
H

E

V

E

A User Do
umentation

Version 2.09

Lu
 Maranget

∗

August 20, 2013

Abstra
t

H

E

V

E

A is a L

A

T

E

X to HTML translator. The input language is a fairly
omplete subset of L

A

T

E

X2ε (old

L

A

T

E

X style is also a

epted) and the output language is HTML that is (hopefully)
orre
t with respe
t to

version 5.

H

E

V

E

A understands L

A

T

E

X ma
ro de�nitions. Simple user style �les are understood with little or no

modi�
ations. Furthermore, H

E

V

E

A
ustomisation is done by writing L

A

T

E

X
ode.

H

E

V

E

A is written in Obje
tive Caml, as many lexers. It is quite fast and �exible. Using H

E

V

E

A it

is possible to translate large do
uments su
h as manuals, books, et
. very qui
kly. All do
uments are

translated as one single HTML �le. Then, the output �le
an be
ut into smaller �les, using the
ompanion

program H

A

C

H

A.

H

E

V

E

A
an also be instru
ted to output plain text or info �les.

Information on H

E

V

E

A is available at http://hevea.inria.fr/.

∗
Inria Ro
quen
ourt � BP 105, 78153 Le Chesnay Cedex. Lu
.Maranget�inria.fr

1

Contents

A Tutorial 7

1 How to get started 7

2 Style �les 7

2.1 Standard base styles . 7

2.2 Other base styles . 7

2.3 Other style �les . 8

3 A note on style 9

3.1 Spa
ing, Paragraphs . 9

3.2 Math mode . 11

3.3 Warnings . 13

3.4 Commands . 13

3.5 Style
hoi
es . 13

4 How to dete
t and
orre
t errors 13

4.1 H

E

V

E

A does not know a ma
ro . 14

4.2 H

E

V

E

A in
orre
tly interprets a ma
ro . 15

4.3 H

E

V

E

A
rashes . 16

5 Making H

E

V

E

A and L

A

T

E

X both happy 18

5.1 File loading . 18

5.2 The hevea pa
kage . 18

5.3 Comments . 20

6 With a little help from L

A

T

E

X 21

6.1 The image �le . 21

6.2 A toy example . 21

6.3 In
luding Posts
ript images . 22

6.4 Using �lters . 23

7 Cutting your do
ument into pie
es with H

A

C

H

A 25

7.1 Simple usage . 25

7.2 Advan
ed usage . 26

7.3 More Advan
ed Usage . 28

8 Generating HTML
onstru
ts 31

8.1 High-Level Commands . 31

8.2 More on in
luded images . 32

8.3 Internal ma
ros . 33

8.4 The rawhtml environment . 36

8.5 Examples . 37

8.6 The do
ument
harset . 38

9 Support for style sheets 38

9.1 Overview . 38

9.2 Changing the style of all instan
es of an environment . 39

9.3 Changing the style of some instan
es of an environment . 39

9.4 Whi
h
lass a�e
ts what . 40

2

9.5 A few examples . 40

9.6 Mis
ellaneous . 43

10 Customising H

E

V

E

A 44

10.1 Simple
hanges . 44

10.2 Changing defaults for type-styles . 44

10.3 Changing the interfa
e of a
ommand . 45

10.4 Che
king the optional argument within a
ommand . 45

10.5 Changing the format of images . 45

10.6 Storing images in a separate dire
tory . 46

10.7 Controlling imagen from do
ument sour
e . 46

11 Other output formats 46

11.1 Text . 46

11.2 Info . 47

B Referen
e manual 47

B.1 Commands and Environments 47

B.1.1 Command Names and Arguments . 47

B.1.2 Environments . 48

B.1.3 Fragile Commands . 48

B.1.4 De
larations . 48

B.1.5 Invisible Commands . 48

B.1.6 The \\ Command . 48

B.2 The Stru
ture of the Do
ument 48

B.3 Senten
es and Paragraphs 49

B.3.1 Spa
ing . 49

B.3.2 Paragraphs . 49

B.3.3 Footnotes . 50

B.3.4 A

ents and spe
ial symbols . 50

B.4 Se
tioning 50

B.4.1 Se
tioning Commands . 50

B.4.2 The Appendix . 51

B.4.3 Table of Contents . 51

Use H

A

C

H

A . 51

B.5 Classes, Pa
kages and Page Styles 51

B.5.1 Do
ument Class . 51

B.5.2 Pa
kages and Page Styles . 52

B.5.3 The Title Page and Abstra
t . 52

B.6 Displayed Paragraphs 52

B.6.1 Quotation and Verse . 52

B.6.2 List-Making environments . 53

B.6.3 The list and trivlist environments . 53

B.6.4 Verbatim . 53

3

B.7 Mathemati
al Formulae 53

B.7.1 Math Mode Environment . 53

B.7.2 Common Stru
tures . 54

B.7.3 Square Root . 54

B.7.4 Uni
ode and mathemati
al symbols . 54

B.7.5 Putting one thing above/below/inside . 54

B.7.6 Math a

ents . 55

B.7.7 Spa
ing . 55

B.7.8 Changing Style . 56

B.8 De�nitions, Numbering 56

B.8.1 De�ning Commands . 56

B.8.2 De�ning Environments . 56

B.8.3 Theorem-like Environments . 56

B.8.4 Numbering . 56

B.8.5 The ifthen Pa
kage . 57

B.9 Figures and Other Floating Bodies 57

B.10 Lining It Up in Columns 58

B.10.1 The tabbing Environment . 58

B.10.2 The array and tabular environments . 58

B.11 Moving Information Around 59

B.11.1 Files . 59

B.11.2 Cross-Referen
es . 59

B.11.3 Bibliography and Citations . 60

B.11.4 Splitting the Input . 61

B.11.5 Index and Glossary . 61

B.11.6 Terminal Input and Output . 61

B.12 Line and Page Breaking 61

B.12.1 Line Breaking . 61

B.12.2 Page Breaking . 61

B.13 Lengths, Spa
es and Boxes 62

B.13.1 Length . 62

B.13.2 Spa
e . 62

B.13.3 Boxes . 62

B.14 Pi
tures and Colours 62

B.14.1 The pi
ture environment and the graphi
s Pa
kage . 62

B.14.2 The
olor Pa
kage . 63

B.15 Font Sele
tion 65

B.15.1 Changing the Type Style . 65

B.15.2 Changing the Type Size . 66

B.15.3 Spe
ial Symbols . 66

4

B.16 Extra Features 66

B.16.1 T

E

X ma
ros . 66

B.16.2 Command De�nition inside Command De�nition . 68

B.16.3 Date and time . 68

B.16.4 Fan
y se
tioning
ommands . 69

B.16.5 Targeting Windows . 69

B.17 Implemented Pa
kages 70

B.17.1 AMS
ompatibility . 70

B.17.2 The array and tabularx pa
kages . 70

B.17.3 The
al
 pa
kage . 71

B.17.4 Spe
ifying the do
ument input en
oding, the inputen
 pa
kage 71

B.17.5 More symbols . 72

B.17.6 The
omment pa
kage . 72

B.17.7 Multiple Indexes with the index and multind pa
kages 72

B.17.8 �Natural� bibliographies, the natbib pa
kage . 73

B.17.9 Multiple bibliographies . 73

B.17.10 Support for babel . 73

B.17.11 The url pa
kage . 74

B.17.12 Verbatim text: the moreverb and verbatim pa
kages . 75

B.17.13 Typesetting
omputer languages: the listings pa
kage 75

B.17.14 (Non-)Multi page tabular material . 76

B.17.15 Typesetting inferen
e rules: the mathpartir pa
kage . 76

B.17.16 The ifpdf pa
kage . 79

B.17.17 Typesetting Thai . 79

B.17.18 Hanging paragraphs . 79

B.17.19 The
leveref pa
kage . 79

B.17.20 Other pa
kages . 80

C Pra
ti
al information 80

C.1 Usage 80

C.1.1 H

E

V

E

A usage . 80

C.1.2 H

A

C

H

A usage . 82

C.1.3 esponja usage . 83

C.1.4 bibhva usage . 83

C.1.5 imagen usage . 84

C.1.6 Invoking hevea, ha
ha and imagen . 85

C.1.7 Using make . 85

C.2 Browser
on�guration 87

C.3 Availability 87

C.3.1 Internet stu� . 87

C.3.2 Law . 87

C.4 Installation 88

C.4.1 Requirements . 88

C.4.2 Prin
iples . 88

C.5 Other L

A

T

E

X to HTML translators 88

5

C.6 A
knowledgements 89

6

Part A

Tutorial

1 How to get started

Assume that you have a �le, a.tex, written in L

A

T

E

X, using the arti
le, book or report style. Then,

translation is a
hieved by issuing the
ommand:

hevea a.tex

Probably, you will get some warnings. If H

E

V

E

A does not
rash, just ignore them for the moment (Se
tion 4

explains how to
orre
t errors).

If everything goes �ne, this will produ
e a new �le, a.html, whi
h you
an visualise through a HTML browser.

If you wish to experiment H

E

V

E

A on small L

A

T

E

X sour
e fragments, then laun
h H

E

V

E

A without arguments.

H

E

V

E

A will read its standard input and print the translation on its standard output. For instan
e:

hevea

$x \in \math
al{E}$

^D

<span style="font-style:itali
">x ∈ <span style="
olor:red"><span style="font-style:itali
">E

In
identally, noti
e that the symbol �∈� translates to the appropriate numeri
al
hara
ter referen
e and that
the
alligraphi
 letter �E� renders as a red �E�. You
an �nd some more elaborate examples

1

in the on-line

do
umentation.

2 Style �les

L

A

T

E

X style �les are �les that are not intended to produ
e output, but de�ne do
ument layout parameters,

ommands, environments, et
.

2.1 Standard base styles

The base style of a L

A

T

E

X do
ument is the argument to the \do
ument
lass
ommand (\do
umentstyle

in old style). Normally, the base style of a do
ument de�nes the stru
ture and appearan
e of the whole

do
ument.

H

E

V

E

A really knows about two L

A

T

E

X base styles, arti
le and book. Additionally, the report base style is

re
ognized and
onsidered equivalent to book and the seminar base style for making slides is re
ognized and

implemented by small additions on the arti
le style.

Base style style is implemented by an H

E

V

E

A spe
i�
 style �le style.hva. More pre
isely, H

E

V

E

A interprets

\do
ument
lass{style} by attempting to load the �le style.hva (see se
tion C.1.1.1 on where H

E

V

E

A sear
hes

for �les). Thus, at the moment, H

E

V

E

A distribution in
ludes the �les, arti
le.hva, book.hva, et
.

2.2 Other base styles

Do
uments whose base style is not re
ognized by H

E

V

E

A
an be pro
essed when the unknown base style is a

derivation of a re
ognized base style.

Let us assume that do
.tex uses an exoti
 base style su
h as a
m
onf. Then, typing hevea do
.tex

will yield an error, sin
e H

E

V

E

A
annot �nd the a
m
onf.hva �le:

1

http://hevea.inria.fr/examples/index.html

7

hevea.opt do
.tex

do
.tex:1: Warning: Cannot find file: a
m
onf.hva

do
.tex:1: Error while reading LaTeX: No base style

Adios

This situation is avoided by invoking H

E

V

E

A with the known base style �le arti
le.hva as an extra

argument:

hevea arti
le.hva do
.tex

The extra argument instru
ts H

E

V

E

A to load its arti
le.hva style �le before pro
essing do
.tex. It will

then ignore the do
ument base style spe
i�ed by \do
ument
lass (or \do
umentstyle).

Observe that the �x above works be
ause the a
m
onf and arti
le base styles look the same to the

do
ument (i.e. they de�ne the same ma
ros). More generally, most base styles that are neither arti
le nor

book are in fa
t variations on either two of them. However, su
h styles usually provides extra ma
ros. If

users do
uments use these ma
ros, then users should also instru
t H

E

V

E

A about them (see se
tion 4.1).

Finally, it is important to noti
e that renaming a base style �le style.
ls into style.hva will not work in

general. As a matter of fa
t, base style �les are T

E

X and not L

A

T

E

X sour
e and H

E

V

E

A will almost surely fail

on T

E

X-ish input.

2.3 Other style �les

A L

A

T

E

X do
ument usually loads additional style �les, by using the
ommands \input or \usepa
kage or

\input.

2.3.1 Files loaded with \input

Just like L

A

T

E

X, H

E

V

E

A rea
ts to the
onstru
t \input{�le} by loading the �le �le. (if I got it right, H

E

V

E

A

even follows T

E

X's
razy
onventions on .tex extensions).

As it is often the
ase, assume that the do
ument do
.tex has a \input{myma
ros.tex} instru
tion

in its preamble, where myma
ros.tex gathers
ustom de�nitions. Hopefully, only a few ma
ros give rise to

trouble: ma
ros that performs �ne typesetting or T

E

Xish ma
ros. Su
h ma
ros need to be rewritten, using

basi
 L

A

T

E

X
onstru
ts (se
tion 4 gives examples of ma
ro-rewriting). The new de�nitions are best
olle
ted

in a style �le, myma
ros.hva for instan
e. Then, do
.tex is to be translated by issuing the
ommand:

hevea myma
ros.hva do
.tex

The �le myma
ros.hva is pro
essed before do
.tex (and thus before myma
ros.tex). As a
onsequen
e

of H

E

V

E

A behaviour with respe
t to de�nition and rede�nition (see se
tion B.8.1), the ma
ro de�nitions in

myma
ros.hva take pre
eden
e over the ones in myma
ros.tex, provided the do
ument original de�nitions

(the ones in myma
ros.tex) are performed by \new
ommand (or \newenvironment).

Another situation is when H

E

V

E

A fails to pro
ess a whole style �le. Usually, this means that H

E

V

E

A
rashes

on that style �le. The basi
 idea is then to write a myma
ros.hva style �le that
ontains alternative de�nitions

for all the
ommands de�ned in myma
ros.sty. Then, H

E

V

E

A should be instru
ted to load myma
ros.hva

and not to load myma
ros.tex. This is done by invoking hevea as follows:

hevea myma
ros.hva -e myma
ros.tex do
.tex

Of
ourse, myma
ros.hva must now
ontain repla
ements for all the useful ma
ros of myma
ro.tex.

2.3.2 Files loaded with \usepa
kage

As far as I know, L

A

T

E

X rea
ts to the
onstru
t \usepa
kage{name} by loading the �le name.sty. H

E

V

E

A

rea
ts in a similar, but di�erent, manner, by loading the �le name.hva.

8

H

E

V

E

A distributions already in
ludes quite a few .hva implementations of famous pa
kages (see se
-

tion B.17). When a given pa
kage (say zorglub) is not implemented, the situation may not be as bad as it

may seem �rst. Hopefully, you are only using a few
ommands from pa
kage zorglub, and you feel
on�dent

enough to implement them yourself. Then, it su�
es to put your de�nitions in �le zorglub.hva and H

E

V

E

A

will rea
t to \usepa
kage{zorglub} by loading zorglub.hva.

See se
tion B.5.2 for the full story on \usepa
kage.

3 A note on style

3.1 Spa
ing, Paragraphs

Sequen
e of spa
es normally are translated into one single spa
e. Newlines in the input do
ument undergo a

spe
ial treatement. A newline triggers a spe
ial s
anning mode that reads all following spa
es and newlines.

In
ase at least one additional newline
hara
ter is read, then H

E

V

E

A exe
utes the \par
ommand. Otherwise,

H

E

V

E

A outputs a single newline
hara
ter. This pro
ess approximates T

E

X pro
ess for introdu
ting paragraph

breaks and, as a result, empty lines produ
e paragraph breaks.

Spa
e after
ommands with no argument is skipped (as in L

A

T

E

X) � however this is not true in math

mode, as explained in se
tion 3.2.1.

The following two subse
tions des
ribe management of paragraphs and spa
es after
ommand sequen
es

in greater detail. They
an be skipped in �rst reading.

3.1.1 Spurious Paragraphs

Paragraphs are rendered by the means of p elements. H

E

V

E

A is a bit simplisti
 in breaking paragraphs

and spurious paragraphs may be present in the �nal HTML do
ument. Normally, as H

E

V

E

A never outputs

p elements whose
ontents is made of spa
es only, this should not happen very often. Unfortunately, some

ommands do not produ
e any output in L

A

T

E

X, while they do produ
e output in H

E

V

E

A: those
ommands

are \label, \index et
. H

E

V

E

A translates \label{name} into the an
hor . As a result,

the following sour
e fragment will introdu
e a spurious paragraph.

This a first paragraph.

\label{label}

This is another paragraph.

Indeed, whe have the following translation:

<p>This a first paragraph.</p>

<p></p>

<p>This is another paragraph.</p>

Most of the time, su
h extra paragraphs remain unnoti
ed. Of
ourse, they
an be supressed by erasing

one of the empty lines. For instan
e:

This a first paragraph.

\label{label}

This is another paragraph.

A similar situation o

urs when a se
tioning
ommand is followed by \label and a paragraph break:

\se
tion*{A se
tion}\label{se
tion:label}

First paragraph.

9

Produ
ed HTML is, after a few
osmeti
 simpli�
ations:

<h2
lass="se
tion">A se
tion</h2>

<p><a id="se
tion:label"></p>

<p>First paragraph.</p>

Output is so, be
ause
losing the element h2 implies re-opening a new paragraph. Here, two possible re-

writing of sour
e are:

\se
tion*{A\label{se
tion:label} se
tion}

First paragraph.

\se
tion*{A se
tion}

\label{se
tion:label}First paragraph.

In all
ases, this amounts to avoiding a paragraph whose
ontents
onsists in a sole \label
ommand.

Spurious paragraphs are more easily seen by running hevea with the
ommand-line option -dv, whi
h

instru
ts hevea to add border on some of the elements it produ
es, in
luding p elements.

3.1.2 Spa
es after Commands

Spa
e after
ommands with no argument is skipped. Consider the following example:

\new
ommand{\open}{(}

\new
ommand{\
lose}{)}

\open text opened by ``\verb+\open+''

and
losed by ``\verb+\
lose+''\
lose.

We get:

(text opened by �\open� and
losed by �\
lose�).

In the output above, the spa
e after \open does not �nd its way to the output.

More generally, H

E

V

E

A tries to emulate L

A

T

E

X behaviour in all situations, but dis
repan
ies probably

exist. Thus, users are invited to make expli
it what they want. This is good pra
ti
e anyway, be
ause L

A

T

E

X

is mysterious here. Consider the following example, where the \tryspa
e ma
ro is �rst applied and then

expansed by hand:

\new
ommand{\bfsymbol}{\textbf{symbol}}

\new
ommand{\tryspa
e}[1℄{#1 XXX}

Some spa
e: \tryspa
e{\bfsymbol}\\

No spa
e: \bfsymbol XXX

Spa
ing is a bit
haoti
 here, the spa
e after symbol remains when #1 is substituted for it by L

A

T

E

X (or

H

E

V

E

A).

Some spa
e : symbol XXX

No spa
e : symbolXXX

Note that, if a spa
e before �XXX� is wanted, then one should probably write:

\new
ommand{\tryspa
e}[1℄{#1{} XXX}

Finally, whether the tabulation
hara
ter is a spa
e or not is random, so avoid tabs in your sour
e

do
ument.

10

3.2 Math mode

H

E

V

E

A math mode is not very far from normal text mode, ex
ept that all letters are shown in itali
s and

that spa
e after ma
ros is e
hoed.

However, typesetting math formulas in HTML rises two di�
ulties. First, formulas
ontain symbols, su
h

as Greek letters; se
ond, even simple formulas do not follow the simple basi
 typesetting model of HTML.

3.2.1 Spa
ing in math mode

By
ontrast with L

A

T

E

X, spa
es from the input are signi�
ant in math mode, this feature allows users to

instru
t H

E

V

E

A on how to put spa
e in their formulas. For instan
e, \alpha\rightarrow\beta is typeset

without spa
es between symbols, whereas \alpha \rightarrow \beta produ
es these spa
es. Note that

L

A

T

E

X ignores spa
es in math mode, so that users
an freely adjust H

E

V

E

A output without
hanging anything

to L

A

T

E

X output.

3.2.2 Symbols

Figure 1: Some symbols

\in: ∈ \notin: /∈
\int:

∫
\prod:

∏

\pre
eq: � \pre
: ≺
\leq: ≤ \geq: ≥
\
up: ∪ \
ap: ∩

\supset: ⊃ \subset: ⊂
\supseteq: ⊇ \subseteq: ⊆

With respe
t to previous versions of H

E

V

E

A sin
e the begining, the treatment of symbols has signi�
antly

evolved. Outputting symbols is now performed by using Uni
ode
hara
ter referen
es, an option that mu
h

more
omplies whith standards than the previous option of sele
ting a �symbol� font. Observe that this

hoi
e is now possible, be
ause more and more browsers
orre
tly display su
h referen
es. See Figure 1 for

a few su
h symbols.

However, this means that an
ient or purposely limited browsers (su
h as text-oriented browsers)
annot

display maths, as translated by H

E

V

E

A. For authors that insist on avoiding symbols that
annot be shown

by any browser, H

E

V

E

A o�ers a degraded mode that outputs text in pla
e of symbols. H

E

V

E

A operates in this

mode when given the -textsymbols
ommand-line option. Repla
ement text is in English. For instan
e.

the �∈� symbol is repla
e by �in�. This is far from being satisfa
tory, but degraded mode may be appropriate

for do
uments than
ontain few symbols.

3.2.3 Displays

Apart from
ontaining symbols, formulas spe
ify strong typesetting
onstraints: sub-elements must be
om-

bined together following patterns that departs from normal text typesetting. For instan
e, fra
tions numera-

tors and denominators must be pla
ed one above the other. H

E

V

E

A handles su
h
onstraints in display mode

only.

The main two operating modes of H

E

V

E

A are text mode and display mode. Text mode is the mode for

typesetting normal text, when in this mode, text items are e
hoed one following the other and paragraph

breaks are just blank lines, both in input and output. The so
alled displayed-paragraph environments of

L

A

T

E

X (su
h as
enter or quote) are rendered by HTML blo
k-level elements (su
h as div or blo
kquote).

Rendering is
orre
t be
auses both L

A

T

E

X displayed environments and HTML blo
k-level elements start a

11

new line. Conversly, sin
e opening a HTML blo
k-level elements means starting a new line, any text that

sould appear inside a paragraph must be translated using only HTML text-level elements. H

E

V

E

A
hooses to

translate in-text formulas that way.

H

E

V

E

A display mode allows more
ontrol on text pla
ement, sin
e entering display mode means opening

a HTML table element and that tables allow to
ontrol the relative position of their sub-elements. Displays

ome in two �avor, horizontal displays and verti
al displays. An horizontal display is a one-row table, while a

verti
al display is a one-
olumn table. These tables holds display sub-elements, displays sub-elements being

entered verti
ally in horizontal display mode and horizontally in verti
al display mode.

Display mode is �rst opened by opening a displaymath environment (e.g. by $$ or \[). Then, sub-

displays are opened by L

A

T

E

X
onstru
ts whi
h require them. For instan
e, a displayed fra
tion (\fra
)

opens a verti
al display.

The distin
tion between text and display modes
learly appears while typesetting math formulas. An

in-text formula su
h as $\int_1^2 xdx = \fra
{3}{2}$ appears as: , while the same formula has

a better aspe
t in display mode:

As a
onsequen
e, H

E

V

E

A is more powerful in display mode and formulas should be displayed as soon as they

get a bit
ompli
ated. This rule is also true in L

A

T

E

X but it is more stri
t in H

E

V

E

A, sin
e HTML
apabilities

to typeset formulas inside text are quite poor. In parti
ular, it is not possible to get in-text �real� fra
tions

or in-text limit-like subs
ripts.

Users should remember that H

E

V

E

A is not T

E

X or L

A

T

E

X and that H

E

V

E

A author neither is D. E. Knuth

nor L. Lamport. Thus, some formulas may be rendered poorly. For instan
e, two fra
tions with di�erent

denominator and numerator height look strange.

The reason is that verti
al displays in an horizontal display are HTML tables that always get
entered in the

verti
al dire
tion. Su
h a
rude model
annot faithfully emulate any T

E

X box pla
ement.

Users
an get an idea on how H

E

V

E

A
ombines elements in display mode by giving the -dv
ommand-line

option, whi
h instru
ts H

E

V

E

A to add borders to the table elements introdu
ed by displays.

3.2.4 Arrays and display mode

By
ontrast with formulas, whi
h H

E

V

E

A attempts to render with text-level elements only when they appear

inside paragraphs, L

A

T

E

X arrays always translate to the blo
k-level element table, thereby introdu
ing non-

desired line breaks before and after in-text arrays. As a
onsequen
e, in-text arrays yield an a

eptable

output, only while alone in a paragraph.

However, sin
e in some sense, all HTML tables are displayed, the array and tabular environments

impli
itly open display mode, thus allowing a satisfa
tory typesetting of formulas in arrays. More pre
isely,

array elements whose
olumn format spe
i�
ation is l,
 or r are typeset in display mode (see se
tion B.10.2).

12

3.3 Warnings

When H

E

V

E

A thinks it
annot translate a symbol or
onstru
t properly, it issues a warning. This draws user

attention onto a potential problem. However, rendering may be
orre
t.

Note that all warnings
an be suppressed with the -s (silent) option. When a warning reveals a real

problem, it
an often be
ured by writing a spe
i�
 ma
ro. The next two se
tions introdu
e H

E

V

E

A ma
ros,

then se
tion 4 des
ribes how to pro
eed with greater detail.

3.4 Commands

Just like L

A

T

E

X, H

E

V

E

A
an be seen as a ma
ro language, ma
ros are rewritten until no more expansion is

possible. Then, either some
hara
ters (su
h as letters, integers. . .) are outputed or some internal operation

(su
h as
hanging font attributes, or arranging text items in a
ertain manner) are performed.

This s
heme favors easy extension of program
apabilities by users. However, predi
ting program be-

haviour and
orre
ting errors may prove di�
ult, sin
e �nal output or errors may o

ur after several levels

of ma
ro expansion. As a
onsequen
e, users
an tailor H

E

V

E

A to their needs, but it remains a subtle task.

Nevertheless, happy L

A

T

E

X users should enjoy
ustomizing H

E

V

E

A, sin
e this is done by writing L

A

T

E

X
ode.

3.5 Style
hoi
es

L

A

T

E

X and HTML di�er in many aspe
ts. For instan
e, L

A

T

E

X allows �ne
ontrol over text pla
ement, whereas

HTML does not. More symbols and font attributes are available in L

A

T

E

X than in HTML. Conversely, HTML

has font attributes, su
h as
olor, whi
h standard L

A

T

E

X has not.

Therefore, there are many situations where H

E

V

E

A just
annot render the visual e�e
t of L

A

T

E

X
onstru
-

tions. Here some
hoi
es have to be made. For instan
e,
alligraphi
 letters (\math
al) are rendered in

red.

If you are not satis�ed with H

E

V

E

A rendering of text style de
larations, then you
an
hoose your own, by

rede�ning the \
al ma
ros, using \renew
ommand, the ma
ro rede�nition operator of L

A

T

E

X. The key point

is that you need not worry about H

E

V

E

A internals: just rede�ne the old-L

A

T

E

X style text-style de
larations

(i.e. \it, \s
, et
.) and everything should get �ne:

\renew
ommand{\s
}{\Huge}

\renew
ommand{\
al}{\em}

(See se
tions 4 and 5 on how to make su
h
hanges while leaving your �le pro
essable by L

A

T

E

X, and

se
tion 10.2 for a more thorough des
ripton of
ustomizing type styles).

Note that many of L

A

T

E

X
ommands and environments are de�ned in the hevea.hva �le that H

E

V

E

A loads

before pro
essing any input. These
onstru
ts are written using L

A

T

E

X sour
e
ode, in the end they invoke

H

E

V

E

A internal
ommands.

Other L

A

T

E

X
onstru
ts, su
h as L

A

T

E

X key
onstru
ts or H

E

V

E

A internal
ommands (see se
tion 8.3), that

require spe
ial pro
essing are de�ned in H

E

V

E

A sour
e
ode. However, the vast majority of these de�nitions

an be overridden by a rede�nition. This may prove useless, sin
e there is little point in rede�ning
ore

onstru
ts su
h as \new
ommand for instan
e.

4 How to dete
t and
orre
t errors

Most of the problems that o

ur during the translation of a given L

A

T

E

X �le (say trouble.tex)
an be

dete
ted and solved at the ma
ro-level. That is, most problems indu
e a ma
ro-related warning and
an be

solved by writing a few ma
ros. The best pla
e for these ma
ros is an user style �le (say trouble.hva) given

as argument to H

E

V

E

A.

hevea trouble.hva trouble.tex

13

By doing so, the ma
ros written spe
ially for H

E

V

E

A are not seen by L

A

T

E

X. Even better, trouble.tex is

not
hanged at all.

A worth-mentiong alternative is inserting \usepa
kage{trouble} in the do
ument preamble. Then,

given H

E

V

E

A semanti
s for \usepa
kage (see Se
tion B.5.2), H

E

V

E

A-spe
i�

ommands should be pla
ed in

the �le �trouble.hva� �le, while L

A

T

E

X-spe
i�

ommands should be pla
ed in teh �le �trouble.sty�.

Of
ourse, adapting a do
ument to H

E

V

E

A pro
essing will be easier if the L

A

T

E

X sour
e is written in

a generi
 style, using ma
ros. Note that this style is re
ommended anyway, sin
e it fa
ilitates do
ument

maintenan
e.

4.1 H

E

V

E

A does not know a ma
ro

Consider the following L

A

T

E

X sour
e ex
erpt:

You
an \raisebox{.6ex}{\em raise} text.

L

A

T

E

X typesets this as follows:

You
an

raise

text.

Sin
e H

E

V

E

A does not know about \raisebox, it in
orre
tly pro
esses this input. More pre
isely, it �rst

prints a warning message:

trouble.tex:34: Unknown ma
ro: \raisebox

Then, it goes on by translating the arguments of \raisebox as if they were normal text. As a
onsequen
e

some .6ex is �nally found in the HTML output:

You
an .6exraise text.

To
orre
t this, you should provide a ma
ro that has more or less the e�e
t of \raisebox. It is impossible

to write a generi
 \raiseboxma
ro for H

E

V

E

A, be
ause of HTML limitations. However, in this
ase, the e�e
t

of \raisebox is to raise the box a little. Thus, the �rst, numeri
al, argument to \raisebox
an be ignored

in a private \raisebox ma
ro de�ned in trouble.hva:

\new
ommand{\raisebox}[2℄{$^{\mbox{#2}}$}

Now, translating the do
ument yields:

You
an

raise

text a little.

Of
ourse, this will work only when all \raisebox
ommands in the do
ument raise text a little. Consider,

the following example, where text is both raised a lowered a little:

You
an \raisebox{.6ex}{\em raise}

or \raisebox{-.6ex}{\em lower} text.

