Practical rc.d scripting in BSD

Yar Tikhiy
yar@FreeBSD.org

$FreeBSD: head/en_US.ISO8859-1/articles/rc-scripting /article.xml 41645
2013-05-17 18:49:52Z gabor $

Copyright © 2005, 2006, 2012 The FreeBSD Project
$FreeBSD: head/en_US.ISO8859-1/articles/rc-scripting /article.xml 41645
2013-05-17 18:49:527 gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.

NetBSD is a registered trademark of the NetBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

Beginners may find it difficult to relate the facts from thernfad documentation on the BSi®. d
framework with the practical tasks ot. d scripting. In this article, we consider a few typical caskés o
increasing complexity, showc. d features suited for each case, and discuss how they work.&uc
examination should provide reference points for furthedgtof the design and efficient application of
rc.d.

Table of Contents

N T o o [T3 1o o USRS PURPP R 1
22 @ 1 11 1o T € L= = L SR 3.
G Ao 110 TV o]]) S 3..
N oo a1 iTo [UT =] =00 0T g AR] o) RS 5.
5 Startup and shutdown of a SIMPIE ABMON...........c.uuiiiiiiee e e e e e e e eeaned 6
6 Startup and shutdown of an advanCed ABMON...........cciieii i ee e ae e e e e anes 7.
7 Connecting a script to the re.d framEWOTKcoiii i e e e e e e e e s e e eeeens 10
8 Giving more flexibility t0 an rC.d SCHPLciiii i e e e e s e e e e e e e e s e e e e enenrene 13
Sl VL1 [T (== To [T TR PP USRI 15.

Practical rc.d scripting in BSD

1 Introduction

The historical BSD had a monolithic startup scriggt ¢/ r c. It was invoked by init(8) at system boot time and
performed all userland tasks required for multi-user of@nachecking and mounting file systems, setting up the
network, starting daemons, and so on. The precise list k§taas not the same in every system; admins needed to
customize it. With few exceptionset ¢/ r ¢ had to be modified, and true hackers liked it.

The real problem with the monolithic approach was that it/sted no control over the individual components
started fronl et ¢/ r c. For instance), et ¢/ r ¢ could not restart a single daemon. The system admin had t¢hiénd
daemon process by hand, Kill it, wait until it actually exiité¢hen browse throughet c/ r ¢ for the flags, and finally
type the full command line to start the daemon again. Thewaskd become even more difficult and prone to errors
if the service to restart consisted of more than one daemdemanded additional actions. In a few words, the single
script failed to fulfil what scripts are for: to make the systadmin’s life easier.

Later there was an attempt to split out some partseot/ r c for the sake of starting the most important subsystems
separately. The notorious example was c/ net st art to bring up networking. It did allow for accessing the
network from single-user mode, but it did not integrate et the automatic startup process because parts of its
code needed to interleave with actions essentially uraelat networking. That was whyet ¢/ net st art mutated
into/ et ¢/ r c. net wor k. The latter was no longer an ordinary script; it comprisetagfe, tangled sh(1) functions
called from/ et c/ r c at different stages of system startup. However, as theugtéaisks grew diverse and
sophisticated, the “quasi-modular” approach became ewwe of a drag than the monolithiet ¢/ r c had been.

Without a clean and well-designed framework, the startuiptschad to bend over backwards to satisfy the needs of
rapidly developing BSD-based operating systems. It beagamus at last that more steps are necessary on the way
to a fine-grained and extensible system. Thus BSDc. d was born. Its acknowledged fathers were Luke Mewburn
and the NetBSD community. Later it was imported into FreeB&Dname refers to the location of system scripts for
individual services, which is ihet c/ r c. d. Soon we will learn about more components of tlie d system and see
how the individual scripts are invoked.

The basic ideas behind BSi2. d arefine modularityandcode reuseFine modularitymeans that each basic
“service” such as a system daemon or primitive startup taskigs own sh(1) script able to start the service, stop it,
reload it, check its status. A particular action is chosetheycommand-line argument to the script. Thec/rc
script still drives system startup, but now it merely invelkiee smaller scripts one by one with #tear t argument.
Itis easy to perform shutdown tasks as well by running theess@t of scripts with thet op argument, which is
done by/ et ¢/ r c. shut down. Note how closely this follows the Unix way of having a set wfal specialized tools,
each fulfilling its task as well as possibléode reuseneans that common operations are implemented as sh(1)
functions and collected inet c/ r c. subr. Now a typical script can be just a few lines’ worth of sh(1)leoFinally,
an important part of thec. d framework is rcorder(8), which help®t c/ r ¢ to run the small scripts orderly with
respect to dependencies between them. It can/help/ r c. shut down, too, because the proper order for the
shutdown sequence is opposite to that of startup.

