTCARE a target is marked with this attribute aRiil ake can not figure out how to create it, it will ignore this
fact and assume the file is not really needed or actuallysaisiPM ake just can not find it. This may
prove wrong, but the error will be noted later on, not wiRihake tries to create the target so marked.
This attribute also prevenBM ake from attempting to touch the target if it is given the flag.

.EXEC This attribute causes its shell script to be executed wiglery no effect on targets that depend on it.
This makes the target into a sort of subroutine. An exampag.y®u have some LISP files that need to
be compiled and loaded into a LISP process. To do this, yoa e3P commands into a file and
execute a LISP with this file as its input when everything ine&ld&ay also that you have to load other
files from another system before you can compile your filesfarttier, that you do not want to go
through the loading and dumping unless one of your files hasgdd. Your makefile might look a little
bit like this (remember, this is an educational example,@mdot worry about th€owPI LE rule, all

will soon become clear, grasshoppei)st em ©init a.fasl b.fasl c.fasl

for i in $(.ALLSRO); do echo -n ' (load "' >> input

echo -n ${i} >> input echo '")’ >> input done

echo ' (dunp "$(. TARGET)")' >> input lisp < input

a. f asl :a.l init COWILE b.fasl : b.l init COWPILE

c. fasl :c.l init COWILE COWILE . . USE

echo ' (conpile "$(.ALLSRC)")’ >> input init . . EXEC

echo ' (|l oad-system)’ > input . EXEC sources, do not appear in the local variables of targets

that depend on them (nor are they touchdel\fake is given the-t flag). Note that all the rules, not
just that for system, include init as a source. This is bezaase of the other targets can be made until
init has been made, thus they depend on it.

. EXPORT This is used to mark those targets whose creation shouldibécsanother machine if at all possible.
This may be used by some exportation schemes if the expmriatexpensive. You should ask your
system administrator if it is necessary.

. EXPORTSReMs the export system that the job should be exported tochima of the same architecture as the
current one. Certain operations (e.g. running text thraugff) can be performed the same on any
architecture (CPU and operating system type), while otfegs compiling a program with cc) must be
performed on a machine with the same architecture. Not albesystems will support this attribute.

23

Chapter 3 Short-cutsand Other Nice Things

. | GNORE Giving a target the | GNORE attribute causeBM ake to ignore errors from any of the target’s commands,
as if they all had before them.

. I NvI S| Btis allows you to specify one target as a source for anotlitaowt the one affecting the other’s local
variables. Useful if, say, you have a makefile that createspnwgrams, one of which is used to create
the other, so it must exist before the other is created. Yoldcsay
progl : $(PROGLOBJIS) prog2 MAKEI NSTALL
prog2 © $(PROZZ0OBJIS) .| NVISIBLE MAKEI NSTALL whereMAKEI NSTALL is some
complex. USE rule (see below) that depends on th& LSRC variable containing the right things.
Without the. | NVI SI BLE attribute forpr og2, the MAKEI NSTALL rule could not be applied. This is not
as useful as it should be, and the semantics may change (@htile thing go away) in the
not-too-distant future.

.JO N Thisis another way to avoid performing some operations mlfg while permitting everything else to
be done so. Specifically it forces the target’s shell scdfite executed only if one or more of the
sources was out-of-date. In addition, the target’s namieoth its. TARGET variable and all the local
variables of any target that depends on it, is replaced byahee of its. ALLSRC variable. As an
example, suppose you have a program that has four libréwa¢sdmpile in the same directory along
with, and at the same time as, the program. You again have tidéeon with ranlib that | mentioned
earlier, only this time it is more severe: you can not justtpetranlib off to the end since the program
will need those libraries before it can be re-created. Youdmsomething like this:
progr am © $(0BIS) libraries cc -0 $(.TARGET) $(.ALLSRC)
libraries clibl.alib2.alib3.alib4.a .JON ranlib $(. CODATE)
In this casePM ake will re-create thes(OBJS) as necessary, along with bl. a, i b2. a,li b3. aand
I'i b4. a. It will then execute ranlib on any library that was changed aet program’s ALLSRC
variable to contain what's ifi(OBJS) followed by “li bl.alib2.alib3.alib4.a.”Incaseyou
are wondering, it is calledJO Nbecause it joins together different threads of the “inpapgt at the
target marked with the attribute. Another aspect of.thel Nattribute is it keeps the target from being
created if the t flag was given.

.MAKE The. MAKE attribute marks its target as being a recursive invocatfdeke. This force$M aketo
execute the script associated with the target (if it is dutiate) even if you gave then or -t flag. By
doing this, you can start at the top of a system and typeke - n and have it descend the directory
tree (if your makefiles are set up correctly), printing whatould have executed if you had not
included the n flag.

. NOEXPORIf possible,PM ake will attempt to export the creation of all targets to anotimerchine (this depends on
how PM ake was configured). Sometimes, the creation is so simple, tiistiess to send it to another
machine. If you give the target the&lOEXPORT attribute, it will be run loally, even if you have given
PMakethe- L 0 flag.

. NOTMAI NNlormally, if you do not specify a target to make in any otheywM ake will take the first target on the
first dependency line of a makefile as the target to creatd.t@tget is known as the “Main Target” and
is labeled as such if you print the dependencies out usinggdlilag. Giving a target this attribute tells
PMake that the target is definitely not the Main Target. This allgwes to place targets in an included
makefile and hav@M ake create something else by default.

24

Chapter 3 Short-cutsand Other Nice Things

. PRECI 0U&/henPM ake s interrupted (you type control-C at the keyboard), it wailempt to clean up after itself
by removing any half-made targets. If a target has tPRRECI OUS attribute, howevePM ake will leave
it alone. An additional side effect of the operator is to mark the targets aBRECI OUS.

