
FreeBSD Developers’ Handbook

The FreeBSD Documentation Project

FreeBSD Developers’ Handbook
by The FreeBSD Documentation Project
Published August 2000
Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The FreeBSD Documentation
Project

Welcome to the Developers’ Handbook. This manual is awork in progressand is the work of many individuals.
Many sections do not yet exist and some of those that do exist need to be updated. If you are interested in helping
with this project, send email to the FreeBSD documentation project mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc).

The latest version of this document is always available fromthe FreeBSD World Wide Web server
(http://www.FreeBSD.org/index.html). It may also be downloaded in a variety of formats and compression options
from the FreeBSD FTP server (ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/) or one of the numerous mirror sites
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html).

Copyright

Redistribution and use in source (XML DocBook) and ’compiled’ forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retainthe above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

FreeBSD is a registered trademark of the FreeBSD Foundation.

Apple, AirPort, FireWire, Mac, Macintosh, Mac OS, Quicktime, and TrueType are trademarks of Apple Computer, Inc., registered in the United

States and other countries.

IBM, AIX, EtherJet, Netfinity, OS/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks of International Business Machines Corporation in the

United States, other countries, or both.

IEEE, POSIX, and 802 are registered trademarks of Instituteof Electrical and Electronics Engineers, Inc. in the UnitedStates.

Intel, Celeron, EtherExpress, i386, i486, Itanium, Pentium, and Xeon are trademarks or registered trademarks of IntelCorporation or its

subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windows Media and Windows NT are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

Motif, OSF/1, and UNIX are registered trademarks and IT DialTone and The Open Group are trademarks of The Open Group in theUnited States

and other countries.

Sun, Sun Microsystems, Java, Java Virtual Machine, JavaServer Pages, JDK, JRE, JSP, JVM, Netra, OpenJDK, Solaris, StarOffice, Sun Blade,

Sun Enterprise, Sun Fire, SunOS, Ultra and VirtualBox are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States

and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations

appear in this document, and the FreeBSD Project was aware ofthe trademark claim, the designations have been followed bythe “™” or the “®”

symbol.

Table of Contents
I. Basics...vii

1 Introduction..1
1.1 Developing on FreeBSD..1
1.2 The BSD Vision...1
1.3 Architectural Guidelines..1
1.4 The Layout of/usr/src ..1

2 Programming Tools..3
2.1 Synopsis...3
2.2 Introduction..3
2.3 Introduction to Programming..3
2.4 Compiling withcc ...6
2.5 Make..12
2.6 Debugging..16
2.7 Using Emacs as a Development Environment...20
2.8 Further Reading...28

3 Secure Programming..30
3.1 Synopsis...30
3.2 Secure Design Methodology..30
3.3 Buffer Overflows...30
3.4 SetUID issues...32
3.5 Limiting your program’s environment...33
3.6 Trust...34
3.7 Race Conditions...34

4 Localization and Internationalization - L10N and I18N..35
4.1 Programming I18N Compliant Applications...35
4.2 Localized Messages with POSIX.1 Native Language Support (NLS)..35

5 Source Tree Guidelines and Policies..40
5.1 Style Guidelines...40
5.2MAINTAINERon Makefiles..40
5.3 Contributed Software...40
5.4 Encumbered Files..43
5.5 Shared Libraries...44

6 Regression and Performance Testing...46
6.1. Micro Benchmark Checklist...46
6.2. The FreeBSD Source Tinderbox...47

II. Interprocess Communication..51

7 Sockets...52
7.1 Synopsis...52
7.2 Networking and Diversity..52
7.3 Protocols..52
7.4 The Sockets Model..54
7.5 Essential Socket Functions..55
7.6 Helper Functions..67
7.7 Concurrent Servers..69

8 IPv6 Internals...71

iv

8.1 IPv6/IPsec Implementation..71

III. Kernel ..88

9 Building and Installing a FreeBSD Kernel...89
9.1 Building a Kernel the “Traditional” Way..89
9.2 Building a Kernel the “New” Way...89

10 Kernel Debugging..90
10.1 Obtaining a Kernel Crash Dump...90
10.2 Debugging a Kernel Crash Dump withkgdb ..91
10.3 Debugging a Crash Dump with DDD..96
10.4 On-Line Kernel Debugging Using DDB...96
10.5 On-Line Kernel Debugging Using Remote GDB..99
10.6 Debugging a Console Driver...100
10.7 Debugging Deadlocks..100
10.8 Kernel debugging with Dcons...101
10.9 Glossary of Kernel Options for Debugging...103

IV. Architectures ...106

11 x86 Assembly Language Programming...107
11.1 Synopsis...107
11.2 The Tools...107
11.3 System Calls..108
11.4 Return Values...110
11.5 Creating Portable Code..111
11.6 Our First Program..115
11.7 Writing UNIX® Filters..116
11.8 Buffered Input and Output...119
11.9 Command Line Arguments..126
11.10 UNIX Environment..130
11.11 Working with Files...134
11.12 One-Pointed Mind...145
11.13 Using the FPU..153
11.14 Caveats...180
11.15 Acknowledgements..182

V. Appendices..183

Bibliography..184

v

List of Examples
2-1. A sample.emacs file..22

vi

I. Basics

Chapter 1 Introduction
Contributed by Murray Stokely and Jeroen Ruigrok van der Werven.

1.1 Developing on FreeBSD
So here we are. System all installed and you are ready to startprogramming. But where to start? What does FreeBSD
provide? What can it do for me, as a programmer?

These are some questions which this chapter tries to answer.Of course, programming has different levels of
proficiency like any other trade. For some it is a hobby, for others it is their profession. The information in this
chapter might be aimed toward the beginning programmer; indeed, it could serve useful for the programmer
unfamiliar with the FreeBSD platform.

1.2 The BSD Vision
To produce the best UNIX® like operating system package possible, with due respect to the original software tools
ideology as well as usability, performance and stability.

1.3 Architectural Guidelines
Our ideology can be described by the following guidelines

• Do not add new functionality unless an implementor cannot complete a real application without it.

• It is as important to decide what a system is not as to decide what it is. Do not serve all the world’s needs; rather,
make the system extensible so that additional needs can be met in an upwardly compatible fashion.

• The only thing worse than generalizing from one example is generalizing from no examples at all.

• If a problem is not completely understood, it is probably best to provide no solution at all.

• If you can get 90 percent of the desired effect for 10 percent of the work, use the simpler solution.

• Isolate complexity as much as possible.

• Provide mechanism, rather than policy. In particular, place user interface policy in the client’s hands.

From Scheifler & Gettys: "X Window System"

1.4 The Layout of /usr/src

The complete source code to FreeBSD is available from our public repository. The source code is normally installed
in /usr/src which contains the following subdirectories:

Directory Description

bin/ Source for files in/bin

1

Chapter 1 Introduction

Directory Description

cddl/ Utilities covered by the Common Development and
Distribution License

contrib/ Source for files from contributed software.

crypto/ Cryptographical sources

etc/ Source for files in/etc

games/ Source for files in/usr/games

gnu/ Utilities covered by the GNU Public License

include/ Source for files in/usr/include

kerberos5/ Source for Kerberos version 5

lib/ Source for files in/usr/lib

libexec/ Source for files in/usr/libexec

release/ Files required to produce a FreeBSD release

rescue/ Build system for the/rescue utilities

sbin/ Source for files in/sbin

secure/ FreeSec sources

share/ Source for files in/usr/share

sys/ Kernel source files

tools/ Tools used for maintenance and testing of FreeBSD

usr.bin/ Source for files in/usr/bin

usr.sbin/ Source for files in/usr/sbin

2

Chapter 2 Programming Tools
Contributed by James Raynard and Murray Stokely.

2.1 Synopsis
This chapter is an introduction to using some of the programming tools supplied with FreeBSD, although much of it
will be applicable to many other versions of UNIX. It doesnot attempt to describe coding in any detail. Most of the
chapter assumes little or no previous programming knowledge, although it is hoped that most programmers will find
something of value in it.

2.2 Introduction
FreeBSD offers an excellent development environment. Compilers for C and C++ and an assembler come with the
basic system, not to mention classic UNIX tools such assed andawk. If that is not enough, there are many more
compilers and interpreters in the Ports collection. The following section,Introduction to Programming, lists some of
the available options. FreeBSD is very compatible with standards such as POSIX® and ANSI C, as well with its own
BSD heritage, so it is possible to write applications that will compile and run with little or no modification on a wide
range of platforms.

However, all this power can be rather overwhelming at first ifyou have never written programs on a UNIX platform
before. This document aims to help you get up and running, without getting too deeply into more advanced topics.
The intention is that this document should give you enough ofthe basics to be able to make some sense of the
documentation.

Most of the document requires little or no knowledge of programming, although it does assume a basic competence
with using UNIX and a willingness to learn!

2.3 Introduction to Programming
A program is a set of instructions that tell the computer to dovarious things; sometimes the instruction it has to
perform depends on what happened when it performed a previous instruction. This section gives an overview of the
two main ways in which you can give these instructions, or “commands” as they are usually called. One way uses an
interpreter, the other acompiler. As human languages are too difficult for a computer to understand in an
unambiguous way, commands are usually written in one or other languages specially designed for the purpose.

2.3.1 Interpreters

With an interpreter, the language comes as an environment, where you type in commands at a prompt and the
environment executes them for you. For more complicated programs, you can type the commands into a file and get
the interpreter to load the file and execute the commands in it. If anything goes wrong, many interpreters will drop
you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of your commands immediately, and mistakes can be corrected
readily. The biggest disadvantage comes when you want to share your programs with someone. They must have the
same interpreter, or you must have some way of giving it to them, and they need to understand how to use it. Also

3

Chapter 2 Programming Tools

users may not appreciate being thrown into a debugger if theypress the wrong key! From a performance point of
view, interpreters can use up a lot of memory, and generally do not generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way to start if you have not done any programming before. This
kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also be argued
that the UNIX shell (sh , csh) is itself an interpreter, and many people do in fact write shell “scripts” to help with
various “housekeeping” tasks on their machine. Indeed, part of the original UNIX philosophy was to provide lots of
small utility programs that could be linked together in shell scripts to perform useful tasks.

2.3.2 Interpreters available with FreeBSD

Here is a list of interpreters that are available from the FreeBSD Ports Collection, with a brief discussion of some of
the more popular interpreted languages.

Instructions on how to get and install applications from thePorts Collection can be found in the Ports section
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html) of the handbook.

BASIC

Short for Beginner’s All-purpose Symbolic Instruction Code. Developed in the 1950s for teaching University
students to program and provided with every self-respecting personal computer in the 1980s, BASIC has been
the first programming language for many programmers. It is also the foundation for Visual Basic.

The Bywater Basic Interpreter can be found in the Ports Collection aslang/bwbasic and the Phil Cockroft’s
Basic Interpreter (formerly Rabbit Basic) is available aslang/pbasic .

Lisp

A language that was developed in the late 1950s as an alternative to the “number-crunching” languages that
were popular at the time. Instead of being based on numbers, Lisp is based on lists; in fact the name is short for
“List Processing”. Very popular in AI (Artificial Intelligence) circles.

Lisp is an extremely powerful and sophisticated language, but can be rather large and unwieldy.

Various implementations of Lisp that can run on UNIX systemsare available in the Ports Collection for
FreeBSD. GNU Common Lisp can be found aslang/gcl . CLISP by Bruno Haible and Michael Stoll is
available aslang/clisp . For CMUCL, which includes a highly-optimizing compiler too, or simpler Lisp
implementations like SLisp, which implements most of the Common Lisp constructs in a few hundred lines of
C code,lang/cmucl andlang/slisp are available respectively.

Perl

Very popular with system administrators for writing scripts; also often used on World Wide Web servers for
writing CGI scripts.

Perl is available in the Ports Collection aslang/perl5.16 for all FreeBSD releases.

Scheme

A dialect of Lisp that is rather more compact and cleaner thanCommon Lisp. Popular in Universities as it is
simple enough to teach to undergraduates as a first language,while it has a high enough level of abstraction to
be used in research work.

4

Chapter 2 Programming Tools

Scheme is available from the Ports Collection aslang/elk for the Elk Scheme Interpreter. The MIT Scheme
Interpreter can be found inlang/mit-scheme and the SCM Scheme Interpreter inlang/scm .

Icon

Icon is a high-level language with extensive facilities forprocessing strings and structures. The version of Icon
for FreeBSD can be found in the Ports Collection aslang/icon .

Logo

Logo is a language that is easy to learn, and has been used as anintroductory programming language in various
courses. It is an excellent tool to work with when teaching programming in small ages, as it makes the creation
of elaborate geometric shapes an easy task even for very small children.

The latest version of Logo for FreeBSD is available from the Ports Collection inlang/logo .

Python

Python is an Object-Oriented, interpreted language. Its advocates argue that it is one of the best languages to
start programming with, since it is relatively easy to startwith, but is not limited in comparison to other popular
interpreted languages that are used for the development of large, complex applications (Perl and Tcl are two
other languages that are popular for such tasks).

The latest version of Python is available from the Ports Collection inlang/python .

Ruby

Ruby is an interpreter, pure object-oriented programming language. It has become widely popular because of its
easy to understand syntax, flexibility when writing code, and the ability to easily develop and maintain large,
complex programs.

Ruby is available from the Ports Collection aslang/ruby18 .

Tcl and Tk

Tcl is an embeddable, interpreted language, that has becomewidely used and became popular mostly because
of its portability to many platforms. It can be used both for quickly writing small, prototype applications, or
(when combined with Tk, a GUI toolkit) fully-fledged, featureful programs.

Various versions of Tcl are available as ports for FreeBSD. The latest version, Tcl 8.5, can be found in
lang/tcl85 .

2.3.3 Compilers

Compilers are rather different. First of all, you write yourcode in a file (or files) using an editor. You then run the
compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the editor; if it did
compile and gave you a program, you can run it either at a shellcommand prompt or in a debugger to see if it works
properly.1

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things which are
very difficult or even impossible with an interpreter, such as writing code which interacts closely with the operating
system—or even writing your own operating system! It is alsouseful if you need to write very efficient code, as the
compiler can take its time and optimize the code, which wouldnot be acceptable in an interpreter. Moreover,

5

Chapter 2 Programming Tools

distributing a program written for a compiler is usually more straightforward than one written for an interpreter—you
can just give them a copy of the executable, assuming they have the same operating system as you.

As the edit-compile-run-debug cycle is rather tedious whenusing separate programs, many commercial compiler
makers have produced Integrated Development Environments(IDEs for short). FreeBSD does not include an IDE in
the base system, butdevel/kdevelop is available in the Ports Collection and many useEmacsfor this purpose.
UsingEmacsas an IDE is discussed inSection 2.7.

2.4 Compiling with cc

This section deals with thegccandclangcompilers for C and C++, since they come with the FreeBSD basesystem.
Starting with FreeBSD 10.Xclang is installed ascc . The details of producing a program with an interpreter vary
considerably between interpreters, and are usually well covered in the documentation and on-line help for the
interpreter.

Once you have written your masterpiece, the next step is to convert it into something that will (hopefully!) run on
FreeBSD. This usually involves several steps, each of whichis done by a separate program.

1. Pre-process your source code to remove comments and do other tricks like expanding macros in C.

2. Check the syntax of your code to see if you have obeyed the rules of the language. If you have not, it will
complain!

3. Convert the source code into assembly language—this is very close to machine code, but still understandable by
humans. Allegedly.

4. Convert the assembly language into machine code—yep, we are talking bits and bytes, ones and zeros here.

5. Check that you have used things like functions and global variables in a consistent way. For example, if you
have called a non-existent function, it will complain.

6. If you are trying to produce an executable from several source code files, work out how to fit them all together.

7. Work out how to produce something that the system’s run-time loader will be able to load into memory and run.

8. Finally, write the executable on the filesystem.

The wordcompilingis often used to refer to just steps 1 to 4—the others are referred to aslinking. Sometimes step 1
is referred to aspre-processingand steps 3-4 asassembling.

Fortunately, almost all this detail is hidden from you, ascc is a front end that manages calling all these programs
with the right arguments for you; simply typing

% cc foobar.c

will causefoobar.c to be compiled by all the steps above. If you have more than onefile to compile, just do
something like

% cc foo.c bar.c

Note that the syntax checking is just that—checking the syntax. It will not check for any logical mistakes you may
have made, like putting the program into an infinite loop, or using a bubble sort when you meant to use a binary sort.2

6

Chapter 2 Programming Tools

There are lots and lots of options forcc , which are all in the manual page. Here are a few of the most important ones,
with examples of how to use them.

-o filename

The output name of the file. If you do not use this option,cc will produce an executable calleda.out . 3

% cc foobar.c executable isa.out
% cc -o foobar foobar.c executable isfoobar

-c

Just compile the file, do not link it. Useful for toy programs where you just want to check the syntax, or if you
are using aMakefile .

% cc -c foobar.c

This will produce anobject file(not an executable) calledfoobar.o . This can be linked together with other
object files into an executable.

-g

Create a debug version of the executable. This makes the compiler put information into the executable about
which line of which source file corresponds to which functioncall. A debugger can use this information to show
the source code as you step through the program, which isveryuseful; the disadvantage is that all this extra
information makes the program much bigger. Normally, you compile with -g while you are developing a
program and then compile a “release version” without-g when you are satisfied it works properly.

% cc -g foobar.c

This will produce a debug version of the program.4

-O

Create an optimized version of the executable. The compilerperforms various clever tricks to try to produce an
executable that runs faster than normal. You can add a numberafter the-O to specify a higher level of
optimization, but this often exposes bugs in the compiler’soptimizer.

% cc -O -o foobar foobar.c

This will produce an optimized version offoobar .

The following three flags will forcecc to check that your code complies to the relevant international standard, often
referred to as the ANSI standard, though strictly speaking it is an ISO standard.

-Wall

Enable all the warnings which the authors ofcc believe are worthwhile. Despite the name, it will not enableall
the warningscc is capable of.

7

Chapter 2 Programming Tools

-ansi

Turn off most, but not all, of the non-ANSI C features provided by cc . Despite the name, it does not guarantee
strictly that your code will comply to the standard.

-pedantic

Turn off all cc ’s non-ANSI C features.

Without these flags,cc will allow you to use some of its non-standard extensions to the standard. Some of these are
very useful, but will not work with other compilers—in fact,one of the main aims of the standard is to allow people
to write code that will work with any compiler on any system. This is known asportable code.

Generally, you should try to make your code as portable as possible, as otherwise you may have to completely rewrite
the program later to get it to work somewhere else—and who knows what you may be using in a few years time?

% cc -Wall -ansi -pedantic -o foobar foobar.c

This will produce an executablefoobar after checkingfoobar.c for standard compliance.

-l library

Specify a function library to be used at link time.

The most common example of this is when compiling a program that uses some of the mathematical functions
in C. Unlike most other platforms, these are in a separate library from the standard C one and you have to tell
the compiler to add it.

The rule is that if the library is calledlib something.a , you givecc the argument-l something. For example,
the math library islibm.a , so you givecc the argument-lm . A common “gotcha” with the math library is that
it has to be the last library on the command line.

% cc -o foobar foobar.c -lm

This will link the math library functions intofoobar .

If you are compiling C++ code, you need to add-lg++ , or -lstdc++ if you are using FreeBSD 2.2 or later, to
the command line argument to link the C++ library functions.Alternatively, you can runc++ instead ofcc ,
which does this for you.c++ can also be invoked asg++ on FreeBSD.

% cc -o foobar foobar.cc -lg++ For FreeBSD 2.1.6 and earlier
% cc -o foobar foobar.cc -lstdc++ For FreeBSD 2.2 and later
% c++ -o foobar foobar.cc

Each of these will both produce an executablefoobar from the C++ source filefoobar.cc . Note that, on
UNIX systems, C++ source files traditionally end in.C , .cxx or .cc , rather than the MS-DOS® style.cpp

(which was already used for something else).gcc used to rely on this to work out what kind of compiler to use
on the source file; however, this restriction no longer applies, so you may now call your C++ files.cpp with
impunity!

8

Chapter 2 Programming Tools

2.4.1 Common cc Queries and Problems

1. I am trying to write a program which uses thesin() function and I get an error like this. What does it mean?

/var/tmp/cc0143941.o: Undefined symbol ‘_sin’ reference d from text segment

When using mathematical functions likesin() , you have to tellcc to link in the math library, like so:

% cc -o foobar foobar.c -lm

2. All right, I wrote this simple program to practice using-lm . All it does is raise 2.1 to the power of 6.

#include <stdio.h>

int main() {
float f;

f = pow(2.1, 6);
printf("2.1 ^ 6 = %f\n", f);
return 0;

}

and I compiled it as:

% cc temp.c -lm

like you said I should, but I get this when I run it:

% ./a.out

2.1 ^ 6 = 1023.000000

This isnot the right answer! What is going on?

When the compiler sees you call a function, it checks if it hasalready seen a prototype for it. If it has not, it assumes
the function returns an int, which is definitely not what you want here.

9

Chapter 2 Programming Tools

3. So how do I fix this?

The prototypes for the mathematical functions are inmath.h . If you include this file, the compiler will be able to
find the prototype and it will stop doing strange things to your calculation!

#include <math.h>
#include <stdio.h>

int main() {
...

After recompiling it as you did before, run it:

% ./a.out

2.1 ^ 6 = 85.766121

If you are using any of the mathematical functions,alwaysincludemath.h and remember to link in the math library.

4. I compiled a file calledfoobar.c and I cannot find an executable calledfoobar . Where has it gone?

Remember,cc will call the executablea.out unless you tell it differently. Use the-o filename option:

% cc -o foobar foobar.c

5. OK, I have an executable calledfoobar , I can see it when I runls , but when I type infoobar at the command
prompt it tells me there is no such file. Why can it not find it?

Unlike MS-DOS, UNIX does not look in the current directory when it is trying to find out which executable you
want it to run, unless you tell it to. Either type./foobar , which means “run the file calledfoobar in the current
directory”, or change yourPATHenvironment variable so that it looks something like

bin:/usr/bin:/usr/local/bin:.

The dot at the end means “look in the current directory if it isnot in any of the others”.

6. I called my executabletest , but nothing happens when I run it. What is going on?

Most UNIX systems have a program calledtest in /usr/bin and the shell is picking that one up before it gets to
checking the current directory. Either type:

% ./test

or choose a better name for your program!

10

Chapter 2 Programming Tools

7. I compiled my program and it seemed to run all right at first, then there was an error and it said something about
core dumped . What does that mean?

The namecore dumpdates back to the very early days of UNIX, when the machines used core memory for storing
data. Basically, if the program failed under certain conditions, the system would write the contents of core memory
to disk in a file calledcore , which the programmer could then pore over to find out what went wrong.

8. Fascinating stuff, but what I am supposed to do now?

Usegdb to analyze the core (seeSection 2.6).

9. When my program dumped core, it said something about asegmentation fault . What is that?

This basically means that your program tried to perform somesort of illegal operation on memory; UNIX is designed
to protect the operating system and other programs from rogue programs.

Common causes for this are:

• Trying to write to a NULL pointer, eg

char * foo = NULL;
strcpy(foo, "bang!");

• Using a pointer that has not been initialized, eg

char * foo;
strcpy(foo, "bang!");

The pointer will have some random value that, with luck, willpoint into an area of memory that is not available to
your program and the kernel will kill your program before it can do any damage. If you are unlucky, it will point
somewhere inside your own program and corrupt one of your data structures, causing the program to fail
mysteriously.

• Trying to access past the end of an array, eg

int bar[20];
bar[27] = 6;

• Trying to store something in read-only memory, eg

char * foo = "My string";
strcpy(foo, "bang!");

UNIX compilers often put string literals like"My string" into read-only areas of memory.

• Doing naughty things withmalloc() andfree() , eg

char bar[80];
free(bar);

or

char * foo = malloc(27);
free(foo);
free(foo);

11

Chapter 2 Programming Tools

Making one of these mistakes will not always lead to an error,but they are always bad practice. Some systems and
compilers are more tolerant than others, which is why programs that ran well on one system can crash when you try
them on an another.

10.Sometimes when I get a core dump it saysbus error . It says in my UNIX book that this means a hardware
problem, but the computer still seems to be working. Is this true?

No, fortunately not (unless of course you really do have a hardware problem. . .). This is usually another way of
saying that you accessed memory in a way you should not have.

11.This dumping core business sounds as though it could be quiteuseful, if I can make it happen when I want to.
Can I do this, or do I have to wait until there is an error?

Yes, just go to another console or xterm, do

% ps

to find out the process ID of your program, and do

% kill -ABRT pid

wherepid is the process ID you looked up.

This is useful if your program has got stuck in an infinite loop, for instance. If your program happens to trap
SIGABRT, there are several other signals which have a similar effect.

Alternatively, you can create a core dump from inside your program, by calling theabort() function. See the
manual page of abort(3) to learn more.

If you want to create a core dump from outside your program, but do not want the process to terminate, you can use
thegcore program. See the manual page of gcore(1) for more information.

2.5 Make

2.5.1 What is make?

When you are working on a simple program with only one or two source files, typing in

% cc file1.c file2.c

is not too bad, but it quickly becomes very tedious when thereare several files—and it can take a while to compile,
too.

One way to get around this is to use object files and only recompile the source file if the source code has changed. So
we could have something like:

12

Chapter 2 Programming Tools

% cc file1.o file2.o ... file37.c ...

if we had changedfile37.c , but not any of the others, since the last time we compiled. This may speed up the
compilation quite a bit, but does not solve the typing problem.

Or we could write a shell script to solve the typing problem, but it would have to re-compile everything, making it
very inefficient on a large project.

What happens if we have hundreds of source files lying about? What if we are working in a team with other people
who forget to tell us when they have changed one of their source files that we use?

Perhaps we could put the two solutions together and write something like a shell script that would contain some kind
of magic rule saying when a source file needs compiling. Now all we need now is a program that can understand
these rules, as it is a bit too complicated for the shell.

This program is calledmake. It reads in a file, called amakefile, that tells it how different files depend on each other,
and works out which files need to be re-compiled and which onesdo not. For example, a rule could say something
like “if fromboz.o is older thanfromboz.c , that means someone must have changedfromboz.c , so it needs to be
re-compiled.” The makefile also has rules telling makehowto re-compile the source file, making it a much more
powerful tool.

Makefiles are typically kept in the same directory as the source they apply to, and can be calledmakefile ,
Makefile or MAKEFILE. Most programmers use the nameMakefile , as this puts it near the top of a directory
listing, where it can easily be seen.5

2.5.2 Example of using make

Here is a very simple make file:

foo: foo.c
cc -o foo foo.c

It consists of two lines, a dependency line and a creation line.

The dependency line here consists of the name of the program (known as thetarget), followed by a colon, then
whitespace, then the name of the source file. Whenmake reads this line, it looks to see iffoo exists; if it exists, it
compares the timefoo was last modified to the timefoo.c was last modified. Iffoo does not exist, or is older than
foo.c , it then looks at the creation line to find out what to do. In other words, this is the rule for working out when
foo.c needs to be re-compiled.

The creation line starts with a tab (press thetab key) and then the command you would type to createfoo if you
were doing it at a command prompt. Iffoo is out of date, or does not exist,make then executes this command to
create it. In other words, this is the rule which tells make how to re-compilefoo.c .

So, when you typemake, it will make sure thatfoo is up to date with respect to your latest changes tofoo.c . This
principle can be extended toMakefile s with hundreds of targets—in fact, on FreeBSD, it is possible to compile the
entire operating system just by typingmake world in the appropriate directory!

Another useful property of makefiles is that the targets do not have to be programs. For instance, we could have a
make file that looks like this:

foo: foo.c
cc -o foo foo.c

13

Chapter 2 Programming Tools

install:
cp foo /home/me

We can tell make which target we want to make by typing:

% make target

make will then only look at that target and ignore any others. For example, if we typemake foo with the makefile
above, make will ignore theinstall target.

If we just typemake on its own, make will always look at the first target and then stop without looking at any others.
So if we typedmake here, it will just go to thefoo target, re-compilefoo if necessary, and then stop without going
on to theinstall target.

Notice that theinstall target does not actually depend on anything! This means thatthe command on the
following line is always executed when we try to make that target by typingmake install. In this case, it will
copyfoo into the user’s home directory. This is often used by application makefiles, so that the application can be
installed in the correct directory when it has been correctly compiled.

This is a slightly confusing subject to try to explain. If youdo not quite understand howmake works, the best thing
to do is to write a simple program like “hello world” and a makefile like the one above and experiment. Then
progress to using more than one source file, or having the source file include a header file. Thetouch command is
very useful here—it changes the date on a file without you having to edit it.

2.5.3 Make and include-files

C code often starts with a list of files to include, for examplestdio.h. Some of these files are system-include files,
some of them are from the project you are now working on:

#include <stdio.h>
#include "foo.h"

int main(....

To make sure that this file is recompiled the momentfoo.h is changed, you have to add it in yourMakefile :

foo: foo.c foo.h

The moment your project is getting bigger and you have more and more own include-files to maintain, it will be a
pain to keep track of all include files and the files which are depending on it. If you change an include-file but forget
to recompile all the files which are depending on it, the results will be devastating.gcc has an option to analyze your
files and to produce a list of include-files and their dependencies:-MM.

If you add this to your Makefile:

depend:
gcc -E -MM * .c > .depend

and runmake depend, the file.depend will appear with a list of object-files, C-files and the include-files:

foo.o: foo.c foo.h

If you changefoo.h , next time you runmake all files depending onfoo.h will be recompiled.

14

Chapter 2 Programming Tools

Do not forget to runmake depend each time you add an include-file to one of your files.

2.5.4 FreeBSD Makefiles

Makefiles can be rather complicated to write. Fortunately, BSD-based systems like FreeBSD come with some very
powerful ones as part of the system. One very good example of this is the FreeBSD ports system. Here is the
essential part of a typical portsMakefile :

MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/L OCAL_PORTS/
DISTFILES= scheme-microcode+dist-7.3-freebsd.tgz

.include <bsd.port.mk>

Now, if we go to the directory for this port and typemake, the following happens:

1. A check is made to see if the source code for this port is already on the system.

2. If it is not, an FTP connection to the URL in MASTER_SITES isset up to download the source.

3. The checksum for the source is calculated and compared it with one for a known, good, copy of the source. This
is to make sure that the source was not corrupted while in transit.

4. Any changes required to make the source work on FreeBSD areapplied—this is known aspatching.

5. Any special configuration needed for the source is done. (Many UNIX program distributions try to work out
which version of UNIX they are being compiled on and which optional UNIX features are present—this is
where they are given the information in the FreeBSD ports scenario).

6. The source code for the program is compiled. In effect, we change to the directory where the source was
unpacked and domake—the program’s own make file has the necessary information tobuild the program.

7. We now have a compiled version of the program. If we wish, wecan test it now; when we feel confident about
the program, we can typemake install. This will cause the program and any supporting files it needsto be
copied into the correct location; an entry is also made into apackage database, so that the port can easily be
uninstalled later if we change our mind about it.

Now I think you will agree that is rather impressive for a fourline script!

The secret lies in the last line, which tellsmake to look in the system makefile calledbsd.port.mk . It is easy to
overlook this line, but this is where all the clever stuff comes from—someone has written a makefile that tellsmake

to do all the things above (plus a couple of other things I did not mention, including handling any errors that may
occur) and anyone can get access to that just by putting a single line in their own make file!

If you want to have a look at these system makefiles, they are in/usr/share/mk , but it is probably best to wait
until you have had a bit of practice with makefiles, as they arevery complicated (and if you do look at them, make
sure you have a flask of strong coffee handy!)

2.5.5 More advanced uses of make

Make is a very powerful tool, and can do much more than the simple example above shows. Unfortunately, there are
several different versions ofmake, and they all differ considerably. The best way to learn whatthey can do is

15

Chapter 2 Programming Tools

probably to read the documentation—hopefully this introduction will have given you a base from which you can do
this.

The version of make that comes with FreeBSD is theBerkeley make; there is a tutorial for it in
/usr/share/doc/psd/12.make . To view it, do

% zmore paper.ascii.gz

in that directory.

Many applications in the ports useGNU make, which has a very good set of “info” pages. If you have installed any
of these ports,GNU makewill automatically have been installed asgmake. It is also available as a port and package
in its own right.

To view the info pages forGNU make, you will have to edit thedir file in the/usr/local/info directory to add
an entry for it. This involves adding a line like

* Make: (make). The GNU Make utility.

to the file. Once you have done this, you can typeinfo and then selectmake from the menu (or inEmacs, doC-h
i).

2.6 Debugging

2.6.1 The Debugger

The debugger that comes with FreeBSD is calledgdb (GNU debugger). You start it up by typing

% gdb progname

although many people prefer to run it insideEmacs. You can do this by:

M-x gdb RET progname RET

Using a debugger allows you to run the program under more controlled circumstances. Typically, you can step
through the program a line at a time, inspect the value of variables, change them, tell the debugger to run up to a
certain point and then stop, and so on. You can even attach to aprogram that is already running, or load a core file to
investigate why the program crashed. It is even possible to debug the kernel, though that is a little trickier than the
user applications we will be discussing in this section.

gdb has quite good on-line help, as well as a set of info pages, so this section will concentrate on a few of the basic
commands.

Finally, if you find its text-based command-prompt style off-putting, there is a graphical front-end for it
(devel/xxgdb) in the Ports Collection.

This section is intended to be an introduction to usinggdb and does not cover specialized topics such as debugging
the kernel.

16

Chapter 2 Programming Tools

2.6.2 Running a program in the debugger

You will need to have compiled the program with the-g option to get the most out of usinggdb . It will work
without, but you will only see the name of the function you arein, instead of the source code. If you see a line like:

... (no debugging symbols found) ...

whengdb starts up, you will know that the program was not compiled with the-g option.

At thegdb prompt, typebreak main. This will tell the debugger that you are not interested in watching the
preliminary set-up code in the program being run, and that itshould stop execution at the beginning of your code.
Now typerun to start the program—it will start at the beginning of the set-up code and then get stopped by the
debugger when it callsmain() . (If you have ever wondered wheremain() gets called from, now you know!).

You can now step through the program, a line at a time, by pressing n. If you get to a function call, you can step into
it by pressings . Once you are in a function call, you can return from steppinginto a function call by pressingf . You
can also useup anddown to take a quick look at the caller.

Here is a simple example of how to spot a mistake in a program with gdb . This is our program (with a deliberate
mistake):

#include <stdio.h>

int bazz(int anint);

main() {
int i;

printf("This is my program\n");
bazz(i);
return 0;

}

int bazz(int anint) {
printf("You gave me %d\n", anint);
return anint;

}

This program sets i to be5 and passes it to a functionbazz() which prints out the number we gave it.

When we compile and run the program we get

% cc -g -o temp temp.c

% ./temp

This is my program
anint = 4231

That was not what we expected! Time to see what is going on!

% gdb temp

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the con ditions.

There is absolutely no warranty for GDB; type "show warranty " for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Soft ware Foundation, Inc.
(gdb) break main Skip the set-up code

17

Chapter 2 Programming Tools

Breakpoint 1 at 0x160f: file temp.c, line 9. gdb puts breakpoint atmain()
(gdb) run Run as far asmain()
Starting program: /home/james/tmp/temp Program starts running

Breakpoint 1, main () at temp.c:9 gdb stops atmain()
(gdb) n Go to next line
This is my program Program prints out
(gdb) s step intobazz()
bazz (anint=4231) at temp.c:17 gdb displays stack frame
(gdb)

Hang on a minute! How did anint get to be4231 ? Did we not we set it to be5 in main() ? Let’s move up tomain()

and have a look.

(gdb) up Move up call stack
#1 0x1625 in main () at temp.c:11 gdb displays stack frame
(gdb) p i Show us the value of i
$1 = 4231 gdb displays4231

Oh dear! Looking at the code, we forgot to initialize i. We meant to put

. . .
main() {

int i;

i = 5;
printf("This is my program\n");

. . .

but we left thei=5; line out. As we did not initialize i, it had whatever number happened to be in that area of
memory when the program ran, which in this case happened to be4231 .

Note: gdb displays the stack frame every time we go into or out of a function, even if we are using up and down to
move around the call stack. This shows the name of the function and the values of its arguments, which helps us
keep track of where we are and what is going on. (The stack is a storage area where the program stores
information about the arguments passed to functions and where to go when it returns from a function call).

2.6.3 Examining a core file

A core file is basically a file which contains the complete state of the process when it crashed. In “the good old
days”, programmers had to print out hex listings of core filesand sweat over machine code manuals, but now life is a
bit easier. Incidentally, under FreeBSD and other 4.4BSD systems, a core file is calledprogname.core instead of
justcore , to make it clearer which program a core file belongs to.

To examine a core file, start upgdb in the usual way. Instead of typingbreak or run , type

(gdb) core progname.core

If you are not in the same directory as the core file, you will have to dodir /path/to/core/file first.

You should see something like this:

18

Chapter 2 Programming Tools

% gdb a.out

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the con ditions.

There is absolutely no warranty for GDB; type "show warranty " for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Soft ware Foundation, Inc.
(gdb) core a.out.core

Core was generated by ‘a.out’.
Program terminated with signal 11, Segmentation fault.
Cannot access memory at address 0x7020796d.
#0 0x164a in bazz (anint=0x5) at temp.c:17
(gdb)

In this case, the program was calleda.out , so the core file is calleda.out.core . We can see that the program
crashed due to trying to access an area in memory that was not available to it in a function calledbazz .

Sometimes it is useful to be able to see how a function was called, as the problem could have occurred a long way up
the call stack in a complex program. Thebt command causesgdb to print out a back-trace of the call stack:

(gdb) bt

#0 0x164a in bazz (anint=0x5) at temp.c:17
#1 0xefbfd888 in end ()
#2 0x162c in main () at temp.c:11
(gdb)

Theend() function is called when a program crashes; in this case, thebazz() function was called frommain() .

2.6.4 Attaching to a running program

One of the neatest features aboutgdb is that it can attach to a program that is already running. Of course, that
assumes you have sufficient permissions to do so. A common problem is when you are stepping through a program
that forks, and you want to trace the child, but the debugger will only let you trace the parent.

What you do is start up anothergdb , useps to find the process ID for the child, and do

(gdb) attach pid

in gdb , and then debug as usual.

“That is all very well,” you are probably thinking, “but by the time I have done that, the child process will be over the
hill and far away”. Fear not, gentle reader, here is how to do it (courtesy of thegdb info pages):

. . .
if ((pid = fork()) < 0) / * _Always_ check this * /

error();
else if (pid == 0) { / * child * /

int PauseMode = 1;

while (PauseMode)
sleep(10); / * Wait until someone attaches to us * /

. . .
} else { / * parent * /

. . .

19

Chapter 2 Programming Tools

Now all you have to do is attach to the child, set PauseMode to0, and wait for thesleep() call to return!

2.7 Using Emacs as a Development Environment

2.7.1 Emacs

Emacs is a highly customizable editor—indeed, it has been customized to the point where it is more like an operating
system than an editor! Many developers and sysadmins do in fact spend practically all their time working inside
Emacs, leaving it only to log out.

It is impossible even to summarize everything Emacs can do here, but here are some of the features of interest to
developers:

• Very powerful editor, allowing search-and-replace on bothstrings and regular expressions (patterns), jumping to
start/end of block expression, etc, etc.

• Pull-down menus and online help.

• Language-dependent syntax highlighting and indentation.

• Completely customizable.

• You can compile and debug programs within Emacs.

• On a compilation error, you can jump to the offending line of source code.

• Friendly-ish front-end to theinfo program used for reading GNU hypertext documentation, including the
documentation on Emacs itself.

• Friendly front-end togdb , allowing you to look at the source code as you step through your program.

And doubtless many more that have been overlooked.

Emacs can be installed on FreeBSD using theeditors/emacs port.

Once it is installed, start it up and doC-h t to read an Emacs tutorial—that means hold down thecontrol key, press
h, let go of thecontrol key, and then presst. (Alternatively, you can use the mouse to selectEmacs Tutorial from
theHelp menu.)

Although Emacs does have menus, it is well worth learning thekey bindings, as it is much quicker when you are
editing something to press a couple of keys than to try to find the mouse and then click on the right place. And, when
you are talking to seasoned Emacs users, you will find they often casually throw around expressions like “M-x

replace-s RET foo RET bar RET ” so it is useful to know what they mean. And in any case, Emacs has far too
many useful functions for them to all fit on the menu bars.

Fortunately, it is quite easy to pick up the key-bindings, asthey are displayed next to the menu item. My advice is to
use the menu item for, say, opening a file until you understandhow it works and feel confident with it, then try doing
C-x C-f. When you are happy with that, move on to another menu command.

If you can not remember what a particular combination of keysdoes, selectDescribe Key from theHelp menu and
type it in—Emacs will tell you what it does. You can also use the Command Apropos menu item to find out all the
commands which contain a particular word in them, with the key binding next to it.