Whi
h L

A

T

E

X renders as follows:

You
an

raise

or

lower

text.

Whereas, with the above de�nition of \raisebox, H

E

V

E

A produ
es:

You
an

raise

or

lower

text.

14

A solution is to add a new ma
ro de�nition in the trouble.hva �le:

\new
ommand{\lowerbox}[2℄{$_{\mbox{#2}}$}

Then, trouble.tex itself has to be modi�ed a little.

You
an \raisebox{.6ex}{\em raise}

or \lowerbox{-.6ex}{\em lower} text.

H

E

V

E

A now produ
es a satisfying output:

You
an

raise

or

lower

text.

Note that, for the do
ument to remain L

A

T

E

X-pro
essable, it should also
ontain the following de�nition

for \lowerbox:

\new
ommand{\lowerbox}[2℄{\raisebox{#1}{#2}}

This de�nition
an safely be pla
ed anywhere in trouble.tex, sin
e by H

E

V

E

A semanti
s for \new
ommand

(see se
tion B.8.1) the new de�nition will not overwrite the old one.

4.2 H

E

V

E

A in
orre
tly interprets a ma
ro

Sometimes H

E

V

E

A knows about a ma
ro, but the produ
ed HTML does not look good when seen through a

browser. This kind of errors is dete
ted while visually
he
king the output. However, H

E

V

E

A does its best to

issue warnings when su
h situations are likely to o

ur.

Consider, for instan
e, this de�nition of \blob as a small bla
k square.

\new
ommand{\blob}{\rule[.2ex℄{1ex}{1ex}}

\blob\ Blob \blob

Whi
h L

A

T

E

X typesets as follows:

Blob

H

E

V

E

A always translates \rule as <hr>, ignoring size arguments. Hen
e, it produ
es the following, wrong,

output:

We may not be parti
ularily
ommited to a square blob. In that
ase, other small symbols would

perfe
tly do the job of \blob, su
h as a bullet (\bullet). Thus, you may
hoose to give \blob a de�nition

in trouble.hva:

\new
ommand{\blob}{\bullet}

This new de�nition yields the following, more satisfying output:

15

In
ase we do want a square blob, there are two alternatives. We
an have L

A

T

E

X typeset some subparts

of the do
ument and then to in
lude them as images, se
tion 6 explains how to pro
eed. We
an also �nd a

square blob somewhere in the variety of Uni
ode (or do I mean ISO 10646?)
hara
ters, and de�ne \blob

as a numeri
al
hara
ter referen
e. Here, the
hara
ter U+02588 seems ok.

\new
ommand{\blob}{\�print�u{X2588}}

However, beware that not all browsers display all of Uni
ode. . .

4.3 H

E

V

E

A
rashes

H

E

V

E

A failure may have many
auses, in
luding a bug. However, it may also stem from a wrong L

A

T

E

X input.

Thus, this se
tion is to be read before reporting a bug. . .

4.3.1 Simple
ases: L

A

T

E

X also
rashes

In the following sour
e, environments are not properly balan
ed:

\begin{flushright}

\begin{quote}

This is right-flushed quoted text.

\end{flushright}

\end{quote}

Su
h a sour
e will make both L

A

T

E

X and H

E

V

E

A
hoke. H

E

V

E

A issues the following error message that shows

the L

A

T

E

X environment that is not
losed properly:

./trouble.tex:6: Environment nesting error: html: 'DIV'
loses 'BLOCKQUOTE'

./trouble.tex:4: Latex environment 'quote' is pending

Adios

Thus, when H

E

V

E

A
rashes, it is a good idea to
he
k that the input is
orre
t by running L

A

T

E

X on it.

4.3.2 Compli
ated
ases

Unfortunately, H

E

V

E

A may
rash on input that does not a�e
t L

A

T

E

X. Su
h errors usually relate to environ-

ment or group nesting.

Consider for instan
e the following �optimized� version of a quoteright environment:

\newenvironment{quoteright}{\quote\flushright}{\endquote}

\begin{quoteright}

This a right-flushed quotation

\end{quoteright}

The \quote and \flushright
onstru
ts are intended to repla
e \begin{quote} and \begin{flushright},

while \endquote stands for \end{quote}. Note that the
losing \endflushright is omitted, sin
e it does

nothing. L

A

T

E

X a

epts su
h an input and produ
es a right-�ushed quotation.

However, H

E

V

E

A usually translates L

A

T

E

X environments to HTML blo
k-level elements and it requires

those elements to be nested properly. Here, \quote translates to <blo
kquote>, \flushright translates to

<div
lass="flushright"> and \endquote translates to </blo
kquote>. At that point, H

E

V

E

A refuses to

generate obviously non-
orre
t HTML and it
rashes:

16

Giving up
ommand: \�
lose

Giving up
ommand: \endquote

Giving up
ommand: \endquoteright

Giving up
ommand: \end

./trouble.tex:7: Environment nesting error: html: 'BLOCKQUOTE'
loses 'DIV'

./trouble.tex:5: Latex environment 'quoteright' is pending

Adios

Also noti
e that the error message above in
ludes a ba
ktra
e showing the
all-
hain of
ommands.

In this
ase, the solution is easy: environments must be opened and
losed
onsistently. L

A

T

E

X style being

re
ommended, one should write:

\newenvironment{quoteright}

{\begin{quote}\begin{flushright}}

{\end{flushright}\end{quote}}

And we get:

Un
losed L

A

T

E

X groups ({. . .) are another sour
e of nuisan
e to H

E

V

E

A. Consider the following horreur.tex

�le:

\do
ument
lass{arti
le}

\begin{do
ument}

In this senten
e, a group is opened now {\em and never
losed.

\end{do
ument}

L

A

T

E

X a

epts this �le, although it produ
es a warning:

latex horreur.tex

This is TeX, Version 3.14159 (Web2C 7.2)

...

(\end o

urred inside a group at level 1)

Output written on horreur.dvi (1 page, 280 bytes).

By
ontrast, running H

E

V

E

A on horreur.tex yields a fatal error:

hevea horreur.tex

Giving up
ommand: \�raise�enddo
ument

Giving up
ommand: \enddo
ument

Giving up
ommand: \end

./horreur.tex:4: Environment nesting error: Latex env error: 'do
ument'
loses ''

./horreur.tex:3: Latex environment '' is pending

Adios

Thus, users should
lose opening bra
es where it belongs. Note that H

E

V

E

A error message �Latex environment

'env' is pending� helps a lot in lo
ating the bra
e that hurts.

4.3.3 Desperate
ases

If H

E

V

E

A
rashes on L

A

T

E

X sour
e (not on T

E

X sour
e), then you may have dis
overed a bug, or this manual

is not as
omplete as it should. In any
ase, please report to Lu
.Maranget�inria.fr.

To be useful, your bug report should in
lude L

A

T

E

X
ode that triggers the bug (the shorter, the better)

and mention H

E

V

E

A version number.

17

5 Making H

E

V

E

A and L

A

T

E

X both happy

A satisfa
tory translation from L

A

T

E

X to HTML often requires giving instru
tions to H

E

V

E

A. Typi
ally, these

instru
tions are ma
ro de�nitions and these instru
tions should not be seen by L

A

T

E

X. Conversely, some

sour
e that L

A

T

E

X needs should not be pro
essed by H

E

V

E

A. Basi
ally, there are three ways to make input

vary a

ording to the pro
essor, �le loading, the hevea pa
kage and
omments.

5.1 File loading

H

E

V

E

A and L

A

T

E

X treat �les di�erently. Here is a summary of the main di�eren
es:

� L

A

T

E

X and H

E

V

E

A both load �les given as arguments to \input, however when given the option -e �le-

name, H

E

V

E

A does not load �lename.

� H

E

V

E

A loads all �les given as
ommand-line arguments.

� Both L

A

T

E

X and H

E

V

E

A load style �les given as optional arguments to \do
umentstyle and as arguments

to \usepa
kage, but the �les are sear
hed by following di�erent methods and
onsidering di�erent �le

extensions.

As a
onsequen
e, for having a �le latexonly loaded by L

A

T

E

X only, it su�
es to use \input{latexonly}

in the sour
e and to invoke H

E

V

E

A as follows:

hevea -e latexonly. . .

Having heveaonly loaded by H

E

V

E

A only is more simple: it su�
es to invoke H

E

V

E

A as follows:

hevea heveaonly. . .

Finally, if one has an H

E

V

E

A equivalent style.hva for a L

A

T

E

X style �le style.sty, then one should load

the �le as follows:

\usepa
kage{style}

This will result in, L

A

T

E

X loading style.sty, while H

E

V

E

A loads style.hva. As H

E

V

E

A will not fail in
ase

style.hva does not exist, this is another method for having a style �le loaded by L

A

T

E

X only.

Writing an H

E

V

E

A-spe
i�
 �le �le.hva is the method of
hoi
e for supplying
ommand de�nitions to

H

E

V

E

A only. Users
an then be sure that these de�nitions are not seen by L

A

T

E

X and will not get e
hoed to

the image �le (see se
tion 6).

The �le �le.hva
an be loaded by either supplying the
ommand-line argument �le.hva, or by \usepa
kage{�le}

from inside the do
ument. Whi
h method is better depends on whether you
hoose to override or to repla
e

the do
ument de�nition. In the
ommand-line
ase, de�nitions from �le.hva are pro
essed before the ones

from the do
ument and will override them, provided the do
ument de�nitions are made using \new
ommand

(or \newenvironment). In the \usepa
kage
ase, H

E

V

E

A loads �le.hva at the pla
e where L

A

T

E

X loads

�le.sty, hen
e the de�nitions from �le.hva repla
e the de�nitions from �le.sty in the stri
t sense.

5.2 The hevea pa
kage

The hevea.sty style �le is intended to be loaded by L

A

T

E

X and not by H

E

V

E

A. It provides L

A

T

E

X with means

to ignore or pro
ess some parts of the do
ument. Note that H

E

V

E

A
opes with the
onstru
ts de�ned in the

hevea.sty �le by default. It is important to noti
e that the hevea.sty style �le from the distribution is

a pa
kage in L

A

T

E

X2ε terms and that it is not
ompatible with old L

A

T

E

X. Moreover, the hevea pa
kage

loads the
omment pa
kage whi
h must be present. Also noti
e that, for
ompatibility, H

E

V

E

A rea
ts to

\usepa
kage{hevea} by loading its own version of the
omment pa
kage (Se
tion B.17.6).

18

5.2.1 Environments for sele
ting a translator

H

E

V

E

A and L

A

T

E

X perform the following a
tions on sour
e inside the latexonly, verblatex, htmlonly,

rawhtml, toimage and verbimage environments:

environment H

E

V

E

A L

A

T

E

X

latexonly ignore, \end{env}
onstru
ts are pro
essed (see se
-

tion 5.2.2)

pro
ess

verblatex ignore pro
ess

htmlonly pro
ess ignore

rawhtml e
ho verbatim (see se
tion 8.4) ignore

toimage send to the image �le, \end{env}
onstru
ts and

ma
ro
hara
ters are pro
essed (see se
tion 6)

pro
ess

verbimage send to the image �le (see se
tion 6) pro
ess

As an example, this is how some text
an be typeset in purple by H

E

V

E

A and left alone by L

A

T

E

X:

We get:

\begin{htmlonly}%

\purple purple rain, purple rain%

\end{htmlonly}

\begin{latexonly}%

purple rain, purple rain%

\end{latexonly}%

\ldots

We get: purple rain, purple rain. . .

It is impossible to avoid the spurious spa
e in H

E

V

E

A output for the sour
e above. This extra spa
es

omes from the newline
hara
ter that follows \end{htmlonly}. Namely this
onstru
t must appear in a

line of its own for L

A

T

E

X to re
ognize it. Anyway, better
ontrol over spa
es
an be a
hieved by using the

hevea boolean register or
omments, see se
tions 5.2.3 and 5.3.

Also note that environments de�ne a s
ope and that style
hanges (and non-global de�nitions) are lo
al

to them. For instan
e, in the example above, �. . . � appears in bla
k in HTML output. However, as an

ex
eption, the environments image and verbimage do not
reate s
ope. It takes a little pra
ti
e of H

E

V

E

A

to understand why this is
onvenient.

5.2.2 Why are there two environments for ignoring input?

Some s
anning and analysis of sour
e is performed by H

E

V

E

A inside the latexonly environment, in order to

allow latexonly to dynami
ally o

ur inside other environments.

More spe
i�
ally, \end{env} ma
ros are re
ognized and their env argument is tested against the name

of the environment whose opening ma
ro \env opened the latexonly environment. In that
ase, ma
ro

expansion of \endenv is performed and any further o

urren
e of \end{env'} is tested and may get expanded

if it mat
hes a pending \begin{env'}
onstru
t.

This enables playing tri
ks su
h as:

\newenvironment{latexhuge}

{\begin{latexonly}\huge}

{\end{latexonly}}

\begin{latexhuge}

This will appear in huge font in \LaTeX{} output only.

\end{latexhuge}

L

A

T

E

X output will be:

19

This will appear in huge font in L

A

T

E

X

output only.

While there is no H

E

V

E

A output.

Sin
e H

E

V

E

A somehow analyses input that is en
losed in the latexonly environment, it may
hoke.

However, this environment is intended to sele
t pro
essing by L

A

T

E

X only and might
ontain arbitrary sour
e

ode. Fortunately, it remains possible to have input pro
essed by L

A

T

E

X only, regardless of what it is,

by en
losing it in the verblatex environment. Inside this environment, H

E

V

E

A performs no other a
tion

than looking for \end{verblatex}. As a
onsequen
e, the \begin{verblatex} and \end{verblatex}

onstru
ts may only appear in the main �ow of text or inside the same ma
ro body, a bit like L

A

T

E

X

verbatim environment.

Relations between toimage and verbimage are similar. Additionally, formal parameters #i are repla
ed

by a
tual arguments inside the toimage environment (see end of se
tion 6.3 for an example of this feature).

5.2.3 The hevea boolean register

Boolean registers are provided by the ifthen pa
kage (see [L

A

T

E

X, Se
tion C.8.5℄ and se
tion B.8.5 in this

do
ument). Both the hevea.sty style �le and H

E

V

E

A de�ne the boolean register hevea. However, this

register initial value is false for L

A

T

E

X and true for H

E

V

E

A.

Thus, provided, both the hevea.sty style �le and the ifthen pa
kages are loaded, the �purple rain�

example
an be rephrased as follows:

We get:

{\ifthenelse{\boolean{hevea}}{\purple}{}purple rain, purple rain}\ldots

We get: purple rain, purple rain. . .

Another
hoi
e is using the T

E

X-style
onditional ma
ro \ifhevea (see Se
tion B.16.1.4):

We get:

{\ifhevea\purple\fi purple rain, purple rain}\ldots

We get: purple rain, purple rain. . .

5.3 Comments

H

E

V

E

A pro
esses all lines that start with %HEVEA, while L

A

T

E

X treats these lines as
omments. Thus, this is

a last variation on the �purple rain� example:

We get

%HEVEA{\purple

purple rain, purple rain%

%HEVEA}%

\ldots

(Note how
omments are pla
ed at the end of some lines to avoid spurious spa
es in the �nal output.)

We get: purple rain, purple rain. . .

Comments thus provide an alternative to loading the hevea pa
kage. For user
onvenien
e,
omment

equivalents to the latexonly and toimage environment are also provided:

20

environment
omment equivalent

\begin{latexonly}. . . \end{latexonly}

%BEGIN LATEX

. . .

%END LATEX

\begin{toimage}. . . \end{toimage}

%BEGIN IMAGE

. . .

%END IMAGE

Note that L

A

T

E

X, by ignoring
omments, naturally performs the a
tion of pro
essing text between %BEGIN...

and %END...
omments. However, no environment is opened and
losed and no s
ope is
reated while using

omment equivalents.

6 With a little help from L

A

T

E

X

Sometimes, H

E

V

E

A just
annot pro
ess its input, but it remains a

eptable to have L

A

T

E

X pro
ess it, to

produ
e an image from L

A

T

E

X output and to in
lude a link to this image into H

E

V

E

A output. H

E

V

E

A provides

a limited support for doing this.

6.1 The image �le

While outputting do
.html, H

E

V

E

A e
hoes some of its input to the image �le, do
.image.tex. Part of this

pro
ess is done at the user's request. More pre
isely, the following two
onstru
ts send text to the image �le:

\begin{toimage}

text

\end{toimage}

%BEGIN IMAGE

text

%END IMAGE

Additionally, \usepa
kage
ommands, top-level and global de�nitions are automati
ally e
hoed to the image

�le. This enables using do
ument-spe
i�

ommands in text above.

Output to the image �le builds up a
urrent page, whi
h is �ushed by the \imageflush
ommand. This

ommand has the following e�e
t: it outputs a stri
t page break in the image �le, in
rements the image

ounter and output a <img sr
="pagename.png"> tag in H

E

V

E

A output �le, where pagename is build from

the image
ounter and H

E

V

E

A output �le name. Then the imagen s
ript has to be run by:

imagen do

This will pro
ess the do
.image.tex �le through L

A

T

E

X, dvips, ghosts
ript and a few others tools, whi
h

must all be present (see se
tion C.4.1), �nally produ
ing one pagename.png �le per page in the image �le.

The usage of imagen is des
ribed at se
tion C.1.5. Note that imagen is a simple shell s
ript. Unix users

an pass hevea the
ommand-line option -fix. Then hevea will itself
all imagen, when appropriate.

6.2 A toy example

Consider the �blob� example from se
tion 4.2. Here is the a
tive part of a blob.tex �le:

\new
ommand{\blob}{\rule[.2ex℄{1ex}{1ex}}

\blob\ Blob \blob

This time, we would like \blob to produ
e a small bla
k square, whi
h \rule[.2ex℄{1ex}{1ex} indeed does

in L

A

T

E

X. Thus we
an write:

21

\new
ommand{\blob}{%

\begin{toimage}\rule[.2ex℄{1ex}{1ex}%

\end{toimage}%

\imageflush}

\blob\ Blob \blob

Now we issue the following two
ommands:

hevea blob.tex

imagen blob

And we get:

Observe that the tri
k
an be used to repla
e missing symbols by small .png images. However, the
ost

may be prohibitive, text rendering is generally bad, �ne pla
ement is ignored and font style
hanges are

problemati
. Cost
an be lowered using \savebox, but the other problems remain.

6.3 In
luding Posts
ript images

In this se
tion, a te
hnique to transform in
luded Posts
ript images into in
luded bitmap images is des
ribed.

Note that this te
hnique is used by H

E

V

E

A implementation of the graphi
s pa
kage (see se
tion B.14.1),

whi
h provides a more standard manner to in
lude Posts
ript images in L

A

T

E

X do
uments.

In
luded images are easy to manage: it su�
es to let L

A

T

E

X do the job. Let round.ps be a Posts
ript

�le, whi
h is in
luded as an image in the sour
e �le round.tex (whi
h must load the epsf pa
kage):

\begin{
enter}

\epsfbox{round.ps}

\end{
enter}

Then, H

E

V

E

A
an have this image translated into a inlined (and
entered) .png image by modifying sour
e

as follows:

\begin{
enter}

%BEGIN IMAGE

\epsfbox{round.ps}

%END IMAGE

%HEVEA\imageflush

\end{
enter}

(Note that the round.tex �le still
an be pro
essed by L

A

T

E

X, sin
e
omment equivalents of the toimage

environment are used and that the \imageflush
ommand is inside a %HEVEA
omment � see se
tion 5.3.)

Then, pro
essing round.tex through H

E

V

E

A and imagen yields:

22

C
ou

co
u

C
ou

co
u

Coucou
Coucou Coucou

C
oucou

C
oucou

C
oucou

Coucou
Coucou
CoucouCoucou

C
ou

co
u

It is important to noti
e that things go smoothly be
ause the \usepa
kage{epsf}
ommand gets e
hoed

to the image �le. In more
ompli
ated
ases, L

A

T

E

X may fail on the image �le be
ause it does not load the

right pa
kages or de�ne the right ma
ros.

However, the above solution implies modifying the original L

A

T

E

X sour
e
ode. A better solution is to

de�ne the \epsfbox
ommand, so that H

E

V

E

A e
hoes \epsfbox and its argument to the image �le and

performs \imageflush:

\new
ommand{\epsfbox}[1℄{%

\begin{toimage}

\epsfbox{#1}

\end{toimage}

\imageflush}

Su
h a de�nition must be seen by H

E

V

E

A only. So, it is best put in a separate �le whose name is given as

an extra argument on H

E

V

E

A
ommand-line (see se
tion 5.1). Putting it in the do
ument sour
e prote
ted

inside an %HEVEA
omment is a bad idea, be
ause it might then get e
hoed to the image �le and generate

trouble when L

A

T

E

X is later run by imagen.

Observe that the above de�nition of \epsfbox is a de�nition and not a rede�nition (i.e. \new
ommand is

used and not \renew
ommand), be
ause H

E

V

E

A does not know about \epsfbox by default. Also observe that

this not a re
ursive de�nition, sin
e
ommands do not get expanded inside the toimage environment.

Finally, if the Posts
ript image is produ
ed from a bitmap, it is a pity to translate it ba
k into a bitmap.

A better idea is �rst to generate a PNG �le from the bitmap sour
e independantly and then to in
lude a

link to that PNG �le in HTML output, see se
tion 8.2 for a des
ription of this more adequate te
hnique.

6.4 Using �lters

Some programs extend L

A

T

E

X
apabilities using a �lter prin
iple. In su
h a s
heme, the do
ument
ontains

sour
e fragments for the program. A �rst run of the program on L

A

T

E

X sour
e
hanges these fragments into

onstru
ts that L

A

T

E

X (or a subsequent stage in the paper do
ument produ
tion
hain, su
h as dvips)
an

handle. Here again, the rule of the game is keeping H

E

V

E

A away from the normal pro
ess: �rst applying the

�lter, then making H

E

V

E

A send the �lter output to the image �le, and then having imagen do the job.

Consider the gpi
 �lter, for making drawings. Sour
e for gpi
 is en
losed in .PS. . . .PE, then the result

is available to subsequent L

A

T

E

X sour
e as a T

E

X box \box\graph. For instan
e the following sour
e, from

a smile.tex �le, draws a �Smile!� logo as a
entered paragraph:

.PS

ellipse "{\Large\bf Smile!}"

.PE

\begin{
enter}

~\box\graph~

\end{
enter}

23

Both the image des
ription (.PS. . . .PE) and usage (\box\graph) are for the image �le, and they should be

en
losed by %BEGIN IMAGE. . . %END IMAGE
omments. Additionally, the image link is put where it belongs

by an \imageflush
ommand:

%BEGIN IMAGE

.PS

ellipse "{\Large\bf Smile!}"

.PE

%END IMAGE

\begin{
enter}

%BEGIN IMAGE

~\box\graph~

%END IMAGE

%HEVEA\imageflush

\end{
enter}

The gpi
 �lter is applied �rst, then
ome hevea and imagen:

gpi
 -t < smile.tex > tmp.tex

hevea tmp.tex -o smile.html

imagen smile

And we get:

Smile!

Observe how the -o argument to H

E

V

E

A is used and that imagen argument is H

E

V

E

A output basename (see

se
tion C.1.1.2 for the full de�nition of H

E

V

E

A output basename).

In the gpi
 example, modifying user sour
e
annot be totally avoided. However, writing in a generi

style saves typing. For instan
e, users may de�ne the following environment for
entered gpi
 pi
tures in

L

A

T

E

X:

\newenvironment{
entergpi
}{}{\begin{
enter}~\box\graph~\end{
enter}}

Sour
e
ode will now be as follows:

\begin{
entergpi
}

.PS

ellipse "{\Large\bf Smile!}"

.PE

\end{
entergpi
}

H

E

V

E

A will pro
ess this sour
e
orre
tly, provided it is given its own de�nition for the
entergpi
 environment

beforehand:

\newenvironment{
entergpi
}

{\begin{toimage}}

{\box\graph\end{toimage}\begin{
enter}\imageflush\end{
enter}}

Assuming that the de�nition above is in a smile.hva �le, the
ommand sequen
e for translating smile.tex

now is:

24

gpi
 -t < smile.tex > tmp.tex

hevea smile.hva tmp.tex -o smile.html

tmp.tex:5: Warning: ignoring definition of \
entergpi

tmp.tex:5: Warning: not defining environment
entergpi

imagen smile

The warnings above are normal: they are issued when H

E

V

E

A runs a
ross the L

A

T

E

X-intended de�nition of

the
entergpi
 environment and refuses to override its own de�nition for that environment.

7 Cutting your do
ument into pie
es with H

A

C

H

A

H

E

V

E

A outputs a single .html �le. This �le
an be
ut into pie
es at various se
tional units by H

A

C

H

A

7.1 Simple usage

First generate your HTML do
ument by applying H

E

V

E

A:

hevea do
.tex

Then
ut do
.html into pie
es by the
ommand:

ha
ha do
.html

This will generate a simple root �le index.html. This root �le holds do
ument title, abstra
t and a simple

table of
ontents. Every item in the table of
ontents
ontains a link to or into a �le that holds a �
utting�

se
tional unit. By default, the
utting se
tional unit is se
tion in the arti
le style and
hapter in the book

style. The name of those �les are do
001.html, do
002.html, et
.

Additionally, one level of se
tioning below the
utting unit (i.e. subse
tions in the arti
le style and se
tions

in the book style) is shown as an entry in the table of
ontents. Se
tional units above the
utting se
tion (i.e.

parts in both arti
le and book styles)
lose the
urrent table of
ontents and open a new one. Cross-referen
es

are properly handled, that is, the lo
al links generated by H

E

V

E

A are
hanged into remote links.

The name of the root �le
an be
hanged using the -o option:

ha
ha -o root.html do
.html

Some of H

E

V

E

A output get repli
ated in all the �les generated by H

A

C

H

A. Users
an supply a header and

a footer, whi
h will appear at the begining and end of every page generated by H

A

C

H

A. It su�
es to in
lude

the following
ommands in the do
ument preamble:

\htmlhead{header}

\htmlfoot{footer}

H

A

C

H

A also makes every page it generates a
lone of its input as regards attributes to the <body ...>

opening tag and meta-information from the <head>. . . <\head> blo
k. See se
tion B.2 for examples of this

repli
ation feature.

By
ontrast, style information spe
i�ed in the style elements from rom the <head>. . . <\head> blo
k

is not repli
ated. Instead, all style de�nitions are
olle
ted into an external style sheet �le whose name is

do
.
ss, and all generated HTML �les adopt do
.
ss as an external style sheet. It is important to noti
e

that, sin
e version 1.08, H

E

V

E

A produ
es a style element by itself, even if users do not expli
itely use styles.

As a
onsequen
e, H

A

C

H

A normally produ
es a �le do
.
ss, whi
h should not be forgotten while
opying

�les to their �nal destination after a run of H

A

C

H

A.

25

7.2 Advan
ed usage

H

A

C

H

A behaviour
an be altered from the do
ument sour
e, by using a
ounter and a few ma
ros.

A do
ument that expli
itly in
ludes
utting ma
ros still
an be typeset by L

A

T

E

X, provided it loads the

hevea.sty style �le from the H

E

V

E

A distribution. (See se
tion 5 for details on this style �le). An alternative

to loading the hevea pa
kage is to put all
utting instru
tions in
omments starting with %HEVEA.

7.2.1 Prin
iple

H

A

C

H

A re
ognizes all se
tional units, ordered as follows, from top to bottom: part,
hapter, se
tion, subse
tion,

subsubse
tion, paragraph and subparagraph.

At any point between \begin{do
ument} and \end{do
ument}, there exist a
urrent
utting se
tional

unit (
utting unit for short), a
urrent
utting depth, a root �le and an output �le. Table of
ontents output

goes to the root �le, normal output goes to the output �le. Cutting units start a new output �le, whereas

units
omprised between the
utting unit and the
utting units plus the
utting depth add new entries in

the table of
ontents.

At do
ument start, the root �le and the output �le are H

A

C

H

A output �le (i.e. index.html). The
utting

unit and the
utting depth are set to default values that depend on the do
ument style.

7.2.2 Cutting ma
ros

The following
utting instru
tions are for use in the do
ument preamble. They
ommand the
utting s
heme

of the whole do
ument:

\
uttingunit This is a ma
ro that holds the do
ument
utting unit. You
an
hange the default (whi
h is

se
tion in the arti
le style and
hapter in the book style) by doing:

\renew
ommand{\
uttingunit}{se
name}.

\to
number Instru
t H

E

V

E

A to put se
tion numbers into table of
ontent entries.

\noto
number Instru
t H

E

V

E

A not to put se
tion numbers into table of
ontent entries. This is the default.

uttingdepth This is a
ounter that holds the do
ument
utting depth. You
an
hange the default value of

1 by doing \set
ounter{
uttingdepth}{numvalue}. A
utting depth of zero means no other entries

than the
utting units in the table of
ontents.

Other
utting instru
tions are to be used after \begin{do
ument}. They all generate HTML
omments

in H

E

V

E

A output. These
omments then a
t as instru
tions to H

A

C

H

A.

\
uthere{se
name}{itemtitle} Attempt a
ut.

� If se
name is the
urrent
utting unit or the keyword now, then a new output �le is started and

an entry in the
urrent table of
ontents is generated, with title itemtitle. This entry holds a link

to the new output �le.

� If se
name is above the
utting unit, then the
urrent table of
ontents is
losed. The output �le

is set to the
urrent root �le.

� If se
name is below the
utting unit and less than the
utting depth away from it, then an entry

is added in the table of
ontents. This entry
ontains itemtitle and a link to the point where

\
uthere appears.

� Otherwise, no a
tion is performed.

\
utdef[depth℄{se
name} Open a new table of
ontents, with
utting depth depth and
utting unit se
name.

If the optional depth is absent, the
utting depth does not
hange. The output �le be
omes the root

�le. Result is unspe
i�ed if whatever se
name expands to is a se
tional unit name above the
urrent

utting unit, is not a valid se
tional unit name or if depth does not expand to a small positive number.

26

\
utend End the
urrent table of
ontents. This
loses the s
ope of the previous \
utdef. The
utting unit

and
utting depth are restored. Note that \
utdef and \
utend must be properly balan
ed.

Commands \
uthere and \
utend have starred variants, whi
h behave identi
ally ex
ept for footnotes

(see 7.3.6).

Default settings work as follows: \begin{do
ument} performs

\
utdef*[\value{
uttingdepth}℄{\
uttingunit}

and \end{do
ument} performs \
utend*. All se
tioning
ommands perform \
uthere, with the se
tional

unit name as �rst argument and the (optional, if present) se
tioning
ommand argument (i.e. the se
tion

title) as se
ond argument. Note that starred versions of the se
tioning
ommands also perform
utting

instru
tions.