. SI LENT Marking a target with this attribute keeps its commands fbmimg printed when they are executed, just
as if they had am®in front of them.

. USE By giving a target this attribute, you turn it into PMake’sudgalent of a macro. When the target is used
as a source for another target, the other target acquiresthmands, sources and attributes (except
. USE) of the source. If the target already has commands, tI8& target's commands are added to the
end. If more than oneUSE-marked source is given to a target, the rules are appliagesgiglly. The
typical. USE rule (as | call them) will use the sources of the target to Wlitigs applied (as stored in the
. ALLSRC variable for the target) as its “arguments,” if you will. F@tample, you probably noticed that
the commands for creatirid b1. a andl i b2. a in the example in sectioBection 3.3vere exactly the
same. You can use th&JSE attribute to eliminate the repetition, like so:

libl.a : $(LIB1LOBIS) MAKELIB lib2.a : $(LIB20BJS) MAKELI B
MAKELI B : . USE rm-f $(. TARCET)
ar cr $(.TARGET) $(.ALLSRO) C ranlib $(. TARGET) Several system

makefiles (not to be confused with The System Makefile) makeofithese USE rules to make your
life easier (they are in the default, system makefile dingcttake a look). Note that theJSE rule
source itself AKELI B) does not appear in any of the targets’s local variablesteTiseno limit to the
number of times | could use thAKELI B rule. If there were more libraries, | could continue with
lib3.a : $(LIB30BJS) MAKELI Band so on and so forth.

3.5. Special Targets

As there were irM ake, so there are certain targets that have special meanifigltike. When you use one on a
dependency line, it is the only target that may appear orgfitdind-side of the operator. As for the attributes and
variables, all the special targets begin with a period amsisd of upper-case letters only. | will not describe them al
in detail because some of them are rather complex and | vsirilee them in more detail than you will want in
Chapter 4 The targets are as follows:

. BEG N Any commands attached to this target are executed befotkingelse is done. You can use it for any
initialization that needs doing.

. DEFAULTThis is sort of a USE rule for any target (that was used only as a source)RNahke can not figure out
any other way to create. It is only “sort of”.aJSE rule because only the shell script attached to the
. DEFAULT target is used. Thel MPSRC variable of a target that inheritEFAULT’'s commands is set to
the target’s own name.

. END This serves a function similar tBEG N, in that commands attached to it are executed once evegythin
has been re-created (so long as no errors occurred). It@fgessthe extra function of being a place on
which PM ake can hang commands you put off to the end. Thus the script fotahget will be executed
before any of the commands you save with the “...".

. EXPORT The sources for this target are passed to the exportatitersysompiled intd®M ake. Some systems
will use these sources to configure themselves. You shollgas system administrator about this.

25

Chapter 3 Short-cutsand Other Nice Things

. | GNORE This target marks each of its sources with th&NORE attribute. If you do not give it any sources, then it
is like giving the-i flag when you invoké®M ake — errors are ignored for all commands.

. I NCLUDES he sources for this target are taken to be suffixes thataeliz file that can be included in a program
source file. The suffix must have already been declared.v@itiFFI XES (see below). Any suffix so
marked will have the directories on its search path ($&&H, below) placed in thel NCLUDES
variable, each preceded by b flag. This variable can then be used as an argument for theilsorim
the normal fashion. Theh suffix is already marked in this way in the system makefile. Eypu have
. SUFFI XES : . bitmap . PATH. bi t map : lusr/local /X Iib/bitmps
. | NCLUDES © . bitmap PMakewill place- 1/ usr/ 1 ocal / X/ |'i b/ bi t maps in the

. | NCLUDES variable and you can then say
cc $(.INCLUDES) -c xprogramc
(Note: the. | NCLUDES variable is not actually filled in until the entire makefilesiaeen read.)

. | NTERRUAthenPM ake is interrupted, it will execute the commands in the scripttfas target, if it exists.

.LIBS This does for libraries whatl NCLUDES does for include files, except the flag usedls as required by
those linkers that allow you to tell them where to find libesti The variable used i4.| BS. Be
forewarned thaPM ake may not have been compiled to do this if the linker on youraystioes not
accept the L flag, though the LI BS variable will always be defined once the makefile has been read

.MAIN If you did not give a target (or targets) to create when yoolkedPM ake, it will take the sources of this
target as the targets to create.

. MAKEFLAGSIs target provides a way for you to always specify flagsiorake when the makefile is used. The
flags are just as they would be typed to the shell (except younoause shell variables unless they are in
the environment), though thé and-r flags have no effect.

.NULL This allows you to specify what suffiRM ake should pretend a file has if, in fact, it has no known suffix.
Only one suffix may be so designated. The last source on trendepcy line is the suffix that is used
(you should, however, only give one suffix...).

. PATH If you give sources for this targe®M ake will take them as directories in which to search for files it
cannot find in the current directory. If you give no sourcesiill clear out any directories added to the
search path before. Since the effects of this all get veryptexnwe will leave it till Chapter 4o give
you a complete explanation.

. PATHsuf flikis does a similar thing toPATH, but it does it only for files with the given suffix. The suffix stthave
been defined already. Look at Search Pafextion 4.] for more information.

. PRECI OUSimilar to. | GNORE, this gives the PRECI OUS attribute to each source on the dependency line, unless
there are no sources, in which case tRRECI OUS attribute is given to every target in the file.

. RECURSI Vais target applies theMAKE attribute to all its sources. It does nothing if you do notgivany sources.