20

Chapter 2 Programming Tools

By the way, the expression above means hold down the Meta key,press x, release the Meta key, typereplace-s

(short forreplace-string —another feature of Emacs is that you can abbreviate commands), press the return key,
typefoo (the string you want replaced), press the return key, type bar (the string you want to replacefoo with) and
press return again. Emacs will then do the search-and-replace operation you have just requested.

If you are wondering what on earth the Meta key is, it is a special key that many UNIX workstations have.
Unfortunately, PC’s do not have one, so it is usually thealt key (or if you are unlucky, the escape key).

Oh, and to get out of Emacs, doC-x C-c (that means hold down the control key, press x, press c and release the
control key). If you have any unsaved files open, Emacs will ask you if you want to save them. (Ignore the bit in the
documentation where it saysC-z is the usual way to leave Emacs—that leaves Emacs hanging around in the
background, and is only really useful if you are on a system which does not have virtual terminals).

2.7.2 Configuring Emacs

Emacs does many wonderful things; some of them are built in, some of them need to be configured.

Instead of using a proprietary macro language for configuration, Emacs uses a version of Lisp specially adapted for
editors, known as Emacs Lisp. Working with Emacs Lisp can be quite helpful if you want to go on and learn
something like Common Lisp. Emacs Lisp has many features of Common Lisp, although it is considerably smaller
(and thus easier to master).

The best way to learn Emacs Lisp is to download the Emacs Tutorial
(ftp://ftp.gnu.org/old-gnu/emacs/elisp-manual-19-2.4.tar.gz)

However, there is no need to actually know any Lisp to get started with configuring Emacs, as I have included a
sample.emacs file, which should be enough to get you started. Just copy it into your home directory and restart
Emacs if it is already running; it will read the commands fromthe file and (hopefully) give you a useful basic setup.

2.7.3 A sample .emacs file

Unfortunately, there is far too much here to explain it in detail; however there are one or two points worth
mentioning.

• Everything beginning with a; is a comment and is ignored by Emacs.

• In the first line, the- * - Emacs-Lisp - * - is so that we can edit the.emacs file itself within Emacs and get all
the fancy features for editing Emacs Lisp. Emacs usually tries to guess this based on the filename, and may not get
it right for .emacs .

• The tab key is bound to an indentation function in some modes,so when you press the tab key, it will indent the
current line of code. If you want to put a tab character in whatever you are writing, hold the control key down
while you are pressing the tab key.

• This file supports syntax highlighting for C, C++, Perl, Lispand Scheme, by guessing the language from the
filename.

• Emacs already has a pre-defined function callednext-error . In a compilation output window, this allows you to
move from one compilation error to the next by doingM-n; we define a complementary function,
previous-error , that allows you to go to a previous error by doingM-p. The nicest feature of all is thatC-c

C-c will open up the source file in which the error occurred and jump to the appropriate line.

21

Chapter 2 Programming Tools

• We enable Emacs’s ability to act as a server, so that if you aredoing something outside Emacs and you want to
edit a file, you can just type in

% emacsclient filename

and then you can edit the file in your Emacs!6

Example 2-1. A sample.emacs file

;; - * -Emacs-Lisp- * -

;; This file is designed to be re-evaled; use the variable fir st-time
;; to avoid any problems with this.
(defvar first-time t

"Flag signifying this is the first time that .emacs has been e valed")

;; Meta
(global-set-key "\M- " ’set-mark-command)
(global-set-key "\M-\C-h" ’backward-kill-word)
(global-set-key "\M-\C-r" ’query-replace)
(global-set-key "\M-r" ’replace-string)
(global-set-key "\M-g" ’goto-line)
(global-set-key "\M-h" ’help-command)

;; Function keys
(global-set-key [f1] ’manual-entry)
(global-set-key [f2] ’info)
(global-set-key [f3] ’repeat-complex-command)
(global-set-key [f4] ’advertised-undo)
(global-set-key [f5] ’eval-current-buffer)
(global-set-key [f6] ’buffer-menu)
(global-set-key [f7] ’other-window)
(global-set-key [f8] ’find-file)
(global-set-key [f9] ’save-buffer)
(global-set-key [f10] ’next-error)
(global-set-key [f11] ’compile)
(global-set-key [f12] ’grep)
(global-set-key [C-f1] ’compile)
(global-set-key [C-f2] ’grep)
(global-set-key [C-f3] ’next-error)
(global-set-key [C-f4] ’previous-error)
(global-set-key [C-f5] ’display-faces)
(global-set-key [C-f8] ’dired)
(global-set-key [C-f10] ’kill-compilation)

;; Keypad bindings
(global-set-key [up] "\C-p")
(global-set-key [down] "\C-n")
(global-set-key [left] "\C-b")
(global-set-key [right] "\C-f")
(global-set-key [home] "\C-a")
(global-set-key [end] "\C-e")
(global-set-key [prior] "\M-v")

22

Chapter 2 Programming Tools

(global-set-key [next] "\C-v")
(global-set-key [C-up] "\M-\C-b")
(global-set-key [C-down] "\M-\C-f")
(global-set-key [C-left] "\M-b")
(global-set-key [C-right] "\M-f")
(global-set-key [C-home] "\M-<")
(global-set-key [C-end] "\M->")
(global-set-key [C-prior] "\M-<")
(global-set-key [C-next] "\M->")

;; Mouse
(global-set-key [mouse-3] ’imenu)

;; Misc
(global-set-key [C-tab] "\C-q\t") ; Control tab quotes a ta b.
(setq backup-by-copying-when-mismatch t)

;; Treat ’y’ or <CR> as yes, ’n’ as no.
(fset ’yes-or-no-p ’y-or-n-p)
(define-key query-replace-map [return] ’act)
(define-key query-replace-map [?\C-m] ’act)

;; Load packages
(require ’desktop)
(require ’tar-mode)

;; Pretty diff mode
(autoload ’ediff-buffers "ediff" "Intelligent Emacs inte rface to diff" t)
(autoload ’ediff-files "ediff" "Intelligent Emacs interf ace to diff" t)
(autoload ’ediff-files-remote "ediff"

"Intelligent Emacs interface to diff")

(if first-time
(setq auto-mode-alist

(append ’(("\\.cpp$" . c++-mode)
("\\.hpp$" . c++-mode)
("\\.lsp$" . lisp-mode)
("\\.scm$" . scheme-mode)
("\\.pl$" . perl-mode)
) auto-mode-alist)))

;; Auto font lock mode
(defvar font-lock-auto-mode-list

(list ’c-mode ’c++-mode ’c++-c-mode ’emacs-lisp-mode ’li sp-mode ’perl-mode ’scheme-mode)
"List of modes to always start in font-lock-mode")

(defvar font-lock-mode-keyword-alist
’((c++-c-mode . c-font-lock-keywords)

(perl-mode . perl-font-lock-keywords))
"Associations between modes and keywords")

(defun font-lock-auto-mode-select ()
"Automatically select font-lock-mode if the current major mode is in font-lock-auto-mode-list"

23

Chapter 2 Programming Tools

(if (memq major-mode font-lock-auto-mode-list)
(progn

(font-lock-mode t))
)

)

(global-set-key [M-f1] ’font-lock-fontify-buffer)

;; New dabbrev stuff
;(require ’new-dabbrev)
(setq dabbrev-always-check-other-buffers t)
(setq dabbrev-abbrev-char-regexp "\\sw\\|\\s_")
(add-hook ’emacs-lisp-mode-hook

’(lambda ()
(set (make-local-variable ’dabbrev-case-fold-search) n il)
(set (make-local-variable ’dabbrev-case-replace) nil)))

(add-hook ’c-mode-hook
’(lambda ()

(set (make-local-variable ’dabbrev-case-fold-search) n il)
(set (make-local-variable ’dabbrev-case-replace) nil)))

(add-hook ’text-mode-hook
’(lambda ()

(set (make-local-variable ’dabbrev-case-fold-search) t)
(set (make-local-variable ’dabbrev-case-replace) t)))

;; C++ and C mode...
(defun my-c++-mode-hook ()

(setq tab-width 4)
(define-key c++-mode-map "\C-m" ’reindent-then-newline -and-indent)
(define-key c++-mode-map "\C-ce" ’c-comment-edit)
(setq c++-auto-hungry-initial-state ’none)
(setq c++-delete-function ’backward-delete-char)
(setq c++-tab-always-indent t)
(setq c-indent-level 4)
(setq c-continued-statement-offset 4)
(setq c++-empty-arglist-indent 4))

(defun my-c-mode-hook ()
(setq tab-width 4)
(define-key c-mode-map "\C-m" ’reindent-then-newline-a nd-indent)
(define-key c-mode-map "\C-ce" ’c-comment-edit)
(setq c-auto-hungry-initial-state ’none)
(setq c-delete-function ’backward-delete-char)
(setq c-tab-always-indent t)

;; BSD-ish indentation style
(setq c-indent-level 4)
(setq c-continued-statement-offset 4)
(setq c-brace-offset -4)
(setq c-argdecl-indent 0)
(setq c-label-offset -4))

;; Perl mode
(defun my-perl-mode-hook ()

24

Chapter 2 Programming Tools

(setq tab-width 4)
(define-key c++-mode-map "\C-m" ’reindent-then-newline -and-indent)
(setq perl-indent-level 4)
(setq perl-continued-statement-offset 4))

;; Scheme mode...
(defun my-scheme-mode-hook ()

(define-key scheme-mode-map "\C-m" ’reindent-then-newl ine-and-indent))

;; Emacs-Lisp mode...
(defun my-lisp-mode-hook ()

(define-key lisp-mode-map "\C-m" ’reindent-then-newlin e-and-indent)
(define-key lisp-mode-map "\C-i" ’lisp-indent-line)
(define-key lisp-mode-map "\C-j" ’eval-print-last-sexp))

;; Add all of the hooks...
(add-hook ’c++-mode-hook ’my-c++-mode-hook)
(add-hook ’c-mode-hook ’my-c-mode-hook)
(add-hook ’scheme-mode-hook ’my-scheme-mode-hook)
(add-hook ’emacs-lisp-mode-hook ’my-lisp-mode-hook)
(add-hook ’lisp-mode-hook ’my-lisp-mode-hook)
(add-hook ’perl-mode-hook ’my-perl-mode-hook)

;; Complement to next-error
(defun previous-error (n)

"Visit previous compilation error message and correspondi ng source code."
(interactive "p")
(next-error (- n)))

;; Misc...
(transient-mark-mode 1)
(setq mark-even-if-inactive t)
(setq visible-bell nil)
(setq next-line-add-newlines nil)
(setq compile-command "make")
(setq suggest-key-bindings nil)
(put ’eval-expression ’disabled nil)
(put ’narrow-to-region ’disabled nil)
(put ’set-goal-column ’disabled nil)
(if (>= emacs-major-version 21)

(setq show-trailing-whitespace t))

;; Elisp archive searching
(autoload ’format-lisp-code-directory "lispdir" nil t)
(autoload ’lisp-dir-apropos "lispdir" nil t)
(autoload ’lisp-dir-retrieve "lispdir" nil t)
(autoload ’lisp-dir-verify "lispdir" nil t)

;; Font lock mode
(defun my-make-face (face color &optional bold)

"Create a face from a color and optionally make it bold"
(make-face face)
(copy-face ’default face)

25

Chapter 2 Programming Tools

(set-face-foreground face color)
(if bold (make-face-bold face))
)

(if (eq window-system ’x)
(progn

(my-make-face ’blue "blue")
(my-make-face ’red "red")
(my-make-face ’green "dark green")
(setq font-lock-comment-face ’blue)
(setq font-lock-string-face ’bold)
(setq font-lock-type-face ’bold)
(setq font-lock-keyword-face ’bold)
(setq font-lock-function-name-face ’red)
(setq font-lock-doc-string-face ’green)
(add-hook ’find-file-hooks ’font-lock-auto-mode-selec t)

(setq baud-rate 1000000)
(global-set-key "\C-cmm" ’menu-bar-mode)
(global-set-key "\C-cms" ’scroll-bar-mode)
(global-set-key [backspace] ’backward-delete-char)

; (global-set-key [delete] ’delete-char)
(standard-display-european t)
(load-library "iso-transl")))

;; X11 or PC using direct screen writes
(if window-system

(progn
;; (global-set-key [M-f1] ’hilit-repaint-command)
;; (global-set-key [M-f2] [?\C-u M-f1])
(setq hilit-mode-enable-list

’(not text-mode c-mode c++-mode emacs-lisp-mode lisp-mod e
scheme-mode)

hilit-auto-highlight nil
hilit-auto-rehighlight ’visible
hilit-inhibit-hooks nil
hilit-inhibit-rebinding t)

(require ’hilit19)
(require ’paren))

(setq baud-rate 2400) ; For slow serial connections
)

;; TTY type terminal
(if (and (not window-system)

(not (equal system-type ’ms-dos)))
(progn

(if first-time
(progn

(keyboard-translate ?\C-h ?\C-?)
(keyboard-translate ?\C-? ?\C-h)))))

;; Under UNIX
(if (not (equal system-type ’ms-dos))

26

Chapter 2 Programming Tools

(progn
(if first-time

(server-start))))

;; Add any face changes here
(add-hook ’term-setup-hook ’my-term-setup-hook)
(defun my-term-setup-hook ()

(if (eq window-system ’pc)
(progn

;; (set-face-background ’default "red")
)))

;; Restore the "desktop" - do this as late as possible
(if first-time

(progn
(desktop-load-default)
(desktop-read)))

;; Indicate that this file has been read at least once
(setq first-time nil)

;; No need to debug anything now

(setq debug-on-error nil)

;; All done
(message "All done, %s%s" (user-login-name) ".")

2.7.4 Extending the Range of Languages Emacs Understands

Now, this is all very well if you only want to program in the languages already catered for in the.emacs file (C, C++,
Perl, Lisp and Scheme), but what happens if a new language called “whizbang” comes out, full of exciting features?

The first thing to do is find out if whizbang comes with any files that tell Emacs about the language. These usually
end in.el , short for “Emacs Lisp”. For example, if whizbang is a FreeBSD port, we can locate these files by doing

% find /usr/ports/lang/whizbang -name "*.el" -print

and install them by copying them into the Emacs site Lisp directory. On FreeBSD, this is
/usr/local/share/emacs/site-lisp .

So for example, if the output from the find command was

/usr/ports/lang/whizbang/work/misc/whizbang.el

we would do

cp /usr/ports/lang/whizbang/work/misc/whizbang.el /usr/local/share/emacs/site-lisp

27

Chapter 2 Programming Tools

Next, we need to decide what extension whizbang source files have. Let’s say for the sake of argument that they all
end in.wiz . We need to add an entry to our.emacs file to make sure Emacs will be able to use the information in
whizbang.el .

Find the auto-mode-alist entry in.emacs and add a line for whizbang, such as:

. . .
("\\.lsp$" . lisp-mode)
("\\.wiz$" . whizbang-mode)
("\\.scm$" . scheme-mode)
. . .

This means that Emacs will automatically go intowhizbang-mode when you edit a file ending in.wiz .

Just below this, you will find the font-lock-auto-mode-listentry. Addwhizbang-mode to it like so:

;; Auto font lock mode
(defvar font-lock-auto-mode-list

(list ’c-mode ’c++-mode ’c++-c-mode ’emacs-lisp-mode ’wh izbang-mode ’lisp-mode ’perl-mode ’scheme-mode)
"List of modes to always start in font-lock-mode")

This means that Emacs will always enablefont-lock-mode (ie syntax highlighting) when editing a.wiz file.

And that is all that is needed. If there is anything else you want done automatically when you open up a.wiz file,
you can add awhizbang-mode hook (seemy-scheme-mode-hook for a simple example that adds
auto-indent).

2.8 Further Reading
For information about setting up a development environmentfor contributing fixes to FreeBSD itself, please see
development(7).

• Brian Harvey and Matthew WrightSimply SchemeMIT 1994. ISBN 0-262-08226-8

• Randall SchwartzLearning PerlO’Reilly 1993 ISBN 1-56592-042-2

• Patrick Henry Winston and Berthold Klaus Paul HornLisp (3rd Edition)Addison-Wesley 1989 ISBN
0-201-08319-1

• Brian W. Kernighan and Rob PikeThe Unix Programming EnvironmentPrentice-Hall 1984 ISBN 0-13-937681-X

• Brian W. Kernighan and Dennis M. RitchieThe C Programming Language (2nd Edition)Prentice-Hall 1988
ISBN 0-13-110362-8

• Bjarne StroustrupThe C++ Programming LanguageAddison-Wesley 1991 ISBN 0-201-53992-6

• W. Richard StevensAdvanced Programming in the Unix EnvironmentAddison-Wesley 1992 ISBN 0-201-56317-7

• W. Richard StevensUnix Network ProgrammingPrentice-Hall 1990 ISBN 0-13-949876-1

Notes
1. If you run it in the shell, you may get a core dump.

28

Chapter 2 Programming Tools

2. In case you did not know, a binary sort is an efficient way of sorting things into order and a bubble sort is not.

3. The reasons for this are buried in the mists of history.

4. Note, we did not use the-o flag to specify the executable name, so we will get an executable calleda.out .
Producing a debug version calledfoobar is left as an exercise for the reader!

5. They do not use theMAKEFILE form as block capitals are often used for documentation fileslike README.

6. Many Emacs users set theirEDITORenvironment toemacsclient so this happens every time they need to edit a
file.

29

Chapter 3 Secure Programming
Contributed by Murray Stokely.

3.1 Synopsis
This chapter describes some of the security issues that haveplagued UNIX programmers for decades and some of the
new tools available to help programmers avoid writing exploitable code.

3.2 Secure Design Methodology
Writing secure applications takes a very scrutinous and pessimistic outlook on life. Applications should be run with
the principle of “least privilege” so that no process is everrunning with more than the bare minimum access that it
needs to accomplish its function. Previously tested code should be reused whenever possible to avoid common
mistakes that others may have already fixed.

One of the pitfalls of the UNIX environment is how easy it is tomake assumptions about the sanity of the
environment. Applications should never trust user input (in all its forms), system resources, inter-process
communication, or the timing of events. UNIX processes do not execute synchronously so logical operations are
rarely atomic.

3.3 Buffer Overflows
Buffer Overflows have been around since the very beginnings of the Von-Neuman1 architecture. They first gained
widespread notoriety in 1988 with the Morris Internet worm.Unfortunately, the same basic attack remains effective
today. By far the most common type of buffer overflow attack isbased on corrupting the stack.

Most modern computer systems use a stack to pass arguments toprocedures and to store local variables. A stack is a
last in first out (LIFO) buffer in the high memory area of a process image. When a program invokes a function a new
"stack frame" is created. This stack frame consists of the arguments passed to the function as well as a dynamic
amount of local variable space. The "stack pointer" is a register that holds the current location of the top of the stack.
Since this value is constantly changing as new values are pushed onto the top of the stack, many implementations
also provide a "frame pointer" that is located near the beginning of a stack frame so that local variables can more
easily be addressed relative to this value.1 The return address for function calls is also stored on the stack, and this
is the cause of stack-overflow exploits since overflowing a local variable in a function can overwrite the return
address of that function, potentially allowing a malicioususer to execute any code he or she wants.

Although stack-based attacks are by far the most common, it would also be possible to overrun the stack with a
heap-based (malloc/free) attack.

The C programming language does not perform automatic bounds checking on arrays or pointers as many other
languages do. In addition, the standard C library is filled with a handful of very dangerous functions.

strcpy (char *dest, const char *src) May overflow the dest buffer

strcat (char *dest, const char *src) May overflow the dest buffer

getwd (char *buf) May overflow the buf buffer

30

Chapter 3 Secure Programming

gets (char *s) May overflow the s buffer

[vf]scanf (const char *format, ...) May overflow its arguments.

realpath (char *path, char resolved_path[]) May overflow the path buffer

[v]sprintf (char *str, const char *format, ...) May overflow the str buffer.

3.3.1 Example Buffer Overflow

The following example code contains a buffer overflow designed to overwrite the return address and skip the
instruction immediately following the function call. (Inspired by4)

#include <stdio.h>

void manipulate(char * buffer) {
char newbuffer[80];
strcpy(newbuffer,buffer);

}

int main() {
char ch,buffer[4096];
int i=0;

while ((buffer[i++] = getchar()) != ’\n’) {};

i=1;
manipulate(buffer);
i=2;
printf("The value of i is : %d\n",i);
return 0;

}

Let us examine what the memory image of this process would look like if we were to input 160 spaces into our little
program before hitting return.

[XXX figure here!]

Obviously more malicious input can be devised to execute actual compiled instructions (such as exec(/bin/sh)).

3.3.2 Avoiding Buffer Overflows

The most straightforward solution to the problem of stack-overflows is to always use length restricted memory and
string copy functions.strncpy andstrncat are part of the standard C library. These functions accept a length
value as a parameter which should be no larger than the size ofthe destination buffer. These functions will then copy
up to ‘length’ bytes from the source to the destination. However there are a number of problems with these functions.
Neither function guarantees NUL termination if the size of the input buffer is as large as the destination. The length
parameter is also used inconsistently between strncpy and strncat so it is easy for programmers to get confused as to
their proper usage. There is also a significant performance loss compared tostrcpy when copying a short string into
a large buffer sincestrncpy NUL fills up the size specified.

In OpenBSD, another memory copy implementation has been created to get around these problem. Thestrlcpy

andstrlcat functions guarantee that they will always null terminate the destination string when given a non-zero

31

Chapter 3 Secure Programming

length argument. For more information about these functions see6. The OpenBSDstrlcpy andstrlcat

instructions have been in FreeBSD since 3.3.

3.3.2.1 Compiler based run-time bounds checking

Unfortunately there is still a very large assortment of codein public use which blindly copies memory around
without using any of the bounded copy routines we just discussed. Fortunately, there is a way to help prevent such
attacks — run-time bounds checking, which is implemented byseveral C/C++ compilers.

ProPolice is one such compiler feature, and is integrated into gcc(1) versions 4.1 and later. It replaces and extends the
earlier StackGuard gcc(1) extension.

ProPolice helps to protect against stack-based buffer overflows and other attacks by laying pseudo-random numbers
in key areas of the stack before calling any function. When a function returns, these “canaries” are checked and if
they are found to have been changed the executable is immediately aborted. Thus any attempt to modify the return
address or other variable stored on the stack in an attempt toget malicious code to run is unlikely to succeed, as the
attacker would have to also manage to leave the pseudo-random canaries untouched.

Recompiling your application with ProPolice is an effective means of stopping most buffer-overflow attacks, but it
can still be compromised.

3.3.2.2 Library based run-time bounds checking

Compiler-based mechanisms are completely useless for binary-only software for which you cannot recompile. For
these situations there are a number of libraries which re-implement the unsafe functions of the C-library (strcpy ,
fscanf , getwd , etc..) and ensure that these functions can never write pastthe stack pointer.

• libsafe

• libverify

• libparanoia

Unfortunately these library-based defenses have a number of shortcomings. These libraries only protect against a
very small set of security related issues and they neglect tofix the actual problem. These defenses may fail if the
application was compiled with -fomit-frame-pointer. Also, the LD_PRELOAD and LD_LIBRARY_PATH
environment variables can be overwritten/unset by the user.

3.4 SetUID issues
There are at least 6 different IDs associated with any given process. Because of this you have to be very careful with
the access that your process has at any given time. In particular, all seteuid applications should give up their
privileges as soon as it is no longer required.

The real user ID can only be changed by a superuser process. The login program sets this when a user initially logs
in and it is seldom changed.

The effective user ID is set by theexec() functions if a program has its seteuid bit set. An application can call
seteuid() at any time to set the effective user ID to either the real userID or the saved set-user-ID. When the
effective user ID is set byexec() functions, the previous value is saved in the saved set-user-ID.

32

Chapter 3 Secure Programming

3.5 Limiting your program’s environment
The traditional method of restricting a process is with thechroot() system call. This system call changes the root
directory from which all other paths are referenced for a process and any child processes. For this call to succeed the
process must have execute (search) permission on the directory being referenced. The new environment does not
actually take effect until youchdir() into your new environment. It should also be noted that a process can easily
break out of a chroot environment if it has root privilege. This could be accomplished by creating device nodes to
read kernel memory, attaching a debugger to a process outside of the chroot(8) environment, or in many other
creative ways.

The behavior of thechroot() system call can be controlled somewhat with the kern.chroot_allow_open_directories
sysctl variable. When this value is set to 0,chroot() will fail with EPERM if there are any directories open. If set
to the default value of 1, thenchroot() will fail with EPERM if there are any directories open and theprocess is
already subject to achroot() call. For any other value, the check for open directories will be bypassed completely.

3.5.1 FreeBSD’s jail functionality

The concept of a Jail extends upon thechroot() by limiting the powers of the superuser to create a true ‘virtual
server’. Once a prison is set up all network communication must take place through the specified IP address, and the
power of "root privilege" in this jail is severely constrained.

While in a prison, any tests of superuser power within the kernel using thesuser() call will fail. However, some
calls tosuser() have been changed to a new interfacesuser_xxx() . This function is responsible for recognizing
or denying access to superuser power for imprisoned processes.

A superuser process within a jailed environment has the power to:

• Manipulate credential withsetuid , seteuid , setgid , setegid , setgroups , setreuid , setregid ,
setlogin

• Set resource limits withsetrlimit

• Modify some sysctl nodes (kern.hostname)

• chroot()

• Set flags on a vnode:chflags , fchflags

• Set attributes of a vnode such as file permission, owner, group, size, access time, and modification time.

• Bind to privileged ports in the Internet domain (ports < 1024)

Jail is a very useful tool for running applications in a secure environment but it does have some shortcomings.
Currently, the IPC mechanisms have not been converted to thesuser_xxx so applications such as MySQL cannot
be run within a jail. Superuser access may have a very limitedmeaning within a jail, but there is no way to specify
exactly what "very limited" means.

3.5.2 POSIX®.1e Process Capabilities

POSIX has released a working draft that adds event auditing,access control lists, fine grained privileges, information
labeling, and mandatory access control.

This is a work in progress and is the focus of the TrustedBSD (http://www.trustedbsd.org/) project. Some of the
initial work has been committed to FreeBSD-CURRENT (cap_set_proc(3)).

33

Chapter 3 Secure Programming

3.6 Trust
An application should never assume that anything about the users environment is sane. This includes (but is certainly
not limited to): user input, signals, environment variables, resources, IPC, mmaps, the filesystem working directory,
file descriptors, the # of open files, etc.

You should never assume that you can catch all forms of invalid input that a user might supply. Instead, your
application should use positive filtering to only allow a specific subset of inputs that you deem safe. Improper data
validation has been the cause of many exploits, especially with CGI scripts on the world wide web. For filenames
you need to be extra careful about paths ("../", "/"), symbolic links, and shell escape characters.

Perl has a really cool feature called "Taint" mode which can be used to prevent scripts from using data derived
outside the program in an unsafe way. This mode will check command line arguments, environment variables, locale
information, the results of certain syscalls (readdir() , readlink() , getpwxxx()), and all file input.

3.7 Race Conditions
A race condition is anomalous behavior caused by the unexpected dependence on the relative timing of events. In
other words, a programmer incorrectly assumed that a particular event would always happen before another.

Some of the common causes of race conditions are signals, access checks, and file opens. Signals are asynchronous
events by nature so special care must be taken in dealing withthem. Checking access withaccess(2) then
open(2) is clearly non-atomic. Users can move files in between the twocalls. Instead, privileged applications
shouldseteuid() and then callopen() directly. Along the same lines, an application should always set a proper
umask beforeopen() to obviate the need for spuriouschmod() calls.

34

Chapter 4 Localization and Internationalization
- L10N and I18N

4.1 Programming I18N Compliant Applications
To make your application more useful for speakers of other languages, we hope that you will program I18N
compliant. The GNU gcc compiler and GUI libraries like QT andGTK support I18N through special handling of
strings. Making a program I18N compliant is very easy. It allows contributors to port your application to other
languages quickly. Refer to the library specific I18N documentation for more details.

In contrast with common perception, I18N compliant code is easy to write. Usually, it only involves wrapping your
strings with library specific functions. In addition, please be sure to allow for wide or multibyte character support.

4.1.1 A Call to Unify the I18N Effort

It has come to our attention that the individual I18N/L10N efforts for each country has been repeating each others’
efforts. Many of us have been reinventing the wheel repeatedly and inefficiently. We hope that the various major
groups in I18N could congregate into a group effort similar to the Core Team’s responsibility.

Currently, we hope that, when you write or port I18N programs, you would send it out to each country’s related
FreeBSD mailing list for testing. In the future, we hope to create applications that work in all the languages
out-of-the-box without dirty hacks.

The FreeBSD internationalization mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-i18n) has been
established. If you are an I18N/L10N developer, please sendyour comments, ideas, questions, and anything you
deem related to it.

4.1.2 Perl and Python

Perl and Python have I18N and wide character handling libraries. Please use them for I18N compliance.

4.2 Localized Messages with POSIX.1 Native Language Suppor t
(NLS)

Contributed by Gábor Kövesdán.

Beyond the basic I18N functions, like supporting various input encodings or supporting national conventions, such
as the different decimal separators, at a higher level of I18N, it is possible to localize the messages written to the
output by the various programs. A common way of doing this is using the POSIX.1 NLS functions, which are
provided as a part of the FreeBSD base system.

35

Chapter 4 Localization and Internationalization - L10N andI18N

4.2.1 Organizing Localized Messages into Catalog Files

POSIX.1 NLS is based on catalog files, which contain the localized messages in the desired encoding. The messages
are organized into sets and each message is identified by an integer number in the containing set. The catalog files are
conventionally named after the locale they contain localized messages for, followed by the.msg extension. For
instance, the Hungarian messages for ISO8859-2 encoding should be stored in a file calledhu_HU.ISO8859-2 .

These catalog files are common text files that contain the numbered messages. It is possible to write comments by
starting the line with a$ sign. Set boundaries are also separated by special comments, where the keywordset must
directly follow the$ sign. Theset keyword is then followed by the set number. For example:

$set 1

The actual message entries start with the message number andfollowed by the localized message. The well-known
modifiers from printf(3) are accepted:

15 "File not found: %s\n"

The language catalog files have to be compiled into a binary form before they can be opened from the program. This
conversion is done with the gencat(1) utility. Its first argument is the filename of the compiled catalog and its further
arguments are the input catalogs. The localized messages can also be organized into more catalog files and then all of
them can be processed with gencat(1).

4.2.2 Using the Catalog Files from the Source Code

Using the catalog files is simple. To use the related functions,nl_types.h must be included. Before using a catalog,
it has to be opened with catopen(3). The function takes two arguments. The first parameter is the name of the
installed and compiled catalog. Usually, the name of the program is used, such asgrep. This name will be used when
looking for the compiled catalog file. The catopen(3) call looks for this file in/usr/share/nls/ locale/ catname

and in/usr/local/share/nls/ locale/ catname, wherelocale is the locale set andcatname is the catalog
name being discussed. The second parameter is a constant, which can have two values:

• NL_CAT_LOCALE, which means that the used catalog file will be based onLC_MESSAGES.

• 0, which means thatLANGhas to be used to open the proper catalog.

The catopen(3) call returns a catalog identifier of typenl_catd . Please refer to the manual page for a list of possible
returned error codes.

After opening a catalog catgets(3) can be used to retrieve a message. The first parameter is the catalog identifier
returned by catopen(3), the second one is the number of the set, the third one is the number of the messages, and the
fourth one is a fallback message, which will be returned if the requested message cannot be retrieved from the
catalog file.

After using the catalog file, it must be closed by calling catclose(3), which has one argument, the catalog id.

4.2.3 A Practical Example

The following example will demonstrate an easy solution on how to use NLS catalogs in a flexible way.

The below lines need to be put into a common header file of the program, which is included into all source files
where localized messages are necessary:

36

Chapter 4 Localization and Internationalization - L10N andI18N

#ifdef WITHOUT_NLS
#define getstr(n) nlsstr[n]
#else
#include <nl_types.h>

extern nl_catd catalog;
#define getstr(n) catgets(catalog, 1, n, nlsstr[n])
#endif

extern char * nlsstr[];

Next, put these lines into the global declaration part of themain source file:

#ifndef WITHOUT_NLS
#include <nl_types.h>
nl_catd catalog;
#endif

/ *
* Default messages to use when NLS is disabled or no catalog

* is found.

* /
char * nlsstr[] = {

"",
/ * 1* / "some random message",
/ * 2* / "some other message"
};

Next come the real code snippets, which open, read, and closethe catalog:

#ifndef WITHOUT_NLS
catalog = catopen("myapp", NL_CAT_LOCALE);

#endif

...

printf(getstr(1));

...

#ifndef WITHOUT_NLS
catclose(catalog);

#endif

4.2.3.1 Reducing Strings to Localize

There is a good way of reducing the strings that need to be localized by usinglibc error messages. This is also useful
to just avoid duplication and provide consistent error messages for the common errors that can be encountered by a
great many of programs.

First, here is an example that does not uselibc error messages:

#include <err.h>

37

Chapter 4 Localization and Internationalization - L10N andI18N

...
if (!S_ISDIR(st.st_mode))

errx(1, "argument is not a directory");

This can be transformed to print an error message by readingerrno and printing an error message accordingly:

#include <err.h>
#include <errno.h>
...
if (!S_ISDIR(st.st_mode)) {

errno = ENOTDIR;
err(1, NULL);

}

In this example, the custom string is eliminated, thus translators will have less work when localizing the program and
users will see the usual “Not a directory” error message whenthey encounter this error. This message will probably
seem more familiar to them. Please note that it was necessaryto includeerrno.h in order to directly accesserrno .

It is worth to note that there are cases whenerrno is set automatically by a preceding call, so it is not necessary to
set it explicitly:

#include <err.h>
...
if ((p = malloc(size)) == NULL)

err(1, NULL);

4.2.4 Making use of bsd.nls.mk

Using the catalog files requires few repeatable steps, such as compiling the catalogs and installing them to the proper
location. In order to simplify this process even more,bsd.nls.mk introduces some macros. It is not necessary to
includebsd.nls.mk explicitly, it is pulled in from the common Makefiles, such asbsd.prog.mk or bsd.lib.mk .

Usually it is enough to defineNLSNAME, which should have the catalog name mentioned as the first argument of
catopen(3) and list the catalog files inNLSwithout their.msg extension. Here is an example, which makes it possible
to to disable NLS when used with the code examples before. TheWITHOUT_NLSmake(1) variable has to be defined
in order to build the program without NLS support.

.if !defined(WITHOUT_NLS)
NLS= es_ES.ISO8859-1
NLS+= hu_HU.ISO8859-2
NLS+= pt_BR.ISO8859-1
.else
CFLAGS+= -DWITHOUT_NLS
.endif

Conventionally, the catalog files are placed under thenls subdirectory and this is the default behaviour of
bsd.nls.mk . It is possible, though to override the location of the catalogs with theNLSSRCDIRmake(1) variable.
The default name of the precompiled catalog files also followthe naming convention mentioned before. It can be

38

Chapter 4 Localization and Internationalization - L10N andI18N

overridden by setting theNLSNAMEvariable. There are other options to fine tune the processingof the catalog files
but usually it is not needed, thus they are not described here. For further information onbsd.nls.mk , please refer to
the file itself, it is short and easy to understand.

39

Chapter 5 Source Tree Guidelines and Policies
Contributed by Poul-Henning Kamp and Giorgos Keramidas.

This chapter documents various guidelines and policies in force for the FreeBSD source tree.

5.1 Style Guidelines
Consistent coding style is extremely important, particularly with large projects like FreeBSD. Code should follow
the FreeBSD coding styles described in style(9) and style.Makefile(5).

5.2 MAINTAINER on Makefiles
If a particular portion of the FreeBSDsrc/ distribution is being maintained by a person or group of persons, this is
communicated through an entry in thesrc/MAINTAINERS file. Maintainers of ports within the Ports Collection
express their maintainership to the world by adding aMAINTAINER line to theMakefile of the port in question:

MAINTAINER= email-addresses

Tip: For other parts of the repository, or for sections not listed as having a maintainer, or when you are unsure
who the active maintainer is, try looking at the recent commit history of the relevant parts of the source tree. It is
quite often the case that a maintainer is not explicitly named, but the people who are actively working in a part of
the source tree for, say, the last couple of years are interested in reviewing changes. Even if this is not specifically
mentioned in the documentation or the source itself, asking for a review as a form of courtesy is a very
reasonable thing to do.

The role of the maintainer is as follows:

• The maintainer owns and is responsible for that code. This means that he or she is responsible for fixing bugs and
answering problem reports pertaining to that piece of the code, and in the case of contributed software, for
tracking new versions, as appropriate.

• Changes to directories which have a maintainer defined shallbe sent to the maintainer for review before being
committed. Only if the maintainer does not respond for an unacceptable period of time, to several emails, will it be
acceptable to commit changes without review by the maintainer. However, it is suggested that you try to have the
changes reviewed by someone else if at all possible.

• It is of course not acceptable to add a person or group as maintainer unless they agree to assume this duty. On the
other hand it does not have to be a committer and it can easily be a group of people.

40

Chapter 5 Source Tree Guidelines and Policies

5.3 Contributed Software
Contributed by Poul-Henning Kamp, David O’Brien, and GavinAtkinson.

Some parts of the FreeBSD distribution consist of software that is actively being maintained outside the FreeBSD
project. For historical reasons, we call thiscontributedsoftware. Some examples aresendmail, gccandpatch.

Over the last couple of years, various methods have been usedin dealing with this type of software and all have some
number of advantages and drawbacks. No clear winner has emerged.

Since this is the case, after some debate one of these methodshas been selected as the “official” method and will be
required for future imports of software of this kind. Furthermore, it is strongly suggested that existing contributed
software converge on this model over time, as it has significant advantages over the old method, including the ability
to easily obtain diffs relative to the “official” versions ofthe source by everyone (even without direct repository
access). This will make it significantly easier to return changes to the primary developers of the contributed software.

Ultimately, however, it comes down to the people actually doing the work. If using this model is particularly unsuited
to the package being dealt with, exceptions to these rules may be granted only with the approval of the core team and
with the general consensus of the other developers. The ability to maintain the package in the future will be a key
issue in the decisions.

Note: Because it makes it harder to import future versions minor, trivial and/or cosmetic changes are strongly
discouraged on files that are still tracking the vendor branch.

5.3.1 Vendor Imports with SVN

Contributed by Dag-Erling Smørgrav.

This section describes the vendor import procedure withSubversionin details.

1. Preparing the Tree

If this is your first import after the switch to SVN, you will have to flatten and clean up the vendor tree, and
bootstrap merge history in the main tree. If not, you can safely omit this step.

During the conversion from CVS to SVN, vendor branches were imported with the same layout as the main tree.
For example, thefoo vendor sources ended up invendor/ foo/dist/contrib/ foo, but it is pointless and
rather inconvenient. What we really want is to have the vendor source directly invendor/ foo/dist , like this:

% cd vendor/foo/dist/contrib/foo

% svn move $(svn list) ../..

% cd ../..

% svn remove contrib

% svn propdel -R svn:mergeinfo

% svn commit

Note that, thepropdel bit is necessary because starting with 1.5, Subversion willautomatically add
svn:mergeinfo to any directory you copy or move. In this case, you will not need this information, since you
are not going to merge anything from the tree you deleted.

Note: You may want to flatten the tags as well. The procedure is exactly the same. If you do this, put off the
commit until the end.

41

Chapter 5 Source Tree Guidelines and Policies

Check thedist tree and perform any cleanup that is deemed to be necessary. You may want to disable keyword
expansion, as it makes no sense on unmodified vendor code. In some cases, it can be even be harmful.

% svn propdel svn:keywords -R .

% svn commit

Bootstrapping ofsvn:mergeinfo on the target directory (in the main tree) to the revision that corresponds to
the last change was made to the vendor tree prior to importingnew sources is also needed:

% cd head/contrib/foo

% svn merge --record-only svn_base/vendor/foo/dist@12345678 .

% svn commit

wheresvn_base is the base directory of your SVN repository, e.g.svn+ssh://svn.FreeBSD.org/base .

2. Importing New Sources

Prepare a full, clean tree of the vendor sources. With SVN, wecan keep a full distribution in the vendor tree
without bloating the main tree. Import everything but mergeonly what is needed.

Note that you will need to add any files that were added since the last vendor import, and remove any that were
removed. To facilitate this, you should prepare sorted lists of the contents of the vendor tree and of the sources
you are about to import:

% cd vendor/foo/dist

% svn list -R | grep -v ’/$’ | sort > ../old

% cd ../foo-9.9

% find . -type f | cut -c 3- | sort > ../new

With these two files, the following command will list list removed files (files only inold):

% comm -23 ../old ../new

While the command below will list added files (files only innew):

% comm -13 ../old ../new

Let’s put this together:

% cd vendor/foo/foo-9.9

% tar cf - . | tar xf - -C ../dist

% cd ../dist

% comm -23 ../old ../new | xargs svn remove

% comm -13 ../old ../new | xargs svn add

Warning: If there are new directories in the new distribution, the last command will fail. You will have to add
the directories, and run it again. Conversely, if any directories were removed, you will have to remove them
manually.

