
Console Server
Gregory Bond

gnb@itga.com.au

$FreeBSD: head/en_US.ISO8859-1/articles/console-serv er/article.xml 41645
2013-05-17 18:49:52Z gabor $

$FreeBSD: head/en_US.ISO8859-1/articles/console-serv er/article.xml 41645
2013-05-17 18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.
Cisco, Catalyst, and IOS are registered trademarks of Cisco Syste ms, Inc. and/or its affiliates in the
United States and certain other countries.
Intel, Celeron, EtherExpress, i386, i486, Itanium, Pentium, and Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Lantronix and EasyIO are trademarks of Lantronix Corporation.
Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windo ws Media and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.
Motif, OSF/1, and UNIX are registered trademarks and IT DialTone a nd The Open Group are trademarks
of The Open Group in the United States and other countries.
Sun, Sun Microsystems, Java, Java Virtual Machine, JavaSer ver Pages, JDK, JRE, JSP, JVM, Netra,
OpenJDK, Solaris, StarOffice, Sun Blade, Sun Enterprise, Sun Fire , SunOS, Ultra and VirtualBox are
trademarks or registered trademarks of Sun Microsystems, Inc. in t he United States and other
countries.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This document describes how you can use FreeBSD to set up a “console server”. A console server is a
machine that you can use to monitor the consoles of many othermachines, instead of a bunch of serial
terminals.

1

Console Server

Table of Contents
1 The Problem ...2

2 Possible Solutions ...2

3 Our Solution ...3

4 Setting Up The Server ...5

5 Cabling ..9

6 On Sun Systems And Break ..13

7 Using a Serial Console on FreeBSD ...14

8 Security Implications ...14

9 On Conserver Versions ..15

10 Links..15

11 Manual Pages ...16

1 The Problem
You have a computer room with lots of UNIX® server machines and lots of communications hardware. Each of
these machines needs a serial console. But serial terminalsare hard to find and quite expensive (especially compared
to a much more capable PC). And they take up a lot of precious space in the computer room.

You need access to the console because when things break, that is where error messages go. And some tasks have to
be done on the console (e.g. boot problems or OS installs/upgrades). Some UNIX systems allow the console to break
out to the ROM monitor which can sometimes be the only way to unstick a hung machine. This is often done with a
LINE BREAKsent on the console serial port.

If we are going to play about with consoles, then there are a couple of other things that would be great:

• Remote access. Even in the same office, it would be convenientto access all the consoles from your desk without
walking into the computer room. But often the machines are off-site, perhaps even in another country.

• Logging. If something has gone wrong, you would like to be able to have a look at the previous console output to
see what is up. Ordinary console screens give you the last 25 lines. More would be better.

• Network Independence. The solution needs to work even if thenetwork is down. After all, a failed network is
when you need consoles the most! Even better is network independence with remote access.

• No single-point failure. A console system that crashes every machine when it fails is no use. This is particularly
tricky with Sun UNIX hosts as they will interpret a powered-off terminal as aBREAK, and drop back to the ROM
monitor.

• Interface with a pager or some similar alerter device.

• Ability to power-cycle machines remotely.

• Not betoo expensive. Free is even better!

2

Console Server

2 Possible Solutions
If you use PC hardware for your servers, then a so-called “KVMswitch” is one possible solution. A KVM switch
allows the use of a single keyboard, video screen and mouse for multiple boxes. This cuts down on the space
problem, but only works for PC hardware (not any communications gear you might have), and is not accessible from
outside the computer room. Nor does it have much scroll-backor logging, and you have to handle alerting some
other way. The big downside is that it will not work for serial-only devices, such as communications hardware. This
means that even with a room full of PC-based servers, you are probably still going to need some sort of serial console
solution.

Note: Actually, Doug Schache has pointed out that you can get KVM switches that also do serial consoles or Sun
compatible KVM switching as well as PCs, but they are expensive. See Avocent (http://www.avocent.com/) for
example.)

You might be tempted to do without a console terminal, but when things go pear-shaped youreally need to see what
is on the console. And you have to use the console to boot the machine and do things like OS upgrades or installs.

You might try having a single console terminal and switchingfrom server to server as needed, either with a serial
switch or just by patching it into the required machine. Serial switches are also hard to come by and not cheap, and
may cause problems with sendingBREAKwhen they switch. And (if your computer room is anything likeours) you
never seem to have the right combination of patch leads to connect to the machine you need to, and even if the leads
are there you can never work out exactly which combination ofDTE/DCEheadshells goes with which lead goes with
which hardware. So you spend the first 10 minutes fooling around with breakout boxes and a box of leads, all while
the server is down and the users are screaming. Of course thisdoes not deal with the logging or remote access
requirements. And inevitably the console is not switched tothe machine you need so you lose all the console
messages that might tell you what is going on.

