FreeBSD and Solid State Devices

John Kozubik
john@kozubik.com

$FreeBSD: head/en_US.ISO8859-1/articles/solid-state/ article.xml 41645 2013-05-17
18:49:527 gabor $

Copyright © 2001, 2009 The FreeBSD Documentation Project
$FreeBSD: head/en_US.ISO8859-1/articles/solid-state/ article.xml 41645 2013-05-17
18:49:527 gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

Copyright

Redistribution and use in source (XML DocBook) and 'compiled ' forms (XML, HTML, PDF, PostScript,
RTF and so forth) with or without modification, are permitted pr ovided that the following conditions are
met:

1. Redistributions of source code (XML DocBook) must retain the above
copyright notice, this list of conditions and the following disclaimer as the first
lines of this file unmodified.

2. Redistributions in compiled form (transformed to other D TDs, converted to
PDF, PostScript, RTF and other formats) must reproduce the a bove copyright
notice, this list of conditions and the following disclaime rin the

documentation and/or other materials provided with the dis tribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

FreeBSD and Solid State Devices

This article covers the use of solid state disk devices ieB&D to create embedded systems.

Embedded systems have the advantage of increased stdh#ity the lack of integral moving parts (hard
drives). Account must be taken, however, for the generallydisk space available in the system and the
durability of the storage medium.

Specific topics to be covered include the types and attribofteolid state media suitable for disk use in
FreeBSD, kernel options that are of interest in such an enmient, the c. i ni t di skl ess mechanisms
that automate the initialization of such systems and thed faeread-only filesystems, and building
filesystems from scratch. The article will conclude with sogeneral strategies for small and read-only
FreeBSD environments.

Table of Contents

1 SOliT SEALE DISK DEVICES......ecuereeuereeiiietisisie ettt ettt s ettt es e se et et et b et ke st s be st et e e et et e et et st enesbe et 2
228 (== I o o 1RSSR 2
3 Ther c Subsystem and Read-ONlY FilESYSLEMS.........cciieieecise et sre e e e e e eneas 3
4 Building a File System From SCIatCh......cc.cuciiiiiie et re e st st es e se e e s neeresaesreneeneenenns 4
5 System Strategiesfor Small and Read Only ENVIFONMENTS.........coiiiiiiiiiesce e 5

1 Solid State Disk Devices

The scope of this article will be limited to solid state diskv/ittes made from flash memory. Flash memory is a solid
state memory (no moving parts) that is non-volatile (the mgnmaintains data even after all power sources have
been disconnected). Flash memory can withstand tremenphysical shock and is reasonably fast (the flash
memory solutions covered in this article are slightly slotiean a EIDE hard disk for write operations, and much
faster for read operations). One very important aspect st flaemory, the ramifications of which will be discussed
later in this article, is that each sector has a limited renaapacity. You can only write, erase, and write again to a
sector of flash memory a certain number of times before th®isbecomes permanently unusable. Although many
flash memory products automatically map bad blocks, andadth some even distribute write operations evenly
throughout the unit, the fact remains that there exists & torthe amount of writing that can be done to the device.
Competitive units have between 1,000,000 and 10,000,08snper sector in their specification. This figure varies
due to the temperature of the environment.

Specifically, we will be discussing ATA compatible compdéesh units, which are quite popular as storage media for
digital cameras. Of particular interest is the fact thaytpie out directly to the IDE bus and are compatible with the
ATA command set. Therefore, with a very simple and low-casigdor, these devices can be attached directly to an
IDE bus in a computer. Once implemented in this manner, dipgraystems such as FreeBSD see the device as a
normal hard disk (albeit small).

Other solid state disk solutions do exist, but their expeobkscurity, and relative unease of use places them beyond
the scope of this article.

FreeBSD and Solid State Devices

2 Kernel Options

A few kernel options are of specific interest to those crggaim embedded FreeBSD system.

All embedded FreeBSD systems that use flash memory as syskmvitl be interested in memory disks and
memory filesystems. Because of the limited number of wrhies ¢an be done to flash memory, the disk and the
filesystems on the disk will most likely be mounted read-olmythis environment, filesystems such/asmp and

/ var are mounted as memory filesystems to allow the system toeciegd and update counters and temporary files.
Memory filesystems are a critical component to a succesglid state FreeBSD implementation.

You should make sure the following lines exist in your kercahfiguration file:

options MFS # Menory Fil esystem
options VD_ROOT # md device usable as a potential root device
pseudo- devi ce nd # menory di sk

3 The r ¢ Subsystem and Read-Only Filesystems

The post-boot initialization of an embedded FreeBSD syssarontrolled by et ¢/ rc. i ni t di skl ess.