Check properties on any new files:

• All text files should havesvn:eol-style set tonative .

• All binary files should havesvn:mime-type set toapplication/octet-stream , unless there is a more
appropriate media type.

• Executable files should havesvn:executable set to* .

42

Chapter 5 Source Tree Guidelines and Policies

• There should be no other properties on any file in the tree.

Note: You are ready to commit, but you should first check the output of svn stat and svn diff to make
sure everything is in order.

Once you have committed the new vendor release, you should tag it for future reference. The best and quickest
way is to do it directly in the repository:

% svn copy svn_base/vendor/foo/dist svn_base/vendor/foo/9.9

To get the new tag, you can update your working copy ofvendor/ foo.

Note: If you choose to do the copy in the checkout instead, do not forget to remove the generated
svn:mergeinfo as described above.

3. Merging to-HEAD

After you have prepared your import, it is time to merge. Option --accept=postpone tells SVN not to handle
merge conflicts yet, because they will be taken care of manually:

% cd head/contrib/foo

% svn update

% svn merge --accept=postpone svn_base/vendor/foo/dist

Resolve any conflicts, and make sure that any files that were added or removed in the vendor tree have been
properly added or removed in the main tree. It is always a goodidea to check differences against the vendor
branch:

% svn diff --no-diff-deleted --old=svn_base/vendor/foo/dist --new=.

The--no-diff-deleted option tells SVN not to check files that are in the vendor tree but not in the main tree.

Note: With SVN, there is no concept of on or off the vendor branch. If a file that previously had local
modifications no longer does, just remove any left-over cruft, such as FreeBSD version tags, so it no longer
shows up in diffs against the vendor tree.

If any changes are required for the world to build with the newsources, make them now — and test until you are
satisfied that everything build and runs correctly.

4. Commit

Now, you are ready to commit. Make sure you get everything in one go. Ideally, you would have done all steps
in a clean tree, in which case you can just commit from the top of that tree. That is the best way to avoid
surprises. If you do it properly, the tree will move atomically from a consistent state with the old code to a
consistent state with the new code.

43

Chapter 5 Source Tree Guidelines and Policies

5.4 Encumbered Files
It might occasionally be necessary to include an encumberedfile in the FreeBSD source tree. For example, if a
device requires a small piece of binary code to be loaded to itbefore the device will operate, and we do not have the
source to that code, then the binary file is said to be encumbered. The following policies apply to including
encumbered files in the FreeBSD source tree.

1. Any file which is interpreted or executed by the system CPU(s) and not in source format is encumbered.

2. Any file with a license more restrictive than BSD or GNU is encumbered.

3. A file which contains downloadable binary data for use by the hardware is not encumbered, unless (1) or (2)
apply to it. It must be stored in an architecture neutral ASCII format (file2c or uuencoding is recommended).

4. Any encumbered file requires specific approval from the Core Team
(http://www.FreeBSD.org/administration.html#t-core)before it is added to the repository.

5. Encumbered files go insrc/contrib or src/sys/contrib .

6. The entire module should be kept together. There is no point in splitting it, unless there is code-sharing with
non-encumbered code.

7. Object files are namedarch/ filename.o.uu> .

8. Kernel files:

a. Should always be referenced inconf/files. * (for build simplicity).

b. Should always be inLINT , but the Core Team (http://www.FreeBSD.org/administration.html#t-core)
decides per case if it should be commented out or not. The CoreTeam
(http://www.FreeBSD.org/administration.html#t-core)can, of course, change their minds later on.

c. TheRelease Engineerdecides whether or not it goes into the release.

9. User-land files:

a.

The Core team (http://www.FreeBSD.org/administration.html#t-core) decides if the code should be part of
make world .

b.

The Release Engineering (http://www.FreeBSD.org/administration.html#t-re) decides if it goes into the
release.

5.5 Shared Libraries
Contributed by Satoshi Asami, Peter Wemm, and David O’Brien.

If you are adding shared library support to a port or other piece of software that does not have one, the version
numbers should follow these rules. Generally, the resulting numbers will have nothing to do with the release version
of the software.

The three principles of shared library building are:

44

Chapter 5 Source Tree Guidelines and Policies

• Start from1.0

• If there is a change that is backwards compatible, bump minornumber (note that ELF systems ignore the minor
number)

• If there is an incompatible change, bump major number

For instance, added functions and bugfixes result in the minor version number being bumped, while deleted
functions, changed function call syntax, etc. will force the major version number to change.

Stick to version numbers of the form major.minor (x.y). Our a.out dynamic linker does not handle version numbers
of the formx.y.z well. Any version number after they (i.e. the third digit) is totally ignored when comparing shared
lib version numbers to decide which library to link with. Given two shared libraries that differ only in the “micro”
revision,ld.so will link with the higher one. That is, if you link withlibfoo.so.3.3.3 , the linker only records
3.3 in the headers, and will link with anything starting withlibfoo.so.3.(anything >= 3).(highest
available).

Note: ld.so will always use the highest “minor” revision. For instance, it will use libc.so.2.2 in preference to
libc.so.2.0 , even if the program was initially linked with libc.so.2.0 .

In addition, our ELF dynamic linker does not handle minor version numbers at all. However, one should still specify
a major and minor version number as ourMakefile s “do the right thing” based on the type of system.

For non-port libraries, it is also our policy to change the shared library version number only once between releases.
In addition, it is our policy to change the major shared library version number only once between major OS releases
(i.e. from 6.0 to 7.0). When you make a change to a system library that requires the version number to be bumped,
check theMakefile ’s commit logs. It is the responsibility of the committer to ensure that the first such change since
the release will result in the shared library version numberin theMakefile to be updated, and any subsequent
changes will not.

45

Chapter 6 Regression and Performance Testing
Regression tests are used to exercise a particular bit of thesystem to check that it works as expected, and to make
sure that old bugs are not reintroduced.

The FreeBSD regression testing tools can be found in the FreeBSD source tree in the directory
src/tools/regression .

6.1. Micro Benchmark Checklist
This section contains hints for doing proper micro-benchmarking on FreeBSD or of FreeBSD itself.

It is not possible to use all of the suggestions below every single time, but the more used, the better the benchmark’s
ability to test small differences will be.

• Disable APM and any other kind of clock fiddling (ACPI ?).

• Run in single user mode. E.g., cron(8), and other daemons only add noise. The sshd(8) daemon can also cause
problems. If ssh access is required during testing either disable the SSHv1 key regeneration, or kill the parent
sshd daemon during the tests.

• Do not run ntpd(8).

• If syslog(3) events are generated, run syslogd(8) with an empty /etc/syslogd.conf , otherwise, do not run it.

• Minimize disk-I/O, avoid it entirely if possible.

• Do not mount file systems that are not needed.

• Mount / , /usr , and any other file system as read-only if possible. This removes atime updates to disk (etc.) from
the I/O picture.

• Reinitialize the read/write test file system with newfs(8) and populate it from a tar(1) or dump(8) file before every
run. Unmount and mount it before starting the test. This results in a consistent file system layout. For a worldstone
test this would apply to/usr/obj (just reinitialize withnewfs and mount). To get 100% reproducibility, populate
the file system from a dd(1) file (i.e.:dd if= myimage of= /dev/ad0s1h bs=1m)

• Use malloc backed or preloaded md(4) partitions.

• Reboot between individual iterations of the test, this gives a more consistent state.

• Remove all non-essential device drivers from the kernel. For instance if USB is not needed for the test, do not put
USB in the kernel. Drivers which attach often have timeouts ticking away.

• Unconfigure hardware that are not in use. Detach disks with atacontrol(8) and camcontrol(8) if the disks are not
used for the test.

• Do not configure the network unless it is being tested, or waituntil after the test has been performed to ship the
results off to another computer.

If the system must be connected to a public network, watch outfor spikes of broadcast traffic. Even though it is
hardly noticeable, it will take up CPU cycles. Multicast hassimilar caveats.

• Put each file system on its own disk. This minimizes jitter from head-seek optimizations.

46

Chapter 6 Regression and Performance Testing

• Minimize output to serial or VGA consoles. Running output into files gives less jitter. (Serial consoles easily
become a bottleneck.) Do not touch keyboard while the test isrunning, evenspaceor back-spaceshows up in the
numbers.

• Make sure the test is long enough, but not too long. If the testis too short, timestamping is a problem. If it is too
long temperature changes and drift will affect the frequency of the quartz crystals in the computer. Rule of thumb:
more than a minute, less than an hour.

• Try to keep the temperature as stable as possible around the machine. This affects both quartz crystals and disk
drive algorithms. To get real stable clock, consider stabilized clock injection. E.g., get a OCXO + PLL, inject
output into clock circuits instead of motherboard xtal. Contact Poul-Henning Kamp <phk@FreeBSD.org > for
more information about this.

• Run the test at least 3 times but it is better to run more than 20times both for “before” and “after” code. Try to
interleave if possible (i.e.: do not run 20 times before then20 times after), this makes it possible to spot
environmental effects. Do not interleave 1:1, but 3:3, thismakes it possible to spot interaction effects.

A good pattern is:bababa{bbbaaa} * . This gives hint after the first 1+1 runs (so it is possible to stop the test if it
goes entirely the wrong way), a standard deviation after thefirst 3+3 (gives a good indication if it is going to be
worth a long run) and trending and interaction numbers lateron.

• Use ministat(1) to see if the numbers are significant. Consider buying “Cartoon guide to statistics” ISBN:
0062731025, highly recommended, if you have forgotten or never learned about standard deviation and Student’s
T.

• Do not use background fsck(8) unless the test is a benchmark of backgroundfsck . Also, disable
background_fsck in /etc/rc.conf unless the benchmark is not started at least 60+“fsck runtime” seconds
after the boot, as rc(8) wakes up and checks iffsck needs to run on any file systems when backgroundfsck is
enabled. Likewise, make sure there are no snapshots lying around unless the benchmark is a test with snapshots.

• If the benchmark show unexpected bad performance, check forthings like high interrupt volume from an
unexpected source. Some versions of ACPI have been reportedto “misbehave” and generate excess interrupts. To
help diagnose odd test results, take a few snapshots ofvmstat -i and look for anything unusual.

• Make sure to be careful about optimization parameters for kernel and userspace, likewise debugging. It is easy to
let something slip through and realize later the test was notcomparing the same thing.

• Do not ever benchmark with theWITNESSandINVARIANTS kernel options enabled unless the test is interested to
benchmarking those features.WITNESScan cause 400%+ drops in performance. Likewise, userspace malloc(3)
parameters default differently in -CURRENT from the way they ship in production releases.

6.2. The FreeBSD Source Tinderbox
The source Tinderbox consists of:

• A build script,tinderbox , that automates checking out a specific version of the FreeBSD source tree and
building it.

• A supervisor script,tbmaster , that monitors individual Tinderbox instances, logs theiroutput, and emails failure
notices.

• A CGI script namedindex.cgi that reads a set of tbmaster logs and presents an easy-to-read HTML summary of
them.

47

Chapter 6 Regression and Performance Testing

• A set of build servers that continually test the tip of the most important FreeBSD code branches.

• A webserver that keeps a complete set of Tinderbox logs and displays an up-to-date summary.

The scripts are maintained and were developed by Dag-ErlingSmørgrav <des@FreeBSD.org >, and are now written
in Perl, a move on from their original incarnation as shell scripts. All scripts and configuration files are kept in
/projects/tinderbox/ (http://www.freebsd.org/cgi/cvsweb.cgi/projects/tinderbox/).

For more information about the tinderbox and tbmaster scripts at this stage, see their respective man pages:
tinderbox(1) and tbmaster(1).

6.2.1. The index.cgi Script

The index.cgi script generates the HTML summary of tinderbox and tbmasterlogs. Although originally intended
to be used as a CGI script, as indicated by its name, this script can also be run from the command line or from a
cron(8) job, in which case it will look for logs in the directory where the script is located. It will automatically detect
context, generating HTTP headers when it is run as a CGI script. It conforms to XHTML standards and is styled
using CSS.

The script starts in themain() block by attempting to verify that it is running on the official Tinderbox website. If it
is not, a page indicating it is not an official website is produced, and a URL to the official site is provided.

Next, it scans the log directory to get an inventory of configurations, branches and architectures for which log files
exist, to avoid hard-coding a list into the script and potentially ending up with blank rows or columns. This
information is derived from the names of the log files matching the following pattern:

tinderbox-$config-$branch-$arch-$machine.{brief,ful l}

The configurations used on the official Tinderbox build servers are named for the branches they build. For example,
thereleng_8 configuration is used to buildRELENG_8as well as all still-supported release branches.

Once all of this startup procedure has been successfully completed,do_config() is called for each configuration.

Thedo_config() function generates HTML for a single Tinderbox configuration.

It works by first generating a header row, then iterating overeach branch build with the specified configuration,
producing a single row of results for each in the following manner:

• For each item:

• For each machine within that architecture:

• If a brief log file exists, then:

• Call success() to determine the outcome of the build.

• Output the modification size.

• Output the size of the brief log file with a link to the log file itself.

• If a full log file also exists, then:

• Output the size of the full log file with a link to the log file itself.

• Otherwise:

48

Chapter 6 Regression and Performance Testing

• No output.

Thesuccess() function mentioned above scans a brief log file for the string“tinderbox run completed” in order to
determine whether the build was successful.

Configurations and branches are sorted according to their branch rank. This is computed as follows:

• HEADandCURRENThave rank 9999.

• RELENG_x has rankxx99.

• RELENG_x_y has rankxxyy.

This means thatHEADalways ranks highest, andRELENGbranches are ranked in numerical order, with eachSTABLE

branch ranking higher than the release branches forked off of it. For instance, for FreeBSD 8, the order from highest
to lowest would be:

• RELENG_8(branch rank 899).

• RELENG_8_3(branch rank 803).

• RELENG_8_2(branch rank 802).

• RELENG_8_1(branch rank 801).

• RELENG_8_0(branch rank 800).

The colors that Tinderbox uses for each cell in the table are defined by CSS. Successful builds are displayed with
green text; unsuccessful builds are displayed with red text. The color fades as time passes since the corresponding
build, with every half an hour bringing the color closer to grey.

6.2.2. Official Build Servers

The official Tinderbox build servers are hosted by Sentex Data Communications (http://www.sentex.ca), who also
host the FreeBSD Netperf Cluster (http://www.freebsd.org/projects/netperf/cluster.html).

Three build servers currently exist:

freebsd-current.sentex.cabuilds:

• HEADfor amd64, arm, i386, i386/pc98, ia64, mips, powerpc, powerpc64, and sparc64.

• RELENG_9and supported 9.X branches for amd64, arm, i386, i386/pc98, ia64, mips, powerpc, powerpc64, and
sparc64.

freebsd-stable.sentex.cabuilds:

• RELENG_8and supported 8.X branches for amd64, i386, i386/pc98, ia64, mips, powerpc and sparc64.

freebsd-legacy.sentex.cabuilds:

49

Chapter 6 Regression and Performance Testing

• RELENG_7and supported 7.X branches for amd64, i386, i386/pc98, ia64, powerpc, and sparc64.

6.2.3. Official Summary Site

Summaries and logs from the official build servers are available online at http://tinderbox.FreeBSD.org, hosted by
Dag-Erling Smørgrav <des@FreeBSD.org > and set up as follows:

• A cron(8) job checks the build servers at regular intervals and downloads any new log files using rsync(1).

• Apache is set up to useindex.cgi asDirectoryIndex .

50

II. Interprocess Communication

Chapter 7 Sockets
Contributed by G. Adam Stanislav.

7.1 Synopsis
BSD sockets take interprocess communications to a new level. It is no longer necessary for the communicating
processes to run on the same machine. They stillcan, but they do not have to.

Not only do these processes not have to run on the same machine, they do not have to run under the same operating
system. Thanks to BSD sockets, your FreeBSD software can smoothly cooperate with a program running on a
Macintosh®, another one running on a Sun™ workstation, yet another one running under Windows® 2000, all
connected with an Ethernet-based local area network.

But your software can equally well cooperate with processesrunning in another building, or on another continent,
inside a submarine, or a space shuttle.

It can also cooperate with processes that are not part of a computer (at least not in the strict sense of the word), but of
such devices as printers, digital cameras, medical equipment. Just about anything capable of digital communications.

7.2 Networking and Diversity
We have already hinted on thediversityof networking. Many different systems have to talk to each other. And they
have to speak the same language. They also have tounderstandthe same language the same way.

People often think thatbody languageis universal. But it is not. Back in my early teens, my father took me to
Bulgaria. We were sitting at a table in a park in Sofia, when a vendor approached us trying to sell us some roasted
almonds.

I had not learned much Bulgarian by then, so, instead of saying no, I shook my head from side to side, the
“universal” body language forno. The vendor quickly started serving us some almonds.

I then remembered I had been told that in Bulgaria shaking your head sideways meantyes. Quickly, I started nodding
my head up and down. The vendor noticed, took his almonds, andwalked away. To an uninformed observer, I did not
change the body language: I continued using the language of shaking and nodding my head. What changed was the
meaningof the body language. At first, the vendor and I interpreted the same language as having completely
different meaning. I had to adjust my own interpretation of that language so the vendor would understand.

It is the same with computers: The same symbols may have different, even outright opposite meaning. Therefore, for
two computers to understand each other, they must not only agree on the samelanguage, but on the same
interpretationof the language.

7.3 Protocols
While various programming languages tend to have complex syntax and use a number of multi-letter reserved words
(which makes them easy for the human programmer to understand), the languages of data communications tend to be
very terse. Instead of multi-byte words, they often use individualbits. There is a very convincing reason for it: While
data travelsinsideyour computer at speeds approaching the speed of light, it often travels considerably slower
between two computers.

52

Chapter 7 Sockets

Because the languages used in data communications are so terse, we usually refer to them asprotocolsrather than
languages.

As data travels from one computer to another, it always uses more than one protocol. These protocols arelayered.
The data can be compared to the inside of an onion: You have to peel off several layers of “skin” to get to the data.
This is best illustrated with a picture:

Ethernet
IP

TCP
HTTP
PNG

D A T A

In this example, we are trying to get an image from a web page weare connected to via an Ethernet.

The image consists of raw data, which is simply a sequence of RGB values that our software can process, i.e.,
convert into an image and display on our monitor.

Alas, our software has no way of knowing how the raw data is organized: Is it a sequence of RGB values, or a
sequence of grayscale intensities, or perhaps of CMYK encoded colors? Is the data represented by 8-bit quanta, or
are they 16 bits in size, or perhaps 4 bits? How many rows and columns does the image consist of? Should certain
pixels be transparent?

I think you get the picture...

To inform our software how to handle the raw data, it is encoded as a PNG file. It could be a GIF, or a JPEG, but it is
a PNG.

And PNG is a protocol.

At this point, I can hear some of you yelling,“No, it is not! It is a file format!”

Well, of course it is a file format. But from the perspective ofdata communications, a file format is a protocol: The
file structure is alanguage, a terse one at that, communicating to ourprocesshow the data is organized. Ergo, it is a
protocol.

Alas, if all we received was the PNG file, our software would befacing a serious problem: How is it supposed to
know the data is representing an image, as opposed to some text, or perhaps a sound, or what not? Secondly, how is it
supposed to know the image is in the PNG format as opposed to GIF, or JPEG, or some other image format?

To obtain that information, we are using another protocol: HTTP. This protocol can tell us exactly that the data
represents an image, and that it uses the PNG protocol. It canalso tell us some other things, but let us stay focused on
protocol layers here.

So, now we have some data wrapped in the PNG protocol, wrappedin the HTTP protocol. How did we get it from
the server?

By using TCP/IP over Ethernet, that is how. Indeed, that is three more protocols. Instead of continuing inside out, I
am now going to talk about Ethernet, simply because it is easier to explain the rest that way.

Ethernet is an interesting system of connecting computers in a local area network(LAN). Each computer has a
network interface card(NIC), which has a unique 48-bit ID called itsaddress. No two Ethernet NICs in the world
have the same address.

These NICs are all connected with each other. Whenever one computer wants to communicate with another in the
same Ethernet LAN, it sends a message over the network. EveryNIC sees the message. But as part of the Ethernet
protocol, the data contains the address of the destination NIC (amongother things). So, only one of all the network
interface cards will pay attention to it, the rest will ignore it.

53

Chapter 7 Sockets

But not all computers are connected to the same network. Justbecause we have received the data over our Ethernet
does not mean it originated in our own local area network. It could have come to us from some other network (which
may not even be Ethernet based) connected with our own network via the Internet.

All data is transferred over the Internet using IP, which stands forInternet Protocol. Its basic role is to let us know
where in the world the data has arrived from, and where it is supposed to go to. It does notguaranteewe will receive
the data, only that we will know where it came fromif we do receive it.

Even if we do receive the data, IP does not guarantee we will receive various chunks of data in the same order the
other computer has sent it to us. So, we can receive the centerof our image before we receive the upper left corner
and after the lower right, for example.

It is TCP (Transmission Control Protocol) that asks the sender to resend any lost data and that places it all into the
proper order.

All in all, it took fivedifferent protocols for one computer to communicate to another what an image looks like. We
received the data wrapped into the PNG protocol, which was wrapped into the HTTP protocol, which was wrapped
into the TCP protocol, which was wrapped into the IP protocol, which was wrapped into the Ethernet protocol.

Oh, and by the way, there probably were several other protocols involved somewhere on the way. For example, if our
LAN was connected to the Internet through a dial-up call, it used the PPP protocol over the modem which used one
(or several) of the various modem protocols, et cetera, et cetera, et cetera...

As a developer you should be asking by now,“How am I supposed to handle it all?”

Luckily for you, you arenot supposed to handle it all. Youare supposed to handle some of it, but not all of it.
Specifically, you need not worry about the physical connection (in our case Ethernet and possibly PPP, etc). Nor do
you need to handle the Internet Protocol, or the Transmission Control Protocol.

In other words, you do not have to do anything to receive the data from the other computer. Well, you do have toask
for it, but that is almost as simple as opening a file.

Once you have received the data, it is up to you to figure out what to do with it. In our case, you would need to
understand the HTTP protocol and the PNG file structure.

To use an analogy, all the internetworking protocols becomea gray area: Not so much because we do not understand
how it works, but because we are no longer concerned about it.The sockets interface takes care of this gray area for
us:

Ethernet
IP

TCP
HTTP
PNG

D A T A

We only need to understand any protocols that tell us how tointerpret the data, not how toreceiveit from another
process, nor how tosendit to another process.

7.4 The Sockets Model
BSD sockets are built on the basic UNIX model:Everything is a file.In our example, then, sockets would let us
receive anHTTP file, so to speak. It would then be up to us to extract thePNG filefrom it.

Because of the complexity of internetworking, we cannot just use theopen system call, or theopen() C function.
Instead, we need to take several steps to “opening” a socket.

54

Chapter 7 Sockets

Once we do, however, we can start treating thesocketthe same way we treat anyfile descriptor: We canread from
it, write to it, pipe it, and, eventually,close it.

7.5 Essential Socket Functions
While FreeBSD offers different functions to work with sockets, we onlyneedfour to “open” a socket. And in some
cases we only need two.

7.5.1 The Client-Server Difference

Typically, one of the ends of a socket-based data communication is aserver, the other is aclient.

7.5.1.1 The Common Elements

7.5.1.1.1 socket

The one function used by both, clients and servers, is socket(2). It is declared this way:

int socket(int domain, int type, int protocol);

The return value is of the same type as that ofopen , an integer. FreeBSD allocates its value from the same pool as
that of file handles. That is what allows sockets to be treatedthe same way as files.

Thedomain argument tells the system whatprotocol familyyou want it to use. Many of them exist, some are vendor
specific, others are very common. They are declared insys/socket.h .

UsePF_INET for UDP, TCP and other Internet protocols (IPv4).

Five values are defined for thetype argument, again, insys/socket.h . All of them start with “SOCK_”. The most
common one isSOCK_STREAM, which tells the system you are asking for areliable stream delivery service(which is
TCP when used withPF_INET).

If you asked forSOCK_DGRAM, you would be requesting aconnectionless datagram delivery service(in our case,
UDP).

If you wanted to be in charge of the low-level protocols (suchas IP), or even network interfaces (e.g., the Ethernet),
you would need to specifySOCK_RAW.

Finally, theprotocol argument depends on the previous two arguments, and is not always meaningful. In that case,
use0 for its value.

The Unconnected Socket: Nowhere, in the socket function have we specified to what other system we should
be connected. Our newly created socket remains unconnected .

This is on purpose: To use a telephone analogy, we have just attached a modem to the phone line. We have
neither told the modem to make a call, nor to answer if the phone rings.

55

Chapter 7 Sockets

7.5.1.1.2 sockaddr

Various functions of the sockets family expect the address of (or pointer to, to use C terminology) a small area of the
memory. The various C declarations in thesys/socket.h refer to it asstruct sockaddr . This structure is
declared in the same file:

/ *
* Structure used by kernel to store most

* addresses.

* /
struct sockaddr {

unsigned char sa_len; / * total length * /
sa_family_t sa_family; / * address family * /
char sa_data[14]; / * actually longer; address value * /

};
#define SOCK_MAXADDRLEN 255 /* longest possible addresses * /

Please note thevaguenesswith which thesa_data field is declared, just as an array of14 bytes, with the comment
hinting there can be more than14 of them.

This vagueness is quite deliberate. Sockets is a very powerful interface. While most people perhaps think of it as
nothing more than the Internet interface—and most applications probably use it for that nowadays—sockets can be
used for just aboutanykind of interprocess communications, of which the Internet(or, more precisely, IP) is only
one.

Thesys/socket.h refers to the various types of protocols sockets will handleasaddress families, and lists them
right before the definition ofsockaddr :

/ *
* Address families.

* /
#define AF_UNSPEC 0 / * unspecified * /
#define AF_LOCAL 1 / * local to host (pipes, portals) * /
#define AF_UNIX AF_LOCAL / * backward compatibility * /
#define AF_INET 2 / * internetwork: UDP, TCP, etc. * /
#define AF_IMPLINK 3 / * arpanet imp addresses * /
#define AF_PUP 4 / * pup protocols: e.g. BSP * /
#define AF_CHAOS 5 / * mit CHAOS protocols * /
#define AF_NS 6 / * XEROX NS protocols * /
#define AF_ISO 7 / * ISO protocols * /
#define AF_OSI AF_ISO
#define AF_ECMA 8 / * European computer manufacturers * /
#define AF_DATAKIT 9 / * datakit protocols * /
#define AF_CCITT 10 / * CCITT protocols, X.25 etc * /
#define AF_SNA 11 / * IBM SNA * /
#define AF_DECnet 12 / * DECnet * /
#define AF_DLI 13 / * DEC Direct data link interface * /
#define AF_LAT 14 / * LAT * /
#define AF_HYLINK 15 / * NSC Hyperchannel * /
#define AF_APPLETALK 16 / * Apple Talk * /
#define AF_ROUTE 17 / * Internal Routing Protocol * /
#define AF_LINK 18 / * Link layer interface * /
#define pseudo_AF_XTP 19 / * eXpress Transfer Protocol (no AF) * /
#define AF_COIP 20 / * connection-oriented IP, aka ST II * /

56

Chapter 7 Sockets

#define AF_CNT 21 / * Computer Network Technology * /
#define pseudo_AF_RTIP 22 / * Help Identify RTIP packets * /
#define AF_IPX 23 / * Novell Internet Protocol * /
#define AF_SIP 24 / * Simple Internet Protocol * /
#define pseudo_AF_PIP 25 / * Help Identify PIP packets * /
#define AF_ISDN 26 / * Integrated Services Digital Network * /
#define AF_E164 AF_ISDN / * CCITT E.164 recommendation * /
#define pseudo_AF_KEY 27 / * Internal key-management function * /
#define AF_INET6 28 / * IPv6 * /
#define AF_NATM 29 / * native ATM access * /
#define AF_ATM 30 / * ATM * /
#define pseudo_AF_HDRCMPLT 31 / * Used by BPF to not rewrite headers

* in interface output routine

* /
#define AF_NETGRAPH 32 / * Netgraph sockets * /
#define AF_SLOW 33 / * 802.3ad slow protocol * /
#define AF_SCLUSTER 34 / * Sitara cluster protocol * /
#define AF_ARP 35
#define AF_BLUETOOTH 36 / * Bluetooth sockets * /
#define AF_MAX 37

The one used for IP is AF_INET. It is a symbol for the constant2.

It is theaddress familylisted in thesa_family field of sockaddr that decides how exactly the vaguely named bytes
of sa_data will be used.

Specifically, whenever theaddress familyis AF_INET, we can usestruct sockaddr_in found in
netinet/in.h , whereversockaddr is expected:

/ *
* Socket address, internet style.

* /
struct sockaddr_in {

uint8_t sin_len;
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

We can visualize its organization this way:

0 321

0

4

8

12

IP Address

PortFamily0

0

0

The three important fields aresin_family , which is byte 1 of the structure,sin_port , a 16-bit value found in
bytes 2 and 3, andsin_addr , a 32-bit integer representation of the IP address, stored in bytes 4-7.

Now, let us try to fill it out. Let us assume we are trying to write a client for thedaytimeprotocol, which simply states
that its server will write a text string representing the current date and time to port 13. We want to use TCP/IP, so we

57

Chapter 7 Sockets

need to specifyAF_INET in the address family field.AF_INET is defined as2. Let us use the IP address of
192.43.244.18 , which is the time server of US federal government (time.nist.gov).

0 321

0

4

8

12

192.43.244.18

1320

0

0

By the way thesin_addr field is declared as being of thestruct in_addr type, which is defined in
netinet/in.h :

/ *
* Internet address (a structure for historical reasons)

* /
struct in_addr {

in_addr_t s_addr;
};

In addition,in_addr_t is a 32-bit integer.

The192.43.244.18 is just a convenient notation of expressing a 32-bit integerby listing all of its 8-bit bytes,
starting with themost significantone.

So far, we have viewedsockaddr as an abstraction. Our computer does not storeshort integers as a single 16-bit
entity, but as a sequence of 2 bytes. Similarly, it stores 32-bit integers as a sequence of 4 bytes.

Suppose we coded something like this:

sa.sin_family = AF_INET;
sa.sin_port = 13;
sa.sin_addr.s_addr = (((((192 << 8) | 43) << 8) | 244) << 8) | 18 ;

What would the result look like?

Well, that depends, of course. On a Pentium®, or other x86, based computer, it would look like this:

0 321

0

4

8

12

18 244 43 192

13 020

0

0

On a different system, it might look like this:

0 321

0

4

8

12

1824443192

13020

0

0

And on a PDP it might look different yet. But the above two are the most common ways in use today.

Ordinarily, wanting to write portable code, programmers pretend that these differences do not exist. And they get
away with it (except when they code in assembly language). Alas, you cannot get away with it that easily when
coding for sockets.

Why?

58

Chapter 7 Sockets

Because when communicating with another computer, you usually do not know whether it stores datamost
significant byte(MSB) or least significant byte(LSB) first.

You might be wondering,“So, will sockets not handle it for me?”

It will not.

While that answer may surprise you at first, remember that thegeneral sockets interface only understands the
sa_len andsa_family fields of thesockaddr structure. You do not have to worry about the byte order there(of
course, on FreeBSDsa_family is only 1 byte anyway, but many other UNIX systems do not havesa_len and use
2 bytes forsa_family , and expect the data in whatever order is native to the computer).

But the rest of the data is justsa_data[14] as far as sockets goes. Depending on theaddress family, sockets just
forwards that data to its destination.

Indeed, when we enter a port number, it is because we want the other computer to know what service we are asking
for. And, when we are the server, we read the port number so we know what service the other computer is expecting
from us. Either way, sockets only has to forward the port number as data. It does not interpret it in any way.

Similarly, we enter the IP address to tell everyone on the waywhere to send our data to. Sockets, again, only
forwards it as data.

That is why, we (theprogrammers, not thesockets) have to distinguish between the byte order used by our computer
and a conventional byte order to send the data in to the other computer.

We will call the byte order our computer uses thehost byte order, or just thehost order.

There is a convention of sending the multi-byte data over IPMSB first. This, we will refer to as thenetwork byte
order, or simply thenetwork order.

Now, if we compiled the above code for an Intel based computer, ourhost byte orderwould produce:

0 321

0

4

8

12

18 244 43 192

13 020

0

0

But thenetwork byte orderrequires that we store the data MSB first:

0 321

0

4

8

12

1824443192

13020

0

0

Unfortunately, ourhost orderis the exact opposite of thenetwork order.

We have several ways of dealing with it. One would be toreversethe values in our code:

sa.sin_family = AF_INET;
sa.sin_port = 13 << 8;
sa.sin_addr.s_addr = (((((18 << 8) | 244) << 8) | 43) << 8) | 192 ;

This will trick our compiler into storing the data in thenetwork byte order. In some cases, this is exactly the way to
do it (e.g., when programming in assembly language). In mostcases, however, it can cause a problem.

Suppose, you wrote a sockets-based program in C. You know it is going to run on a Pentium, so you enter all your
constants in reverse and force them to thenetwork byte order. It works well.

59

Chapter 7 Sockets

Then, some day, your trusted old Pentium becomes a rusty old Pentium. You replace it with a system whosehost
order is the same as thenetwork order. You need to recompile all your software. All of your software continues to
perform well, except the one program you wrote.

You have since forgotten that you had forced all of your constants to the opposite of thehost order. You spend some
quality time tearing out your hair, calling the names of all gods you ever heard of (and some you made up), hitting
your monitor with a nerf bat, and performing all the other traditional ceremonies of trying to figure out why
something that has worked so well is suddenly not working at all.

Eventually, you figure it out, say a couple of swear words, andstart rewriting your code.

Luckily, you are not the first one to face the problem. Someoneelse has created the htons(3) and htonl(3) C functions
to convert ashort andlong respectively from thehost byte orderto thenetwork byte order, and the ntohs(3) and
ntohl(3) C functions to go the other way.

OnMSB-firstsystems these functions do nothing. OnLSB-firstsystems they convert values to the proper order.

So, regardless of what system your software is compiled on, your data will end up in the correct order if you use
these functions.

7.5.1.2 Client Functions

Typically, the client initiates the connection to the server. The client knows which server it is about to call: It knows
its IP address, and it knows theport the server resides at. It is akin to you picking up the phone and dialing the
number (theaddress), then, after someone answers, asking for the person in charge of wingdings (theport).

7.5.1.2.1 connect

Once a client has created a socket, it needs to connect it to a specific port on a remote system. It uses connect(2):

int connect(int s, const struct sockaddr * name, socklen_t namelen);

Thes argument is the socket, i.e., the value returned by thesocket function. Thename is a pointer tosockaddr ,
the structure we have talked about extensively. Finally,namelen informs the system how many bytes are in our
sockaddr structure.

If connect is successful, it returns0. Otherwise it returns-1 and stores the error code inerrno .

There are many reasons whyconnect may fail. For example, with an attempt to an Internet connection, the IP
address may not exist, or it may be down, or just too busy, or itmay not have a server listening at the specified port.
Or it may outrightrefuseany request for specific code.

7.5.1.2.2 Our First Client

We now know enough to write a very simple client, one that willget current time from192.43.244.18 and print it
to stdout .

/ *
* daytime.c

*
* Programmed by G. Adam Stanislav

* /

60

Chapter 7 Sockets

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main() {
register int s;
register int bytes;
struct sockaddr_in sa;
char buffer[BUFSIZ+1];

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
return 1;

}

bzero(&sa, sizeof sa);

sa.sin_family = AF_INET;
sa.sin_port = htons(13);
sa.sin_addr.s_addr = htonl((((((192 << 8) | 43) << 8) | 244) < < 8) | 18);
if (connect(s, (struct sockaddr *)&sa, sizeof sa) < 0) {

perror("connect");
close(s);
return 2;

}

while ((bytes = read(s, buffer, BUFSIZ)) > 0)
write(1, buffer, bytes);

close(s);
return 0;

}

Go ahead, enter it in your editor, save it asdaytime.c , then compile and run it:

% cc -O3 -o daytime daytime.c

% ./daytime

52079 01-06-19 02:29:25 50 0 1 543.9 UTC(NIST) *
%

In this case, the date was June 19, 2001, the time was 02:29:25UTC. Naturally, your results will vary.

7.5.1.3 Server Functions

The typical server does not initiate the connection. Instead, it waits for a client to call it and request services. It does
not know when the client will call, nor how many clients will call. It may be just sitting there, waiting patiently, one
moment, The next moment, it can find itself swamped with requests from a number of clients, all calling in at the
same time.

61

Chapter 7 Sockets

The sockets interface offers three basic functions to handle this.

7.5.1.3.1 bind

Ports are like extensions to a phone line: After you dial a number, you dial the extension to get to a specific person or
department.

There are 65535 IP ports, but a server usually processes requests that come in on only one of them. It is like telling
the phone room operator that we are now at work and available to answer the phone at a specific extension. We use
bind(2) to tell sockets which port we want to serve.

int bind(int s, const struct sockaddr * addr, socklen_t addrlen);

Beside specifying the port inaddr , the server may include its IP address. However, it can just use the symbolic
constant INADDR_ANY to indicate it will serve all requests to the specified port regardless of what its IP address is.
This symbol, along with several similar ones, is declared innetinet/in.h

#define INADDR_ANY (u_int32_t)0x00000000

Suppose we were writing a server for thedaytimeprotocol over TCP/IP. Recall that it uses port 13. Our
sockaddr_in structure would look like this:

0 321

0

4

8

12

13020

0

0

0

7.5.1.3.2 listen

To continue our office phone analogy, after you have told the phone central operator what extension you will be at,
you now walk into your office, and make sure your own phone is plugged in and the ringer is turned on. Plus, you
make sure your call waiting is activated, so you can hear the phone ring even while you are talking to someone.

The server ensures all of that with the listen(2) function.

int listen(int s, int backlog);

In here, thebacklog variable tells sockets how many incoming requests to acceptwhile you are busy processing the
last request. In other words, it determines the maximum sizeof the queue of pending connections.

7.5.1.3.3 accept

After you hear the phone ringing, you accept the call by answering the call. You have now established a connection
with your client. This connection remains active until either you or your client hang up.

The server accepts the connection by using the accept(2) function.

int accept(int s, struct sockaddr * addr, socklen_t * addrlen);

Note that this timeaddrlen is a pointer. This is necessary because in this case it is the socket that fills outaddr , the
sockaddr_in structure.

62

Chapter 7 Sockets

The return value is an integer. Indeed, theaccept returns anew socket. You will use this new socket to communicate
with the client.

What happens to the old socket? It continues to listen for more requests (remember thebacklog variable we passed
to listen ?) until weclose it.

Now, the new socket is meant only for communications. It is fully connected. We cannot pass it tolisten again,
trying to accept additional connections.

7.5.1.3.4 Our First Server

Our first server will be somewhat more complex than our first client was: Not only do we have more sockets
functions to use, but we need to write it as a daemon.

This is best achieved by creating achild processafter binding the port. The main process then exits and returns
control to theshell (or whatever program invoked it).

The child callslisten , then starts an endless loop, which accepts a connection, serves it, and eventually closes its
socket.

/ *
* daytimed - a port 13 server

*
* Programmed by G. Adam Stanislav

* June 19, 2001

* /
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define BACKLOG 4

int main() {
register int s, c;
int b;
struct sockaddr_in sa;
time_t t;
struct tm * tm;
FILE * client;

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
return 1;

}

bzero(&sa, sizeof sa);

sa.sin_family = AF_INET;
sa.sin_port = htons(13);

63

Chapter 7 Sockets

if (INADDR_ANY)
sa.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(s, (struct sockaddr *)&sa, sizeof sa) < 0) {
perror("bind");
return 2;

}

switch (fork()) {
case -1:

perror("fork");
return 3;
break;

default:
close(s);
return 0;
break;

case 0:
break;

}

listen(s, BACKLOG);

for (;;) {
b = sizeof sa;

if ((c = accept(s, (struct sockaddr *)&sa, &b)) < 0) {
perror("daytimed accept");
return 4;

}

if ((client = fdopen(c, "w")) == NULL) {
perror("daytimed fdopen");
return 5;

}

if ((t = time(NULL)) < 0) {
perror("daytimed time");

return 6;
}

tm = gmtime(&t);
fprintf(client, "%.4i-%.2i-%.2iT%.2i:%.2i:%.2iZ\n",

tm->tm_year + 1900,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec);

fclose(client);
}

64

Chapter 7 Sockets

}

We start by creating a socket. Then we fill out thesockaddr_in structure insa . Note the conditional use of
INADDR_ANY:

if (INADDR_ANY)
sa.sin_addr.s_addr = htonl(INADDR_ANY);

Its value is0. Since we have just usedbzero on the entire structure, it would be redundant to set it to0 again. But if
we port our code to some other system where INADDR_ANY is perhaps not a zero, we need to assign it to
sa.sin_addr.s_addr . Most modern C compilers are clever enough to notice that INADDR_ANY is a constant.
As long as it is a zero, they will optimize the entire conditional statement out of the code.