One popular solution is to use terminal server hardware. Typically, the serial ports are connected to the various
machine consoles, and set up for “reverse telnet” access. This means a user can telnet to a given IP/port and be
connected to the appropriate console. This can be very cost-effective, as suitable old terminal servers can be picked
up fairly cheaply (assuming you do not have a couple lying around). And it is of course network-accessible so
suitable for remote access. But it suffers from one major drawback: if the network is down, then you haveno access
to any console, even if you are standing right next to the machine. (This may be partially alleviated by having a
suitable terminal connected to one of the terminal server ports and connecting from there, but the terminal server
software may not support that.) Also there is no logging or replay of console messages. But with a bit of work, and
the addition of some software such asconserver (described below), this can be made to work pretty well.

A possibility suggested by Bron Gondwana is similar to the above solution. If you use servers with multiple serial
ports, you can connect each spare serial port to the console port of the “next” server, creating a ring of console
connections (in some sort of order). This can be made to work reasonably well with the aid of theconserver
software, but can be a bit confusing otherwise (i.e. remembering which port is connected to which console). And you
are stuck if you need to use serial ports for other things (such as modems) or you have machines without spare ports.

Or, if your budget exceeds your willingness to hack, you can buy an off-the-shelf solution. These vary in price and
capability. See, for example, Lightwave (http://www.lightwavecom.com/), Perle (http://www.perle.com/), Avocent
(http://www.avocent.com/) or Black Box (http://www.blackbox.com/faxbacks/23000/23362.PDF). These solutions
can be quite expensive - typically $USD100 - $USD400 per port.

3

Console Server

3 Our Solution
In light of the above requirements, we chose a solution basedon a dedicated PC running UNIX with a multiport
serial card, and some software designed to handle serial consoles.

It includes the following elements:

• A surplus PC. We used a Pentium® 166, with a PCI bus, 2Gbyte hard disk and 64Mb of RAM. This is a massive
overkill for this task, and P-100, 500Mb, 32Mb would be more than enough.

• A PC UNIX system. We used FreeBSD 4.3 (http://www.FreeBSD.org/index.html) as that is used for other tasks
within our office.

• A multi-port serial card. We chose the EasyIO™ PCI (http://www.stallion.com/html/products/easyio.html) 8-port
card from Stallion Technologies (http://www.stallion.com/). This cost us about $AUD740, or under $100/port,
from Harris Technologies (http://www.ht.com.au/) (whichhas lots of stuff but is by no means the cheapest place in
town - shop around and you might get it a lot cheaper). This card has a big DB80 connector on the back, and a
cable plugs into that which has a block with 8 RJ-45 sockets onit. (We chose the RJ-45 version as our entire cable
plant is RJ-45. This allows us to patch connections from the required box to the console server without any special
cables.) This is the only thing we needed to buy to make this all happen.

• We build two servers, one for each computer room, with 8 portsin one and 16 ports (via two EasyIO PCI cards) in
the other. If we needed more than 16 ports, then another of theStallion cards would be more cost-effective. We
could conceivably support 128 ports in each server (with 2 EasyConnect 8/64 host cards and 8 16 port RJ-45
modules) for about $AUD12,000.

• A modem for remote access to the console server host when the network is down. We have not done this yet as the
computer room is next door, but when we put a server in Sydney we will add the modem. The idea is that when the
network is down, you can dial up and log into the server machine and run the console program locally. For
security, we will probably leave the modem powered off and ask the gopher in Sydney to turn on the well-labelled
button when we need it.

• A program called conserver (http://www.conserver.com/).This program does all the magic required to enable
remote access to consoles, and do the replaying and logging etc. It comes in two parts: a server calledconserver
that runs as a daemon and connects to the serial ports, handles logging etc, and a client program calledconsole
that can connect to the server, display console messages, send keystrokes (andBREAK), etc.

This design covers all the major requirements except remotepower cycling:

• Remote access comes because theconsole client program works across the network.

• Logging is handled by theconserver program.

• If the network is down, then we can use the console on the PC to run theconsole client locally. For remote sites,
we can add a modem for dial-in access to the server command line to run the client.