/etc/rc.d/ var mounts/ var as a memory filesystem, makes a configurable list of direzdani/ var with the
mkdir(1) command, and changes modes on some of those die=ctim the execution dfet ¢/ rc. d/ var, one
otherr c. conf variable comes into play var si ze. The/ et ¢/ rc. d/ var file creates dvar partition based on the
value of this variable imc. conf :

var si ze=8192

Remember that this value is in sectors by default.

The fact that var is a read-write filesystem is an important distinction, a&s tpartition (and any other partitions
you may have on your flash media) should be mounted read®aiyember that iSection lwe detailed the
limitations of flash memory - specifically the limited writagability. The importance of not mounting filesystems on
flash media read-write, and the importance of not using a fileggannot be overstated. A swap file on a busy
system can burn through a piece of flash media in less thanearelyeavy logging or temporary file creation and
destruction can do the same. Therefore, in addition to rémgdheswap entry from your/ et c/ f st ab file, you

should also change the Options field for each filesysteno tas follows:

Devi ce Mount poi nt FStype Options Dunp Pass#
/ dev/ adOsla / uf s ro 1 1

A few applications in the average system will immediatelgibeo fail as a result of this change. For instance, cron
will not run properly as a result of missing cron tabs in thver created by et ¢/ rc. d/ var, and syslog and dhcp
will encounter problems as well as a result of the read-ofdgystem and missing items in thear that

/etcl/rc.d/ var has created. These are only temporary problems thoughrardidressed, along with solutions to
the execution of other common software package3dation 5

An important thing to remember is that a filesystem that waamtexd read-only witli et ¢/ f st ab can be made
read-write at any time by issuing the command:

/sbin/nmount -uw partition

and can be toggled back to read-only with the command:

FreeBSD and Solid State Devices

/sbin/nmount -ur partition

4 Building a File System From Scratch

Because ATA compatible compact-flash cards are seen by BEi2@B normal IDE hard drives, you could
theoretically install FreeBSD from the network using therkend mfsroot floppies or from a CD.

However, even a small installation of FreeBSD using normstillation procedures can produce a system in size of
greater than 200 megabytes. Because most people will bg sisialler flash memory devices (128 megabytes is
considered fairly large - 32 or even 16 megabytes is commomsallation using normal mechanisms is not
possible—there is simply not enough disk space for evenrttadiast of conventional installations.

The easiest way to overcome this space limitation is to lifsteeBSD using conventional means to a normal hard
disk. After the installation is complete, pare down the agiag system to a size that will fit onto your flash media,
then tar the entire filesystem. The following steps will gujeu through the process of preparing a piece of flash
memory for your tarred filesystem. Remember, because a harstallation is not being performed, operations such
as partitioning, labeling, file-system creation, etc. nieloe performed by hand. In addition to the kern and mfsroot
floppy disks, you will also need to use the fixit floppy.

1. Partitioning your flash media device

After booting with the kern and mfsroot floppies, chooset omfrom the installation menu. In the custom
installation menu, chooggr ti ti on. In the partition menu, you should delete all existing piantis using thel
key. After deleting all existing partitions, create a paoti using thec key and accept the default value for the
size of the partition. When asked for the type of the pariitmake sure the value is setit65. Now write this
partition table to the disk by pressing thekey (this is a hidden option on this screen). If you are usimg\BA
compatible compact flash card, you should choose the FreéR®DManager. Now press tligkey to quit the
partition menu. You will be shown the boot manager menu onaeemrepeat the choice you made earlier.

2. Creating filesystems on your flash memory device

Exit the custom installation menu, and from the main inatadh menu choose tté xi t option. After entering
the fixit environment, enter the following command:

di skl abel -e /dev/adOc

At this point you will have entered the vi editor under thegiass of the disklabel command. Next, you need to
add ama: line at the end of the file. This: line should look like:

a: 123456 O 4.2BSD 0 0

Where123456 is a number that is exactly the same as the number in thergxéstientry for size. Basically
you are duplicating the existing line as ama: line, making sure that fstype #s 2BSD. Save the file and exit.

di skl abel -B -r /dev/adOc
newfs /dev/adOa

3. Placing your filesystem on the flash media

Mount the newly prepared flash media:

nount /dev/adOa /flash

Bring this machine up on the network so we may transfer ouileaand explode it onto our flash media
filesystem. One example of how to do this is:

FreeBSD and Solid State Devices

ifconfig xI 0 192.168.0.10 netnask 255.255.255.0
route add default 192.168.0.1

Now that the machine is on the network, transfer your tar Yitel1 may be faced with a bit of a dilemma at this
point - if your flash memory part is 128 megabytes, for instamamnd your tar file is larger than 64 megabytes,
you cannot have your tar file on the flash media at the same srgewexplode it - you will run out of space.
One solution to this problem, if you are using FTP, is to utttarfile while it is transferred over FTP. If you
perform your transfer in this manner, you will never havettrdile and the tar contents on your disk at the
same time:

ftp> get tarfile.tar "| tar xvf -"

If your tarfile is gzipped, you can accomplish this as well:

ftp> get tarfile.tar "| zcat | tar xvf -"

After the contents of your tarred filesystem are on your flasimiory filesystem, you can unmount the flash
memory and reboot:

cd /
unount /flash
exit

Assuming that you configured your filesystem correctly whevais built on the normal hard disk (with your
filesystems mounted read-only, and with the necessaryraptiompiled into the kernel) you should now be
successfully booting your FreeBSD embedded system.