. SHELL PMakeis not constrained to only using the Bourne shell to exeh@e&bmmands you put in the
makefile. You can tell it some other shell to use with this¢ar@heck out A Shell isa Shell isa Shell”
(Section 4.4 for more information.

. SI LENT When you use S| LENT as a target, it applies thesl LENT attribute to each of its sources. If there are no
sources on the dependency line, then it is as if you weke the- s flag and no commands will be
echoed.

26

Chapter 3 Short-cutsand Other Nice Things

. SUFFI XEEBhis is used to give new file suffixes fBiM ake to handle. Each source is a suffik ake should
recognize. If you give aSUFFI XES dependency line with no sourcé3yl ake will forget about all the
suffixes it knew (this also nukes the null suffix). For thogsgéess that need to have suffixes defined, this
is how you do it.

In addition to these targets, a line of the form:
attribute : sources

applies the attribute to all the targets listed as sources.

3.6. Modifying Variable Expansion

Variables need not always be expanded verbd®ikhake defines several modifiers that may be applied to a
variable’s value before it is expanded. You apply a modifieplacing it after the variable name with a colon
between the two, like so:

${ VARI ABLE: nodi fier}

Each modifier is a single character followed by somethingigiggo the modifier itself. You may apply as many
modifiers as you want — each one is applied to the result ofdqus and is separated from the previous by
another colon.

There are seven ways to modify a variable’s expansion, niaghich come from the C shell variable modification
characters:

Mpattern

This is used to select only those words (a word is a seriesarbckers that are neither spaces nor tabs) that
match the given pattern. The pattern is a wildcard patt&mthat used by the shell, wherenean® or more
characters of any sort;is any single charactefabcd] matches any single character that is eithgs, c ord
(there may be any number of characters between the bradgkety)] matches any single character that is
betweerd and9 (i.e. any digit. This form may be freely mixed with the otheatket form), and is used to
escape any of the characters, [or: , leaving them as regular characters to match themselvesdarc For
example, the system makefieakedepend. mk> uses$(CFLAGS: M [| D] +) to extract all the | and- Dflags
that would be passed to the C compiler. This allows it to prigdecate include files and generate the correct
dependencies.

Npattern

This is identical ta Mexcept it substitutes all words that do not match the givetepa

S/ search-string/replacenent-string/[g]

Causes the first occurrence of search-string in the varialide replaced by replacement-string, unlessgthe

flag is given at the end, in which case all occurrences of tiiregsare replaced. The substitution is performed on
each word in the variable in turn. If search-string beginhwai*, the string must match starting at the beginning
of the word. If search-string ends wittathe string must match to the end of the word (these two may be
combined to force an exact match). If a backslash precedse thvo characters, however, they lose their special
meaning. Variable expansion also occurs in the normaldasiniside both the search-string and the

27

Chapter 3 Short-cutsand Other Nice Things

replacement-string, except that a backslash is used temptréve expansion of$ not another dollar sign, as is
usual. Note that search-string is just a string, not a patser none of the usual regularexpression/wildcard
characters have any special meaning sasad$. In the replacement string, tlRecharacter is replaced by the
search-string unless it is preceded by a backslash. Youlaveed to use any character except colon or
exclamation point to separate the two strings. This seedalklimiter character may be placed in either string
by preceding it with a backslash.

T
Replaces each word in the variable expansion by its last caet (its “tail”). For example, given:
OBJS = ../lib/la.o b /usr/lib/libma
TAILS = $(OBIS: T)
the variableTAl LS would expandt@. o b |ibm a.

H
This is similar to: T, except that every word is replaced by everything but tHéttae “head”). Using the same
definition ofOBJ S, the string$(OBJS: H) would expandto./lib /usr/lib. Note thatthe final slash on the
heads is removed and anything without a head is replaced=gntipty string.

E
: Ereplaces each word by its suffix (“extension”). §o0BJS: E) would give you. o . a.

R

This replaces each word by everything but the suffix (thetrobthe word).$(0BJS: R) expands to
../libla b fusr/lib/libm

In addition, the System V style of substitution is also supgxh This looks like:
$(VARI ABLE: sear ch-stri ng=repl acenent)

It must be the last modifier in the chain. The search is anchatrthe end of each word, so only suffixes or whole
words may be replaced.

3.7. More Exercises

Exercise 3.1

You have got a set programs, each of which is created fromnitsassembly-language source file (suffasm).

Each program can be assembled into two versions, one with-enecking code assembled in and one without. You
could assemble them into files with different suffixesdbj and. obj , for instance), but your linker only
understands files that end.iobj . To top it all off, the final executables must have the suffixe. How can you still
use transformation rules to make your life easier (Hintuassthe errorchecking versions have ec tacked onto their
prefix)?

28

Chapter 3 Short-cutsand Other Nice Things

Exercise 3.2

Assume, for a moment or two, you want to perform a sort of ‘fiadiion” by placing the name of a variable into
another one, then you want to get the value of the first by edipgrthe second somehow. Unfortunatéliy] ake
does not allow constructs like:

$($(FOO)

What do you do? Hint: no further variable expansion is penied after modifiers are applied, thus if you causea
occur in the expansion, that is what will be in the result.

Notes

1. Thisis also somewhat cleaner, | think, than the dynamiccssolution presented Bection 2.6

29

Chapter 4 PMake for Gods

This chapter is devoted to those facilitiedHN ake that allow you to do a great deal in a makefile with very little
work, as well as do some things you could not dd/iake without a great deal of work (and perhaps the use of other
programs). The problem with these features, is they musahdlbad with care, or you will end up with a mess.