The BSDr c. d design is described ithe original article by Luke Mewburrand ther c. d components are
documented in great detail the respective manual pagé&towever, it might not appear obvious toae. d newbie
how to tie the numerous bits and pieces together in orde@tera well-styled script for a particular task. Therefore
this article will try a different approach to describe. d. It will show which features should be used in a number of
typical cases, and why. Note that this is not a how-to docuimecause our aim is not at giving ready-made recipes,
but at showing a few easy entrances intorthed realm. Neither is this article a replacement for the relévaanual
pages. Do not hesitate to refer to them for more formal andpbet@ documentation while reading this article.

There are prerequisites to understanding this articlst Birall, you should be familiar with the sh(1) scripting
language in order to mastec. d. In addition, you should know how the system performs userktartup and
shutdown tasks, which is described in rc(8).

Practical rc.d scripting in BSD

This article focuses on the FreeBSD branchofd. Nevertheless, it may be useful to NetBSD developers, too,
because the two branches of B&B. d not only share the same design but also stay similar in tspiets visible to
script authors.

2 Outlining the task

A little consideration before startirgEDl TOR will not hurt. In order to write a well-tempered . d script for a
system service, we should be able to answer the followingtipres first:

- Is the service mandatory or optional?
- Will the script serve a single program, e.g., a daemon, dopgarmore complex actions?
- Which other services will our service depend on, and vicea/er

From the examples that follow we will see why it is importamkhow the answers to these questions.

3 A dummy script

The following script just emits a message each time the sybw®ots up:

#!/ bi n/ shO
/etc/rc.subrd

name="dunmy" 0
start_cnmd="${nane}_start"O
stop_cmd=":"0

dummy_start () O

{
echo "Nothing started. ™

}

| oad_rc_config $nameld
run_rc_conmand "$1"0

Things to note are:

O Aninterpreted script should begin with the magic “shebdigg. That line specifies the interpreter program for
the script. Due to the shebang line, the script can be invekedtly like a binary program provided that it has
the execute bit set. (See chmod(1).) For example, a systarmadn run our script manually, from the
command line:

/etc/rc.d/ dumy start

Note: In order to be properly managed by the r c. d framework, its scripts need to be written in the sh(1)
language. If you have a service or port that uses a binary control utility or a startup routine written in another
language, install that element in / usr/ sbi n (for the system) or / usr /1 ocal / shi n (for ports) and call it from
a sh(1) script in the appropriate r c. d directory.

Practical rc.d scripting in BSD

Tip: If you would like to learn the details of why r c. d scripts must be written in the sh(1) language, see how
/et c/ rc invokes them by means of run_r c_scri pt, then study the implementation of run_rc_scri pt in
/etc/rc.subr.

In/etc/rc. subr, anumber of sh(1) functions are defined foran d script to use. The functions are
documented in rc.subr(8). While it is theoretically possiio write anr c. d script without ever using rc.subr(8),
its functions prove extremely handy and make the job an afleragnitude easier. So it is no surprise that
everybody resorts to rc.subr(8)im. d scripts. We are not going to be an exception.

Anrc. d script must “source’ et c/ r c. subr (include it using “ ") beforeit calls rc.subr(8) functions so that
sh(1) has an opportunity to learn the functions. The pretestyle is to sourceet c/ r c. subr first of all.

Note: Some useful functions related to networking are provided by another include file, / et ¢/ net wor k. subr .

The mandatory variablearme specifies the name of our script. It is required by rc.subi{Bat is, eachc. d
scriptmustsetnane before it calls rc.subr(8) functions.

Now it is the right time to choose a unique name for our scrniyaeoand for all. We will use it in a number of
places while developing the script. For a start, let us digesame name to the script file, too.

Note: The current style of r c. d scripting is to enclose values assigned to variables in double quotes. Keep in
mind that it is just a style issue that may not always be applicable. You can safely omit quotes from around
simple words without sh(1) metacharacters in them, while in certain cases you will need single quotes to
prevent any interpretation of the value by sh(1). A programmer should be able to tell the language syntax
from style conventions and use both of them wisely.