• By patching the Solaris™ servers (seeSection 6), we can avoid pranging the whole computer room when the
console server PC crashes (or the power supply fails, or whatever).

• We already have pager alerts from another system we have installed, but the console server has all the required log
info so that could easily be implemented if we needed. And it even has a modem for calling the pager company!

• We do not currently support remote power cycling. Some versions of theconserver program support this, but it
does require specialised serial-controlled power boards.We have no immediate need for remote power cycling (we

4

Console Server

have a gopher in each remote office who can do it by remote control) so this is not a major problem, and we could
add it easily should we ever see the need and get the appropriate hardware.

• This solution was very cheap. Total cost for the 9-port server was $AUD750 for the IO card, as we re-used a
surplus PC and already owned the hardware for the special cables. If we had to buy everything, then it would still
only cost around $AUD1500 for the 8-port server.

4 Setting Up The Server

4.1 Checking the Stallion driver

FreeBSD has adequate support for modern Stallion cards since 4.4 release. If you are running an older version of
FreeBSD, you will need to upgrade to a more modern version of FreeBSD (which you should do anyway, to make
sure your system is not vulnerable to known security issues). See the FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html) for information about updating
your system.

4.2 Configuring a new kernel

The Stallion driver is not included in the defaultGENERICkernel, so you will need to create a kernel config file with
the appropriate entries. See stl(4) and the appropriate section of the FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html).

4.3 Making The Devices

You will need to make the device notes for the Stallion card (which are not made by default). A new version of
/dev/MAKEDEV with Stallion support will have been created by themergemaster run during the above procedure. If
you have a Stallion card with more than 8 ports, then you will need to edit/dev/MAKEDEV and change the definition
of maxport at about line 250. By default,MAKEDEVonly makes device nodes for 8 ports to keep the size of the/dev

directory down.

Run a command like:

cd /dev/ && sh MAKEDEV cuaE0

to create dial-out devices for the first Stallion card. See the comments inMAKEDEVand the stl(4) man page for more
details.

4.4 Compiling conserver

Note: See the section on conserver versions Section 9; the version I use is available in the FreeBSD ports
collection; however, it is not the only one.)

5

Console Server

There are two ways to installconserver. You can either compile from the source or use the FreeBSD ports
framework.

4.4.1 Using the ports framework

Using the ports is a bit cleaner, as the package system can then keep track of installed software and cleanly delete
them when not being used. I recommend using thecomms/conserver-com port. Change into the port directory and
(asroot) type:

make DEFAULTHOST=consolehost install

whereconsolehost is the name of the machine running the console server. Specifying this when the binary is
compiled will avoid having to either specify it each time theprogram is run on remote hosts or having to maintain a
conserver.cf file on every host. This command will fetch, patch, configure,compile and install theconserver
application.

You can then runmake package to create a binary package that can be installed on all the other FreeBSD hosts
with pkg_add(1). For extra style points, you can make a two versions of the package: one for the console server
machine without aDEFAULTHOSTargument, and one for all the other hosts with aDEFAULTHOSTargument. This
will mean the console client program on the console server machine will default tolocalhost , which will work in
the absence of name servers when the network is busted, and also allow “trusted” (i.e. no password required)
connections via the localhost IP address for users logged into the console server machine (either via the console
screen or the emergency backup modem). The version for the other machines with aDEFAULTHOSTargument means
users can just use theconsole client without specifying a hostname every time, and without needing to configure the
conserver.cf file on every machine.

4.4.2 From the source tarball

If you prefer, you can downloadconserver and compile it yourself. You might need to do this if you want to install
the console client on non-FreeBSD systems. We run the clienton our Solaris hosts and it inter-operates with the
FreeBSD-hosted server with no problems. This allows anyonein the whole company (many of whom have PCs and
no FreeBSD host access on their desk) to access the console server.

Download the file from the conserver.com FTP site (ftp://ftp.conserver.com/conserver/conserver-8.1.9.tar.gz).
Extract it into a handy directory then configure it by running

% ./configure --with-master= consoleserver --with-port= 782

The--with-master argument avoids having to specify the master server every time the client is run remotely (or
keeping up-to-date config files on all remote hosts). The--with-port argument avoids having to update
/etc/services on every machine.

Then typemake and, as root,make install .

4.5 Configuring conserver

Theconserver program is configured via a file calledconserver.cf . This file usually lives in/usr/local/etc

and is documented in the conserver.cf(5) manual page.

