A project model for the FreeBSD
Project

Niklas Saers

A project model for the FreeBSD Project
by Niklas Saers

Copyright © 2002-2005 Niklas Saers

Revision History

Revision 1.3 October, 2012

Remove hats held by specific people, these are documenévechelse.
Revision 1.2 April, 2005

Update one year of changes, replace statistics with tho2@Q#
Revision 1.1 July, 2004

First update within the FreeBSD tree

Revision 1.0 December 4th, 2003

Ready for commit to FreeBSD Documentation

Revision 0.7 April 7th, 2003

Release for review by the Documentation team

Revision 0.6 March 1st, 2003

Incorporated corrections noted by interviewees and rexisw
Revision 0.5 February 1st, 2003

Initial review by interviewees

Table of Contents
0] (=311 o] o PRSP Vi
L OVEIVIEW. ..ttt ettt ekt e st e ookttt e e ookttt e e oo at et e e oo kb et e e e e he e e e ea bt e e e e oA R et e e e e e bt e e e e e Eee e e e et b e ee e enne e e 1
P2 L= 101 (o o PO PP RPP SRR 2
2205 T o 1)/ PSSR 2.
2.2, PIOCESS. ...ttt ettt oottt e e h ettt e e o4 s aRRRe et oo e oo e e et e e et e e e e e e b e e e e e e e ean 2
FZC TR o - USSR PP 2
p S @ 1 U1 (o'0] o 1= PO 2.
2.5 FTEEBSDD......ctii i e e e e e ———— e e e et e e e ae e e e e aaaaees 2.
3 OrganiSAtIONAl STTUCTUIE ...ttt e ettt e e e e e e e bbbttt e eaeeeaa s e sbeaeeesaessnnbneseaaaaeeeaannnee 3.
ViV 111 g ToTo (o] (oo) VAN 0 e Lo =] PP UPRURRRPR 5..
4.1, DeVelOPMENTMOUEL.......oi ettt ettt e e e e e s e e s e e e e e e e nbebbeeeaaeee e s nnnes 5.
R S =Y [T TST TN o = U T 7= 6..
e T V[To [IS 4 o 4 = /TSP EPPT PR 1.
L = LSRR 10
L 1= gL | o oSSR SR PR 10
ST 0 O o o1 {1 o TU) (o PRSP 10
S 2 O o] 41 1 41111 A PP RP PP 10
TN R T o] (=T =T 4 PP T TP PPT PP PPPPPP 10
LN I Y -Vl =V 1= 6] T oSSR 10
5.2, OffiCIAI HALS ...cee ettt e s s st e s e bt e e e anbb e e e enneeas 11
5.2.1. Documentation ProjeCt MANAGEL..........iutiureeiereeeeeeeieeetreeeeseestestreeeeeeessaannnreaeeeeeeessannneenns 11
5.2.2. CVSUP Mirror Sit€ COOrAINALOL.cvveeeiisiiiieiieieee e e eseiet e eeeeesresreeee e e e s s esnnneeneeeaeeesennneenes 12
52,3 POSIMASIEL. ...ttt e e e e e e e 12
5.2.4. Release COOrINALION.........cuuiiiiiiiie ettt ettt ettt ettt e et esene e e e ennes 12
5.2.5. Public Relations & Corporate LIGISON...........cciuuueiiiieeeiieiiieiie s eeeseeaer e ee e e e s ssnnenaeeeaeeseenaens 12
I TS Y=o 0 1 1o =T SRR 13
5.2.7. S0UIrce REPOSIEOrY MANAGEL.....ueuiiiiieei ittt eee e e e e s et eeee s st ereeee e e s natraeeeeeeeesnsssnreeeees 13
7 & T = [T 1o 1Y F= U = o = PSR 13
5.2.9. WeD Sit€ MANAgEMENL.... ...ttt e e e e et e e e e e e er e e aa e as 13
5.2.10. POIS MANAGEL... ..o ittt ettt ettt ae e e e ee e e e e e e e aaaaaaaaeas 13
L2t I S =Y o = 1o 3 13
I I O] (BT = ol (= o S PSP UOP PR U PPP PP 14
5.2.13. GNATS AdMUNISIIALQL.........ieiiiiiiiieiieeiieeeieieieeeaereae ae—eareereeerrerstersrere—era—era———a—.—————.————————eeres 14
I YN o0 Lo L] (= A RO PURR P 14
5.2.15. Donations LiaisSon OffiCar.......cccociiiiiiiii e, 14
I N TN | 1111 o SO EPROPPPRPRPPPRSRN 14
5.3. Process depPendent NALS........coiiiiiiiiiiii ettt e e e e e e e e e e aan b e e e e e e e e e e e annan 14
RS T I o LT oL o o [T =1 (T TP P PRSP 15
RS I =W o] o U1 =] GO PRSP PPRUPRTRN 15
L RC 0 T 1Y, = 1] (o) SRR SPRPPIIN: 15
LR T B V= o o o) Ap PP PPPPRPPRS 15
B35, REBVIBWELS. ... 15
5.3.6. CVSUP MiIrror Sit€ AGMINL.....uuiiieieeeeeeiieiieiie e e e e e s e st eeees s st eeee e e e e s s snnnrneeeeeaeeeensnnnneees 15

(ST R (0 T&TSTS =T 16

6.1. Adding new and removing Old COMMIEEEES........oooii ittt eee e e e 16.
6.2. Adding/Removing an official CVSUP MIFTOF.........ooiiuiiiiiiiiiee e a e 17
SRS o] 4010111 1T g o [T Lo [T SRR TR 18
O I 0o £ =1 [=Tod o] o NPT 20
6.5. Development Of NEW FEALUIES. e e e e e eeeeee e eees 21
O |V =Vl 1 (=T F= T g (o] TSP TP UPRTRPP 22
O S (o] o] (=T 0 g =T oo] 1] Vo H PR ORI 23
6.8. Reacting to MISDENAVIOULii et e e e aees 24
6.9. REICASE ENGINEEIING ... eeteiieiee ettt e e e e e e e e e e e e et ettt et e e e e s e e sannbbee e et e e e e eeannseeeaeeeesaaatnnbeeeeeas 25
A Lo Lo LS PR PR PURTRTTN 28
A ST W] V7= £ To] (Y) SRR 28
A OA YT U o F OO PRSP 28
S T €1\ 1S T OO PP 28
A 1V - 14 g F= T o TP R PP PPR 28
ARSI =T £ (0] o= PP PR PP TPPRRPRRTPPRN 28
7.6. Pretty GOOU PrIVACY. uuiiiiieiieiiiiiiittteeeeesssststeeesessstateeeeeeaeeesassstasaeaeeeeessssansanaeeessannssnneneneeesnsanns 28
T 7. SECUNE SNEIL....coeeeiee e e 29
ST U] 0B o] £ 1= ox £SO P PP 30
S 70 I g L= oo T S5 TRSTU1 o] o] o] 1Y o SRR 30
8.2. The FreeBSD DocumMENtation PrOJECL........coi ittt e e s e ee e e e e e e e e e e eneneaeees 31
RETEIEINCES. ... ettt e et r e e e e e nae et e e Rttt 32

List of Figures

3-1.
3-2.
4-1.
4-2.
4-3.
5-1.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
8-1.