Once more, | assume a greater familiarity with UNIX or Sptiitan | did in the previous two chapters.

4.1. Search Paths

PMake supports the dispersal of files into multiple directoriesabgwing you to specify places to look for sources
with . PATHtargets in the makefile. The directories you give as sourethése targets make up a “search path”.
Only those files used exclusively as sources are actuallyrgan a search path, the assumption being that anything
listed as a target in the makefile can be created by the makefiléhus should be in the current directory.

There are two types of search path#M ake: one is used for all types of files (including included malesfjland is
specified with a plain PATHtarget (e.g. PATH : RCS), while the other is specific to a certain type of file, as
indicated by the file's suffix. A specific search path is inticeby immediately following the PATH with the suffix
of the file. For instance:

. PATH. h . Ispritel/lib/linclude /sprite/att/lib/include

would tellPMaketo look in the directoriessprite/lib/incl ude and/ sprite/att/lib/includeforany
files whose suffix is h.

The current directory is always consulted first to see if aefdists. Only if it cannot be found there are the directories
in the specific search path, followed by those in the geneaich path, consulted.

A search path is also used when expanding wildcard chasadténe pattern has a recognizable suffix on it, the path
for that suffix will be used for the expansion. Otherwise théadlt search path is employed.

When a file is found in some directory other than the curreet ail local variables that would have contained the
target’'s name.(ALLSRC, and. | MPSRC) will instead contain the path to the file, as found® ake. Thus if you
have afile. . /1i b/ munbl e. ¢ and a makefile like this:

. PATH. ¢ o .. lib
munbl e . munble.c
$(CC) -0 $(.TARGET) $(.ALLSRC

the command executed to create mumble wouldde o munbl e ../ 1i b/ munbl e. c. (as an aside, the
command in this case is not strictly necessary, since itheifound using transformation rules if it is not given. This
is becauseout is the null suffix by default and a transformation exists froeo . out . Just thought | would throw
that in). If a file exists in two directories on the same seaath, the file in the first directory on the path will be the
onePMake uses. So if you have a large system spread over many direstanivould behoove you to follow a
naming convention that avoids such conflicts.

Something you should know about the way search paths areimgpited is that each directory is read, and its
contents cached, exactly once — when it is first encountesedany changes to the directories whie ake is

running will not be noted when searching for implicit sowsceor will they be found wheRM ake attempts to
discover when the file was last modified, unless the file waatedsin the current directory. While people have
suggested th&M ake should read the directories each time, my experience stgyted the caching seldom causes

30

Chapter 4 PMake for Gods

problems. In addition, not caching the directories slovisgh down enormously becauseRi¥ ake's attempts to
apply transformation rules through non-existent files —thimber of extra file-system searches is truly staggering,
especially if many files without suffixes are used and the suffix is not changed fromout .

4.2. Archives and Libraries

UNIX and Sprite allow you to merge files into an archive usingdr command. Further, if the files are relocatable
object files, you can runanlib on the archive and get yourself a library that you can link gaty program you want.
The main problem with archives is they double the space yed testore the archived files, since there is one copy
in the archive and one copy out by itself. The problem witindiies is you usually think of them as mrather than
/usr/1ib/1ibm aand the linker thinks they are out-of-date if you so much ak kat them.

PM ake solves the problem with archives by allowing you to tell ietcamine the files in the archives (so you can
remove the individual files without having to regeneratarthiater). To handle the problem with librari¢2yi ake
adds an additional way of deciding if a library is out-of-gtaf the table of contents is older than the library, or is
missing, the library is out-of-date.

A library is any target that looks likel name or that ends in a suffix that was marked as a library using th&S
target.. a is so marked in the system makefile. Members of an archivepaafied as

ar chi ve(menber [nenber...]).Thusl i bdi x. a(wi ndow. o) specifies the file&i ndow. o in the archive

I'i bdi x. a. You may also use wildcards to specify the members of thengrchust remember that most the wildcard
characters will only find existing files. A file that is a memlbé&ean archive is treated specially. If the file does not
exist, but it is in the archive, the modification time recatde the archive is used for the file when determining if the
file is out-of-date. When figuring out how to make an archiveahther target (not the file itself, but the file in the
archive — the archive(member) target), special care isitalkth the transformation rules, as follows:

- archive(member) is made to depend on member.
- The transformation from the member’s suffix to the archigeix is applied to the archive(member) target.

- The archive(member)'STARGET variable is set to the name of the member if member is actaabyget, or the
path to the member file if member is only a source.

- The. ARCH VE variable for the archive(member) target is set to the nantleeoérchive.

- The. MEMBERvariable is set to the actual string inside the parenthésesost cases, this will be the same as the
. TARCET variable.

- The archive(member)’s place in the local variables of thgets that depend on it is taken by the value of its
. TARGET variable.

Thus, a program library could be created with the followinajefile:

.0.a
rm-f $(. TARGET: T)

oBJS = obj1l.0 obj2.0 obj3.0

libprog. a : libprog.a($(0BIS))

ar cru $(. TARGET) $(.OODATE)
ranlib $(. TARCGET)

31

Chapter 4 PMake for Gods

This will cause the three object files to be compiled (if theresponding source files were modified after the object
file or, if that does not exist, the archived object file), the-of-date ones archived Iri bpr og. a, a table of contents
placed in the archive and the newly-archived object filesstodmoved.

All this is used in tharakel i b. nk system makefile to create a single library with ease. Thisafilakooks like this:

Rules for making libraries. The object files that nake up the library
are renoved once they are archived.

To make several libraries in parallel, you should define the variable
"many_libraries". This will serialize the invocations of ranlib.