After we have calledbind successfully, we are ready to become adaemon: We usefork to create a child process. In
both, the parent and the child, thes variable is our socket. The parent process will not need it, so it callsclose , then
it returns0 to inform its own parent it had terminated successfully.

Meanwhile, the child process continues working in the background. It callslisten and sets its backlog to4. It does
not need a large value here becausedaytimeis not a protocol many clients request all the time, and because it can
process each request instantly anyway.

Finally, the daemon starts an endless loop, which performs the following steps:

1. Callaccept . It waits here until a client contacts it. At that point, it receives a new socket,c , which it can use to
communicate with this particular client.

2. It uses the C functionfdopen to turn the socket from a low-levelfile descriptorto a C-styleFILE pointer. This
will allow the use offprintf later on.

3. It checks the time, and prints it in theISO 8601format to theclient “file”. It then usesfclose to close the
file. That will automatically close the socket as well.

We cangeneralizethis, and use it as a model for many other servers:

Start

Create Top Socket

Bind Port

Close Top Socket

Exit

Initialize Daemon

Listen

Accept

Close Accepted
Socket

Daemon
Process

Serve

65

Chapter 7 Sockets

This flowchart is good forsequential servers, i.e., servers that can serve one client at a time, just as we were able to
with ourdaytimeserver. This is only possible whenever there is no real “conversation” going on between the client
and the server: As soon as the server detects a connection to the client, it sends out some data and closes the
connection. The entire operation may take nanoseconds, andit is finished.

The advantage of this flowchart is that, except for the brief moment after the parentfork s and before it exits, there is
always only oneprocessactive: Our server does not take up much memory and other system resources.

Note that we have addedinitialize daemonin our flowchart. We did not need to initialize our own daemon,but this is
a good place in the flow of the program to set up anysignal handlers, open any files we may need, etc.

Just about everything in the flow chart can be used literally on many different servers. Theserveentry is the
exception. We think of it as a“black box” , i.e., something you design specifically for your own server, and just “plug
it into the rest.”

Not all protocols are that simple. Many receive a request from the client, reply to it, then receive another request
from the same client. Because of that, they do not know in advance how long they will be serving the client. Such
servers usually start a new process for each client. While the new process is serving its client, the daemon can
continue listening for more connections.

Now, go ahead, save the above source code asdaytimed.c (it is customary to end the names of daemons with the
letterd). After you have compiled it, try running it:

% ./daytimed

bind: Permission denied
%

What happened here? As you will recall, thedaytimeprotocol uses port 13. But all ports below 1024 are reserved to
the superuser (otherwise, anyone could start a daemon pretending to serve a commonly used port, while causing a
security breach).

Try again, this time as the superuser:

./daytimed

#

What... Nothing? Let us try again:

./daytimed

bind: Address already in use
#

Every port can only be bound by one program at a time. Our first attempt was indeed successful: It started the child
daemon and returned quietly. It is still running and will continue to run until you either kill it, or any of its system
calls fail, or you reboot the system.

Fine, we know it is running in the background. But is it working? How do we know it is a properdaytimeserver?
Simple:

% telnet localhost 13

Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...

66

Chapter 7 Sockets

Connected to localhost.
Escape character is ’^]’.
2001-06-19T21:04:42Z
Connection closed by foreign host.
%

telnet tried the new IPv6, and failed. It retried with IPv4 and succeeded. The daemon works.

If you have access to another UNIX system viatelnet, you can use it to test accessing the server remotely. My
computer does not have a static IP address, so this is what I did:

% who

whizkid ttyp0 Jun 19 16:59 (216.127.220.143)
xxx ttyp1 Jun 19 16:06 (xx.xx.xx.xx)
% telnet 216.127.220.143 13

Trying 216.127.220.143...
Connected to r47.bfm.org.
Escape character is ’^]’.
2001-06-19T21:31:11Z
Connection closed by foreign host.
%

Again, it worked. Will it work using the domain name?

% telnet r47.bfm.org 13

Trying 216.127.220.143...
Connected to r47.bfm.org.
Escape character is ’^]’.
2001-06-19T21:31:40Z
Connection closed by foreign host.
%

By the way,telnet prints theConnection closed by foreign hostmessage after our daemon has closed the socket. This
shows us that, indeed, usingfclose(client); in our code works as advertised.

7.6 Helper Functions
FreeBSD C library contains many helper functions for sockets programming. For example, in our sample client we
hard coded thetime.nist.gov IP address. But we do not always know the IP address. Even if wedo, our software
is more flexible if it allows the user to enter the IP address, or even the domain name.

7.6.1 gethostbyname

While there is no way to pass the domain name directly to any ofthe sockets functions, the FreeBSD C library comes
with the gethostbyname(3) and gethostbyname2(3) functions, declared innetdb.h .

67

Chapter 7 Sockets

struct hostent * gethostbyname(const char * name);
struct hostent * gethostbyname2(const char * name, int af);

Both return a pointer to thehostent structure, with much information about the domain. For our purposes, the
h_addr_list[0] field of the structure points ath_length bytes of the correct address, already stored in the
network byte order.

This allows us to create a much more flexible—and much more useful—version of ourdaytime program:

/ *
* daytime.c

*
* Programmed by G. Adam Stanislav

* 19 June 2001

* /
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

int main(int argc, char * argv[]) {
register int s;
register int bytes;
struct sockaddr_in sa;
struct hostent * he;
char buf[BUFSIZ+1];
char * host;

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
return 1;

}

bzero(&sa, sizeof sa);

sa.sin_family = AF_INET;
sa.sin_port = htons(13);

host = (argc > 1) ? (char *)argv[1] : "time.nist.gov";

if ((he = gethostbyname(host)) == NULL) {
herror(host);
return 2;

}

bcopy(he->h_addr_list[0],&sa.sin_addr, he->h_length) ;

if (connect(s, (struct sockaddr *)&sa, sizeof sa) < 0) {
perror("connect");
return 3;

}

68

Chapter 7 Sockets

while ((bytes = read(s, buf, BUFSIZ)) > 0)
write(1, buf, bytes);

close(s);
return 0;

}

We now can type a domain name (or an IP address, it works both ways) on the command line, and the program will
try to connect to itsdaytimeserver. Otherwise, it will still default totime.nist.gov . However, even in this case we
will usegethostbyname rather than hard coding192.43.244.18 . That way, even if its IP address changes in the
future, we will still find it.

Since it takes virtually no time to get the time from your local server, you could rundaytime twice in a row: First to
get the time fromtime.nist.gov , the second time from your own system. You can then compare the results and
see how exact your system clock is:

% daytime ; daytime localhost

52080 01-06-20 04:02:33 50 0 0 390.2 UTC(NIST) *
2001-06-20T04:02:35Z
%

As you can see, my system was two seconds ahead of the NIST time.

7.6.2 getservbyname

Sometimes you may not be sure what port a certain service uses. The getservbyname(3) function, also declared in
netdb.h comes in very handy in those cases:

struct servent * getservbyname(const char * name, const char * proto);

Theservent structure contains thes_port , which contains the proper port, already innetwork byte order.

Had we not known the correct port for thedaytimeservice, we could have found it this way:

struct servent * se;
...
if ((se = getservbyname("daytime", "tcp")) == NULL {

fprintf(stderr, "Cannot determine which port to use.\n");
return 7;

}
sa.sin_port = se->s_port;

You usually do know the port. But if you are developing a new protocol, you may be testing it on an unofficial port.
Some day, you will register the protocol and its port (if nowhere else, at least in your/etc/services , which is
wheregetservbyname looks). Instead of returning an error in the above code, you just use the temporary port
number. Once you have listed the protocol in/etc/services , your software will find its port without you having to
rewrite the code.

69

Chapter 7 Sockets

7.7 Concurrent Servers
Unlike a sequential server, aconcurrent serverhas to be able to serve more than one client at a time. For example, a
chat servermay be serving a specific client for hours—it cannot wait tillit stops serving a client before it serves the
next one.

This requires a significant change in our flowchart:

Start

Create Top Socket

Bind Port

Close Top Socket

Exit

Initialize Daemon

Listen

Accept

Close Top Socket

Close Accepted
Socket

Exit

Close Accepted
Socket

Process Signals

Daemon
Process

Server
Process

Serve

We moved theservefrom thedaemon processto its ownserver process. However, because each child process
inherits all open files (and a socket is treated just like a file), the new process inherits not only the“accepted
handle,” i.e., the socket returned by theaccept call, but also thetop socket, i.e., the one opened by the top process
right at the beginning.

However, theserver processdoes not need this socket and shouldclose it immediately. Similarly, thedaemon
processno longer needs theaccepted socket, and not only should, butmustclose it—otherwise, it will run out of
availablefile descriptorssooner or later.

After theserver processis done serving, it should close theaccepted socket. Instead of returning toaccept , it now
exits.

Under UNIX, a process does not reallyexit. Instead, itreturnsto its parent. Typically, a parent processwait s for its
child process, and obtains a return value. However, ourdaemon processcannot simply stop and wait. That would
defeat the whole purpose of creating additional processes.But if it never doeswait , its children will become
zombies—no longer functional but still roaming around.

For that reason, thedaemon processneeds to setsignal handlersin its initialize daemonphase. At least a SIGCHLD
signal has to be processed, so the daemon can remove the zombie return values from the system and release the
system resources they are taking up.

That is why our flowchart now contains aprocess signalsbox, which is not connected to any other box. By the way,
many servers also process SIGHUP, and typically interpret as the signal from the superuser that they should reread
their configuration files. This allows us to change settings without having to kill and restart these servers.

70

Chapter 8 IPv6 Internals

8.1 IPv6/IPsec Implementation
Contributed by Yoshinobu Inoue.

This section should explain IPv6 and IPsec related implementation internals. These functionalities are derived from
KAME project (http://www.kame.net/)

8.1.1 IPv6

8.1.1.1 Conformance

The IPv6 related functions conforms, or tries to conform to the latest set of IPv6 specifications. For future reference
we list some of the relevant documents below (NOTE: this is not a complete list - this is too hard to maintain...).

For details please refer to specific chapter in the document,RFCs, manual pages, or comments in the source code.

Conformance tests have been performed on the KAME STABLE kitat TAHI project. Results can be viewed at
http://www.tahi.org/report/KAME/. We also attended Univ. of New Hampshire IOL tests (http://www.iol.unh.edu/)
in the past, with our past snapshots.

• RFC1639: FTP Operation Over Big Address Records (FOOBAR)

• RFC2428 is preferred over RFC1639. FTP clients will first tryRFC2428, then RFC1639 if failed.

• RFC1886: DNS Extensions to support IPv6

• RFC1933: Transition Mechanisms for IPv6 Hosts and Routers

• IPv4 compatible address is not supported.

• automatic tunneling (described in 4.3 of this RFC) is not supported.

• gif(4) interface implements IPv[46]-over-IPv[46] tunnelin a generic way, and it covers "configured tunnel"
described in the spec. See23.5.1.5in this document for details.

• RFC1981: Path MTU Discovery for IPv6

• RFC2080: RIPng for IPv6

• usr.sbin/route6d support this.

• RFC2292: Advanced Sockets API for IPv6

• For supported library functions/kernel APIs, seesys/netinet6/ADVAPI .

• RFC2362: Protocol Independent Multicast-Sparse Mode (PIM-SM)

• RFC2362 defines packet formats for PIM-SM.draft-ietf-pim-ipv6-01.txt is written based on this.

71

Chapter 8 IPv6 Internals

• RFC2373: IPv6 Addressing Architecture

• supports node required addresses, and conforms to the scoperequirement.

• RFC2374: An IPv6 Aggregatable Global Unicast Address Format

• supports 64-bit length of Interface ID.

• RFC2375: IPv6 Multicast Address Assignments

• Userland applications use the well-known addresses assigned in the RFC.

• RFC2428: FTP Extensions for IPv6 and NATs

• RFC2428 is preferred over RFC1639. FTP clients will first tryRFC2428, then RFC1639 if failed.

• RFC2460: IPv6 specification

• RFC2461: Neighbor discovery for IPv6

• See23.5.1.2in this document for details.

• RFC2462: IPv6 Stateless Address Autoconfiguration

• See23.5.1.4in this document for details.

• RFC2463: ICMPv6 for IPv6 specification

• See23.5.1.9in this document for details.

• RFC2464: Transmission of IPv6 Packets over Ethernet Networks

• RFC2465: MIB for IPv6: Textual Conventions and General Group

• Necessary statistics are gathered by the kernel. Actual IPv6 MIB support is provided as a patchkit for ucd-snmp.

• RFC2466: MIB for IPv6: ICMPv6 group

• Necessary statistics are gathered by the kernel. Actual IPv6 MIB support is provided as patchkit for ucd-snmp.

• RFC2467: Transmission of IPv6 Packets over FDDI Networks

• RFC2497: Transmission of IPv6 packet over ARCnet Networks

• RFC2553: Basic Socket Interface Extensions for IPv6

• IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind socket (3.8) are supported. See23.5.1.12
in this document for details.

72

Chapter 8 IPv6 Internals

• RFC2675: IPv6 Jumbograms

• See23.5.1.7in this document for details.

• RFC2710: Multicast Listener Discovery for IPv6

• RFC2711: IPv6 router alert option

• draft-ietf-ipngwg-router-renum-08 : Router renumbering for IPv6

• draft-ietf-ipngwg-icmp-namelookups-02 : IPv6 Name Lookups Through ICMP

• draft-ietf-ipngwg-icmp-name-lookups-03 : IPv6 Name Lookups Through ICMP

• draft-ietf-pim-ipv6-01.txt : PIM for IPv6

• pim6dd(8) implements dense mode. pim6sd(8) implements sparse mode.

• draft-itojun-ipv6-tcp-to-anycast-00 : Disconnecting TCP connection toward IPv6 anycast address

• draft-yamamoto-wideipv6-comm-model-00

• See23.5.1.6in this document for details.

• draft-ietf-ipngwg-scopedaddr-format-00.txt : An Extension of Format for IPv6 Scoped Addresses

8.1.1.2 Neighbor Discovery

Neighbor Discovery is fairly stable. Currently Address Resolution, Duplicated Address Detection, and Neighbor
Unreachability Detection are supported. In the near futurewe will be adding Proxy Neighbor Advertisement support
in the kernel and Unsolicited Neighbor Advertisement transmission command as admin tool.

If DAD fails, the address will be marked "duplicated" and message will be generated to syslog (and usually to
console). The "duplicated" mark can be checked with ifconfig(8). It is administrators’ responsibility to check for and
recover from DAD failures. The behavior should be improved in the near future.

Some of the network driver loops multicast packets back to itself, even if instructed not to do so (especially in
promiscuous mode). In such cases DAD may fail, because DAD engine sees inbound NS packet (actually from the
node itself) and considers it as a sign of duplicate. You may want to look at #if condition marked "heuristics" in
sys/netinet6/nd6_nbr.c:nd6_dad_timer() as workaround (note that the code fragment in "heuristics" section is not
spec conformant).

Neighbor Discovery specification (RFC2461) does not talk about neighbor cache handling in the following cases:

1. when there was no neighbor cache entry, node received unsolicited RS/NS/NA/redirect packet without link-layer
address

2. neighbor cache handling on medium without link-layer address (we need a neighbor cache entry for IsRouter bit)

For first case, we implemented workaround based on discussions on IETF ipngwg mailing list. For more details, see
the comments in the source code and email thread started from(IPng 7155), dated Feb 6 1999.

73

Chapter 8 IPv6 Internals

IPv6 on-link determination rule (RFC2461) is quite different from assumptions in BSD network code. At this
moment, no on-link determination rule is supported where default router list is empty (RFC2461, section 5.2, last
sentence in 2nd paragraph - note that the spec misuse the word"host" and "node" in several places in the section).

To avoid possible DoS attacks and infinite loops, only 10 options on ND packet is accepted now. Therefore, if you
have 20 prefix options attached to RA, only the first 10 prefixeswill be recognized. If this troubles you, please ask it
on FREEBSD-CURRENT mailing list and/or modify nd6_maxndopt in sys/netinet6/nd6.c . If there are high
demands we may provide sysctl knob for the variable.

8.1.1.3 Scope Index

IPv6 uses scoped addresses. Therefore, it is very importantto specify scope index (interface index for link-local
address, or site index for site-local address) with an IPv6 address. Without scope index, scoped IPv6 address is
ambiguous to the kernel, and kernel will not be able to determine the outbound interface for a packet.

Ordinary userland applications should use advanced API (RFC2292) to specify scope index, or interface index. For
similar purpose, sin6_scope_id member in sockaddr_in6 structure is defined in RFC2553. However, the semantics
for sin6_scope_id is rather vague. If you care about portability of your application, we suggest you to use advanced
API rather than sin6_scope_id.

In the kernel, an interface index for link-local scoped address is embedded into 2nd 16bit-word (3rd and 4th byte) in
IPv6 address. For example, you may see something like:

fe80:1::200:f8ff:fe01:6317

in the routing table and interface address structure (struct in6_ifaddr). The address above is a link-local unicast
address which belongs to a network interface whose interface identifier is 1. The embedded index enables us to
identify IPv6 link local addresses over multiple interfaces effectively and with only a little code change.

Routing daemons and configuration programs, like route6d(8) and ifconfig(8), will need to manipulate the
"embedded" scope index. These programs use routing socketsand ioctls (like SIOCGIFADDR_IN6) and the kernel
API will return IPv6 addresses with 2nd 16bit-word filled in.The APIs are for manipulating kernel internal structure.
Programs that use these APIs have to be prepared about differences in kernels anyway.

When you specify scoped address to the command line, NEVER write the embedded form (such as ff02:1::1 or
fe80:2::fedc). This is not supposed to work. Always use standard form, like ff02::1 or fe80::fedc, with command line
option for specifying interface (likeping6 -I ne0 ff02::1). In general, if a command does not have command
line option to specify outgoing interface, that command is not ready to accept scoped address. This may seem to be
opposite from IPv6’s premise to support "dentist office" situation. We believe that specifications need some
improvements for this.

Some of the userland tools support extended numeric IPv6 syntax, as documented in
draft-ietf-ipngwg-scopedaddr-format-00.txt . You can specify outgoing link, by using name of the
outgoing interface like "fe80::1%ne0". This way you will beable to specify link-local scoped address without much
trouble.

To use this extension in your program, you will need to use getaddrinfo(3), and getnameinfo(3) with
NI_WITHSCOPEID. The implementation currently assumes 1-to-1 relationship between a link and an interface,
which is stronger than what specs say.

74

Chapter 8 IPv6 Internals

8.1.1.4 Plug and Play

Most of the IPv6 stateless address autoconfiguration is implemented in the kernel. Neighbor Discovery functions are
implemented in the kernel as a whole. Router Advertisement (RA) input for hosts is implemented in the kernel.
Router Solicitation (RS) output for endhosts, RS input for routers, and RA output for routers are implemented in the
userland.

8.1.1.4.1 Assignment of link-local, and special addresses

IPv6 link-local address is generated from IEEE802 address (Ethernet MAC address). Each of interface is assigned an
IPv6 link-local address automatically, when the interfacebecomes up (IFF_UP). Also, direct route for the link-local
address is added to routing table.

Here is an output of netstat command:

Internet6:
Destination Gateway Flags Netif Expire
fe80:1::%ed0/64 link#1 UC ed0
fe80:2::%ep0/64 link#2 UC ep0

Interfaces that has no IEEE802 address (pseudo interfaces like tunnel interfaces, or ppp interfaces) will borrow
IEEE802 address from other interfaces, such as Ethernet interfaces, whenever possible. If there is no IEEE802
hardware attached, a last resort pseudo-random value, MD5(hostname), will be used as source of link-local address.
If it is not suitable for your usage, you will need to configurethe link-local address manually.

If an interface is not capable of handling IPv6 (such as lack of multicast support), link-local address will not be
assigned to that interface. See section 2 for details.

Each interface joins the solicited multicast address and the link-local all-nodes multicast addresses (e.g.
fe80::1:ff01:6317 and ff02::1, respectively, on the link the interface is attached). In addition to a link-local address,
the loopback address (::1) will be assigned to the loopback interface. Also, ::1/128 and ff01::/32 are automatically
added to routing table, and loopback interface joins node-local multicast group ff01::1.

8.1.1.4.2 Stateless address autoconfiguration on hosts

In IPv6 specification, nodes are separated into two categories:routersandhosts. Routers forward packets addressed
to others, hosts does not forward the packets. net.inet6.ip6.forwarding defines whether this node is router or host
(router if it is 1, host if it is 0).

When a host hears Router Advertisement from the router, a host may autoconfigure itself by stateless address
autoconfiguration. This behavior can be controlled by net.inet6.ip6.accept_rtadv (host autoconfigures itself if it isset
to 1). By autoconfiguration, network address prefix for the receiving interface (usually global address prefix) is
added. Default route is also configured. Routers periodically generate Router Advertisement packets. To request an
adjacent router to generate RA packet, a host can transmit Router Solicitation. To generate a RS packet at any time,
use thertsol command. rtsold(8) daemon is also available. rtsold(8) generates Router Solicitation whenever
necessary, and it works great for nomadic usage (notebooks/laptops). If one wishes to ignore Router Advertisements,
use sysctl to set net.inet6.ip6.accept_rtadv to 0.

To generate Router Advertisement from a router, use the rtadvd(8) daemon.

Note that, IPv6 specification assumes the following items, and nonconforming cases are left unspecified:

• Only hosts will listen to router advertisements

75

Chapter 8 IPv6 Internals

• Hosts have single network interface (except loopback)

Therefore, this is unwise to enable net.inet6.ip6.accept_rtadv on routers, or multi-interface host. A misconfigured
node can behave strange (nonconforming configuration allowed for those who would like to do some experiments).

To summarize the sysctl knob:

accept_rtadv forwarding role of the node
--- --- ---
0 0 host (to be manually configured)
0 1 router
1 0 autoconfigured host

(spec assumes that host has single
interface only, autoconfigured host
with multiple interface is
out-of-scope)

1 1 invalid, or experimental
(out-of-scope of spec)

RFC2462 has validation rule against incoming RA prefix information option, in 5.5.3 (e). This is to protect hosts
from malicious (or misconfigured) routers that advertise very short prefix lifetime. There was an update from Jim
Bound to ipngwg mailing list (look for "(ipng 6712)" in the archive) and it is implemented Jim’s update.

See23.5.1.2in the document for relationship between DAD and autoconfiguration.

8.1.1.5 Generic tunnel interface

GIF (Generic InterFace) is a pseudo interface for configuredtunnel. Details are described in gif(4). Currently

• v6 in v6

• v6 in v4

• v4 in v6

• v4 in v4

are available. Use gifconfig(8) to assign physical (outer) source and destination address to gif interfaces.
Configuration that uses same address family for inner and outer IP header (v4 in v4, or v6 in v6) is dangerous. It is
very easy to configure interfaces and routing tables to perform infinite level of tunneling.Please be warned.

gif can be configured to be ECN-friendly. See23.5.4.5for ECN-friendliness of tunnels, and gif(4) for how to
configure.

If you would like to configure an IPv4-in-IPv6 tunnel with gifinterface, read gif(4) carefully. You will need to
remove IPv6 link-local address automatically assigned to the gif interface.

8.1.1.6 Source Address Selection

Current source selection rule is scope oriented (there are some exceptions - see below). For a given destination, a
source IPv6 address is selected by the following rule:

1. If the source address is explicitly specified by the user (e.g. via the advanced API), the specified address is used.

76

Chapter 8 IPv6 Internals

2. If there is an address assigned to the outgoing interface (which is usually determined by looking up the routing
table) that has the same scope as the destination address, the address is used.

This is the most typical case.

3. If there is no address that satisfies the above condition, choose a global address assigned to one of the interfaces
on the sending node.

4. If there is no address that satisfies the above condition, and destination address is site local scope, choose a site
local address assigned to one of the interfaces on the sending node.

5. If there is no address that satisfies the above condition, choose the address associated with the routing table entry
for the destination. This is the last resort, which may causescope violation.

For instance, ::1 is selected for ff01::1, fe80:1::200:f8ff:fe01:6317 for fe80:1::2a0:24ff:feab:839b (note that
embedded interface index - described in23.5.1.3- helps us choose the right source address. Those embedded indices
will not be on the wire). If the outgoing interface has multiple address for the scope, a source is selected longest
match basis (rule 3). Suppose 2001:0DB8:808:1:200:f8ff:fe01:6317 and 2001:0DB8:9:124:200:f8ff:fe01:6317 are
given to the outgoing interface. 2001:0DB8:808:1:200:f8ff:fe01:6317 is chosen as the source for the destination
2001:0DB8:800::1.

Note that the above rule is not documented in the IPv6 spec. Itis considered "up to implementation" item. There are
some cases where we do not use the above rule. One example is connected TCP session, and we use the address kept
in tcb as the source. Another example is source address for Neighbor Advertisement. Under the spec (RFC2461
7.2.2) NA’s source should be the target address of the corresponding NS’s target. In this case we follow the spec
rather than the above longest-match rule.

For new connections (when rule 1 does not apply), deprecatedaddresses (addresses with preferred lifetime = 0) will
not be chosen as source address if other choices are available. If no other choices are available, deprecated address
will be used as a last resort. If there are multiple choice of deprecated addresses, the above scope rule will be used to
choose from those deprecated addresses. If you would like toprohibit the use of deprecated address for some reason,
configure net.inet6.ip6.use_deprecated to 0. The issue related to deprecated address is described in RFC2462 5.5.4
(NOTE: there is some debate underway in IETF ipngwg on how to use "deprecated" address).

8.1.1.7 Jumbo Payload

The Jumbo Payload hop-by-hop option is implemented and can be used to send IPv6 packets with payloads longer
than 65,535 octets. But currently no physical interface whose MTU is more than 65,535 is supported, so such
payloads can be seen only on the loopback interface (i.e. lo0).

If you want to try jumbo payloads, you first have to reconfigurethe kernel so that the MTU of the loopback interface
is more than 65,535 bytes; add the following to the kernel configuration file:

options "LARGE_LOMTU" #To test jumbo payload

and recompile the new kernel.

Then you can test jumbo payloads by the ping6(8) command with-b and -s options. The -b option must be specified
to enlarge the size of the socket buffer and the -s option specifies the length of the packet, which should be more than
65,535. For example, type as follows:

% ping6 -b 70000 -s 68000 ::1

77

Chapter 8 IPv6 Internals

The IPv6 specification requires that the Jumbo Payload option must not be used in a packet that carries a fragment
header. If this condition is broken, an ICMPv6 Parameter Problem message must be sent to the sender. specification
is followed, but you cannot usually see an ICMPv6 error caused by this requirement.

When an IPv6 packet is received, the frame length is checked and compared to the length specified in the payload
length field of the IPv6 header or in the value of the Jumbo Payload option, if any. If the former is shorter than the
latter, the packet is discarded and statistics are incremented. You can see the statistics as output of netstat(8)
command with ‘-s -p ip6’ option:

% netstat -s -p ip6

ip6:
(snip)
1 with data size < data length

So, kernel does not send an ICMPv6 error unless the erroneouspacket is an actual Jumbo Payload, that is, its packet
size is more than 65,535 bytes. As described above, currently no physical interface with such a huge MTU is
supported, so it rarely returns an ICMPv6 error.

TCP/UDP over jumbogram is not supported at this moment. Thisis because we have no medium (other than
loopback) to test this. Contact us if you need this.

IPsec does not work on jumbograms. This is due to some specification twists in supporting AH with jumbograms
(AH header size influences payload length, and this makes it real hard to authenticate inbound packet with jumbo
payload option as well as AH).

There are fundamental issues in *BSD support for jumbograms. We would like to address those, but we need more
time to finalize these. To name a few:

• mbuf pkthdr.len field is typed as "int" in 4.4BSD, so it will not hold jumbogram with len > 2G on 32bit
architecture CPUs. If we would like to support jumbogram properly, the field must be expanded to hold 4G + IPv6
header + link-layer header. Therefore, it must be expanded to at least int64_t (u_int32_t is NOT enough).

• We mistakingly use "int" to hold packet length in many places. We need to convert them into larger integral type.
It needs a great care, as we may experience overflow during packet length computation.

• We mistakingly check for ip6_plen field of IPv6 header for packet payload length in various places. We should be
checking mbuf pkthdr.len instead. ip6_input() will perform sanity check on jumbo payload option on input, and
we can safely use mbuf pkthdr.len afterwards.

• TCP code needs a careful update in bunch of places, of course.

8.1.1.8 Loop prevention in header processing

IPv6 specification allows arbitrary number of extension headers to be placed onto packets. If we implement IPv6
packet processing code in the way BSD IPv4 code is implemented, kernel stack may overflow due to long function
call chain. sys/netinet6 code is carefully designed to avoid kernel stack overflow. Because of this, sys/netinet6 code
defines its own protocol switch structure, as "struct ip6protosw" (seenetinet6/ip6protosw.h). There is no such
update to IPv4 part (sys/netinet) for compatibility, but small change is added to its pr_input() prototype. So "struct
ipprotosw" is also defined. Because of this, if you receive IPsec-over-IPv4 packet with massive number of IPsec
headers, kernel stack may blow up. IPsec-over-IPv6 is okay.(Off-course, for those all IPsec headers to be processed,
each such IPsec header must pass each IPsec check. So an anonymous attacker will not be able to do such an attack.)

78

Chapter 8 IPv6 Internals

8.1.1.9 ICMPv6

After RFC2463 was published, IETF ipngwg has decided to disallow ICMPv6 error packet against ICMPv6 redirect,
to prevent ICMPv6 storm on a network medium. This is already implemented into the kernel.

8.1.1.10 Applications

For userland programming, we support IPv6 socket API as specified in RFC2553, RFC2292 and upcoming Internet
drafts.

TCP/UDP over IPv6 is available and quite stable. You can enjoy telnet(1), ftp(1), rlogin(1), rsh(1), ssh(1), etc. These
applications are protocol independent. That is, they automatically chooses IPv4 or IPv6 according to DNS.

8.1.1.11 Kernel Internals

While ip_forward() calls ip_output(), ip6_forward() directly calls if_output() since routers must not divide IPv6
packets into fragments.

ICMPv6 should contain the original packet as long as possible up to 1280. UDP6/IP6 port unreach, for instance,
should contain all extension headers and the *unchanged* UDP6 and IP6 headers. So, all IP6 functions except TCP
never convert network byte order into host byte order, to save the original packet.

tcp_input(), udp6_input() and icmp6_input() can not assume that IP6 header is preceding the transport headers due to
extension headers. So, in6_cksum() was implemented to handle packets whose IP6 header and transport header is not
continuous. TCP/IP6 nor UDP6/IP6 header structures do not exist for checksum calculation.

To process IP6 header, extension headers and transport headers easily, network drivers are now required to store
packets in one internal mbuf or one or more external mbufs. A typical old driver prepares two internal mbufs for 96 -
204 bytes data, however, now such packet data is stored in oneexternal mbuf.

netstat -s -p ip6 tells you whether or not your driver conforms such requirement. In the following example,
"cce0" violates the requirement. (For more information, refer to Section 2.)

Mbuf statistics:
317 one mbuf
two or more mbuf::

lo0 = 8
cce0 = 10

3282 one ext mbuf
0 two or more ext mbuf

Each input function calls IP6_EXTHDR_CHECK in the beginning to check if the region between IP6 and its header
is continuous. IP6_EXTHDR_CHECK calls m_pullup() only if the mbuf has M_LOOP flag, that is, the packet
comes from the loopback interface. m_pullup() is never called for packets coming from physical network interfaces.

Both IP and IP6 reassemble functions never call m_pullup().

8.1.1.12 IPv4 mapped address and IPv6 wildcard socket

RFC2553 describes IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind socket (3.8). The spec
allows you to:

79

Chapter 8 IPv6 Internals

• Accept IPv4 connections by AF_INET6 wildcard bind socket.

• Transmit IPv4 packet over AF_INET6 socket by using special form of the address like ::ffff:10.1.1.1.

but the spec itself is very complicated and does not specify how the socket layer should behave. Here we call the
former one "listening side" and the latter one "initiating side", for reference purposes.

You can perform wildcard bind on both of the address families, on the same port.

The following table show the behavior of FreeBSD 4.x.

listening side initiating side
(AF_INET6 wildcard (connection to ::ffff:10.1.1.1)
socket gets IPv4 conn.)
--- ---

FreeBSD 4.x configurable supported
default: enabled

The following sections will give you more details, and how you can configure the behavior.

Comments on listening side:

It looks that RFC2553 talks too little on wildcard bind issue, especially on the port space issue, failure mode and
relationship between AF_INET/INET6 wildcard bind. There can be several separate interpretation for this RFC
which conform to it but behaves differently. So, to implement portable application you should assume nothing about
the behavior in the kernel. Using getaddrinfo(3) is the safest way. Port number space and wildcard bind issues were
discussed in detail on ipv6imp mailing list, in mid March 1999 and it looks that there is no concrete consensus
(means, up to implementers). You may want to check the mailing list archives.

If a server application would like to accept IPv4 and IPv6 connections, there will be two alternatives.

One is using AF_INET and AF_INET6 socket (you will need two sockets). Use getaddrinfo(3) with AI_PASSIVE
into ai_flags, and socket(2) and bind(2) to all the addressesreturned. By opening multiple sockets, you can accept
connections onto the socket with proper address family. IPv4 connections will be accepted by AF_INET socket, and
IPv6 connections will be accepted by AF_INET6 socket.

Another way is using one AF_INET6 wildcard bind socket. Use getaddrinfo(3) with AI_PASSIVE into ai_flags and
with AF_INET6 into ai_family, and set the 1st argument hostname to NULL. And socket(2) and bind(2) to the
address returned. (should be IPv6 unspecified addr). You canaccept either of IPv4 and IPv6 packet via this one
socket.

To support only IPv6 traffic on AF_INET6 wildcard binded socket portably, always check the peer address when a
connection is made toward AF_INET6 listening socket. If theaddress is IPv4 mapped address, you may want to
reject the connection. You can check the condition by using IN6_IS_ADDR_V4MAPPED() macro.

To resolve this issue more easily, there is system dependentsetsockopt(2) option, IPV6_BINDV6ONLY, used like
below.

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char *)&on, sizeof (on)) < 0));

When this call succeed, then this socket only receive IPv6 packets.

80

Chapter 8 IPv6 Internals

Comments on initiating side:

Advise to application implementers: to implement a portable IPv6 application (which works on multiple IPv6
kernels), we believe that the following is the key to the success:

• NEVER hardcode AF_INET nor AF_INET6.

• Use getaddrinfo(3) and getnameinfo(3) throughout the system. Never use gethostby*(), getaddrby*(), inet_*() or
getipnodeby*(). (To update existing applications to be IPv6 aware easily, sometime getipnodeby*() will be useful.
But if possible, try to rewrite the code to use getaddrinfo(3) and getnameinfo(3).)

• If you would like to connect to destination, use getaddrinfo(3) and try all the destination returned, like telnet(1)
does.

• Some of the IPv6 stack is shipped with buggy getaddrinfo(3).Ship a minimal working version with your
application and use that as last resort.

If you would like to use AF_INET6 socket for both IPv4 and IPv6outgoing connection, you will need to use
getipnodebyname(3). When you would like to update your existing application to be IPv6 aware with minimal effort,
this approach might be chosen. But please note that it is a temporal solution, because getipnodebyname(3) itself is
not recommended as it does not handle scoped IPv6 addresses at all. For IPv6 name resolution, getaddrinfo(3) is the
preferred API. So you should rewrite your application to usegetaddrinfo(3), when you get the time to do it.

When writing applications that make outgoing connections,story goes much simpler if you treat AF_INET and
AF_INET6 as totally separate address family. {set,get}sockopt issue goes simpler, DNS issue will be made simpler.
We do not recommend you to rely upon IPv4 mapped address.

8.1.1.12.1 unified tcp and inpcb code

FreeBSD 4.x uses shared tcp code between IPv4 and IPv6 (from sys/netinet/tcp*) and separate udp4/6 code. It uses
unified inpcb structure.

The platform can be configured to support IPv4 mapped address. Kernel configuration is summarized as follows:

• By default, AF_INET6 socket will grab IPv4 connections in certain condition, and can initiate connection to IPv4
destination embedded in IPv4 mapped IPv6 address.

• You can disable it on entire system with sysctl like below.

sysctl net.inet6.ip6.mapped_addr=0

8.1.1.12.1.1 listening side

Each socket can be configured to support special AF_INET6 wildcard bind (enabled by default). You can disable it
on each socket basis with setsockopt(2) like below.

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char *)&on, sizeof (on)) < 0));

Wildcard AF_INET6 socket grabs IPv4 connection if and only if the following conditions are satisfied:

81

Chapter 8 IPv6 Internals

• there is no AF_INET socket that matches the IPv4 connection

• the AF_INET6 socket is configured to accept IPv4 traffic, i.e.getsockopt(IPV6_BINDV6ONLY) returns 0.

There is no problem with open/close ordering.

8.1.1.12.1.2 initiating side

FreeBSD 4.x supports outgoing connection to IPv4 mapped address (::ffff:10.1.1.1), if the node is configured to
support IPv4 mapped address.

8.1.1.13 sockaddr_storage

When RFC2553 was about to be finalized, there was discussion on how struct sockaddr_storage members are named.
One proposal is to prepend "__" to the members (like "__ss_len") as they should not be touched. The other proposal
was not to prepend it (like "ss_len") as we need to touch thosemembers directly. There was no clear consensus on it.

As a result, RFC2553 defines struct sockaddr_storage as follows:

struct sockaddr_storage {
u_char __ss_len; / * address length * /
u_char __ss_family; / * address family * /
/ * and bunch of padding * /

};

On the contrary, XNET draft defines as follows:

struct sockaddr_storage {
u_char ss_len; / * address length * /
u_char ss_family; / * address family * /
/ * and bunch of padding * /

};

In December 1999, it was agreed that RFC2553bis should pick the latter (XNET) definition.

Current implementation conforms to XNET definition, based on RFC2553bis discussion.

If you look at multiple IPv6 implementations, you will be able to see both definitions. As an userland programmer,
the most portable way of dealing with it is to:

1. ensure ss_family and/or ss_len are available on the platform, by using GNU autoconf,

2. have -Dss_family=__ss_family to unify all occurrences (including header file) into __ss_family, or

3. never touch __ss_family. cast to sockaddr * and use sa_family like:

struct sockaddr_storage ss;
family = ((struct sockaddr *)&ss)->sa_family

82

Chapter 8 IPv6 Internals

8.1.2 Network Drivers

Now following two items are required to be supported by standard drivers:

1. mbuf clustering requirement. In this stable release, we changed MINCLSIZE into MHLEN+1 for all the
operating systems in order to make all the drivers behave as we expect.

2. multicast. If ifmcstat(8) yields no multicast group for ainterface, that interface has to be patched.

If any of the drivers do not support the requirements, then the drivers can not be used for IPv6 and/or IPsec
communication. If you find any problem with your card using IPv6/IPsec, then, please report it to the FreeBSD
problem reports mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugs).

(NOTE: In the past we required all PCMCIA drivers to have a call to in6_ifattach(). We have no such requirement
any more)

8.1.3 Translator

We categorize IPv4/IPv6 translator into 4 types:

• Translator A--- It is used in the early stage of transition to make it possible to establish a connection from an IPv6
host in an IPv6 island to an IPv4 host in the IPv4 ocean.

• Translator B--- It is used in the early stage of transition to make it possible to establish a connection from an IPv4
host in the IPv4 ocean to an IPv6 host in an IPv6 island.

• Translator C--- It is used in the late stage of transition to make it possible to establish a connection from an IPv4
host in an IPv4 island to an IPv6 host in the IPv6 ocean.

• Translator D--- It is used in the late stage of transition to make it possible to establish a connection from an IPv6
host in the IPv6 ocean to an IPv4 host in an IPv4 island.

TCP relay translator for category A is supported. This is called "FAITH". We also provide IP header translator for
category A. (The latter is not yet put into FreeBSD 4.x yet.)

8.1.3.1 FAITH TCP relay translator

FAITH system uses TCP relay daemon called faithd(8) helped by the kernel. FAITH will reserve an IPv6 address
prefix, and relay TCP connection toward that prefix to IPv4 destination.

For example, if the reserved IPv6 prefix is 2001:0DB8:0200:ffff::, and the IPv6 destination for TCP connection is
2001:0DB8:0200:ffff::163.221.202.12, the connection will be relayed toward IPv4 destination 163.221.202.12.

destination IPv4 node (163.221.202.12)
^
| IPv4 tcp toward 163.221.202.12

FAITH-relay dual stack node
^
| IPv6 TCP toward 2001:0DB8:0200:ffff::163.221.202.12

source IPv6 node

faithd(8) must be invoked on FAITH-relay dual stack node.