The Fre@BSD PrOjECE'S SIIUCTUIE. ... vuiieiiiiie e e i e ettt e e e e e e rmeeee e e e s sttt e e e e e eeesassstsseeeeeeaeeessannneeeeeeennnnnneees 3
The FreeBSD Project’s structure with COMMItters IBGALIES...........eveeiiiiiie e 3
Jargenssen’s model for change INtEQratioN.............oui i e e e e e e e e ennneas 5
THE FrEeEBSD IBlEASE tMBEeiii ettt ettt e et e bt e e sttt e e e s et e e e e e nbe e e e e e nnees 6.
The overall devVelopmMENT MOUEL.........oi i e e e e e e eeeeenrsreeeneeeeeeaaas 7
OVErVIEW Of OFfICIAI NALS.eeiiiiieiie et e e et e e e st ee e e snbaeeeeene 11
Process summary: adding @ NEW COMIMULLEL.ciiuiiiiiiiiiee e reee e e et e e et e e e s e e e s sneeeeenane 16
Process summary: remoVing @ COMMULLET..........ceiiiiiiiiitiieeeeeees s s stiieeeeessannre e ereeeeesassnnsrerreeeeeesessnnnnneens 17
Process summary: adding @ CVSUD MIITOLuuuiiiiia ettt e e e emeeee e e e e bbb be e e e e e e e s s e annnbeeseeeeaeeseannns 18
Process summary: A COMMIttEr COMMILS COOR.uuuiiiiiiiiiiiiiiiiee ettt e e e e e ee e s 19.
Process summary: A contributor COMMILS COAR........ooiiiiiiiiiiiiii e 20.
Process summary: COre ElECHIANS. ittt e e et e e e e e e e e s e bbb e e e eeeaaeseeeaeaaaeaas 21
Jagrgenssen’s model for change INtegration.............ooouiiioiiiiieii e 22
Process summary: Problem FEPOIILGuueieiiiie ettt e e e e e e st e e e e e e s enmnneaaeaeas 23
Process summary: release ENQINEEIING.oiiiuuiuuiiiiie ettt ee e ettt e e e e e e e e st b e e e e e e e e e e e aaneebeeaaaannnnes 26
Number of ports added between 1996 and 2005.............ooiii i 30.

Foreword

Up until now, the FreeBSD project has released a number afitbesl techniques to do different parts of work.
However, a project model summarising how the project iscétined is needed because of the increasing amount of
project members.This paper will provide such a project model and is donatatiéd-reeBSD Documentation
project where it can evolve together with the project so ithan at any point in time reflect the way the project
works. It is based onjaers, 2003

I would like to thank the following people for taking the tineeexplain things that were unclear to me and for
proofreading the document.

- Andrey A. Chernov dche@r eebsd. or g>

- Bruce A. Mah vmah@r eebsd. or g>

+ Dag-Erling Smgrgravdes @ r eebsd. or g>

- Giorgos Keramidas<er ami da@ r eebsd. or g>
« Ingvil Hovig <i ngvi | . hovi g@kat t eet at en. no>
« Jesper Holckgeh. i nf @bs. dk>

- John Baldwin £hb@ r eebsd. or g>

- John Polstra kdp@ r eebsd. or g>

« Kirk McKusick <nckusi ck@ r eebsd. or g>

« Mark Linimon < i ni non@ r eebsd. or g>

« Marleen Devos

- Niels Jgrgenssemsel sj @ uc. dk>

« Nik Clayton <ni k@ r eebsd. or g>

« Poul-Henning Kamp ghk @ r eebsd. or g>

- Simon L. Nielsen si non@ r eebsd. or g>

Notes

1. This goes hand-in-hand with Brooks’ law that “adding &eotperson to a late project will make it later” since it
will increase the communication neeBgoks, 1995A project model is a tool to reduce the communication
needs.

Vi

Chapter 1 Overview

A project model is a means to reduce the communications ea€rim a project. As shown bBfooks, 1995
increasing the number of project participants increasesdimmunication in the project exponentionally. FreeBSD
has during the past few years increased both its mass otaters and committers, and the communication in the
project has risen accordingly. This project model will geto reduce this overhead by providing an up-to-date
description of the project.

During the Core elections in 2002, Mark Murray stated “l anpaged to a long rule-book, as that satisfies
lawyer-tendencies, and is counter to the technocentticéithe project so badly needsFreeBSD, 2002B This

project model is not meant to be a tool to justify creating @siions for developers, but as a tool to facilitate
coordination. It is meant as a description of the projecth\ah overview of how the different processes are executed.
Itis an introduction to how the FreeBSD project works.

The FreeBSD project model will be described as of July 1€942G is based on the Niels Jgrgensen’s paper
[Jergensen, 2001FreeBSD’s official documents, discussions on FreeBSDingglists and interviews with
developers.

After providing definitions of terms used, this document wiltline the organisational structure (including role
descriptions and communication lines), discuss the metlogg model and after presenting the tools used for
process control, it will present the defined processesliiavill outline major sub-projects of the FreeBSD
project.

[FreeBSD, 2002ASection 1.2 and 1.3] give the vision and the architectualejines for the project. The vision is
“To produce the best UNIX-like operating system packagesids, with due respect to the original software tools
ideology as well as usability, performance and stabilifihe architectural guidelines help determine whether a
problem that someone wants to be solved is within the scopeegiroject

Chapter 2 Definitions

2.1. Activity

An “activity” is an element of work performed during the cearof a projectPMI, 2004. It has an output and leads
towards an outcome. Such an output can either be an inpubtbemactivity or a part of the process’ delivery.

2.2. Process

A “process” is a series of activities that lead towards aipaldr outcome. A process can consist of one or more
sub-processes. An example of a process is software design.

2.3. Hat

A “hat” is synonymous with role. A hat has certain resporigies in a process and for the process outcome. The hat
executes activities. It is well defined what issues the hatishbe contacted about by the project members and
people outside the project.

2.4. Outcome

An “outcome” is the final output of the process. This is synooys with deliverable, that is defined as “any
measurable, tangible, verifiable outcome, result or itesth mfust be produced to complete a project or part of a
project. Often used more narrowly in reference to an extelglaverable, which is a deliverable that is subject to
approval by the project sponsor or customer” B, 200Q. Examples of outcomes are a piece of software, a
decision made or a report written.

2.5. FreeBSD

When saying “FreeBSD” we will mean the BSD derivative UNIiXel operating system FreeBSD, whereas when
saying “the FreeBSD Project” we will mean the project orgation.

Chapter 3 Organisational structure

While no-one takes ownership of FreeBSD, the FreeBSD osgéioh is divided into core, committers and
contributors and is part of the FreeBSD community that lsesind it.

Figure 3-1. The FreeBSD Project’s structure

A 269 Committers N

~3000 Contributors \

Number of committers has been determined by going throug8 ©BYs from January 1st, 2004 to December 31st,
2004 and contributors by going through the list of contrids$ and problem reports.

The main resource in the FreeBSD community is its developeescommitters and contributors. It is with their
contributions that the project can move forward. Regulaetipers are referred to as contributors. As by January
1st, 2003, there are an estimated 5500 contributors on tjeqbr

Committers are developers with the privilege of being abledmmit changes. These are usually the most active
developers who are willing to spend their time not only imétigng their own code but integrating code submitted by
the developers who do not have this privilege. They are alsaévelopers who elect the core team, and they have
access to closed discussions.

The project can be grouped into four distinct separate pamts most developers will focus their involvement in one
part of FreeBSD. The four parts are kernel developmentlarsgdevelopment, ports and documentation. When
referring to the base system, both kernel and userland istnea

This split changes our triangle to look like this:

Figure 3-2. The FreeBSD Project’s structure with committess in categories

-3
e
El
El
g

& =0 5

g
*
i
=

Og AU
S puDlLas)

~3000 Contributors \

Chapter 3 Organisational structure

Number of committers per area has been determined by gaiaggh CVS logs from January 1st, 2004 to
December 31st, 2004. Note that many committers work in plelireas, making the total number higher than the
real number of committers. The total number of committetbat time was 269.

Committers fall into three groups: committers who are omgaerned with one area of the project (for instance file
systems), committers who are involved only with one sujgataand committers who commit to different parts of
the code, including sub-projects. Because some commitienison different parts, the total number in the
committers section of the triangle is higher than in the &toangle.

The kernel is the main building block of FreeBSD. While thenlend applications are protected against faults in
other userland applications, the entire system is vuldetaberrors in the kernel. This, combined with the vast
amount of dependencies in the kernel and that it is not easge@ll the consequences of a kernel change, demands
developers with a relative full understanding of the kerivalltiple development efforts in the kernel also requires a
closer coordination than userland applications do.

The core utilities, known as userland, provide the intexfédoat identifies FreeBSD, both user interface, shared
libraries and external interfaces to connecting clientsréhtly, 162 people are involved in userland development
and maintenance, many being maintainers for their own faneccode. Maintainership will be discussed in the
Maintainershigsection.

Documentation is handled Byhe FreeBSD Documentation Projectd includes all documents surrounding the
FreeBSD project, including the web pages. There were d2@@g 101 people making commits to the FreeBSD
Documentation Project.