Our config file looks like this:

6

Console Server

LOGDIR=/var/log/consoles
gallows:/dev/cuaE0:9600p:&:
roo:/dev/cuaE1:9600p:&:
kanga:/dev/cuaE2:9600p:&:
%%
allow: itga.com.au
trusted: 127.0.0.1 buzz

The first line means all the console log files by default go intothe/var/log/consoles directory. The “&” in each
line says the log file for that machine will be/var/log/consoles/ machine.

The next three lines show three machines to which we need to connect. We use thecuaEx devices rather than the
ttyE x devices because console ports typically do not show carrier. This means that openingttyE x would hang and
conserver would never connect. Using thecuaEx device avoids this problem. Another solution would be to usethe
ttyE x devices and enable “soft carrier” on these ports, perhaps bysetting this using thettyiE x device in the
/etc/rc.serial file. See the comments in this file for more details. Also see sio(4) for information on the
initial-state and locked-state devices. (The Stallion driver also supports these conventions). And see the stty(1) for
details on setting device modes.

The last section shows that any user logged into the server machine has passwordless access to all consoles. We do
this because there are no user accounts on this machine and itis safely isolated from the wide world behind our
firewall. The allow line allows anyone on a machine inside ourorganisation to access the console server if they
provide their password, which is recorded in theconserver.passwd file (see next section).

4.6 Setting conserver passwords

Theconserver.passwd file contains the encrypted version of the password that eachuser. The file is documented
in theconserver.cf(5) manual page.

The only tricky bit is loading the file with encoded passwords. It appeared in FreeBSD that was is no obvious way to
generate an encrypted password for inclusion in another file(but see below). So I put together a quick hack perl
script to do this:

@rands = ();
foreach (0..4) {

push(@rands, rand 64);
}

$salt = join ”, (’.’, ’/’, 0..9, ’A’..’Z’, ’a’..’z’)[@rands];

$salt = ’$1$’ . $salt . ’$’;

print ’Enter password: ’;
‘stty -echo‘;
$cleartext = <>;
‘stty echo‘;
chop($cleartext);
print crypt($cleartext, $salt), "\n";

Note: This uses the FreeBSD MD5-style encrypted passwords. Running this on other UNIX variants, or on
FreeBSD with DES passwords, will likely need a different style of salt.

7

Console Server

Kris Kennaway <kris@FreeBSD.org > has since pointed out you can get the same effect using theopenssl

passwd command:

% openssl passwd -1
Password: password

1VTd27V2G$eFu23iHpLvCBM5nQtNlKj/

4.7 Starting conserver at system boot time

There are two ways this can be done. Firstly, you could start up conserver from init by including an entry in
/etc/ttys that is similar to this:

cuaE0 "/usr/local/sbin/conserver" unknown on insecure

This has two advantages:init will restart the master console server if it ever crashes forany reason (but we have not
noticed any crashes so far), and it arranges for standard output of theconserver process to be directed to the named
tty (in this casecuaE0). This is useful because you can plug a terminal into this port, and theconserver program will
show all console output not otherwise captured by a client console connection. This is useful as a general monitoring
tool to see if anything is going on. We set this terminal up in the computer room but visible from the main office. It is
a very handy feature. The downside of runningconserver from the ttys file is that it cannot run in daemon mode
(else init(8) would continually restart it). This meansconserver will not write a PID file, which makes it hard to
rotate the log files.

So we startconserver from an rc.d script. If you installedconserver via the port, there will be a
conserver.sh.sample file installed in/usr/local/etc/rc.d . Copy and/or rename this toconserver.sh to
enableconserver to start at boot time.

In fact we use a modified version of this script which also connectsconserver to a terminal via a tty device so we can
monitor unwatched console output. Ourconserver.sh script looks like this:

#!/bin/sh
#
Startup for conserver
#

PATH=/usr/bin:/usr/local/bin

case "$1" in
’start’)

TTY=/dev/cuaE7
conserver -d > $TTY
get NL->CR+NL mapping so msgs look right
stty < /dev/cuaE7 opost onlcr

echo -n ’ conserver’
;;

’stop’)
kill ‘cat /var/run/conserver.pid‘ && echo -n ’ conserver’

;;

8

Console Server

*)
echo "Usage: $0 { start | stop }"
;;

esac
exit 0

Note: Note the use of cuaE0 device and the need to set tty modes for proper NL-<CR handling).