83

Chapter 8 IPv6 Internals

For more details, consultsrc/usr.sbin/faithd/README

8.1.4 IPsec

IPsec is mainly organized by three components.

1. Policy Management

2. Key Management

3. AH and ESP handling

8.1.4.1 Policy Management

The kernel implements experimental policy management code. There are two way to manage security policy. One is
to configure per-socket policy using setsockopt(2). In thiscases, policy configuration is described in
ipsec_set_policy(3). The other is to configure kernel packet filter-based policy using PF_KEY interface, via
setkey(8).

The policy entry is not re-ordered with its indexes, so the order of entry when you add is very significant.

8.1.4.2 Key Management

The key management code implemented in this kit (sys/netkey) is a home-brew PFKEY v2 implementation. This
conforms to RFC2367.

The home-brew IKE daemon, "racoon" is included in the kit (kame/kame/racoon). Basically you will need to run
racoon as daemon, then set up a policy to require keys (likeping -P ’out ipsec esp/transport//use’). The
kernel will contact racoon daemon as necessary to exchange keys.

8.1.4.3 AH and ESP handling

IPsec module is implemented as "hooks" to the standard IPv4/IPv6 processing. When sending a packet,
ip{,6}_output() checks if ESP/AH processing is required bychecking if a matching SPD (Security Policy Database)
is found. If ESP/AH is needed, {esp,ah}{4,6}_output() willbe called and mbuf will be updated accordingly. When a
packet is received, {esp,ah}4_input() will be called basedon protocol number, i.e. (*inetsw[proto])().
{esp,ah}4_input() will decrypt/check authenticity of thepacket, and strips off daisy-chained header and padding for
ESP/AH. It is safe to strip off the ESP/AH header on packet reception, since we will never use the received packet in
"as is" form.

By using ESP/AH, TCP4/6 effective data segment size will be affected by extra daisy-chained headers inserted by
ESP/AH. Our code takes care of the case.

Basic crypto functions can be found in directory "sys/crypto". ESP/AH transform are listed in {esp,ah}_core.c with
wrapper functions. If you wish to add some algorithm, add wrapper function in {esp,ah}_core.c, and add your crypto
algorithm code into sys/crypto.

Tunnel mode is partially supported in this release, with thefollowing restrictions:

84

Chapter 8 IPv6 Internals

• IPsec tunnel is not combined with GIF generic tunneling interface. It needs a great care because we may create an
infinite loop between ip_output() and tunnelifp->if_output(). Opinion varies if it is better to unify them, or not.

• MTU and Don’t Fragment bit (IPv4) considerations need more checking, but basically works fine.

• Authentication model for AH tunnel must be revisited. We will need to improve the policy management engine,
eventually.

8.1.4.4 Conformance to RFCs and IDs

The IPsec code in the kernel conforms (or, tries to conform) to the following standards:

"old IPsec" specification documented inrfc182[5-9].txt

"new IPsec" specification documented inrfc240[1-6].txt , rfc241[01].txt , rfc2451.txt and
draft-mcdonald-simple-ipsec-api-01.txt (draft expired, but you can take from
ftp://ftp.kame.net/pub/internet-drafts/ (ftp://ftp.kame.net/pub/internet-drafts/)). (NOTE: IKE specifications,

rfc241[7-9].txt are implemented in userland, as "racoon" IKE daemon)

Currently supported algorithms are:

• old IPsec AH

• null crypto checksum (no document, just for debugging)

• keyed MD5 with 128bit crypto checksum (rfc1828.txt)

• keyed SHA1 with 128bit crypto checksum (no document)

• HMAC MD5 with 128bit crypto checksum (rfc2085.txt)

• HMAC SHA1 with 128bit crypto checksum (no document)

• old IPsec ESP

• null encryption (no document, similar torfc2410.txt)

• DES-CBC mode (rfc1829.txt)

• new IPsec AH

• null crypto checksum (no document, just for debugging)

• keyed MD5 with 96bit crypto checksum (no document)

• keyed SHA1 with 96bit crypto checksum (no document)

• HMAC MD5 with 96bit crypto checksum (rfc2403.txt)

• HMAC SHA1 with 96bit crypto checksum (rfc2404.txt)

• new IPsec ESP

• null encryption (rfc2410.txt)

• DES-CBC with derived IV (draft-ietf-ipsec-ciph-des-derived-01.txt , draft expired)

85

Chapter 8 IPv6 Internals

• DES-CBC with explicit IV (rfc2405.txt)

• 3DES-CBC with explicit IV (rfc2451.txt)

• BLOWFISH CBC (rfc2451.txt)

• CAST128 CBC (rfc2451.txt)

• RC5 CBC (rfc2451.txt)

• each of the above can be combined with:

• ESP authentication with HMAC-MD5(96bit)

• ESP authentication with HMAC-SHA1(96bit)

The following algorithms are NOT supported:

• old IPsec AH

• HMAC MD5 with 128bit crypto checksum + 64bit replay prevention (rfc2085.txt)

• keyed SHA1 with 160bit crypto checksum + 32bit padding (rfc1852.txt)

IPsec (in kernel) and IKE (in userland as "racoon") has been tested at several interoperability test events, and it is
known to interoperate with many other implementations well. Also, current IPsec implementation as quite wide
coverage for IPsec crypto algorithms documented in RFC (we cover algorithms without intellectual property issues
only).

8.1.4.5 ECN consideration on IPsec tunnels

ECN-friendly IPsec tunnel is supported as described indraft-ipsec-ecn-00.txt .

Normal IPsec tunnel is described in RFC2401. On encapsulation, IPv4 TOS field (or, IPv6 traffic class field) will be
copied from inner IP header to outer IP header. On decapsulation outer IP header will be simply dropped. The
decapsulation rule is not compatible with ECN, since ECN biton the outer IP TOS/traffic class field will be lost.

To make IPsec tunnel ECN-friendly, we should modify encapsulation and decapsulation procedure. This is described
in http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt
(http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt), chapter 3.

IPsec tunnel implementation can give you three behaviors, by setting net.inet.ipsec.ecn (or net.inet6.ipsec6.ecn) to
some value:

• RFC2401: no consideration for ECN (sysctl value -1)

• ECN forbidden (sysctl value 0)

• ECN allowed (sysctl value 1)

Note that the behavior is configurable in per-node manner, not per-SA manner (draft-ipsec-ecn-00 wants per-SA
configuration, but it looks too much for me).

The behavior is summarized as follows (see source code for more detail):

86

Chapter 8 IPv6 Internals

encapsulate decapsulate
--- ---

RFC2401 copy all TOS bits drop TOS bits on outer
from inner to outer. (use inner TOS bits as is)

ECN forbidden copy TOS bits except for ECN drop TOS bits on out er
(masked with 0xfc) from inner (use inner TOS bits as is)
to outer. set ECN bits to 0.

ECN allowed copy TOS bits except for ECN use inner TOS bits wit h some
CE (masked with 0xfe) from change. if outer ECN CE bit
inner to outer. is 1, enable ECN CE bit on
set ECN CE bit to 0. the inner.

General strategy for configuration is as follows:

• if both IPsec tunnel endpoint are capable of ECN-friendly behavior, you should better configure both end to “ECN
allowed” (sysctl value 1).

• if the other end is very strict about TOS bit, use "RFC2401" (sysctl value -1).

• in other cases, use "ECN forbidden" (sysctl value 0).

The default behavior is "ECN forbidden" (sysctl value 0).

For more information, please refer to:

http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt (http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt),
RFC2481 (Explicit Congestion Notification), src/sys/netinet6/{ah,esp}_input.c

(Thanks goes to Kenjiro Cho <kjc@csl.sony.co.jp > for detailed analysis)

8.1.4.6 Interoperability

Here are (some of) platforms that KAME code have tested IPsec/IKE interoperability in the past. Note that both ends
may have modified their implementation, so use the followinglist just for reference purposes.

Altiga, Ashley-laurent (vpcom.com), Data Fellows (F-Secure), Ericsson ACC, FreeS/WAN, HITACHI, IBM AIX®,
IIJ, Intel, Microsoft® Windows NT®, NIST (linux IPsec + plutoplus), Netscreen, OpenBSD, RedCreek, Routerware,
SSH, Secure Computing, Soliton, Toshiba, VPNet, Yamaha RT100i

87

III. Kernel

Chapter 9 Building and Installing a FreeBSD
Kernel
Being a kernel developer requires understanding of the kernel build process. To debug the FreeBSD kernel it is
required to be able to build one. There are two known ways to doso:

• The “Traditional” Way

• The “New” Way

Note: It is supposed that the reader of this chapter is familiar with the information described in the Building and
Installing a Custom Kernel (../handbook/kernelconfig-building.html) chapter of the FreeBSD Handbook. If this is
not the case, please read through the above mentioned chapter to understand how the build process works.

9.1 Building a Kernel the “Traditional” Way
Up to version 4.X of FreeBSD this was the recommended way to build a new kernel. It can still be used on newer
versions (instead of the “buildkernel” target of the toplevel /usr/src/ makefiles). Building the kernel this way may
be useful when working on the kernel code and it may actually be faster than the “New” procedure when only a
single option or two were tweaked in the kernel configurationfile. On the other hand, it might lead to unexpected
kernel build breakage when used by beginners on newer versions of FreeBSD.

1. Run config(8) to generate the kernel source code:

/usr/sbin/config MYKERNEL

2. Change into the build directory. config(8) will print the name of this directory after being run as above.

cd ../compile/MYKERNEL

3. Compile the kernel:

make depend

make

4. Install the new kernel:

make install

9.2 Building a Kernel the “New” Way
This procedure is well supported and recommended under the latest FreeBSD releases and is documented in the
Building and Installing a Custom Kernel (../handbook/kernelconfig-building.html) chapter of the FreeBSD
Handbook.

89

Chapter 10 Kernel Debugging
Contributed by Paul Richards, Jörg Wunsch, and Robert Watson.

10.1 Obtaining a Kernel Crash Dump
When running a development kernel (e.g., FreeBSD-CURRENT), such as a kernel under extreme conditions (e.g.,
very high load averages, tens of thousands of connections, exceedingly high number of concurrent users, hundreds of
jail(8)s, etc.), or using a new feature or device driver on FreeBSD-STABLE (e.g., PAE), sometimes a kernel will
panic. In the event that it does, this chapter will demonstrate how to extract useful information out of a crash.

A system reboot is inevitable once a kernel panics. Once a system is rebooted, the contents of a system’s physical
memory (RAM) is lost, as well as any bits that are on the swap device before the panic. To preserve the bits in
physical memory, the kernel makes use of the swap device as a temporary place to store the bits that are in RAM
across a reboot after a crash. In doing this, when FreeBSD boots after a crash, a kernel image can now be extracted
and debugging can take place.

Note: A swap device that has been configured as a dump device still acts as a swap device. Dumps to non-swap
devices (such as tapes or CDRWs, for example) are not supported at this time. A “swap device” is synonymous
with a “swap partition.”

Several types of kernel crash dumps are available: full memory dumps, which hold the complete contents of physical
memory, minidumps, which hold only memory pages in use by thekernel (FreeBSD 6.2 and higher), and textdumps,
which hold captured scripted or interactive debugger output (FreeBSD 7.1 and higher). Minidumps are the default
dump type as of FreeBSD 7.0, and in most cases will capture allnecessary information present in a full memory
dump, as most problems can be isolated only using kernel state.

10.1.1 Configuring the Dump Device

Before the kernel will dump the contents of its physical memory to a dump device, a dump device must be
configured. A dump device is specified by using the dumpon(8) command to tell the kernel where to save kernel
crash dumps. The dumpon(8) program must be called after the swap partition has been configured with swapon(8).
This is normally handled by setting thedumpdev variable in rc.conf(5) to the path of the swap device (the
recommended way to extract a kernel dump) orAUTOto use the first configured swap device. The default for
dumpdev is AUTOin HEAD, and changed toNOon RELENG_* branches (except for RELENG_7, which was left set
to AUTO). On FreeBSD 9.0-RELEASE and later versions,bsdinstall will ask whether crash dumps should be enabled
on the target system during the install process.

Tip: Check /etc/fstab or swapinfo(8) for a list of swap devices.

Important: Make sure the dumpdir specified in rc.conf(5) exists before a kernel crash!

mkdir /var/crash

chmod 700 /var/crash

90

Chapter 10 Kernel Debugging

Also, remember that the contents of /var/crash is sensitive and very likely contains confidential information
such as passwords.

10.1.2 Extracting a Kernel Dump

Once a dump has been written to a dump device, the dump must be extracted before the swap device is mounted. To
extract a dump from a dump device, use the savecore(8) program. If dumpdev has been set in rc.conf(5), savecore(8)
will be called automatically on the first multi-user boot after the crash and before the swap device is mounted. The
location of the extracted core is placed in the rc.conf(5) valuedumpdir , by default/var/crash and will be named
vmcore.0 .

In the event that there is already a file calledvmcore.0 in /var/crash (or whateverdumpdir is set to), the kernel
will increment the trailing number for every crash to avoid overwriting an existingvmcore (e.g.,vmcore.1). While
debugging, it is highly likely that you will want to use the highest versionvmcore in /var/crash when searching
for the rightvmcore .

Tip: If you are testing a new kernel but need to boot a different one in order to get your system up and running
again, boot it only into single user mode using the -s flag at the boot prompt, and then perform the following
steps:

fsck -p

mount -a -t ufs # make sure /var/crash is writable
savecore /var/crash /dev/ad0s1b

exit # exit to multi-user

This instructs savecore(8) to extract a kernel dump from /dev/ad0s1b and place the contents in /var/crash . Do
not forget to make sure the destination directory /var/crash has enough space for the dump. Also, do not forget
to specify the correct path to your swap device as it is likely different than /dev/ad0s1b !

10.2 Debugging a Kernel Crash Dump with kgdb

Note: This section covers kgdb(1) as found in FreeBSD 5.3 and later. In previous versions, one must use gdb -k

to read a core dump file.

Once a dump has been obtained, getting useful information out of the dump is relatively easy for simple problems.
Before launching into the internals of kgdb(1) to debug the crash dump, locate the debug version of your kernel
(normally calledkernel.debug) and the path to the source files used to build your kernel (normally
/usr/obj/usr/src/sys/ KERNCONF, whereKERNCONF is theident specified in a kernel config(5)). With those two
pieces of info, let the debugging commence!

To enter into the debugger and begin getting information from the dump, the following steps are required at a
minimum:

91

Chapter 10 Kernel Debugging

cd /usr/obj/usr/src/sys/KERNCONF

kgdb kernel.debug /var/crash/vmcore.0

You can debug the crash dump using the kernel sources just like you can for any other program.

This first dump is from a 5.2-BETA kernel and the crash comes from deep within the kernel. The output below has
been modified to include line numbers on the left. This first trace inspects the instruction pointer and obtains a back
trace. The address that is used on line 41 for thelist command is the instruction pointer and can be found on line
17. Most developers will request having at least this information sent to them if you are unable to debug the problem
yourself. If, however, you do solve the problem, make sure that your patch winds its way into the source tree via a
problem report, mailing lists, or by being able to commit it!

1: # cd /usr/obj/usr/src/sys/KERNCONF

2: # kgdb kernel.debug /var/crash/vmcore.0

3:GNU gdb 5.2.1 (FreeBSD)
4:Copyright 2002 Free Software Foundation, Inc.
5:GDB is free software, covered by the GNU General Public Lic ense, and you are
6:welcome to change it and/or distribute copies of it under c ertain conditions.
7:Type "show copying" to see the conditions.
8:There is absolutely no warranty for GDB. Type "show warran ty" for details.
9:This GDB was configured as "i386-undermydesk-freebsd". ..

10:panic: page fault
11:panic messages:
12:---
13:Fatal trap 12: page fault while in kernel mode
14:cpuid = 0; apic id = 00
15:fault virtual address = 0x300
16:fault code: = supervisor read, page not present
17:instruction pointer = 0x8:0xc0713860
18:stack pointer = 0x10:0xdc1d0b70
19:frame pointer = 0x10:0xdc1d0b7c
20:code segment = base 0x0, limit 0xfffff, type 0x1b
21: = DPL 0, pres 1, def32 1, gran 1
22:processor eflags = resume, IOPL = 0
23:current process = 14394 (uname)
24:trap number = 12
25:panic: page fault
26 cpuid = 0;
27:Stack backtrace:
28
29:syncing disks, buffers remaining... 2199 2199 panic: mi _switch: switch in a critical section
30:cpuid = 0;
31:Uptime: 2h43m19s
32:Dumping 255 MB
33: 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
34:---
35:Reading symbols from /boot/kernel/snd_maestro3.ko.. .done.
36:Loaded symbols for /boot/kernel/snd_maestro3.ko
37:Reading symbols from /boot/kernel/snd_pcm.ko...done .
38:Loaded symbols for /boot/kernel/snd_pcm.ko
39:#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:2 40
40:240 dumping++;
41: (kgdb) list *0xc0713860

92

Chapter 10 Kernel Debugging

42:0xc0713860 is in lapic_ipi_wait (/usr/src/sys/i386/i 386/local_apic.c:663).
43:658 incr = 0;
44:659 delay = 1;
45:660 } else
46:661 incr = 1;
47:662 for (x = 0; x < delay; x += incr) {
48:663 if ((lapic->icr_lo & APIC_DELSTAT_MASK) == APIC_DE LSTAT_IDLE)
49:664 return (1);
50:665 ia32_pause();
51:666 }
52:667 return (0);
53: (kgdb) backtrace

54:#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:2 40
55:#1 0xc055fd9b in boot (howto=260) at /usr/src/sys/kern /kern_shutdown.c:372
56:#2 0xc056019d in panic () at /usr/src/sys/kern/kern_sh utdown.c:550
57:#3 0xc0567ef5 in mi_switch () at /usr/src/sys/kern/ker n_synch.c:470
58:#4 0xc055fa87 in boot (howto=256) at /usr/src/sys/kern /kern_shutdown.c:312
59:#5 0xc056019d in panic () at /usr/src/sys/kern/kern_sh utdown.c:550
60:#6 0xc0720c66 in trap_fatal (frame=0xdc1d0b30, eva=0)
61: at /usr/src/sys/i386/i386/trap.c:821
62:#7 0xc07202b3 in trap (frame=
63: {tf_fs = -1065484264, tf_es = -1065484272, tf_ds = -1065 484272, tf_edi = 1, tf_esi = 0, tf_ebp
64: at /usr/src/sys/i386/i386/trap.c:250
65:#8 0xc070c9f8 in calltrap () at {standard input}:94
66:#9 0xc07139f3 in lapic_ipi_vectored (vector=0, dest=0)
67: at /usr/src/sys/i386/i386/local_apic.c:733
68:#10 0xc0718b23 in ipi_selected (cpus=1, ipi=1)
69: at /usr/src/sys/i386/i386/mp_machdep.c:1115
70:#11 0xc057473e in kseq_notify (ke=0xcc05e360, cpu=0)
71: at /usr/src/sys/kern/sched_ule.c:520
72:#12 0xc0575cad in sched_add (td=0xcbcf5c80)
73: at /usr/src/sys/kern/sched_ule.c:1366
74:#13 0xc05666c6 in setrunqueue (td=0xcc05e360)
75: at /usr/src/sys/kern/kern_switch.c:422
76:#14 0xc05752f4 in sched_wakeup (td=0xcbcf5c80)
77: at /usr/src/sys/kern/sched_ule.c:999
78:#15 0xc056816c in setrunnable (td=0xcbcf5c80)
79: at /usr/src/sys/kern/kern_synch.c:570
80:#16 0xc0567d53 in wakeup (ident=0xcbcf5c80)
81: at /usr/src/sys/kern/kern_synch.c:411
82:#17 0xc05490a8 in exit1 (td=0xcbcf5b40, rv=0)
83: at /usr/src/sys/kern/kern_exit.c:509
84:#18 0xc0548011 in sys_exit () at /usr/src/sys/kern/ker n_exit.c:102
85:#19 0xc0720fd0 in syscall (frame=
86: {tf_fs = 47, tf_es = 47, tf_ds = 47, tf_edi = 0, tf_esi = -1, t f_ebp = -1077940712, tf_isp
87: at /usr/src/sys/i386/i386/trap.c:1010
88:#20 0xc070ca4d in Xint0x80_syscall () at {standard inpu t}:136
89:---Can’t read userspace from dump, or kernel process---
90: (kgdb) quit

This next trace is an older dump from the FreeBSD 2 time frame,but is more involved and demonstrates more of the
features ofgdb . Long lines have been folded to improve readability, and thelines are numbered for reference.
Despite this, it is a real-world error trace taken during thedevelopment of the pcvt console driver.

93

Chapter 10 Kernel Debugging

1:Script started on Fri Dec 30 23:15:22 1994
2: # cd /sys/compile/URIAH

3: # gdb -k kernel /var/crash/vmcore.1

4:Reading symbol data from /usr/src/sys/compile/URIAH/k ernel
...done.

5:IdlePTD 1f3000
6:panic: because you said to!
7:current pcb at 1e3f70
8:Reading in symbols for ../../i386/i386/machdep.c...do ne.
9: (kgdb) backtrace

10:#0 boot (arghowto=256) (../../i386/i386/machdep.c li ne 767)
11:#1 0xf0115159 in panic ()
12:#2 0xf01955bd in diediedie () (../../i386/i386/machde p.c line 698)
13:#3 0xf010185e in db_fncall ()
14:#4 0xf0101586 in db_command (-266509132, -266509516, - 267381073)
15:#5 0xf0101711 in db_command_loop ()
16:#6 0xf01040a0 in db_trap ()
17:#7 0xf0192976 in kdb_trap (12, 0, -272630436, -26674372 3)
18:#8 0xf019d2eb in trap_fatal (...)
19:#9 0xf019ce60 in trap_pfault (...)
20:#10 0xf019cb2f in trap (...)
21:#11 0xf01932a1 in exception:calltrap ()
22:#12 0xf0191503 in cnopen (...)
23:#13 0xf0132c34 in spec_open ()
24:#14 0xf012d014 in vn_open ()
25:#15 0xf012a183 in open ()
26:#16 0xf019d4eb in syscall (...)
27: (kgdb) up 10

28:Reading in symbols for ../../i386/i386/trap.c...done .
29:#10 0xf019cb2f in trap (frame={tf_es = -260440048, tf_d s = 16, tf_\
30:edi = 3072, tf_esi = -266445372, tf_ebp = -272630356, tf_ isp = -27\
31:2630396, tf_ebx = -266427884, tf_edx = 12, tf_ecx = -2664 27884, tf\
32:_eax = 64772224, tf_trapno = 12, tf_err = -272695296, tf_ eip = -26\
33:6672343, tf_cs = -266469368, tf_eflags = 66066, tf_esp = 3072, tf_\
34:ss = -266427884}) (../../i386/i386/trap.c line 283)
35:283 (void) trap_pfault(&frame, FALSE);
36: (kgdb) frame frame->tf_ebp frame->tf_eip

37:Reading in symbols for ../../i386/isa/pcvt/pcvt_drv. c...done.
38:#0 0xf01ae729 in pcopen (dev=3072, flag=3, mode=8192, p =(struct p\
39:roc *) 0xf07c0c00) (../../i386/isa/pcvt/pcvt_drv.c line 403)
40:403 return ((* linesw[tp->t_line].l_open)(dev, tp));
41: (kgdb) list

42:398
43:399 tp->t_state |= TS_CARR_ON;
44:400 tp->t_cflag |= CLOCAL; / * cannot be a modem (:-) * /
45:401
46:402 #if PCVT_NETBSD || (PCVT_FREEBSD >= 200)
47:403 return ((* linesw[tp->t_line].l_open)(dev, tp));
48:404 #else
49:405 return ((* linesw[tp->t_line].l_open)(dev, tp, flag));
50:406 #endif / * PCVT_NETBSD || (PCVT_FREEBSD >= 200) * /
51:407 }
52: (kgdb) print tp

94

Chapter 10 Kernel Debugging

53:Reading in symbols for ../../i386/i386/cons.c...done .
54:$1 = (struct tty *) 0x1bae
55: (kgdb) print tp->t_line

56:$2 = 1767990816
57: (kgdb) up

58:#1 0xf0191503 in cnopen (dev=0x00000000, flag=3, mode= 8192, p=(st\
59:ruct proc *) 0xf07c0c00) (../../i386/i386/cons.c line 126)
60: return ((* cdevsw[major(dev)].d_open)(dev, flag, mode, p));
61: (kgdb) up

62:#2 0xf0132c34 in spec_open ()
63: (kgdb) up

64:#3 0xf012d014 in vn_open ()
65: (kgdb) up

66:#4 0xf012a183 in open ()
67: (kgdb) up

68:#5 0xf019d4eb in syscall (frame={tf_es = 39, tf_ds = 39, t f_edi =\
69: 2158592, tf_esi = 0, tf_ebp = -272638436, tf_isp = -27262 9788, tf\
70:_ebx = 7086, tf_edx = 1, tf_ecx = 0, tf_eax = 5, tf_trapno = 5 82, \
71:tf_err = 582, tf_eip = 75749, tf_cs = 31, tf_eflags = 582, t f_esp \
72:= -272638456, tf_ss = 39}) (../../i386/i386/trap.c lin e 673)
73:673 error = (* callp->sy_call)(p, args, rval);
74: (kgdb) up

75:Initial frame selected; you cannot go up.
76: (kgdb) quit

Comments to the above script:

line 6:

This is a dump taken from within DDB (see below), hence the panic comment “because you said to!”, and a
rather long stack trace; the initial reason for going into DDB has been a page fault trap though.

line 20:

This is the location of functiontrap() in the stack trace.

line 36:

Force usage of a new stack frame; this is no longer necessary.The stack frames are supposed to point to the
right locations now, even in case of a trap. From looking at the code in source line 403, there is a high
probability that either the pointer access for “tp” was messed up, or the array access was out of bounds.

line 52:

The pointer looks suspicious, but happens to be a valid address.

line 56:

However, it obviously points to garbage, so we have found ourerror! (For those unfamiliar with that particular
piece of code:tp->t_line refers to the line discipline of the console device here, which must be a rather small
integer number.)

Tip: If your system is crashing regularly and you are running out of disk space, deleting old vmcore files in
/var/crash could save a considerable amount of disk space!

95

Chapter 10 Kernel Debugging

10.3 Debugging a Crash Dump with DDD
Examining a kernel crash dump with a graphical debugger likeddd is also possible (you will need to install the
devel/ddd port in order to use theddd debugger). Add the-k option to theddd command line you would use
normally. For example;

ddd --debugger kgdb kernel.debug /var/crash/vmcore.0

You should then be able to go about looking at the crash dump using ddd ’s graphical interface.

10.4 On-Line Kernel Debugging Using DDB
While kgdb as an off-line debugger provides a very high level of user interface, there are some things it cannot do.
The most important ones being breakpointing and single-stepping kernel code.

If you need to do low-level debugging on your kernel, there isan on-line debugger available called DDB. It allows
setting of breakpoints, single-stepping kernel functions, examining and changing kernel variables, etc. However, it
cannot access kernel source files, and only has access to the global and static symbols, not to the full debug
information likegdb does.

To configure your kernel to include DDB, add the options

options KDB

options DDB

to your config file, and rebuild. (See The FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/index.html) for details on configuring the
FreeBSD kernel).

Note: If you have an older version of the boot blocks, your debugger symbols might not be loaded at all. Update
the boot blocks; the recent ones load the DDB symbols automatically.

Once your DDB kernel is running, there are several ways to enter DDB. The first, and earliest way is to type the boot
flag -d right at the boot prompt. The kernel will start up in debug mode and enter DDB prior to any device probing.
Hence you can even debug the device probe/attach functions.Users of FreeBSD-CURRENT will need to use the
boot menu option, six, to escape to a command prompt.

The second scenario is to drop to the debugger once the systemhas booted. There are two simple ways to accomplish
this. If you would like to break to the debugger from the command prompt, simply type the command:

sysctl debug.kdb.enter=1

Note: To force a panic on the fly, issue the following command:

sysctl debug.kdb.panic=1

96

Chapter 10 Kernel Debugging

Alternatively, if you are at the system console, you may use ahot-key on the keyboard. The default
break-to-debugger sequence isCtrl +Alt +ESC. For syscons, this sequence can be remapped and some of the
distributed maps out there do this, so check to make sure you know the right sequence to use. There is an option
available for serial consoles that allows the use of a serialline BREAK on the console line to enter DDB (options

BREAK_TO_DEBUGGERin the kernel config file). It is not the default since there area lot of serial adapters around that
gratuitously generate a BREAK condition, for example when pulling the cable.

The third way is that any panic condition will branch to DDB ifthe kernel is configured to use it. For this reason, it is
not wise to configure a kernel with DDB for a machine running unattended.

To obtain the unattended functionality, add:

options KDB_UNATTENDED

to the kernel configuration file and rebuild/reinstall.

The DDB commands roughly resemble somegdb commands. The first thing you probably need to do is to set a
breakpoint:

break function-name address

Numbers are taken hexadecimal by default, but to make them distinct from symbol names; hexadecimal numbers
starting with the lettersa-f need to be preceded with0x (this is optional for other numbers). Simple expressions are
allowed, for example:function-name + 0x103 .

To exit the debugger and continue execution, type:

continue

To get a stack trace, use:

trace

Note: Note that when entering DDB via a hot-key, the kernel is currently servicing an interrupt, so the stack trace
might be not of much use to you.

If you want to remove a breakpoint, use

del

del address-expression

The first form will be accepted immediately after a breakpoint hit, and deletes the current breakpoint. The second
form can remove any breakpoint, but you need to specify the exact address; this can be obtained from:

show b

or:

show break

To single-step the kernel, try:

97

Chapter 10 Kernel Debugging

s

This will step into functions, but you can make DDB trace themuntil the matching return statement is reached by:

n

Note: This is different from gdb ’s next statement; it is like gdb ’s finish . Pressing n more than once will cause a
continue.

To examine data from memory, use (for example):

x/wx 0xf0133fe0,40

x/hd db_symtab_space

x/bc termbuf,10

x/s stringbuf

for word/halfword/byte access, and hexadecimal/decimal/character/ string display. The number after the comma is
the object count. To display the next 0x10 items, simply use:

x ,10

Similarly, use

x/ia foofunc,10

to disassemble the first 0x10 instructions offoofunc , and display them along with their offset from the beginningof
foofunc .

To modify memory, use the write command:

w/b termbuf 0xa 0xb 0

w/w 0xf0010030 0 0

The command modifier (b/h/w) specifies the size of the data to be written, the first following expression is the
address to write to and the remainder is interpreted as data to write to successive memory locations.

If you need to know the current registers, use:

show reg

Alternatively, you can display a single register value by e.g.

p $eax

and modify it by:

set $eax new-value

Should you need to call some kernel functions from DDB, simply say:

call func(arg1, arg2, ...)

The return value will be printed.

98

Chapter 10 Kernel Debugging

For a ps(1) style summary of all running processes, use:

ps

Now you have examined why your kernel failed, and you wish to reboot. Remember that, depending on the severity
of previous malfunctioning, not all parts of the kernel might still be working as expected. Perform one of the
following actions to shut down and reboot your system:

panic

This will cause your kernel to dump core and reboot, so you canlater analyze the core on a higher level withgdb .
This command usually must be followed by anothercontinue statement.

call boot(0)

Might be a good way to cleanly shut down the running system,sync() all disks, and finally, in some cases, reboot.
As long as the disk and filesystem interfaces of the kernel arenot damaged, this could be a good way for an almost
clean shutdown.

call cpu_reset()

This is the final way out of disaster and almost the same as hitting the Big Red Button.

If you need a short command summary, simply type:

help

It is highly recommended to have a printed copy of the ddb(4) manual page ready for a debugging session.
Remember that it is hard to read the on-line manual while single-stepping the kernel.

10.5 On-Line Kernel Debugging Using Remote GDB
This feature has been supported since FreeBSD 2.2, and it is actually a very neat one.

GDB has already supportedremote debuggingfor a long time. This is done using a very simple protocol along a
serial line. Unlike the other methods described above, you will need two machines for doing this. One is the host
providing the debugging environment, including all the sources, and a copy of the kernel binary with all the symbols
in it, and the other one is the target machine that simply runsa similar copy of the very same kernel (but stripped of
the debugging information).

You should configure the kernel in question withconfig -g if building the “traditional” way. If building the “new”
way, make sure thatmakeoptions DEBUG=-g is in the configuration. In both cases, includeDDBin the
configuration, and compile it as usual. This gives a large binary, due to the debugging information. Copy this kernel
to the target machine, strip the debugging symbols off withstrip -x , and boot it using the-d boot option. Connect
the serial line of the target machine that has "flags 080" set on its uart device to any serial line of the debugging host.
See uart(4) for information on how to set the flags on an uart device. Now, on the debugging machine, go to the
compile directory of the target kernel, and startgdb :

% kgdb kernel

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the con ditions.

There is absolutely no warranty for GDB; type "show warranty " for details.

99

Chapter 10 Kernel Debugging

GDB 4.16 (i386-unknown-freebsd),
Copyright 1996 Free Software Foundation, Inc...
(kgdb)

Initialize the remote debugging session (assuming the firstserial port is being used) by:

(kgdb) target remote /dev/cuau0

Now, on the target host (the one that entered DDB right beforeeven starting the device probe), type:

Debugger("Boot flags requested debugger")
Stopped at Debugger+0x35: movb $0, edata+0x51bc
db> gdb

DDB will respond with:

Next trap will enter GDB remote protocol mode

Every time you typegdb , the mode will be toggled between remote GDB and local DDB. Inorder to force a next
trap immediately, simply types (step). Your hosting GDB will now gain control over the target kernel:

Remote debugging using /dev/cuau0
Debugger (msg=0xf01b0383 "Boot flags requested debugger")

at ../../i386/i386/db_interface.c:257
(kgdb)

You can use this session almost as any other GDB session, including full access to the source, running it in gud-mode
inside an Emacs window (which gives you an automatic source code display in another Emacs window), etc.

10.6 Debugging a Console Driver
Since you need a console driver to run DDB on, things are more complicated if the console driver itself is failing.
You might remember the use of a serial console (either with modified boot blocks, or by specifying-h at theBoot:

prompt), and hook up a standard terminal onto your first serial port. DDB works on any configured console driver,
including a serial console.

10.7 Debugging Deadlocks
You may experience so called deadlocks, the situation wherea system stops doing useful work. To provide a helpful
bug report in this situation, use ddb(4) as described above.Include the output ofps andtrace for suspected
processes in the report.

If possible, consider doing further investigation. The receipt below is especially useful if you suspect that a deadlock
occurs in the VFS layer. Add the following options

makeoptions DEBUG=-g
options INVARIANTS
options INVARIANT_SUPPORT
options WITNESS
options DEBUG_LOCKS

100

Chapter 10 Kernel Debugging

options DEBUG_VFS_LOCKS
options DIAGNOSTIC

to the kernel configuration file. When a deadlock occurs, in addition to the output of theps command, provide
information from theshow pcpu , show allpcpu , show locks , show alllocks , show lockedvnods and
alltrace .

To obtain meaningful backtraces for threaded processes, use thread thread-id to switch to the thread stack, and
do a backtrace withwhere .

10.8 Kernel debugging with Dcons
dcons(4) is a very simple console driver that is not directlyconnected with any physical devices. It just reads and
writes characters from and to a buffer in a kernel or loader. Due to its simple nature, it is very useful for kernel
debugging, especially with a FireWire® device. Currently,FreeBSD provides two ways to interact with the buffer
from outside of the kernel using dconschat(8).

10.8.1 Dcons over FireWire®

Most FireWire (IEEE1394) host controllers are based on the OHCI specification that supports physical access to the
host memory. This means that once the host controller is initialized, we can access the host memory without the help
of software (kernel). We can exploit this facility for interaction with dcons(4). dcons(4) provides similar functionality
as a serial console. It emulates two serial ports, one for theconsole and DDB, the other for GDB. Because remote
memory access is fully handled by the hardware, the dcons(4)buffer is accessible even when the system crashes.

FireWire devices are not limited to those integrated into motherboards. PCI cards exist for desktops, and a cardbus
interface can be purchased for laptops.

10.8.1.1 Enabling FireWire and Dcons support on the target m achine

To enable FireWire and Dcons support in the kernel of thetarget machine:

• Make sure your kernel supportsdcons , dcons_crom andfirewire . Dcons should be statically linked with the
kernel. Fordcons_crom andfirewire , modules should be OK.

• Make sure physical DMA is enabled. You may need to addhw.firewire.phydma_enable=1 to
/boot/loader.conf .

• Add options for debugging.

• Add dcons_gdb=1 in /boot/loader.conf if you use GDB over FireWire.

• Enabledcons in /etc/ttys .

• Optionally, to forcedcons to be the high-level console, addhw.firewire.dcons_crom.force_console=1 to
loader.conf .

To enable FireWire and Dcons support in loader(8) on i386 or amd64:

Add LOADER_FIREWIRE_SUPPORT=YESin /etc/make.conf and rebuild loader(8):

cd /sys/boot/i386 && make clean && make && make install

101

Chapter 10 Kernel Debugging

To enable dcons(4) as an active low-level console, addboot_multicons="YES" to /boot/loader.conf .

Here are a few configuration examples. A sample kernel configuration file would contain:

device dcons
device dcons_crom
options KDB
options DDB
options GDB
options ALT_BREAK_TO_DEBUGGER

And a sample/boot/loader.conf would contain:

dcons_crom_load="YES"
dcons_gdb=1
boot_multicons="YES"
hw.firewire.phydma_enable=1
hw.firewire.dcons_crom.force_console=1

10.8.1.2 Enabling FireWire and Dcons support on the host mac hine

To enable FireWire support in the kernel on thehost machine:

kldload firewire

Find out the EUI64 (the unique 64 bit identifier) of the FireWire host controller, and use fwcontrol(8) ordmesg to
find the EUI64 of the target machine.

Run dconschat(8), with:

dconschat -e \# -br -G 12345 -t 00-11-22-33-44-55-66-77

The following key combinations can be used once dconschat(8) is running:

~ . Disconnect

~ Ctrl +B ALT BREAK

~ Ctrl +R RESET target

~ Ctrl +Z Suspend dconschat

Attach remote GDB by starting kgdb(1) with a remote debugging session:

kgdb -r :12345 kernel

10.8.1.3 Some general tips

Here are some general tips:

To take full advantage of the speed of FireWire, disable other slow console drivers:

conscontrol delete ttyd0 # serial console
conscontrol delete consolectl # video/keyboard

102

Chapter 10 Kernel Debugging

There exists a GDB mode for emacs(1); this is what you will need to add to your.emacs :

(setq gud-gdba-command-name "kgdb -a -a -a -r :12345")

(setq gdb-many-windows t)

(xterm-mouse-mode 1)

M-x gdba

And for DDD (devel/ddd):

remote serial protocol
LANG=C ddd --debugger kgdb -r :12345 kernel
live core debug
LANG=C ddd --debugger kgdb kernel /dev/fwmem0.2

10.8.2 Dcons with KVM

We can directly read the dcons(4) buffer via/dev/mem for live systems, and in the core dump for crashed systems.
These give you similar output todmesg -a , but the dcons(4) buffer includes more information.

10.8.2.1 Using Dcons with KVM

To use dcons(4) with KVM:

Dump a dcons(4) buffer of a live system:

dconschat -1

Dump a dcons(4) buffer of a crash dump:

dconschat -1 -M vmcore.XX

Live core debugging can be done via:

fwcontrol -m target_eui64

kgdb kernel /dev/fwmem0.2

10.9 Glossary of Kernel Options for Debugging
This section provides a brief glossary of compile-time kernel options used for debugging:

• options KDB : compiles in the kernel debugger framework. Required foroptions DDB andoptions GDB .
Little or no performance overhead. By default, the debuggerwill be entered on panic instead of an automatic
reboot.

• options KDB_UNATTENDED: change the default value of thedebug.debugger_on_panic sysctl to 0, which
controls whether the debugger is entered on panic. Whenoptions KDB is not compiled into the kernel, the
behavior is to automatically reboot on panic; when it is compiled into the kernel, the default behavior is to drop

103

Chapter 10 Kernel Debugging

into the debugger unlessoptions KDB_UNATTENDED is compiled in. If you want to leave the kernel debugger
compiled into the kernel but want the system to come back up unless you’re on-hand to use the debugger for
diagnostics, use this option.

• options KDB_TRACE : change the default value of thedebug.trace_on_panic sysctl to 1, which controls
whether the debugger automatically prints a stack trace on panic. Especially if running withoptions

KDB_UNATTENDED, this can be helpful to gather basic debugging information on the serial or firewire console
while still rebooting to recover.