Ports is the collection of meta-data that is needed to makeae packages build correctly on FreeBSD. An
example of a port is the port for the web-browser Mozilla.dhtains information about where to fetch the source,
what patches to apply and how, and how the package shouldtadiéd on the system. This allows automated tools
to fetch, build and install the package. As of this writinggtte are more than 12600 ports availableanging from
web servers to games, programming languages and most giplieadion types that are in use on modern
computers. Ports will be discussed further in the secTioa Ports Subproject

Notes

1. Statistics are generated by counting the number of aritrithe file fetched by portsdb by April 1st, 2005.
portsdb is a part of the port sysutils/portupgrade.

Chapter 4 Methodology model

4.1. Development model

There is no defined model for how people write code in FreeBEiwever, Niels Jgrgenssen has suggested a model
of how written code is integrated into the project.

Figure 4-1. Jgrgenssen’s model for change integration

code

\! review

I pre-comrmit
test \xle-\'-ﬂ::]:]nvm
release \‘])Ell‘u]]--l

debugging N production

release

The “development release” is the FreeBSD-CURRENT ("-CURRE branch and the “production release” is the
FreeBSD-STABLE branch ("-STABLE"Jgrgensen, 200.1

This is a model for one change, and shows that after codinvg|agers seek community review and try integrating it
with their own systems. After integrating the change in® dievelopment release, called FreeBSD-CURRENT, it is
tested by many users and developers in the FreeBSD commafiggy it has gone through enough testing, it is
merged into the production release, called FreeBSD-STARIfess each stage is finished successfully, the
developer needs to go back and make modifications in the catleeatart the process. To integrate a change with
either -CURRENT or -STABLE is called making a commit.

Jargensen found that most FreeBSD developers work indillidimeaning that this model is used in parallel by
many developers on the different ongoing developmenttsfférdeveloper can also be working on multiple changes,
so that while he is waiting for review or people to test one orerf his changes, he may be writing another change.

As each commit represents an increment, this is a massivedlgmental model. The commits are in fact so frequent
that during one yedr, 85427 commits were made, making a daily average of 233 ctsnmi

Within the “code” bracket in Jgrgensen’s figure, each prognar has his own working style and follows his own
development models. The bracket could very well have bekedcalevelopment” as it includes requirements
gathering and analysis, system and detailed design, ingsitation and verification. However, the only output from
these stages is the source code or system documentation.

From a stepwise model’s perspective (such as the wateréaleth, the other brackets can be seen as further
verification and system integration. This system integrai also important to see if a change is accepted by the
community. Up until the code is committed, the developerae o choose how much to communicate about it to the
rest of the project. In order for -CURRENT to work as a buffar that bright ideas that had some undiscovered
drawbacks can be backed out) the minimum time a commit shmauld -CURRENT before merging it to -STABLE

is 3 days. Such a merge is referred to as an MFC (Merge Fronetur

Chapter 4 Methodology model

It is important to notice the word “change”. Most commits dut oontain radical new features, but are maintenance
updates.

The only exceptions from this model are security fixes andhgha to features that are deprecated in the -CURRENT
branch. In these cases, changes can be committed diretily t8 TABLE branch.

In addition to many people working on the project, there aamyrelated projects to the FreeBSD Project. These are
either projects developing brand new features, sub-piof@@rojects whose outcome is incorporated into FreeBSD
2, These projects fit into the FreeBSD Project just like regdévelopment efforts: they produce code that is
integrated with the FreeBSD Project. However, some of tHiéwa Ports and Documentation) have the privilege of
being applicable to both branches or commit directly to B&BIRRENT and -STABLE.

There is no standards to how design should be done, nor igrdesllected in a centralised repository. The main
design is that of 4.4BSD.As design is a part of the “Code” bracket in Jgrgenssen’s inidgup to every
developer or sub-project how this should be done. Even ifldsgn should be stored in a central repository, the
output from the design stages would be of limited use as ftifereihces of methodologies would make them poorly
if at all interoperable. For the overall design of the prbjéue project relies on the sub-projects to negotiate fit
interfaces between each other rather than to dictate atie.

4.2. Release branches

The releases of FreeBSD is best illustrated by a tree withyrheanches where each major branch represents a major
version. Minor versions are represented by branches of #jerraranches.

In the following release tree, arrows that follow one-amotih a particular direction represent a branch. Boxes with
full lines and diamonds represent official releases. Box#sdotted lines represent the development branch at that
time. Security branches are represented by ovals. Diandifidsfrom boxes in that they represent a fork, meaning
a place where a branch splits into two branches where onedifrinches becomes a sub-branch. For example, at
4.0-RELEASE the 4.0-CURRENT branch split into 4-STABLE &n@-CURRENT. At 4.5-RELEASE, the branch
forked off a security branch called RELENG_4 5.

Figure 4-2. The FreeBSD release tree

4-STABLE

Chapter 4 Methodology model

The latest -CURRENT version is always referred to as -CURREMile the latest -STABLE release is always
referred to as -STABLE. In this figure, -STABLE refers to 4ABLE while -CURRENT refers to 5.0-CURRENT
following 5.0-RELEASE. FreeBSD, 2002E

A “major release” is always made from the -CURRENT branchwileer, the -CURRENT branch does not need to
fork at that point in time, but can focus on stabilising. Arample of this is that following 3.0-RELEASE,
3.1-RELEASE was also a continuation of the -CURRENT-braacil -CURRENT did not become a true
development branch until this version was released and-8i8ABLE branch was forked. When -CURRENT
returns to becoming a development branch, it can only bevi@t by a major release. 5-STABLE is predicted to be
forked off 5.0-CURRENT at around 5.3-RELEASE. It is not UBHSTABLE is forked that the development branch
will be branded 6.0-CURRENT.

A “minor release” is made from the -CURRENT branch followimgnajor release, or from the -STABLE branch.

Following and including, 4.3-RELEASEwhen a minor release has been made, it becomes a “secuaitgtt This
is meant for organisations that do not want to follow the -8T& branch and the potential new/changed features it
offers, but instead require an absolutely stable envirerinoaly updating to implement security updates.

Each update to a security branch is called a “patchlevel’elery security enhancement that is done, the patchlevel
number is increased, making it easy for people tracking thadh to see what security enhancements they have
implemented. In cases where there have been especialiyisegcurity flaws, an entire new release can be made
from a security branch. An example of this is 4.6.2-RELEASE.

4.3. Model summary

To summarise, the development model of FreeBSD can be sdaka dlowing tree:

Chapter 4 Methodology model

Figure 4-3. The overall development model

R—D R—D
‘\‘Iq—% t’...% Mew development efforts
_LL‘ _LLI —I‘H _I‘Ij _LL‘ _LLI _"|_| Development
* t i y v y y L L Current Branch
~ ~ ~ ~ ~
by by hY Ay by
\\ \\ \\ \\ \\ Merge Fram Current

Stable Branch

\ \ \ Yooy
\ \ \ \ Security Branches

N N T Y T N TN
\ N \ \ \ \

\ \ \ \ \ A Old, unsupported versions

The tree of the FreeBSD development with ongoing developeféorts and continuous integration.

The tree symbolises the release versions with major vesspawning new main branches and minor versions being
versions of the main branch. The top branch is the -CURRENRdT where all new development is integrated, and
the -STABLE branch is the branch directly below it.

Clouds of development efforts hang over the project wheveldpers use the development models they see fit. The
product of their work is then integrated into -CURRENT whignendergoes parallel debugging and is finally merged
from -CURRENT into -STABLE. Security fixes are merged fronTABLE to the security branches.

Notes

1. The period from January 1st, 2004 to December 31st, 2084xamined to find this number.

2. Forinstance, the development of the Bluetooth stackestas a sub-project until it was deemed stable enough to
be merged into the -CURRENT branch. Now it is a part of the ése2BSD system.

3. According to Kirk McKusick, after 20 years of developin@lLX operating systems, the interfaces are for the
most part figured out. There is therefore no need for muclgdebkiowever, new applications of the system and
new hardware leads to some implementations being more bihéfian those that used to be preferred. One

Chapter 4 Methodology model

example is the introduction of web browsing that made thenabT CP/IP connection a short burst of data rather
than a steady stream over a longer period of time.