The main idea behind rc.subr(8) is thatran d script provides handlers, or methods, for rc.subr(8) tokev In
particularst ar t , st op, and other arguments to an. d script are handled this way. A method is a sh(1)
expression stored in a variable nanaeédunent _cnd, wherear gunent corresponds to what can be specified on
the script's command line. We will see later how rc.subr{@waes default methods for the standard arguments.

Note: To make the code inrc. d more uniform, it is common to use ${ name} wherever appropriate. Thus a
number of lines can be just copied from one script to another.

We should keep in mind that rc.subr(8) provides default m@stfor the standard arguments. Consequently, we
must override a standard method with a no-op sh(1) expre#sie want it to do nothing.

The body of a sophisticated method can be implemented asctdunlt is a good idea to make the function
name meaningful.

Important: It is strongly recommended to add the prefix ${ name} to the names of all functions defined in our
script so they never clash with the functions from rc.subr(8) or another common include file.

Practical rc.d scripting in BSD

0 This call to rc.subr(8) loads rc.conf(5) variables. Ouitamakes no use of them yet, but it still is recommended
to load rc.conf(5) because there can be rc.conf(5) vasatatrolling rc.subr(8) itself.

0 Usually this is the last command in an. d script. It invokes the rc.subr(8) machinery to perform thguested
action using the variables and methods our script has pedvid

4 A configurable dummy script

Now let us add some controls to our dummy script. As you maykno. d scripts are controlled with rc.conf(5).
Fortunately, rc.subr(8) hides all the complications frosnThe following script uses rc.conf(5) via rc.subr(8) te se
whether it is enabled in the first place, and to fetch a messagigow at boot time. These two tasks in fact are
independent. On the one hand,ran d script can just support enabling and disabling its sernd@gethe other hand,
a mandatory c. d script can have configuration variables. We will do both @sim the same script though:

#!/ bi n/ sh
/etc/rc. subr

nane=dunmy
rcvar =dummy_enabl e

start_cmd="${name} _start"
stop_cmd=":"

| oad_rc_config $nameld
${dunmmy_enabl e: =no} O

${dumy_nsg="Not hi ng started.

dummy_start ()
{

echo "$dumy_nsg" O
}

run_rc_comand "$1"

What changed in this example?

"

0 The variable cvar specifies the name of the ON/OFF knob variable.

O Nowl oad_rc_confi gisinvoked earlier in the script, before any rc.conf(5) shtes are accessed.

Note: While examining r c. d scripts, keep in mind that sh(1) defers the evaluation of expressions in a
function until the latter is called. Therefore it is not an error to invoke | oad_r c_confi g as late as just before
run_r c_conmand and still access rc.conf(5) variables from the method functions exported to

run_r c_conmand. This is because the method functions are to be called by r un_r c_command, which is

invoked after | oad_rc_config.

0 A warning will be emitted by un_r c_command if r cvar itself is set, but the indicated knob variable is unset. If
yourr c. d script is for the base system, you should add a default gdfttinthe knob to

Practical rc.d scripting in BSD

/et c/ defaul ts/rc. conf and documentit in rc.conf(5). Otherwise it is your scrigttehould provide a
default setting for the knob. The canonical approach todtter case is shown in the example.

Note: You can make rc.subr(8) act as though the knob is set to QN, irrespective of its current setting, by
prefixing the argument to the script with one or f or ce, as in onestart or f or cest op. Keep in mind though
that f or ce has other dangerous effects we will touch upon below, while one just overrides the ON/OFF knob.
E.g., assume that durmy_enabl e is OFF. The following command will run the st art method in spite of the
setting:

/etc/rc.d/ dumry onestart

O Now the message to be shown at boot time is no longer hardddndke script. It is specified by an rc.conf(5)
variable namedumy _nsg. This is a trivial example of how rc.conf(5) variables camirol anr c. d script.

Important: The names of all rc.conf(5) variables used exclusively by our script must have the same prefix:
${ name} _. For example: durmy_node, dunmy_state_fil e, and so on.

Note: While it is possible to use a shorter name internally, e.g., just nsg, adding the unique prefix ${ name} _
to all global names introduced by our script will save us from possible collisions with the rc.subr(8)
namespace.

As arule, rc. d scripts of the base system need not provide defaults for their rc.conf(5) variables because
the defaults should be setin /et c/ def aul ts/rc. conf instead. On the other hand, r c. d scripts for ports
should provide the defaults as shown in the example.