• options DDB : compile in support for the console debugger, DDB. This interactive debugger runs on whatever the
active low-level console of the system is, which includes the video console, serial console, or firewire console. It
provides basic integrated debugging facilities, such as stack tracing, process and thread listing, dumping of lock
state, VM state, file system state, and kernel memory management. DDB does not require software running on a
second machine or being able to generate a core dump or full debugging kernel symbols, and provides detailed
diagnostics of the kernel at run-time. Many bugs can be fullydiagnosed using only DDB output. This option
depends onoptions KDB .

• options GDB : compile in support for the remote debugger, GDB, which can operate over serial cable or firewire.
When the debugger is entered, GDB may be attached to inspect structure contents, generate stack traces, etc. Some
kernel state is more awkward to access than in DDB, which is able to generate useful summaries of kernel state
automatically, such as automatically walking lock debugging or kernel memory management structures, and a
second machine running the debugger is required. On the other hand, GDB combines information from the kernel
source and full debugging symbols, and is aware of full data structure definitions, local variables, and is scriptable.
This option is not required to run GDB on a kernel core dump. This option depends onoptions KDB .

• options BREAK_TO_DEBUGGER, options ALT_BREAK_TO_DEBUGGER: allow a break signal or alternative
signal on the console to enter the debugger. If the system hangs without a panic, this is a useful way to reach the
debugger. Due to the current kernel locking, a break signal generated on a serial console is significantly more
reliable at getting into the debugger, and is generally recommended. This option has little or no performance
impact.

• options INVARIANTS : compile into the kernel a large number of run-time assertion checks and tests, which
constantly test the integrity of kernel data structures andthe invariants of kernel algorithms. These tests can be
expensive, so are not compiled in by default, but help provide useful "fail stop" behavior, in which certain classes
of undesired behavior enter the debugger before kernel datacorruption occurs, making them easier to debug. Tests
include memory scrubbing and use-after-free testing, which is one of the more significant sources of overhead.
This option depends onoptions INVARIANT_SUPPORT .

• options INVARIANT_SUPPORT : many of the tests present inoptions INVARIANTS require modified data
structures or additional kernel symbols to be defined.

• options WITNESS : this option enables run-time lock order tracking and verification, and is an invaluable tool for
deadlock diagnosis. WITNESS maintains a graph of acquired lock orders by lock type, and checks the graph at
each acquire for cycles (implicit or explicit). If a cycle isdetected, a warning and stack trace are generated to the
console, indicating that a potential deadlock might have occurred. WITNESS is required in order to use theshow

locks , show witness andshow alllocks DDB commands. This debug option has significant performance
overhead, which may be somewhat mitigated through the use ofoptions WITNESS_SKIPSPIN . Detailed
documentation may be found in witness(4).

• options WITNESS_SKIPSPIN : disable run-time checking of spinlock lock order with WITNESS. As spin locks
are acquired most frequently in the scheduler, and scheduler events occur often, this option can significantly speed
up systems running with WITNESS. This option depends onoptions WITNESS .

104

Chapter 10 Kernel Debugging

• options WITNESS_KDB : change the default value of thedebug.witness.kdb sysctl to 1, which causes
WITNESS to enter the debugger when a lock order violation is detected, rather than simply printing a warning.
This option depends onoptions WITNESS .

• options SOCKBUF_DEBUG: perform extensive run-time consistency checking on socket buffers, which can be
useful for debugging both socket bugs and race conditions inprotocols and device drivers that interact with
sockets. This option significantly impacts network performance, and may change the timing in device driver races.

• options DEBUG_VFS_LOCKS: track lock acquisition points for lockmgr/vnode locks, expanding the amount of
information displayed byshow lockedvnods in DDB. This option has a measurable performance impact.

• options DEBUG_MEMGUARD: a replacement for the malloc(9) kernel memory allocator that uses the VM system
to detect reads or writes from allocated memory after free. Details may be found in memguard(9). This option has
a significant performance impact, but can be very helpful in debugging kernel memory corruption bugs.

• options DIAGNOSTIC : enable additional, more expensive diagnostic tests alongthe lines ofoptions

INVARIANTS.

105

IV. Architectures

Chapter 11 x86 Assembly Language
Programming
This chapter was written by G. Adam Stanislav <adam@redprince.net>.

11.1 Synopsis
Assembly language programming under UNIX is highly undocumented. It is generally assumed that no one would
ever want to use it because various UNIX systems run on different microprocessors, so everything should be written
in C for portability.

In reality, C portability is quite a myth. Even C programs need to be modified when ported from one UNIX to
another, regardless of what processor each runs on. Typically, such a program is full of conditional statements
depending on the system it is compiled for.

Even if we believe that all of UNIX software should be writtenin C, or some other high-level language, we still need
assembly language programmers: Who else would write the section of C library that accesses the kernel?

In this chapter I will attempt to show you how you can use assembly language writing UNIX programs, specifically
under FreeBSD.

This chapter does not explain the basics of assembly language. There are enough resources about that (for a complete
online course in assembly language, see Randall Hyde’s Art of Assembly Language (http://webster.cs.ucr.edu/); or if
you prefer a printed book, take a look at Jeff Duntemann’s Assembly Language Step-by-Step
(http://www.int80h.org/cgi-bin/isbn?isbn=0471375233)). However, once the chapter is finished, any assembly
language programmer will be able to write programs for FreeBSD quickly and efficiently.

Copyright © 2000-2001 G. Adam Stanislav. All rights reserved.

11.2 The Tools

11.2.1 The Assembler

The most important tool for assembly language programming is the assembler, the software that converts assembly
language code into machine language.

Two very different assemblers are available for FreeBSD. One is as(1), which uses the traditional UNIX assembly
language syntax. It comes with the system.

The other is/usr/ports/devel/nasm. It uses the Intel syntax. Its main advantage is that it can assemble code for many
operating systems. It needs to be installed separately, butis completely free.

This chapter usesnasmsyntax because most assembly language programmers coming to FreeBSD from other
operating systems will find it easier to understand. And, because, quite frankly, that is what I am used to.

11.2.2 The Linker

The output of the assembler, like that of any compiler, needsto be linked to form an executable file.

107

Chapter 11 x86 Assembly Language Programming

The standard ld(1) linker comes with FreeBSD. It works with the code assembled with either assembler.

11.3 System Calls

11.3.1 Default Calling Convention

By default, the FreeBSD kernel uses the C calling convention. Further, although the kernel is accessed usingint

80h , it is assumed the program will call a function that issuesint 80h , rather than issuingint 80h directly.

This convention is very convenient, and quite superior to the Microsoft convention used by MS-DOS. Why? Because
the UNIX convention allows any program written in any language to access the kernel.

An assembly language program can do that as well. For example, we could open a file:

kernel:
int 80h ; Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret

This is a very clean and portable way of coding. If you need to port the code to a UNIX system which uses a different
interrupt, or a different way of passing parameters, all youneed to change is the kernel procedure.

But assembly language programmers like to shave off cycles.The above example requires acall/ret combination.
We can eliminate it bypush ing an extra dword:

open:
push dword mode
push dword flags
push dword path
mov eax, 5
push eax ; Or any other dword
int 80h
add esp, byte 16

The5 that we have placed inEAX identifies the kernel function, in this caseopen .

11.3.2 Alternate Calling Convention

FreeBSD is an extremely flexible system. It offers other waysof calling the kernel. For it to work, however, the
system must have Linux emulation installed.

108

Chapter 11 x86 Assembly Language Programming

Linux is a UNIX like system. However, its kernel uses the samesystem-call convention of passing parameters in
registers MS-DOS does. As with the UNIX convention, the function number is placed inEAX. The parameters,
however, are not passed on the stack but inEBX, ECX, EDX, ESI, EDI, EBP :

open:
mov eax, 5
mov ebx, path
mov ecx, flags
mov edx, mode
int 80h

This convention has a great disadvantage over the UNIX way, at least as far as assembly language programming is
concerned: Every time you make a kernel call you mustpush the registers, thenpop them later. This makes your
code bulkier and slower. Nevertheless, FreeBSD gives you a choice.

If you do choose the Linux convention, you must let the systemknow about it. After your program is assembled and
linked, you need to brand the executable:

% brandelf -t Linux filename

11.3.3 Which Convention Should You Use?

If you are coding specifically for FreeBSD, you should alwaysuse the UNIX convention: It is faster, you can store
global variables in registers, you do not have to brand the executable, and you do not impose the installation of the
Linux emulation package on the target system.

If you want to create portable code that can also run on Linux,you will probably still want to give the FreeBSD users
as efficient a code as possible. I will show you how you can accomplish that after I have explained the basics.

11.3.4 Call Numbers

To tell the kernel which system service you are calling, place its number inEAX. Of course, you need to know what
the number is.

11.3.4.1 The syscalls File

The numbers are listed insyscalls . locate syscalls finds this file in several different formats, all produced
automatically fromsyscalls.master .

You can find the master file for the default UNIX calling convention in /usr/src/sys/kern/syscalls.master .
If you need to use the other convention implemented in the Linux emulation mode, read
/usr/src/sys/i386/linux/syscalls.master .

Note: Not only do FreeBSD and Linux use different calling conventions, they sometimes use different numbers
for the same functions.

syscalls.master describes how the call is to be made:

0 STD NOHIDE { int nosys(void); } syscall nosys_args int

109

Chapter 11 x86 Assembly Language Programming

1 STD NOHIDE { void exit(int rval); } exit rexit_args void
2 STD POSIX { int fork(void); }
3 STD POSIX { ssize_t read(int fd, void * buf, size_t nbyte); }
4 STD POSIX { ssize_t write(int fd, const void * buf, size_t nbyte); }
5 STD POSIX { int open(char * path, int flags, int mode); }
6 STD POSIX { int close(int fd); }
etc...

It is the leftmost column that tells us the number to place inEAX.

The rightmost column tells us what parameters topush . They arepush edfrom right to left.

For example, toopen a file, we need topush themode first, thenflags , then the address at which thepath is
stored.

11.4 Return Values
A system call would not be useful most of the time if it did not return some kind of a value: The file descriptor of an
open file, the number of bytes read to a buffer, the system time, etc.

Additionally, the system needs to inform us if an error occurs: A file does not exist, system resources are exhausted,
we passed an invalid parameter, etc.

11.4.1 Man Pages

The traditional place to look for information about varioussystem calls under UNIX systems are the manual pages.
FreeBSD describes its system calls in section 2, sometimes in section 3.

For example, open(2) says:

If successful,open() returns a non-negative integer, termed a file descriptor. Itreturns-1 on failure, and setserrno to
indicate the error.

The assembly language programmer new to UNIX and FreeBSD will immediately ask the puzzling question: Where
is errno and how do I get to it?

Note: The information presented in the manual pages applies to C programs. The assembly language
programmer needs additional information.

11.4.2 Where Are the Return Values?

Unfortunately, it depends... For most system calls it is inEAX, but not for all. A good rule of thumb, when working
with a system call for the first time, is to look for the return value inEAX. If it is not there, you need further research.

110

Chapter 11 x86 Assembly Language Programming

Note: I am aware of one system call that returns the value in EDX: SYS_fork . All others I have worked with use
EAX. But I have not worked with them all yet.

Tip: If you cannot find the answer here or anywhere else, study libc source code and see how it interfaces with
the kernel.

11.4.3 Where Is errno?

Actually, nowhere...

errno is part of the C language, not the UNIX kernel. When accessingkernel services directly, the error code is
returned inEAX, the same register the proper return value generally ends upin.

This makes perfect sense. If there is no error, there is no error code. If there is an error, there is no return value. One
register can contain either.

11.4.4 Determining an Error Occurred

When using the standard FreeBSD calling convention, thecarry flag is cleared upon success, set upon failure.

When using the Linux emulation mode, the signed value inEAXis non-negative upon success, and contains the return
value. In case of an error, the value is negative, i.e.,-errno .

11.5 Creating Portable Code
Portability is generally not one of the strengths of assembly language. Yet, writing assembly language programs for
different platforms is possible, especially withnasm. I have written assembly language libraries that can be
assembled for such different operating systems as Windows and FreeBSD.

It is all the more possible when you want your code to run on twoplatforms which, while different, are based on
similar architectures.

For example, FreeBSD is UNIX, Linux is UNIX like. I only mentioned three differences between them (from an
assembly language programmer’s perspective): The callingconvention, the function numbers, and the way of
returning values.

11.5.1 Dealing with Function Numbers

In many cases the function numbers are the same. However, even when they are not, the problem is easy to deal with:
Instead of using numbers in your code, use constants which you have declared differently depending on the target
architecture:

%ifdef LINUX
%define SYS_execve 11
%else

111

Chapter 11 x86 Assembly Language Programming

%define SYS_execve 59
%endif

11.5.2 Dealing with Conventions

Both, the calling convention, and the return value (theerrno problem) can be resolved with macros:

%ifdef LINUX

%macro system 0
call kernel

%endmacro

align 4
kernel:

push ebx
push ecx
push edx
push esi
push edi
push ebp

mov ebx, [esp+32]
mov ecx, [esp+36]
mov edx, [esp+40]
mov esi, [esp+44]
mov ebp, [esp+48]
int 80h

pop ebp
pop edi
pop esi
pop edx
pop ecx
pop ebx

or eax, eax
js .errno
clc
ret

.errno:
neg eax
stc
ret

%else

%macro system 0
int 80h

%endmacro

112

Chapter 11 x86 Assembly Language Programming

%endif

11.5.3 Dealing with Other Portability Issues

The above solutions can handle most cases of writing code portable between FreeBSD and Linux. Nevertheless, with
some kernel services the differences are deeper.

In that case, you need to write two different handlers for those particular system calls, and use conditional assembly.
Luckily, most of your code does something other than callingthe kernel, so usually you will only need a few such
conditional sections in your code.

11.5.4 Using a Library

You can avoid portability issues in your main code altogether by writing a library of system calls. Create a separate
library for FreeBSD, a different one for Linux, and yet otherlibraries for more operating systems.

In your library, write a separate function (or procedure, ifyou prefer the traditional assembly language terminology)
for each system call. Use the C calling convention of passingparameters. But still useEAXto pass the call number in.
In that case, your FreeBSD library can be very simple, as manyseemingly different functions can be just labels to the
same code:

sys.open:
sys.close:
[etc...]

int 80h
ret

Your Linux library will require more different functions. But even here you can group system calls using the same
number of parameters:

sys.exit:
sys.close:
[etc... one-parameter functions]

push ebx
mov ebx, [esp+12]
int 80h
pop ebx
jmp sys.return

...

sys.return:
or eax, eax
js sys.err
clc
ret

sys.err:
neg eax
stc
ret

113

Chapter 11 x86 Assembly Language Programming

The library approach may seem inconvenient at first because it requires you to produce a separate file your code
depends on. But it has many advantages: For one, you only needto write it once and can use it for all your programs.
You can even let other assembly language programmers use it,or perhaps use one written by someone else. But
perhaps the greatest advantage of the library is that your code can be ported to other systems, even by other
programmers, by simply writing a new library without any changes to your code.

If you do not like the idea of having a library, you can at leastplace all your system calls in a separate assembly
language file and link it with your main program. Here, again,all porters have to do is create a new object file to link
with your main program.

11.5.5 Using an Include File

If you are releasing your software as (or with) source code, you can use macros and place them in a separate file,
which you include in your code.

Porters of your software will simply write a new include file.No library or external object file is necessary, yet your
code is portable without any need to edit the code.

Note: This is the approach we will use throughout this chapter. We will name our include file system.inc , and
add to it whenever we deal with a new system call.

We can start oursystem.inc by declaring the standard file descriptors:

%define stdin 0
%define stdout 1
%define stderr 2

Next, we create a symbolic name for each system call:

%define SYS_nosys 0
%define SYS_exit 1
%define SYS_fork 2
%define SYS_read 3
%define SYS_write 4
; [etc...]

We add a short, non-global procedure with a long name, so we donot accidentally reuse the name in our code:

section .text
align 4
access.the.bsd.kernel:

int 80h
ret

We create a macro which takes one argument, the syscall number:

%macro system 1
mov eax, %1
call access.the.bsd.kernel

%endmacro

114

Chapter 11 x86 Assembly Language Programming

Finally, we create macros for each syscall. These macros take no arguments.

%macro sys.exit 0
system SYS_exit

%endmacro

%macro sys.fork 0
system SYS_fork

%endmacro

%macro sys.read 0
system SYS_read

%endmacro

%macro sys.write 0
system SYS_write

%endmacro

; [etc...]

Go ahead, enter it into your editor and save it assystem.inc . We will add more to it as we discuss more syscalls.

11.6 Our First Program
We are now ready for our first program, the mandatoryHello, World!

1: %include ’system.inc’
2:
3: section .data
4: hello db ’Hello, World!’, 0Ah
5: hbytes equ $-hello
6:
7: section .text
8: global _start
9: _start:

10: push dword hbytes
11: push dword hello
12: push dword stdout
13: sys.write
14:
15: push dword 0
16: sys.exit

Here is what it does: Line 1 includes the defines, the macros, and the code fromsystem.inc .

Lines 3-5 are the data: Line 3 starts the data section/segment. Line 4 contains the string "Hello, World!" followed by
a new line (0Ah). Line 5 creates a constant that contains the length of the string from line 4 in bytes.

Lines 7-16 contain the code. Note that FreeBSD uses theelf file format for its executables, which requires every
program to start at the point labeled_start (or, more precisely, the linker expects that). This label has to be global.

Lines 10-13 ask the system to writehbytes bytes of thehello string tostdout .

115

Chapter 11 x86 Assembly Language Programming

Lines 15-16 ask the system to end the program with the return value of0. TheSYS_exit syscall never returns, so
the code ends there.

Note: If you have come to UNIX from MS-DOS assembly language background, you may be used to writing
directly to the video hardware. You will never have to worry about this in FreeBSD, or any other flavor of UNIX. As
far as you are concerned, you are writing to a file known as stdout . This can be the video screen, or a telnet
terminal, or an actual file, or even the input of another program. Which one it is, is for the system to figure out.

11.6.1 Assembling the Code

Type the code (except the line numbers) in an editor, and saveit in a file namedhello.asm . You neednasm to
assemble it.

11.6.1.1 Installing nasm

If you do not havenasm, type:

% su

Password: your root password

cd /usr/ports/devel/nasm

make install

exit

%

You may typemake install clean instead of justmake install if you do not want to keepnasmsource code.

Either way, FreeBSD will automatically downloadnasmfrom the Internet, compile it, and install it on your system.

Note: If your system is not FreeBSD, you need to get nasm from its home page
(https://sourceforge.net/projects/nasm). You can still use it to assemble FreeBSD code.

Now you can assemble, link, and run the code:

% nasm -f elf hello.asm

% ld -s -o hello hello.o

% ./hello

Hello, World!
%

11.7 Writing UNIX® Filters
A common type of UNIX application is a filter—a program that reads data from thestdin , processes it somehow,
then writes the result tostdout .

In this chapter, we shall develop a simple filter, and learn how to read fromstdin and write tostdout . This filter
will convert each byte of its input into a hexadecimal numberfollowed by a blank space.

116

Chapter 11 x86 Assembly Language Programming

%include ’system.inc’

section .data
hex db ’0123456789ABCDEF’
buffer db 0, 0, ’ ’

section .text
global _start
_start:

; read a byte from stdin
push dword 1
push dword buffer
push dword stdin
sys.read
add esp, byte 12
or eax, eax
je .done

; convert it to hex
movzx eax, byte [buffer]
mov edx, eax
shr dl, 4
mov dl, [hex+edx]
mov [buffer], dl
and al, 0Fh
mov al, [hex+eax]
mov [buffer+1], al

; print it
push dword 3
push dword buffer
push dword stdout
sys.write
add esp, byte 12
jmp short _start

.done:
push dword 0
sys.exit

In the data section we create an array calledhex . It contains the 16 hexadecimal digits in ascending order. The array
is followed by a buffer which we will use for both input and output. The first two bytes of the buffer are initially set
to 0. This is where we will write the two hexadecimal digits (the first byte also is where we will read the input). The
third byte is a space.

The code section consists of four parts: Reading the byte, converting it to a hexadecimal number, writing the result,
and eventually exiting the program.

To read the byte, we ask the system to read one byte fromstdin , and store it in the first byte of thebuffer . The
system returns the number of bytes read inEAX. This will be1 while data is coming, or0, when no more input data is
available. Therefore, we check the value ofEAX. If it is 0, we jump to.done , otherwise we continue.

Note: For simplicity sake, we are ignoring the possibility of an error condition at this time.

117

Chapter 11 x86 Assembly Language Programming

The hexadecimal conversion reads the byte from thebuffer into EAX, or actually justAL, while clearing the
remaining bits ofEAXto zeros. We also copy the byte toEDXbecause we need to convert the upper four bits (nibble)
separately from the lower four bits. We store the result in the first two bytes of the buffer.

Next, we ask the system to write the three bytes of the buffer,i.e., the two hexadecimal digits and the blank space, to
stdout . We then jump back to the beginning of the program and processthe next byte.

Once there is no more input left, we ask the system to exit our program, returning a zero, which is the traditional
value meaning the program was successful.

Go ahead, and save the code in a file namedhex.asm , then type the following (thêD means press the control key
and typeD while holding the control key down):

% nasm -f elf hex.asm

% ld -s -o hex hex.o

% ./hex

Hello, World!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A Here I come!

48 65 72 65 20 49 20 63 6F 6D 65 21 0A ^D %

Note: If you are migrating to UNIX from MS-DOS, you may be wondering why each line ends with 0A instead of
0D 0A. This is because UNIX does not use the cr/lf convention, but a "new line" convention, which is 0A in
hexadecimal.

Can we improve this? Well, for one, it is a bit confusing because once we have converted a line of text, our input no
longer starts at the beginning of the line. We can modify it toprint a new line instead of a space after each0A:

%include ’system.inc’

section .data
hex db ’0123456789ABCDEF’
buffer db 0, 0, ’ ’

section .text
global _start
_start:

mov cl, ’ ’

.loop:
; read a byte from stdin
push dword 1
push dword buffer
push dword stdin
sys.read
add esp, byte 12
or eax, eax
je .done

; convert it to hex
movzx eax, byte [buffer]

118

Chapter 11 x86 Assembly Language Programming

mov [buffer+2], cl
cmp al, 0Ah
jne .hex
mov [buffer+2], al

.hex:
mov edx, eax
shr dl, 4
mov dl, [hex+edx]
mov [buffer], dl
and al, 0Fh
mov al, [hex+eax]
mov [buffer+1], al

; print it
push dword 3
push dword buffer
push dword stdout
sys.write
add esp, byte 12
jmp short .loop

.done:
push dword 0
sys.exit

We have stored the space in theCL register. We can do this safely because, unlike Microsoft Windows, UNIX system
calls do not modify the value of any register they do not use toreturn a value in.

That means we only need to setCL once. We have, therefore, added a new label.loop and jump to it for the next
byte instead of jumping at_start . We have also added the.hex label so we can either have a blank space or a new
line as the third byte of thebuffer .

Once you have changedhex.asm to reflect these changes, type:

% nasm -f elf hex.asm

% ld -s -o hex hex.o

% ./hex

Hello, World!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!

48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D %

That looks better. But this code is quite inefficient! We are making a system call for every single byte twice (once to
read it, another time to write the output).

11.8 Buffered Input and Output
We can improve the efficiency of our code by buffering our input and output. We create an input buffer and read a
whole sequence of bytes at one time. Then we fetch them one by one from the buffer.

119

Chapter 11 x86 Assembly Language Programming

We also create an output buffer. We store our output in it until it is full. At that time we ask the kernel to write the
contents of the buffer tostdout .

The program ends when there is no more input. But we still needto ask the kernel to write the contents of our output
buffer tostdout one last time, otherwise some of our output would make it to the output buffer, but never be sent
out. Do not forget that, or you will be wondering why some of your output is missing.

%include ’system.inc’

%define BUFSIZE 2048

section .data
hex db ’0123456789ABCDEF’

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .text
global _start
_start:

sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

.loop:
; read a byte from stdin
call getchar

; convert it to hex
mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar

mov al, dl
and al, 0Fh
mov al, [hex+eax]
call putchar

mov al, ’ ’
cmp dl, 0Ah
jne .put
mov al, dl

.put:
call putchar
jmp short .loop

align 4
getchar:

or ebx, ebx

120

Chapter 11 x86 Assembly Language Programming

jne .fetch

call read

.fetch:
lodsb
dec ebx
ret

read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword stdin
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done
sub eax, eax
ret

align 4
.done:

call write ; flush output buffer
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4
write:

sub edi, ecx ; start of buffer
push ecx
push edi
push dword stdout
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

We now have a third section in the source code, named.bss . This section is not included in our executable file, and,
therefore, cannot be initialized. We useresb instead ofdb. It simply reserves the requested size of uninitialized
memory for our use.

121

Chapter 11 x86 Assembly Language Programming

We take advantage of the fact that the system does not modify the registers: We use registers for what, otherwise,
would have to be global variables stored in the.data section. This is also why the UNIX convention of passing
parameters to system calls on the stack is superior to the Microsoft convention of passing them in the registers: We
can keep the registers for our own use.

We useEDI andESI as pointers to the next byte to be read from or written to. We use EBXandECXto keep count of
the number of bytes in the two buffers, so we know when to dump the output to, or read more input from, the system.

Let us see how it works now:

% nasm -f elf hex.asm

% ld -s -o hex hex.o

% ./hex

Hello, World!

Here I come!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D %

Not what you expected? The program did not print the output until we pressed̂ D. That is easy to fix by inserting
three lines of code to write the output every time we have converted a new line to0A. I have marked the three lines
with > (do not copy the > in yourhex.asm).

%include ’system.inc’

%define BUFSIZE 2048

section .data
hex db ’0123456789ABCDEF’

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .text
global _start
_start:

sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

.loop:
; read a byte from stdin
call getchar

; convert it to hex
mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar

mov al, dl
and al, 0Fh

122

Chapter 11 x86 Assembly Language Programming

mov al, [hex+eax]
call putchar

mov al, ’ ’
cmp dl, 0Ah
jne .put
mov al, dl

.put:
call putchar

> cmp al, 0Ah
> jne .loop
> call write

jmp short .loop

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb
dec ebx
ret

read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword stdin
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done
sub eax, eax
ret

align 4
.done:

call write ; flush output buffer
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

123

Chapter 11 x86 Assembly Language Programming

align 4
write:

sub edi, ecx ; start of buffer
push ecx
push edi
push dword stdout
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

Now, let us see how it works:

% nasm -f elf hex.asm

% ld -s -o hex hex.o

% ./hex

Hello, World!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!

48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D %

Not bad for a 644-byte executable, is it!

Note: This approach to buffered input/output still contains a hidden danger. I will discuss—and fix—it later, when
I talk about the dark side of buffering.

11.8.1 How to Unread a Character

Warning: This may be a somewhat advanced topic, mostly of interest to programmers familiar with the theory of
compilers. If you wish, you may skip to the next section, and perhaps read this later.

While our sample program does not require it, more sophisticated filters often need to look ahead. In other words,
they may need to see what the next character is (or even several characters). If the next character is of a certain value,
it is part of the token currently being processed. Otherwise, it is not.

For example, you may be parsing the input stream for a textualstring (e.g., when implementing a language
compiler): If a character is followed by another character,or perhaps a digit, it is part of the token you are
processing. If it is followed by white space, or some other value, then it is not part of the current token.

This presents an interesting problem: How to return the nextcharacter back to the input stream, so it can be read
again later?

One possible solution is to store it in a character variable,then set a flag. We can modifygetchar to check the flag,
and if it is set, fetch the byte from that variable instead of the input buffer, and reset the flag. But, of course, that
slows us down.

124

Chapter 11 x86 Assembly Language Programming

The C language has anungetc() function, just for that purpose. Is there a quick way to implement it in our code? I
would like you to scroll back up and take a look at thegetchar procedure and see if you can find a nice and fast
solution before reading the next paragraph. Then come back here and see my own solution.

The key to returning a character back to the stream is in how weare getting the characters to start with:

First we check if the buffer is empty by testing the value ofEBX. If it is zero, we call theread procedure.

If we do have a character available, we uselodsb , then decrease the value ofEBX. Thelodsb instruction is
effectively identical to:

mov al, [esi]
inc esi

The byte we have fetched remains in the buffer until the next time read is called. We do not know when that
happens, but we do know it will not happen until the next call to getchar . Hence, to "return" the last-read byte back
to the stream, all we have to do is decrease the value ofESI and increase the value ofEBX:

ungetc:
dec esi
inc ebx
ret

But, be careful! We are perfectly safe doing this if our look-ahead is at most one character at a time. If we are
examining more than one upcoming character and callungetc several times in a row, it will work most of the time,
but not all the time (and will be tough to debug). Why?

Because as long asgetchar does not have to callread , all of the pre-read bytes are still in the buffer, and our
ungetc works without a glitch. But the momentgetchar callsread , the contents of the buffer change.

We can always rely onungetc working properly on the last character we have read withgetchar , but not on
anything we have read before that.

If your program reads more than one byte ahead, you have at least two choices:

If possible, modify the program so it only reads one byte ahead. This is the simplest solution.

If that option is not available, first of all determine the maximum number of characters your program needs to return
to the input stream at one time. Increase that number slightly, just to be sure, preferably to a multiple of 16—so it
aligns nicely. Then modify the.bss section of your code, and create a small "spare" buffer rightbefore your input
buffer, something like this:

section .bss
resb 16 ; or whatever the value you came up with

ibuffer resb BUFSIZE
obuffer resb BUFSIZE

You also need to modify yourungetc to pass the value of the byte to unget inAL:

ungetc:
dec esi
inc ebx
mov [esi], al
ret

125

Chapter 11 x86 Assembly Language Programming

With this modification, you can callungetc up to 17 times in a row safely (the first call will still be within the
buffer, the remaining 16 may be either within the buffer or within the "spare").

11.9 Command Line Arguments
Ourhexprogram will be more useful if it can read the names of an inputand output file from its command line, i.e.,
if it can process the command line arguments. But... Where are they?

Before a UNIX system starts a program, itpush es some data on the stack, then jumps at the_start label of the
program. Yes, I said jumps, not calls. That means the data canbe accessed by reading[esp+offset] , or by simply
popping it.

The value at the top of the stack contains the number of command line arguments. It is traditionally calledargc , for
"argument count."

Command line arguments follow next, allargc of them. These are typically referred to asargv , for "argument
value(s)." That is, we getargv[0] , argv[1] , ... , argv[argc-1] . These are not the actual arguments, but
pointers to arguments, i.e., memory addresses of the actualarguments. The arguments themselves are
NUL-terminated character strings.

Theargv list is followed by a NULL pointer, which is simply a0. There is more, but this is enough for our purposes
right now.

Note: If you have come from the MS-DOS programming environment, the main difference is that each argument
is in a separate string. The second difference is that there is no practical limit on how many arguments there can
be.

Armed with this knowledge, we are almost ready for the next version ofhex.asm . First, however, we need to add a
few lines tosystem.inc :

First, we need to add two new entries to our list of system callnumbers:

%define SYS_open 5
%define SYS_close 6

Then we add two new macros at the end of the file:

%macro sys.open 0
system SYS_open

%endmacro

%macro sys.close 0
system SYS_close

%endmacro

Here, then, is our modified source code:

%include ’system.inc’

%define BUFSIZE 2048

126

Chapter 11 x86 Assembly Language Programming

section .data
fd.in dd stdin
fd.out dd stdout
hex db ’0123456789ABCDEF’

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .text
align 4
err:

push dword 1 ; return failure
sys.exit

align 4
global _start
_start:

add esp, byte 8 ; discard argc and argv[0]

pop ecx
jecxz .init ; no more arguments

; ECX contains the path to input file
push dword 0 ; O_RDONLY
push ecx
sys.open
jc err ; open failed

add esp, byte 8
mov [fd.in], eax

pop ecx
jecxz .init ; no more arguments

; ECX contains the path to output file
push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01h
; O_CREAT | O_TRUNC | O_WRONLY
push ecx
sys.open
jc err

add esp, byte 12
mov [fd.out], eax

.init:
sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

.loop:

127

Chapter 11 x86 Assembly Language Programming

; read a byte from input file or stdin
call getchar

; convert it to hex
mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar

mov al, dl
and al, 0Fh
mov al, [hex+eax]
call putchar

mov al, ’ ’
cmp dl, 0Ah
jne .put
mov al, dl

.put:
call putchar
cmp al, dl
jne .loop
call write
jmp short .loop

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb
dec ebx
ret

read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword [fd.in]
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done
sub eax, eax
ret

align 4
.done:

128

Chapter 11 x86 Assembly Language Programming

call write ; flush output buffer

; close files
push dword [fd.in]
sys.close

push dword [fd.out]
sys.close

; return success
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4
write:

sub edi, ecx ; start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

In our .data section we now have two new variables,fd.in andfd.out . We store the input and output file
descriptors here.

In the.text section we have replaced the references tostdin andstdout with [fd.in] and[fd.out] .

The.text section now starts with a simple error handler, which does nothing but exit the program with a return
value of1. The error handler is before_start so we are within a short distance from where the errors occur.

Naturally, the program execution still begins at_start . First, we removeargc andargv[0] from the stack: They
are of no interest to us (in this program, that is).

We popargv[1] to ECX. This register is particularly suited for pointers, as we can handle NULL pointers with
jecxz . If argv[1] is not NULL, we try to open the file named in the first argument. Otherwise, we continue the
program as before: Reading fromstdin , writing to stdout . If we fail to open the input file (e.g., it does not exist),
we jump to the error handler and quit.

If all went well, we now check for the second argument. If it isthere, we open the output file. Otherwise, we send the
output tostdout . If we fail to open the output file (e.g., it exists and we do nothave the write permission), we,
again, jump to the error handler.

The rest of the code is the same as before, except we close the input and output files before exiting, and, as
mentioned, we use[fd.in] and[fd.out] .

129

Chapter 11 x86 Assembly Language Programming

Our executable is now a whopping 768 bytes long.

Can we still improve it? Of course! Every program can be improved. Here are a few ideas of what we could do:

• Have our error handler print a message tostderr .

• Add error handlers to theread andwrite functions.

• Closestdin when we open an input file,stdout when we open an output file.

• Add command line switches, such as-i and-o, so we can list the input and output files in any order, or perhaps
read fromstdin and write to a file.

• Print a usage message if command line arguments are incorrect.

I shall leave these enhancements as an exercise to the reader: You already know everything you need to know to
implement them.

11.10 UNIX Environment
An important UNIX concept is the environment, which is defined byenvironment variables. Some are set by the
system, others by you, yet others by theshell, or any program that loads another program.

11.10.1 How to Find Environment Variables

I said earlier that when a program starts executing, the stack containsargc followed by the NULL-terminatedargv

array, followed by something else. The "something else" is theenvironment, or, to be more precise, a
NULL-terminated array of pointers toenvironment variables. This is often referred to asenv .

The structure ofenv is the same as that ofargv , a list of memory addresses followed by a NULL (0). In this case,
there is no"envc" —we figure out where the array ends by searching for the final NULL.

The variables usually come in thename=value format, but sometimes the=value part may be missing. We need to
account for that possibility.

11.10.2 webvars

I could just show you some code that prints the environment the same way the UNIXenvcommand does. But I
thought it would be more interesting to write a simple assembly language CGI utility.

11.10.2.1 CGI: A Quick Overview

I have a detailed CGI tutorial (http://www.whizkidtech.redprince.net/cgi-bin/tutorial) on my web site, but here is a
very quick overview of CGI:

• The web server communicates with the CGI program by settingenvironment variables.

• The CGI program sends its output tostdout . The web server reads it from there.

• It must start with an HTTP header followed by two blank lines.

• It then prints the HTML code, or whatever other type of data itis producing.

130

Chapter 11 x86 Assembly Language Programming

Note: While certain environment variables use standard names, others vary, depending on the web server. That
makes webvars quite a useful diagnostic tool.

11.10.2.2 The Code

Ourwebvarsprogram, then, must send out the HTTP header followed by someHTML mark-up. It then must read
theenvironment variablesone by one and send them out as part of the HTML page.

The code follows. I placed comments and explanations right inside the code:

;;;;;;; webvars.asm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Copyright (c) 2000 G. Adam Stanislav
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or w ithout
; modification, are permitted provided that the following c onditions
; are met:
; 1. Redistributions of source code must retain the above cop yright
; notice, this list of conditions and the following disclaim er.
; 2. Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaim er in the
; documentation and/or other materials provided with the di stribution.
;
; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND
; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY , OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
; SUCH DAMAGE.
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Version 1.0
;
; Started: 8-Dec-2000
; Updated: 8-Dec-2000
;
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%include ’system.inc’

section .data
http db ’Content-type: text/html’, 0Ah, 0Ah

db ’<?xml version="1.0" encoding="utf-8"?>’, 0Ah
db ’<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML Strict//EN" ’
db ’"DTD/xhtml1-strict.dtd">’, 0Ah
db ’<html xmlns="http://www.w3.org/1999/xhtml" ’

131

Chapter 11 x86 Assembly Language Programming

db ’xml.lang="en" lang="en">’, 0Ah
db ’<head>’, 0Ah
db ’<title>Web Environment</title>’, 0Ah
db ’<meta name="author" content="G. Adam Stanislav" />’, 0 Ah
db ’</head>’, 0Ah, 0Ah
db ’<body bgcolor="#ffffff" text="#000000" link="#0000f f" ’
db ’vlink="#840084" alink="#0000ff">’, 0Ah
db ’<div class="webvars">’, 0Ah
db ’<h1>Web Environment</h1>’, 0Ah
db ’<p>The following environment variables are def ined ’
db ’on this web server:</p>’, 0Ah, 0Ah
db ’<table align="center" width="80" border="0" cellpadd ing="10" ’
db ’cellspacing="0" class="webvars">’, 0Ah

httplen equ $-http
left db ’<tr>’, 0Ah

db ’<td class="name"><tt>’
leftlen equ $-left
middle db ’</tt></td>’, 0Ah

db ’<td class="value"><tt>’
midlen equ $-middle
undef db ’<i>(undefined)</i>’
undeflen equ $-undef
right db ’</tt></td>’, 0Ah

db ’</tr>’, 0Ah
rightlen equ $-right
wrap db ’</table>’, 0Ah

db ’</div>’, 0Ah
db ’</body>’, 0Ah
db ’</html>’, 0Ah, 0Ah

wraplen equ $-wrap

section .text
global _start
_start:

; First, send out all the http and xhtml stuff that is
; needed before we start showing the environment
push dword httplen
push dword http
push dword stdout
sys.write

; Now find how far on the stack the environment pointers
; are. We have 12 bytes we have pushed before "argc"
mov eax, [esp+12]

; We need to remove the following from the stack:
;
; The 12 bytes we pushed for sys.write
; The 4 bytes of argc
; The EAX * 4 bytes of argv
; The 4 bytes of the NULL after argv
;
; Total:

132

Chapter 11 x86 Assembly Language Programming

; 20 + eax * 4
;
; Because stack grows down, we need to ADD that many bytes
; to ESP.
lea esp, [esp+20+eax * 4]
cld ; This should already be the case, but let’s be sure.

; Loop through the environment, printing it out
.loop:

pop edi
or edi, edi ; Done yet?
je near .wrap

; Print the left part of HTML
push dword leftlen
push dword left
push dword stdout
sys.write

; It may be tempting to search for the ’=’ in the env string next .
; But it is possible there is no ’=’, so we search for the
; terminating NUL first.
mov esi, edi ; Save start of string
sub ecx, ecx
not ecx ; ECX = FFFFFFFF
sub eax, eax

repne scasb
not ecx ; ECX = string length + 1
mov ebx, ecx ; Save it in EBX

; Now is the time to find ’=’
mov edi, esi ; Start of string
mov al, ’=’

repne scasb
not ecx
add ecx, ebx ; Length of name

push ecx
push esi
push dword stdout
sys.write

; Print the middle part of HTML table code
push dword midlen
push dword middle
push dword stdout
sys.write

; Find the length of the value
not ecx
lea ebx, [ebx+ecx-1]

; Print "undefined" if 0

133

Chapter 11 x86 Assembly Language Programming

or ebx, ebx
jne .value

mov ebx, undeflen
mov edi, undef

.value:
push ebx
push edi
push dword stdout
sys.write

; Print the right part of the table row
push dword rightlen
push dword right
push dword stdout
sys.write

; Get rid of the 60 bytes we have pushed
add esp, byte 60

; Get the next variable
jmp .loop

.wrap:
; Print the rest of HTML
push dword wraplen
push dword wrap
push dword stdout
sys.write

; Return success
push dword 0
sys.exit

This code produces a 1,396-byte executable. Most of it is data, i.e., the HTML mark-up we need to send out.

Assemble and link it as usual:

% nasm -f elf webvars.asm

% ld -s -o webvars webvars.o

To use it, you need to uploadwebvars to your web server. Depending on how your web server is set up,you may
have to store it in a specialcgi-bin directory, or perhaps rename it with a.cgi extension.