5 System Strategies for Small and Read Only Environments

In Section 3 it was pointed out that thevar filesystem constructed byt ¢/ rc. d/ var and the presence of a
read-only root filesystem causes problems with many comrfiware packages used with FreeBSD. In this article,
suggestions for successfully running cron, syslog, podtailations, and the Apache web server will be provided.

5.1 cron

Upon boot/ var gets populated byet ¢/ rc. d/ var using the list fromf et ¢/ nt r ee/ BSD. var . di st, so the
cron,cron/tabs, at, and a few other standard directories get created.

However, this does not solve the problem of maintaining ¢atss across reboots. When the system reboots, the
/var filesystem that is in memory will disappear and any cron talssmay have had in it will also disappeatr.
Therefore, one solution would be to create cron tabs for s#eeathat need them, mount ydufilesystem as
read-write and copy those cron tabs to somewhere safé,dike/ t abs, then add a line to the end of
/etc/rc.initdi skl ess that copies those crontabs intear / cr on/ t abs after that directory has been created
during system initialization. You may also need to add atiret changes modes and permissions on the directories
you create and the files you copy witht ¢/ rc. i ni t di skl ess.

5.2 syslog

sysl og. conf specifies the locations of certain log files that existvar / | og. These files are not created by
/et c/rc.d/ var upon system initialization. Therefore, somewhergdnc/ r c. d/ var , after the section that
creates the directories irvar , you will need to add something like this:

FreeBSD and Solid State Devices

touch /var/log/security /var/log/maillog /var/log/cron /var/log/ nessages
chnmod 0644 /var/ |l og/ *

5.3 Ports Installation

Before discussing the changes necessary to successfaltheiports tree, a reminder is necessary regarding the
read-only nature of your filesystems on the flash media. Slmeeare read-only, you will need to temporarily mount
them read-write using the mount syntax showsettion 3 You should always remount those filesystems read-only
when you are done with any maintenance - unnecessary witds flash media could considerably shorten its
lifespan.

To make it possible to enter a ports directory and succdgsful nake i nst al | , we must create a packages
directory on a non-memory filesystem that will keep track @f packages across reboots. Because it is necessary to
mount your filesystems as read-write for the installatioa paickage anyway, it is sensible to assume that an area on
the flash media can also be used for package information taiktemto.

First, create a package database directory. This is ngrinallvar / db/ pkg, but we cannot place it there as it will
disappear every time the system is booted.

nkdir /etc/pkg

Now, add aline td et ¢/ rc. d/ var that links thef et c/ pkg directory to/ var / db/ pkg. An example:

In -s /etc/pkg /var/db/pkg

Now, any time that you mount your filesystems as read-writkinstall a package, theake i nst al I will work,
and package information will be written successfully ta ¢/ pkg (because the filesystem will, at that time, be
mounted read-write) which will always be available to theigting system akvar / db/ pkg.

5.4 Apache Web Server

Note: The steps in this section are only necessary if Apache is set up to write its pid or log information outside of
/var . By default, Apache keeps its pid file in / var/ run/ ht t pd. pi d and its log files in / var /| og.

Itis now assumed that Apache keeps its log files in a direclioayhe_| og_di r outside off var . When this directory
lives on a read-only filesystem, Apache will not be able tesaw log files, and may have problems working. If so,
it is necessary to add a new directory to the list of direetom/ et ¢/ r c. d/ var to create in var, and to link
apache_| og_dir to/var/| og/ apache. It is also necessary to set permissions and ownership sméuv directory.

First, add the directorlyog/ apache to the list of directories to be created/iat ¢/ rc. d/ var .

Second, add these commandsgéo c/ r c. d/ var after the directory creation section:

chnmod 0774 /var/| og/ apache
chown nobody: nobody /var/| og/ apache

Finally, remove the existingpache_I og_di r directory, and replace it with a link:

rm-rf apache_|log_ dir

FreeBSD and Solid State Devices

In -s /var/l og/ apache apache_l og_dir

	Table of Contents
	1 Solid State Disk Devices
	2 Kernel Options
	3 The rc Subsystem and ReadOnly Filesystems
	4 Building a File System From Scratch
	5 System Strategies for Small and Read Only Environments
	5.1 cron
	5.2 syslog
	5.3 Ports Installation
	5.4 Apache Web Server