0 Here we uselummy_nsg to actually control our script, i.e., to emit a variable naggs. Use of a shell function is
overkill here, since it only runs a single command; an equallid alternative is:

start_cmd="echo \"$dumy_nsg\""

5 Startup and shutdown of a simple daemon

We said earlier that rc.subr(8) could provide default méth@bviously, such defaults cannot be too general. They
are suited for the common case of starting and shutting dosimple daemon program. Let us assume now that we
need to write amc. d script for such a daemon callednbl ed. Here itis:

#!/ bi n/ sh
/etc/rc. subr

nanme=nunbl ed
rcvar =nunbl ed_enabl e

command="/ usr/ sbi n/ ${nane}" O

| oad_rc_config $nane
run_rc_conmand " $1"

Practical rc.d scripting in BSD

Pleasingly simple, isn’'tit? Let us examine our little striphe only new thing to note is as follows:

0 Theconmand variable is meaningful to rc.subr(8). If it is set, rc.si)nyill act according to the scenario of
serving a conventional daemon. In particular, the defaethmds will be provided for such argumenrdgsart,
stop,restart,pol |, andst at us.

The daemon will be started by runniigormand with command-line flags specified I$yrunbl ed_f | ags.

Thus all the input data for the defasltart method are available in the variables set by our script.kénli

st art, other methods may require additional information aboefdtocess started. For instansepp must
know the PID of the process to terminate it. In the preserg,aassubr(8) will scan through the list of all
processes, looking for a process with its name equépt@cnane. The latter is another variable of meaning to
rc.subr(8), and its value defaults to thatcafrand. In other words, when we sebnmand, pr ocnane is
effectively set to the same value. This enables our scrikilltthe daemon and to check if it is running in the
first place.

Note: Some programs are in fact executable scripts. The system runs such a script by starting its interpreter
and passing the name of the script to it as a command-line argument. This is reflected in the list of
processes, which can confuse rc.subr(8). You should additionally set cormand_i nt er pret er to let rc.subr(8)
know the actual name of the process if $command is a script.

For eachrc. d script, there is an optional rc.conf(5) variable that takes precedence over conmand. Its name is
constructed as follows: ${ nane} _pr ogr am where nane is the mandatory variable we discussed earlier. E.g.,
in this case it will be nunbl ed_pr ogr am It is rc.subr(8) that arranges ${ nane} _pr ogr amto override conmmand.

Of course, sh(1) will permit you to set ${ name} _pr ogr am from rc.conf(5) or the script itself even if cormand is
unset. In that case, the special properties of ${ nane} _pr ogr amare lost, and it becomes an ordinary variable
your script can use for its own purposes. However, the sole use of ${ nane} _pr ogr amis discouraged
because using it together with conmand became an idiom of r c. d scripting.

For more detailed information on default methods, refectsubr(8).

6 Startup and shutdown of an advanced daemon

Let us add some meat onto the bones of the previous script akd inmore complex and featureful. The default
methods can do a good job for us, but we may need some of tipeicsstweaked. Now we will learn how to tune
the default methods to our needs.

#!/ bi n/ sh
/etc/rc. subr

nane=nunbl ed
rcvar =nunbl ed_enabl e

conmand="/usr/ shi n/ ${ name}"
command_ar gs="nock argunments > /dev/null 2>&1"0

pi dfile="/var/run/ ${name}. pid"0O

required_files="/etc/${nanme}.conf /usr/share/ m sc/${nanme}.rul es"O

Practical rc.d scripting in BSD

sig_rel oad="USR1" [

start_precnd="${nanme}_prestart"O
st op_post cnd="echo Bye-bye"[

extra_commands="rel oad plugh xyzzy"[O

pl ugh_cmd="munbl ed_pl ugh" O
xyzzy_cnd="echo ' Not hi ng happens.’"

munbl ed_prestart()

{
if checkyesno nunbl ed_snart; thend
rc_flags="-o snmart ${rc_flags}"(10)
fi
case "$nmunbl ed_node" in
f 00)
rc_flags="-frotz ${rc_flags}"
bar)
rc_flags="-baz ${rc_flags}"
*)
warn "lnvalid value for nunbl ed_node" (11)
return 1(12)
esac
run_rc_comand xyzzy(13)
return O
}
munbl ed_pl ugh() (14)
{
echo " A hol I ow voi ce says "plugh".
}

| oad_rc_config $nane
run_rc_comand "$1"

O Additional arguments tSconmrand can be passed ikonmand_ar gs. They will be added to the command line
aftersnunbl ed_f | ags. Since the final command line is passe@tal for its actual execution, input and
output redirections can be specifiectionmand_ar gs.