To use, do something like this:
OBJECTS = <files in the library>

fish.a: fish. a($(OBJECTS)) MAKELIB

HOoH OH H K HH R HHHH R

#i fndef _MAKELI B_MK
_MAKELI B MK =

#i ncl ude <po. nk>
.po.a .o0.a

rm-f $(. MEMBER)
ARFLAGS ?=crl

#
Re-archive the out-of-date nmenbers and recreate the library’'s table of
contents using ranlib. If many_libraries is defined, put the ranlib
off til the end so many libraries can be nade at once.
#
MAKELI B : . USE . PRECI QUS
ar $(ARFLAGS) $(.TARCET) $(.OODATE)
#i fndef no_ranlib
ifdef many_libraries

endif many_libraries
ranlib $(. TARGET)
#endif no_ranlib

#endi f _MAKELI B_MK

32

Chapter 4 PMake for Gods

4.3. On the Condition...

Like the C compiler before itPM ake allows you to configure the makefile, based on the currente@nrient, using
conditional statements. A conditional looks like this:

#i f bool ean expression

I'ines

#el i f anot her bool ean expression
nore |ines

#el se

still nore |lines

#endi f

They may be nested to a maximum depth of 30 and may occur amg\@recept in a comment, of course). Fhe
must the very first character on the line.

Each boolean expression is made up of terms that look liketiom calls, the standard C boolean operag&g | ,

and! , and the standard relational operators! =, >, >=, <, and<=, with == and! = being overloaded to allow string
comparisons as welké& represents logical AND;| is logical OR and is logical NOT. The arithmetic and string
operators take precedence over all three of these operataute NOT takes precedence over AND, which takes
precedence over OR. This precedence may be overridden argmineses, and an expression may be parenthesized
to your heart’s content. Each term looks like a call on oneoaf functions:

make The syntax is make(target) where target is a target in theefil@kThis is true if the given target was
specified on the command line, or as the source favis Ntarget (note that the sources favAl Nare
only used if no targets were given on the command line).

defined The syntax iglef i ned(vari abl e) and is true if variable is defined. Certain variables are @effin the
system makefile that identify the system on whiRt¥l ake is being run.

exi sts The syntax iexi sts(file) and is true if the file can be found on the global search paghttiat
defined by. PATHtargets, not by PATHsuf fi x targets).

enpty This syntax is much like the others, except the string iniégparentheses is of the same form as you
would put between parentheses when expanding a varialglete with modifiers and everything. The
function returns true if the resulting string is empty. Ardefined variable in this context will cause at
the very least a warning message about a malformed condlitiamd at the worst will cause the process
to stop once it has read the makefile. If you want to check farable being defined or empty, use the
expressiont defi ned(var) || enpty(var) as the definition of | will prevent theenpt y() from
being evaluated and causing an error, if the variable isfimetk This can be used to see if a variable
contains a given word, for examplé:f ! enpt y(var : Mwor d)

The arithmetic and string operators may only be used tohestdlue of a variable. The lefthand side must contain
the variable expansion, while the righthand side contathgkea string, enclosed in double-quotes, or a number. The
standard C numeric conventions (except for specifying @al ocimber) apply to both sides. E.g.:

#if $(0S) == 4.3
#i f $(MACH NE) == "sun3"
#i f $(LOAD_ADDR) > 0xc000

are all valid conditionals. In addition, the numeric valdewariable can be tested as a boolean as follows:

33

Chapter 4 PMake for Gods
f $(LOAD)
would see ifLOAD contains a non-zero value and:
#i f 1$(LOAD)

would test ifLOAD contains a zero value.

In addition to the baréi f , there are other forms that apply one of the first two functitmneach term. They are as
follows:

i fdef defi ned
i fndef I defi ned
i f make make

i f nmake I make

There are also theef se i f”forms:elif,elifdef,elifndef,elifmke,andelifnmake.

For instance, if you wish to create two versions of a programe, of which is optimized (the production version) and
the other of which is for debugging (has symbols for dbx), fiaue two choices: you can create two makefiles, one
of which uses theg flag for the compilation, while the other uses theflag, or you can use another target (call it
debug) to create the debug version. The construct belowatd care of this for you. | have also made it so defining
the variableDEBUG (say withpnmake - D DEBUG) will also cause the debug version to be made.

#i f defined(DEBUG || make(debug)

CFLAGS += -g
#el se
CFLAGS += -0
#endi f

There are, of course, problems with this approach. The nlashg annoyance is that if you want to go from making
a debug version to making a production version, you havertmve all the object files, or you will get some
optimized and some debug versions in the same program. Anatimoyance is you have to be careful not to make
two targets that “conflict” because of some conditionalhimrmakefile. For instance:

#i f make(print)

FORVATTER = ditroff -Plaser_printer
#endi f

#i f make(draft)

FORVMATTER = nroff -Pdot_matrix_printer
#endi f

would wreak havoc if you triegnmake draft print since you would use the same formatter for each target. As |
said, this all gets somewhat complicated.