4.8 Keeping the log files trimmed

FreeBSD has a program callednewsyslog that will automatically handle log file trimming. Just add some lines to the
configuration file/etc/newsyslog.conf for the console logs:

#
The log files from conserver
/var/log/consoles/gallows 644 10 1000 * Z /var/run/conserver.pid
/var/log/consoles/kanga 644 10 1000 * Z /var/run/conserver.pid
/var/log/consoles/roo 644 10 1000 * Z /var/run/conserver.pid

This tellsnewsyslog (which is run from cron every hour on the hour) that the console log files should be archived
and compressed once they reach 1Mb, that we should keep 10 of them, and that to signal the server program you
send aSIGHUPto the process whose PID is in theconserver.pid file. This is the master server, and it will arrange
to signal all the child processes. Yes, this will send aHUPto all clients whenever a single log file needs rotating, but
that is quite cheap. See newsyslog(8) for details.

5 Cabling
This is always the hardest part of this kind of problem. We hadonly a dozen or so cables/headshells to build, and we
already had a collection of the appropriate crimping tools and hardware, so we did it ourselves. But if you are not set
up for this, or you have a large number of cables to make, then you might consider getting some cables custom made.
Look in the yellow pages, there are a surprising number of places that do this! Getting custom-made cabling is good,
and you can get much more professional results, but can be expensive. For example, the RJ-45 to DB-25 adapter kits
described below are about $10 each; custom-made headshellsare about twice that (and take a couple of weeks to
arrive). Similarly, crimping custom RJ-45 to RJ-45 leads isquite cheap (say, $5 each) but it takes a fair amount of
time. Custom made RJ-45 socket to RJ-45 plug converters costabout $25 each.

We have settled on RJ-45 Cat-V cabling for all our office and computer room cabling needs. This included patching
between racks in the computer room. For serial connections,we use patchable headshells that have RJ-45 sockets on
the back. This allows us to patch whatever RJ-45–DB-25 connections we need.

Which is just as well, because there are many incompatible ways to represent serial connections on the RJ-45 plug.
So the cabling has to be very careful to use the right mapping.

9

Console Server

5.1 RJ-45 colors

RJ-45 cables and plugs have 8 pins/conductors. These are used as 4 matched pairs. There are a couple of conventions
about how the pairs are mapped onto pins, but 100baseT uses the most common (known as EIA 586B). There are
three common color-coding conventions for the individual conductors in RJ-45 cables. They are:

Table 1.

Pin Scheme 1 Scheme 2 (EIA
568B)

Scheme 3 (EIA
568A)

Pair

1 Blue White+Green White+Orange 2+

2 Orange Green Orange 2-

3 Black White+Orange White+Green 3+

4 Red Blue Blue 1+

5 Green White+Blue White+Blue 1-

6 Yellow Orange Green 3-

7 Brown White+Brown White+Brown 4+

8 White or Grey Brown Brown 4-

Note EIA 468A and EIA 568B are very similar, simply swapping the colors assigned to pair 2 and pair 3.

See for example the Cabletron Tech Support Site (http://www.cabletron.com/support/techtips/tk0231-9.html) for
more details.

The pins in the RJ-45 plug are numbered from 1 to 8. Holding a patch lead with the cable pointing down and the clip
away from you, pin 1 is at the left. Or, looking into an RJ-45 socket with the clip to the top, pin 1 is on the right. The
following illustration (shamelessly lifted from the Cabletron web site above) shows it pretty well:

We have four classes of equipment to deal with in our setup:

Sun servers

Sun servers operate as DTE (i.e. send data on TxD and read RxD,and assert DTR) with a female DB-25 socket
on board. So we need to create a headshell for the Stallion that operates as DCE and has a male DB-25 plug (i.e.
acts as a “null modem” cable as well as converts from RJ-45 to DB-25). We use headshells that have an RJ-45
socket in them and 8 short flyleads with DB-25 pins on the end. These pins can be inserted into the DB-25 plug
as required. This allows us to create a custom RJ-45-DB-25 mapping. We used a couple of different sorts,
including the MOD-TAP (http://www.molexpn.com.au/) partno. 06-9888-999-00
(http://www.molexpn.com.au/products/index.nsx/1/7/0/0/id=340) and the FA730 series
(http://www.blackbox.com/faxbacks/12000/12654.PDF) from Black Box (http://www.blackboxoz.com.au/).

On our version of the headshells, these flyleads had the following colours (from Pin 1-8): Blue, Orange, Black,
Red, Green, Yellow, Brown, White. (Looking into an RJ-45 socket, with the clip towards the top, pin 1 is on the

10

Console Server

right.) This is how they are connected to the DB-25 socket:

Table 2.