Note: Never include dashed options, like - X or - - f 0o, in command_ar gs. The contents of cormand_ar gs will
appear at the end of the final command line, hence they are likely to follow arguments present in

${nane} _f | ags; but most commands will not recognize dashed options after ordinary arguments. A better
way of passing additional options to $command is to add them to the beginning of ${ name} _f | ags. Another
way is to modify r c_f | ags as shown later.

Practical rc.d scripting in BSD

O A good-mannered daemon should creapediile so that its process can be found more easily and reliably. The
variablepi df i | e, if set, tells rc.subr(8) where it can find the pidfile for iesfault methods to use.

Note: In fact, rc.subr(8) will also use the pidfile to see if the daemon is already running before starting it.
This check can be skipped by using the f ast st art argument.

O If the daemon cannot run unless certain files exist, justiisin inr equi red_f i | es, and rc.subr(8) will check
that those files do exist before starting the daemon. Theceaakr equi r ed_di r s andr equi r ed_var s for
directories and environment variables, respectivelyyTieare described in detail in rc.subr(8).

Note: The default method from rc.subr(8) can be forced to skip the prerequisite checks by using f or cest art
as the argument to the script.

0 We can customize signals to send to the daemon in case tlieyfdiim the well-known ones. In particular,
si g_r el oad specifies the signal that makes the daemon reload its coafignrit is SIGHUP by default.
Another signal is sent to stop the daemon process; the d&z&@IIGTERM, but this can be changed by setting
si g_st op appropriately.

Note: The signal names should be specified to rc.subr(8) without the SI G prefix, as it is shown in the
example. The FreeBSD version of kill(1) can recognize the SI G prefix, but the versions from other OS types
may not.

00 Performing additional tasks before or after the defaultods is easy. For each command-argument supported
by our script, we can defing gument _pr ecnd andar gurent _post cnd. These sh(1) commands are invoked
before and after the respective method, as it is evident fhain names.

Note: Overriding a default method with a custom ar gunent _cnd still does not prevent us from making use of
argument _precnd or ar gument _post cnd if we need to. In particular, the former is good for checking custom,
sophisticated conditions that should be met before performing the command itself. Using ar gunent _pr ecnd
along with ar gurent _cnd lets us logically separate the checks from the action.

Do not forget that you can cram any valid sh(1) expressions into the methods, pre-, and post-commands you
define. Just invoking a function that makes the real job is a good style in most cases, but never let style limit
your understanding of what is going on behind the curtain.

O If we would like to implement custom arguments, which cam &ls thought of asommandso our script, we
need to list them irxt r a_commands and provide methods to handle them.

Note: The rel oad command is special. On the one hand, it has a preset method in rc.subr(8). On the other
hand, r el oad is not offered by default. The reason is that not all daemons use the same reload mechanism
and some have nothing to reload at all. So we need to ask explicitly that the builtin functionality be provided.
We can do so via ext r a_conmmands.

What do we get from the default method for r el oad? Quite often daemons reload their configuration upon
reception of a signal — typically, SIGHUP. Therefore rc.subr(8) attempts to reload the daemon by sending a
signal to it. The signal is preset to SIGHUP but can be customized via si g_r el oad if necessary.

Practical rc.d scripting in BSD

(14)Our script supports two non-standard commaptisgh andxyzzy. We saw them listed in
ext ra_conmands, and now it is time to provide methods for them. The methocfarzy is just inlined while
that forpl ugh is implemented as theunbl ed_pl ugh function.

Non-standard commands are not invoked during startup ddstwn. Usually they are for the system admin’s
convenience. They can also be used from other subsystemsjevd(8) if specified in devd.conf(5).

The full list of available commands can be found in the usaweprinted by rc.subr(8) when the script is
invoked without arguments. For example, here is the usagdiom the script under study:

letc/rc.d/ munbl ed

Usage: /etc/rc.d/ nunbled [fast|force|lone](start|stop|restart]|rcvar]|reload|plugh|xyzzy|status|p

(13)A script can invoke its own standard or non-standard comménteded. This may look similar to calling
functions, but we know that commands and shell functiongmatalways the same thing. For instancgzzy is
not implemented as a function here. In addition, there caafre-command and post-command, which should
be invoked orderly. So the proper way for a script to run itt@emmand is by means of rc.subr(8), as shown in
the example.