7.2.3 Table of links organisation

A table of links generated by H

A

C

H

A is a list of links to generated �les. Additionally, some sublists may be

present, up to a
ertain depth. The items in those sublists are links inside generated �les, they point to

se
tional unit titles below the
utting unit, up to a
ertain depth.

More pre
isely, let A be a
ertain se
tional unit (e.g. �part�), let B be just below A (e.g. �se
tion�), and

let C be just below C (e.g. �subse
tion�). Further assume that
utting is performed at level B with a depth

of more than one. Then, every unit A holds a one or several tables of links to generated �les, and ea
h

generated �le normally holds a B unit. Sublists with links to C units inside B units normally appear in the

tables of links of level A. The
ommand-line options -to
bis and -to
ter instru
t ha
ha to put sublists at

other pla
es. With -to
bis sublists are dupli
ated at the beginning of the B level �les; while with -to
ter

sublist only appear at the beginning of the B level �les.

In my opinion, default style is appropriate for do
uments with short B units; while -to
bis style is

appropriate for do
uments with long B units with a few sub-units; and -to
ter style is appropriate for

do
uments with long B units with a lot of sub-units.

Whatever the style is, if a B unit is
ut (e.g. be
ause its text is en
losed in \
utdef{C}. . . \
utend),

then every C unit goes into its own �le and there is no sublist after the relevant B level entry in the A level

table of links.

7.2.4 Examples

Consider, for instan
e, a book do
ument with a long
hapter that you want to
ut at the se
tion level, showing

subse
tions:

\
hapter{A long
hapter}

.....

\
hapter{The next
hapter}

Then, you should insert a \
utdef at
hapter start and a \
utend at
hapter end:

\
hapter{A long
hapter}

%HEVEA\
utdef[1℄{se
tion}

.....

%HEVEA\
utend

\
hapter{The next
hapter}

Then, the �le that would otherwise
ontain the long
hapter now
ontains the
hapter title and a table

of se
tions. No other
hange is needed, sin
e the
ommand \se
tion already performs the appropriate

\
uthere{se
tion}{...}
ommands, whi
h were ignored by default. (Also note that
utting ma
ros are

pla
ed inside %HEVEA
omments, for L

A

T

E

X not to be disturbed).

27

The \
uthere ma
ro
an be used to put some do
ument parts into their own �le. This may prove

appropriate for long
over pages or abstra
ts that would otherwise go into the root �le. Consider the

following do
ument:

\do
ument
lass{arti
le}

\begin{do
ument}

\begin{abstra
t} A big abstra
t \end{abstra
t}

...

Then, you make the abstra
t go to its own �le as it was a
utting unit by typing:

\do
ument
lass{arti
le}

\usepa
kage{hevea}

\begin{do
ument}

\
uthere{\
uttingunit}{Abstra
t}

\begin{abstra
t} A big abstra
t \end{abstra
t}

...

(Note that, this time,
utting ma
ros appear unprote
ted in the sour
e. However, L

A

T

E

X still
an pro
ess

the do
ument, sin
e the hevea pa
kage is loaded).

7.2.5 More and More Pages in Output

In some situations it may be appropriate to produ
e many pages from one sour
e �les. More spe
i�
ally,

loading the deep
ut pa
kage will put all se
tioning units of your do
ument (from \part to \subse
tion in

their own �le.

Similarly, loading the fig
ut pa
kage will make all �gures and tables go into their own �le. The fig
ut

pa
kage a

epts two options, show and noshow. The former, whi
h is the default, instru
ts H

E

V

E

A to repeat

the
aption into the main �ow of text, with a link to the �gure. The latter option disables the feature.

7.3 More Advan
ed Usage

In this se
tion we show how to alter some details of H

A

C

H

A behaviour. This in
ludes
ontrolling output �le

names and the title of generated web pages and introdu
ing arbitrary
uts.

7.3.1 Controlling output �le names

When invoked as ha
ha do
.html, H

A

C

H

A produ
es a index.html table of links �le that points into

do
001.html, do
002.html, et
.
ontent �les. This is not very
onvenient when one wishes to point in-

side the do
ument from outside. However, the \
utname{name}
ommand sets the name of the
urrent

output �le name as name.

Consider a do
ument
ut at the se
tion level, whi
h
ontains the following important se
tion:

\se
tion{Important\label{important} se
tion}

...

To make the important se
tion goes into �le important.html, one writes:

\se
tion{Important\label{important} se
tion}\
utname{important.html}

...

Then, se
tion �Important se
tion�
an be referen
ed from an H

E

V

E

A unaware HTML page by:

In this do
ument, there is a very

important se
tion.

28

7.3.2 Controlling page titles

When H

A

C

H

A
reates a web page from a given se
tional unit, the title of this page normally is the name of

the se
tional unit. For instan
e, the title of this very page should be �Cutting your do
ument into pie
es

with H

A

C

H

A�. It is possible to insert some text at the beginning of all page titles, by using the \htmlprefix

ommand. Hen
e, by writing \htmlprefix{\hevea{} Manual: } in the do
ument, the title of this page

would be
ome: �H

E

V

E

A Manual: Cutting your do
ument into pie
es with H

A

C

H

A� and the title of all other

pages would show the same pre�x.

7.3.3 Links for the root �le

The
ommand \toplinks{prev}{up}{next} instru
ts H

A

C

H

A to put links to a �previous�, �up� and �next�

page in the root �le. The following points are worth noti
ing:

� The \toplink
ommand must appear in the do
ument preamble (i.e. before \begin{do
ument}).

� The arguments prev, up and next should expand to urls, noti
e that these argument are pro
essed (see

se
tion 8.1.1).

� When one of the expe
ted argument is left empty, the
orresponding link is not generated.

This feature
an prove useful to relate do
uments that are generated independently by H

E

V

E

A and H

A

C

H

A.

7.3.4 Controlling link aspe
t from the do
ument

By default the links to the previous, up and next pages show a small i
on (an appropriate arrow). This
an

be
hanged with the
ommand \setlinkstext{prev}{up}{next}, where prev, up and next are some L

A

T

E

X

sour
e. For instan
e the default behaviour is equivalent to:

\setlinkstext

{\imgsr
[alt="Previous"℄{previous_motif.gif}}

{\imgsr
[alt="Up"℄{
ontents_motif.gif}}

{\imgsr
[alt="Next"℄{next_motif.gif}}

Command \setlinkstext behaves as \toplinks does. That is, it must o

ur in do
ument preamble,

arguments are pro
essed and empty arguments yield no e�e
t (i.e. defaults apply).

7.3.5 Cutting a do
ument anywhere

Part of a do
ument goes to a separate �le when en
losed in a
utflow environment:

\begin{
utflow}{title}. . . \end{
utflow}

The
ontent �. . . � will go into a �le of its own, while the argument title is used as the title of the introdu
ed

HTML page.

The HTML page introdu
ed here does not belong to the normal �ow of text. Consequently, one needs an

expli
it referen
e from the normal �ow of text into the
ontent of the
utflow environment. This will o

ur

naturally when the
ontent of the
utflow environment.
ontains a \label
onstru
t. This look natural in

the following quiz example:

\paragraph{A small quiz}

\begin{enumerate}

\item What is bla
k?

\item What is white?

\item What is Dylan?

\end{enumerate}

29

Answers in se
tion~\ref{answers}.

\begin{
utflow}{Answers}

\paragraph{Quiz answers}\label{answers}

\begin{enumerate}

\item Bla
k is bla
k.

\item White is white.

\item Dylan is Dylan.

\end{enumerate}

\end{
utflow}

However,introdu
ing HTML hyperlink targets and referen
es with the \aname and \ahreflo

ommands (see

se
tion 8.1.1) will be more pra
ti
al most of the time.

The starred variant environment
utflow* is the same as
utflow, save for the HTML header and footer

(see Se
tion 7.1) whi
h are not repli
ated in the introdu
ed page.

7.3.6 Footnotes

Footnote texts (given as arguments either to \footnote or \footnotetext) do not go dire
tly to output.

Instead, footnote texts a

umulate internally in a bu�er, awaiting to be �ushed. The �ushing of notes is

ontrolled by the means of a
urrent �ushing unit, whi
h is a se
tional unit name or do
ument � a �
tional

unit above all units. At any point, the
urrent �ushing unit is the value of the
ommand \�footnotelevel.

In pra
ti
e, the �ushing of footnote texts is performed by two
ommands:

� \flushdef{se
name} simply sets the �ushing unit to se
name.

� \footnoteflush{se
name} a
ts as follows:

� If argument se
name is equal to or above the
urrent �ushing unit, then footnote texts are �ushed

(if any). In the output, the texts themselves are surrounded by spe
ial
omments that tag them

as footnote texts and re
ord se
name.

� Otherwise, no a
tion is performed.

The arti
le style �le performs \flushdef{do
ument}, while the book style �le performs \flushdef{
hapter}.

At the end of pro
essing, \end{do
ument} performs \footnoteflush{\�footnotelevel}, so as to �ush any

pending notes.

Cutting
ommands intera
t with footnote �ushing as follows:

� \
uthere{se
name} exe
utes \footnoteflush{se
name}. Remember that all se
tioning
ommands

perform \
uthere with their se
tional unit name as argument.

� \
utdef{se
name} saves the
urrent �ushing unit and bu�er on some internal sta
k, starts a new bu�er

for footnote texts, and sets the
urrent �ushing unit to se
name (by performing \flushdef{se
name}).

� \
utend �rst �ushes any pending texts (by performing \footnoteflush with the
urrent �ushing unit

as argument), and restores the �ushing unit and footnote text bu�er saved by the mat
hing \
utdef.

� The starred variants \
utdef* and \
utend* perform no operation that is related to footnotes.

Later, when running a
ross footnote texts in its input �le, H

A

C

H

A sometimes put notes in a separate �le.

More pre
isely, H

A

C

H

A has knowledge of the
urrent
utting level, the
urrent se
tional unit where
uts o

ur

� as given by the relevant \
utdef. Moreover, H

A

C

H

A knows the
urrent se
tion level � that is, the last

se
tional
ommand pro
essed. Besides, H

A

C

H

A extra
ts the note level from the
omments that surround the

notes (as given by the
ommand \footnoteflush that produ
ed the notes). Then, H

A

C

H

A
reates a separate

�le for notes when the
utting level and the note level di�er, or when the
urrent level is above the
utting

level (e.g. the
urrent level is do
ument while the
utting level is
hapter). As a result, notes should stay

where they are when they o

ur at the end of H

A

C

H

A output �le and otherwise go to a separate �le.

30

To make a
ompli
ated story even more
ompli
ated, footnotes in minipage environments or in the

arguments to \title or \author have a di�erent, I guess satisfa
tory, behaviour.

Given the above des
ription, footnotes are managed by default as follows.

� In style arti
le, hevea puts all footnotes go at the end of the HTML �le. A later run of ha
ha
reates a

separate footnote �le.

� In style book, footnotes are
olle
ted at the end of
hapters. A later run of ha
ha leaves them where

they are. Footnotes in the title or author names are managed spe
ially, they will normally appear at

the end of the root �le.

In
ase you wish to adopt a book-like behaviour for an arti
le (footnotes at the end of se
tions), it su�
es to

insert \flushdef{se
tion} in the do
ument preamble.

8 Generating HTML
onstru
ts

H

E

V

E

A output language being HTML, it is normal for users to insert hypertext
onstru
ts their do
uments,

or to
ontrol
olours.

8.1 High-Level Commands

H

E

V

E

A provides high-level
ommands for generating hypertext
onstru
ts. Users are advised to use these

ommands in the �rst pla
e, be
ause it is easy to write in
orre
t HTML and that writing HTML dire
tly may

interfere in nasty ways with H

E

V

E

A internals.

8.1.1 Commands for Hyperlinks

A few
ommands for hyperlink management and in
luded images are provided, all these
ommands have

appropriate equivalents de�ned by the hevea pa
kage (see se
tion 5.2). Hen
e, a do
ument that relies on

these high-level
ommands still
an be typeset by L

A

T

E

X, provided it loads the hevea pa
kage.

Ma
ro H

E

V

E

A L

A

T

E

X

\ahref{url}{text} make text an hyperlink to url e
ho text

\footahref{url}{text} make text an hyperlink to url make url a footnote to text, url

is shown in typewriter font

\ahrefurl{url} make url an hyperlink to url. typeset url in typewriter font

\ahreflo
{label}{text} make text an hyperlink to label

inside the do
ument

e
ho text

\aname{label}{text} make text an hyperlink target

with label label

e
ho text

\mailto{address} make address a �mailto� link to

address

typeset address in typewriter

font

\imgsr
[attr℄{url} insert url as an image, attr are

attributes in the HTML sense

do nothing

\home{text} produ
e a home-dir url both for output and links, output aspe
t

is: �

~

text�

It is important to noti
e that all arguments are pro
essed. For instan
e, to insert a link to my home

page, (http://pauilla
.inria.fr/~maranget/index.html), you should do something like this:

\ahref{http://pauilla
.inria.fr/\home{maranget}/index.html}{his home page}

31

Given the frequen
y of ~, # et
. in urls, this is annoying. Moreover, the immediate solution, using \verb,

\ahref{\verb" ... /~maranget/..."}{his home page} does not work, sin
e L

A

T

E

X forbids verbatim for-

matting inside
ommand arguments.

Fortunately, the url pa
kage provides a very
onvenient \url
ommand that a
ts like \verb and
an

appear in other
ommand arguments (unfortunately, this is not the full story, see se
tion B.17.11). Hen
e,

provided the url pa
kage is loaded, a more
onvenient reformulation of the example above is:

\ahref{\url{http://pauilla
.inria.fr/~maranget/index.html}}{his home page}

Or even better:

\urldef{\lu
page}{\url}{http://pauilla
.inria.fr/~maranget/index.html}

\ahref{\lu
page}{his home page}

It may seem
ompli
ated, but this is a safe way to have a do
ument pro
essed both by L

A

T

E

X and H

E

V

E

A.

Drawing a line between url typesetting and hyperlinks is
orre
t, be
ause users may sometime want urls

to be pro
essed and some other times not. Moreover, H

E

V

E

A (optionally) depends on only one third party

pa
kage: url, whi
h is as
orre
t as it
an be and well-written.

In
ase the \url
ommand is unde�ned at the time \begin{do
ument} is pro
essed, the
ommands \url,

\oneurl and \footurl are de�ned as synonymous for \ahref, \ahrefurl and \footahref, thereby ensuring

some
ompatibility with older versions of H

E

V

E

A. Note that this usage of \url is depre
ated.

8.1.2 HTML style
olours

Spe
ifying
olours both for L

A

T

E

X and H

E

V

E

A should be done using the
olor pa
kage (see se
tion B.14.2).

However,one
an also spe
ify text
olor using spe
ial type style de
larations. The hevea.sty style �le de�ne

no equivalent for these de
larations, whi
h therefore are for H

E

V

E

A
onsumption only.

Those de
larations follow HTML
onventions for
olours. There are sixteen prede�ned
olours:

\bla
k, \silver, \gray, \white, \maroon, \red, \fu
hsia, \purple,

\green, \lime, \olive, \yellow, \navy, \blue, \teal, \aqua

Additionally, the
urrent text
olor
an be
hanged by the de
laration \html
olor{number}, where number

is a six digit hexade
imal number spe
ifying a
olor in the RGB spa
e. For instan
e, the de
laration

\html
olor{404040}
hanges font
olor to dark gray,

8.2 More on in
luded images

The \imgsr

ommand be
omes handy when one has images both in Posts
ript and GIF (or PNG or JPG)

format. As explained in se
tion 6.3, Posts
ript images
an be in
luded in L

A

T

E

X do
uments by using the

\epsfbox
ommand from the epsf pa
kage. For instan
e, if s
reenshot.ps is an en
apsulated Posts
ript

�le, then a do
.tex do
ument
an in
lude it by:

\epsfbox{s
reenshot.ps}

We may very well also have a GIF version of the s
reenshot image (or be able to produ
e one easily using

image
onverting tools), let us store it in a s
reenshot.ps.gif �le. Then, for H

E

V

E

A to in
lude a link to

the GIF image in its output, it su�
es to de�ne the \epsfbox
ommand in the ma
ro.hva �le as follows:

\new
ommand{\epsfbox}[1℄{\imgsr
{#1.gif}}

Then H

E

V

E

A has to be run as:

hevea ma
ros.hva do
.tex

32

Sin
e it has its own de�nition of \epsfbox, H

E

V

E

A will silently in
lude a link the GIF image and not to the

Posts
ript image.

If another naming s
heme for image �les is preferred, there are alternatives. For instan
e, assume that

Posts
ript �les are of the kind name.ps, while GIF �les are of the kind name.gif. Then, images
an be

in
luded using \in
ludeimage{name}, where \in
ludeimage is a spe
i�
 user-de�ned
ommand:

\new
ommand{\in
ludeimage}[1℄{\ifhevea\imgsr
{#1.gif}\else\epsfbox{#1.ps}\fi}

Note that this method uses the hevea boolean register (see se
tion 5.2.3). If one does not wish to load the

hevea.sty �le, one
an adopt the slightly more verbose de�nition:

\new
ommand{\in
ludeimage}[1℄{%

%HEVEA\imgsr
{#1.gif}%

%BEGIN LATEX

\epsfbox{#1.ps}

%END LATEX

}

When the Posts
ript �le has been produ
ed by translating a bitmap �le, this simple method of making a

bitmap image and using the \imgsr

ommand is the most adequate. It should be preferred over using the

more automated image �le me
hanism (see se
tion 6), whi
h will translate the image ba
k from Posts
ript

to bitmap format and will thus degrade it.

8.3 Internal ma
ros

In this se
tion a few of H

E

V

E

A internal ma
ros are des
ribed. Internal ma
ros o

ur at the �nal expansion

stage of H

E

V

E

A and invoke Obje
tive Caml
ode.

Normally, user sour
e
ode should not use them, sin
e their behaviour may
hange from one version of

H

E

V

E

A to another and be
ause using them in
orre
tly easily
rashes H

E

V

E

A. However:

� Internal ma
ros are almost mandatory for writing supplementary base style �les.

� Casual usage is a
onvenient (but dangerous) way to �nely
ontrol output (
f. the examples in the

next se
tion).

� Knowing a little about internal ma
ros helps in understanding how H

E

V

E

A works.

The general prin
iple of H

E

V

E

A is that L

A

T

E

X environments \begin{env}. . . \end{env} get translated

into HTML blo
k-level elements <blo
k attributes>. . . </blo
k>. More spe
i�
ally, su
h blo
k level elements

are opened by the internal ma
ro \�open and
losed by the internal ma
ro \�
lose. As a spe
ial
ase, L

A

T

E

X

groups {. . . } get translated into HTML groups, whi
h are shadow blo
k-level elements with neither opening

nor
losing tag.

In the following few paragraphs, we sket
h the intera
tion of \�open. . . \�
lose with paragraphs. Doing

so, we intend to warn users about the
omplexity of the task of produ
ing
orre
t HTML, and to en
ourage

them to use internal ma
ros, whi
h, most of the time, take nasty details into a

ount.

Paragraphs are rendered by p elements, whi
h are opened and
losed automati
ally. More spe
i�
ally,

a �rst p is opened after \begin{do
ument}, then paragraph breaks
lose the a
tive p and open a new one.

The �nal \end{do
ument}
loses the last p. In any o

asion, paragraphs
onsisting only of spa
e
hara
ters

are dis
arded silently.

Following HTML �normative referen
e [HTML-5a℄�, blo
k-level elements
annot o

ur inside p; more pre-

isely, blo
k-level opening tags impli
itly
lose any a
tive p. As a
onsequen
e, H

E

V

E

A
loses the a
tive p

element when it pro
esses \�open and opens a new p when it pro
esses the mat
hing \�
lose. Generally, no

p element is opened by default inside blo
k-level elements, that is, H

E

V

E

A does not immediately open p after

having pro
essed \�open. However, if a paragraph break o

urs later, then a new p element is opened, and

will be
losed automati
ally when the
urrent blo
k is
losed. Thus, the �rst �paragraph� inside blo
k-level

33

elements that in
lude several paragraphs is not a p element. That alone probably prevents the
onsistent

styling of paragraphs with style sheets.

Groups behave di�erently, opening or
losing them does not
lose nor open p elements. However, pro-

essing paragraph breaks inside groups involves temporarily
losing all groups up to the nearest en
losing p,

losing it, opening a new p and �nally re-opening all groups. Opening a blo
k-level element inside a group,

similarly involves
losing the a
tive p and opening a new p when the mat
hing \�
lose is pro
essed.

Finally, display mode (as introdu
ed by $$) is also
ompli
ated. Displays basi
ally are table elements

with one row (tr), and H

E

V

E

A manages to introdu
e table
ells (td) where appropriate. Pro
essing \�open

inside a display means
losing the
urrent
ell, starting a new
ell, opening the spe
i�ed blo
k, and then

immediately opening a new display. Pro
essing the mat
hing \�
lose
loses the internal display, then the

spe
i�ed blo
k, then the
ell and �nally opens a new
ell. In many o

asions (in parti
ular for groups), either

ell break or the internal display may get
an
elled.

It is important to noti
e that primitive arguments are pro
essed (ex
ept for the \�print primitive, and

for some of the basi
 style primitives). Thus, some
hara
ters
annot be given dire
tly (e.g. # and % must

be given as \# and \%).

\�print{text} E
ho text verbatim. As a
onsequen
e use only as
ii in text.

\�getprint{text} Pro
ess text using a spe
ial output mode that strips o� HTML tags. This ma
ro is the

one to use for pro
essed attributes of HTML tags.

\�hr[attr℄{width}{height} Output an HTML horizontal rule, attr is attributes given dire
tly (e.g. SIZE=3 HOSHADE),

while width and height are length arguments given in the L

A

T

E

X style (e.g. 2pt or .5\linewidth).

\�print�u{n} Output the (Uni
ode)
hara
ter �n�, whi
h
an be given either as a de
imal number or an

hexade
imal number pre�xed by �X�.

\�open{blo
k}{attributes} Open HTML blo
k-level element blo
k with attributes attributes. The blo
k name

blo
k must be lower
ase. As a spe
ial
ase blo
k may be the empty string, then a HTML group is

opened.

\�
lose{blo
k} Close HTML blo
k-level element blo
k. Note that \�open and \�
lose must be properly

balan
ed.

\�out�par{arg} If o

urring inside a p element, that is if a <p> opening tag is a
tive, \�out�par �rst
loses

it (by emitting </p>), then formats arg, and then re-open a p element. Otherwise \�out�par simply

formats arg. This
ommand is adequate when formatting arg produ
es blo
k-level elements.

Text-level elements are managed di�erently. They are not seen as blo
ks that must be
losed expli
itly.

Instead they follow a �de
laration� style, similar to the one of L

A

T

E

X �text-style de
larations� � namely,

\itshape, \em et
. Blo
k-level elements (and HTML groups) delimit the e�e
t of su
h de
larations.

\�span{attr} De
lare the text-level element span (with given attributes) as a
tive. The text-level element

span will get opened as soon as ne
essary and
losed automati
ally, when the en
losing blo
k-level

elements get
losed. En
losed blo
k-level elements are treated properly by
losing span before them,

and re-opening span (with given attributes) inside them. The following text-level
onstru
ts exhibit

similar behaviour with respe
t to blo
k-level elements.

\�style{shape} De
lare the text shape shape (whi
h must be lower
ase) as a
tive. Text shapes are known

as font style elements (i, tt, et
.; warning:most of font style elements are depre
iated in HTML5, and

some of them are no longer valid, prefer CSS in span tags) or phrase elements (em, et
.) in the HTML

terminology.

\�styleattr{name}{attr} This
ommand generalises both \�span and \�style, as both a text-level el-

ement name name and attributes are spe
i�ed. More spe
i�
ally, \�span{attr}
an be seen as

a shorthand for \�styleattr{span}{attr}; while \�style{name}
an be seen as a shorthand for

\�styleattr{name}{}.

34

\�fontsize{int} De
lare the text-level element span with attribute style="font-size:font-size" as a
-

tive. The argument int must be a small integer in the range 1,2, . . . , 7. hevea
omputes font-size, a

CSS fontsize value, from int. More spe
i�
ally, font-size will range from x-small to 120% in
luded in

a xx-large, 3 being the default size medium. Noti
e that \�fontsize is depre
ated in favour of \�span

with proper fontsize de
larations: \�span{style="font-size=xx-small"}, \�span{style="font-size=x-small"},

\�span{style="font-size=small"}, et
.

\�font
olor{
olor} De
lare the text-level element span with attribute "style=
olor" as a
tive. The argu-

ment
olor must be a
olor attribute value in the HTML style. That is either one of the sixteen
onven-

tional
olours bla
k, silver et
, or a RGB hexade
imal
olor spe
i�
ation of the form #XXXXXX.

Note that the argument
olor is pro
essed, as a
onsequen
e numeri
al
olor arguments should be given

as \#XXXXXX.

\�nostyle Close a
tive text-level de
larations and ignore further text-level de
larations. The e�e
t stops

when the en
losing blo
k-level element is
losed.

\�
learstyle Simply
lose a
tive text-level de
larations.

Noti
e on font styling with CSS

The preferred way to style text in new versions of the HTML �standard� is using style-sheet spe
i�
ations.

Those
an be given as argument to a �style� attributes of HTML elements, most noti
eably of the span ele-

ments. For instan
e, to get itali
s in old versions of HTML one used the text-level �i� element as in <i>. . . </i>.

Now, for the same results of getting itali
s one may write: <span style="font-style:itali
">. . . .

An indeed hevea styles text in that manner, starting from version 2.00. Su
h (verbose) de
larations are then

abstra
ted into style
lass de
larations by H

E

V

E

A optimiser esponja, whi
h is invoked by hevea when given

option �-O�.

Noti
e that style attributes
an be given to elements other than span. However,
ombining style attributes

requires a little
are as only one style attribute is allowed. Namely <
ite style="font-weight:bold" style="
olor:red">

is illegal and should be written <
ite style="font-weight:bold;
olor:red">.

The
ommand \�addtyle
an be handy for adding style to already style elements:

\�addstyle{name:val}{attrs} E
ho the spa
e-separated attributes attrs of a tag with the name:val style de
-

laration added to these attributes. The style attribute is added if ne
essary. Examples: \�addstyle{
olor:red}{href="#"}

will produ
e href="#" style="
olor:red", and \�addstyle{
olor:red}{href="#" style="font-style:itali
"}

will produ
e href="#" style="font-style:itali
;
olor:red". Note that an unne
essary extra

spa
e
an be added in some
ases.

As an example,
onsider the following de�nition of a
ommand for typesetting
itation in bold, written

dire
tly in HTML:

\new
ommand{\styled
ite}[2℄[℄

{{\�styleattr{
ite}{\�addstyle{#1}{style="font-weight:bold"}}#2}}

The purpose of the optional argument is to add style to spe
i�

itations, as in:

Two fundamental works: \styled
ite{The Holy Bible} and

\styled
ite[
olor:red℄{Das Kapital}.

Noti
e that the example is given for illustrating the usage of the \�addstyle ma
ros, whi
h is intended

for pa
kage writers. A probably simpler way to pro
eed would be to use L

A

T

E

X text-style de
larations:

\new
ommand{styled
ite}[2℄[℄{{\�style{
ite}#1\bf{}#2}}

Two fundamental works: \styled
ite{The Holy Bible} and

\styled
ite[\
olor{red}℄{Das Kapital}.

35

8.4 The rawhtml environment

Any text en
losed between \begin{rawhtml} and \end{rawhtml} is e
hoed verbatim into the HTML output

�le. Similarly, \rawhtmlinput{�le} e
hoes the
ontents of �le �le. In fa
t, rawhtml is the environment

ounterpart of the \�print
ommand, but experien
e showed it to be mu
h more error prone.

When H

E

V

E

A was less sophisti
ated then it is now, rawhtml was quite
onvenient. But, as time went by,

numerous pitfalls around rawhtml showed up. Here are a few:

� Verbatim means that no translation of any kind is performed. In parti
ular, be aware that input

en
oding (see B.17.4) does not apply. Hen
e one should use as
ii only, if needed non-as
ii
hara
ters

an be given as entity or numeri
al
hara
ter referen
es � e.g. &ea
ute; or é for é.

� The rawhtml environment should
ontain only HTML text that makes sense alone. For instan
e, writ-

ing \begin{rawhtml}<table>\end{rawhtml}. . . \begin{rawhtml}</table>\end{rawhtml} is dan-

gerous, be
ause H

E

V

E

A is not informed about opening and
losing the blo
k-level element table. In

that
ase, one should use the internal ma
ros \�open and \�
lose.

� \begin{rawhtml}text\end{rawhtml} fragments that
ontain blo
k-level elements will almost
ertainly

mix poorly with p elements (introdu
ed by paragraph breaks) and with a
tive style de
laration (in-

trodu
ed by, for instan
e, \it). Safe usage will most of the time means using the internal ma
ros

\�nostyle and \�out�par.

� When H

E

V

E

A is given the
ommand-line option -O,
he
king and optimisation of text-level elements in

the whole do
ument takes pla
e. As a
onsequen
e, in
orre
t HTML introdu
ed by using the rawhtml

environment may be dete
ted at a later stage, but this is far from being
ertain.

As a
on
lusion, do not use the rawhtml environment! A mu
h safer option is to use the htmlonly

environment and to write L

A

T

E

X
ode. For instan
e, in pla
e of writing:

\begin{rawhtml}

A list of links:

<a href="http://www.apple.
om/">Apple.

<a href="http://www.sun.
om/">Sun.

\end{rawhtml}

One
an write:

\begin{htmlonly}

A list of links:

\begin{itemize}

\item \ahref{http://www.apple.
om/}{Apple}.

\item \ahref{http://www.sun.
om/}{Sun}.

\end{itemize}

\end{htmlonly}

If H

E

V

E

A is targeted to text or info �les (see Se
tion 11). The text inside rawhtml environments is ignored.

However there exists a rawtext environment (and a \rawtextinput
ommand) to e
ho text verbatim in

text or info output mode. Additionally, the raw environment and a \rawinput
ommand e
ho their
ontents

verbatim, regardless of H

E

V

E

A output mode. Of
ourse, when H

E

V

E

A produ
es HTML, the latter environment

and
ommand su�er from the same drawba
ks as rawhtml.

36

8.5 Examples

As a �rst example of using internal ma
ros,
onsider the following ex
erpt from the hevea.hva �le that

de�nes the
enter environment:

\newenvironment{
enter}{\�open{div}{style="text-align:
enter"}}{\�
lose{div}}

Noti
e that the
ode above is no longer present and is given here for explanatory purpose only. Now H

E

V

E

A

uses style-sheets and the a
tual de�nition of the
enter environment is as follows:

\newstyle{.
enter}{text-align:
enter;margin-left:auto;margin-right:auto;}%

\setenv
lass{
enter}{
enter}%

\newenvironment{
enter}

{\�open{div}{\�getprint{
lass="\getenv
lass{
enter}"}}

{\�
lose{div}}%

Basi
ally environments \begin{
enter}. . . \end{
enter}will, by default, be translated into blo
ks <div
lass="
enter">. . . </div>.