4.4. A Shell is a Shell is a Shell

In normal operation, the Bourne Shell (better knowistgss used to execute the commands to re-create targets.
PMake also allows you to specify a different shell for it to use wheecuting these commands. There are several

34

Chapter 4 PMake for Gods

thingsPM ake must know about the shell you wish to use. These things afigukas the sources for the&SHELL
target by keyword, as follows:

pat h=pat h

PMake needs to know where the shell actually resides, so it canugéc If you specify this and nothing else,
PMake will use the last component of the path and look in its tablthefshells it knows and use the
specification it finds, if any. Use this if you just want to usaifferent version of th&ourne or C Shell (yes,
PMake knows how to use th€ Shell too).

name=nane

This is the name by which the shell is to be known. It is a simgded and, if no other keywords are specified
(other than path), it is the name by whiEM ake attempts to find a specification for it (as mentioned above).
You can use this if you would just rather use the C Shell thaBtiur ne Shell (. SHELL: nanme=csh will do

it).
qui et =echo- of f command

As mentioned beford?M ake actually controls whether commands are printed by introducommands into
the shell’s input stream. This keyword, and the next twoticdrvhat those commands are. Ti et

keyword is the command used to turn echoing off. Once it isedroff, echoing is expected to remain off until
theecho- on command is given.

echo=echo- on command

The commandPM ake should give to turn echoing back on again.

filter=printed echo-of f command

Many shells will echo thecho- of f command when it is given. This keyword tef ake in what format the
shell actually prints thecho- of f command. Wherevé?M ake sees this string in the shell’s output, it will
delete it and any following whitespace, up to and includimgext newline. See the example at the end of this
section for more details.

echoFl ag=f | ag to turn echoing on

Unless a target has been markesll LENT, PM ake wants to start the shell running with echoing on. To do this,
it passes this flag to the shell as one of its arguments. I¢etithis or the next flag begins with-a the flags will

be passed to the shell as separate arguments. Otherwisepothdl be concatenated (if they are used at the
same time, of course).

err Fl ag=f | ag to turn error checking on
Likewise, unless a target is marketdlGNORE, PM ake wishes error-checking to be on from the very start. To this
end, it will pass this flag to the shell as an argument. The satas for an initial apply as for theechoFl ag.
check=command to turn error checking on

Just as for echo-control, error-control is achieved byriirsg commands into the shell’'s input stream. This is
the command to make the shell check for errors. It also semether purpose if the shell does not have
error-control as commands, but | will get into that in a me&ukgain, once error checking has been turned on, it
is expected to remain on until it is turned off again.

35

Chapter 4 PMake for Gods

i gnor e=commandto turn error checking off

This is the commanB&M ake uses to turn error checking off. It has another use if thel stoals not do
errorcontrol, but I will tell you about that...now.

hasErr Ct | =yes orno

This takes a value that is eithges or no. Now you might think that the existence of the check and ignor
keywords would be enough to télM ake if the shell can do error-control, but you would be wrong. If

hasErr Ct| isyes, PMake uses the check and ignore commands in a straight-forwardenalfi this is no,
however, their use is rather different. In this case, thekltemmand is used as a template, in which the string
% is replaced by the command that is about to be executed, ttupeca command for the shell that will echo
the command to be executed. The ignore command is also usetaplate, again withis replaced by the
command to be executed, to produce a command that will ex¢fcetcommand to be executed and ignore any
error it returns. When these strings are used as templatasnyst provide newline(s)) in the appropriate
place(s).

The strings that follow these keywords may be enclosed iglsior double quotes (the quotes will be stripped off)
and may contain the usual C backslash-characters(newline,\ r is return,\ b is backspace, escapes a
single-quote inside single-quoté&s, escapes a double-quote inside double-quotes). Now foramghe.

This is actually the contents of the <shx.mk> system makefild causeBM ake to use theBourne Shell in such a
way that each command is printed as it is executed. Thatnsoie than one command is given on a line, each will
be printed separately. Similarly, each time the body of @ lisexecuted, the commands within that loop will be
printed, etc. The specification runs like this:

#

This is a shell specification to have the Bourne shell echo

the commands just before executing them rather than when it reads

them Useful if you want to see how vari abl es are bei ng expanded, etc.
#

. SHELL : path=/bin/sh \
qui et="set -" \
echo="set -x" \
filter="+ set - "\

echoFl ag=x \

err Fl ag=e \
hasErr Ctl =yes \
check="set -e" \
i gnore="set +e"

It tells PM ake the following:

- The shellis located in the filebi n/ sh. It need not telPM ake that the name of the shell is shRalslake can
figure that out for itself (it is the last component of the path

- The command to stop echoing is set
« The command to start echoing is sat

- When the echo off command is executed, the shell will prisét- (The+ comes from using thex flag (rather
than the- v flag PM ake usually uses))PM ake will remove all occurrences of this string from the outpatysu
do not notice extra commands you did not put there.

36

Chapter 4 PMake for Gods

- The flag theBourne Shell will take to start echoing in this way is thex flag. TheBour ne Shell will only take its
flag arguments concatenated as its first argument, so n#iikeror the errFlag specification begins with.a

« The flag to use to turn error-checking on from the startis
- The shell can turn error-checking on and off, and the commémndo so areet +e andset - e, respectively.

| should note that this specification is Bour ne Shells that are not part of Berkeley UNIX, as shells from Berkeley
do not do error control. You can get a similar effect, howghgrchanging the last three lines to be:

hasErrCtl =no \
check="echo \"+ 9%\ "\n" \
ignore="sh -c "% || exit O\n"

This will causePM ake to execute the two commands:

echo "+ cnd"
sh -¢c "cnd || true’

for each command for which errors are to be ignored. (In caseaye wondering, the thing for ignore tells the shell

to execute another shell without error checking on and advesyt O, since the || causes the exit 0 to be executed only
if the first command exited non-zero, and if the first commaxitkd zero, the shell will also exit zero, since that is

the last command it executed).