Stallion RJ-45
Pin

Colour Signal Sun DB-25 Male
Pin

RS232 Signal

1 Blue DCD 20 DTR

2 Orange RTS 5 CTS

3 Black Chassis Gnd 1 Chassis Gnd

4 Red TxD 3 RxD

5 Green RxD 2 TxD

6 Yellow Signal Gnd 7 Signal Gnd

7 Brown CTS 4 RTS

8 White RTS 8 DCD

Note that colours may be different for your cables/headshells. In particular, pin 8 may be grey instead of white.

Remember to label the headshellclearly, in a way that will not fade/fall off/rub off with time!

Cisco 16xx/26xx/36xx Routers

I think that all Cisco gear that has RJ-45 console ports and runs IOS® will have the same cable requirements.
But best to check first. We have tried this on 1600s and 2600s only.

Both the Stallion card and the 2600 have RJ-45 connections, but of course they are not compatible. So you need
to crimp up a special RJ-45-RJ-45 cable. And this cable must be plugged in the right way round! We use normal
RJ-45 flyleads from the router to the patch panel, then the special flylead from the patch panel to the Stallion
card.

We built two special Stallion-Cisco leads by cutting in halfa 2m flylead and crimping an RJ-45 with the
appropriate pinouts to each free end. The original connector will be the Cisco end of the cable, the new crimped
connector will be the Stallion end. Holding the RJ-45 connector on the flylead with the cable pointing down and
the clip pointing away, this is the order of the colours of thecables in our flylead (pins 1-8, from L to R):
white/green, green, white/orange, blue, white/blue, orange, white/brown, brown. For the Stallion end, trim and
discard the brown/white+brown and green/white+green pairs. Then holding the RJ-45 plug in the same manner
(cable down, clip away), the connections should be (from L toR): None, None, Blue, Orange, White/Orange,
White/Blue, None, None, as shown:

Table 3.

Cisco RJ-45 Pin Colour Cisco Signal Stallion RJ-45
Pin

Stallion Signal

1 White/Green RTS N/C

2 Green DTR N/C

3 White/Orange TxD 5 RxD

4 Blue Gnd 3 Gnd

5 White/Blue Gnd 6 Gnd

6 Orange RxD 4 TxD

7 White/Brown DSR N/C

11

Console Server

Cisco RJ-45 Pin Colour Cisco Signal Stallion RJ-45
Pin

Stallion Signal

8 Brown CTS N/C

Note again that colours may be different for your cables/headshells.

Carefully label the cable, and each end of the cable, and testit. If it does not work, testing isreally hard as they
do not make RJ-45 serial line testers!

Let me state this more strongly: Bevery sure that you label this cable in a way that is easily, instantly and
permanently recognisable as a special cable and not easily confused with normal drop cables. Some suggestions
(from Hugh Irvine):

• Make them out of different coloured cable.

• For marking the ends, clear heat-shrink tubing slipped overprinted labels *before* putting on the connectors
is the best way I have seen for marking what they are.

• You can also use Panduit or similar tags that you put on with nylon tie straps, but I find the ink wears off the
tags.

Cisco Catalyst® switches

Astoundingly, the pinout on the console ports of the Catalyst switches is actuallydifferent to the pinout used on
the 26xx-series Cisco hardware. I think the way to tell whichis which is by considering the operating software.
If it uses IOS, then the previous pinout is required. If it uses the switch software, then this pinout is required.

Fortunately, while the pinouts are different, the Catalystpinout is simply a mirror image of the pinout for the
2600. Even more fortunately, the Ciscos (both Catalyst switches and 2600s) seem to ship with a special
“rollover” cable, which is exactly what is required in this case. We use the rollover cable from the Catalyst
switches to the patch panel, then the same cable as above for the 2600s from the patch panel to the Stallion card,
and it all works just fine.

This rollover cable is an RJ-45-RJ-45 cable and is intended to be used with the shipped (hardwired) RJ-45 -
DB-25 and RJ-45–DB-9 headshells for console connections. Ours are 2m long, either light blue or black, and
are quite flat. Attempts to use them for 100baseT Ethernet will fail miserably! You can tell it is a rollover cable
by holding both ends with the cable pointing down and the clippointing away from you. Check the colour of the
leads in each pin in the two connectors, they should be mirrorimages. (In our case, one goes
grey-orange-black-red-green-yellow-blue-brown, the other brown-blue-yellow-green-red-black-orange-grey).
This is a rollover cable.