Additionally, the style
lass asso
iated to
enter environments is managed through an indire
tion, using the

ommands \setenv
lass and \getenv
lass. See se
tion 9.3 for more explanations.

Another example is the de�nition of the \purple
olor de
laration (see se
tion 8.1.2):

\new
ommand{\purple}{\�font
olor{purple}}

H

E

V

E

A does not feature all text-level elements by default. However one
an easily use them with internal

ma
ros. For instan
e this is how you
an make all emphasised text blink:

\renew
ommand{\em}{\�styleattr{em}{style="text-de
oration:blink"}}

Then, here is the de�nition of a simpli�ed \imgsr

ommand (see se
tion 8.1.1), without its optional

argument:

\new
ommand{\imgsr
}[1℄

{\�print{<img sr
="}\�getprint{#1}\�print{">}}

Here, \�print and \�getprint are used to output HTML text, depending upon whether this text requires

pro
essing or not. Note that \�open{img}{sr
="#1"} is not
orre
t, be
ause the element img
onsists in a

single tag, without a
losing tag.

Another interesting example is the de�nition of the
ommand \�doaelement, whi
h H

E

V

E

A uses internally

to output A elements.

\new
ommand{\�doaelement}[2℄

{{\�nostyle\�print{<a }\�getprint{#1}\�print{>}}{#2}{\�nostyle\�print{}}

The
ommand \�doaelement takes two arguments: the �rst argument
ontains the opening tag attributes;

while the se
ond element is the textual
ontent of the A element. By
ontrast with the \imgsr
 example

above, tags are emitted inside groups where styles are
an
elled by using the \�nostyle de
laration. Su
h

a
ompli
ation is needed, so as to avoid breaking proper nesting of text-level elements.

Here is another example of dire
t blo
k opening. The bg
olor environment from the
olor pa
kage

lo
ally
hanges ba
kground
olor (see se
tion B.14.2.1). This environment is de�ned as follows:

\newenvironment{bg
olor}[2℄[style="padding:1em"℄

{\�open{table}{}\�open{tr}{}%

\�open{td}{\�addstyle{ba
kground-
olor:\�get
olor{#2}}{#1}}}

{\�
lose{td}\�
lose{tr}\�
lose{table}}

37

The bg
olor environment operates by opening a HTML table (table) with only one row (tr) and
ell (td)

in its opening
ommand, and
losing all these elements in its
losing
ommand. In my opinion, su
h a style

of opening blo
k-level elements in environment opening
ommands and
losing them in environment
losing

ommands is good style. The one
ell ba
kground
olor is for
ed with a ba
kground-
olor property in a

style attribute. Note that the mandatory argument to \begin{bg
olor} is the ba
kground
olor expressed

as a high-level
olor, whi
h therefore needs to be translated into a low-level
olor by using the \�get
olor

internal ma
ro from the
olor pa
kage. Additionally, \begin{bg
olor} takes HTML attributes as an optional

argument. These attributes are the ones of the table element.

If you wish to output a given Uni
ode
hara
ter whose value you know, the re
ommended te
hnique is

to de�ne an ad-ho

ommand that simply
all the \�print�u
ommand. For instan
e, �bla
kboard sigma�

is Uni
ode U+02140 (hexa). Hen
e you
an de�ne the
ommand \bbsigma as follows:

\new
ommand{\bbsigma}{\�print�u{X2140}}

8.6 The do
ument
harset

A

ording to standards, as far as I understand them, HTML pages are made of Uni
ode (ISO 10646)
hara
ters.

By
ontrast, a �le in any operating system is usually
onsidered as being made of bytes.

To a

ount for that fa
t, HTML pages usually spe
ify a do
ument
harset that de�nes a translation from

a �ow of bytes to a �ow of
hara
ters. For instan
e, the byte 0xA4 means Uni
ode 0x00A4 (¤) in the ISO-

8859-1 (or latin1) en
oding, and 0x20AC (¿) in the ISO-8859-15 (or latin9) en
oding. Noti
e that H

E

V

E

A has

no di�
ulty to output both symbols, in fa
t they are de�ned as Uni
ode
hara
ters:

\new
ommand{\text
urren
y}{\�print�u{XA4}}

\new
ommand{\texteuro}{\�print�u{X20AC}}

But the \�print�u
ommand may output the spe
i�ed
hara
ter as a byte, when possible, by the means

of the output translator. If not possible, \�print�u outputs a numeri
al
hara
ter referen
es (for instan
e

€).

Of
ourse, the do
ument
harset and the output translator must be syn
hronised. The
ommand

\�def�
harset takes a
harset name as argument and performs the operation of spe
ifying the do
ument

hara
ter set and the output translator. It should o

ur in the do
ument preamble. Valid
harset names

are ISO-8859-n where n is a number in 1. . . 15, KOI8-R, US-ASCII (the default), windows-n where n is

1250, 1251, 1252 or 1257, or ma
intosh, or UTF-8. In
ase those
harsets do not su�
e, you may ask

the author for other do
ument
harsets. Noti
e however that do
ument
harset is not that important, the

default US-ASCII works everywhere! Input en
oding of sour
e �les is another, although related, issue � see

Se
tion B.17.4.

If wished so, the
harset
an be extra
ted from the
urrent lo
ale environment, provided this yields a

valid (to H

E

V

E

A)
harset name. This operation is performed by a
ompanion s
ript: xx
harset.exe. It thus

su�
es to laun
h H

E

V

E

A as:

hevea -exe
 xx
harset.exe other arguments

9 Support for style sheets

9.1 Overview

Starting with version 1.08, H

E

V

E

A o�ers support for style sheets (of the CSS variant see [CSS-2℄).

Style sheets provide enhan
ed expressiveness. For instan
e, it is now possible to get �real� (whatever real

means here) small
aps in HTML, and in a relatively standard manner. There are other, dis
rete, maybe

unnoti
eable, similar enhan
ements.

However, style sheets mostly o�er an additional me
hanism to
ustomise their do
uments to H

E

V

E

A users.

To do so, users should probably get familiar with how H

E

V

E

A uses style sheets in the �rst pla
e.

38

H

E

V

E

A interest for style sheets is at the moment
on�ned to blo
k-level elements (div, table, H<n>,

et
.). The general prin
iple is as follows: when a
ommand or an environment gets translated into a blo
k-

level element, the opening tag of the blo
k level element has a
lass="name" attribute, where name is the

ommand or environment name.

As an example the L

A

T

E

X
ommand \subse
tion is implemented with the element h3, resulting in HTML

output of the form:

<h3
lass="subse
tion">

...

</h3>

By default, most styles are unde�ned, and default rendering of blo
k-level elements applies. However, some

pa
kages (su
h as, for instan
e fan
yse
tion, see Se
tion B.16.4) may de�ne them. If you wish to
hange the

style of se
tion headers, loading the fan
yse
tion pa
kage may prove appropriate (see B.16.4). However,

one
an also pro
eed more dire
tly, by appending new de�nitions to the do
ument style sheet, with the

ommand \newstyle. For instan
e, here is a \newstyle to add style for subse
tions.

\newstyle{.subse
tion}{padding:1ex;
olor:navy;border:solid navy;}

This de
laration adds some style element to the subse
tion
lass (noti
e the dot!): blo
ks that de
lare to

belong to the
lass will show dark-blue text, some padding (spa
e inside the box) is added and a border will

be drawn around the blo
k. These spe
i�
ation will normally a�e
t all subse
tions in the do
ument.

The following points are worth noti
ing:

� To yield some e�e
t, \newstyle
ommandsmust appear in the do
ument preamble, i.e. before \begin{do
ument}.

� Arguments to \newstyle
ommands are pro
essed.

� The hevea pa
kage de�nes all style sheet related
ommands as no-ops. Thus, these
ommands do not

a�e
t do
ument pro
essing by L

A

T

E

X.

9.2 Changing the style of all instan
es of an environment

In this very do
ument, all verbatim environments appear over a light green ba
kground, with small left and

right margins. This has been performed by simply issuing the following
ommand in the do
ument preamble.

\newstyle{.verbatim}{margin:1ex 1ex;padding:1ex;ba
kground:\#

ff

;}

Observe that, in the expli
it numeri
al
olor argument above, the hash
hara
ter �#� has to be es
aped.

9.3 Changing the style of some instan
es of an environment

One
an also
hange the style
lass atta
hed to a given instan
e of an environment and thus
ontrol styling

of environments more pre
isely.

As a matter of fa
t, the name of the
lass attribute of environment env is referred to through an indire
-

tion, by using the
ommand \getenv
lass{env}. The
lass attribute
an be
hanged with the
ommand

\setenv
lass{env}{
lass}. The \setenv
lass
ommand internally de�nes a
ommand \env�
lass, whose

ontent is read by the \getenv
lass
ommand. As a
onsequen
e, the
lass attribute of environments follows

normal s
oping rules. For instan
e, here is how to
hange the style of one verbatim environment.

{\setenv
lass{verbatim}{myverbatim}

\begin{verbatim}

This will be styled through
lass 'myverbatim', introdu
ed by:

\newstyle{.myverbatim}

{margin:1ex 3x;padding:1ex;

olor:maroon;

39

ba
kground:\�getstyle
olor[named℄{Apri
ot}}

\end{verbatim}}

Observe how the
lass of environment verbatim is
hanged from its default value to the new value

myverbatim. The
hange remains a
tive until the end of the
urrent group (here, the �}� at the end). Then,

the
lass of environment verbatim is restored to its default value � whi
h happen to be verbatim.

This example also shows two new ways to spe
ify
olours in style de�nition, with a
onventional HTML
olor

name (here maroon) or as a high-level
olor (see Se
tion B.14.2), given as an argument to the \�getstyle
olor

internal
ommand (here Apri
ot from the named
olor model).

A good way of spe
ifying style
lass
hanges probably is by de�ning new environments.

\newenvironment{flashyverbatim}

{\setenv
lass{verbatim}{myverbatim}\verbatim}

{\endverbatim}

Then, we
an use \begin{flashyverbatim}. . . \end{flashyverbatim} to get verbatim environments style

with the intended myverbatim style
lass.

9.4 Whi
h
lass a�e
ts what

Generally, the styling of environment env is performed through the
ommands \getenv
lass{env} and

\setenv
lass{env}{. . . }, with \getenv
lass{env} produ
ing the default value of env.

Con
retely, this means that most of the environments are styled through an homonymous style
lass.

Here is a non-exhaustive list of su
h environments

�gure, table, itemize, enumerate, list, des
ription, trivlist,
enter, �ushleft, �ushright, quote,

quotation, verbatim, abstra
t, mathpar (
f Se
tion B.17.15), lstlisting (
f. Se
tion B.17.13), et
.

All se
tioning
ommands (\part, \se
tion et
.) output H<n> blo
k-level elements, whi
h are styled

through style
lasses named part, se
tion, et
.

List making-environment introdu
e extra style
lasses for items. More spe
i�
ally, for list-making envi-

ronments itemize and enumerate, li elements are styled as follows:

<ul
lass="itemize">

<li
lass="li-itemize"> ...

<ol
lass="enumerate">

<li
lass="li-enumerate"> ...

That is, li elements are styled as environments, the key name being li-env.

The des
ription, trivlist and list environments (whi
h all get translated into DL elements) are styled

in a similar way, internal DT and DD elements being styles through names dt-env and dd-env respe
tively.

9.5 A few examples

9.5.1 The title of the do
ument

The
ommand \maketitle formats the do
ument title within a table element, with
lass title, for display.

The name of the title is displayed inside blo
k h1, with
lass titlemain, while all other information (author,

date) are displayed inside blo
k h3, with
lass titlerest.

<table
lass="title">

<tr>

<td style="padding:1ex">

40

<h1
lass="titlemain">..title here..</h1>

<h3
lass="titlerest">..author here..</h3>

<h3
lass="titlerest">..date here..</h3>

</td>

</tr>

</table>

Users
an impa
t on title formatting by adding style in the appropriate style
lasses. For instan
e the

following style
lass de�nitions:

\newstyle{.title}

{text-align:
enter;margin:1ex auto;
olor:navy;border:solid navy;}

\newstyle{.titlerest}{font-variant:small-
aps;}

will normally produ
e a title in dark blue,
entered in a box, with author and date in small-
aps.

9.5.2 En
losing things in a styled div

At the moment, due to the
omplexity of the task, environments tabular and array
annot be styled

as others environments
an be, by de�ning an appropriate
lass in the preamble. However, even for su
h

onstru
ts, limited styling
an be performed, by using the divstyle environment. The opening
ommand

\begin{divstyle}{
lass} takes the name of a
lass as an argument, and translates to <div
lass="
lass">.

Of
ourse the
losing
ommand \end{divstyle} translates to </div>. The limitation is that the en
losed

part may generate more HTML blo
ks, and that not all style attribute de�ned in
lass
lass
lass will apply

to those inner blo
ks.

As an example
onsider the style
lass de�nition below.

\newstyle{.ruled}{border:solid bla
k;padding:1ex;ba
kground:\#eeddbb;
olor:maroon}

The intended behaviour is to add a bla
k border around the inner blo
k (with some padding), and to have

text over a light brown ba
kground.

If we, for instan
e, en
lose an itemize environment, the resulting e�e
t is more or less what we have

expe
ted:

\begin{divstyle}{ruled}

\begin{itemize}

\item A ruled itemize

\item With two items.

\end{itemize}

\end{divstyle}

However, en
losing a
entered tabular environment in a divstyle{ruled} one is less satisfa
tory.

\begin{divstyle}{ruled}

\begin{
enter}\begin{tabular}{|
|
|}

\hline \bf English & \bf Fren
h\\ \hline

Good Morning & Bonjour\\ Thank You & Mer
i\\ Good Bye & Au Revoir\\ \hline

\end{tabular}\end{
enter}

\end{divstyle}

In the HTML version of this do
ument, one sees that the brown ba
kground extend on all the width of the

displayed page.

This problem
an be solved by introdu
ing an extra table. We �rst open an extra
entered table and

then only open the divstyle environment.

41

\begin{
enter}\begin{tabular}{
}

\begin{divstyle}{ruled}

\begin{tabular}{|
|
|}

\hline \bf English & \bf Fren
h\\ \hline

Good Morning & Bonjour\\ Thank You & Mer
i\\ Good Bye & Au Revoir\\

\hline

\end{tabular}

\end{divstyle}

\end{tabular}\end{
enter}

This works be
ause of the rules that govern the width of HTML table elements, whi
h yield minimal width.

This tri
k is used in numerous pla
es by H

E

V

E

A, for instan
e in do
ument titles, and looks quite safe.

Another solution is to spe
ify the display property of the styling div blo
k as being inline-blo
k:

\newstyle{.ruledbis}

{border:solid bla
k;padding:1ex;ba
kground:\#eeddbb;
olor:maroon;display:inline-blo
k;}

9.5.3 Styling the itemize environment

Our idea is highlight lists with a left border whose
olor fades while lists are nested. Su
h a design may be

appropriate for tables of
ontent, as the one of this do
ument. The text above is typeset from the following

L

A

T

E

X sour
e.

\begin{to
}

\item Part~A

\begin{to
}

\item Chapter~I

\begin{to
}

\item Se
tion~I.1

\item Se
tion~I.2

\end{to
}

...

\end{to
}

\end{to
}

For simpli
ity, we assume a limit of four over the nesting depth of to
 environment. We �rst de�ne four style

lasses to
1, to
2, to
3 and to
4 in the do
ument preamble. Sin
e those
lasses are similar, a
ommand

\newto
style is designed.

\new
ommand{\newto
style}[2℄

{\newstyle{.to
#1}{list-style:none;border-left:1ex solid #2;padding:0ex 1ex;}}

\newto
style{1}{\�getstyle
olor{Sepia}}

\newto
style{2}{\�getstyle
olor{Brown}}

\newto
style{3}{\�getstyle
olor{Tan}}

\newto
style{4}{\�getstyle
olor{Melon}}

The to
 environment uses a
ounter to re
ord nesting depth. Noti
e how the style
lass of the itemize

environment is rede�ned before \begin{itemize}.

\new
ounter{to
}

\newenvironment{to
}

{\step
ounter{to
}\setenv
lass{itemize}{to
\theto
}\begin{itemize}}

{\addto
ounter{to
}{-1}\end{itemize}}

The outputted HTML is:

42

<ul
lass="to
1"><li
lass="li-itemize">

Part A

<ul
lass="to
2"><li
lass="li-itemize">

Chapter I

<ul
lass="to
3"><li
lass="li-itemize">

Se
tion I.1

<li
lass="li-itemize">Se
tion I.2

...

9.6 Mis
ellaneous

9.6.1 H

A

C

H

A and style sheets

H

A

C

H

A now produ
es an additional �le: a style sheet, whi
h is shared by all the HTML �les produ
ed by

H

A

C

H

A. Please refer to se
tion 7.1 for details.

9.6.2 Produ
ing an external style sheet

By default, style de
larations de�ned with \newstyle go into the header of the HTML do
ument do
.html.

However, one
an send those de
laration into an external style �le, whose name is do
.
ss. Then, H

E

V

E

A

automati
ally relates do
.html to its style sheet do
.
ss. To a
hieve this behaviour, it su�
es to set the value

of the boolean register external
ss to true, by issuing the
ommand \external
sstrue in the preamble

of the sour
e do
ument. Noti
e that H

E

V

E

A output still
an be pro
essed by H

A

C

H

A, with
orre
t behaviour.

9.6.3 Linking to external style sheets

The H

E

V

E

A
ommand \load
ssfile{url} allows the user to link to an external style sheet (like the link

option for HTML). The
ommand takes an url of the external sheet as argument and emits the HTML text

to link to the given external style sheet. As an example, the
ommand

\load
ssfile{../ab
.
ss}

produ
es the following HTML text in the head of the do
ument.

<link rel="stylesheet" type="text/
ss" href="../ab
.
ss">

To yield some e�e
t, \load
ssfile must appear in the do
ument preamble. Several \load
ssfile
om-

mands
an be issued. Then the given external style sheets appear in the output, following sour
e order.

Noti
e that the argument to \load
ssfile is pro
essed. Thus, if it
ontains spe
ial
hara
ters su
h as

�#� or �$�, those must be spe
i�ed as \# and \$ respe
tively. A viable alternative would be to quote the

argument using the \url
ommand from the url pa
kage (see Se
tion B.17.11).

9.6.4 Limitations

At the moment, style
lass de�nitions
umulate, and appear in the style element in the order they are given

in the do
ument sour
e. There is no way to
an
el the default
lass de�nitions performed by H

E

V

E

A before

it starts to pro
ess the user's do
ument. Additionally, external style sheets spe
i�ed with \load
ssfile

appear before style
lasses de�ned with \newstyle. As a
onsequen
e (if I am right), styles de
lared by

\newstyle take pre
eden
e over those
ontained in external style sheets. Thus, using external style-sheets,

espe
ially if they alter the styling of elements, may produ
e awkward results.

Those limitations do not apply of
ourse to style
lasses whose names are new, sin
e there
annot be

default de�nitions for them. Then, linking with external style sheets
an prove useful to promote uniform

styling of several do
uments produ
ed by H

E

V

E

A.

43

10 Customising H

E

V

E

A

H

E

V

E

A
an be
ontrolled by writing L

A

T

E

X
ode. In this se
tion, we examine how users
an
hange H

E

V

E

A

default behaviour or add fun
tionalities. In all this se
tion we assume that a do
ument do
.tex is pro
essed,

using a private
ommand �le ma
ros.hva. That is, H

E

V

E

A is invoked as:

hevea ma
ros.hva do
.tex

The general idea is as follows: one rede�nes L

A

T

E

X
onstru
ts in ma
ros.hva, using internal
ommands. This

requires a good working knowledge of both L

A

T

E

X and HTML. Usually, one
an avoid internal
ommands, but

then, all
ommand rede�nitions intera
t, sometimes in very nasty ways.

10.1 Simple
hanges

Users
an easily
hange the rendering of some
onstru
ts. For instan
e, assume that all quotations in a text

should be emphasised. Then, it su�
es to put the following re-de
laration in ma
ros.hva:

\renewenvironment{quote}

{\�open{blo
kquote}{}\�style{em}}

{\�
lose{blo
kquote}}

The same e�e
t
an be a
hieved without using any of the internal
ommands:

\let\oldquote\quote

\let\oldendquote\endquote

\renewenvironment{quote}{\oldquote\em}{\oldendquote}

In some sense, this se
ond solution is easier, when one already knows how to
ustomise L

A

T

E

X. However,

this is less safe, sin
e the de�nition of \em
an be
hanged elsewhere.

There is yet another solution that takes advantage of style sheets. One
an also add this line to the

ma
ros.hva �le:

\newstyle{.quote}{font-style:oblique;}

This works be
ause the environment quote is styled through style
lass quote (see Se
tion 9.2). Noti
e that

this solution has very little to do with �emphasising� in the proper sense, sin
e here we short-
ir
uit the

impli
it path from \em to oblique fonts.

10.2 Changing defaults for type-styles

H

E

V

E

A default rendering of type style
hanges is des
ribed in se
tion B.15.1. For instan
e, the following

example shows the default rendering for the font shapes:

\itshape itali
 shape \slshape slanted shape

\s
shape small
aps shape \upshape upright shape

By default, \itshape is itali
s, \slshape is oblique itali
s, \s
shape is small-
aps (thanks to style sheets)

and \upshape is no style at all. All shapes are mutually ex
lusive, this means that ea
h shape de
laration

an
els the e�e
t of other a
tive shape de
larations. For instan
e, in the example, small
aps shapes is small

aps (no itali
s here).

If one wishes to
hange the rendering of some of the shapes (say slanted
aps), then one should rede�ne

the old-style \sl de
laration. For instan
e, to render slanted as Helveti
a (why so?), one should rede�ne \sl

by \renew
ommand{\sl}{\�span{style="font-family:Helveti
a"}} in ma
ros.hva.

Hen
e, rede�ning old-style de
larations using internal
ommands should yield satisfa
tory output. How-

ever, sin
e
an
ellation is done at the HTML level, a de
laration belonging to one
omponent may sometimes

an
el the e�e
t of another that belongs to another
omponent. Anyway, you might have not noti
ed it if I

had not told you.

44

10.3 Changing the interfa
e of a
ommand

Assume for instan
e that the base style of do
.tex is js
 (the Journal of Symboli
 Computation style for

arti
les). For running H

E

V

E

A, the js
 style
an be repla
ed by arti
le style, but for a few
ommands whose

alling interfa
e is
hanged. In parti
ular, the \title
ommand takes an extra optional argument (whi
h

H

E

V

E

A should ignore anyway). However, H

E

V

E

A
an pro
ess the do
ument as it stands. One solution to insert

the following lines into ma
ros.hva:

\input{arti
le.hva}% For
e do
ument
lass 'arti
le'

\let\oldtitle=\title

\renew
ommand{\title}[2℄[℄{\oldtitle{#2}}

The e�e
t is to repla
e \title by a new
ommand whi
h
alls H

E

V

E

A \title with the appropriate argument.

10.4 Che
king the optional argument within a
ommand

H

E

V

E

A fully implements L

A

T

E

X2ε \new
ommand. That is, users
an de�ne
ommands with an optional ar-

gument. Su
h a feature permits to write a \epsfbox
ommand that has the same interfa
e as the L

A

T

E

X

ommand and e
hoes itself as it is invoked to the image �le. To do this, the H

E

V

E

A \epsfbox
ommand has

to
he
k whether it is invoked with an optional argument or not. This
an be a
hieved as follows:

\new
ommand{\epsfbox}[2℄[!*!℄{%

\ifthenelse{\equal{#1}{!*!}}

{\begin{toimage}\epsfbox{#2}\end{toimage}}%No optional argument

{\begin{toimage}\epsfbox[#1℄{#2}\end{toimage}}}%With optional argument

\imageflush}

10.5 Changing the format of images

Semi-automati
 generation of in
luded images is des
ribed in se
tion 6. Links to in
luded images are gener-

ated by the \imageflush
ommand, whi
h
alls the \imgsr

ommand:

\new
ommand{\imageflush}[1℄[℄

{\�imageflush\step
ounter{image}\imgsr
[#1℄{\hevaimagedir\jobname\theimage\heveaimageext}}

That is, you may supply a HTML-style attribute to the in
luded image, as an optional argument to the

\imageflush
ommand.

By default, images are PNG images stored in .png �les. H

E

V

E

A provides support for the alternative GIF

image �le format. It su�
es to invoke hevea as:

hevea gif.hva do
.tex

Then imagen must be run with option -gif:

imagen -gif do

A
onvenient alternative is to invoke hevea as:

hevea -fix gif.hva do
.tex

Then hevea will invoke imagen with the appropriate option when it thinks images need to be rebuild.

45

10.6 Storing images in a separate dire
tory

By rede�ning the \heveaimagedir
ommand, users
an spe
ify a dire
tory for images. More pre
isely, if the

following rede�nition o

urs in the do
ument preamble.

\renew
ommand{\heveaimagedir}{dir}

Then, all links to images in the produ
ed HTML �le will be as �dir/. . . �. Then imagen must be invoked with

option - todir:

imagen -todir dir do

As usual, hevea will invoke imagen with the appropriate option, provided it is passed the -fix option.

10.7 Controlling imagen from do
ument sour
e

The internal
ommand \�addimagenopt{option} add the text option to imagen
ommand-line options, when

laun
hed automati
ally by hevea (i.e. when hevea is given the -fix
ommand-line option).

For instan
e, to instru
t hevea/imagen to redu
e all images by a fa
tor of

√
2, it su�
es to state:

%HEVEA\�addimagenopt{-mag 707}

See se
tion C.1.5 for the list of
ommand-line options a

epted by imagen.

11 Other output formats

It is possible to translate L

A

T

E

X �le into other formats than HTML. There are two su
h formats: plain text

and info �les. This enables produ
ing posts
ript, HTML, plain text and info manuals from one (L

A

T

E

X) input

�le.

11.1 Text

The L

A

T

E

X �le is pro
essed and
onverted into a plain text formatted �le. It allows some pretty-printing in

plain text.

To translate into text, invoke H

E

V

E

A as follow:

hevea -text [-w <width>℄ myfile.tex

Then, H

E

V

E

A produ
es myfiles.txt a plain text translation of myfile.tex.

Additionally, the optional argument -w <number> sets the width of the output for text formatting. By

default, The text will be 72
hara
ters wide.

Nearly every environment has been translated, in
luded lists and tables. The support is nearly the same

as in HTML, ex
epted in some
ases des
ribed hereafter.

Most style
hanges are ignored, be
ause it is hardly possible to render them in plain text. Thus, there

are no itali
s, bold fonts, underlinings, nor size
hange or
olours. . . The only ex
eption is for the verbatim

environment that puts the text inside quotes, to distinguish it more easily.

Tables with borders are rendered in the same spirit as in L

A

T

E

X. Thus for instan
e, it is possible to get

verti
al lines between some
olumns only. Table rendering
an be poor in
ase of line over�ow. The only

way to
orre
t this (apart from
hanging the tables themselves) is to adjust the formatting width, using the

the -w
ommand-line option.

For now, maths are not supported at all in text mode. You
an get very weird results with in-text

mathemati
al formulas. Of
ourse, simple expressions su
h as subs
ripts remains readable. For instan
e, x2

will be rendered as x^2, but

∫ 1

0
f(x)dx will yield something like : int01f(x)dx.

46

11.2 Info

The �le format info is also supported. Info �les are text �les with limited hypertext links, they
an be read

by using ema
s info mode or the info program. Please note that H

E

V

E

A translates plain L

A

T

E

X to info, and

not TeXinfo.

You
an translate your L

A

T

E

X �les into info �le(s) as follows:

hevea -info [-w <width>℄ myfile.tex

Then, H

E

V

E

A produ
es the �le myfile.info, an info translation of myfile.tex. However, if the resulting

�le is too large, it is
ut into pie
es automati
ally, and myinfo.info now
ontains referen
es for all the nodes

in the others �les, whi
h are named myfile.info-1, myfile.info-2,. . .

The optional argument -w has the same meaning as for text output.

The text will be organised in nodes that follow the pattern of L

A

T

E

X se
tioning
ommands. Menus are

reated to navigate through the se
tions easily

A table of
ontent is produ
ed automati
ally. Referen
es, indexes and footnotes are supported, as they

are in HTML mode. However, the info format only allows pointers to info nodes, i.e. in H

E

V

E

A
ase, to

se
tional units. As a
onsequen
e all
ross referen
es lead to se
tional unit headers.

Part B

Referen
e manual

This part follows the pattern of the L

A

T

E

X referen
e manual [L

A

T

E

X, Appendix C℄.

B.1 Commands and Environments

B.1.1 Command Names and Arguments

L

A

T

E

X
omments that start with �%� and end at end of line are ignored and produ
e no output. Usually, H

E

V

E

A

ignore su
h
omments. However, H

E

V

E

A pro
esses text that follows �%HEVEA� and some other
omments have

a spe
i�
 meaning to it (see se
tion 5.3).

Command names follow stri
t L

A

T

E

X syntax. That is, apart from #, $, ~, _ and ^, they either are �\�

followed by a single non-letter
hara
ter or �\� followed by a sequen
e of letters. Additionally, the letter

sequen
e may be pre
eded by ��� (and this is the
ase of many of H

E

V

E

A internal
ommands), or terminated

by �*� (starred variants are implemented as plain
ommands).

Users are strongly advised to follow stri
t L

A

T

E

X syntax for arguments. That is, mandatory arguments are

en
losed in
urly bra
es {. . . } and bra
es inside arguments must be properly balan
ed. Optional arguments

are en
losed in square bra
kets [. . . ℄. However, H

E

V

E

A does its best to read arguments even when they

are not en
losed in
urly bra
es. Su
h arguments are a single, di�erent from �\�, �{� and � �,
hara
ter or a

ommand name. Thus,
onstru
ts su
h as \'e
ole, a_1 or a_Γ are re
ognized and pro
essed as

é
ole a1 and aΓ. By
ontrast, a^\mbox{...} is not re
ognized and must be written a^{\mbox{...}}.

Also note that, by
ontrast with L

A

T

E

X,
omments are parsed during argument s
anning, as an important

onsequen
e bra
e nesting is also
he
ked inside
omments.

With respe
t to previous versions, H

E

V

E

A has been improved as regards emulation of
ompli
ated argu-

ment passing. That is,
ommands and their arguments
an now appear in di�erent stati
 text bodies. As a

onsequen
e, H

E

V

E

A
orre
tly pro
esses the following sour
e:

\new
ommand{\boite}{\textbf}

\boite{In bold}

The de�nition of \boitemakes it redu
es as \textbf and H

E

V

E

A su

eeds in fet
hing the argument �{In bold}�.