4.5. Compatibility

There are three (well, 3 1/2) levels of backwards-compltiltiuilt into PM ake. Most makefiles will need none at
all. Some may need a little bit of work to operate correctlyewiun in parallel. Each level encompasses the previous
levels (e.g- B (one shell per command) implie®). The three levels are described in the following threeispst

4.6. DEFCON 3 — Variable Expansion

As noted beforePM ake will not expand a variable unless it knows of a value for itisSTten cause problems for
makefiles that expect to leave variables undefined excepeicia circumstances (e.g. if more flags need to be
passed to the C compiler or the output from a text processnidlie sent to a different printer). If the variables are
enclosed in curly braces${ PRI NTER}), the shell will let them pass. If they are enclosed in pdresés, however, the
shell will declare a syntax error and the make will come toiading halt.

You have two choices: change the makefile to define the vasgtheir values can be overridden on the command
line, since that is where they would have been set if you leakle, anyway) or always give theV flag (this can be
done with the MAKEFLAGS target, if you want).

4.7. DEFCON 2 — The Number of the Beast

Then there are the makefiles that expect certain commanztsasichanging to a different directory, to not affect
other commands in a target’s creation script. You can sdiigag either by going back to executing one shell per
command (which is what theB flag forcesPM ake to do), which slows the process down a good bit and requiras yo
to use semicolons and escaped newlines for shell constandig changing the makefile to execute the offending
command(s) in a subshell (by placing the line inside paes#h), like so:

37

Chapter 4 PMake for Gods

install :: .MAKE
(cd src; $(.PMAKE) install)
(cd lib; $(.PMAKE) install)
(cd man; $(.PMAKE) install)

This will always execute the three makes (even ifthdlag was given) because of the combination of:the
operator and theMAKE attribute. Each command will change to the proper directoperform the install, leaving
the main shell in the directory in which it started.

4.8. DEFCON 1 — Imitation is the Not the Highest Form of Flatte ry

The final category of makefile is the one where every commanuines input, the dependencies are incompletely
specified, or you simply cannot create more than one targetiate, as mentioned earlier. In addition, you may not
have the time or desire to upgrade the makefile to run smouwlittyPM ake. If you are the conservative sort, this is
the compatibility mode for you. It is entered either by giyiPM ake the- Mflag (forM ake), or by executind®M ake
asmake. In either casePM ake performs things exactly lik& ake (while still supporting most of the nice new
featuredPM ake provides). This includes:

- No parallel execution.

- Targets are made in the exact order specified by the makeffilesdurces for each target are made in strict
left-to-right order, etc.

- Asingle Bourne shell is used to execute each command, tleushill’'s$$ variable is useless, changing
directories does not work across command lines, etc.

- If no special characters exist in a command likl ake will break the command into words itself and execute the
command directly, without executing a shell first. The chtaes that causeM ake to execute a shell ar¢; =, | ,
AN LG &> <%, 2, L], 0,8, ¢, and\ . You should notice that these are all the characters thajieee
special meaning by the shell (excépand, which PMake deals with all by its lonesome).

« The use of the null suffix is turned off.

4.9. The Way Things Work

WhenPM ake reads the makefile, it parses sources and targets into nodegaph. The graph is directed only in the
sense thalPM ake knows which way is up. Each node contains not only links taisbarents and children (the
nodes that depend on it and those on which it depends, régggktbut also a count of the number of its children
that have already been processed.

The most important thing to know about h&®M ake uses this graph is that the traversal is breadth-first andrecc
in two passes.

After PMake has parsed the makefile, it begins with the nodes the useolastio make (either on the command
line, or via a. MAI Ntarget, or by the target being the first in the file not labeléth the. NOTMAI N attribute) placed

in a queue. It continues to take the node off the front of theugy mark it as something that needs to be made, pass
the node tasuf f _Fi ndDeps (mentioned earlier) to find any implicit sources for the naated place all the node’s
children that have yet to be marked at the end of the queurylbthe children is a USE rule, its attributes are
applied to the parent, then its commands are appended tathetjs list of commands and its children are linked to
its parent. The parent’s unmade children counter is theredsented (since theUSE node has been processed). You

38

Chapter 4 PMake for Gods

will note that this allows a USE node to have children that ar&SE nodes and the rules will be applied in sequence.
If the node has no children, it is placed at the end of anothieuq to be examined in the second pass. This process
continues until the first queue is empty.

At this point, all the leaves of the graph are in the examaratjueuePM ake removes the node at the head of the
gueue and sees if it is out-of-date. If it is, it is passed toracfion that will execute the commands for the node
asynchronously. When the commands have completed, albtiesiparents have their unmade children counter
decremented and, if the counter is then 0, they are placedsoexiamination queue. Likewise, if the node is
up-to-date. Only those parents that were marked on the dawhpass are processed in this way. TRWMsake

traverses the graph back up to the nodes the user instriittecteate. When the examination queue is empty and no
shells are running to create a targeitj akeis finished.

Once all targets have been proces$¥dake executes the commands attached to. theD target, either explicitly or
through the use of an ellipsis in a shell script. If there wesesrrors during the entire process but there are still some
targets unmadd”M ake keeps a running count of how many targets are left to be mttak is a cycle in the graph.
PMake does a depth-first traversal of the graph to find all the tartett were not made and prints them out one by
one.