If you do not have a rollover cable present, then you can use the same cable as for the 26xx except plug it in the
other way around (i.e. original 8-pin plug goes into the Stallion, the new crimped plug with only 4 active wires
goes into the Catalyst switch).

FreeBSD servers (or any other i386™ PC systems using a serialconsole)

We run FreeBSD 4 on a couple of i386 PCs for various peripheraluses. FreeBSD usually uses a screen and
keyboard for the console, but can be configured to use a serialport (usually the first serial port known asCOM1

in DOS/Windows® orttyd0 in UNIX).

The cabling for these servers depends on the PC hardware. If the PC has DB-25 female socket on board (as
most older PCs do), then the same headshell as works for the Sun server above will work fine. If the PC has
DB-9 male plug on board (as more recent PCs tend to do), then there are two choices. Either use a DB-9 to

12

Console Server

DB-25 converter (this is not recommended as it can lead to unreliable connections over the long term as the
adapter is bumped/works loose), or build an RJ-45 to DB-9 cable as follows:

Table 4.

Stallion RJ-45
Pin

Colour Signal PC DB-9 Female
Pin

RS232 Signal

1 Blue DCD 4 DTR

2 Orange RTS 8 CTS

3 Black Chassis Gnd N/C

4 Red TxD 2 RxD

5 Green RxD 3 TxD

6 Yellow Signal Gnd 5 Signal Gnd

7 Brown CTS 7 RTS

8 White RTS 1 DCD

SeeSection 7for tips on configuring FreeBSD to use a serial console.

6 On Sun Systems And Break
Anyone who has turned off a terminal used as a console for a Sunsystem will know what happens and why this is a
problem. Sun hardware recognises a serialBREAKas a command to halt the OS and return to the ROM monitor
prompt. A serialBREAKis an out-of-band signal on an RS-232 serial port that involves making the TX DATA line
active (i.e. pulled down to less than -5V) for more than two whole character times (or about 2ms on a 9600bps line).
Alas, thisBREAKsignal is all to easily generated by serial hardware during power-on or power-off. And the Stallion
card does, in fact, generate breaks when the power to the PC fails. Unless fixed, this problem would mean that every
Sun box connected to the console server would be halted whenever the power failed (due to dead power supplies, or
fat-fingered operators unplugging it, or whatever). This isclearly not an acceptable situation.

Fortunately, Sun have come up with a set of fixes for this. For Solaris 2.6 and later, thekbd(1) command can be
used to disable theROM-on-BREAKbehaviour. This is a good start, but leaves you out of luck in the situation where a
break is needed to get into a broken machine.

Starting with Solaris 8, thekbd command can also be used to enable an alternate break sequence using thekbd -a

alternate command. When this is set, the key sequenceReturnTildeCtrl-B (within 5 seconds) will drop to the
ROM. You can enable this permanently by editing the/etc/default/kbd file; see thekbd(1) man page. Note
that this alternate break sequence is only active once the kernel has started running multiuser and processed the
default file. While the ROM is active (during power-on and during the boot process) and while running single-user,
you still need to use aBREAKto get to the ROM prompt. The console client can cause the server to send aBREAK

using the escape sequenceEsccl1.

If you have a Sun software support contract, there are patches available for Solaris 2.6 and 2.7 that add the “alternate
break” capability integrated into Solaris 2.8. Solaris 2.6requires patch 105924-10 or higher. Solaris 2.7 requires
patch 107589-02 or higher.

We have added this patch to all our Solaris 2.6 servers, and added it (and the entry in the /etc/default/kbd file) to our
jumpstart configuration so it will automatically be added toevery new install.

13

Console Server

We have confirmed by direct testing that neither the Cisco 16xx, 26xx, or Catalyst hardware suffers from theBREAK

sent when the Stallion card loses power. Contemporary Ciscosoftware listens forBREAKsignal only for first 30
seconds after power-on or reboot.

7 Using a Serial Console on FreeBSD
The procedure for doing this is described in detail in the FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/serialconsole-setup.html). This is a quick
summary.

7.1 Check the kernel configuration

Check that the kernel configuration file hasflags 0x10 in the config line for thesio0 device. This signals this
device (known asCOM1in DOS/Windows or/dev/ttyd0 in FreeBSD) can be used as a console. This flag is set on
theGENERICandLINT sample configs, so is likely to be set in your kernel.

7.2 Create the /boot.conf file

This file should be created containing a single line containing just “-h ” (minus the quotes). This tells the FreeBSD
boot blocks to use the serial console.