We get

47

In bold

The above example arguably is no �legal� L

A

T

E

X, but H

E

V

E

A handles it. Of
ourse, there remains numerous

�
lever� L

A

T

E

X tri
ks that exploits T

E

X internal behaviour, whi
h H

E

V

E

A does not handle. For instan
e

onsider the following sour
e:

\new
ommand{\boite}[1℄{\textbf#1}

\boite{{In bold}, Not in Bold.}

L

A

T

E

X typesets the text �In bold� using bold font, leaving the rest of the text alone. While H

E

V

E

A typesets

everything using bold font. Here is L

A

T

E

X output:

In bold, Not in Bold.

Note that, in most similar situations, H

E

V

E

A will likely
rash.

As a
on
lusion of this important se
tion, Users are strongly advised to use ordinary
ommand names

and
urly bra
es and not to think too mu
h the T

E

X way.

B.1.2 Environments

Environment opening and
losing is performed like in L

A

T

E

X, with \begin{env} and \end{env}. The *-form

of an environment is a plain environment.

It is not advised to use \env and \endenv in pla
e of \begin{env} and \end{env}.

B.1.3 Fragile Commands

Fragile
ommands are not relevant to H

E

V

E

A and \prote
t is de�ned as a null
ommand.

B.1.4 De
larations

S
ope rules are the same as in L

A

T

E

X.

B.1.5 Invisible Commands

I am a bit lost here. However spa
es in the output should
orrespond to users expe
tations. Note that, to

H

E

V

E

A being invisible
ommands is a stati
 property atta
hed to
ommand name.

B.1.6 The \\ Command

The \\ and *
ommands are the same, they perform a line break, ex
ept inside arrays where they end the

urrent row. Optional arguments to \\ and * are ignored.

B.2 The Stru
ture of the Do
ument

Do
ument stru
ture is a bit simpli�ed with respe
t to L

A

T

E

X, sin
e do
uments
onsist of only two parts. The

preamble starts as soon as H

E

V

E

A starts to operate and ends with the \begin{do
ument}
onstru
t. Then,

any input o

urring before \end{do
ument} is translated to HTML. However, the preamble is pro
essed

and the preamble
omprises the
ontent of the �les given as
ommand-line arguments to H

E

V

E

A, see se
-

tion C.1.1.1). As a
onsequen
e,
ommand and environment de�nitions that o

ur before \begin{do
ument}

are performed. and they remain valid during all the pro
essing.

48

In parti
ular one
an de�ne a header and a footer, by using the \htmlhead and \htmlfoot
ommands

in the preamble. Those
ommands register their argument as the header and the footer of the �nal HTML

do
ument. The header appears �rst while the footer appears last in (visible) HTML output. This is mostly

useful when H

E

V

E

A output is later
ut into pie
es by H

A

C

H

A, sin
e both header and footer are repli
ated at

the start and end of any �le generated by H

A

C

H

A. For instan
e, to append a
opyright noti
e at the end of

all the HTML pages, it su�
es to invoke the \htmlfoot
ommand as follows in the do
ument preamble:

\htmlfoot{\
opyright to me}

The \htmlhead
ommand
annot be used for
hanging anything outside of the HTML do
ument body,

there are spe
i�

ommands for doing this. Those
ommand must be used in the do
ument preamble. One

an
hange H

E

V

E

A default (empty) attribute for the opening <body ...> tag by rede�ning \�bodyargs.

For instan
e, you get bla
k text on a white ba
kground, when the following de
laration o

urs before

\begin{do
ument}:

\renew
ommand{\�bodyargs}{style="
olor:bla
k;ba
kground:white"}

Sin
e version 1.08, a re
ommended alternative is to use style sheets:

\newstyle{body}{
olor:bla
k; ba
kground:white;}

Similarly, some elements
an be inserted into the output �le head element by rede�ning the \�meta

ommand (Su
h elements typi
ally are meta, link, et
.). As su
h text is pure HTML, it should be in
luded

in a rawhtml environment. For instan
e, you
an spe
ify author information as follows:

\let\oldmeta=\�meta

\renew
ommand{\�meta}{%

\oldmeta

\begin{rawhtml}

<meta name="Author"
ontent="Lu
 Maranget">

\end{rawhtml}}

Note how \�meta is �rst bound to \oldmeta before being rede�ned and how \oldmeta is invoked in the new

de�nition of \�meta. Namely, simply overriding the old de�nition of \�meta would imply not outputting

default meta-information.

The \�
harset
ommand holds the value of the (HTML) do
ument
hara
ter set. By default, this value is

US-ASCII. In previous versions of H

E

V

E

A, one
ould
hange the value of the do
ument
hara
ter set by simply

rede�ning \�
harset. Then, it was users responsability to provide a (L

A

T

E

X) do
ument in the
orrespounding

en
oding. This is no longer so, and users should not rede�ne \�
harset dire
tly. Please, see Se
tion 8.6 for

details.

B.3 Senten
es and Paragraphs

B.3.1 Spa
ing

Generally speaking, spa
es (and single newline
hara
ters) in the sour
e are e
hoed in the output. Browser

then manage with spa
es and line-breaks. Following L

A

T

E

X behaviour, spa
es after
ommands are not e
hoed.

Spa
es after invisible
ommands with arguments are not e
hoed either.

However this is no longer true in math mode, see se
tion B.7.7 on spa
es in math mode.

B.3.2 Paragraphs

New paragraphs are introdu
ed by one blank line or more. Paragraphs are not indented. Thus the ma
ros

\indent and \noindent perform no a
tion. Paragraph are rendered by p elements. In some o

asions, this

te
hnique may produ
e spurious paragraphs (see 3.1.1).

49

B.3.3 Footnotes

The
ommands \footnote, \footnotetext and \footnotemark (with or without optional arguments) are

supported. The footnote
ounter exists and (re)setting it or rede�ning \thefootnote should work properly.

When footnotes are issued by a
ombination of \footnotemark and \footnotetext, a \footnotemark
om-

mand must be issued �rst, otherwise some footnotes may get numbered in
orre
tly or disappear. Footnotes

appear at do
ument end in the arti
le style and at
hapters end in the book style. See se
tion 7.3.6 for a

des
ription of how footnotes are �ushed.

B.3.4 A

ents and spe
ial symbols

Thanks to Uni
ode
hara
ter referen
es, H

E

V

E

A
an virtually output any symbol. It may happen that H

E

V

E

A

does not known about a parti
ular symbol, that is, most of the time, H

E

V

E

A does not known about a parti
ular

ommand. In that
ase a warning is issued to draw user attention. Users
an then
hoose a parti
ular symbol

amongst the re
ognized ones, or as an expli
it Uni
ode
hara
ter referen
e (see Se
tion 4.2 for an example

of this te
hnique).

Commands for making a

ents used in non-English languages, su
h as \', work when applied to a

ent-less

(i.e. as
ii) letters and that the
orresponding a

ented letters exist in the Uni
ode
hara
ter set. Otherwise,

the argument to the
ommand is not modi�ed and a warning is issued. For instan
e,
onsider the following

sour
e
ode, where, after a legitimate use of a
ute a

ents, one attempt to put an a

ute a

ent over the

letter �h�:

``\'E
ole'' works as in \LaTeX, while ``\'h'' does not.

H

E

V

E

A output will be �É
ole� works as in L

A

T

E

X, while �h� does not. And a warning will be issued.

./tmp.tex:3741: Warning: Appli
ation of '\'' on 'h' failed

Observe that using input en
odings is a
onvenient alternative to a

ent
ommands � see Se
tion B.17.4.

B.4 Se
tioning

B.4.1 Se
tioning Commands

Se
tioning
ommands from \part down to \subparagraph are de�ned in base style �les. They a

ept an

optional argument and have starred versions.

The non-starred se
tioning
ommands from \part down to \subsubse
tion show se
tion numbers in

se
tional unit headings, provided their level is greater than or equal to the
urrent value of the se
numdepth

ounter. Se
tional unit levels and the default value of the se
numdepth
ounter are the same as in L

A

T

E

X.

Furthermore, given a se
tional unit se
name, the
ounter se
name exists and the appearan
e of se
tional

units numbers
an be
hanged by rede�ning \these
name. For instan
e, the following rede�nition turn the

numbering of
hapters into alphabeti
 (upper
ase) style:

\renew
ommand{\the
hapter}{\Alph{
hapter}}

When jumping to an
hors, browsers put the targeted line on top of display. As a
onsequen
e, in the

following
ode:

\se
tion{A se
tion}

\label{se
tion:se
tion}

...

See Se
tion~\ref{se
tion:se
tion}

Cli
king on the link produ
ed by \ref{se
tion:se
tion} will result in not displaying the targeted se
tion

title. A �x is writing:

50

\se
tion{\label{se
tion:se
tion}A se
tion}

...

See Se
tion~\ref{se
tion:se
tion}

Starting with version 2.04, H

E

V

E

A and H

A

C

H

A will use the label name (se
tion:se
tion above) for the

table of
ontents they generate. Noti
e that this behaviour applies to the \label
ommand that o

urs �rst

in the se
tioning
ommand argument.

B.4.2 The Appendix

The \appendix
ommand exists and should work as in L

A

T

E

X.

B.4.3 Table of Contents

H

E

V

E

A now generates a table of
ontents, using a pro
edure similar to the one of L

A

T

E

X(a .hto
 �le is in-

volved). One inserts this table of
ontents in the main do
ument by issuing the
ommand \tableof
ontents.

Table of
ontents is
ontrolled by the
ounter to
depth. By default, the table of
ontents shows se
tioning

units down to the subsubse
tion level in arti
le style and down to the subse
tion level in book (or report)

style. To in
lude more or less se
tioning units in the table of
ontents, one should in
rease or de
rease the

to
depth
ounter. It is important to noti
e that H

E

V

E

A produ
es su
h a table of
ontents, only when it has

total
ontrol over
ross-referen
es. More pre
isely, H

E

V

E

A
annot produ
e the table of
ontents when it reads

L

A

T

E

X-produ
ed .aux �les. Instead, it should read its own .haux �les. This will naturally o

ur if no .aux

�les are present, otherwise these .aux �les should be deleted, or H

E

V

E

A should be instru
ted not to read

them with the
ommand-line option -fix (see Se
tions B.11.1 and C.1.1.4).

One
an also add extra entries in the table of
ontents by using the
ommand \add
ontentslines, in

a way similar to L

A

T

E

X homonymous
ommand. However, hyperlinks need to be introdu
ed expli
itly, as

in the following example, where an an
hor is de�ned in the se
tion title and referred to in the argument to

\add
ontentsline:

\subse
tion*{\aname{no:number}{Use \ha
ha{}}}

\add
ontentsline{to
}{subse
tion}{\ahreflo
{no:number}{Use \ha
ha{}}}

(See Se
tion 8.1.1 for details on
ommands related to hyperlinks.)

There is no list of �gures nor list of tables.

Use H

A

C

H

A

However, H

E

V

E

A has a more sophisti
ated way of produ
ing a kind of map w.r.t. the se
tioning of the

do
ument. A later run of H

A

C

H

A on H

E

V

E

A output �le splits it in smaller �les organized in a tree whose

nodes are tables of links. By
ontrast with L

A

T

E

X, starred se
tioning
ommands generate entries in these

tables of
ontents. Table of
ontents entries hold the optional argument to se
tioning
ommands or their

argument when there is no optional argument. Se
tion 7 explains how to
ontrol H

A

C

H

A.

B.5 Classes, Pa
kages and Page Styles

B.5.1 Do
ument Class

Both L

A

T

E

X2ε \do
ument
lass and old L

A

T

E

X \do
umentstyle are a

epted. Their argument style is

interpreted by attempting to load a style.hva �le. Presently, only the style �les arti
le.hva, seminar.hva,

book.hva and report.hva exist, the latter two being equivalent.

If one of the re
ognized styles has already been loaded at the time when \do
ument
lass or \do
umentstyle

is exe
uted, then no attempt to load a style �le is made. This allows to override the do
ument style �le by

giving one of the four re
ognized style �les of H

E

V

E

A as a
ommand line argument (see 2.2).

51

Conversely, if H

E

V

E

A attempt to load style.hva fails, then a fatal error is �agged, sin
e it
an be sure that

the do
ument
annot be pro
essed.

B.5.2 Pa
kages and Page Styles

H

E

V

E

A rea
ts to \usepa
kage[options℄{pkg} in the following way:

1. The whole \usepa
kage
ommand with its arguments gets e
hoed to the image �le (see 6).

2. H

E

V

E

A attempt to load �le pkg.hva, (see se
tion C.1.1.1 on where H

E

V

E

A sear
hes for �les).

Note that H

E

V

E

A will not fail if it
annot load pkg.hva and that no warning is issued in that
ase.

The H

E

V

E

A distribution
ontains implementations of some pa
kages, su
h as verbatim,
olors, graphi
s,

et
.

In some situations it may not hurt at all if H

E

V

E

A does not implement a pa
kage, for instan
e H

E

V

E

A does

not provide an implementation for the fullpage pa
kage.

Users needing an implementation of a pa
kage that is widely used and available are en
ouraged to
onta
t

the author. Experien
ed users may �nd it fun to attempt to write pa
kage implementations by themselves.

B.5.3 The Title Page and Abstra
t

All title related
ommands exist, with the following pe
uliarities:

� The argument to the \title
ommand appears in the HTML do
ument header. As a
onsequen
e,

titles should remain simple. Normal design (as regards H

E

V

E

A) is for \title to o

ur in the do
ument

preamble, so that the title is known at the time when the do
ument header is emitted (while pro
essing

\begin{do
ument}). However, there are two subtleties.

If no \title
ommand o

urs in do
ument preamble and that one \title
ommand appears in the

do
ument, then the title is saved into the .haux �le for a next run of H

E

V

E

A to put it in the HTML do
-

ument header.

If \title
ommands are present both in preamble and after \begin{do
ument}, then the former takes

pre
eden
e.

� When not present the date is left empty. The \today
ommand generates will work properly only

if hevea is invoked with the -exe
 xxdate.exe option. Otherwise \today generates nothing and a

warning is issued.

The abstra
t environment is present is all base styles, in
luding the book style. The titlepage envi-

ronment does nothing.

B.6 Displayed Paragraphs

Displayed-paragraph environments translate to blo
k-level elements.

In addition to the environments des
ribed in this se
tion, H

E

V

E

A implements the
enter, flushleft

and flushright environments. H

E

V

E

A also implements the
orespondant T

E

X style de
laration \
entering

\raggedright and \raggedleft, but these de
larations may not work as expe
ted, when they do not appear

dire
tly inside a displayed-paragraph environment or inside an array element.

B.6.1 Quotation and Verse

The quote and quotation environments are the same thing: they translate to BLOCKQUOTE elements. The

verse environment is not supported.

52

B.6.2 List-Making environments

The itemize, enumerate and des
ription environments translate to the ul, ol, and DL elements and this

is the whole story.

As a
onsequen
e, no
ontrol is allowed on the appearan
es of these environments. More pre
isely optional

arguments to \item do not fun
tion properly inside itemize and enumerate. Moreover, item labels inside

itemize or numbering style inside enumerate are browser dependent.

However,
ustomized lists
an be produ
ed by using the the list environment (see next se
tion).

B.6.3 The list and trivlist environments

The list environment translates to the DL element. Arguments to \begin{list} are handled as follows:

\begin{list}{default_label}{de
ls}

The �rst argument default_label is the label generated by an \item
ommand with no argument. The

se
ond argument, de
ls is a sequen
e of de
larations. In pra
ti
e, the following de
larations are relevant:

\use
ounter{
ounter} The
ounter
ounter is in
remented by \refstep
ounter by every \item
ommand

with no argument, before it does anything else.

\renew
ommand{\makelabel}[1℄{. . . } The
ommand \item exe
utes \makelabel{label}, where label is the

item label, to print its label. Thus, users
an
hange label formatting by rede�ning \makelabel. The

default de�nition of \makelabel simply e
hoes label.

As an example, a list with an user-de�ned
ounter
an be de�ned as follows:

\new
ounter{
ou
ou}

\begin{list}{\the
ou
ou}{%

\use
ounter{
ou
ou}%

\renew
ommand{\makelabel}[1℄{\textbf{#1}.}}

...

\end{list}

This yields:

1. First item.

2. Se
ond item.

The trivlist environment is also supported. It is equivalent to the des
ription environment.

B.6.4 Verbatim

The verbatim and verbatim* environments translate to the PRE element. Inside verbatim*, spa
es are

repla
ed by unders
ores (� �).

Similarly, \verb and \verb* translate to the CODE text element.

The alltt environment is supported.

B.7 Mathemati
al Formulae

B.7.1 Math Mode Environment

The three ways to use math mode ($. . . $, \(. . . \) and \begin{math}. . . \end{math}) are supported. The

three ways to use display math mode ($$. . . $$, \[. . . \℄ and \begin{displaymath}. . . \end{displaymath})

are also supported. Furthermore, \ensuremath behaves as expe
ted.

53

The equation, eqnarray, eqnarray* environments are supported. Equation labelling and numbering

is performed in the �rst two environments, using the equation
ounter. Additionally, numbering
an be

suppressed in one row of an eqnarray, using the \nonumber
ommand.

Math mode is not as powerful in H

E

V

E

A as in L

A

T

E

X. The limitations of math mode
an often be surpassed

by using math display mode. As a matter of fa
t, math mode is for in-text formulas. From the HTML point

of view, this means that math mode does not
lose the
urrent �ow of text and that formulas in math mode

must be rendered using text-level elements only. By
ontrast, displayed formulas
an be rendered using

blo
k-level elements. This means that H

E

V

E

A have mu
h more possibilities in display
ontext than inside

normal �ow of text. In parti
ular, sta
king text elements one above the over is possible only in display

ontext.

B.7.2 Common Stru
tures

H

E

V

E

A admits, subs
ript (_), supers
ripts (^) and fra
tions (\fra
{numer}{denom}). The best e�e
t is

obtained in display mode, where HTML table element is extensively used. By
ontrast, when not in display

mode, H

E

V

E

A uses only SUB and SUP text-level elements to render supers
rits and subs
ript, and the result

may not be very satisfying.

However, simple subs
ripts and supers
ripts, su
h as x_i or x^2, are always rendered using the SUB and

SUP text-level elements and their appearan
e should be
orre
t even in in-text formulas.

When o

urring outside math mode,
hara
ters _ and ^ a
t as ordinary
hara
ters and get e
hoed to the

output. However, a warning is issued.

An attempt is made to render all ellipsis
onstru
ts (\ldots, \
dots, \vdots and \ddots). The e�e
t

may be strange for the latter two.

B.7.3 Square Root

The n

th

root
ommand \sqrt is supported only for n=3,4, thanks to the existen
e of Uni
ode
hara
ters

for the same. For the others, we shift to fra
tional exponents, in whi
h
ase, the \sqrt
ommand is de�ned

as follows:

\new
ommand{\sqrt}[3℄[2℄{\left(#2\right)^{1/#1}}

B.7.4 Uni
ode and mathemati
al symbols

The support for uni
ode symbols o�ered by modern browsers allows to translate almost all math symbols

orre
tly.

Log-like fun
tions and variable sized-symbols are re
ognized and their subs
ripts and supers
ripts are put

where they should in display mode. Subs
ript and supers
ript pla
ement
an be
hanged using the \limits

and \nolimits
ommands. Big delimiters are also handled.

B.7.5 Putting one thing above/below/inside

The
ommands \sta
krel, \underline and \overline are re
ognized. They produ
e sensible output in

display mode. In text mode, these ma
ros
all the \textsta
krel, \textunderline and \textoverline

ma
ros. These ma
ros perform the following default a
tions

\textsta
krel Performs ordinary supers
ripting.

\textunderline Underlines its argument, using the U text-level element.

\textoverline Overlines using style-sheets (used with a top border).

54

The
ommand \boxedworks well both in display and normal math mode. Input of the form \boxed{\fra
{\pi}{2}}

produ
es

π

2
in normal math, and

π

2

in display-math mode. The
ommands \bigl,\bigr et
. are also rendered well. Some examples
an be

found in the test �le random-math.html provided with the distribution.

B.7.6 Math a

ents

Math a

ents that have
oresponding text a

ents (\hat, \tilde, et
.) are handled by default. They in

fa
t a
t as the
orresponding text-mode a

ents (Se
tion B.3.4). As a
onsequen
e, they work properly only

on as
ii letters. This may be quite
umbersome, but at least some warnings draw user's attention on the

problem. If a

ents are
riti
al to your do
ument and that H

E

V

E

A issues a lot of warnings, a solution is to

rede�ne the math a

ent
ommand. A suggested repla
ement is using limit supers
ripts. That way a

ents

are positioned above symbols in display mode and after symbols in text mode.

\renew
ommand{\hat}[1℄{\mathop{#1}\limits^{\textas
ii
ir
um}\nolimits}

Displayed:

$$

\hat{\mu} = \hat{\Delta}.

$$

In text: $\hat{\mu} = \hat{\delta}$

The \ve

ommand is rendered di�erently in display and non-display mode. In display mode, the arrow

appears in normal position, while in non-display the arrow appears as an ordinary supers
ript.

\ve
{u} in text mode: ~u, \ve
{u} in display mode: ~u

Most �extensible a

ents� (\widetilde, \widehat, et
.) are not even de�ned. There are a few ex
eptions:

line �a

ents�:

abc \underline abc \overline

Bra
e �a

ents�:

1× 2× · · · × n
︸ ︷︷ ︸

\underbra
e

︷ ︸︸ ︷

1× 2× · · · × n
\overbra
e

And arrow �a

ents�:

←−−−−−−−−−−
1× 2× · · · × n \overleftarrow

−−−−−−−−−−→
1× 2× · · · × n \overrightarrow

B.7.7 Spa
ing

By
ontrast with L

A

T

E

X, spa
e in the input matters in math mode. One or more spa
es are translated to one

spa
e. Furthermore, spa
es after
ommands (su
h as \alpha) are e
hoed ex
ept for invisible
ommands (su
h

as \tt). This allows users to
ontrol spa
e in their formulas, output being near to what
an be expe
ted.

Expli
it spa
ing
ommands (\,, \!, \: and \;) are re
ognized, the �rst two
ommands do nothing, while

the others two output one spa
e.

55

B.7.8 Changing Style

Letters are itali
ized inside math mode and this
annot be
hanged. The appearan
e of other symbols

an be
hanged using L

A

T

E

X2ε style
hanging
ommands (\mathbf, et
.). The
ommands \boldmath and

\unboldmath are not re
ognized. Whether symbols belonging to the symbol font are a�e
ted by style
hanges

or not is browser dependent.

The \
al de
laration and the \math
al
ommand (that yield
alligraphi
 letters in L

A

T

E

X) exist. They

yield red letters by default.

Observe that this does not
orresponds dire
tly to how L

A

T

E

X manage style in math mode and that, in

fa
t, style
annot really
hange in math mode.

Math style
hanging de
larations \displaystyle and \textstyle do nothing when H

E

V

E

A is already

in the requested mode, otherwise they issue a warning. This is so be
ause H

E

V

E

A implements displayed

maths as tables, whi
h require to be both opened and
losed and introdu
e line breaks in the output. As a

onsequen
e, warnings on \displaystyle are to be taken seriously.

The
ommands \s
riptstyle and \s
ripts
riptstyle perform type size
hanges.

B.8 De�nitions, Numbering

B.8.1 De�ning Commands

H

E

V

E

A understands
ommand de�nitions given in L

A

T

E

X style. Su
h de�nitions are made using \new
ommand,

\renew
ommand and \provide
ommand. These three
onstru
ts a

ept the same arguments and have the same

meaning as in L

A

T

E

X, in parti
ular it is possible to de�ne an user
ommand with one optional argument. How-

ever, H

E

V

E

A is more tolerant: if
ommand name already exists, then a subsequent \new
ommand{name}. . . is

ignored. If ma
ro name does not exists, then \renew
ommand{name}. . . performs a de�nition of name. In

both
ases, L

A

T

E

X would
rash, H

E

V

E

A just issues warnings.

The behaviour of \new
ommand allows to shadow do
ument de�nition, provided the new de�nitions are

pro
essed before the do
ument de�nitions. This is easily done by grouping the shadowing de�nition in a

spe
i�
 style �le given as an argument to H

E

V

E

A (see se
tion 5.1). Conversely,
hanges of base ma
ros (i.e.

the ones that H

E

V

E

A de�nes before loading any user-spe
i�ed �le) must be performed using \renew
ommand.

S
oping rules apply to ma
ros, as they do in L

A

T

E

X. Environments and groups de�ne a s
ope and

ommand de�nition are lo
al to the s
ope they o

ur.

It is worth noti
ing that H

E

V

E

A also partly implements T

E

X de�nitions (using \def) and bindings (using

\let), see se
tion B.16.1 for details.

B.8.2 De�ning Environments

H

E

V

E

A a

epts environment de�nitions and rede�nitions by \newenvironment and \renewenvironment. The

support is
omplete and should
onform to [L

A

T

E

X, Se
tions C.8.2℄.

Environments de�ne a s
ope both for
ommands and environment de�nitions.

B.8.3 Theorem-like Environments

New theorem-like environments
an also be introdu
ed and rede�ned, using \newtheorem and \renewtheorem.

Note that, by
ontrast with plain environments de�nitions, theorem-like environment de�nitions are

global de�nitions.

B.8.4 Numbering

L

A

T

E

X
ounters are (fully ?) supported. In parti
ular, de�ning a
ounter
md with \new
ounter{
md}

reates a ma
ro \the
md that outputs the
ounter value. Then the \the
md
ommand
an be rede�ned.

For instan
e, se
tion numbering
an be turned into alphabeti
 style by:

56

\renew
ommand{\these
tion}{\alph{se
tion}}

Note that T

E

X style for
ounters is not supported at all and that using this style will
lobber the output.

However, H

E

V

E

A implements the
al
 pa
kage that makes using T

E

X style for
ounters useless in most

situations (see se
tion B.17.3).

B.8.5 The ifthen Pa
kage

The ifthen pa
kage is partially supported. The one unsupported
onstru
t is the \lengthtest test expres-

sion, whi
h is unde�ned.

As a
onsequen
e, H

E

V

E

A a

epts the following example from the L

A

T

E

X manual:

\new
ounter{
a}\new
ounter{
b}%

\new
ommand{\printg
d}[2℄{%

\set
ounter{
a}{#1}\set
ounter{
b}{#2}%

G
d(#1,#2) =

\whiledo{\not\(\value{
a}= \value{
b}\)}%

{\ifthenelse{\value{
a}>\value{
b}}%

{\addto
ounter{
a}{-\value{
b}}}%

{\addto
ounter{
b}{-\value{
a}}}%

g
d(\arabi
{
a}, \arabi
{
b}) = }%

\arabi
{
a}.}%

For example: \printg
d{54}{30}

For example: G
d(54,30) = g
d(24, 30) = g
d(24, 6) = g
d(18, 6) = g
d(12, 6) = g
d(6, 6) = 6.

Additionally, a few boolean registers are de�ned by H

E

V

E

A. Some of them are of interest to users.

hevea Initial value is true. The hevea.sty style �le also de�nes this register with initial value false.

mmode This register value re�e
ts H

E

V

E

A operating mode, it is true in math-mode and false otherwise.

display This register value re�e
ts H

E

V

E

A operating mode, it is true in display-mode and false otherwise.

footer Initial value is true. When set false, H

E

V

E

A does not insert its footer �This do
ument has been

translated by H

E

V

E

A�.

Finally, note that H

E

V

E

A also re
ognised à la T

E

X
onditional ma
ros (see se
tion B.16.1.4). Su
h ma
ros

are fully
ompatible with the boolean registers of the ifthen pa
kage, as it is the
ase in L

A

T

E

X.

B.9 Figures and Other Floating Bodies

Figures and tables are put where they appear in sour
e, regardless of their pla
ement arguments. They are

outputted inside a BLOCKQUOTE element and they are separated from en
losing text by two horizontal rules.

Captions and
ross referen
ing are handled. However
aptions are not moved at end of �gures: instead,

they appear where the \
aption
ommands o

ur in sour
e
ode. The \suppressfloats
ommand does

nothing and the �gure related
ounters (su
h as topnumber) exist but are useless. Marginal notes

go in the right

margin by de-

fault.

To get marginal

notes in the

left margin, use

\reversemaginpar.

Marginal notes are handled in an H

E

V

E

A spe
i�
 way. By default, all notes go in the right margin. Issuing

\reversemarginpar
auses the notes to go in the left margin. Unsurprisingly, issuing \normalmarginpar

reverts to default behaviour.

The \marginpar
ommand has an optional argument.

\marginpar[left_text℄{right_text}

57

If optional argument left_text is present and that notes go in the left margin, then left_text is the text of

the note. Otherwise, right_text is the text of the note. As a
on
lusion, marginal notes in H

E

V

E

A always

go to a �xed side of the page, whi
h side being
ontrolled by the
ommands \normalmarginpar (right side)

and \reversemarginpar (left side). This departs form L

A

T

E

X that sele
ts a default side depending on the

parity of the page
ounter.

Marginal notes are styled by the means of two environment style
lasses (see Se
tion 9.3) : marginpar

and marginparside. The latter marginparside takes
are of margins and pla
ement as a �oat, its value is

marginparright for notes in the right margin and marginparleft for notes in the left margin. Users are not

expe
ted to alter those. The marginpar environment style
lass governs the general aspe
t of all marginal

notes. Users
an
ontrol the aspe
t of all marginal notes by de�ning a new style
lass and assigning the

marginpar environment style
lass. For instan
e, to get all marginal notes in red font, and taking 10% of the

page width (in pla
e of the default 20%), one
an issue the following
ommands in the do
ument preamble.

\newstyle{.mynote}{width:10\%;
olor:red;}

\setenv
lass{marginpar}{mynote}

B.10 Lining It Up in Columns

B.10.1 The tabbing Environment

Limited support is o�ered. The tabbing environment translate to a �exible tabular-like environment.

Inside this environment, the
ommand \kill ends a row, while
ommands \= and \> start a new
olumn.

All other tabbing
ommands do not even exist.

B.10.2 The array and tabular environments

These environments are supported, using HTML table element, rendering is satisfa
tory in most (not too

ompli
ated)
ases. By
ontrast with L

A

T

E

X, some of the array items always are typeset in display mode.

Whether an array item is typeset in display mode or not depends upon its
olumn spe
i�
ation, the l,

and r spe
i�
ations open display mode while the remaining p and � do not. The l,
,r and � spe
i�
ations

disable word wrap, while the p spe
i�
ation enables it.