O A handy function namedheckyesno is provided by rc.subr(8). It takes a variable name as itaragnt and
returns a zero exit code if and only if the variable is set&s, or TRUE, or ON, or 1, case insensitive; a non-zero
exit code is returned otherwise. In the latter case, thetfoimtests the variable for being setNO, FALSE, OFF,
or 0, case insensitive; it prints a warning message if the viiedntains anything else, i.e., junk.

Keep in mind that for sh(1) a zero exit code means true and ezaomexit code means false.

Important: The checkyesno function takes a variable name. Do not pass the expanded value of a variable
to it; it will not work as expected.
The following is the correct usage of checkyesno:

i f checkyesno nunbl ed_enabl e; then
foo
fi

On the contrary, calling checkyesno as shown below will not work — at least not as expected:

i f checkyesno "${nmunbl ed_enabl e}"; then
foo
fi

(10)We can affect the flags to be passegtommmand by modifyingrc_f | ags in $st art _precnd.

(11)In certain cases we may need to emit an important messagghthiald go tosyslogas well. This can be done
easily with the following rc.subr(8) functiondebug, i nf o, war n, ander r . The latter function then exits the
script with the code specified.

(12)The exit codes from methods and their pre-commands are siagjuwored by default. l&r gurent _precnd
returns a non-zero exit code, the main method will not bequaréd. In turnar gunent _post cnd will not be
invoked unless the main method returns a zero exit code.

Note: However, rc.subr(8) can be instructed from the command line to ignore those exit codes and invoke all
commands anyway by prefixing an argument with f or ce, asin forcestart.

10

Practical rc.d scripting in BSD

7 Connecting a script to the rc.d framework

After a script has been written, it needs to be integratemlrint d. The crucial step is to install the script in
/etc/rc.d (for the base system) éwsr/ 1 ocal / et c/ rc. d (for ports). Both ¥sd. pr og. mk>and

<bsd. port . mk> provide convenient hooks for that, and usually you do neeha worry about the proper
ownership and mode. System scripts should be installed $ramet ¢/ r c. d through thevakef i | e found there.
Port scripts can be installed usibge_RC_SUBR as described in the Porter's Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/boo&rkrs-handbook/rc-scripts.html).

However, we should consider beforehand the place of oystsarthe system startup sequence. The service handled
by our script is likely to depend on other services. For insta a network daemon cannot function without the
network interfaces and routing up and running. Even if aiserseems to demand nothing, it can hardly start before
the basic filesystems have been checked and mounted.

We mentioned rcorder(8) already. Now it is time to have aelosk at it. In a nutshell, rcorder(8) takes a set of files,
examines their contents, and prints a dependency-ordstd files from the set tat dout . The pointis to keep
dependency informatiomsidethe files so that each file can speak for itself only. A file cagcty the following
information:

- the names of the “conditions” (which means services to yspitides
- the names of the “conditions” iequires

- the names of the “conditions” this file should rbafore

additionalkeywordghat can be used to select a subset from the whole set of filei@r(8) can be instructed via
options to include or omit the files having particular keydslisted.)

Itis no surprise that rcorder(8) can handle only text filethwi syntax close to that of sh(1). That is, special lines
understood by rcorder(8) look like sh(1) comments. Theayof such special lines is rather rigid to simplify their
processing. See rcorder(8) for details.

Besides using rcorder(8) special lines, a script can insists dependency upon another service by just starting it
forcibly. This can be needed when the other service is optiand will not start by itself because the system admin
has disabled it mistakenly in rc.conf(5).

With this general knowledge in mind, let us consider the $tntlaemon script enhanced with dependency stuff:

#1/bin/ sh

PROVI DE: nunbl ed ol dnmunbl e O

REQUI RE: DAEMON cl eanvar frotzQ
BEFORE: LOG NO

KEYWORD: noj ail shutdownO

/etc/rc. subr

nanme=nunbl ed
rcvar =nunbl ed_enabl e

conmand="/usr/ shi n/ ${ name}"
start_precnd="${nane} _prestart”

munbl ed_prestart ()

11

Practical rc.d scripting in BSD

{
if ! checkyesno frotz_enable && \
I /etc/rc.d/frotz forcestatus 1>/dev/null 2>&1; then
force_depend frotz || return 10
fi
return O
}

| oad_rc_config $nane
run_rc_conmnmand " $1"

As before, detailed analysis follows:

0 Thatline declares the names of “conditions” our script ptes. Now other scripts can record a dependency on
our script by those names.

Note: Usually a script specifies a single condition provided. However, nothing prevents us from listing
several conditions there, e.g., for compatibility reasons.