39

Chapter 5 Answers to Exercises

Exercise 3.1

This is something of a trick question, for which | apologiZée trick comes from the UNIX definition of a suffix,
which PM ake does not necessarily share. You will have noticed that alktiffixes used in this tutorial (and in
UNIX in general) begin with a period (s, . c, etc.). Now,PMake's idea of a suffix is more like English’s: it is the
characters at the end of a word. With this in mind, one possiblution to this problem goes as follows:

. SUFFI XES . ec.exe .exe ec.obj .obj .asm
ec. obj ec. exe .obj.exe :

link -0 $(. TARGET) $(.!|MPSRC)
. asnec. obj :

asm -0 $(. TARCGET) -DDO_ERROR_CHECKI NG $(. | MPSRC)
.asm obj :
asm -0 $(. TARGET) $(.! MPSRO)

Excercise 3.2

The trick to this one lies in the= variable-assignment operator and tlgvariable-expansion modifier. Basically
what you want is to take the pointer variable, so to speaktr@amdform it into an invocation of the variable at which
it points. You might try something like:

$(PTR SIMNS$(/:S/$/))

which placess(at the front of the variable name ahdht the end, thus transforming\R, for example, into

$(VAR) , which is just what we want. Unfortunately (as you know if ymave tried it), since, as it says in the hint,
PMake does no further substitution on the result of a modified egjmam that is all you get. The solution is to make
use of: = to place that string into yet another variable, then invdieedther variable directly:

*PTR = $(PTR SIA\S$(/:S/$1)1)

You can then us8(* PTR) to your heart’s content.

40

Glossary of Jargon

attribute

A property given to a target that caud®ld ake to treat it differently.

command script

The lines immediately following a dependency line that fgezommands to execute to create each of the
targets on the dependency line. Each line in the commangt sutist begin with a tab.

command-line variable

A variable defined in an argument whEM ake is first executed. Overrides all assignments to the samabilari
name in the makefile.

conditional

A construct much like that used in C that allows a makefile tad&igured on the fly based on the local
environment, or on what is being made by that invocatioRMfake.

creation script

Commands used to create a target.

dependency

The relationship between a source and a target. This contleseia flavors, as indicated by the operator
between the target and the sourcgjives a straight time-wise dependency (if the target isrataen the source,
the target is out-of-date), whileprovides simply an ordering and always considers the tangtetf-date: : is
much like: , save it creates multiple instances of a target each of wdegends on its own list of sources.

dynamic source

This refers to a source that has a local variable invocatidn it allows a single dependency line to specify a
different source for each target on the line.

global variable

Any variable defined in a makefile. Takes precedence oveabias defined in the environment, but not over
command-line or local variables.

41

Glossary of Jargon
input graph

WhatPM ake constructs from a makefile. Consists of nodes made of thetiig the makefile, and the links
between them (the dependencies). The links are directeith@ource to target) and there may not be any cycles
(loops) in the graph.

local variable

A variable defined by’M ake visible only in a target’s shell script. There are sevenllvasiables, not all of

which are defined for every targefTARGET, . ALLSRC, . OODATE, . PREFI X, . | MPSRC, . ARCHI VE, and

. MEMBER. . TARGET, . PREFI X, . ARCHI VE, and. MEMBER may be used on dependency lines to create “dynamic
sources”.

makefile

A file that describes how a system is built. If you do not knovawihis after reading this tutorial. . .

modifier

A letter, following a colon, used to alter how a variable iparded. It has no effect on the variable itself.

operator

What separates a source from a target (on a dependencytidepacifies the relationship between the two.
There are three:, : : , and! .

search path

A list of directories in which a file should be soughRiM ake's view of the contents of directories in a search
path does not change once the makefile has been read. A fileghtsan a search path only if it is exclusively a
source.

shell

A program to which commands are passed in order to createtsarg

source

Anything to the right of an operator on a dependency lineg@aron the dependency line are usually created
from the sources.

42

Glossary of Jargon

special target

A target that cause8M ake to do special things when it is encountered.

suffix

The tail end of a file name. Usually begins with a period, likeor . ns.

target

A word to the left of the operator on a dependency line. Morgegally, any file thaPM ake might create. A file
may be (and often is) both a target and a source (what it isrdispen howPM ake is looking at it at the time —
sort of like the wave/particle duality of light, you know).

transformation rule

A special construct in a makefile that specifies how to creéite af one type from a file of another, as
indicated by their suffixes.

variable expansion

The process of substituting the value of a variable for aresfee to it. Expansion may be altered by means of
modifiers.

variable

A place in which to store text that may be retrieved lateroAlsed to define the local environment.
Conditionals exist that test whether a variable is defineubor

43

	PMake A Tutorial
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 The Basics of PMake
	2.1. Dependency Lines
	2.2. Shell Commands
	2.3. Variables
	2.3.1. Local Variables
	2.3.2. Commandline Variables
	2.3.3. Global Variables
	2.3.4. Environment Variables

	2.4. Comments
	2.5. Parallelism
	2.6. Writing and Debugging a Makefile
	2.7. Invoking PMake
	2.8. Summary

	Chapter 3 Shortcuts and Other Nice Things
	3.1. Transformation Rules
	3.2. Including Other Makefiles
	3.3. Saving Commands
	3.4. Target Attributes
	3.5. Special Targets
	3.6. Modifying Variable Expansion
	3.7. More Exercises

	Chapter 4 PMake for Gods
	4.1. Search Paths
	4.2. Archives and Libraries
	4.3. On the Condition...
	4.4. A Shell is a Shell is a Shell
	4.5. Compatibility
	4.6. DEFCON 3 Variable Expansion
	4.7. DEFCON 2 The Number of the Beast
	4.8. DEFCON 1 Imitation is the Not the Highest Form of Flattery
	4.9. The Way Things Work

	Chapter 5 Answers to Exercises
	Glossary of Jargon
	attribute
	command script
	commandline variable
	conditional
	creation script
	dependency
	dynamic source
	global variable
	input graph
	local variable
	makefile
	modifier
	operator
	search path
	shell
	source
	special target
	suffix
	target
	transformation rule
	variable expansion
	variable