Entries in a
olumn whose spe
i�
ation is l (resp.
 or r) get left-aligned (resp.
entered or right-

aligned) in the horizontal dire
tion. They will get top-aligned in the verti
al dire
tion if there are other

olumn spe
i�
ations in the same array that spe
ify verti
al alignment
onstraints (su
h as p{wd}, see

below). Otherwise, verti
al alignment is unspe
i�ed.

Entries in a
olumn whose spe
i�
ation is p{wd} get left-aligned in the horizontal dire
tion and top-

aligned in the verti
al dire
tion and a paragraph break redu
es to one line break inside them. This is the

only o

asion where H

E

V

E

A makes a distin
tion between LR-mode and paragraph mode. Also observe that

the length argument wd to the p spe
i�
ation is ignored.

Some L

A

T

E

X array features are not supported at all:

� Optional arguments to \begin{array} and \begin{tabular} are ignored.

� The
ommand \vline does not exists.

Some others are partly rendered:

� Spa
ing between
olumns is di�erent.

� � formatting spe
i�
ations in \multi
olumn argument are ignored.

� If a | appears somewhere in the
olumn formatting spe
i�
ation, then the array is shown with borders.

� The
ommand \hline does nothing if the array has borders (see above). Otherwise, an horizontal rule

is outputted.

58

� The
ommand \
line ignores its argument and is equivalent to \hline.

� Similarly the
ommand \extra
olsep issues a warning and ignores its argument.

Additionally, the tabular* environment is re
ognised and gets rendered as an HTML table with an advisory

width attribute.

By default, H

E

V

E

A implements the array pa
kage (see [L

A

T

E

X-bis, Se
tion 5.3℄ and se
tion B.17.2 in this

do
ument), whi
h signi�
antly extends the array and tabular environments.

B.11 Moving Information Around

B.11.1 Files

In some situations, H

E

V

E

A uses some of the an
illary �les generated by L

A

T

E

X. More pre
isely, while pro
essing

�le do
.tex, the following �les may be read:

.aux The �le do
.aux
ontains
ross-referen
ing information, su
h as �gure or se
tion numbers. If this �le

is present, H

E

V

E

A reads it and put su
h numbers (or labels) inside the links generated by the \ref

ommand. If the .aux �le is not present, or if the hevea
ommand is given the -fix option, H

E

V

E

A

will instead use .haux �les.

.haux Su
h �les are H

E

V

E

A equivalents of .aux �les. Indeed, they are .aux �les tailored to H

E

V

E

A needs.

Two runs of H

E

V

E

A might be needed to get
ross referen
es right.

.hto
 This �le
ontains a formatted table of
ontents. It is produ
ed while reading the .haux �le. As

onsequen
e a table of
ontents is available only when the .haux �le is read.

.hbbl The do
.hbbl �le is generated by bibhva from do
.haux. When present, it is read by the \bibliography

ommand.

.bbl The do
.bbl �le is generated by BibT

E

X from do
.aux. When present, and if no do
.hbbl exists,

do
.bbl is read by the \bibliography
ommand.

.hidx and .hind H

E

V

E

A
omputes its own indexes, using .hidx �les for storing index referen
es and, using

.hind �les for storing formatted indexes. Index formatting signi�
antly departs from the one of L

A

T

E

X.

Again, several runs of H

E

V

E

A might be needed to get indexes right.

H

E

V

E

A does not fail when it
annot �nd an auxiliary �le. When another run of H

E

V

E

A is needed, a warning

is issued, and it is user's responsibility to rerun H

E

V

E

A. However, the
onvenient -fix
ommand-line option

instru
ts H

E

V

E

A to rerun itself, until it believes it has rea
hed stable state.

B.11.2 Cross-Referen
es

The L

A

T

E

X
ommands \label and \ref are
hanged by H

E

V

E

A into HTML an
hors and lo
al links, using the

�a� element. Additionally, numeri
al referen
es to se
tional units, �gures, tables, et
. are shown, as they

would appear in the .dvi �le. Numeri
al referen
es to pages (su
h as generated by \pageref) are not shown;

only an link is generated.

The an
hor used is the label argument to \label{label}. More pre
isely, \label{label} translates to

; while \ref{label} translates to nnn, where nnn is the appro-

priate numeri
al referen
e to a se
tion. As a
onsequen
e spa
es are better avoided in label.

Starting with H

E

V

E

A version 2.04, the HTML an
hors used by \label and \ref
annot di�er from the

arguments to these
ommands anymore. Moreover, when \label{label} o

urs inside the argument of a

se
tioning
ommand (i.e. in se
tion title, as re
ommended by se
tion B.4.1), then H

E

V

E

A and H

A

C

H

A will use

label as the �id� attribute of the
orresponding se
tion. For instan
e, the L

A

T

E

X sour
e of this very se
tion

is:

59

\subse
tion{Cross-Referen
es\label{
ross-referen
e}}

It translates to HTML similar to

<h3
lass="subse
tion" id="
ross-referen
e">B.11.2 Cross-Referen
es</h3>

Noti
e that no <a id="
ross-referen
e"> appears above. Instead id="
ross-referen
e" appears

in the en
losing h3 header element.

While pro
essing a do
ument do
.tex,
ross-referen
ing information
an be
omputed in two di�erent,

mutually ex
lusive, ways, depending on whether L

A

T

E

X has been previously run or not:

� If there exists a �le do
.aux and that hevea has not been given the
ommand-line option -fix, then

ross-referen
ing information is extra
ted from that �le. Of
ourse, the do
.aux �le has to be up-to-

date, that is, it should be generated by running L

A

T

E

X as many times as ne
essary. (For H

E

V

E

A needs,

one run is probably su�
ient).

� If no do
.aux �le exists or if hevea has been given the -fix
ommand-line option, then H

E

V

E

A expe
t

to �nd
ross-referen
ing information in the �le do
.haux.

The se
ond option is re
ommended.

When using its own do
.haux �le, H

E

V

E

A will output a new do
.haux �le at the end of its pro
essing.

This new do
.haux �le
ontains a
tualised
ross referen
ing information. Hen
e, in that
ase, H

E

V

E

A may

need to run twi
e to get
ross-referen
es right. Note that, just like L

A

T

E

X, H

E

V

E

A issues a warning then the

ross-referen
ing information it generates di�ers from what it has read at start-up, and that it does not fail

if do
.haux does not exist.

Observe that if a non-
orre
t do
.aux �le is present, then
ross-referen
es will apparently be wrong.

However the links are
orre
t.

B.11.3 Bibliography and Citations

The \
ite ma
ro is supported. Its optional argument is
orre
tly handled. Citation labels are extra
ted

from the .aux �le if present, from the .haux �le otherwise. Note that these labels are put there by L

A

T

E

X in

the �rst
ase, and by H

E

V

E

A in the se
ond
ase, when they pro
ess the \bibitem
ommand.

Using BibT

E

X

All BibT

E

X related
ommands exist and e
ho the appropriate information into the .haux �le.

In parti
ular, the \bibliography
ommand exists and attempts to load the formatted bibliography, i.e.

to load the .hbbl �le. The .hbbl �le is produ
ed from the .haux �le by the
ompanion program bibhva

(see C.1.4). To in
lude the bibliographi
 referen
es extra
ted from .bib databases, it should normally su�
e

to do:

hevea do
.tex

bibhva do

hevea do
.tex

In
ase no .hbbl �le exists, the \bibliography
ommand attempts to load the .bbl �le normally

used while
ombining L

A

T

E

X and BibT

E

X. Thus, another way to extra
t bibliographi
 referen
es from .bib

databases is:

latex do
.tex

bibtex do

hevea do
.tex

In
ase both �les exist, noti
e that loading the .hbbl �le has priority over loading the .bbl �le.

60

B.11.4 Splitting the Input

The \input and \in
lude
ommands exist and they perform exa
tly the same operation of sear
hing (and

then pro
essing) a �le, whose name is given as an argument. See se
tion C.1.1.1 on how H

E

V

E

A sear
hes

�les. However, in the
ase of the \in
lude
ommand, the �le is sear
hed only when previously given as an

argument to the \in
ludeonly
ommand.

Note the following features:

� T

E

X syntax for \input is not supported. That is, one should write \input{�lename}.

� If �lename is ex
luded with the -e
ommand-line option (see se
tion C.1.1.4), then H

E

V

E

A does not

attempt to load �lename. Instead, it e
hoes \input{�lename} and \in
lude{�lename}
ommands

into the image �le. This sounds
ompli
ated, but this is what you want!

� H

E

V

E

A does not fail when it
annot �nd a �le, it just issues a warning.

The \listfiles
ommand is a null
ommand.

B.11.5 Index and Glossary

Glossaries are not handled (who uses them ?).

While pro
essing a do
ument do
.tex, index entries go into the �le do
.hidx, while the formatted index

gets written into the �le do
.hind. As with L

A

T

E

X, two runs of H

E

V

E

A are normally needed to format the

index. However, if all index produ
ing
ommands (normally \index) o

ur before the index formatting

ommand (normally \printindex), then only one run is needed.

As in L

A

T

E

X, index pro
essing is not enabled by default and some pa
kage has to be loaded expli
itly

in the do
ument preamble. To that aim, H

E

V

E

A provides the standard pa
kage makeidx, and two extended

pa
kages that allow the produ
tion of several indexes (see se
tion B.17.7).

Formatting of indexes in H

E

V

E

A departs from L

A

T

E

X behaviour. More pre
isely the theindex environment

does not exist. Instead, indexes are formatted using spe
ial indexenv environments. Those details do not

normally
on
ern users. However, the number of
olumns in the presentation of the index
an be
ontrolled

by setting the value of the index
ols
ounter (default value is two).

B.11.6 Terminal Input and Output

The \typeout
ommand e
hos its argument on the terminal, ma
ro parameter #i are repla
ed by their

values. The \typein
ommand is not supported.

B.12 Line and Page Breaking

B.12.1 Line Breaking

The advisory line breaking
ommand \linebreak will produ
e a line break if it has no argument or if its

optional argument is 4. The \nolinebreak
ommand is a null
ommand.

The \\ and *
ommands output a
 tag, ex
ept inside arrays where the
lose the
urrent row.

Their optional argument is ignored. The \newline
ommand outputs a
 tag.

All other line breaking
ommands, de
larations or environments are silently ignored.

B.12.2 Page Breaking

They are no pages in the physi
al sense in HTML. Thus, all these
ommands are ignored.

61

B.13 Lengths, Spa
es and Boxes

B.13.1 Length

All length
ommands are ignored, things go smoothly when L

A

T

E

X syntax is used (using the \newlength,

\setlength, et
.
ommands, whi
h are null ma
ros). Of
ourse, if lengths are really important to the

do
ument, rendering will be poor.

Note that T

E

X length syntax is not at all re
ognised. As a
onsequen
e, writing things like \textwidth=10
m

will
lobber the output. Users
an
orre
t su
h misbehaviour by adopting L

A

T

E

X syntax, here they should

write \setlength{\textwidth}{10
m}.

B.13.2 Spa
e

The \hspa
e, \vspa
e and \addvspa
e spa
ing
ommands and their starred versions re
ognise positive

expli
it length arguments. Su
h arguments get
onverted to a number of non-breaking spa
es or line breaks.

Basi
ally, the value of 1em or 1ex is one spa
e or one line-break. For other length units, a simple
onversion

based upon a 10pt font is used.

H

E

V

E

A
annot interpret more
ompli
ated length arguments or perform negative spa
ing. In these situa-

tions, a warning is issued and no output is done.

Spa
ing
ommands without arguments are re
ognised. The \enspa
e, \quad and \qquad
ommands

output one, two and four non-breaking spa
es, while the \smallskip, \medskip and \bigskip output one,

one, and two line breaks.

Stret
hable lengths do not exist, thus the \hfill and \vfill ma
ros are unde�ned.

B.13.3 Boxes

Box
ontents is typeset in text mode (i.e. non-math and non-display mode). Both L

A

T

E

X boxing
ommands

\mbox and \makebox
ommands exist. However \makebox generates a spe
i�
 warning, sin
e H

E

V

E

A ignore

the length and positioning instru
tions given as optional argument.

Similarly, the boxing with frame \fbox and \framebox
ommands are re
ognised and \framebox issues

a warning. When in display mode, \fbox frames its argument by en
losing it in a table with borders.

Otherwise, \fbox
alls the \textfbox
ommand, whi
h issues a warning and typesets its argument inside

a \mbox (and thus no frame is drawn). Users
an alter the behaviour of \fbox in non-display mode by

rede�ning \textfbox.

Boxes
an be saved for latter usage by storing them in bins. New bins are de�ned by \newsavebox{
md}.

Then some text
an be saved into
md by \sbox{
md}{text} or \begin{lrbox}{
md} text \end{lrbox}.

The text is translated to HTML, as if it was inside a \mbox and the resulting output is stored. It is retrieved

(and outputted) by the
ommand \usebox{
md}. The \savebox
ommand redu
es to \sbox, ignoring its

optional arguments.

The \rule
ommands translate to a HTML horizontal rule (<HR>) regardless of its arguments.

All other box-related
ommands do not exist.

B.14 Pi
tures and Colours

B.14.1 The pi
ture environment and the graphi
s Pa
kage

It is possible to have pi
tures and graphi
s pro
essed by imagen (see se
tion 6.1). In the
ase of the pi
ture

environment it remains users responsibility to expli
itly
hoose sour
e
hunks that will get rendered as

images. In the
ase of the
ommands from the graphi
s pa
kage, this
hoi
e is made by H

E

V

E

A.

For instan
e
onsider the following pi
ture:

62

\new
ounter{
ms}

\setlength{\unitlength}{1mm}

\begin{pi
ture}(50,10)

\put(0,7){\makebox(0,0)[b℄{
m}}

\multiput(10,7)(10,0){5}{\addto
ounter{
ms}{1}\makebox(0,0)[b℄{\arabi
{
ms}}}

\multiput(1,0)(1,0){49}{\line(0,1){2.5}}

\multiput(5,0)(10,0){5}{\line(0,1){5}}

\thi
klines

\put(0,0){\line(1,0){50}}

\multiput(0,0)(10,0){6}{\line(0,1){5}}

\end{pi
ture}

Users should en
lose all pi
ture elements in a toimage environment (or inside %BEGIN IMAGE. . . %END IMAGE

omments) and insert an \imageflush
ommand, where they want the image to appear in HTML output:

%BEGIN IMAGE

\new
ounter{
ms}

\setlength{\unitlength}{1mm}

\begin{pi
ture}(50,10)

...

\end{pi
ture}

%END IMAGE

%HEVEA\imageflush

This will result in normal pro
essing by L

A

T

E

X and image in
lusion by H

E

V

E

A:

m 1 2 3 4 5

All
ommands from the graphi
s pa
kage are implemented using the automati
 image in
lusion feature.

More pre
isely, the outermost invo
ations of the \in
ludegraphi
s, \s
alebox, et
.
ommands are sent to

the image image �le and there will be one image per outermost invo
ation of these
ommands.

For instan
e,
onsider a do
ument do
.tex that loads the graphi
s pa
kage and that in
ludes some

(s
aled) images by:

\begin{
enter}

\s
alebox{.5}{\in
ludegraphi
s{round.ps}}

\s
alebox{.75}{\in
ludegraphi
s{round.ps}}

\in
ludegraphi
s{round.ps}

\end{
enter}

Then, issuing the following two
ommands:

hevea do
.tex

imagen do

yields HTML that basi
ally
onsists in three image links, the images being generated by imagen. Sin
e the

advent of pdflatex, using \in
ludegraphi
s to insert bitmap images (e.g. .gif or .jpg) be
ame frequent.

In that
ase, users are advised not to use H

E

V

E

A default implementation of the graphi
s pa
kage. Instead,

they may use a simple variation of the te
hnique des
ribed in Se
tion 8.2.

B.14.2 The
olor Pa
kage

H

E

V

E

A partly implements the
olor pa
kage. Implemented
ommands are \define
olor, \
olor, \
olorbox,

\text
olor, \
olorbox and \f
olorbox. Other
ommands do not exist. At startup,
olours bla
k, white,

red, green, blue,
yan, yellow and magenta are pre-de�ned.

63

Colours are de�ned by \define
olor{name}{model}{spe
}, where name is the
olor name, model is

the
olor model used, and spe
 is the
olor spe
i�
ation a

ording to the given model. De�ned
olours

are used by the de
laration \
olor{name} and by the
ommand \text
olor{name}{text}, whi
h
hange

text
olor. Please note that, the \
olor de
laration a

epts
olor spe
i�
ations dire
tly when invoked as

\
olor[model℄{spe
}. The \text
olor
ommand has a similar feature.

As regards
olor models, H

E

V

E

A implements the rgb,
myk, hsv and hls
olor models. In those models,

olor spe
i�
ations are �oating point numbers less than one. For instan
e, here is the de�nition for the red

olor:

\define
olor{red}{rgb}{1, 0, 0}

The named
olor model is also supported, in this model
olor spe
i�
ation are just names. . . Named

olours are the ones of dvips.

GreenYellow, Yellow, Goldenrod, Dandelion, Apri
ot, Pea
h, Melon, YellowOrange, Orange, BurntOrange,

Bittersweet, RedOrange, Mahogany, Maroon, Bri
kRed, Red, OrangeRed, RubineRed, WildStrawberry,

Salmon, CarnationPink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet, Fu
hsia, Lavender,

Thistle, Or
hid, DarkOr
hid, Purple, Plum, Violet, RoyalPurple, BlueViolet, Periwinkle, CadetBlue,

Corn�owerBlue, MidnightBlue, NavyBlue, RoyalBlue, Blue, Cerulean, Cyan, Pro
essBlue, SkyBlue,

Turquoise, TealBlue, Aquamarine, BlueGreen, Emerald, JungleGreen, SeaGreen, Green, ForestGreen,

PineGreen, LimeGreen, YellowGreen, SpringGreen, OliveGreen, RawSienna, Sepia, Brown, Tan, Gray,

Bla
k, White.

There are at least three ways to use
olours from the named model.

1. De�ne a
olor name for them.

2. Spe
ify the named
olor model as an optional argument to \
olor and \text
olor.

3. Use the names dire
tly (H

E

V

E

A implements the
olor pa
kage with the usenames option given).

That is:

1. \define
olor{rouge-brique}{named}{Bri
kRed}\text
olor{rouge-brique}{Text as a bri
k}.

2. \text
olor[named℄{Bri
kRed}{Text as another bri
k}.

3. \text
olor{Bri
kRed}{Text as another bri
k}.

H

E

V

E

A also implements the \
olorbox and \f
olorbox
ommands.

\
olorbox{red}{Red ba
kground},

\f
olorbox{magenta}{red}{Red ba
kground, magenta border}.

Red ba
kground , Red ba
kground, magenta border .

Those two
ommands a

ept an optional �rst argument that spe
i�es the
olor model, as \text
olor does:

\f
olorbox[named℄{RedOrange}{Apri
ot}{Apri
ot ba
kground, RedOrange border}.

Apri
ot ba
kground, RedOrange border .

Colours should be used
arefully. Too many
olours hinders
larity and some of the
olours may not be

readable on the do
ument ba
kground
olor.

64

B.14.2.1 The bg
olor environment

With respe
t to the L

A

T

E

X
olor pa
kage, H

E

V

E

A features an additional bg
olor environment, for
hanging

the ba
kground
olor of some subparts of the do
ument. The bg
olor environment is a displayed environment

and it normally starts a new line. Simple usage is \begin{bg
olor}{
olor}. . . \end{bg
olor}, where
olor

is a
olor de�ned with \define
olor. Hen
e the following sour
e yield a paragraph with a red ba
kground:

\begin{bg
olor}{red}

\
olor{yellow}Yellow letters on a red ba
kgroud

\end{bg
olor}

The bg
olor environment is implemented by one-
ell table element, it takes an optional argument that

is used as an attribute for the inner td element (default value is style="padding:1em"). Advan
ed users

may
hange the default, for instan
e as:

\begin{bg
olor}[style="padding:0"℄{yellow}

\
olor{red}Red letters on a yellow ba
kgroud

\end{bg
olor}

The resulting output will be red letters on a yellow ba
kground and no padding:

B.14.2.2 From High-Level Colours to Low-Level Colours

High-level
olours are
olor names de�ned with \define
olor. Low-level
olours are HTML-style
olours.

That is, they are either one of the sixteen
onventional
olours bla
k, silver et
., or a RGB hexade
imal
olor

spe
i�
ation of the form "#XXXXXX".

One
hanges the high-level high-
olor into a low-level
olor by \�get
olor{high-
olor}. Low-level
olours

are appropriate inside HTML attributes and as arguments to the \�font
olor internal ma
ro. An example

of \�get
olor usage
an be found at the end of se
tion 8.5.

There is also \�getstyle
olor
ommand that a
ts like\�get
olor, ex
ept that it does not output the

double quotes around RGB hexade
imal
olor spe
i�
ations. Su
h low-level
olours are appropriate for style

de�nitions in
as
ading style sheets [CSS-2℄. See Se
tion 9.3 for an example.

B.15 Font Sele
tion

B.15.1 Changing the Type Style

All L

A

T

E

X2ε de
larations and environments for
hanging type style are re
ognised. Aspe
t is rather like

L

A

T

E

X2ε output, but there is no guarantee.

As HTML does not provide the same variety of type styles as L

A

T

E

X does. However
ss provide a wide

variety of font properties. H

E

V

E

A uses generi
 properties, proper rendering will then depend upon user agent.

For instan
e, it belongs to the user agent to make a di�eren
e between itali
s (rendered by the font style

�itali
�) and slanted (rendered by the font style �oblique�).

Here is how H

E

V

E

A implements text-style de
larations by default:

\itshape font-style:itali

\slshape font-style:oblique

\s
shape font-variant:small-
aps

\upshape no style

\ttfamily font-family:monospa
e

\sffamily font-family:sans-serif

\rmfamily no style

\bfseries font-weight:bold

\mdseries no style

Text-style
ommands also exists, they are de�ned as \mbox{\de
l . . . }. For instan
e, \texttt is de�ned

as a
ommand with one argument whose body is \mbox{\ttfamily#1}. Finally, the \emph
ommand for

emphasised text also exists, it yields text-level em elements.

65

As in L

A

T

E

X, type styles
onsists in three
omponents: shape, series and family. H

E

V

E

A implements the

three
omponents by making one de
laration to
an
el the e�e
t of other de
larations of the same kind.

Old style de
larations are also re
ognised, they translate to text-level elements. However, no elements are

an
elled when using old style de
laration. Thus, the sour
e �{\sl\s
 slanted and small
aps}� yields

�slanted� small
aps. Users need probably not worry about this. However this has an important pra
ti
al

onsequen
e: to
hange the default rendering of type styles, one should rede�ne old style de
laration in order

to bene�t from the
an
ellation me
hanism. See se
tion 10.2 for a more thorough des
ription.

B.15.2 Changing the Type Size

All de
larations, from \tiny to \Huge are re
ognised. Output is not satisfa
tory inside headers elements

generated by se
tioning
ommands.

B.15.3 Spe
ial Symbols

The \symbol{num} outputs
hara
ter number num (de
imal) from the Uni
ode
hara
ter set. This departs

from L

A

T

E

X, whi
h output symbol number num in the
urrent font.

B.16 Extra Features

This se
tion des
ribes H

E

V

E

A fun
tionalities that extends on plain L

A

T

E

X, as de�ned in [L

A

T

E

X℄. Most of the

features des
ribed here are performed by default.

B.16.1 T

E

X ma
ros

Normally, H

E

V

E

A does not re
ognise
onstru
ts that are spe
i�
 to T

E

X. However, some of the internal

ommands of H

E

V

E

A are homonymous to T

E

X ma
ros, in order to enhan
e
ompatibility. Note that full

ompatibility with T

E

X is not guaranteed.

B.16.1.1 À la T

E

X ma
ros de�nitions

The \def
onstru
t for de�ning
ommands is supported. It is important to noti
e that H

E

V

E

A semanti
s for

\def follows T

E

X semanti
s. That is, de�ning a
ommand that already exists with \def su

eeds.

Delimiting
hara
ters in
ommand de�nition are somehow supported. Consider the following example

from the T

E

X Book:

\def\Look{\texts
{Look}}

\def\x{\texts
{x}}

\def\
s AB#1#2C$#3\$ {#3{ab#1}#1
\x #2}

\
s AB {\Look}{}C${And \$}{look}\$ 5.

It yields: And $lookabLookLook
x5.

Please note that delimiting
hara
ters are supported as far as I
ould, problems are likely with delimiting

hara
ters whi
h in
lude spa
es or
ommand names, in parti
ular the
ommand name \{. One
an in
lude

\{ in a
ommand argument by using the grouping
hara
ters {. . . }:

\def\fren
hquote(#1){\guillemotleft~\emph{#1}~\guillemotright{} (in Fren
h)}

he said \fren
hquote(Alors
ette a

olade ouvrante {``\{''}~?).

Yields: he said � Alors
ette a

olade ouvrante �{� ? � (in Fren
h).

Another issue regards
omments: �%� in arguments may give unde�ned behaviours, while
omments are

better avoided while de�ning ma
ros. As an example, the following
ode will not be handled properly by

H

E

V

E

A:

66

\def\x%

#1{y}

Su
h T

E

X sour
e should be rewritten as \def\x#1{y}.

Another sour
e of in
ompatibility with T

E

X is that substitution of ma
ros parameters is not performed

at the same moment by H

E

V

E

A and T

E

X. However, things should go smoothly at the �rst level of ma
ro

expansion, that is when the delimiters appear in sour
e
ode at the same level as the ma
ro that is to parse

them. For instan
e, the following sour
e will give di�erent results in L

A

T

E

X and in H

E

V

E

A:

\def\
s#1A{``#1''}

\def\other
s#1{\
s#1A}

\other
s{
ou
ouA}

L

A

T

E

X output is �
ou
ou�A, while H

E

V

E

A output is �
ou
ouA�. Here is L

A

T

E

X output: �
ou
ou�A Please note

that in most situations this dis
repan
y will make H

E

V

E

A
rash.

B.16.1.2 The \let
onstru
t

H

E

V

E

A also pro
esses a limited version of \let:

\let ma
ro-name1 = ma
ro-name2

The e�e
t is to bind ma
ro-name1 to whatever ma
ro-name2 is bound to at the time \let is pro
essed.

This
onstru
t may prove very useful in situations where one wishes to slightly modify basi

ommands. See

se
tions 10.3 and B.2 for examples of using \let in su
h a situation.

B.16.1.3 The \global
onstru
t

It is possible to es
ape s
ope and to make global de�nitions and bindings by using the T

E

X
onstru
t \global.

The \global
onstru
t is signi�
ant before \def and \let
onstru
ts.

Also note that \gdef is equivalent to \global\def.

B.16.1.4 T

E

X Conditional Ma
ros

The \newif\ifname, where name is made of letters only,
reates three ma
ros: \ifname, \nametrue and

\namefalse. The latter two set the name
ondition to true and false, respe
tively. The \ifname
ommand

tests the
ondition name:

\ifname

text1

\else

text2

\fi

Text text1 is pro
essed when name is true, otherwise text2 is pro
essed. If text2 is empty, then the \else

keyword
an be omitted.

Note that H

E

V

E

A also implements L

A

T

E

X ifthen pa
kage and that T

E

X simple
onditional ma
ros are

fully
ompatible with L

A

T

E

X boolean registers. More pre
isely, we have the following
orresponden
es:

T

E

X L

A

T

E

X

\newif\ifname \newboolean{name}

\nametrue \setboolean{name}{true}

\namefalse \setboolean{name}{false}

\ifname text1\else text2\fi \ifthenelse{\boolean{name}}{text1}{text2}

67

B.16.1.5 Other T

E

X Ma
ros

H

E

V

E

A implements the ma
ros \unskip and \endinput. It also supports the \
sname. . . \end
sname

onstru
t.

B.16.2 Command De�nition inside Command De�nition

If one stri
tly follows the L

A

T

E

X manual, only
ommands with no arguments
an be de�ned inside other

ommands. Parameters (i.e. #n) o

urring inside
ommand bodies refer to the outer de�nition, even when

they appear in nested
ommand de�nitions. That is, the following sour
e:

\new
ommand{\outer
om}[1℄{\new
ommand{\inside
om}{#1}\inside
om}

\outer
om{outer}

yields this output:

outer

Nevertheless, nested
ommands with arguments are allowed. Standard parameters #n still refer to the

outer de�nition, while nested parameters ##n refer to the inner de�nition. That is, the sour
e:

\new
ommand{\outer
om}[1℄{\new
ommand{\inside
om}[1℄{##1}\inside
om{inner}}

\outer
om{outer}

yields this output:

inner

B.16.3 Date and time

Date and time support is not enabled by default, for portability and simpli
ity reasons.

However, H

E

V

E

A sour
e distribution in
ludes a simple (sh) shell s
ript xxdate.exe that a
tivates date

and time support. The hevea
ommand, should be invoked as:

hevea -exe
 xxdate.exe ...

This will exe
ute the s
ript xxdate.exe, whose output is then read by H

E

V

E

A. As a
onsequen
e, stan-

dard L

A

T

E

X
ounters year, month, day and time are de�ned and L

A

T

E

X
ommand \today works properly.

Additionally the following
ounters and
ommands are de�ned:

Counter weekday day of week, 0. . . 6

Counter Hour hour, 00. . . 11

Counter hour hour, 00. . . 23

Counter minute minute, 00. . . 59

Counter se
ond se
ond, 00. . . 61 (A

ording to date man page!)

Command \ampm AM or PM

Command \timezone Time zone

Command \heveadate Output of the date Unix
ommand

Note that I
hose to add an extra option (and not an extra \�exe
 primitive) for se
urity reasons. You

ertainly do not want to enable H

E

V

E

A to exe
ute silently an arbitrary program without being
ons
ious of

that fa
t. Moreover, the hevea program does not exe
ute xxdate.exe by default sin
e it is di�
ult to write

su
h a s
ript in a portable manner.

Windows users should enjoy the same features with the version of xxdate.exe in
luded in the Win32

distribution.

68

B.16.4 Fan
y se
tioning
ommands

Loading the fan
yse
tion.hva �le will radi
ally
hange the style of se
tional units headers: they appear

over a green ba
kground, the ba
kground
olor saturation de
reases as the se
tioning
ommands themselves

do. Additionally, the do
ument ba
kground
olor is white.

Note : Fan
y se
tion has been re-implemented using style-sheets. While it respe
ts the old behaviour,

users are en
ouraged to try out style-sheets for more �exibility. See Se
tion 9 for details.

The fan
yse
tion.hva �le is intended to be loaded after the do
ument base style. Hen
e the easiest way

to load the fan
yse
tion.hva �le is by issuing \usepa
kage{fan
yse
tion} in the do
ument preamble.

To allow pro
essing by L

A

T

E

X, one may for instan
e
reate an empty fan
yse
tion.sty �le.