7.3 Edit /etc/ttys

Edit this file and make the following changes.

If you are not going to have any keyboard/video screen on thisserver at all, you should find all the lines forttyv

devices like

ttyv1 "/usr/libexec/getty Pc" cons25 on secure

Change theon to off . This will stop login screens being run on the useless video consoles.

Find the line containingttyd0 . Change it from

ttyd0 "/usr/libexec/getty std.9600" dialup off secure

to

ttyd0 "/usr/libexec/getty std.9600" vt100 on secure

(replacingvt100 with the term type of your console. Thexterms terminal type might be a good choice). This
allows you to log in to the console port once the system is running multi-user.

Reboot and off you go!

14

Console Server

8 Security Implications
The client-server protocol forconserver requires the user of theconsole client to enter a password. This password is
passed across the net incleartext! This meansconserver is not really suitable for use across untrusted networks
(such as the Internet). Use of conserver-only passwords (intheconserver.passwd file) slightly mitigate this
problem, but anyone sniffing aconserver connection can easily get console access, and from there prang your
machine using the console break sequence. For operating across the Internet, use something secure likeSSH to log
into to the server machine, and run the console client there.

9 On Conserver Versions
Theconserver program has fractured into a number of versions. The home page referenced below seems to be the
latest and most featureful version around, and for July 2004carries a version number of “8.1.9”. This is maintained
by Bryan Stansell <bryan@conserver.com >, who has brought together the work of many people (listed onhis
webpage).

The FreeBSD ports collection contains a port for version 8.5of conserver atcomms/conserver . This seems to be
older and less featureful than the 8.1.9 version (in particular, it does not support consoles connected to terminal
server ports and does not support aconserver.passwd file), and is written in a fairly idiosyncratic manner (usinga
preprocessor to generate C code). Version 8.5 is maintainedby Kevin S. Braunsdorf
<ksb+conserver@sa.fedex.com > who did most of the original work onconserver, and whose work Bryan
Stansell is building on. The 8.5 version does support one feature not in the 8.1.9 version (controlling power to remote
machines via a specific serial-interfaced power controllerhardware).

Beginning with December 2001, Brian’s version (currently 8.1.9) is also presented in ports collection at
comms/conserver-com . We therefore recommend you to use this version as it is much more appropriate for
console server building.

10 Links

http://www.conserver.com/

Homepage for the latest version ofconserver.

ftp://ftp.conserver.com/conserver/conserver-8.1.9.tar.gz

The source tarball for version 8.1.9 ofconserver.

http://www.stallion.com/

Homepage of Stallion Technologies.

http://www.conserver.com/consoles/msock.html

Davis Harris’ “Minor Scroll of Console Knowledge” containsa heap of useful information on serial consoles
and serial communications in general.

http://www.conserver.com/consoles/

The “Greater Scroll of Console Knowledge” contains even more specific information on connecting devices to
various other devices. Oh the joy of standards!

15

Console Server

http://www.eng.auburn.edu/users/doug/console.html

Doug Hughes has a similar console server, based on thescreen program and an old SunOS™ host.

http://www.realweasel.com/

The Real Weasel company makes a ISA or PCI video card that looks like a PC video card but actually talks to a
serial port. This can be used to implement serial consoles onPC hardware for operating systems that can not be
forced to use serial console ports early enough.

11 Manual Pages

• console(8) (http://www.conserver.com/docs/console.man.html)

• conserver(8) (http://www.conserver.com/docs/conserver.man.html)

• conserver.cf(5) (http://www.conserver.com/docs/conserver.cf.man.html)

16

	Table of Contents
	1 The Problem
	2 Possible Solutions
	3 Our Solution
	4 Setting Up The Server
	4.1 Checking the Stallion driver
	4.2 Configuring a new kernel
	4.3 Making The Devices
	4.4 Compiling conserver
	4.4.1 Using the ports framework
	4.4.2 From the source tarball

	4.5 Configuring conserver
	4.6 Setting conserver passwords
	4.7 Starting conserver at system boot time
	4.8 Keeping the log files trimmed

	5 Cabling
	5.1 RJ45 colors

	6 On Sun Systems And Break
	7 Using a Serial Console on FreeBSD
	7.1 Check the kernel configuration
	7.2 Create the /boot.conf file
	7.3 Edit /etc/ttys

	8 Security Implications
	9 On Conserver Versions
	10 Links
	11 Manual Pages