Then you need to use your browser to view its output. To see itsoutput on my web server, please go to
http://www.int80h.org/webvars/ . If curious about the additional environment variables present in a password
protected web directory, go tohttp://www.int80h.org/private/ , using the nameasm and password
programmer.

134

Chapter 11 x86 Assembly Language Programming

11.11 Working with Files
We have already done some basic file work: We know how to open and close them, how to read and write them using
buffers. But UNIX offers much more functionality when it comes to files. We will examine some of it in this section,
and end up with a nice file conversion utility.

Indeed, let us start at the end, that is, with the file conversion utility. It always makes programming easier when we
know from the start what the end product is supposed to do.

One of the first programs I wrote for UNIX wastuc (ftp://ftp.int80h.org/unix/tuc/), a text-to-UNIX file converter. It
converts a text file from other operating systems to a UNIX text file. In other words, it changes from different kind of
line endings to the newline convention of UNIX. It saves the output in a different file. Optionally, it converts a UNIX
text file to a DOS text file.

I have usedtuc extensively, but always only to convert from some other OS toUNIX, never the other way. I have
always wished it would just overwrite the file instead of me having to send the output to a different file. Most of the
time, I end up using it like this:

% tuc myfile tempfile

% mv tempfile myfile

It would be nice to have aftuc, i.e.,fast tuc, and use it like this:

% ftuc myfile

In this chapter, then, we will writeftuc in assembly language (the originaltuc is in C), and study various
file-oriented kernel services in the process.

At first sight, such a file conversion is very simple: All you have to do is strip the carriage returns, right?

If you answered yes, think again: That approach will work most of the time (at least with MS DOS text files), but
will fail occasionally.

The problem is that not all non UNIX text files end their line with the carriage return / line feed sequence. Some use
carriage returns without line feeds. Others combine several blank lines into a single carriage return followed by
several line feeds. And so on.

A text file converter, then, must be able to handle any possible line endings:

• carriage return / line feed

• carriage return

• line feed / carriage return

• line feed

It should also handle files that use some kind of a combinationof the above (e.g., carriage return followed by several
line feeds).

11.11.1 Finite State Machine

The problem is easily solved by the use of a technique calledfinite state machine, originally developed by the
designers of digital electronic circuits. Afinite state machineis a digital circuit whose output is dependent not only
on its input but on its previous input, i.e., on its state. Themicroprocessor is an example of afinite state machine: Our
assembly language code is assembled to machine language in which some assembly language code produces a single

135

Chapter 11 x86 Assembly Language Programming

byte of machine language, while others produce several bytes. As the microprocessor fetches the bytes from the
memory one by one, some of them simply change its state ratherthan produce some output. When all the bytes of the
op code are fetched, the microprocessor produces some output, or changes the value of a register, etc.

Because of that, all software is essentially a sequence of state instructions for the microprocessor. Nevertheless, the
concept offinite state machineis useful in software design as well.

Our text file converter can be designed as afinite state machinewith three possible states. We could call them states
0-2, but it will make our life easier if we give them symbolic names:

• ordinary

• cr

• lf

Our program will start in the ordinary state. During this state, the program action depends on its input as follows:

• If the input is anything other than a carriage return or line feed, the input is simply passed on to the output. The
state remains unchanged.

• If the input is a carriage return, the state is changed to cr. The input is then discarded, i.e., no output is made.

• If the input is a line feed, the state is changed to lf. The input is then discarded.

Whenever we are in the cr state, it is because the last input was a carriage return, which was unprocessed. What our
software does in this state again depends on the current input:

• If the input is anything other than a carriage return or line feed, output a line feed, then output the input, then
change the state to ordinary.

• If the input is a carriage return, we have received two (or more) carriage returns in a row. We discard the input, we
output a line feed, and leave the state unchanged.

• If the input is a line feed, we output the line feed and change the state to ordinary. Note that this is not the same as
the first case above – if we tried to combine them, we would be outputting two line feeds instead of one.

Finally, we are in the lf state after we have received a line feed that was not preceded by a carriage return. This will
happen when our file already is in UNIX format, or whenever several lines in a row are expressed by a single
carriage return followed by several line feeds, or when lineends with a line feed / carriage return sequence. Here is
how we need to handle our input in this state:

• If the input is anything other than a carriage return or line feed, we output a line feed, then output the input, then
change the state to ordinary. This is exactly the same actionas in the cr state upon receiving the same kind of input.

• If the input is a carriage return, we discard the input, we output a line feed, then change the state to ordinary.

• If the input is a line feed, we output the line feed, and leave the state unchanged.

11.11.1.1 The Final State

The abovefinite state machineworks for the entire file, but leaves the possibility that thefinal line end will be
ignored. That will happen whenever the file ends with a singlecarriage return or a single line feed. I did not think of
it when I wrotetuc, just to discover that occasionally it strips the last line ending.

136

Chapter 11 x86 Assembly Language Programming

This problem is easily fixed by checking the state after the entire file was processed. If the state is not ordinary, we
simply need to output one last line feed.

Note: Now that we have expressed our algorithm as a finite state machine, we could easily design a dedicated
digital electronic circuit (a "chip") to do the conversion for us. Of course, doing so would be considerably more
expensive than writing an assembly language program.

11.11.1.2 The Output Counter

Because our file conversion program may be combining two characters into one, we need to use an output counter.
We initialize it to0, and increase it every time we send a character to the output.At the end of the program, the
counter will tell us what size we need to set the file to.

11.11.2 Implementing FSM in Software

The hardest part of working with afinite state machineis analyzing the problem and expressing it as afinite state
machine. That accomplished, the software almost writes itself.

In a high-level language, such as C, there are several main approaches. One is to use aswitch statement which
chooses what function should be run. For example,

switch (state) {
default:
case REGULAR:

regular(inputchar);
break;

case CR:
cr(inputchar);
break;

case LF:
lf(inputchar);
break;

}

Another approach is by using an array of function pointers, something like this:

(output[state])(inputchar);

Yet another is to havestate be a function pointer, set to point at the appropriate function:

(* state)(inputchar);

This is the approach we will use in our program because it is very easy to do in assembly language, and very fast,
too. We will simply keep the address of the right procedure inEBX, and then just issue:

call ebx

137

Chapter 11 x86 Assembly Language Programming

This is possibly faster than hardcoding the address in the code because the microprocessor does not have to fetch the
address from the memory—it is already stored in one of its registers. I saidpossiblybecause with the caching
modern microprocessors do, either way may be equally fast.

11.11.3 Memory Mapped Files

Because our program works on a single file, we cannot use the approach that worked for us before, i.e., to read from
an input file and to write to an output file.

UNIX allows us to map a file, or a section of a file, into memory. To do that, we first need to open the file with the
appropriate read/write flags. Then we use themmapsystem call to map it into the memory. One nice thing about
mmapis that it automatically works with virtual memory: We can map more of the file into the memory than we have
physical memory available, yet still access it through regular memory op codes, such asmov, lods , andstos .
Whatever changes we make to the memory image of the file will bewritten to the file by the system. We do not even
have to keep the file open: As long as it stays mapped, we can read from it and write to it.

The 32-bit Intel microprocessors can access up to four gigabytes of memory – physical or virtual. The FreeBSD
system allows us to use up to a half of it for file mapping.

For simplicity sake, in this tutorial we will only convert files that can be mapped into the memory in their entirety.
There are probably not too many text files that exceed two gigabytes in size. If our program encounters one, it will
simply display a message suggesting we use the originaltuc instead.

If you examine your copy ofsyscalls.master , you will find two separate syscalls namedmmap. This is because
of evolution of UNIX: There was the traditional BSDmmap, syscall 71. That one was superseded by the POSIX
mmap, syscall 197. The FreeBSD system supports both because older programs were written by using the original
BSD version. But new software uses the POSIX version, which is what we will use.

Thesyscalls.master file lists the POSIX version like this:

197 STD BSD { caddr_t mmap(caddr_t addr, size_t len, int prot , \
int flags, int fd, long pad, off_t pos); }

This differs slightly from what mmap(2) says. That is because mmap(2) describes the C version.

The difference is in thelong pad argument, which is not present in the C version. However, theFreeBSD syscalls
add a 32-bit pad afterpush ing a 64-bit argument. In this case,off_t is a 64-bit value.

When we are finished working with a memory-mapped file, we unmap it with themunmapsyscall:

Tip: For an in-depth treatment of mmap, see W. Richard Stevens’ Unix Network Programming, Volume 2, Chapter
12 (http://www.int80h.org/cgi-bin/isbn?isbn=0130810819).

11.11.4 Determining File Size

Because we need to tellmmaphow many bytes of the file to map into the memory, and because wewant to map the
entire file, we need to determine the size of the file.

We can use thefstat syscall to get all the information about an open file that the system can give us. That includes
the file size.

138

Chapter 11 x86 Assembly Language Programming

Again,syscalls.master lists two versions offstat , a traditional one (syscall 62), and a POSIX one (syscall
189). Naturally, we will use the POSIX version:

189 STD POSIX { int fstat(int fd, struct stat * sb); }

This is a very straightforward call: We pass to it the addressof a stat structure and the descriptor of an open file. It
will fill out the contents of the stat structure.

I do, however, have to say that I tried to declare the stat structure in the.bss section, andfstat did not like it: It set
the carry flag indicating an error. After I changed the code toallocate the structure on the stack, everything was
working fine.

11.11.5 Changing the File Size

Because our program may combine carriage return / line feed sequences into straight line feeds, our output may be
smaller than our input. However, since we are placing our output into the same file we read the input from, we may
have to change the size of the file.

Theftruncate system call allows us to do just that. Despite its somewhat misleading name, theftruncate

system call can be used to both truncate the file (make it smaller) and to grow it.

And yes, we will find two versions offtruncate in syscalls.master , an older one (130), and a newer one (201).
We will use the newer one:

201 STD BSD { int ftruncate(int fd, int pad, off_t length); }

Please note that this one contains aint pad again.

11.11.6 ftuc

We now know everything we need to writeftuc. We start by adding some new lines insystem.inc . First, we define
some constants and structures, somewhere at or near the beginning of the file:

;;;;;;; open flags
%define O_RDONLY 0
%define O_WRONLY 1
%define O_RDWR 2

;;;;;;; mmap flags
%define PROT_NONE 0
%define PROT_READ 1
%define PROT_WRITE 2
%define PROT_EXEC 4
;;
%define MAP_SHARED 0001h
%define MAP_PRIVATE 0002h

;;;;;;; stat structure
struc stat
st_dev resd 1 ; = 0
st_ino resd 1 ; = 4
st_mode resw 1 ; = 8, size is 16 bits

139

Chapter 11 x86 Assembly Language Programming

st_nlink resw 1 ; = 10, ditto
st_uid resd 1 ; = 12
st_gid resd 1 ; = 16
st_rdev resd 1 ; = 20
st_atime resd 1 ; = 24
st_atimensec resd 1 ; = 28
st_mtime resd 1 ; = 32
st_mtimensec resd 1 ; = 36
st_ctime resd 1 ; = 40
st_ctimensec resd 1 ; = 44
st_size resd 2 ; = 48, size is 64 bits
st_blocks resd 2 ; = 56, ditto
st_blksize resd 1 ; = 64
st_flags resd 1 ; = 68
st_gen resd 1 ; = 72
st_lspare resd 1 ; = 76
st_qspare resd 4 ; = 80
endstruc

We define the new syscalls:

%define SYS_mmap 197
%define SYS_munmap 73
%define SYS_fstat 189
%define SYS_ftruncate 201

We add the macros for their use:

%macro sys.mmap 0
system SYS_mmap

%endmacro

%macro sys.munmap 0
system SYS_munmap

%endmacro

%macro sys.ftruncate 0
system SYS_ftruncate

%endmacro

%macro sys.fstat 0
system SYS_fstat

%endmacro

And here is our code:

;;;;;;; Fast Text-to-Unix Conversion (ftuc.asm) ;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Started: 21-Dec-2000
;; Updated: 22-Dec-2000
;;
;; Copyright 2000 G. Adam Stanislav.
;; All rights reserved.
;;

140

Chapter 11 x86 Assembly Language Programming

;;;;;;; v.1 ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
%include ’system.inc’

section .data
db ’Copyright 2000 G. Adam Stanislav.’, 0Ah
db ’All rights reserved.’, 0Ah

usg db ’Usage: ftuc filename’, 0Ah
usglen equ $-usg
co db "ftuc: Can’t open file.", 0Ah
colen equ $-co
fae db ’ftuc: File access error.’, 0Ah
faelen equ $-fae
ftl db ’ftuc: File too long, use regular tuc instead.’, 0Ah
ftllen equ $-ftl
mae db ’ftuc: Memory allocation error.’, 0Ah
maelen equ $-mae

section .text

align 4
memerr:

push dword maelen
push dword mae
jmp short error

align 4
toolong:

push dword ftllen
push dword ftl
jmp short error

align 4
facerr:

push dword faelen
push dword fae
jmp short error

align 4
cantopen:

push dword colen
push dword co
jmp short error

align 4
usage:

push dword usglen
push dword usg

error:
push dword stderr
sys.write

push dword 1

141

Chapter 11 x86 Assembly Language Programming

sys.exit

align 4
global _start
_start:

pop eax ; argc
pop eax ; program name
pop ecx ; file to convert
jecxz usage

pop eax
or eax, eax ; Too many arguments?
jne usage

; Open the file
push dword O_RDWR
push ecx
sys.open
jc cantopen

mov ebp, eax ; Save fd

sub esp, byte stat_size
mov ebx, esp

; Find file size
push ebx
push ebp ; fd
sys.fstat
jc facerr

mov edx, [ebx + st_size + 4]

; File is too long if EDX != 0 ...
or edx, edx
jne near toolong
mov ecx, [ebx + st_size]
; ... or if it is above 2 GB
or ecx, ecx
js near toolong

; Do nothing if the file is 0 bytes in size
jecxz .quit

; Map the entire file in memory
push edx
push edx ; starting at offset 0
push edx ; pad
push ebp ; fd
push dword MAP_SHARED
push dword PROT_READ | PROT_WRITE
push ecx ; entire file size
push edx ; let system decide on the address

142

Chapter 11 x86 Assembly Language Programming

sys.mmap
jc near memerr

mov edi, eax
mov esi, eax
push ecx ; for SYS_munmap
push edi

; Use EBX for state machine
mov ebx, ordinary
mov ah, 0Ah
cld

.loop:
lodsb
call ebx
loop .loop

cmp ebx, ordinary
je .filesize

; Output final lf
mov al, ah
stosb
inc edx

.filesize:
; truncate file to new size
push dword 0 ; high dword
push edx ; low dword
push eax ; pad
push ebp
sys.ftruncate

; close it (ebp still pushed)
sys.close

add esp, byte 16
sys.munmap

.quit:
push dword 0
sys.exit

align 4
ordinary:

cmp al, 0Dh
je .cr

cmp al, ah
je .lf

stosb

143

Chapter 11 x86 Assembly Language Programming

inc edx
ret

align 4
.cr:

mov ebx, cr
ret

align 4
.lf:

mov ebx, lf
ret

align 4
cr:

cmp al, 0Dh
je .cr

cmp al, ah
je .lf

xchg al, ah
stosb
inc edx

xchg al, ah
; fall through

.lf:
stosb
inc edx
mov ebx, ordinary
ret

align 4
.cr:

mov al, ah
stosb
inc edx
ret

align 4
lf:

cmp al, ah
je .lf

cmp al, 0Dh
je .cr

xchg al, ah
stosb
inc edx

144

Chapter 11 x86 Assembly Language Programming

xchg al, ah
stosb
inc edx
mov ebx, ordinary
ret

align 4
.cr:

mov ebx, ordinary
mov al, ah
; fall through

.lf:
stosb
inc edx
ret

Warning: Do not use this program on files stored on a disk formatted by MS-DOS or Windows. There seems to
be a subtle bug in the FreeBSD code when using mmapon these drives mounted under FreeBSD: If the file is over
a certain size, mmapwill just fill the memory with zeros, and then copy them to the file overwriting its contents.

11.12 One-Pointed Mind
As a student of Zen, I like the idea of a one-pointed mind: Do one thing at a time, and do it well.

This, indeed, is very much how UNIX works as well. While a typical Windows application is attempting to do
everything imaginable (and is, therefore, riddled with bugs), a typical UNIX program does only one thing, and it
does it well.

The typical UNIX user then essentially assembles his own applications by writing a shell script which combines the
various existing programs by piping the output of one program to the input of another.

When writing your own UNIX software, it is generally a good idea to see what parts of the problem you need to
solve can be handled by existing programs, and only write your own programs for that part of the problem that you
do not have an existing solution for.

11.12.1 CSV

I will illustrate this principle with a specific real-life example I was faced with recently:

I needed to extract the 11th field of each record from a database I downloaded from a web site. The database was a
CSV file, i.e., a list ofcomma-separated values. That is quite a standard format for sharing data among people who
may be using different database software.

The first line of the file contains the list of various fields separated by commas. The rest of the file contains the data
listed line by line, with values separated by commas.

I tried awk, using the comma as a separator. But because several lines contained a quoted comma,awk was
extracting the wrong field from those lines.

145

Chapter 11 x86 Assembly Language Programming

Therefore, I needed to write my own software to extract the 11th field from the CSV file. However, going with the
UNIX spirit, I only needed to write a simple filter that would do the following:

• Remove the first line from the file;

• Change all unquoted commas to a different character;

• Remove all quotation marks.

Strictly speaking, I could usesedto remove the first line from the file, but doing so in my own program was very
easy, so I decided to do it and reduce the size of the pipeline.

At any rate, writing a program like this took me about 20 minutes. Writing a program that extracts the 11th field from
the CSV file would take a lot longer, and I could not reuse it to extract some other field from some other database.

This time I decided to let it do a little more work than a typical tutorial program would:

• It parses its command line for options;

• It displays proper usage if it finds wrong arguments;

• It produces meaningful error messages.

Here is its usage message:

Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]

All parameters are optional, and can appear in any order.

The-t parameter declares what to replace the commas with. Thetab is the default here. For example,-t; will
replace all unquoted commas with semicolons.

I did not need the-c option, but it may come in handy in the future. It lets me declare that I want a character other
than a comma replaced with something else. For example,-c@ will replace all at signs (useful if you want to split a
list of email addresses to their user names and domains).

The-p option preserves the first line, i.e., it does not delete it. By default, we delete the first line because in a CSV
file it contains the field names rather than data.

The-i and-o options let me specify the input and the output files. Defaults arestdin andstdout , so this is a
regular UNIX filter.

I made sure that both-i filename and-ifilename are accepted. I also made sure that only one input and one
output files may be specified.

To get the 11th field of each record, I can now do:

% csv ’-t;’ data.csv | awk ’-F;’ ’{print $11}’

The code stores the options (except for the file descriptors)in EDX: The comma inDH, the new separator inDL, and
the flag for the-p option in the highest bit ofEDX, so a check for its sign will give us a quick decision what to do.

Here is the code:

;;;;;;; csv.asm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Convert a comma-separated file to a something-else separa ted file.
;
; Started: 31-May-2001

146

Chapter 11 x86 Assembly Language Programming

; Updated: 1-Jun-2001
;
; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.
;
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;

%include ’system.inc’

%define BUFSIZE 2048

section .data
fd.in dd stdin
fd.out dd stdout
usg db ’Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfil e>] [-i <infile>]’, 0Ah
usglen equ $-usg
iemsg db "csv: Can’t open input file", 0Ah
iemlen equ $-iemsg
oemsg db "csv: Can’t create output file", 0Ah
oemlen equ $-oemsg

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .text
align 4
ierr:

push dword iemlen
push dword iemsg
push dword stderr
sys.write
push dword 1 ; return failure
sys.exit

align 4
oerr:

push dword oemlen
push dword oemsg
push dword stderr
sys.write
push dword 2
sys.exit

align 4
usage:

push dword usglen
push dword usg
push dword stderr
sys.write
push dword 3
sys.exit

147

Chapter 11 x86 Assembly Language Programming

align 4
global _start
_start:

add esp, byte 8 ; discard argc and argv[0]
mov edx, (’,’ << 8) | 9

.arg:
pop ecx
or ecx, ecx
je near .init ; no more arguments

; ECX contains the pointer to an argument
cmp byte [ecx], ’-’
jne usage

inc ecx
mov ax, [ecx]

.o:
cmp al, ’o’
jne .i

; Make sure we are not asked for the output file twice
cmp dword [fd.out], stdout
jne usage

; Find the path to output file - it is either at [ECX+1],
; i.e., -ofile --
; or in the next argument,
; i.e., -o file

inc ecx
or ah, ah
jne .openoutput
pop ecx
jecxz usage

.openoutput:
push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01h
; O_CREAT | O_TRUNC | O_WRONLY
push ecx
sys.open
jc near oerr

add esp, byte 12
mov [fd.out], eax
jmp short .arg

.i:
cmp al, ’i’
jne .p

148

Chapter 11 x86 Assembly Language Programming

; Make sure we are not asked twice
cmp dword [fd.in], stdin
jne near usage

; Find the path to the input file
inc ecx
or ah, ah
jne .openinput
pop ecx
or ecx, ecx
je near usage

.openinput:
push dword 0 ; O_RDONLY
push ecx
sys.open
jc near ierr ; open failed

add esp, byte 8
mov [fd.in], eax
jmp .arg

.p:
cmp al, ’p’
jne .t
or ah, ah
jne near usage
or edx, 1 << 31
jmp .arg

.t:
cmp al, ’t’ ; redefine output delimiter
jne .c
or ah, ah
je near usage
mov dl, ah
jmp .arg

.c:
cmp al, ’c’
jne near usage
or ah, ah
je near usage
mov dh, ah
jmp .arg

align 4
.init:

sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

149

Chapter 11 x86 Assembly Language Programming

; See if we are to preserve the first line
or edx, edx
js .loop

.firstline:
; get rid of the first line
call getchar
cmp al, 0Ah
jne .firstline

.loop:
; read a byte from stdin
call getchar

; is it a comma (or whatever the user asked for)?
cmp al, dh
jne .quote

; Replace the comma with a tab (or whatever the user wants)
mov al, dl

.put:
call putchar
jmp short .loop

.quote:
cmp al, ’"’
jne .put

; Print everything until you get another quote or EOL. If it
; is a quote, skip it. If it is EOL, print it.

.qloop:
call getchar
cmp al, ’"’
je .loop

cmp al, 0Ah
je .put

call putchar
jmp short .qloop

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb
dec ebx
ret

150

Chapter 11 x86 Assembly Language Programming

read:
jecxz .read
call write

.read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword [fd.in]
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done
sub eax, eax
ret

align 4
.done:

call write ; flush output buffer

; close files
push dword [fd.in]
sys.close

push dword [fd.out]
sys.close

; return success
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4
write:

jecxz .ret ; nothing to write
sub edi, ecx ; start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now

.ret:

151

Chapter 11 x86 Assembly Language Programming

ret

Much of it is taken fromhex.asm above. But there is one important difference: I no longer call write whenever I
am outputting a line feed. Yet, the code can be used interactively.

I have found a better solution for the interactive problem since I first started writing this chapter. I wanted to make
sure each line is printed out separately only when needed. After all, there is no need to flush out every line when used
non-interactively.

The new solution I use now is to callwrite every time I find the input buffer empty. That way, when running in the
interactive mode, the program reads one line from the user’skeyboard, processes it, and sees its input buffer is
empty. It flushes its output and reads the next line.

11.12.1.1 The Dark Side of Buffering

This change prevents a mysterious lockup in a very specific case. I refer to it as thedark side of buffering, mostly
because it presents a danger that is not quite obvious.

It is unlikely to happen with a program like thecsvabove, so let us consider yet another filter: In this case we expect
our input to be raw data representing color values, such as the red, green, andblueintensities of a pixel. Our output
will be the negative of our input.

Such a filter would be very simple to write. Most of it would look just like all the other filters we have written so far,
so I am only going to show you its inner loop:

.loop:
call getchar
not al ; Create a negative
call putchar
jmp short .loop

Because this filter works with raw data, it is unlikely to be used interactively.

But it could be called by image manipulation software. And, unless it callswrite before each call toread , chances
are it will lock up.

Here is what might happen:

1. The image editor will load our filter using the C functionpopen() .

2. It will read the first row of pixels from a bitmap or pixmap.

3. It will write the first row of pixels to thepipe leading to thefd.in of our filter.

4. Our filter will read each pixel from its input, turn it to a negative, and write it to its output buffer.

5. Our filter will call getchar to fetch the next pixel.

6. getchar will find an empty input buffer, so it will callread .

7. read will call the SYS_read system call.

8. Thekernelwill suspend our filter until the image editor sends more datato the pipe.

9. The image editor will read from the other pipe, connected to thefd.out of our filter so it can set the first row of
the output imagebeforeit sends us the second row of the input.

152

Chapter 11 x86 Assembly Language Programming

10. Thekernelsuspends the image editor until it receives some output fromour filter, so it can pass it on to the
image editor.

At this point our filter waits for the image editor to send it more data to process, while the image editor is waiting for
our filter to send it the result of the processing of the first row. But the result sits in our output buffer.

The filter and the image editor will continue waiting for eachother forever (or, at least, until they are killed). Our
software has just entered arace condition.

This problem does not exist if our filter flushes its output buffer beforeasking thekernelfor more input data.

11.13 Using the FPU
Strangely enough, most of assembly language literature does not even mention the existence of the FPU, orfloating
point unit, let alone discuss programming it.

Yet, never does assembly language shine more than when we create highly optimized FPU code by doing things that
can be doneonly in assembly language.

11.13.1 Organization of the FPU

The FPU consists of 8 80–bit floating–point registers. Theseare organized in a stack fashion—you canpush a value
on TOS (top of stack) and you canpop it.

That said, the assembly language op codes are notpush andpop because those are already taken.

You canpush a value on TOS by usingfld , fild , andfbld . Several other op codes let youpush many common
constants—such aspi—on the TOS.

Similarly, you canpop a value by usingfst , fstp , fist , fistp , andfbstp . Actually, only the op codes that end
with a p will literally pop the value, the rest willstore it somewhere else without removing it from the TOS.

We can transfer the data between the TOS and the computer memory either as a 32–bit, 64–bit, or 80–bitreal, a
16–bit, 32–bit, or 64–bitinteger, or an 80–bitpacked decimal.

The 80–bitpacked decimalis a special case ofbinary coded decimalwhich is very convenient when converting
between the ASCII representation of data and the internal data of the FPU. It allows us to use 18 significant digits.

No matter how we represent data in the memory, the FPU always stores it in the 80–bitreal format in its registers.

Its internal precision is at least 19 decimal digits, so evenif we choose to display results as ASCII in the full 18–digit
precision, we are still showing correct results.

We can perform mathematical operations on the TOS: We can calculate itssine, we canscaleit (i.e., we can multiply
or divide it by a power of 2), we can calculate its base–2logarithm, and many other things.

We can alsomultiplyor divide it by, add it to, or subtractit from, any of the FPU registers (including itself).

The official Intel op code for the TOS isst , and for theregistersst(0) –st(7) . st andst(0) , then, refer to the
same register.

For whatever reasons, the original author ofnasmhas decided to use different op codes, namelyst0 –st7 . In other
words, there are no parentheses, and the TOS is alwaysst0 , never justst .

153

Chapter 11 x86 Assembly Language Programming

11.13.1.1 The Packed Decimal Format

Thepacked decimalformat uses 10 bytes (80 bits) of memory to represent 18 digits. The number represented there is
always aninteger.

Tip: You can use it to get decimal places by multiplying the TOS by a power of 10 first.

The highest bit of the highest byte (byte 9) is thesign bit: If it is set, the number isnegative, otherwise, it ispositive.
The rest of the bits of this byte are unused/ignored.

The remaining 9 bytes store the 18 digits of the number: 2 digits per byte.

Themore significant digitis stored in the highnibble(4 bits), theless significant digitin the lownibble.

That said, you might think that-1234567 would be stored in the memory like this (using hexadecimal notation):

80 00 00 00 00 00 01 23 45 67

Alas it is not! As with everything else of Intel make, even thepacked decimalis little–endian.

That means our-1234567 is stored like this:

67 45 23 01 00 00 00 00 00 80

Remember that, or you will be pulling your hair out in desperation!

Note: The book to read—if you can find it—is Richard Startz’ 8087/80287/80387 for the IBM PC & Compatibles
(http://www.int80h.org/cgi-bin/isbn?isbn=013246604X). Though it does seem to take the fact about the
little–endian storage of the packed decimal for granted. I kid you not about the desperation of trying to figure out
what was wrong with the filter I show below before it occurred to me I should try the little–endian order even for
this type of data.

11.13.2 Excursion to Pinhole Photography

To write meaningful software, we must not only understand our programming tools, but also the field we are creating
software for.

Our next filter will help us whenever we want to build apinhole camera, so, we need some background inpinhole
photographybefore we can continue.

11.13.2.1 The Camera

The easiest way to describe any camera ever built is as some empty space enclosed in some lightproof material, with
a small hole in the enclosure.

The enclosure is usually sturdy (e.g., a box), though sometimes it is flexible (the bellows). It is quite dark inside the
camera. However, the hole lets light rays in through a singlepoint (though in some cases there may be several).
These light rays form an image, a representation of whateveris outside the camera, in front of the hole.

If some light sensitive material (such as film) is placed inside the camera, it can capture the image.

154

Chapter 11 x86 Assembly Language Programming

The hole often contains alens, or a lens assembly, often called theobjective.

11.13.2.2 The Pinhole

But, strictly speaking, the lens is not necessary: The original cameras did not use a lens but apinhole. Even today,
pinholesare used, both as a tool to study how cameras work, and to achieve a special kind of image.

The image produced by thepinholeis all equally sharp. Orblurred. There is an ideal size for a pinhole: If it is either
larger or smaller, the image loses its sharpness.

11.13.2.3 Focal Length

This ideal pinhole diameter is a function of the square root of focal length, which is the distance of the pinhole from
the film.

D = PC * sqrt(FL)

In here,D is the ideal diameter of the pinhole,FL is the focal length, andPC is a pinhole constant. According to Jay
Bender, its value is0.04 , while Kenneth Connors has determined it to be0.037 . Others have proposed other values.
Plus, this value is for the daylight only: Other types of light will require a different constant, whose value can only be
determined by experimentation.

11.13.2.4 The F–Number

The f–number is a very useful measure of how much light reaches the film. A light meter can determine that, for
example, to expose a film of specific sensitivity with f5.6 mayrequire the exposure to last 1/1000 sec.

It does not matter whether it is a 35–mm camera, or a 6x9cm camera, etc. As long as we know the f–number, we can
determine the proper exposure.

The f–number is easy to calculate:

F = FL / D

In other words, the f–number equals the focal length dividedby the diameter of the pinhole. It also means a higher
f–number either implies a smaller pinhole or a larger focal distance, or both. That, in turn, implies, the higher the
f–number, the longer the exposure has to be.

Furthermore, while pinhole diameter and focal distance areone–dimensional measurements, both, the film and the
pinhole, are two–dimensional. That means that if you have measured the exposure at f–numberA ast , then the
exposure at f–numberB is:

t * (B / A) 2

11.13.2.5 Normalized F–Number

While many modern cameras can change the diameter of their pinhole, and thus their f–number, quite smoothly and
gradually, such was not always the case.

To allow for different f–numbers, cameras typically contained a metal plate with several holes of different sizes
drilled to them.

155

Chapter 11 x86 Assembly Language Programming

Their sizes were chosen according to the above formula in such a way that the resultant f–number was one of
standard f–numbers used on all cameras everywhere. For example, a very old Kodak Duaflex IV camera in my
possession has three such holes for f–numbers 8, 11, and 16.

A more recently made camera may offer f–numbers of 2.8, 4, 5.6, 8, 11, 16, 22, and 32 (as well as others). These
numbers were not chosen arbitrarily: They all are powers of the square root of 2, though they may be rounded
somewhat.

11.13.2.6 The F–Stop

A typical camera is designed in such a way that setting any of the normalized f–numbers changes the feel of the dial.
It will naturally stopin that position. Because of that, these positions of the dial are called f–stops.

Since the f–numbers at each stop are powers of the square rootof 2, moving the dial by 1 stop will double the
amount of light required for proper exposure. Moving it by 2 stops will quadruple the required exposure. Moving the
dial by 3 stops will require the increase in exposure 8 times,etc.

11.13.3 Designing the Pinhole Software

We are now ready to decide what exactly we want our pinhole software to do.

11.13.3.1 Processing Program Input

Since its main purpose is to help us design a working pinhole camera, we will use thefocal lengthas the input to the
program. This is something we can determine without software: Proper focal length is determined by the size of the
film and by the need to shoot "regular" pictures, wide angle pictures, or telephoto pictures.

Most of the programs we have written so far worked with individual characters, or bytes, as their input: Thehex
program converted individual bytes into a hexadecimal number, thecsvprogram either let a character through, or
deleted it, or changed it to a different character, etc.

One program,ftuc used the state machine to consider at most two input bytes at atime.

But ourpinhole program cannot just work with individual characters, it hasto deal with larger syntactic units.

For example, if we want the program to calculate the pinhole diameter (and other values we will discuss later) at the
focal lengths of100 mm, 150 mm, and210 mm, we may want to enter something like this:

100, 150, 210

Our program needs to consider more than a single byte of inputat a time. When it sees the first1, it must understand
it is seeing the first digit of a decimal number. When it sees the0 and the other0, it must know it is seeing more
digits of the same number.

When it encounters the first comma, it must know it is no longerreceiving the digits of the first number. It must be
able to convert the digits of the first number into the value of100 . And the digits of the second number into the value
of 150 . And, of course, the digits of the third number into the numeric value of210 .

We need to decide what delimiters to accept: Do the input numbers have to be separated by a comma? If so, how do
we treat two numbers separated by something else?

156

Chapter 11 x86 Assembly Language Programming

Personally, I like to keep it simple. Something either is a number, so I process it. Or it is not a number, so I discard it.
I do not like the computer complaining about me typing in an extra character when it isobviousthat it is an extra
character. Duh!

Plus, it allows me to break up the monotony of computing and type in a query instead of just a number:

What is the best pinhole diameter for the focal length of 150?

There is no reason for the computer to spit out a number of complaints:

Syntax error: What
Syntax error: is
Syntax error: the
Syntax error: best

Et cetera, et cetera, et cetera.

Secondly, I like the# character to denote the start of a comment which extends to the end of the line. This does not
take too much effort to code, and lets me treat input files for my software as executable scripts.

In our case, we also need to decide what units the input shouldcome in: We choosemillimetersbecause that is how
most photographers measure the focus length.

Finally, we need to decide whether to allow the use of the decimal point (in which case we must also consider the
fact that much of the world uses a decimalcomma).

In our case allowing for the decimal point/comma would offera false sense of precision: There is little if any
noticeable difference between the focus lengths of50 and51, so allowing the user to input something like50.5 is
not a good idea. This is my opinion, mind you, but I am the one writing this program. You can make other choices in
yours, of course.

11.13.3.2 Offering Options

The most important thing we need to know when building a pinhole camera is the diameter of the pinhole. Since we
want to shoot sharp images, we will use the above formula to calculate the pinhole diameter from focal length. As
experts are offering several different values for thePCconstant, we will need to have the choice.

It is traditional in UNIX programming to have two main ways ofchoosing program parameters, plus to have a
default for the time the user does not make a choice.

Why have two ways of choosing?

One is to allow a (relatively)permanentchoice that applies automatically each time the software isrun without us
having to tell it over and over what we want it to do.

The permanent choices may be stored in a configuration file, typically found in the user’s home directory. The file
usually has the same name as the application but is started with a dot. Often"rc" is added to the file name. So, ours
could be~/.pinhole or ~/.pinholerc . (The~/ means current user’s home directory.)

The configuration file is used mostly by programs that have many configurable parameters. Those that have only one
(or a few) often use a different method: They expect to find theparameter in anenvironment variable. In our case, we
might look at an environment variable namedPINHOLE.

Usually, a program uses one or the other of the above methods.Otherwise, if a configuration file said one thing, but
an environment variable another, the program might get confused (or just too complicated).

157

Chapter 11 x86 Assembly Language Programming

Because we only need to chooseonesuch parameter, we will go with the second method and search the environment
for a variable namedPINHOLE.

The other way allows us to makead hocdecisions:"Though I usually want you to use 0.039, this time I want
0.03872."In other words, it allows us tooverridethe permanent choice.

This type of choice is usually done with command line parameters.

Finally, a programalwaysneeds adefault. The user may not make any choices. Perhaps he does not know what to
choose. Perhaps he is "just browsing." Preferably, the default will be the value most users would choose anyway.
That way they do not need to choose. Or, rather, they can choose the default without an additional effort.

Given this system, the program may find conflicting options, and handle them this way:

1. If it finds anad hocchoice (e.g., command line parameter), it should accept that choice. It must ignore any
permanent choice and any default.

2. Otherwise, if it finds a permanent option (e.g., an environment variable), it should accept it, and ignore the
default.

3. Otherwise, it should use the default.

We also need to decide whatformatourPCoption should have.

At first site, it seems obvious to use thePINHOLE=0.04 format for the environment variable, and-p0.04 for the
command line.

Allowing that is actually a security risk. ThePCconstant is a very small number. Naturally, we will test our software
using various small values ofPC. But what will happen if someone runs the program choosing a huge value?

It may crash the program because we have not designed it to handle huge numbers.

Or, we may spend more time on the program so it can handle huge numbers. We might do that if we were writing
commercial software for computer illiterate audience.

Or, we might say,"Tough! The user should know better.""

Or, we just may make it impossible for the user to enter a huge number. This is the approach we will take: We will
use animplied 0.prefix.

In other words, if the user wants0.04 , we will expect him to type-p04, or setPINHOLE=04 in his environment. So,
if he says-p9999999, we will interpret it as0.9999999 —still ridiculous but at least safer.

Secondly, many users will just want to go with either Bender’s constant or Connors’ constant. To make it easier on
them, we will interpret-b as identical to-p04, and-c as identical to-p037.

11.13.3.3 The Output

We need to decide what we want our software to send to the output, and in what format.

Since our input allows for an unspecified number of focal length entries, it makes sense to use a traditional
database–style output of showing the result of the calculation for each focal length on a separate line, while
separating all values on one line by atab character.

Optionally, we should also allow the user to specify the use of the CSV format we have studied earlier. In this case,
we will print out a line of comma–separated names describingeach field of every line, then show our results as
before, but substituting acommafor thetab .

158

Chapter 11 x86 Assembly Language Programming

We need a command line option for the CSV format. We cannot use-c because that already meansuse Connors’
constant. For some strange reason, many web sites refer to CSV files as"Excel spreadsheet"(though the CSV format
predates Excel). We will, therefore, use the-e switch to inform our software we want the output in the CSV format.

We will start each line of the output with the focal length. This may sound repetitious at first, especially in the
interactive mode: The user types in the focal length, and we are repeating it.

But the user can type several focal lengths on one line. The input can also come in from a file or from the output of
another program. In that case the user does not see the input at all.

By the same token, the output can go to a file which we will want to examine later, or it could go to the printer, or
become the input of another program.

So, it makes perfect sense to start each line with the focal length as entered by the user.

No, wait! Not as entered by the user. What if the user types in something like this:

00000000150

Clearly, we need to strip those leading zeros.

So, we might consider reading the user input as is, converting it to binary inside the FPU, and printing it out from
there.

But...

What if the user types something like this:

17459765723452353453534535353530530534563507309676764423

Ha! The packed decimal FPU format lets us input 18–digit numbers. But the user has entered more than 18 digits.
How do we handle that?

Well, wecouldmodify our code to read the first 18 digits, enter it to the FPU,then read more, multiply what we
already have on the TOS by 10 raised to the number of additional digits, thenadd to it.

Yes, we could do that. But inthisprogram it would be ridiculous (in a different one it may be just the thing to do):
Even the circumference of the Earth expressed in millimeters only takes 11 digits. Clearly, we cannot build a camera
that large (not yet, anyway).

So, if the user enters such a huge number, he is either bored, or testing us, or trying to break into the system, or
playing games—doing anything but designing a pinhole camera.

What will we do?

We will slap him in the face, in a manner of speaking:

174597657234523534535345353535305305345635073096767 64423 ??? ??? ??? ??? ???

To achieve that, we will simply ignore any leading zeros. Once we find a non–zero digit, we will initialize a counter
to 0 and start taking three steps:

1. Send the digit to the output.

2. Append the digit to a buffer we will use later to produce thepacked decimal we can send to the FPU.

3. Increase the counter.

Now, while we are taking these three steps, we also need to watch out for one of two conditions:

159

Chapter 11 x86 Assembly Language Programming

• If the counter grows above 18, we stop appending to the buffer. We continue reading the digits and sending them
to the output.

• If, or ratherwhen, the next input character is not a digit, we are done inputting for now.

Incidentally, we can simply discard the non–digit, unless it is a#, which we must return to the input stream. It
starts a comment, so we must see it after we are done producingoutput and start looking for more input.