The first release this actually happened for was 4.5-RERE/Aut security branches were at the same time
created for 4.3-RELEASE and 4.4-RELEASE.

There is a terminology overlap with respect to the wordbBk", which leads to some confusion. The -STABLE
branchis still a development branch, whose goal is to beulmfmost people. If it is never acceptable for a
system to get changes that are not announced at the timeejplisyetd, that system should run a security branch.

Chapter 5 Hats

Many committers have a special area of responsibility. €mekes are called hats. These hats can be either project
roles, such as public relations officer, or maintainer foedain area of the code. Because this is a project where
people give voluntarily of their spare time, people withigsed hats are not always available. They must therefore
appoint a deputy that can perform the hat's role in his or beeace. The other option is to have the role held by a
group.

Many of these hats are not formalised. Formalised hats hatiarter stating the exact purpose of the hat along with
its privileges and responsibilities. The writing of suctadiers is a new part of the project, and has thus yet to be
completed for all hats. These hat descriptions are not stiectnalisation, rather a summary of the role with links to
the charter where available and contact addresses.

5.1. General Hats

5.1.1. Contributor

A Contributor contributes to the FreeBSD project either dseeloper, as an author, by sending problem reports, or
in other ways contributing to the progress of the projectoAtdbutor has no special privileges in the FreeBSD
project. FreeBSD, 2002F

5.1.2. Committer

A person who has the required privileges to add his code arrdeatation to the repository. A committer has made a
commit within the past 12 monthdfeeBSD, 2000PAn active committer is a committer who has made an average
of one commit per month during that time.

It is worth noting that there are no technical barriers tospre someone, once having gained commit privileges to
the main- or a sub-project, to make commits in parts of thajigot’s source the committer did not specifically get
permission to modify. However, when wanting to make modiitee to parts a committer has not been involved in
before, he/she should read the logs to see what has happethésiarea before, and also read the MAINTAINER
file to see if the maintainer of this part has any special retguen how changes in the code should be made

5.1.3. Core Team

The core team is elected by the committers from the pool ofroittars and serves as the board of directors of the
FreeBSD project. It promotes active contributors to corterst assigns people to well-defined hats, and is the final
arbiter of decisions involving which way the project shob&lheading. As by July 1st, 2004, core consisted of 9
members. Elections are held every two years.

5.1.4. Maintainership

Maintainership means that that person is responsible fat vghallowed to go into that area of the code and has the
final say should disagreements over the code occur. Thisvies@roactive work aimed at stimulating contributions
and reactive work in reviewing commits.

10

Chapter 5 Hats

With the FreeBSD source comes the MAINTAINERS file that corg@a one-line summary of how each maintainer
would like contributions to be made. Having this notice aodtact information enables developers to focus on the
development effort rather than being stuck in a slow cowedpnce should the maintainer be unavailable for some
time.

If the maintainer is unavailable for an unreasonably longaeof time, and other people do a significant amount of
work, maintainership may be switched without the maintésregpproval. This is based on the stance that
maintainership should be demonstrated, not declared.

Maintainership of a particular piece of code is a hat thabisheld as a group.

5.2. Official Hats

The official hats in the FreeBSD Project are hats that are moliess formalised and mainly administrative roles.
They have the authority and responsibility for their ardae Tollowing illustration shows the responsibility lines.
After this follows a description of each hat, including whdasiheld by.

Figure 5-1. Overview of official hats

All boxes consist of groups of committers, except for thaethboxes where the holders are not necessarily
committers. The flattened circles are sub-projects andistoofdhoth committers and non-committers of the main
project.

5.2.1. Documentation project manager

The FreeBSD Documentation Projecthitect is responsible for defining and following up doeutation goals for
the committers in the Documentation project.

11

Chapter 5 Hats

Hat held by: The DocEng teandsceng@r eeBSD. or g>. The DocEng Charter
(http://www.freebsd.org/internal/doceng.html).

5.2.2. CVSup Mirror Site Coordinator

The CVSup Mirror Site Coordinator coordinates all ©¢Sup Mirror Site Admirs to ensure that they are
distributing current versions of the software, that theyehthhe capacity to update themselves when major updates
are in progress, and making it easy for the general publiatbtfieir closest CVSup mirror.

Hat currently held by: The CVSup-master teanvsup- nast er @r eeBSD. or g>.

5.2.3. Postmaster

The Postmaster is responsible for mail being correctlywdedid to the committers’ email address. He is also
responsible for ensuring that the mailing lists work andusti¢éake measures against possible disruptions of mail
such as having troll-, spam- and virus-filters.

Hat currently held by: the Postmaster Teapost mast er @r eeBSD. or g>.

5.2.4. Release Coordination

The responsibilities of the Release Engineering Team are

- Setting, publishing and following a release schedule féiciaf releases
- Documenting and formalising release engineering proesdur
- Creation and maintenance of code branches

- Coordinating with the Ports and Documentation teams to haugpdated set of packages and documentation
released with the new releases

- Coordinating with the Security team so that pending rekease not affected by recently disclosed vulnerabilities.
Further information about the development process is abvialin therelease engineerirggction.

Hat held by: the Release Engineering teamne @r eeBSD. or g>. The Release Engineering Charter
(http:/lwww.freebsd.org/releng/charter.html).

5.2.5. Public Relations & Corporate Liaison

The Public Relations & Corporate Liaison’s responsitahtare:

- Making press statements when happenings that are impoottre FreeBSD Project happen.
- Being the official contact person for corporations that aoeking close with the FreeBSD Project.
- Take steps to promote FreeBSD within both the Open Sourcentomity and the corporate world.

- Handle the “freebsd-advocacy” mailing list.

12

Chapter 5 Hats

This hat is currently not occupied.

5.2.6. Security Officer

The Security Officer's main responsibility is to coordinatformation exchange with others in the security
community and in the FreeBSD project. The Security Office$® responsible for taking action when security
problems are reported and promoting proactive developb®heviour when it comes to security.

Because of the fear that information about vulnerabilitiesy leak out to people with malicious intent before a patch
is available, only the Security Officer, consisting of ana#fi a deputy and twGore teanmembers, receive

sensitive information about security issues. Howeverréate or implement a patch, the Security Officer has the
Security Officer Teamsecuri t y-t eam@r eeBSD. or g>to help do the work.

5.2.7. Source Repository Manager

The Source Repository Manager is the only one who is allowetirectly modify the repository without using the
SVN tool. It is his/her responsibility to ensure that technimadblems that arise in the repository are resolved
quickly. The source repository manager has the authoripatk out commits if this is necessary to resolve a CVS
technical problem.

Hat held by: the Source Repository Managev s@r eeBSD. or g>.

5.2.8. Election Manager

The Election Manager is responsible for tBere electiorprocess. The manager is responsible for running and
maintaining the election system, and is the final authotigusd minor unforeseen events happen in the election
process. Major unforeseen events have to be discussedheiftote team

Hat held only during elections.

5.2.9. Web site Management

The Web site Management hat is responsible for coordinétimgollout of updated web pages on mirrors around the
world, for the overall structure of the primary web site ané system it is running upon. The management needs to
coordinate the content withhe FreeBSD Documentation Projectd acts as maintainer for the “www” tree.

Hat held by: the FreeBSD Webmastergwu@r eeBSD. or g>.

5.2.10. Ports Manager

The Ports Manager acts as a liaison betwElea Ports Subprojeeind the core project, and all requests from the
project should go to the ports manager.

Hat held by: the Ports Management Teapokt ngr @r eeBSD. or g>. The Portmgr charter
(http:/lwww.freebsd.org/portmgr/charter.html).

13

Chapter 5 Hats

5.2.11. Standards

The Standards hat is responsible for ensuring that FreeB®&iplées with the standards it is committed to , keeping
up to date on the development of these standards and ngtifygeBSD developers of important changes that allows
them to take a proactive role and decrease the time betwdandesds update and FreeBSD’s compliancy.

Hat currently held by: Garrett Wollmanas! | man@-r eeBSD. or g>.

5.2.12. Core Secretary

The Core Secretary’s main responsibility is to write dréftand publish the final Core Reports. The secretary also
keeps the core agenda, thus ensuring that no balls are dfoppesolved.