As an alternative, to use fan
y se
tion style in do
.tex whose base style is arti
le you should issue the

ommand:

hevea arti
le.hva fan
yse
tion.hva do
.tex

You
an also make a do
.hva �le that
ontains the two lines:

\input{arti
le.hva}

\input{fan
yse
tion.hva}

And then laun
h hevea as:

hevea do
.hva do
.tex

Se
tioning
ommand ba
kground
olours
an be
hanged by rede�ning the
orresponding
olours (part,

hapter, se
tion,. . .). For instan
e, you get various mixes of red and orange by:

\input{arti
le.hva}

\input{fan
yse
tion.hva}

\define
olor{part}{named}{Bri
kRed}

\define
olor{se
tion}{named}{RedOrange}

\define
olor{subse
tion}{named}{BurntOrange}

(See se
tion B.14.2 for details on the named
olor model that is used above.)

Another
hoi
e is issuing the
ommand \
olorse
tions{hue}, where hue is a hue value to be interpreted

in the HSV model. For instan
e,

\input{arti
le.hva}

\input{fan
yse
tion.hva}

\
olorse
tions{20}

will yield se
tional headers on a red-orange ba
kground.

H

E

V

E

A distribution features another style for fan
y se
tioning
ommands: the underse
tion pa
kage

provides underlined se
tional headers.

B.16.5 Targeting Windows

At the time of this release, Windows support for symbols through Uni
ode is not as
omplete as the one of

Linux, whi
h I am using for testing H

E

V

E

A.

One of the most salient short
omings is the inability to display sub-elements for big bra
kets, bra
es and

parenthesis, whi
h H

E

V

E

A normally outputs when it pro
esses \left[, \right\} et
.

We (hopefully) expe
t Windows fonts to display more of Uni
ode easily in a foreseeable future. As a

temporary �x, we provide a style �le winfonts.hva. Authors
on
erned by produ
ing pages that do not

look too ugly when viewed through Windows browsers are thus advised to load the �le winfonts.hva. For

instan
e they
an invoke H

E

V

E

A as:

hevea winfonts.hva ...

69

Table 1: Column spe
i�
ations from the array pa
kage

m{width} Equivalent to the p
olumn spe
i�
ation (the width

argument is ignored, entries are typeset in paragraph

mode with paragraph breaks being redu
ed to a sin-

gle line break), ex
ept that the entries are
entered

verti
ally.

b{width} Equivalent to the p
olumn spe
i�
ation, ex
ept that

the entries are bottom-aligned verti
ally.

>{de
l} Can be used before l,
, r, p{. . . }, m{. . . } or b{. . . }. It

inserts de
l in front of the entries in the
orresponding

olumn.

<{de
l} Can be used after l,
, r, p{. . . }, m{. . . } or b{. . . }. It

inserts de
l after entries in the
orresponding
olumn.

!{de
l} Equivalent to �{de
l}

At the moment, loading winfonts.hva only
hanges the rendering of L

A

T

E

X big delimiters, avoiding the

troublesome Uni
ode entities.

More generally, it remains authors responsibility to be
areful not to issue too re�ned Uni
ode entities. To

that aim, authors that target a wide audien
e should �rst limit themselves to the most
ommon symbols (e.g.

use \leq [≤℄ in pla
e of \pre
eq [�℄) and, above all, they should
ontrol the rendering of their do
uments

using several browsers.

B.17 Implemented Pa
kages

H

E

V

E

A distribution in
ludes .hva pa
kages that are implementations of L

A

T

E

X pa
kages. Pa
kages des
ribed in

the �Blue Book � (makeidx, ifthen, graphi
s�and graphi
x!�,
olor, alltt) are provided. Additionally,

quite a few extra pa
kages are provided. I provide no full do
umentation for these pa
kages, users should

refer to the �rst pages of the pa
kage do
umentation, whi
h
an usually be found in the book [L

A

T

E

X-bis℄,

in your lo
al L

A

T

E

X installation or in a TeX CTAN-ar
hive.

At the moment, most pa
kage options are ignored, ex
ept for the babel pa
kage, where it is essential.

B.17.1 AMS
ompatibility

H

E

V

E

A amsmath pa
kage de�nes some of the
onstru
ts of the amsmath pa
kage. At the moment, supported

onstru
ts are the
ases environment and matrix environments [L

A

T

E

X-bis, Se
tion 8.4℄, the environments

for multi-line displayed equations (gather, split,. . .) [L

A

T

E

X-bis, Se
tion 8.5℄ and the \numberwithin
om-

mand [L

A

T

E

X-bis, Se
tion 8.6.2℄.

H

E

V

E

A provides support for the amssymb symbols using Uni
ode. I found Uni
ode equivalent for most

symbols. However, a few symbols remain unde�ned (e.g. \varsubsetneqq).

B.17.2 The array and tabularx pa
kages

The array pa
kage is des
ribed in [L

A

T

E

X-bis, Se
tion 5.3℄ and in the lo
al do
umentation of modern L

A

T

E

X

installations. It is a
ompatible extension of L

A

T

E

X arrays (see B.10.2). Basi
ally, it provides new
ol-

umn spe
i�
ations and a \new
olumntype
onstru
t for user-de�ned
olumn spe
i�
ations. Table 1 gives a

summary of the new
olumn spe
i�
ations and of how H

E

V

E

A implements them.

Note that
entered, top-aligned or bottom-aligned in the verti
al dire
tion, do not have exa
tly the same

meaning in L

A

T

E

X and in HTML. However, the aspe
t is the same when all
olumns agree w.r.t. verti
al

70

alignment. Ordinary
olumn types (
, l and r) do not spe
ify verti
al alignment, whi
h therefore be
omes

browser dependent.

The >{de
l} and <{de
l}
onstru
ts permit the en
oding of T

E

X \
ases ma
ro as follows:

\def\
ases#1{\left\{\begin{array}{l>{$}l<{$}}#1\end{array}\right.}

(This is an ex
erpt of the latex
ommon.hva �le.)

New
olumn spe
i�
ations are de�ned by the \new
olumntype
onstru
t:

\new
olumntype{
ol}[narg℄{body}

Where
ol is one letter, the optional narg is a number (defaults to 0), and body is built up with valid
olumn

spe
i�
ations and ma
ro-argument referen
es (#int). Examples are:

\new
olumntype{C}{>{\bf}
}

\new
olumntype{E}[1℄{*{#1}{
}}

\begin{tabular}{CE{3}}\hline

one & two & three & four \\

five & six & seven & eight \\ \hline

\end{tabular}

The
olumn spe
i�
ation C means that entries will be typeset
entered and using bold font, while the
olumn

spe
i�
ations E{num} stands for num
entered
olumns. We get:

one two three four

�ve six seven eight

H

E

V

E

A implements
olumn spe
i�
ations with
ommands de�ned in the \new
ommand style. Thus, they

have the same behaviour as regards double de�nition, whi
h is not performed and indu
es a warning mes-

sage. Thus, a
olumn spe
i�
ation that is �rst de�ned in a ma
ro.hva spe
i�
 �le, overrides the do
ument

de�nition.

The tabularx pa
kage [L

A

T

E

X-bis, Se
tion 5.3.5℄ provides a new tabular environment tabularx and a

new
olumn type X. H

E

V

E

A makes the former equivalent to tabular and the latter equivalent to p{ignored}.

By
ontrast with the subtle array formatting that the tabularx pa
kage performs, this may seem a
rude

implementation. However, rendering is usually
orre
t, although di�erent.

More generally and from the HTML point of view su
h sophisti
ated formatting is browser job in the

�rst pla
e. However, the HTML de�nition allows suggested widths or heights for table entries and table

themselves. From H

E

V

E

A point of view, drawing the border line between what
an be spe
i�ed and what

an be left to the browser is not obvious at all. At the moment H

E

V

E

A
hoi
e is not to spe
ify too mu
h (in

parti
ular, all length arguments, either to
olumn spe
i�
ations or to the arrays themselves, are ignored). As

a
onsequen
e, the �nal, browser viewed, aspe
t of arrays will usually be di�erent from their printed aspe
t.

B.17.3 The
al
 pa
kage

The
al
 pa
kage enables using traditional, in�x, notation for arithmeti
 operations inside the num ar-

gument to the \set
ounter{name}{num} and \addto
ounter{name}{num}
onstru
ts (see [L

A

T

E

X-bis,

Se
tion A.4℄)

The
al
 pa
kage provides a similar extension of the syntax of the len argument to the \setlength and

\addtolength
onstru
ts. H

E

V

E

A does not implement this extension, sin
e it does not implement length

registers in the �rst pla
e.

B.17.4 Spe
ifying the do
ument input en
oding, the inputen
 pa
kage

The inputen
 pa
kage enables L

A

T

E

X to pro
ess a �le a

ording to various 8 bits en
odings, plus UTF-8. The

one used en
oding is spe
i�ed as an option while loading the pa
kage \usepa
kage[en
oding℄{inputen
}.

At the moment, H

E

V

E

A re
ognises ten latin en
odings (from latin1 to latin10), the koi8-r en
oding, the

71

as
ii en
oding, four windows en
odings, the applema
 en
oding, and the utf8 en
oding. It is important

to noti
e that loading the inputen
 pa
kage alters the HTML do
ument
harset. For instan
e if the latin9

input en
oding is sele
ted by:

\usepa
kage[latin9℄{inputen
}

Then, the do
ument
harset is ISO-8859-15, whi
h is an enhan
ed version of ISO-8859-1 with some
har-

a
ters for ×, ÷ and ¿. The rationale behind
hanging the output do
ument
harset at the same time as

hanging the input en
oding is to allow non-as
ii bytes in the input �le to be repli
ated as themselves in the

output �le.

However, one
an
hange the do
ument
harset (and the output translator) by using the internal
ommand

\�def�
harset. For instan
e, one
an spe
ify latin1 en
oding, while produ
ing HTML pages in as
ii:

\usepa
kage[latin1℄{inputen
}

%HEVEA\�def�
harset{US-ASCII}

See se
tion 8.6 for a more thorough des
ription of HTML
harset management.

The inputen
 pa
kage also provides the
ommand \input
oding{en
oding} that
hanges the input en-

oding at any time. The argument en
oding
an be any of the options a

epted by \usepa
kage[en
oding℄{inputen
}.

The
ommand \input
oding of H

E

V

E

A follows the behaviour of its L

A

T

E

X
ounterpart, it the sense that it

obeys s
ope rules. Noti
e that \input
oding does not
hange the do
ument output en
oding and
harset.

B.17.5 More symbols

H

E

V

E

A implements the following pa
kages: latexsym amssymb, text
omp (a.k.a. �Text
ompanion�) and

eurosym (a ni
e ¿ symbol in L

A

T

E

X).

B.17.6 The
omment pa
kage

The
omment pa
kage provides two
ommands, \ex
lude
omment and \in
lude
omment, for (re-)de�ning

new environments that ignore their
ontent or that do nothing. The
omment environment is also de�ned

as an environment of the �rst kind.

B.17.7 Multiple Indexes with the index and multind pa
kages

H

E

V

E

A supports several simultaneous indexes, following the s
heme of the index pa
kage, whi
h is present

in modern L

A

T

E

X distributions. This s
heme is ba
kward
ompatible with the standard indexing s
heme of

L

A

T

E

X.

Support is not
omplete, but the most useful
ommands are available. More pre
isely, H

E

V

E

A knows the

following
ommands:

\newindex{tag}{ext}{ignored}{indexname} De
lare an index. The �rst argument tag is a tag to sele
t

this index in other
ommands; ext is the extension of the index information �le generated by L

A

T

E

X

(e.g., idx); ignored is ignored by H

E

V

E

A; and indexname is the title of the index. There also exists a

\renewindex
ommands that takes the same arguments and that
an be used to rede�ne previously

de
lared indexes.

\makeindex Perform \newindex{default}{idx}{ind}{Index}.

\index[tag℄{arg} A
t as the L

A

T

E

X \index
ommand ex
ept that the information extra
ted from arg goes

to the tag index. The tag argument defaults to default, thereby yielding standard L

A

T

E

X behaviour

for the \index
ommand without an optional argument. There also exists a stared-variant \index*

that Additionally typesets arg.

72

\printindex[tag℄ Compute, format and output index whose tag is tag. The tag argument defaults to

default.

The multind pa
kage is supported to some extend, but index is de�nitely to be preferred.

B.17.8 �Natural� bibliographies, the natbib pa
kage

L

A

T

E

X version of natbib

2

is present in modern installations.

Implementation is quite
omplete and
ompatible with version 8.0 of the natbib pa
kage (with the keyval

style
ommand \set
itestyle).

Unimplemented features are the sorting and
ompression of referen
es. Automati
 generation of an index

of
itations is handled, but the
urrent implementation probably is quite fragile.

B.17.9 Multiple bibliographies

The multibib pa
kage

H

E

V

E

A provides a slightly in
omplete implementation of the multibib pa
kage. The one non-implemented

feature is the simultaneous de�nition of more than one bibliography. That is one
annot invoke \new
ites

as follows:

\new
ites{suf1, suf2}{Title1, Title2}

Instead, one should perform to
alls to the \new
ites
ommand:

\new
ites{suf1}{Title1}\new
ites{suf2}{Title2}

The
hapterbib pa
kage

A basi
 implementation is provided. At the moment, you
an de�ne one bibliography per in
luded �le and no

toplevel bibliography. H

E

V

E

A implementation of this pa
kage re
ognises the option se
tionbib and provides

the
ommand \se
tionbib to
hange the se
tioning
ommand introdu
ed by bibliographies.

B.17.10 Support for babel

B.17.10.1 Basi
s

H

E

V

E

A o�ers support for the L

A

T

E

X pa
kage babel. When it reads the
ommand

\usepa
kage[lang-list℄{babel}

it loads babel.hva, and sends it the saved lang-list. The �le babel.hva then looks at ea
h language (say

x) in it, and loads x.hva, whi
h o�ers support for the language x. As in L

A

T

E

X, the last language in the list

is sele
ted as default. As an example the
ommand

\usepa
kage[english,fren
h,german℄{babel}

would load babel.hva, then the �les english.hva,fren
h.hva,german.hva
ontaining the respe
tive def-

initions, and �nally a
tivate the de�nitions in german.hva and sets the
urrent language to german.

2

http://www.
tan.org/pkg/natbib.html

73

B.17.10.2 Commands and languages

The following babel
ommands for
hanging and querying the language work as in L

A

T

E

X :

1. \sele
tlanguage : to
hange the language

2. \iflanguage : to bran
h after
omparing with
urrent language

The language spe
i�
 details are des
ribed in the
orresponding .hva �le, just as in the .sty �le for

L

A

T

E

X. Users need to supply this �le for their language, or modify/
he
k the �les if they are already supplied

with the distribution. The list of languages is given below.

ameri
an austrian brazil
atalan

he
k
roatian danish dut
h

english esperanto �nnish fren
h

gali
ian german italian magyar

norsk nynorsk polish portuges

romanian russian slovak slovene

spanish swedish turkish

B.17.10.3 Writing hva �les

The languages for whi
h .hva �les are available with the distribution are english, fren
h, german, austrian

and
ze
h. These may need to be modi�ed as not all a

ents and hyphenation te
hniques are supported.

They
an be written/modi�ed as simple T

E

X �les (see the se
tion B.16.1.1 on writing T

E

X ma
ros for

details). As an example, one may also take a look at the �le fren
h.hva

3

, whi
h des
ribes the details for

fren
h.

Note how all de�nitions are inside the de�nition for \fren
h�babel, whi
h is the
ommand that \sele
tlanguage{fren
h}

would
all. Similar
ommands need to be provided (i.e. \x�babel in \x.hva for language x).

Some de�nitions may involve spe
ifying Uni
ode
hara
ters, for doing so, using the \�print�u is re
om-

mended (
f. Se
tion 8.3). The de�nition of Uni
ode
hara
ters
an be found at http://www.uni
ode.org/
harts/

4

.

Most language spe
i�
 Uni
ode
hara
ters
an be found in the �rst few �les.

B.17.11 The url pa
kage

L

A

T

E

X sour
e

5

.

This pa
kage in fa
t provides a enhan
ed \verb
ommand that
an appear inside other
ommand argu-

ments. This
ommand is named \url, but it
an be used for any verbatim text, in
luding DOS-like path

names. Hen
e, one
an insert urls in one's do
ument without worrying about L

A

T

E

X a
tive
hara
ters:

This is a
ompli
ated url: \url{http://foo.
om/~user#label%
ou
ou}.

whi
h gets typeset as: �This is a
ompli
ated url: http://foo.
om/~user#label%
ou
ou.�

The main use for the \url
ommand is to spe
ify urls as arguments to H

E

V

E

A
ommands for hyperlinks

(see se
tion 8.1.1):

\hevea{} home page is

\ahrefurl{\url{http://hevea.inria.fr/}}

It yields: �H

E

V

E

A home page is http://hevea.inria.fr/�.

However the \url
ommand is fragile, as a
onsequen
e it
annot be used inside \footahref �rst argu-

ment (This is a L

A

T

E

X problem, not an H

E

V

E

A one). The url pa
kage solves this problem by providing the

\urldef
ommand for de�ning
ommands whose body is typeset by using \url:

3

../html/fren
h.hva

4

http://www.uni
ode.org/
harts/

5

http://www.
tan.org/pkg/url.html

74

\urldef{\heveahome}{\url}{http://hevea.inria.fr/}

Su
h a sour
e de�nes the robust
ommand \heveahome as the intended url. Hen
e the following sour
e works

as expe
ted:

Have a look at \footahref{\heveahome}{\hevea{} home page}

It yields: �Have a look at H

E

V

E

A home page

6

�.

Using \url inside
ommand de�nitions with a #i argument is a bad idea, sin
e it gives �verbatim� a

rather random meaning. Unfortunately, in some situations (e.g, no %, no #), it may work in L

A

T

E

X. By

ontrast, it does not work in H

E

V

E

A. In su
h situations, \urldef should be used.

H

E

V

E

A implementation is somehow
ompatible at the �programming level�. Thus, users
an de�ne new

ommands whose argument is understood verbatim. The urlhref.hva style �le from the distribution takes

advantage of this to de�ne the \url
ommand, so that it both typesets an url and inserts a link to it.

The urlhref.hva style �le (whi
h is an H

E

V

E

A style �le and not a L

A

T

E

X style �le)
an be adequate for

bibliographi
 referen
es, whi
h often use \url for its typesetting power. Of
ourse, loading urlhref.hva

only makes sense when all arguments to \url are urls. . .

B.17.12 Verbatim text: the moreverb and verbatim pa
kages

These two pa
kages provide new
ommands and environments for pro
essing verbatim text. I re
ommend

using moreverb rather than verbatim, sin
e H

E

V

E

A implementation is more advan
ed for the former pa
kage.

B.17.13 Typesetting
omputer languages: the listings pa
kage

I strongly re
ommend the listings pa
kage. Learning the user interfa
e requires a little e�ort, but it is

worth it.

H

E

V

E

A features a quite
ompatible implementation, please refer to the original pa
kage do
umentation.

Do not hesitate to report dis
repan
ies. Note that H

E

V

E

A does not produ
e very
ompa
t HTML in
ase you

use this pa
kage. This
an be
ured by giving hevea the
ommand-line option -O (see C.1.1.4).

The lstlisting environment is styled through an homonymous style
lass (see 9.2 and 9.3) and most

lstlisting environments get translated to div elements with the appropriate \getenv
lass{lstlisting}

lass, whi
h, by default is lstlisting. A few points deserve mention:

1. The de�nition of default style
lass lstlisting in
ludes the important de
larations font-family:monospa
e;

and white-spa
e:pre;, whi
h, more or less, spe
ify non-proportional font and mandatory line breaks.

In
ase you repla
e lstlisting by another style
lass (by \setenv
lass{lstlisting}{another one}),

your alternate de�nition should probably feature an identi
al spe
i�
ation. Otherwise, rendering would

be poor, as regards spa
ing and line breaks.

2. When listings are framed, that is, when some frame=. . . or ba
kground=. . . keyval spe
i�
ations are

a
tive, they no longer get translated to div elements. Instead they get translated to one
ell tables

whose td and table elements are styled through style
lasses lstlisting and lstframe, respe
tively.

Of
ourse, those two style
lasses follow the usual \setenv
lass/\getenv
lass me
hanism. That

way, one
an for instan
e
enter all framed listings by issuing the following de
laration in the do
ument

preamble:

\newstyle{.lstframe}{margin:auto;}

Noti
e that the default style
lass lstframe is empty.

6

http://hevea.inria.fr/

75

3. Unfortunately the white-spa
e:pre; style de
laration is still a bit young, and some browsers im-

plement it in rather in
omplete fashion. This is parti
ularly true as regards text
opy-pasted from

browser display. In
ase you want to provide your readers with easy
opy-paste of listings, you
an,

by issuing the
ommand \lstavoidwhitepre in the do
ument preamble. Then, white-spa
e:pre;

is not used any longer: spa
es get rendered by non-breaking spa
e entities and line-breaks by

elements, whi
h signi�
antly in
rease output size. However, as a positive
onsequen
e, display remains

orre
t and text
opy-pasted from browser display indeed possesses the line-breaks shown in display.

B.17.14 (Non-)Multi page tabular material

Those two pa
kages provide L

A

T

E

X users with the possibility to typeset tabular material over several pages [L

A

T

E

X-bis,

Se
tion 5.4℄. Of
ourse, H

E

V

E

A does not
are mu
h about physi
al pages. Thus the supertabular and

longtable environments are rendered more or less as tabular environments inside table environments.

B.17.15 Typesetting inferen
e rules: the mathpartir pa
kage

The mathpartir pa
kage, authored by D. Rémy, essentially provides two features:

1. An environment mathpar for typesetting a sequen
e of math formulas in mixed horizontal and verti
al

mode. The environment sele
ts the best arrangement a

ording to the line width, exa
tly as paragraph

mode does for words.

2. A
ommand \inferrule (and its starred variant) for typesetting inferen
es rules.

We give a short des
ription, fo
ussing on H

E

V

E

A-related details. Users are en
ouraged to refer to the original

do
umentation

7

of the pa
kage.

In the following,
omments on rule typesetting apply to H

E

V

E

A output and not to L

A

T

E

X output.

B.17.15.1 The mathpar environment

In its L

A

T

E

X version, the mathpar environment is a �paragraph mode for formulas�. It allows to typeset long

list of formulas putting as many as possible on the same line:

\begin{mathpar}

A-Formula \and

Longer-Formula \and

And \and The -Last -One

\end{mathpar}

A− Formula Longer − Formula

And The− Last−One

In the example above, formulas are separated with \and. The L

A

T

E

X implementation also
hanges the

meaning of paragraph breaks (either expli
it as a \par
ommand or impli
it as a blank line) to a
t as \and.

It also rede�nes the
ommand \\ as an expli
it line-break in the �ow of formulas.

\begin{mathpar}

\int_0^2 xdx = \fra
{3}{2}

\\

\int_0^3 xdx = \fra
{5}{2}

\end{mathpar}

∫
2

0

xdx =
3

2

∫
3

0

xdx =
5

2

7

http://pauilla
.inria.fr/

~

remy/latex/index.html#tir

76

The H

E

V

E

A version is simplisti
: Formulas are typeset in math display mode, \and separators always

produ
e horizontal spa
e, while \\ always produ
e line-breaks. However, when pre�xed by \hva the meaning

of expli
it separators is reversed: that is, \hva\and produ
es a line-break, while \hva\\ produ
es horizontal

spa
e. Hen
e, we
an typeset the previous example on two lines:

\begin{mathpar}

A-Formula \and

Longer-Formula \hva\and

And \and The -Last -One

\end{mathpar}

A− Formula Longer − Formula

And The− Last−One

It is to be noti
ed that the L

A

T

E

X version of the pa
kage de�nes \hva as a no-op, so as to allow expli
it

instru
tions given to H

E

V

E

A not to impa
t on the automati
 typesetting performed by L

A

T

E

X.

B.17.15.2 The inferrule ma
ro

The \inferrule ma
ro is designed to typeset inferen
e rules. It should only be used in math mode (or

display math mode). It takes three arguments, the �rst being optional, spe
ifying the label, premises, and

on
lusions respe
tively. The premises and the
on
lusions are both lists of formulas, and are separated by

\\. A simple example of its use is

\inferrule

[label℄

{one \\ two \\ three \\ or \\ more \\ premises}

{and \\ any \\ number \\ of \\
on
lusions \\ as \\ well}

whi
h gives the following rendering:

label

one two three or more premises

and any number of conclusions as well

Again, H

E

V

E

A is simplisti
. Where L

A

T

E

X performs a
tual typesetting, interpreting \\ as horizontal or verti
al

breaks, H

E

V

E

A always interpret \\ as an horizontal break. In fa
t H

E

V

E

A interpret all separators (\\, \and) as

horizontal breaks, when they appear in the arguments of the \inferrule
ommand. Nevertheless pre�xing

separators with \hva yields verti
al breaks:

\inferrule

{aa \hva\\ bb}

{dd \\ ee \\ ff}

aa bb

dd ee ff

The
olor of the horizontal rule that separates the premises and
on
lusions
an be
hanged by rede�ning

the
ommand \mpr�hhline�
olor. This
olor must be spe
i�ed as a low-level
olor (
f. Se
tion B.14.2.2).

B.17.15.3 Options

By default, lines are
entered in inferen
e rules. However, this
an be
hanged either by using \mprset{flushleft}

or \mprset{
enter}, as shown below.

77

$$\mprset{flushleft}

\inferrule

{a \\ bbb \hva\\

 \\ dddd}

{e \\ ff \hva\\ gg}

$$

a bbb ccc dddd

e ff gg

B.17.15.4 Derivation trees

The mathpartir pa
kage provides a starred variant \inferrule*. In L

A

T

E

X, the boxes produ
ed by \inferrule

and \inferrule* di�er as regards their baseline, the se
ond being well adapted to derivation trees. All this

is irrelevant to H

E

V

E

A, but \inferrule* remains of interest be
ause of its interfa
e: the optional argument

to the \inferrule*
ommand is a list of key=value pairs in the style of keyval. This makes the variant

ommand mu
h more �exible.

key E�e
t for value v

before Exe
ute v before typesetting the rule. Useful for instan
e to
hange the

maximal width of the rule.

left Put a label v on the left of the rule

Left Idem.

right As left, but on the right of the rule.

Right As Left, but on the right of the rule.

lab Put a label v above the inferen
e rule, in the style of \inferrule.

Lab Idem.

vdots Raise the rule by v and insert verti
al dots, the length argument is translated

to a number of line-skips.

Additionally, the value-less key
enter
enters premises and
on
lusions (this is the default), while flushleft

ommands left alignment of premises and
on
lusions (as \mprset{flushleft} does). Other keys de�ned

by the L

A

T

E

X pa
kage exist and are parsed, but they perform no operation.

As an example, the
ode

\begin{mathpar}

\inferrule* [Left=Foo℄

{\inferrule* [Right=Bar ,width=8em,

leftskip=2em,rightskip=2em,vdots=1.5em℄

{a \and a \and bb \hva\\

 \and dd}

{ee}

\and ff \and gg}

{hh}

\hva\and

\inferrule* [lab=XX℄{uu \and vv}{ww}

\end{mathpar}

78

produ
es the following output:

Foo

a a bb

cc dd

ee
Bar

··· ff gg

hh

XX

uu vv

ww

B.17.16 The ifpdf pa
kage

This pa
kage should be present in modern latex installations. Basi
ally, the pa
kage de�nes a boolean

register pdf, whose value is true for tools that produ
e PDF (su
h as pdflatex) and false for tools that

produ
e DVI (su
h as latex).

The hevea version of the pa
kage simply de�nes the boolean register pdfwith initial value true. Command-

line option -pdf is also added to imagen
ommand-line options (by using the
ommand \�addimagenopt,

see Se
tion 10.7). As a result, imagen will normally
all pdflatex in pla
e of latex.

In
ase standard latex pro
essing in imagen is wished, one
an issue the
ommand \pdffalse after

loading the ifpdf pa
kage and before \begin{do
ument}. Then, no
ommand line option is added. Hen
e,

to a
hieve latex pro
essing of the image �le, while still loading the ifpdf pa
kage, one writes:

\usepa
kage{ifpdf}

%HEVEA\pdffalse

B.17.17 Typesetting Thai

H

E

V

E

A features an implementation of Andrew Seagar's te
hnique for Thai in L

A

T

E

X, by the means of the

pa
kage thai.hva in the distribution.

As regards input en
oding, Thai users of H

E

V

E

A
ould (perhaps) use \usepa
kage[utf8℄{inputen
}.

However, the typesetting of Thai is more subtle than just proper
hara
ters. For that reason, Thai in L

A

T

E

X

is better performed by another te
hnique, whi
h H

E

V

E

A supports. See this spe
i�
 do
ument

8

.

B.17.18 Hanging paragraphs

The hanging pa
kage is implemented. H

E

V

E

A implementation
onsists of no-ops, ex
ept for the hangparas

environment, whi
h is partially implemented. Assume the following usage of hangparas:

\begin{hangparas}{wd}{n} . . . \end{hangparas}

where wd is a length that makes sense both for L

A

T

E

X and CSS (typi
ally 2ex). Then HTML output will

reprodu
e L

A

T

E

X output for n = 1, regardless of the given value of argument n. That is, in any paragraph

inside the environment, all lines ex
ept the �rst get indented by wd.

B.17.19 The
leveref pa
kage

The
leveref pa
kage attempts (and mostly su

eeds) typesetting referen
es
leverly. Its main feature is a

\
ref
ommand that a

epts several,
omma separated, label referen
es and typesets them as a list (whi
h

an be one-element long, of
ourse) pre�xed with se
tional unit names. The H

E

V

E

A implementation is quite

omplete, but it does not support some of the subtleties of the L

A

T

E

X implementations, espe
ially as regards

ustomisation.

8

http://hevea.inria.fr/do
/thaihevea.html

79

B.17.20 Other pa
kages

The fan
yverb and
olortbl pa
kages are partly implemented.

The xspa
e pa
kage is implemented, in simple
ases, rendering is satisfa
tory, but beware: H

E

V

E

A di�ers

signi�
antly from T

E

X, and dis
repan
ies are likely.

The
hng
ntr pa
kage is implemented. This pa
kage provides
ommands to
onne
t (and dis
onne
t)

ounters on
e they are
reated.

The import pa
kage is partially implemented: all starred
ommands are missing.

The booktabs pa
kage is implemented. This pa
kage provides ni
er rulers in tables as spe
i�

ommands.

H

E

V

E

A de�nes those as no-ops.

Part C

Pra
ti
al information

C.1 Usage

C.1.1 H

E

V

E

A usage

The hevea
ommand has two operating modes, normal mode and �lter mode. Operating mode is determined

by the nature of the last
ommand-line argument.