That still leaves one possibility uncovered: If all the userenters is a zero (or several zeros), we will never find a
non–zero to display.

We can determine this has happened whenever our counter stays at0. In that case we need to send0 to the output,
and perform another "slap in the face":

0 ??? ??? ??? ??? ???

Once we have displayed the focal length and determined it is valid (greater than0 but not exceeding 18 digits), we
can calculate the pinhole diameter.

It is not by coincidence thatpinholecontains the wordpin. Indeed, many a pinhole literally is apin hole, a hole
carefully punched with the tip of a pin.

That is because a typical pinhole is very small. Our formula gets the result in millimeters. We will multiply it by
1000 , so we can output the result inmicrons.

At this point we have yet another trap to face:Too much precision.

Yes, the FPU was designed for high precision mathematics. But we are not dealing with high precision mathematics.
We are dealing with physics (optics, specifically).

Suppose we want to convert a truck into a pinhole camera (we would not be the first ones to do that!). Suppose its
box is12 meters long, so we have the focal length of12000 . Well, using Bender’s constant, it gives us square root of
12000 multiplied by0.04 , which is4.381780460 millimeters, or4381.780460 microns.

Put either way, the result is absurdly precise. Our truck is not exactly12000 millimeters long. We did not measure its
length with such a precision, so stating we need a pinhole with the diameter of4.381780460 millimeters is, well,
deceiving.4.4 millimeters would do just fine.

Note: I "only" used ten digits in the above example. Imagine the absurdity of going for all 18!

We need to limit the number of significant digits of our result. One way of doing it is by using an integer representing
microns. So, our truck would need a pinhole with the diameterof 4382 microns. Looking at that number, we still
decide that4400 microns, or4.4 millimeters is close enough.

Additionally, we can decide that no matter how big a result weget, we only want to display four significant digits (or
any other number of them, of course). Alas, the FPU does not offer rounding to a specific number of digits (after all,
it does not view the numbers as decimal but as binary).

We, therefore, must devise an algorithm to reduce the numberof significant digits.

Here is mine (I think it is awkward—if you know a better one,please, let me know):

1. Initialize a counter to0.

2. While the number is greater than or equal to10000 , divide it by10 and increase the counter.

160

Chapter 11 x86 Assembly Language Programming

3. Output the result.

4. While the counter is greater than0, output0 and decrease the counter.

Note: The 10000 is only good if you want four significant digits. For any other number of significant digits, replace
10000 with 10 raised to the number of significant digits.

We will, then, output the pinhole diameter in microns, rounded off to four significant digits.

At this point, we know thefocal lengthand thepinhole diameter. That means we have enough information to also
calculate thef–number.

We will display the f–number, rounded to four significant digits. Chances are the f–number will tell us very little. To
make it more meaningful, we can find the nearestnormalized f–number, i.e., the nearest power of the square root of 2.

We do that by multiplying the actual f–number by itself, which, of course, will give us itssquare . We will then
calculate its base–2 logarithm, which is much easier to do than calculating the base–square–root–of–2 logarithm! We
will round the result to the nearest integer. Next, we will raise 2 to the result. Actually, the FPU gives us a good
shortcut to do that: We can use thefscale op code to "scale" 1, which is analogous toshift ing an integer left.
Finally, we calculate the square root of it all, and we have the nearest normalized f–number.

If all that sounds overwhelming—or too much work, perhaps—it may become much clearer if you see the code. It
takes 9 op codes altogether:

fmul st0, st0
fld1
fld st1
fyl2x
frndint
fld1
fscale
fsqrt
fstp st1

The first line,fmul st0, st0 , squares the contents of the TOS (top of the stack, same asst , calledst0 by nasm).
Thefld1 pushes1 on the TOS.

The next line,fld st1 , pushes the square back to the TOS. At this point the square isboth inst andst(2) (it will
become clear why we leave a second copy on the stack in a moment). st(1) contains1.

Next, fyl2x calculates base–2 logarithm ofst multiplied byst(1) . That is why we placed1 on st(1) before.

At this point,st contains the logarithm we have just calculated,st(1) contains the square of the actual f–number
we saved for later.

frndint rounds the TOS to the nearest integer.fld1 pushes a1. fscale shifts the1 we have on the TOS by the
value inst(1) , effectively raising 2 tost(1) .

Finally, fsqrt calculates the square root of the result, i.e., the nearest normalized f–number.

We now have the nearest normalized f–number on the TOS, the base–2 logarithm rounded to the nearest integer in
st(1) , and the square of the actual f–number inst(2) . We are saving the value inst(2) for later.

161

Chapter 11 x86 Assembly Language Programming

But we do not need the contents ofst(1) anymore. The last line,fstp st1 , places the contents ofst to st(1) ,
and pops. As a result, what wasst(1) is nowst , what wasst(2) is nowst(1) , etc. The newst contains the
normalized f–number. The newst(1) contains the square of the actual f–number we have stored there for posterity.

At this point, we are ready to output the normalized f–number. Because it is normalized, we will not round it off to
four significant digits, but will send it out in its full precision.

The normalized f-number is useful as long as it is reasonablysmall and can be found on our light meter. Otherwise
we need a different method of determining proper exposure.

Earlier we have figured out the formula of calculating properexposure at an arbitrary f–number from that measured
at a different f–number.

Every light meter I have ever seen can determine proper exposure at f5.6. We will, therefore, calculate an"f5.6
multiplier," i.e., by how much we need to multiply the exposure measured atf5.6 to determine the proper exposure
for our pinhole camera.

From the above formula we know this factor can be calculated by dividing our f–number (the actual one, not the
normalized one) by5.6 , and squaring the result.

Mathematically, dividing the square of our f–number by the square of5.6 will give us the same result.

Computationally, we do not want to square two numbers when wecan only square one. So, the first solution seems
better at first.

But...

5.6 is aconstant. We do not have to have our FPU waste precious cycles. We can just tell it to divide the square of
the f–number by whatever5.6 2 equals to. Or we can divide the f–number by5.6 , and then square the result. The
two ways now seem equal.

But, they are not!

Having studied the principles of photography above, we remember that the5.6 is actually square root of 2 raised to
the fifth power. Anirrational number. The square of this number isexactly32.

Not only is32 an integer, it is a power of 2. We do not need to divide the square of the f–number by32. We only
need to usefscale to shift it right by five positions. In the FPU lingo it means wewill fscale it with st(1) equal
to -5 . That ismuch fasterthan a division.

So, now it has become clear why we have saved the square of the f–number on the top of the FPU stack. The
calculation of the f5.6 multiplier is the easiest calculation of this entire program! We will output it rounded to four
significant digits.

There is one more useful number we can calculate: The number of stops our f–number is from f5.6. This may help us
if our f–number is just outside the range of our light meter, but we have a shutter which lets us set various speeds,
and this shutter uses stops.

Say, our f–number is 5 stops from f5.6, and the light meter says we should use 1/1000 sec. Then we can set our
shutter speed to 1/1000 first, then move the dial by 5 stops.

This calculation is quite easy as well. All we have to do is to calculate the base-2 logarithm of the f5.6 multiplier we
had just calculated (though we need its value from before we rounded it off). We then output the result rounded to the
nearest integer. We do not need to worry about having more than four significant digits in this one: The result is most
likely to have only one or two digits anyway.

162

Chapter 11 x86 Assembly Language Programming

11.13.4 FPU Optimizations

In assembly language we can optimize the FPU code in ways impossible in high languages, including C.

Whenever a C function needs to calculate a floating–point value, it loads all necessary variables and constants into
FPU registers. It then does whatever calculation is required to get the correct result. Good C compilers can optimize
that part of the code really well.

It "returns" the value by leaving the result on the TOS. However, before it returns, it cleans up. Any variables and
constants it used in its calculation are now gone from the FPU.

It cannot do what we just did above: We calculated the square of the f–number and kept it on the stack for later use
by another function.

We knewwe would need that value later on. We also knew we had enough room on the stack (which only has room
for 8 numbers) to store it there.

A C compiler has no way of knowing that a value it has on the stack will be required again in the very near future.

Of course, the C programmer may know it. But the only recoursehe has is to store the value in a memory variable.

That means, for one, the value will be changed from the 80-bitprecision used internally by the FPU to a Cdouble
(64 bits) or evensingle(32 bits).

That also means that the value must be moved from the TOS into the memory, and then back again. Alas, of all FPU
operations, the ones that access the computer memory are theslowest.

So, whenever programming the FPU in assembly language, lookfor the ways of keeping intermediate results on the
FPU stack.

We can take that idea even further! In our program we are usingaconstant(the one we namedPC).

It does not matter how many pinhole diameters we are calculating: 1, 10, 20, 1000, we are always using the same
constant. Therefore, we can optimize our program by keepingthe constant on the stack all the time.

Early on in our program, we are calculating the value of the above constant. We need to divide our input by10 for
every digit in the constant.

It is much faster to multiply than to divide. So, at the start of our program, we divide10 into 1 to obtain0.1 , which
we then keep on the stack: Instead of dividing the input by10 for every digit, we multiply it by0.1 .

By the way, we do not input0.1 directly, even though we could. We have a reason for that: While 0.1 can be
expressed with just one decimal place, we do not know how manybinaryplaces it takes. We, therefore, let the FPU
calculate its binary value to its own high precision.

We are using other constants: We multiply the pinhole diameter by1000 to convert it from millimeters to microns.
We compare numbers to10000 when we are rounding them off to four significant digits. So, we keep both,1000

and10000 , on the stack. And, of course, we reuse the0.1 when rounding off numbers to four digits.

Last but not least, we keep-5 on the stack. We need it to scale the square of the f–number, instead of dividing it by
32. It is not by coincidence we load this constant last. That makes it the top of the stack when only the constants are
on it. So, when the square of the f–number is being scaled, the-5 is atst(1) , precisely wherefscale expects it to
be.

It is common to create certain constants from scratch instead of loading them from the memory. That is what we are
doing with-5 :

fld1 ; TOS = 1
fadd st0, st0 ; TOS = 2

163

Chapter 11 x86 Assembly Language Programming

fadd st0, st0 ; TOS = 4
fld1 ; TOS = 1
faddp st1, st0 ; TOS = 5
fchs ; TOS = -5

We can generalize all these optimizations into one rule:Keep repeat values on the stack!

Tip: PostScript® is a stack–oriented programming language. There are many more books available about
PostScript than about the FPU assembly language: Mastering PostScript will help you master the FPU.

11.13.5 pinhole—The Code

;;;;;;; pinhole.asm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Find various parameters of a pinhole camera construction a nd use
;
; Started: 9-Jun-2001
; Updated: 10-Jun-2001
;
; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.
;
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;

%include ’system.inc’

%define BUFSIZE 2048

section .data
align 4
ten dd 10
thousand dd 1000
tthou dd 10000
fd.in dd stdin
fd.out dd stdout
envar db ’PINHOLE=’ ; Exactly 8 bytes, or 2 dwords long
pinhole db ’04,’, ; Bender’s constant (0.04)
connors db ’037’, 0Ah ; Connors’ constant
usg db ’Usage: pinhole [-b] [-c] [-e] [-p <value>] [-o <outfi le>] [-i <infile>]’, 0Ah
usglen equ $-usg
iemsg db "pinhole: Can’t open input file", 0Ah
iemlen equ $-iemsg
oemsg db "pinhole: Can’t create output file", 0Ah
oemlen equ $-oemsg
pinmsg db "pinhole: The PINHOLE constant must not be 0", 0Ah
pinlen equ $-pinmsg
toobig db "pinhole: The PINHOLE constant may not exceed 18 de cimal places", 0Ah
biglen equ $-toobig
huhmsg db 9, ’???’

164

Chapter 11 x86 Assembly Language Programming

separ db 9, ’???’
sep2 db 9, ’???’
sep3 db 9, ’???’
sep4 db 9, ’???’, 0Ah
huhlen equ $-huhmsg
header db ’focal length in millimeters,pinhole diameter in microns,’

db ’F-number,normalized F-number,F-5.6 multiplier,stop s ’
db ’from F-5.6’, 0Ah

headlen equ $-header

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE
dbuffer resb 20 ; decimal input buffer
bbuffer resb 10 ; BCD buffer

section .text
align 4
huh:

call write
push dword huhlen
push dword huhmsg
push dword [fd.out]
sys.write
add esp, byte 12
ret

align 4
perr:

push dword pinlen
push dword pinmsg
push dword stderr
sys.write
push dword 4 ; return failure
sys.exit

align 4
consttoobig:

push dword biglen
push dword toobig
push dword stderr
sys.write
push dword 5 ; return failure
sys.exit

align 4
ierr:

push dword iemlen
push dword iemsg
push dword stderr
sys.write
push dword 1 ; return failure
sys.exit

165

Chapter 11 x86 Assembly Language Programming

align 4
oerr:

push dword oemlen
push dword oemsg
push dword stderr
sys.write
push dword 2
sys.exit

align 4
usage:

push dword usglen
push dword usg
push dword stderr
sys.write
push dword 3
sys.exit

align 4
global _start
_start:

add esp, byte 8 ; discard argc and argv[0]
sub esi, esi

.arg:
pop ecx
or ecx, ecx
je near .getenv ; no more arguments

; ECX contains the pointer to an argument
cmp byte [ecx], ’-’
jne usage

inc ecx
mov ax, [ecx]
inc ecx

.o:
cmp al, ’o’
jne .i

; Make sure we are not asked for the output file twice
cmp dword [fd.out], stdout
jne usage

; Find the path to output file - it is either at [ECX+1],
; i.e., -ofile --
; or in the next argument,
; i.e., -o file

or ah, ah
jne .openoutput

166

Chapter 11 x86 Assembly Language Programming

pop ecx
jecxz usage

.openoutput:
push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01h
; O_CREAT | O_TRUNC | O_WRONLY
push ecx
sys.open
jc near oerr

add esp, byte 12
mov [fd.out], eax
jmp short .arg

.i:
cmp al, ’i’
jne .p

; Make sure we are not asked twice
cmp dword [fd.in], stdin
jne near usage

; Find the path to the input file
or ah, ah
jne .openinput
pop ecx
or ecx, ecx
je near usage

.openinput:
push dword 0 ; O_RDONLY
push ecx
sys.open
jc near ierr ; open failed

add esp, byte 8
mov [fd.in], eax
jmp .arg

.p:
cmp al, ’p’
jne .c
or ah, ah
jne .pcheck

pop ecx
or ecx, ecx
je near usage

mov ah, [ecx]

.pcheck:

167

Chapter 11 x86 Assembly Language Programming

cmp ah, ’0’
jl near usage
cmp ah, ’9’
ja near usage
mov esi, ecx
jmp .arg

.c:
cmp al, ’c’
jne .b
or ah, ah
jne near usage
mov esi, connors
jmp .arg

.b:
cmp al, ’b’
jne .e
or ah, ah
jne near usage
mov esi, pinhole
jmp .arg

.e:
cmp al, ’e’
jne near usage
or ah, ah
jne near usage
mov al, ’,’
mov [huhmsg], al
mov [separ], al
mov [sep2], al
mov [sep3], al
mov [sep4], al
jmp .arg

align 4
.getenv:

; If ESI = 0, we did not have a -p argument,
; and need to check the environment for "PINHOLE="
or esi, esi
jne .init

sub ecx, ecx

.nextenv:
pop esi
or esi, esi
je .default ; no PINHOLE envar found

; check if this envar starts with ’PINHOLE=’
mov edi, envar
mov cl, 2 ; ’PINHOLE=’ is 2 dwords long

168

Chapter 11 x86 Assembly Language Programming

rep cmpsd
jne .nextenv

; Check if it is followed by a digit
mov al, [esi]
cmp al, ’0’
jl .default
cmp al, ’9’
jbe .init
; fall through

align 4
.default:

; We got here because we had no -p argument,
; and did not find the PINHOLE envar.
mov esi, pinhole
; fall through

align 4
.init:

sub eax, eax
sub ebx, ebx
sub ecx, ecx
sub edx, edx
mov edi, dbuffer+1
mov byte [dbuffer], ’0’

; Convert the pinhole constant to real
.constloop:

lodsb
cmp al, ’9’
ja .setconst
cmp al, ’0’
je .processconst
jb .setconst

inc dl

.processconst:
inc cl
cmp cl, 18
ja near consttoobig
stosb
jmp short .constloop

align 4
.setconst:

or dl, dl
je near perr

finit
fild dword [tthou]

169

Chapter 11 x86 Assembly Language Programming

fld1
fild dword [ten]
fdivp st1, st0

fild dword [thousand]
mov edi, obuffer

mov ebp, ecx
call bcdload

.constdiv:
fmul st0, st2
loop .constdiv

fld1
fadd st0, st0
fadd st0, st0
fld1
faddp st1, st0
fchs

; If we are creating a CSV file,
; print header
cmp byte [separ], ’,’
jne .bigloop

push dword headlen
push dword header
push dword [fd.out]
sys.write

.bigloop:
call getchar
jc near done

; Skip to the end of the line if you got ’#’
cmp al, ’#’
jne .num
call skiptoeol
jmp short .bigloop

.num:
; See if you got a number
cmp al, ’0’
jl .bigloop
cmp al, ’9’
ja .bigloop

; Yes, we have a number
sub ebp, ebp
sub edx, edx

.number:

170

Chapter 11 x86 Assembly Language Programming

cmp al, ’0’
je .number0
mov dl, 1

.number0:
or dl, dl ; Skip leading 0’s
je .nextnumber
push eax
call putchar
pop eax
inc ebp
cmp ebp, 19
jae .nextnumber
mov [dbuffer+ebp], al

.nextnumber:
call getchar
jc .work
cmp al, ’#’
je .ungetc
cmp al, ’0’
jl .work
cmp al, ’9’
ja .work
jmp short .number

.ungetc:
dec esi
inc ebx

.work:
; Now, do all the work
or dl, dl
je near .work0

cmp ebp, 19
jae near .toobig

call bcdload

; Calculate pinhole diameter

fld st0 ; save it
fsqrt
fmul st0, st3
fld st0
fmul st5
sub ebp, ebp

; Round off to 4 significant digits
.diameter:

fcom st0, st7
fstsw ax

171

Chapter 11 x86 Assembly Language Programming

sahf
jb .printdiameter
fmul st0, st6
inc ebp
jmp short .diameter

.printdiameter:
call printnumber ; pinhole diameter

; Calculate F-number

fdivp st1, st0
fld st0

sub ebp, ebp

.fnumber:
fcom st0, st6
fstsw ax
sahf
jb .printfnumber
fmul st0, st5
inc ebp
jmp short .fnumber

.printfnumber:
call printnumber ; F number

; Calculate normalized F-number
fmul st0, st0
fld1
fld st1
fyl2x
frndint
fld1
fscale
fsqrt
fstp st1

sub ebp, ebp
call printnumber

; Calculate time multiplier from F-5.6

fscale
fld st0

; Round off to 4 significant digits
.fmul:

fcom st0, st6
fstsw ax
sahf

172

Chapter 11 x86 Assembly Language Programming

jb .printfmul
inc ebp
fmul st0, st5
jmp short .fmul

.printfmul:
call printnumber ; F multiplier

; Calculate F-stops from 5.6

fld1
fxch st1
fyl2x

sub ebp, ebp
call printnumber

mov al, 0Ah
call putchar
jmp .bigloop

.work0:
mov al, ’0’
call putchar

align 4
.toobig:

call huh
jmp .bigloop

align 4
done:

call write ; flush output buffer

; close files
push dword [fd.in]
sys.close

push dword [fd.out]
sys.close

finit

; return success
push dword 0
sys.exit

align 4
skiptoeol:

; Keep reading until you come to cr, lf, or eof
call getchar
jc done
cmp al, 0Ah

173

Chapter 11 x86 Assembly Language Programming

jne .cr
ret

.cr:
cmp al, 0Dh
jne skiptoeol
ret

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb
dec ebx
clc
ret

read:
jecxz .read
call write

.read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword [fd.in]
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .empty
sub eax, eax
ret

align 4
.empty:

add esp, byte 4
stc
ret

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4

174

Chapter 11 x86 Assembly Language Programming

write:
jecxz .ret ; nothing to write
sub edi, ecx ; start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now

.ret:
ret

align 4
bcdload:

; EBP contains the number of chars in dbuffer
push ecx
push esi
push edi

lea ecx, [ebp+1]
lea esi, [dbuffer+ebp-1]
shr ecx, 1

std

mov edi, bbuffer
sub eax, eax
mov [edi], eax
mov [edi+4], eax
mov [edi+2], ax

.loop:
lodsw
sub ax, 3030h
shl al, 4
or al, ah
mov [edi], al
inc edi
loop .loop

fbld [bbuffer]

cld
pop edi
pop esi
pop ecx
sub eax, eax
ret

align 4
printnumber:

push ebp

175

Chapter 11 x86 Assembly Language Programming

mov al, [separ]
call putchar

; Print the integer at the TOS
mov ebp, bbuffer+9
fbstp [bbuffer]

; Check the sign
mov al, [ebp]
dec ebp
or al, al
jns .leading

; We got a negative number (should never happen)
mov al, ’-’
call putchar

.leading:
; Skip leading zeros
mov al, [ebp]
dec ebp
or al, al
jne .first
cmp ebp, bbuffer
jae .leading

; We are here because the result was 0.
; Print ’0’ and return
mov al, ’0’
jmp putchar

.first:
; We have found the first non-zero.
; But it is still packed
test al, 0F0h
jz .second
push eax
shr al, 4
add al, ’0’
call putchar
pop eax
and al, 0Fh

.second:
add al, ’0’
call putchar

.next:
cmp ebp, bbuffer
jb .done

mov al, [ebp]
push eax

176

Chapter 11 x86 Assembly Language Programming

shr al, 4
add al, ’0’
call putchar
pop eax
and al, 0Fh
add al, ’0’
call putchar

dec ebp
jmp short .next

.done:
pop ebp
or ebp, ebp
je .ret

.zeros:
mov al, ’0’
call putchar
dec ebp
jne .zeros

.ret:
ret

The code follows the same format as all the other filters we have seen before, with one subtle exception:

We are no longer assuming that the end of input implies the endof things to do, something we took for granted in the
character–orientedfilters.

This filter does not process characters. It processes alanguage(albeit a very simple one, consisting only of numbers).

When we have no more input, it can mean one of two things:

• We are done and can quit. This is the same as before.

• The last character we have read was a digit. We have stored it at the end of our ASCII–to–float conversion buffer. We now
need to convert the contents of that buffer into a number and write the last line of our output.

For that reason, we have modified ourgetchar and ourread routines to return with thecarry flag clear whenever we
are fetching another character from the input, or thecarry flag setwhenever there is no more input.

Of course, we are still using assembly language magic to do that! Take a good look atgetchar . It alwaysreturns with the
carry flag clear.

Yet, our main code relies on thecarry flag to tell it when to quit—and it works.

The magic is inread . Whenever it receives more input from the system, it just returns togetchar , which fetches a
character from the input buffer,clearsthecarry flag and returns.

But whenread receives no more input from the system, it doesnot return togetchar at all. Instead, theadd esp, byte

4 op code adds4 to ESP, setsthecarry flag , and returns.

So, where does it return to? Whenever a program uses thecall op code, the microprocessorpush es the return address, i.e.,
it stores it on the top of the stack (not the FPU stack, the system stack, which is in the memory). When a program uses the
ret op code, the microprocessorpops the return value from the stack, and jumps to the address that was stored there.

But since we added4 to ESP(which is the stack pointer register), we have effectively given the microprocessor a minor case
of amnesia: It no longer remembers it wasgetchar thatcall ed read .

177

Chapter 11 x86 Assembly Language Programming

And sincegetchar neverpush ed anything beforecall ing read , the top of the stack now contains the return address to
whatever or whoevercall edgetchar . As far as that caller is concerned, hecall edgetchar , which ret urned with the
carry flag set!

Other than that, thebcdload routine is caught up in the middle of a Lilliputian conflict between the Big–Endians
and the Little–Endians.

It is converting the text representation of a number into that number: The text is stored in the big–endian order, but
thepacked decimalis little–endian.

To solve the conflict, we use thestd op code early on. We cancel it withcld later on: It is quite important we do not
call anything that may depend on the default setting of thedirection flagwhile std is active.

Everything else in this code should be quite clear, providing you have read the entire chapter that precedes it.

It is a classical example of the adage that programming requires a lot of thought and only a little coding. Once we
have thought through every tiny detail, the code almost writes itself.

11.13.6 Using pinhole

Because we have decided to make the programignoreany input except for numbers (and even those inside a
comment), we can actually performtextual queries. We do nothave to, but wecan.

In my humble opinion, forming a textual query, instead of having to follow a very strict syntax, makes software
much more user friendly.

Suppose we want to build a pinhole camera to use the 4x5 inch film. The standard focal length for that film is about
150mm. We want tofine–tuneour focal length so the pinhole diameter is as round a number as possible. Let us also
suppose we are quite comfortable with cameras but somewhat intimidated by computers. Rather than just have to
type in a bunch of numbers, we want toaska couple of questions.

Our session might look like this:

% pinhole

Computer,

What size pinhole do I need for the focal length of 150?

150 490 306 362 2930 12
Hmmm... How about 160?

160 506 316 362 3125 12
Let’s make it 155, please.

155 498 311 362 3027 12
Ah, let’s try 157...

157 501 313 362 3066 12
156?

156 500 312 362 3047 12
That’s it! Perfect! Thank you very much!

^D

We have found that while for the focal length of 150, our pinhole diameter should be 490 microns, or 0.49 mm, if we
go with the almost identical focal length of 156 mm, we can getaway with a pinhole diameter of exactly one half of
a millimeter.

178

Chapter 11 x86 Assembly Language Programming

11.13.7 Scripting

Because we have chosen the# character to denote the start of a comment, we can treat ourpinhole software as a
scripting language.

You have probably seenshell scriptsthat start with:

#! /bin/sh

...or...

#!/bin/sh

...because the blank space after the#! is optional.

Whenever UNIX is asked to run an executable file which starts with the#! , it assumes the file is a script. It adds the
command to the rest of the first line of the script, and tries toexecute that.

Suppose now that we have installedpinhole in /usr/local/bin/, we can now write a script to calculate various pinhole
diameters suitable for various focal lengths commonly usedwith the 120 film.

The script might look something like this:

#! /usr/local/bin/pinhole -b -i
Find the best pinhole diameter
for the 120 film

Standard
80

Wide angle
30, 40, 50, 60, 70

Telephoto
100, 120, 140

Because 120 is a medium size film, we may name this filemedium.

We can set its permissions to execute, and run it as if it were aprogram:

% chmod 755 medium

% ./medium

UNIX will interpret that last command as:

% /usr/local/bin/pinhole -b -i ./medium

It will run that command and display:

80 358 224 256 1562 11
30 219 137 128 586 9
40 253 158 181 781 10
50 283 177 181 977 10
60 310 194 181 1172 10
70 335 209 181 1367 10
100 400 250 256 1953 11

179

Chapter 11 x86 Assembly Language Programming

120 438 274 256 2344 11
140 473 296 256 2734 11

Now, let us enter:

% ./medium -c

UNIX will treat that as:

% /usr/local/bin/pinhole -b -i ./medium -c

That gives it two conflicting options:-b and-c (Use Bender’s constant and use Connors’ constant). We have
programmed it so later options override early ones—our program will calculate everything using Connors’ constant:

80 331 242 256 1826 11
30 203 148 128 685 9
40 234 171 181 913 10
50 262 191 181 1141 10
60 287 209 181 1370 10
70 310 226 256 1598 11
100 370 270 256 2283 11
120 405 296 256 2739 11
140 438 320 362 3196 12

We decide we want to go with Bender’s constant after all. We want to save its values as a comma–separated file:

% ./medium -b -e > bender

% cat bender

focal length in millimeters,pinhole diameter in microns,F -number,normalized F-number,F-5.6 multiplier,stops
80,358,224,256,1562,11
30,219,137,128,586,9
40,253,158,181,781,10
50,283,177,181,977,10
60,310,194,181,1172,10
70,335,209,181,1367,10
100,400,250,256,1953,11
120,438,274,256,2344,11
140,473,296,256,2734,11
%

11.14 Caveats
Assembly language programmers who "grew up" under MS-DOS and Windows often tend to take shortcuts. Reading
the keyboard scan codes and writing directly to video memoryare two classical examples of practices which, under
MS-DOS are not frowned upon but considered the right thing todo.

The reason? Both the PC BIOS and MS-DOS are notoriously slow when performing these operations.

You may be tempted to continue similar practices in the UNIX environment. For example, I have seen a web site
which explains how to access the keyboard scan codes on a popular UNIX clone.

That is generally avery bad ideain UNIX environment! Let me explain why.

180

Chapter 11 x86 Assembly Language Programming

11.14.1 UNIX Is Protected

For one thing, it may simply not be possible. UNIX runs in protected mode. Only the kernel and device drivers are
allowed to access hardware directly. Perhaps a particular UNIX clone will let you read the keyboard scan codes, but
chances are a real UNIX operating system will not. And even ifone version may let you do it, the next one may not,
so your carefully crafted software may become a dinosaur overnight.

11.14.2 UNIX Is an Abstraction

But there is a much more important reason not to try accessingthe hardware directly (unless, of course, you are
writing a device driver), even on the UNIX like systems that let you do it:

UNIX is an abstraction!

There is a major difference in the philosophy of design between MS-DOS and UNIX. MS-DOS was designed as a
single-user system. It is run on a computer with a keyboard and a video screen attached directly to that computer.
User input is almost guaranteed to come from that keyboard. Your program’s output virtually always ends up on that
screen.

This is NEVER guaranteed under UNIX. It is quite common for a UNIX user to pipe and redirect program input and
output:

% program1 | program2 | program3 > file1

If you have writtenprogram2, your input does not come from the keyboard but from the output of program1.
Similarly, your output does not go to the screen but becomes the input forprogram3 whose output, in turn, goes to
file1 .

But there is more! Even if you made sure that your input comes from, and your output goes to, the terminal, there is
no guarantee the terminal is a PC: It may not have its video memory where you expect it, nor may its keyboard be
producing PC-style scan codes. It may be a Macintosh, or any other computer.

Now you may be shaking your head: My software is in PC assemblylanguage, how can it run on a Macintosh? But I
did not say your software would be running on a Macintosh, only that its terminal may be a Macintosh.

Under UNIX, the terminal does not have to be directly attached to the computer that runs your software, it can even
be on another continent, or, for that matter, on another planet. It is perfectly possible that a Macintosh user in
Australia connects to a UNIX system in North America (or anywhere else) viatelnet. The software then runs on one
computer, while the terminal is on a different computer: If you try to read the scan codes, you will get the wrong
input!

Same holds true about any other hardware: A file you are reading may be on a disk you have no direct access to. A
camera you are reading images from may be on a space shuttle, connected to you via satellites.

That is why under UNIX you must never make any assumptions about where your data is coming from and going to.
Always let the system handle the physical access to the hardware.

Note: These are caveats, not absolute rules. Exceptions are possible. For example, if a text editor has
determined it is running on a local machine, it may want to read the scan codes directly for improved control. I am
not mentioning these caveats to tell you what to do or what not to do, just to make you aware of certain pitfalls
that await you if you have just arrived to UNIX form MS-DOS. Of course, creative people often break rules, and it
is OK as long as they know they are breaking them and why.

181

Chapter 11 x86 Assembly Language Programming

11.15 Acknowledgements
This tutorial would never have been possible without the help of many experienced FreeBSD programmers from the
FreeBSD technical discussions mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers), manyof
whom have patiently answered my questions, and pointed me inthe right direction in my attempts to explore the
inner workings of UNIX system programming in general and FreeBSD in particular.

Thomas M. Sommers opened the door for me. His How do I write "Hello, world" in FreeBSD assembler?
(http://www.codebreakers-journal.com/content/view/262/27/) web page was my first encounter with an example of
assembly language programming under FreeBSD.

Jake Burkholder has kept the door open by willingly answering all of my questions and supplying me with example
assembly language source code.

Copyright © 2000-2001 G. Adam Stanislav. All rights reserved.

182

V. Appendices

Bibliography

[1] Dave A Patterson and John L Hennessy, 1998, 1-55860-428-6, Morgan Kaufmann Publishers, Inc.,Computer
Organization and Design: The Hardware / Software Interface, 1-2.

[2] W. Richard Stevens, 1993, 0-201-56317-7, Addison Wesley Longman, Inc.,Advanced Programming in the Unix
Environment, 1-2.

[3] Marshall Kirk McKusick and George Neville-Neil, 2004, 0-201-70245-2, Addison-Wesley,The Design and
Implementation of the FreeBSD Operating System, 1-2.

[4] Aleph One,Phrack 49; "Smashing the Stack for Fun and Profit".

[5] Chrispin Cowan, Calton Pu, and Dave Maier,StackGuard; Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks.

[6] Todd Miller and Theo de Raadt,strlcpy and strlcat -- consistent, safe string copy and concatenation..

	FreeBSD Developers' Handbook
	Table of Contents
	List of Examples
	I. Basics
	Chapter 1 Introduction
	1.1 Developing on FreeBSD
	1.2 The BSD Vision
	1.3 Architectural Guidelines
	1.4 The Layout of /usr/src

	Chapter 2 Programming Tools
	2.1 Synopsis
	2.2 Introduction
	2.3 Introduction to Programming
	2.3.1 Interpreters
	2.3.2 Interpreters available with FreeBSD
	2.3.3 Compilers

	2.4 Compiling with cc
	2.4.1 Common cc Queries and Problems

	2.5 Make
	2.5.1 What is make?
	2.5.2 Example of using make
	2.5.3 Make and includefiles
	2.5.4 FreeBSD Makefiles
	2.5.5 More advanced uses of make

	2.6 Debugging
	2.6.1 The Debugger
	2.6.2 Running a program in the debugger
	2.6.3 Examining a core file
	2.6.4 Attaching to a running program

	2.7 Using Emacs as a Development Environment
	2.7.1 Emacs
	2.7.2 Configuring Emacs
	2.7.3 A sample .emacs file
	2.7.4 Extending the Range of Languages Emacs Understands

	2.8 Further Reading

	Chapter 3 Secure Programming
	3.1 Synopsis
	3.2 Secure Design Methodology
	3.3 Buffer Overflows
	3.3.1 Example Buffer Overflow
	3.3.2 Avoiding Buffer Overflows
	3.3.2.1 Compiler based runtime bounds checking
	3.3.2.2 Library based runtime bounds checking

	3.4 SetUID issues
	3.5 Limiting your program's environment
	3.5.1 FreeBSD's jail functionality
	3.5.2 POSIX®.1e Process Capabilities

	3.6 Trust
	3.7 Race Conditions

	Chapter 4 Localization and Internationalization L10N and I18N
	4.1 Programming I18N Compliant Applications
	4.1.1 A Call to Unify the I18N Effort
	4.1.2 Perl and Python

	4.2 Localized Messages with POSIX.1 Native Language Support (NLS)
	4.2.1 Organizing Localized Messages into Catalog Files
	4.2.2 Using the Catalog Files from the Source Code
	4.2.3 A Practical Example
	4.2.3.1 Reducing Strings to Localize

	4.2.4 Making use of bsd.nls.mk

	Chapter 5 Source Tree Guidelines and Policies
	5.1 Style Guidelines
	5.2 MAINTAINER on Makefiles
	5.3 Contributed Software
	5.3.1 Vendor Imports with SVN

	5.4 Encumbered Files
	5.5 Shared Libraries

	Chapter 6 Regression and Performance Testing
	6.1. Micro Benchmark Checklist
	6.2. The FreeBSD Source Tinderbox
	6.2.1. The index.cgi Script
	6.2.2. Official Build Servers
	6.2.3. Official Summary Site

	II. Interprocess Communication
	Chapter 7 Sockets
	7.1 Synopsis
	7.2 Networking and Diversity
	7.3 Protocols
	7.4 The Sockets Model
	7.5 Essential Socket Functions
	7.5.1 The ClientServer Difference
	7.5.1.1 The Common Elements
	7.5.1.2 Client Functions
	7.5.1.3 Server Functions

	7.6 Helper Functions
	7.6.1 gethostbyname
	7.6.2 getservbyname

	7.7 Concurrent Servers

	Chapter 8 IPv6 Internals
	8.1 IPv6/IPsec Implementation
	8.1.1 IPv6
	8.1.1.1 Conformance
	8.1.1.2 Neighbor Discovery
	8.1.1.3 Scope Index
	8.1.1.4 Plug and Play
	8.1.1.5 Generic tunnel interface
	8.1.1.6 Source Address Selection
	8.1.1.7 Jumbo Payload
	8.1.1.8 Loop prevention in header processing
	8.1.1.9 ICMPv6
	8.1.1.10 Applications
	8.1.1.11 Kernel Internals
	8.1.1.12 IPv4 mapped address and IPv6 wildcard socket
	8.1.1.13 sockaddrstorage

	8.1.2 Network Drivers
	8.1.3 Translator
	8.1.3.1 FAITH TCP relay translator

	8.1.4 IPsec
	8.1.4.1 Policy Management
	8.1.4.2 Key Management
	8.1.4.3 AH and ESP handling
	8.1.4.4 Conformance to RFCs and IDs
	8.1.4.5 ECN consideration on IPsec tunnels
	8.1.4.6 Interoperability

	III. Kernel
	Chapter 9 Building and Installing a FreeBSD Kernel
	9.1 Building a Kernel the Traditional Way
	9.2 Building a Kernel the New Way

	Chapter 10 Kernel Debugging
	10.1 Obtaining a Kernel Crash Dump
	10.1.1 Configuring the Dump Device
	10.1.2 Extracting a Kernel Dump

	10.2 Debugging a Kernel Crash Dump with kgdb
	10.3 Debugging a Crash Dump with DDD
	10.4 OnLine Kernel Debugging Using DDB
	10.5 OnLine Kernel Debugging Using Remote GDB
	10.6 Debugging a Console Driver
	10.7 Debugging Deadlocks
	10.8 Kernel debugging with Dcons
	10.8.1 Dcons over FireWire®
	10.8.1.1 Enabling FireWire and Dcons support on the target machine
	10.8.1.2 Enabling FireWire and Dcons support on the host machine
	10.8.1.3 Some general tips

	10.8.2 Dcons with KVM
	10.8.2.1 Using Dcons with KVM

	10.9 Glossary of Kernel Options for Debugging

	IV. Architectures
	Chapter 11 x86 Assembly Language Programming
	11.1 Synopsis
	11.2 The Tools
	11.2.1 The Assembler
	11.2.2 The Linker

	11.3 System Calls
	11.3.1 Default Calling Convention
	11.3.2 Alternate Calling Convention
	11.3.3 Which Convention Should You Use?
	11.3.4 Call Numbers
	11.3.4.1 The syscalls File

	11.4 Return Values
	11.4.1 Man Pages
	11.4.2 Where Are the Return Values?
	11.4.3 Where Is errno?
	11.4.4 Determining an Error Occurred

	11.5 Creating Portable Code
	11.5.1 Dealing with Function Numbers
	11.5.2 Dealing with Conventions
	11.5.3 Dealing with Other Portability Issues
	11.5.4 Using a Library
	11.5.5 Using an Include File

	11.6 Our First Program
	11.6.1 Assembling the Code
	11.6.1.1 Installing nasm

	11.7 Writing UNIX® Filters
	11.8 Buffered Input and Output
	11.8.1 How to Unread a Character

	11.9 Command Line Arguments
	11.10 UNIX Environment
	11.10.1 How to Find Environment Variables
	11.10.2 webvars
	11.10.2.1 CGI: A Quick Overview
	11.10.2.2 The Code

	11.11 Working with Files
	11.11.1 Finite State Machine
	11.11.1.1 The Final State
	11.11.1.2 The Output Counter

	11.11.2 Implementing FSM in Software
	11.11.3 Memory Mapped Files
	11.11.4 Determining File Size
	11.11.5 Changing the File Size
	11.11.6 ftuc

	11.12 OnePointed Mind
	11.12.1 CSV
	11.12.1.1 The Dark Side of Buffering

	11.13 Using the FPU
	11.13.1 Organization of the FPU
	11.13.1.1 The Packed Decimal Format

	11.13.2 Excursion to Pinhole Photography
	11.13.2.1 The Camera
	11.13.2.2 The Pinhole
	11.13.2.3 Focal Length
	11.13.2.4 The FNumber
	11.13.2.5 Normalized FNumber
	11.13.2.6 The FStop

	11.13.3 Designing the Pinhole Software
	11.13.3.1 Processing Program Input
	11.13.3.2 Offering Options
	11.13.3.3 The Output

	11.13.4 FPU Optimizations
	11.13.5 pinholeThe Code
	11.13.6 Using pinhole
	11.13.7 Scripting

	11.14 Caveats
	11.14.1 UNIX Is Protected
	11.14.2 UNIX Is an Abstraction

	11.15 Acknowledgements

	V. Appendices
	Bibliography