Hat currently held by: Gabor Palipgj @ eeBSD. or g>.

5.2.13. GNATS Administrator

The GNATS Administrator is responsible for ensuring thatthaintenance database is in working order, that the
entries are correctly categorised and that there are ntdrestries.

Hat currently held by: the Bugmeister Teamugnei st er @r eeBSD. or g>.

5.2.14. Bugmeister
The Bugmeister is the person in charge of the problem repouiy

Hat currently held by: the Bugmeister Teamugnei st er @r eeBSD. or g>,

5.2.15. Donations Liaison Officer

The task of the donations liaison officer is to match the deyeis with needs with people or organisations willing to
make a donation. The Donations Liaison Charter is availabte (http://www.freebsd.org/donations/)

Hat held by: the Donations Liaison Officelenat i ons @r eeBSD. or g>.

5.2.16. Admin
(Also called “FreeBSD Cluster Admin”)

The admin team consists of the people responsible for adirating the computers that the project relies on for its
distributed work and communication to be synchroniseditisists mainly of those people who have physical access
to the servers.

Hat held by: the Admin teamadni n@-r eeBSD. or g>.

14

Chapter 5 Hats

5.3. Process dependent hats

5.3.1. Report originator

The person originally responsible for filing a Problem Repor

5.3.2. Bugbuster

A person who will either find the right person to solve the peof, or close the PR if it is a duplicate or otherwise
not an interesting one.

5.3.3. Mentor

A mentor is a committer who takes it upon him/her to introdaceew committer to the project, both in terms of
ensuring the new committers setup is valid, that the new citi@miknows the available tools required in his/her work
and that the new committer knows what is expected of himfh&rims of behaviour.

5.3.4. Vendor

The person(s) or organisation whom external code comesdrahwhom patches are sent to.

5.3.5. Reviewers

People on the mailing list where the request for review idquhs

5.3.6. CVSup Mirror Site Admin

A CVSup Mirror Site Admin has accesses to a server that he/sbe to mirror the CVS repository. The admin
works with theCVSup Mirror Site Coordinataio ensure the site remains up-to-date and is following thne g
policy of official mirror sites.

15

Chapter 6 Processes

The following section will describe the defined project mrsses. Issues that are not handled by these processes
happen on an ad-hoc basis based on what has been customarnteimilar cases.

6.1. Adding new and removing old committers

The Core team has the responsibility of giving and removomgmiit privileges to contributors. This can only be
done through a vote on the core mailing list. The ports andidh@ntation sub-projects can give commit privileges to
people working on these projects, but have to date not rechaweh privileges.

Normally a contributor is recommended to core by a commifier contributors or outsiders to contact core asking
to be a committer is not well thought of and is usually rejdcte

If the area of particular interest for the developer potdhtioverlaps with other committers’ area of maintainepshi
the opinion of those maintainers is sought. However, itag|frently this committer that recommends the developer.

When a contributor is given committer status, he is assign@eéntor. The committer who recommended the new
committer will, in the general case, take it upon himself éate new committers mentor.

When a contributor is given his commit bitPEGGRsigned email is sent from eith@ore SecretaryPorts Manageor
nik@freebsd.org to both admins@freebsd.org, the assigregdor, the new committer and core confirming the
approval of a new account. The mentor then gathers a pas$wer&SH 2public key and PGP key from the new
committer and sends them A&@imin. When the new account is created, the mentor activates thenddit and
guides the new committer through the rest of the initial pssc

Figure 6-1. Process summary: adding a new committer

ote or
TECOMIMEN-
dation

Core

Mentor

Recommending /
Committer Accept? —p < Recommend?
yes
Contributor Sendsa Submit I\;akte
Contribution details mn?mll

-

b
Administrators Create /

Account

Introduce
contributor

When a contributor sends a piece of code, the receiving cttermniay choose to recommend that the contributor is
given commit privileges. If he recommends this to core, thélvote on this recommendation. If they vote in

16

Chapter 6 Processes

favour, a mentor is assigned the new committer and the newitben has to email his details to the administrators
for an account to be created. After this, the new committatiiset to make his first commit. By tradition, this is by
adding his name to the committers list.

Recall that a committer is considered to be someone who mamdted code during the past 12 months. However, it
is not until after 18 months of inactivity have passed thahout privileges are eligible to be revoked.

[FreeBSD, 2002HThere are, however, no automatic procedures for doing Boisreactions concerning commit
privileges not triggered by time, ssection 1.5.8

Figure 6-2. Process summary: removing a committer

Core Inititate
committar
cleanup

Made commit
past 18 months?
Administrators Remove
account

Committers

When Core decides to clean up the committers list, they chiackhas not made a commit for the past 18 months.
Committers who have not done so have their commit bits redoke

Itis also possible for committers to request that their catbihbe retired if for some reason they are no longer
going to be actively committing to the project. In this casean also be restored at a later time by core, should the
committer ask.

Roles in this process:

1. Core team

2. Contributor

3. Committer

4. Maintainership

5. Mentor

[FreeBSD, 20007 FreeBSD, 2002H FreeBSD, 2002

6.2. Adding/Removing an official CVSup Mirror

A CVSupmirror is a replica of the official CVSup master that contatishe up-to-date source code for all the
branches in the FreeBSD project, ports and documentation.

17

Chapter 6 Processes

Adding an official CVSup mirror starts with the potent@V/Sup Mirror Site Admininstalling the “cvsup-mirror”
package. Having done this and updated the source code wiilr@ site, he now runs a fairly recent unofficial
CVSup mirror.

Deciding he has a stable environment, the processing ptveenetwork capacity and the storage capacity to run an
official mirror, he mails theCVSup Mirror Site Coordinatowho decides whether the mirror should become an
official mirror or not.

In making this decision, th€VSup Mirror Site Coordinatdnas to determine whether that geographical area needs
another mirror site, if the mirror administrator has thdlsko run it reliably, if the network bandwidth is adequate
and if the master server has the capacity to server anothesrmi

If CVSup Mirror Site Coordinatadecides that the mirror should become an official mirror, s an
authentication key from the mirror admin that he installstgomirror admin can update the mirror from the master
server.

Figure 6-3. Process summary: adding a CVSup mirror

Coordinatar Need
anather Capacity? Reguest key
mirror? yes yes|
A

o>

Admin Request
official
status

When a CVSup mirror administrator of an unofficial mirrorex to become an official mirror site, the CVSup
coordinator decides if another mirror is needed and if tiesefficient capacity to accommodate it. If so, an
authorisation key is requested and the mirror is given acethe main distribution site and added to the list of
official mirrors.

Tools used in this process:

.« CVSup
« SSH2

Hats involved in this process:

« CVSup Mirror Site Coordinator
« CVSup Mirror Site Admin

18

Chapter 6 Processes

6.3. Committing code

The committing of new or modified code is one of the most freqpeocesses in the FreeBSD project and will
usually happen many times a day. Committing of code can omlydme by a “committer”. Committers commit
either code written by themselves, code submitted to thecode submitted throughgroblem report

When code is written by the developer that is non-trivialsheuld seek a code review from the community. This is
done by sending mail to the relevant list asking for revieefdde submitting the code for review, he should ensure it
compiles correctly with the entire tree and that all relétasts run. This is called “pre-commit test”. When
contributed code is received, it should be reviewed by tmemiter and tested the same way.

When a change is committed to a part of the source that hasdoeg¢ributed from an outsidéendor, the maintainer
should ensure that the patch is contributed back to the vemtis is in line with the open source philosophy and
makes it easier to stay in sync with outside projects as tt@hpa do not have to be reapplied every time a new
release is made.

After the code has been available for review and no furthangks are necessary, the code is committed into the
development branch, -CURRENT. If the change applies for8TABLE branch or the other branches as well, a
“Merge From Current” ("MFC") countdown is set by the committAfter the number of days the committer chose
when setting the MFC have passed, an email will automayitallsent to the committer reminding him to commit it
to the -STABLE branch (and possibly security branches ah.v@@hly security critical changes should be merged to
security branches.

Delaying the commit to -STABLE and other branches allows'farallel debugging” where the committed code is
tested on a wide range of configurations. This makes chang&FABLE to contain fewer faults and thus giving the
branch its name.