In any case, the name of the main, or the only, PROVI DE: condition should be the same as ${ nane} .

00O So our script indicates which “conditions” provided by atkeripts it depends on. According to the lines, our

script asks rcorder(8) to put it after the script(s) prowgIDAEMON andcl eanvar , but before that providing
LCOG N.

Note: The BEFORE: line should not be abused to work around an incomplete dependency list in the other
script. The appropriate case for using BEFORE: is when the other script does not care about ours, but our
script can do its task better if run before the other one. A typical real-life example is the network interfaces
vs. the firewall: While the interfaces do not depend on the firewall in doing their job, the system security will
benefit from the firewall being ready before there is any network traffic.

Besides conditions corresponding to a single service each, there are meta-conditions and their “placeholder”
scripts used to ensure that certain groups of operations are performed before others. These are denoted by
UPPERCASE names. Their list and purposes can be found in rc(8).

Keep in mind that putting a service name in the REQUI RE: line does not guarantee that the service will
actually be running by the time our script starts. The required service may fail to start or just be disabled in
rc.conf(5). Obviously, rcorder(8) cannot track such details, and rc(8) will not do that either. Consequently, the
application started by our script should be able to cope with any required services being unavailable. In
certain cases, we can help it as discussed below.

O As we remember from the above text, rcorder(8) keywords eamsied to select or leave out some scripts.
Namely any rcorder(8) consumer can specify througland- s options which keywords are on the “keep list”
and “skip list”, respectively. From all the files to be dependy sorted, rcorder(8) will pick only those having a
keyword from the keep list (unless empty) and not having avaegl from the skip list.

In FreeBSD, rcorder(8) is used byt c/ rc and/ et ¢/ r c. shut down. These two scripts define the standard list
of FreeBSDr c. d keywords and their meanings as follows:

12

Practical rc.d scripting in BSD
noj ai |

The service is not for jail(8) environment. The automatartstp and shutdown procedures will ignore the
script if inside a jail.

nost art

The service is to be started manually or not started at aé.atliomatic startup procedure will ignore the
script. In conjunction with thehut down keyword, this can be used to write scripts that do somethiryg o
at system shutdown.

shut down

This keyword is to be listedxplicitly if the service needs to be stopped before system shutdown.

Note: When the system is going to shut down, / et c/ r c. shut down runs. It assumes that mostrc. d
scripts have nothing to do at that time. Therefore / et ¢/ r c. shut down selectively invokes r c. d scripts
with the shut down keyword, effectively ignoring the rest of the scripts. For even faster shutdown,
/etc/rc. shut down passes the f ast st op command to the scripts it runs so that they skip preliminary
checks, e.g., the pidfile check. As dependent services should be stopped before their prerequisites,

/ et c/ rc. shut down runs the scripts in reverse dependency order.

If writing a real r c. d script, you should consider whether it is relevant at system shutdown time. E.g., if
your script does its work in response to the st art command only, then you need not include this
keyword. However, if your script manages a service, it is probably a good idea to stop it before the
system proceeds to the final stage of its shutdown sequence described in halt(8). In particular, a
service should be stopped explicitly if it needs considerable time or special actions to shut down
cleanly. A typical example of such a service is a database engine.

O To begin with,f or ce_depend should be used with much care. Itis generally better to esi¥ie hierarchy of
configuration variables for yourc. d scripts if they are interdependent.

If you still cannot do without or ce_depend, the example offers an idiom of how to invoke it conditiogalh

the example, ourunbl ed daemon requires that another ofiept z, be started in advance. Howeverpt z is
optional, too; and rcorder(8) knows nothing about suchildefeortunately, our script has access to all rc.conf(5)
variables. Iff r ot z_enabl e is true, we hope for the best and relyion d to have starteélr ot z. Otherwise we
forcibly check the status dfr ot z. Finally, we enforce our dependencyfonot z if it is found to be not

running. A warning message will be emittedtyr ce_depend because it should be invoked only if a
misconfiguration has been detected.

8 Giving more flexibility to an rc.d script

When invoked during startup or shutdown,ran d script is supposed to act on the entire subsystem it is res#iplen
for. E.g.,/etc/rc.d/ netif should start or stop all network interfaces described gord(5). Either task can be
uniquely indicated by a single command argument suct ast or st op. Between startup and shutdown,. d

scripts help the admin to control the running system, arshithen the need for more flexibility and precision arises.
For instance, the admin may want to add the settings of a nemonleinterface to rc.conf(5) and then to start it
without interfering with the operation of the existing irfeces. Next time the admin may need to shut down a single

13

Practical rc.d scripting in BSD

network interface. In the spirit of the command line, thepesgiver c. d script calls for an extra argument, the
interface name.