C.1.1.1 Command line arguments

The hevea
ommand interprets its arguments as names of �les and attempts to pro
ess them. Given an

argument �lename there are two
ases:

� If �lename is base.tex or base.hva, then a single attempt to open �lename is made.

� In other
ases, a �rst attempt to open �lename.tex is made. In
ase of failure, a se
ond attempt to

open �lename is made.

In all attempts, impli
it �lenames are sear
hed along hevea sear
h path, whi
h
onsist in:

1. the
urrent dire
tory �.�,

2. user-spe
i�ed dire
tories (with the -I
ommand-line option),

3. hevea library dire
tory.

4. one of the sub-dire
tories html, text or info from hevea library dire
tory, depending upon hevea

output format,

The hevea library dire
tory is �xed at
ompile-time (this is where hevea library �les are installed) and

typi
ally is /usr/lo
al/lib/hevea. However, this
ompile-time value
an be overridden by setting the

HEVEADIR shell environment variable. In all
ases, the value of hevea library dire
tory
an be a

essed from

the pro
essed do
ument as the value of the
ommand \�hevealibdir.

C.1.1.2 Normal mode

If the last argument has an extension that is di�erent from .hva or has no extension, then it is interpreted as

the name of the main input �le. The main input �le is the do
ument to be translated and normally
ontains

the \do
ument
lass
ommand. In that
ase two basenames are de�ned:

80

� The input basename, basein, is de�ned as the main input �le name, with extension removed when

present.

� The output basename, baseout, is basein with leading dire
tories omitted. However the output base-

name
an be
hanged, using the -o option (see below).

H

E

V

E

A will attempt to load the main input �le. An
illary �les from a previous run of L

A

T

E

X (i.e. .aux,

.bll and .idx �les) will be sear
hed as basein.ext. The output base name governs all �les produ
ed

by H

E

V

E

A. That is, HTML output of H

E

V

E

A normally goes to the �le baseout.html, while
ross-referen
ing

information goes into baseout.haux. Furthemore, if an image �le is generated (
f. se
tion 6), its name will

be baseout.image.tex.

Thus, in the simple
ase where the hevea
ommand is invoked as:

hevea file.tex

The input basename is file and the output basename also is file. The main input �le is sear
hed on
e

along hevea sear
h path as file.tex. HTML output goes into �le file.html, in the
urrent dire
tory. In

the more
ompli
ated
ase where the hevea
ommand is invoked as:

hevea ./dir/file

The input base name is ./dir/file and the output basename is file. The main input �le is loaded by �rst

attempting to open �le ./dir/file.tex, then �le ./dir/file. HTML output goes into �le file.html, in

the
urrent dire
tory.

Finally, the output base name
an be a full path, but you have to use option -o. For instan
e, we

onsider:

hevea -o out/out.html file.tex

Then, HTML output goes into out/out.html � noti
e that dire
tory out must exist. Furthermore, hevea

output base name is out/out. This means that hevea generates �les out/out.haux, out/out.image.tex

et
.

The arti
le.hva, seminar.hva, book.hva and report.hva base style �les from H

E

V

E

A library are

spe
ial. Only the �rst base style �le is loaded and the \do
ument
lass
ommand has no e�e
t when a

base style �le is already loaded. This feature allows to override the do
ument base style. Thus, a do
ument

file.tex
an be translated using the arti
le base style as follows:

hevea arti
le.hva file.tex

C.1.1.3 Filter mode

If there is no
ommand-line argument, or if the last
ommand-line argument has the extension .hva, then

there is neither input base name nor output base name, the standard input is read and output normally

goes to the standard output. Output starts immediately, whithout waiting for \begin{do
ument}. In other

words hevea a
ts as a �lter.

Please note that this operating mode is just for translating isolated L

A

T

E

X
onstru
ts. The normal way

to translate a full do
ument �le.tex being �hevea �le.tex� and not �hevea < �le.tex > �le.html�.

C.1.1.4 Options

The hevea
ommand re
ognises the following options:

-version Show hevea version and exit.

-v Verbose �ag,
an be repeated to in
rease verbosity. However, this is mostly for debug.

81

-dv Add border around some of the blo
k-level elements issued. Spe
i�
ally, all div and p are bordered,

while the stru
ture of displayed material is also shown.

-s Suppress warnings.

-I dirname Add dirname to the sear
h path.

-o name Make name the output basename. However, if name is base.html, then the output basename is

base. Besides, -o - makes H

E

V

E

A output to standard output.

-e �lename Prevent hevea from loading any �le whose name is �lename. Note that this option applies to

all �les, in
luding hevea.hva and base style �les.

-fix Iterate H

E

V

E

A until a �xpoint is found. Additionally, images get generated automati
ally.

-O Optimise HTML by
alling esponja (see se
tion C.1.3).

-exe
 prog Exe
ute �le prog and read the output. The �le prog must have exe
ution permission and is

sear
hed by following the sear
hing rules of hevea.

-fran
ais Depre
ated by babel support. This option issues a warning message.

-help Print version number and a short help message.

The following options
ontrol the HTML
ode produ
ed by hevea. By default, hevea outputs a page

en
oded in US-ASCII with most symbols rendered as HTML or numeri
al Uni
ode entities.

-entities Render symbols by using entities. This is the default.

-textsymbols Render symbols by English text.

-moreenties Enable the output of some infrequent entities. Use this option to target browsers with wide

entities support.

-mathml Produ
es MathML output for equations, very experimental.

-pedanti
 Be stri
t in interpreting HTML de�nition. In parti
ular, this option disable size and
olor
hanges

inside <PRE>. . . </PRE>, whi
h are otherwise performed.

The following options sele
t and
ontrol alternative output formats (see se
tion 11):

-text Output plain text. Output �le extension is .txt.

-info Output info format. Output �le extension is .info.

-w width Set the line width for text or info output, defaults to 72.

Part A of this do
ument is a tutorial introdu
tion to H

E

V

E

A, while Part B is the referen
e manual of H

E

V

E

A.

C.1.2 H

A

C

H

A usage

The ha
ha
ommand interprets its argument base.html as the name of a HTML sour
e �le to
ut into pie
es.

It also re
ognises the following options:

-v Be a little verbose.

-o �lename Make H

A

C

H

A output go into �le �lename (defaults to index.html). Additionally, if �lename is a

omposite �lename, dir/base, then all �les outputted by H

A

C

H

A will reside in dire
tory dir.

-to
bis Another style for table of
ontents: sub-tables are repli
ated at the beginning of every �le.

82

-to
ter Like -to
bis above, ex
ept that sub-tables do not appear in the main table of
ontents (see

Se
tion 7.2.3).

-nolinks Do not insert Previous/Up/Next links in generated pages.

-hrf Output a base.hrf �le, showing in whi
h output �les are the an
hors from the input �le gone. The

format of this summary is one �an
hor\t�le� line per an
hor. This information may be needed by

other tools.

-help Print version number and a short help message.

Se
tion 7 of the user manual explains how to alter H

A

C

H

A default behaviour.

C.1.3 esponja usage

The program esponja is part of H

E

V

E

A and is designed to optimise hevea output. However, esponja
an

also be used alone to optimise text-level elements in HTML �les. Sin
e esponja fails to operate when it

dete
ts in
orre
t HTML, it
an be used as a partial HTML validator.

C.1.3.1 Operating mode

The program esponja interprets its arguments as names of �les and attempt to pro
ess them. It is important

to noti
e that esponja will repla
e �les by their optimised versions, unless instru
ted not to do so with

option -n.

Invoking esponja as

esponja foo.html

will alter foo.html. Of
ourse, if esponja does not su

eed in making foo.html any smaller or if esponja

fails, the original foo.html is left un
hanged. Note that this feature allows to optimise all HTML �les in a

given dire
tory by:

esponja *.html

C.1.3.2 Options

The
ommand esponja re
ognises the following options:

-v Be verbose,
an be repeated to in
rease verbosity.

-n Do not alter input �les. Instead, esponja output for �le input.html goes to �le input.esp. Option -n

implies option -v.

-u Output esponja intermediate version of HTML. In most o

asions, this amounts to pessimize instead of

to optimise. It may yield
hallenging input for other HTML optimisers.

C.1.4 bibhva usage

The program bibhva is a simple wrapper, whi
h basi
ally for
es bibtex into a

epting a .haux �le as input

and produ
ing a .hbbl �le as output. Usage is bibhva bibtex-options basename.

83

C.1.5 imagen usage

The
ommand imagen is a simple shell s
ript that translates a L

A

T

E

X do
ument into many .png images. The

imagen s
ript relies on mu
h software to be installed on your
omputer, see Se
tion C.4.1.

It is a
ompanion program of H

E

V

E

A, whi
h must have been previously run as:

hevea. . . base.tex

or

hevea. . . -o base.html. . .

In both
ases, base is H

E

V

E

A output basename. When told to do so (see se
tion 6) H

E

V

E

A e
hoes part of its

input into the base.image.tex �le.

The imagen s
ript should then be run as:

imagen base

The imagen s
ript produ
es one basennn.png image �le per page in the base.image.tex �le.

This is done by �rst
alling latex on base.image.tex, yielding one dvi �le. Then, dvips translates this

�le into one single Posts
ript �le that
ontains all the images, or into one Posts
ript �le per image, depending

upon your version of dvips. Posts
ript �les are interpreted by ghosts
ript (gs) that outputs ppm images,

whi
h are then fed into a series of transformations that
hange them into .png �les.

The imagen s
ript re
ognises the following options:

-mag nnnn Change the enlarging ratio that is applied while translating DVI into Posts
ript. More pre
isely,

dvips is run with -xnnnn option. Default value for this ration is 1414, this means that, by default,

imagen magni�es L

A

T

E

X output by a fa
tor of 1.414.

-extra
ommand Insert
ommand as an additional stage in imagen ppm to png produ
tion
hain.
ommand

is an Unix �lter that expe
ts a ppm image in its standard input and outputs a ppm image on its

standard output. A sensible
hoi
e for
ommand is one
ommand from the netpbm pa
kage, several

su
h
ommands piped together, or various invo
ations of the
onvert
ommand from ImageMagi
k.

-quant number Add an extra
olor quantisation step in imagen ppm image produ
tion
hain, where number

is the maximal number of
olors in the produ
ed images. This option may be needed as a response to

a failure in the image produ
tion
hain. It
an also help in limiting image �les size.

-png Output PNG images. This is the default.

-gif Output GIF images in pla
e of PNG images. GIF image �les have a .gif extension. Note that

hevea should have been previously run as hevea gif.hva base.tex (so that the proper .gif �lename

extension is given to image �le referen
es from within the HTML do
ument).

-pnm Output PPM images. This option mostly serves debugging purposes. Experimented users
an also

take advantage of it for performing additional image transformation or adopting exoti
 image formats.

-t arg Pass option �-t arg� to dvips. For instan
e, using �-t a3� may help when images are trun
ated on

the right.

-pdf Have imagen
all pdflatex instead of latex.

The �rst three options enable users to
orre
t some misbehaviours. For instan
e, when the do
ument

base style is seminar, image orientation may be wrong and the images are too small. This
an be
ured by

invoking imagen as:

imagen -extra "pnmflip -

w" -mag 2000 base

Noti
e that hevea
alls imagen by itself, when given the
ommand-line option -fix. In that situation, the

ommand-line options of imagen
an be
ontrolled from sour
e �le by using the
ommand \�addimagenopt

(see Se
tion 10.7).

84

C.1.6 Invoking hevea, ha
ha and imagen

In this se
tion, we give a few sequen
e of (Unix)
ommands to build the HTML version of a do
ument in

various situations. The next se
tion gives a few Makefile's for similar situations.

We translate a �le do
.tex that requires a spe
i�
 style �le do
.hva. The �le is �rst translated into

do
.html by hevea, whi
h also reads the spe
i�
 style �le do
.hva. Then, ha
ha
uts do
.html into several,

do
001.html, do
002.html, et
. also produ
ing the table of links �le index.html.

hevea -fix do
.hva do
.tex

ha
ha do
.html

Thanks to the
ommand-line option -fix, hevea runs the appropriate number of times automati
ally. In

ase hevea produ
es a non-empty do
.image.tex �le, then hevea
alls imagen by itself (be
ause of option

-fix). Hen
e, the above sequen
e of two
ommands is also appropriate in that situation.

In
ase some problem o

urs, it is sometime
onvenient to run imagen by hand. It is time not to use the

option -fix.

rm -f do
.image.tex

hevea do
.hva do
.tex

Now, hevea normally has shown the imagen
ommand line that it would have run, if it had been given the

option -fix. For instan
e, if do
.hva in
ludes \input{gif.hva}, then hevea shows the following warning:

HeVeA Warning: images may have
hanged, run 'imagen -gif do
'

Now, one
an run imagen as it should be.

It is sometime
onvenient not to
lobber the sour
e dire
tory with numerous target �les. It su�
es to

instru
t hevea and ha
ha to output �les in a spe
i�
 dire
tory, say do
.

hevea -fix -o do
/do
.html do
.hva do
.tex

ha
ha -o do
/index.html do
/do
.html

Noti
e that hevea does not
reate the target dire
tory do
: it must exist before hevea runs. Again, in
ase

hevea
alls imagen, image generation should pro
eed smoothly and the �nal �les do
001.png, do
002.png,

. . . should go into dire
tory do
.

In all situations, while installing �les to their �nal destination, it is important not to forget any relevant

�les. In parti
ular, in addition to the root �le (index.html),
ontents �les (do
001.html, do
002.html,

et
.) and images (do
001.png, do
002.png, et
.), one should not forget the arrow images and the style

sheet generated by ha
ha (
ontents_motif.gif, next_motif.gif, previous_motif.gif and do
.
ss).

As a
onsequen
e, produ
ing all �les into the subdire
tory do
 may be a good idea, sin
e then one easily

install all relevant �les by
opying do
 to a publi
 destination.

p -r do
 $(HOME)/publi
_html

However, one then also installs the auxiliary �les of hevea, and hevea output �le do
.html, whi
h is no

longer useful on
e ha
ha has run. Hen
e, those should be erased beforehand.

rm -f do
/do
.h{tml,aux,ind,to
} do
/do
.image.tex

p -r do
 $(HOME)/publi
_html

C.1.7 Using make

Here is a typi
al Makefile, whi
h is appropriate when no images are produ
ed.

85

HEVEA=hevea

HEVEAOPTS=-fix

HACHA=ha
ha

#do
ument base name

DOC=do

index.html: $(DOC).html

$(HACHA) -o index.html $(DOC).html

$(DOC).html: $(DOC).hva $(DOC).tex

$(HEVEA) $(HEVEAOPTS) $(DOC).hva $(DOC).tex

lean:

rm -f $(DOC).html $(DOC).h{to
,aux,ind}

rm -f index.html $(DOC)[0-9℄[0-9℄[0-9℄.html $(DOC).
ss

Note that the
lean rule removes all the do
001.html, do
002.html, et
. and do
.
ss �les produ
ed by

ha
ha. Also note that make
lean also removes the do
.haux, do
.hind and do
.hto
 �les, whi
h are

H

E

V

E

A auxiliary �les.

When the image �le feature is used, one
an use the following, extended, Makefile:

HEVEA=hevea

HEVEAOPTS=-fix

HACHA=ha
ha

#do
ument base name

DOC=do

index.html: $(DOC).html

$(HACHA) -o index.html $(DOC).html

$(DOC).html: $(DOC).hva $(DOC).tex

$(HEVEA) $(HEVEAOPTS) $(DOC).hva $(DOC).tex

lean:

rm -f $(DOC).html $(DOC).h{to
,aux,ind}

rm -f index.html $(DOC)[0-9℄[0-9℄[0-9℄.html $(DOC).
ss

rm -f $(DOC).image.* $(DOC)[0-9℄[0-9℄[0-9℄.png *_motif.gif

Observe that the
lean rule now also gets rid of do
.image.tex and of the various �les produ
ed by imagen.

With the following Makefile, hevea, imagen, ha
ha all output their �les into a spe
i�
 dire
tory DIR.

HEVEA=hevea

HEVEAOPTS=-fix

HACHA=ha
ha

#do
ument base name

DOC=do

DIR=$(HOME)/publi
_html/$(DOC)

BASE=$(DIR)/$(DOC)

$(DIR)/index.html: $(BASE).html

$(HACHA) -to
ter -o $(DIR)/index.html $(BASE).html

$(BASE).html: $(DOC).hva $(DOC).tex

$(HEVEA) $(HEVEAOPTS) $(DOC).hva -o $(BASE).html $(DOC).tex

86

partial
lean:

rm -f $(BASE).h{tml,aux,to
,ind} $(BASE).image.*

lean:

rm -f $(DIR)/*

The above Makefile dire
tly produ
es HTML and PNG �les into the �nal dire
tory $(HOME)/publi
_html/$(DOC).

The new partial
lean entry erases �les that are not useful anymore, on
e imagen and ha
ha have performed

their tasks.

However, most often, it is more appropriate to build HTML and PNG �les in a spe
i�
 dire
tory, and then

to
opy them to their �nal destination.

...

#do
ument base name

DOC=do

DIR=$(DOC)

BASE=$(DIR)/$(DOC)

INSTALLDIR=$(HOME)/publi
_html/$(DOC)

...

install: partial
lean

p $(DIR)/* $(INSTALLDIR)

...

C.2 Browser
on�guration

By default, H

E

V

E

A does not anymore use the FACE=symbol attribute to the tag. As a
onse-

quen
e, browser
on�guration is no longer needed.

H

E

V

E

A now extensively outputs Uni
ode entities. This �rst means that H

E

V

E

A targets modern browsers

with de
ent uni
ode support, and only those.

In
ase your browser is re
ent and that you nevertheless experien
e display problems on H

E

V

E

A-generated

pages, see the ex
ellent Alan Wood's Uni
ode Resour
es

9

. It may help to understand display problems and

even to solve them by
on�guring browsers or installing some fonts.

C.3 Availability

C.3.1 Internet stu�

H

E

V

E

A home page is http://hevea.inria.fr/. It
ontains links to the on-line manual

10

and to the distri-

bution

11

.

The author
an be
onta
ted at Lu
.Maranget�inria.fr.

C.3.2 Law

H

E

V

E

A
an be freely used and redistributed without modi�
ations. Modifying and redistributing H

E

V

E

A

implies a few
onstraints. More pre
isely, H

E

V

E

A is distributed under the terms of the Q Publi
 Li
ense,

9

http://www.alanwood.net/uni
ode/

10

http://hevea.inria.fr//do
/

11

http://hevea.inria.fr/distri

87

but H

E

V

E

A binaries in
lude the Obje
tive Caml runtime system, whi
h is distributed under the Gnu Library

General Publi
 Li
ense (LGPL). See the LICENSE

12

�le for details.

The manual itself is distributed under the terms of the Free Do
ument Dissemination Li
en
e

13

.

C.4 Installation

C.4.1 Requirements

The programs hevea and ha
ha are written in Obje
tive Caml

14

. Thus, you really need Obje
tive Caml

(the more re
ent version, the better) to
ompile them. However, some binary distributions exist, whi
h are

managed by people other than me (thanks to them). Links to some of these distributions appear in H

E

V

E

A

home page.

H

E

V

E

A users may instru
t the program not to pro
ess a part of the input (see se
tion 6). Instead, this

part is pro
essed into a bitmap �le and H

E

V

E

A outputs a link to the image �le. L

A

T

E

X sour
e is
hanged

into .png images by the imagen s
ript, whi
h basi
ally
alls, L

A

T

E

X, dvips, ghosts
ript

15

and the
onvert

ommand from the image pro
essing pa
kage ImageMagi
k

16

.

To bene�t from the full fun
tionality of H

E

V

E

A, you need all this software. However, H

E

V

E

A runs without

them, but then you will have to produ
e images by yourself.

C.4.2 Prin
iples

The details are given in the README �le from the distribution. Basi
ally, H

E

V

E

A should be given a library

dire
tory. The installation pro
edure stores the hevea.hva and base style �les in this dire
tory. There are

two
ompilation modes, the opt mode sele
ts the native
ode OCaml
ompiler o
amlopt, while the byte

mode sele
ts the byte
ode OCaml
ompiler o
aml
. In H

E

V

E

A
ase, o
amlopt produ
es
ode that is up to

three times as fast as the one produ
ed by o
aml
. Thus, default
ompilation mode is opt, however it may

be the
ase on some systems that only o
aml
 is available.

Note that, when installing H

E

V

E

A from the sour
e distribution, the hevea.sty �le is simply
opied to

H

E

V

E

A library dire
tory. It remains users responsibility to make it a

essible to L

A

T

E

X.

C.5 Other L

A

T

E

X to HTML translators

This short se
tion gives pointers to a few other translators. I performed not extensive testing and make no

thorough
omparison.

LaTeX2html LaTeX2html is a full system. It is written in perl and
alls L

A

T

E

X when in trouble. As

a
onsequen
e, LaTeX2html is powerful but it may fail on large do
uments, for speed and memory

reasons. More information on LaTeX2html
an be found at

http://www-dsed.llnl.gov/files/programs/unix/latex2html/

TTH The prin
iple behind TTH is the same as the one of H

E

V

E

A: write a fast translator as a lexer, use

symbol fonts and tables. However, there are di�eren
es, TTH a

epts both T

E

X and L

A

T

E

X sour
e,

TTH is written in C and the full sour
e is not available (only lex output is available). Additionally,

TTH insist on not using any kind of L

A

T

E

X generated information and will show proper
ross-referen
e

labels, even when no .aux �le is present. TTH output is a single do
ument, whereas H

A

C

H

A
an
ut

12

http://hevea.inria.fr/distri/LICENSE

13

http://pauilla
.inria.fr/

~

lang/li
en
e/v1/fddl.html

14

http://
aml.inria.fr/o
aml/

15

http://www.
s.wis
.edu/

~

ghost/index.html

16

http://www.imagemagi
k.org/

88

the output of H

E

V

E

A into several �les. (however there exists a
ommer
ial version of TTH that provides

this extra fun
tionality). TTH
an be found at

http://hut
hinson.belmont.ma.us/tth/.

htmlgen The htmlgen translator is spe
ialized for produ
ing the Caml manuals. This is H

E

V

E

A dire
t

an
estor and I owe mu
h to its author, X. Leroy. See [htmlgen℄ for a des
ription of htmlgen and a (bit

outdated) dis
ussion on L

A

T

E

X to HTML translation.

C.6 A
knowledgements

The following people
ontributed to H

E

V

E

A development:

� Philip A.Viton, maintains a Windows (win32) port of H

E

V

E

A.

� Tibault Suzanne authored the HTML 5 generator that now is the default generator of H

E

V

E

A.

� Abhishek Thakur implemented most of the new features of version 1.08, in
luding, translations of

symbols to Uni
ode entities, the babel pa
kage, and style sheet support.

� Christian Queinne
 wrote an extra lexer to translate
ode snippets produ
ed by its tool VideoC for

writing pedagogi
al do
uments on programming. The very prin
iple he introdu
ed for interfa
ing the

video
 lexer with H

E

V

E

A main lexer is now used extensively throughout H

E

V

E

A sour
e
ode.

� Andrew Seagar is at the origin of support for the Thai language. He is the author of the do
ument

�How to Use H

E

V

E

A with the Thai Chara
ter Set�.

� Pierre Boulet, by using H

E

V

E

A as a stage in his tool MlDo
 for do
umenting Obje
tive Caml sour
e

ode, for
ed me into debugging H

E

V

E

A implementation of the alltt environment.

� Ni
olas Tessaud implemented the -text and -info output modes (see se
tion 11).

� Georges Mariano asked for many feature, and argued a lot to have them implemented.

� Many users
ontributed by sending bug reports.

Referen
es

[L

A

T

E

X-bis℄ M. Gooseens, F. Mittelba
h, A. Samarin. The L

A

T

E

X Companion Addison-Websley, 1994.

[L

A

T

E

X℄ L. Lamport. A Do
ument Preparation System System, L

A

T

E

X, User's Guide and Referen
e

Manual. Addison-Websley, 1994.

[htmlgen℄ X. Leroy. Lessons learned from the translation of do
umentation from L

A

T

E

X to HTML.

ERCIM/W4G Int. Workshop on WWW Authoring and Integration Tools, 1995. Available

on the web at http://
ristal.inria.fr/~xleroy/w4g.html

[HTML-4.0℄ D. Ragget, A. Le Hors and I. Ja
obs. HTML 4.0 Referen
e Spe
i�
ation. Available on the web

at http://www.w3.org/TR/REC-html40, 1997.

[HTML-5a℄ W3C HTML Working groups. HTML5 A vo
abulary and asso
iated APIs for HTML and

XHTML http://dev.w3.org/html5/spe
/spe
.html, 2012.

[HTML-5b℄ HTML Living Standard http://www.whatwg.org/spe
s/web-apps/
urrent-work/

multipage/, 2012.

[CSS-2℄ Bert Bos, Tantek Çelik, Ian Hi
kson and Håkon Wium Lie. Cas
ading Style Sheets, Level 2

Revision 2 Spe
i�
ation. Available on the web at http://www.w3.org/TR/REC-CSS2/, 2011.

89

Index

##n, 68

- todir (imagen option), 46

-O (hevea option), 36, 75

-dv (hevea option), 10, 12

-e (hevea option), 61

-fix (hevea option), 21, 46, 51, 59, 84, 85

-gif (imagen option), 45

-o (hevea option), 81

-pdf (imagen option), 79

-textsymbols (hevea option), 11

-to
bis (ha
ha option), 27

-to
ter (ha
ha option), 27

-w (hevea option), 46

\�addimagenopt, 46

\�addstyle, 35

\�bodyargs, 49

\�
harset, 49

\�
learstyle, 34

\�
lose, 34, 37

\�def�
harset, 38, 72

\�font
olor, 34

\�fontsize, 34

\�footnotelevel, 30

\�get
olor, 38, 65

\�getprint, 34, 37

\�getstyle
olor, 40, 65

\�hevealibdir, 80

\�hr, 34

\�meta, 49

\�nostyle, 34, 37

\�open, 34, 37

\�print, 34, 37

\�print�u, 16, 34, 38

\�span, 34

\�style, 34

\�styleattr, 34

\bigl,\bigr et
., 55

\boxed, 55

\sqrt, 54

� � (spa
e), 49

after ma
ro, 10

in math, 11, 55

\add
ontentsline, 51

\ahref, 31

\ahreflo
, 30, 31

\ahrefurl, 31

amsmath pa
kage, 70

amssymb pa
kage, 70

\aname, 30, 31

argument

of
ommands, 47

of \input, 61

array pa
kage, 70

babel

languages, 74

babel pa
kage, 73

bg
olor environment, 37, 65

blo
k-level elements, 33

browser
on�guration, 87

al
 pa
kage, 71

hapterbib pa
kage, 73

leveref pa
kage, 79

olor

of ba
kground, see \�bodyargs

of se
tion headings, 69

\
olor, 63

olor pa
kage, 63

\
olorbox, 64

\
olorse
tions, 69

ommand

and arguments, 47

de�nition, 56, 66, 68

syntax, 47

omment

%BEGIN IMAGE, 20

%BEGIN LATEX, 20

%END IMAGE, 20

%END LATEX, 20

%HEVEA, 20

omment pa
kage, 72

\
utdef, 26, 27

\
utend, 26, 27

utflow environment, 29

utflow* environment, 30

\
uthere, 26, 27

\
utname, 28

uttingdepth
ounter, 26

\
uttingunit, 26, 27

deep
ut pa
kage, 28

\def, 66

display problems

for authors, 69

for viewers, 87

90

divstyle environment, 41

\else, 67

esponja
ommand, 83

external
ss (boolean register), 43

\external
sstrue, 43

fan
yse
tion pa
kage, 69

\f
olorbox, 64

\fi, 67

fig
ut pa
kage, 28

\flushdef, 30, 31

\footahref, 31

\footnoteflush, 30

\footurl, 32

\gdef, 67

\getenv
lass, 37, 39

GIF, 45, 84

\global, 67

graphi
s pa
kage, 63

graphi
x pa
kage, 63

ha
ha
ommand, 82

hanging pa
kage, 79

hevea boolean register, 20

hevea
ommand, 80

\heveadate, 68

\heveaimagedir, 46

\home, 31

\html
olor, 32

\htmlfoot, 48

\htmlhead, 48

htmlonly environment, 19

\htmlprefix, 29

hyperlinks, 31, 74

\if, 67

ifpdf pa
kage, 79

ifthen pa
kage, 57

image in
lusion

bitmap, 32

in Posts
ript, 22, 45, 63

output format, 45

\imageflush, 21, 45

imagen
ommand, 84

\imgsr
, 29, 31, 32, 37, 45

index pa
kage, 72

index
ols
ounter, 61

indexenv environment, 61

inferen
e rules, 76

\input, 61

inputen
 pa
kage, 71

\inputen
oding, 72

\label, 50, 59

latexonly environment, 19, 19

\let, 49, 67

listings pa
kage, 75

\load
ssfile, 43

longtable pa
kage, 76

\lstavoidwhitepre, 76

\mailto, 31

\marginpar, 57

math a

ents, 55

mathpartir pa
kage, 76

mathpartir pa
kage

derivation trees, 78

\inferrule, 77

mathpar environment, 76

multibib pa
kage, 73

multind pa
kage, 72

natbib pa
kage, 73

\new
ites, 73

\new
ommand, 56

\newif, 67

\newstyle, 39

\normalmarginpar, 57

\noto
number, 26

\oneurl, 32

PDF, 84

pd�atex, 84

PNG, 45, 84

\purple, 37

raw environment, 36

rawhtml environment, 19, 36, 49

\rawhtmlinput, 36

\rawinput, 36

rawtext environment, 36

\rawtextinput, 36

\ref, 59

\renew
ommand, 56

\reversemarginpar, 57

\setenv
lass, 37, 39

\setlinkstext, 29

spa
ing, see � �

sqrt, 54

style-sheets, 38

\divstyle, 41

\load
ssfile, 43

91

\newstyle, 39

and H

A

C

H

A, 25

styles for

lists, 42

mis
ellaneous obje
ts, 41

title, 40

supertabular pa
kage, 76

\tableof
ontents, 51

tabularx pa
kage, 70

tabulation, 10

text-level elements, 34

span, 34

\text
olor, 63

\textoverline, 54

\textsta
krel, 54

\textunderline, 54

Thai, 79

\title, 52

\to
number, 26

\today, 52, 68

toimage environment, 19, 19, 21

\toplinks, 29

underse
tion pa
kage, 69

uni
ode, 54

\url, 32, 74

url pa
kage, 74

\urldef, 74

\usepa
kage, 52

verbimage environment, 19, 19

verblatex environment, 19, 19

winfonts pa
kage, 69

xx
harset.exe s
ript, 38

xxdate.exe s
ript, 68

92