Figure 6-4. Process summary: A committer commits code

Cammitter 3 Code
Vifrite Code yas—‘ Submit Code

4

Maintainer [Caode ok Send Code
na yes ¥ to vendor

—code has L4
problems ‘

Developer
Community

Review
Code

code ok

User
Community

Vendor Include Accept
Code Code?

Review
Code

When a committer has written a piece of code and wants to coifyme first needs to determine if it is trivial
enough to go in without prior review or if it should first be i@wed by the developer community. If the code is
trivial or has been reviewed and the committer is not the taaier, he should consult the maintainer before

19

Chapter 6 Processes

proceeding. If the code is contributed by an outside vertlenmaintainer should create a patch that is sent back to
the vendor. The code is then committed and the deployed bysties. Should they find problems with the code, this
will be reported and the committer can go back to writing apalf a vendor is affected, he can choose to
implement or ignore the patch.

Figure 6-5. Process summary: A contributor commits code

Contributor Write Code - Submit Code

Wendor Accer
pt Include
VM Code

b4 1

Maintainer Code ok Send Code .
@WS* 1o vendar »{ Submit Code |—

I
h J

Develn
C aveloper code has Review
problems 3 Code
User Review
Co i L1
mimunity e —

The difference when a contributor makes a code contribusi¢imat he submits the code through the send-pr
program. This report is picked up by the maintainer who rgsithe code and commits it.

Hats included in this process are:

1. Committer
2. Contributor
3. Vendor

4. Reviewer

[FreeBSD, 20011 Jgrgensen, 2001

6.4. Core election

Core elections are held at least every two yeakine core members are elected. New elections are held if the
number of core members drops below seven. New electiondsaia held should at least 1/3 of the active
committers demand this.

When an election is to take place, core announces this dtdeeseks in advance, and appoints an election manager
to run the elections.

20

Chapter 6 Processes

Only committers can be elected into core. The candidated toegibmit their candidacy at least one week before the
election starts, but can refine their statements until thimgstarts. They are presented in the candidates list
(http://election.uk.freebsd.org/candidates.html) aWkvriting their election statements, the candidates rmsswar

a few standard questions submitted by the election manager.

During elections, the rule that a committer must have cotechiuring the 12 past months is followed strictly. Only
these commiitters are eligible to vote.

When voting, the committer may vote once in support of up temominees. The voting is done over a period of
four weeks with reminders being posted on “developers”imglist that is available to all committers.

The election results are released one week after the atemtids, and the new core team takes office one week after
the results have been posted.

Should there be a voting tie, this will be resolved by the nevambiguously elected core members.

\otes and candidate statements are archived, but the esciiie not publicly available.

Figure 6-6. Process summary: Core elections

Election
M. . Announce
lanager Prepare elections results
3
32
Candidate Announce
candidature
Committer Vote
Core L
Annugnus - Select election
elections manager

New Core
Take

Office

Core announces the election and selects an election makBgprepares the elections, and when ready, candidates
can announce their candidacies through submitting theieistents. The committers then vote. After the vote is over,
the election results are announced and the new core teamdéice.

Hats in core elections are:

. Coreteam
. Committer

- Election Manager

[FreeBSD, 2000 FreeBSD, 2002B FreeBSD, 20025

21

Chapter 6 Processes

6.5. Development of new features

Within the project there are sub-projects that are workingew features. These projects are generally done by one
person Jgrgensen, 20Q01Every project is free to organise development as it seeldditvever, when the project is
merged to the -CURRENT branch it must follow the project gliites. When the code has been well tested in the
-CURRENT branch and deemed stable enough and relevant {8 TLE branch, it is merged to the -STABLE
branch.

The requirements of the project are given by developer wigteguests from the community in terms of direct
requests by mail, Problem Reports, commercial fundingHerdevelopment of features, or contributions by the
scientific community. The wishes that come within the resualtity of a developer are given to that developer who
prioritises his time between the request and his wishes.dneon way to do this is maintain a TODO-list maintained
by the project. Items that do not come within someone’s nasibdity are collected on TODO-lists unless someone
volunteers to take the responsibility. All requests, tldéstribution and follow-up are handled by tEBNATS tool.

Requirements analysis happens in two ways. The requesisaime in are discussed on mailing lists, both within the
main project and in the sub-project that the request beltimgsis spawned by the request. Furthermore, individual
developers on the sub-project will evaluate the feasjbilftthe requests and determine the prioritisation between
them. Other than archives of the discussions that have alker, no outcome is created by this phase that is merged
into the main project.

As the requests are prioritised by the individual develsperthe basis of doing what they find interesting, necessary
or are funded to do, there is no overall strategy or prionsatf what requests to regard as requirements and
following up their correct implementation. However, mosvdlopers have some shared vision of what issues are
more important, and they can ask for guidelines from theassdeengineering team.

The verification phase of the project is two-fold. Before eoitting code to the current-branch, developers request
their code to be reviewed by their peers. This review is ferrttost part done by functional testing, but also code
review is important. When the code is committed to the braadiroader functional testing will happen, that may
trigger further code review and debugging should the coddeloave as expected. This second verification form
may be regarded as structural verification. Although themualfects themselves may write formal tests such as unit
tests, these are usually not collected by the main projethasm usually removed before the code is committed to the
current branch?

6.6. Maintenance

It is an advantage to the project to for each area of the sdwawe at least one person that knows this area well.
Some parts of the code have designated maintainers. Otieggle-facto maintainers, and some parts of the system
do not have maintainers. The maintainer is usually a person the sub-project that wrote and integrated the code,
or someone who has ported it from the platform it was writ@n*The maintainer’s job is to make sure the code is
in sync with the project the code comes from if it is contrémlitode, and apply patches submitted by the community
or write fixes to issues that are discovered.

The main bulk of work that is put into the FreeBSD project ismtenance.Jagrgensen, 200has made a figure
showing the life cycle of changes.

22

Chapter 6 Processes

Figure 6-7. Jgrgenssen’s model for change integration

code

\! review

I pre-commit
test \xle.\'r{::]:]llvm
release \‘])Ell‘u]]--l
debugging N production

release

Here “development release” refers to the -CURRENT brandltewhroduction release” refers to the -STABLE
branch. The “pre-commit test” is the functional testing lagpdevelopers when asked to do so or trying out the code
to determine the status of the sub-project. “Parallel dgmgj is the functional testing that can trigger more reyiew
and debugging when the code is included in the -CURRENT Mranc

As of this writing, there were 269 committers in the proj&ghen they commit a change to a branch, that constitutes
a new release. It is very common for users in the communitsaitkta particular branch. The immediate existence of
a new release makes the changes widely available right améhglbows for rapid feedback from the community.

This also gives the community the response time they expeissoies that are of importance to them. This makes
the community more engaged, and thus allows for more andrtfettdback that again spurs more maintenance and
ultimately should create a better product.

Before making changes to code in parts of the tree that hag@hiunknown to the committer, the committer is
required to read the commit logs to see why certain featueesrglemented the way they are in order not to make
mistakes that have previously either been thought througbsmlved.

6.7. Problem reporting

FreeBSD comes with a problem reporting tool called “seridhat is a part of the GNATS package. All users and
developers are encouraged to use this tool for reportinigl@nas in software they do not maintain. Problems include
bug reports, feature requests, features that should beeethand notices of new versions of external software that
is included in the project.

Problem reports are sent to an email address where it igéasieto the GNATS maintenance databas&ugbuster
classifies the problem and sends it to the correct group antaiaer within the project. After someone has taken
responsibility for the report, the report is being analysdds analysis includes verifying the problem and thinking
out a solution for the problem. Often feedback is requiredithe report originator or even from the FreeBSD
community. Once a patch for the problem is made, the origimaty be asked to try it out. Finally, the working

patch is integrated into the project, and documented ifiegiple. It there goes through the regular maintenance cycle
as described in sectianaintenanceThese are the states a problem report can be in: open, adafgedback,

patched, suspended and closed. The suspended state isfofuvther progress is not possible due to the lack of
information or for when the task would require so much woikt thobody is working on it at the moment.