Fortunately, rc.subr(8) allows for passing any number gfiarents to script’s methods (within the system limits).
Due to that, the changes in the script itself can be minimal.

How can rc.subr(8) gain access to the extra command-linevaegts. Should it just grab them directly? Not by any
means. Firstly, an sh(1) function has no access to the poaltparameters of its caller, but rc.subr(8) is just a sdick o
such functions. Secondly, the good mannerafd dictates that it is for the main script to decide which argotee

are to be passed to its methods.

So the approach adopted by rc.subr(8) is as follows: r c_comand passes on all its arguments but the first one to
the respective method verbatim. The first, omitted, arguinsaehe name of the method itsedft art , st op, etc. It

will be shifted out byr un_r ¢c_conmand, so what is$2 in the original command line will be presented$sto the
method, and so on.

To illustrate this opportunity, let us modify the primitidemmy script so that its messages depend on the additional
arguments supplied. Here we go:

#!/ bin/ sh

/etc/rc. subr

name="dunmy"
start_cmd="${nanme}_start"
stop_cmd=":"

ki ss_cnd="${ nane} _ki ss"
extra_commands="ki ss"

dummy_start ()

{
if [$# -gt 0]; thenOd
echo "Greeting nessage: $*"
el se
echo "Nothing started."
fi
}
dumy_ki ss()
{
echo -n "A ghost gives you a ki ss"
if [$# -gt 0]; thenO
echo -n " and whi spers: $+"
fi
case "$*" in
*[.17])
echo
*)
echo .
esac
}

14

Practical rc.d scripting in BSD

| oad_rc_config $nane
run_rc_comand "$@ O

What essential changes can we notice in the script?

O Allarguments you type aftert art can end up as positional parameters to the respective matfeodan use
them in any way according to our task, skills, and fancy. lndhrrent example, we just pass all of them to
echo(1) as one string in the next line — ntewithin the double quotes. Here is how the script can be indoke
now:

/etc/rc.d/ dummy start

Not hi ng started.

letc/rc.d/ dumy start Hello world!
Greeting nessage: Hello world!

0 The same applies to any method our script provides, not ordystandard one. We have added a custom method
namedki ss, and it can take advantage of the extra arguments not lessthkat does. E.g.:

letc/rc.d/ dummy kiss

A ghost gives you a ki ss.

letc/rc.d/ dummy kiss Once | was Etaoin Shrdlu...

A ghost gives you a kiss and whispers: Once | was Etaoin Shrdlu...

O If we want just to pass all extra arguments to any method, wengarely substitute$@ for " $1" in the last
line of our script, where we invokeun_r c_command.

Important: An sh(1) programmer ought to understand the subtle difference between $+ and $@as the ways
to designate all positional parameters. For its in-depth discussion, refer to a good handbook on sh(1)
scripting. Do not use the expressions until you fully understand them because their misuse will result in
buggy and insecure scripts.

Note: Currently run_r c_command may have a bug that prevents it from keeping the original boundaries
between arguments. That is, arguments with embedded whitespace may not be processed correctly. The
bug stems from $+ misuse.

9 Further reading

The original article by Luke Mewburn (http://www.mewbunet/luke/papers/rc.d.pdf) offers a general overview of
rc. d and detailed rationale for its design decisions. It prosiidsight on the wholec. d framework and its place in
a modern BSD operating system.

The manual pages rc(8), rc.subr(8), and rcorder(8) doctithenc. d components in great detail. You cannot fully
use the c. d power without studying the manual pages and referring tmtivbile writing your own scripts.

The major source of working, real-life exampleg & c/ r c. d in a live system. Its contents are easy and pleasant to
read because most rough corners are hidden deep in rc.sWEép in mind though that thieet ¢/ r c. d scripts

were not written by angels, so they might suffer from bugs sutabptimal design decisions. Now you can improve
them!

15

	Table of Contents
	1 Introduction
	2 Outlining the task
	3 A dummy script
	4 A configurable dummy script
	5 Startup and shutdown of a simple daemon
	6 Startup and shutdown of an advanced daemon
	7 Connecting a script to the rc.d framework
	8 Giving more flexibility to an rc.d script
	9 Further reading