23

Chapter 6 Processes

Figure 6-8. Process summary: problem reporting

Report Provide
iafinat Report s Problem
Originator groblam Iaddmonlal t—nio salvad?
information yes
I 'y b
¥
Bugbuster Classify and

assign PR na

|
¥

Maintainer Werify a5 enough Integrade patch
problem informationy, -~ ¥es»| Make patch Closs PR

A problem is reported by the report originator. It is therssified by a bugbuster and handed to the correct
maintainer. He verifies the problem and discusses the probiéh the originator until he has enough information to
create a working patch. This patch is then committed andtbielem report is closed.

The roles included in this process are:

1. Report originator
2. Maintainership

3. Bugbuster

[FreeBSD, 2002C[FreeBSD, 2002P

6.8. Reacting to misbehaviour

[FreeBSD, 200thas a number of rules that committers should follow. Howgtéappens that these rules are
broken. The following rules exist in order to be able to reéachisbehaviour. They specify what actions will result in
how long a suspension the committer’s commit privileges.

- Committing during code freezes without the approval of tieéeBRse Engineering team - 2 days
- Committing to a security branch without approval - 2 days

« Commit wars - 5 days to all participating parties

- Impolite or inappropriate behaviour - 5 days

[Lehey, 2002

For the suspensions to be efficient, any single core membdangaement a suspension before discussing it on the
“core” mailing list. Repeat offenders can, with a 2/3 votedoye, receive harsher penalties, including permanent
removal of commit privileges. (However, the latter is alwayewed as a last resort, due to its inherent tendency to
create controversy). All suspensions are posted to theetdpers” mailing list, a list available to committers only.

24

Chapter 6 Processes

Itis important that you cannot be suspended for making teaharrors. All penalties come from breaking social
etiquette.

Hats involved in this process:

. Coreteam

. Committer

6.9. Release engineering

The FreeBSD project has a Release Engineering team witimeijpad release engineer that is responsible for
creating releases of FreeBSD that can be brought out to #recasmmunity via the net or sold in retail outlets. Since
FreeBSD is available on multiple platforms and releaseth®@different architectures are made available at the same
time, the team has one person in charge of each architegliste.there are roles in the team responsible for
coordinating quality assurance efforts, building a paeksgt and for having an updated set of documents. When
referring to the release engineer, a representative faelerase engineering team is meant.

When a release is coming, the FreeBSD project changes shagsvhat. A release schedule is made containing
feature- and code-freezes, release of interim releasetharihal release. A feature-freeze means no new features
are allowed to be committed to the branch without the releagéneers’ explicit consent. Code-freeze means no
changes to the code (like bugs-fixes) are allowed to be camunitithout the release engineers explicit consent. This
feature- and code-freeze is known as stabilising. Durieg¢tease process, the release engineer has the full
authority to revert to older versions of code and thus "badk changes should he find that the changes are not
suitable to be included in the release.

There are three different kinds of releases:

1. .0 releases are the first release of a major version. Thesganched of the -CURRENT branch and have a
significantly longer release engineering cycle due to ttetabie nature of the -CURRENT branch

2. Xreleases are releases of the -STABLE branch. They aszlsted to come out every 4 months.

3. .X.Y releases are security releases that follow the .XdlrtaThese come out only when sufficient security fixes
have been merged since the last release on that branch. ewefg are rarely included, and the security team is
far more involved in these than in regular releases.

For releases of the -STABLE-branch, the release process 4&adays before the anticipated release date. During
the first phase, the first 15 days, the developers merge whagels they have had in -CURRENT that they want to
have in the release to the release branch. When this peraa@isthe code enters a 15 day code freeze in which only
bug fixes, documentation updates, security-related fixdsranor device driver changes are allowed. These changes
must be approved by the release engineer in advance. At tfirertieg of the last 15 day period a release candidate is
created for widespread testing. Updates are less likelg @llbwed during this period, except for important bug

fixes and security updates. In this final period, all releasesonsidered release candidates. At the end of the release
process, a release is created with the new version numbkrding binary distributions on web sites and the

creation of a CD-ROM images. However, the release is notidered "really released” untiiRGRsigned message
stating exactly that, is sent to the mailing list freebsde@mce; anything labelled as a "release" before that maly wel
be in-process and subject to change before the PGP-sigresageeis sent.

25

Chapter 6 Processes

The releases of the -CURRENT-branch (that is, all reledsdsend with “.0") are very similar, but with twice as

long timeframe. It starts 8 weeks prior to the release withoamcement of the release time line. Two weeks into the
release process, the feature freeze is initiated and peafoce tweaks should be kept to a minimum. Four weeks
prior to the release, an official beta version is made availaivo weeks prior to release, the code is officially
branched into a new version. This version is given releasdidate status, and as with the release engineering of
-STABLE, the code freeze of the release candidate is haddéfmvever, development on the main development
branch can continue. Other than these differences, theselkengineering processes are alike.

.0 releases go into their own branch and are aimed mainlyrigtadopters. The branch then goes through a period of
stabilisation, and it is not until theelease Engineering Teaecides the demands to stability have been satisfied
that the branch becomes -STABLE and -CURRENT targets themajor version. While this for the majority has
been with .1 versions, this is not a demand.

Most releases are made when a given date that has been detangdaough time since the previous release
comes. A target is set for having major releases every 18msa@rtd minor releases every 4 months. The user
community has made it very clear that security and stalskiynot be sacrificed by self-imposed deadlines and
target release dates. For slips of time not to become toodthgregards to security and stability issues, extra
discipline is required when committing changes to -STABLE.

Figure 6-9. Process summary: release engineering

Make
release >
schedule

!

Make branch »

Feature Code
freeze freeze

h 4

Release .
candidate " release

L e |

lease considered stable

Build
packages

Publish

Wam mirrors > ralease

These are the stages in the release engineering procedgl®idlease candidates may be created until the release
is deemed stable enough to be released.

[FreeBSD, 2002E

Notes

1. Thefirst Core election was held September 2000

2. More and more tests are however performed when buildiegyktem (“make world”). These tests are however
a very new addition and no systematic framework for theds tes/e yet been created.

26

Chapter 6 Processes

3. sendmail and named are examples of code that has beendhfiengeother platforms.

4. Many commercial vendors use these images to create CDsRO&flare sold in retail outlets.

27

Chapter 7 Tools

The major support tools for supporting the developmentgsea@are CVS, CVSup, Perforce, GNATS, Mailman and
OpenSSH. Except for CVSup, these are externally develapsl. tThese tools are commonly used in the open
source world.

7.1. Subversion (SVN)

Subversion (“SVN”) is a system to handle multiple versiohteat files and tracking who committed what changes
and why. A project lives within a “repository” and differeversions are considered different “branches”.

7.2. CVSup

CVSup is a software package for distributing and updatirigctions of files across a network. It consists of a client
program, cvsup, and a server program, cvsupd. The packégjpigd specifically for distributing CVS repositories,
and by taking advantage of CVS’ properties, it performs tgslenuch faster than traditional systems.

7.3. GNATS

GNATS is a maintenance database consisting of a set of mtiiadk bugs at a central site. It supports the bug
tracking process for sending and handling bugs as well ayipgeand updating the database and editing bug

reports. The project uses one of its many client interfdsesd-pr”, to send “Problem Reports” by email to the
projects central GNATS server. The committers have alsoamebcommand-line clients available.

7.4. Mailman

Mailman is a program that automates the management of méigits. The FreeBSD Project uses it to run 16 general
lists, 60 technical lists, 4 limited lists and 5 lists with &\¢ommit logs. It is also used for many mailing lists set up
and used by other people and projects in the FreeBSD comynGaheral lists are lists for the general public,
technical lists are mainly for the development of specifeaarof interest, and closed lists are for internal
communication not intended for the general public. The migjof all the communication in the project goes
through these 85 listdfeeBSD, 2003AAppendix C].

7.5. Perforce

Perforce is a commercial software configuration managesystém developed by Perforce Systems that is available
on over 50 operating systems. It is a collection of client# bmound the Perforce server that contains the central file
repository and tracks the operations done upon it. Thetsligre both clients for accessing the repository and
administration of its configuration.

28

Chapter 7 Tools

7.6. Pretty Good Privacy

Pretty Good Privacy, better known as PGP, is a cryptosyssinga public key architecture to allow people to
digitally sign and/or encrypt information in order to enssecure communication between two parties. A signature
is used when sending information out many recipients, énglthem to verify that the information has not been
tampered with before they received it. In the FreeBSD Ptdfes is the primary means of ensuring that information
has been written by the person who claims to have writtemd,ret altered in transit.

7.7. Secure Shell

Secure Shell is a standard for securely logging into a resyaem and for executing commands on the remote
system. It allows other connections, called tunnels, tost@ldished and protected between the two involved
systems. This standard exists in two primary versions, ahdwersion two is used for the FreeBSD Project. The
most common implementation of the standard is OpenSSHsleapart of the project’s main distribution. Since its
source is updated more often than FreeBSD releases, tsévatsion is also available in the ports tree.

29

Chapter 8 Sub-projects

Sub-projects are formed to reduce the amount of commuaitateded to coordinate the group of developers.
When a problem area is sufficiently isolated, most commtioicavould be within the group focusing on the
problem, requiring less communication with the groups tt@ymunicate with than were the group not isolated.

8.1. The Ports Subproject

A “port” is a set of meta-data and patches that are neededdio, feompile and install correctly an external piece of
software on a FreeBSD system. The amount of ports have growtr@mendous rate, as shown by the following

figure.

Figure 8-1. Number of ports added between 1996 and 2005

14608

12888

18888 [

8008 -

6ae8

Hunber of ports

4808 -

2808

a I I I I I I I I I I
1995 1996 1997 1998 1999 2088 2081 2882 2083 2084 2885 2086

Figure 8-1is taken from the FreeBSD web site (http://www.freebsdpmogs/growth/status.png). It shows the
number of ports available to FreeBSD in the period 1995 tb2@0ooks like the curve has first grown
exponentionally, and then since the middle of 2001 growesity.

As the external software described by the port often is undetinued development, the amount of work required to
maintain the ports is already large, and increasing. Thaddwhto the ports part of the FreeBSD project gaining a
more empowered structure, and is more and more becoming prejdrt of the FreeBSD project.

Ports has its own core team with tRerts Manageas its leader, and this team can appoint committers without
FreeBSD Core’s approval. Unlike in the FreeBSD Project,lzelot of maintenance frequently is rewarded with a
commit bit, the ports sub-project contains many active hadiers that are not committers.

30

Chapter 8 Sub-projects

Unlike the main project, the ports tree is not branched. ¥xeease of FreeBSD follows the current ports collection
and has thus available updated information on where to fiagrams and how to build them. This, however, means
that a port that makes dependencies on the system may neadatodriations depending on what version of
FreeBSD it runs on.

With an unbranched ports repository it is not possible taguotze that any port will run on anything other than
-CURRENT and -STABLE, in particular older, minor releasglsere is neither the infrastructure nor volunteer time
needed to guarantee this.

For efficiency of communication, teams depending on Pautsh as the release engineering team, have their own
ports liaisons.

8.2. The FreeBSD Documentation Project

The FreeBSD Documentation project was started January. F988n the initial group of a project leader, four team
leaders and 16 members, they are now a total of 44 committkesdocumentation mailing list has just under 300
members, indicating that there is quite a large communayiad it.

The goal of the Documentation project is to provide good aseful documentation of the FreeBSD project, thus
making it easier for new users to get familiar with the systard detailing advanced features for the users.

The main tasks in the Documentation project are to work oreciprojects in the “FreeBSD Documentation Set”,
and translate the documentation to other languages.

Like the FreeBSD Project, documentation is split in the shna@ches. This is done so that there is always an
updated version of the documentation for each version. @oatpmentation errors are corrected in the security
branches.

Like the ports sub-project, the Documentation project gggoint documentation committers without FreeBSD
Core’s approval.FreeBSD, 2003B

The Documentation project has a primer. This is used bothttoduce new project members to the standard tools
and syntaxes and acts as a reference when working on thefproje

31

References

[Brooks, 1995] Frederick P. Brooks, 1975, 1995, 020183588@ison-Wesley Pub Cdhe Mythical Man-Month:
Essays on Software Engineering, Anniversary Edition (2nd Edition).

[Saers, 2003] Niklas Saers, 20@8project model for the FreeBSD Project: Candidatus Scientiarumthesis.

[Jgrgensen, 2001] Niels Jargensen, 20iting it All in the Trunk: Incremental Software Development in the
FreeBSD Open Source Project.

[PMI, 2000] Project Management Institute, 1996, 2000, 0488)-23-0, Project Management Institute,
PennsylvaniaPMBOK Guide: A Guide to the Project Management Body of Knowledge, 2000 Edition.

[FreeBSD, 2000A] 200X ore Bylaws.
[FreeBSD, 2002A] 200ZreeBSD Developer’s Handbook.
[FreeBSD, 2002B] 200X ore team election 2002.

[FreeBSD, 2002C] Dag-Erling Smargrav and Hiten Pandya2208e FreeBSD Documentation Projeetoblem
Report Handling Guidelines.

[FreeBSD, 2002D] Dag-Erling Smgrgrav, 2002, The FreeBSbubeentation Projectjriting FreeBSD Problem
Reports.

[FreeBSD, 2001] 2001, The FreeBSD Documentation Profemnmitters Guide.

[FreeBSD, 2002E] Murray Stokely, 2002, The FreeBSD Documatérn ProjectFreeBSD Release Engineering.
[FreeBSD, 2003A] The FreeBSD Documentation ProjErteBSD Handbook.

[FreeBSD, 2002F] 2002, The FreeBSD Documentation Projaeitributors to FreeBSD.

[FreeBSD, 2002G] 2002, The FreeBSD Projéuire team el ections 2002.

[FreeBSD, 2002H] 2002, The FreeBSD Projé&zmmmit Bit Expiration Policy: 2002/04/06 15: 35: 30.

[FreeBSD, 200211 2002, The FreeBSD Projadtyv Account Creation Procedure: 2002/08/19 17:11:27.

[FreeBSD, 2003B] 2002, The FreeBSD Documentation ProfeeeBSD DocEng Team Charter: 2003/03/16 12:17.

[Lehey, 2002] Greg Lehey, 2002, Greg Leh@&yp yearsin the trenches: The evolution of a software project.

32

	A project model for the FreeBSD Project
	Table of Contents
	List of Figures
	Foreword
	Chapter 1 Overview
	Chapter 2 Definitions
	2.1. Activity
	2.2. Process
	2.3. Hat
	2.4. Outcome
	2.5. FreeBSD

	Chapter 3 Organisational structure
	Chapter 4 Methodology model
	4.1. Development model
	4.2. Release branches
	4.3. Model summary

	Chapter 5 Hats
	5.1. General Hats
	5.1.1. Contributor
	5.1.2. Committer
	5.1.3. Core Team
	5.1.4. Maintainership

	5.2. Official Hats
	5.2.1. Documentation project manager
	5.2.2. CVSup Mirror Site Coordinator
	5.2.3. Postmaster
	5.2.4. Release Coordination
	5.2.5. Public Relations & Corporate Liaison
	5.2.6. Security Officer
	5.2.7. Source Repository Manager
	5.2.8. Election Manager
	5.2.9. Web site Management
	5.2.10. Ports Manager
	5.2.11. Standards
	5.2.12. Core Secretary
	5.2.13. GNATS Administrator
	5.2.14. Bugmeister
	5.2.15. Donations Liaison Officer
	5.2.16. Admin

	5.3. Process dependent hats
	5.3.1. Report originator
	5.3.2. Bugbuster
	5.3.3. Mentor
	5.3.4. Vendor
	5.3.5. Reviewers
	5.3.6. CVSup Mirror Site Admin

	Chapter 6 Processes
	6.1. Adding new and removing old committers
	6.2. Adding/Removing an official CVSup Mirror
	6.3. Committing code
	6.4. Core election
	6.5. Development of new features
	6.6. Maintenance
	6.7. Problem reporting
	6.8. Reacting to misbehaviour
	6.9. Release engineering

	Chapter 7 Tools
	7.1. Subversion (SVN)
	7.2. CVSup
	7.3. GNATS
	7.4. Mailman
	7.5. Perforce
	7.6. Pretty Good Privacy
	7.7. Secure Shell

	Chapter 8 Subprojects
	8.1. The Ports Subproject
	8.2. The FreeBSD Documentation Project

	References

