The Parma Polyhedra Library
User’'s Manual
(version 0.6.1)

Roberto Bagnara
Patricia M. Hill
Enea Zaffanella
based on previous work also by
Elisa Ricci
and
Sara Bonini
Andrea Pescetti
Angela Stazzone
Tatiana Zolo

August 20, 2004

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”.

Tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.

§ zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.




CONTENTS 1

Copyright(©) 2001-2004 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published byrfeSoftware Foundatipwith

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitledGNU Free Documentation Licerise

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theee Software Foundatipeither version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section enti@dJ' GENERAL
PUBLIC LICENSE.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 General Information on the PPL 1
2 PPL Module Index 18
3 PPL Namespace Index 18
4 PPL Hierarchical Index 18
5 PPL Class Index 19
6 PPL Page Index 20
7 PPL Module Documentation 20
8 PPL Namespace Documentation 67
9 PPL Class Documentation 70
10 PPL Page Documentation 134

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in serimensional vector space. For instance, one of the key domains

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 Convex Polyhedra 2

the PPL supports is that of rational convex polyhedra (Se@mmvex Polyhedrgp. 2)). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itisuser friendly: you writex + 2xy + 5%z <= 7 when you mean it;

e itis fully dynamic: available virtual memory is the only limitation to the dimension of anything;

e it provides full support for the manipulation of convex polyhedra that are not topologically closed;
e itis written in standard C++: meant to be portable;

e itis exception-safe: never leaks resources or leaves invalid object fragments around;

e itis rather efficient: and we hope to make it even more so;

e itis thoroughly documented: perhaps not literate programming but close enough;

e it has interfaces to other programming languages: including C and a number of Prolog systems;

e itis free software: distributed under the terms of the GNU General Public License.

In addition to the basic domains, we also provide generic support for constructing new domains from
pre-existing domains. The following domains and domain constructors are provided by the PPL:

the domain of topologically closed, rational convex polyhedra;

o the domain of rational convex polyhedra that are not necessarily closed;

the powerset construction;

the powerset construction, instantiated for rational convex polyhedra.

In the following sections we describe these domains and domain constructors together with their represen-
tations and operations that are available to the PPL user.

In the final section of this chapter (Sectibising the Library (p.13)), we provide some additional advice
on the use of the library.

1.2 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more infor-
mation about the definitions and results stated hergBgH02b] (p. 15), [Fuk98](p. 16), [NW88](p.17),
and[Wil93] (p. 18).

Vectors, Matrices and Scalar Products

We denote byR" then-dimensional vector space on the field of real numBemsndowed with the standard
topology. The set of all non-negative reals is denotedby For each € {0,...,n — 1}, v; denotes the
i-th component of the (column) vector = (vy,...,v,_1)T € R™. We denote by the vector ofR",
calledthe origin, having all components equal to zero. A veatoe R™ can be also interpreted as a matrix

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 3

in R*»*! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denotad'by

Thescalar productof v, w € R", denotedv, w), is the real number
n—1
’UT’LU = Z Viw;.
=0

For anyS;, Ss C R™, theMinkowski's sunof S; andSs is: S1 + S2 = {v1 +v2 | v1 € S1,v2 € S22 }.
Affine Hyperplanes and Half-spaces

For each vectoa € R™ and scalab € R, wherea # 0, and for each relation symbst € {=, >, >}, the
linear constrainta, x) i b defines:

¢ an affine hyperplane if it is an equality constraint, i.exdie {=};
e atopologically closed affine half-space if it is a non-strict inequality constraint, ire. gf{>};

e atopologically open affine half-space if it is a strict inequality constraint, i.eq, & {>}.

Note that each hyperplarde, ) = b can be defined as the intersection of the two closed affine half-spaces
(a,xz) > band(—a,x) > —b. Also note that, whem = 0, the constraint0, x) > b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vectdR8pmace

the empty sep.

Convex Polyhedra

The setP C R™ is anot necessarily closed convex polyhed(NC polyhedronfor short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-sjikdces of
orn = 0 andP = @. The set of all NNC polyhedra on the vector sp&éeis denoted?,,.

The setP € P, is aclosed convex polyhedrdnlosed polyhedrorfor short) if and only if eithef® can be
expressed as the intersection of a finite number of closed affine half-spaRésoof, = 0 andP = .
The set of all closed polyhedra on the vector sgaées denotedCP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty setd the vector spadR™ are,
respectively, the smallest and the biggest elements oflbpotindCP,,. The vector spacR™ is also called
theuniversepolyhedron.

In theoretical termdP,, is alattice under set inclusion an@P,, is asub-latticeof P,,.
Bounded Polyhedra
An NNC polyhedrorP € P, is boundedf there exists a\ € R, such that

PC{xeR"|-A<z;<Aorj=0,....n—1}.

A bounded polyhedron is also calleghalytope

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequalityasatraint

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

By definition, each polyhedro® € P, is the set of solutions to eonstraint systeri.e., a finite number
of constraints. By using matrix notation, we have

,Pdéf{$€Rn|A1$=b1,A2$Zb2,A3$>b3},

where, for alli € {1,2,3}, A; € R™ x R™ andb; € R™:, andm;,ms, m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.
Combinations and Hulls

Let S = {x1,...,zx} C R” be a finite set of vectors. For all scalaxs,...,\; € R, the vector
v = ij:l Ajx; is said to be dinear combination of the vectors ifi. Such a combination is said to be

e apositive(or conic) combination, ifvj € {1,...,k}: A\; € Ry;
e anaffinecombination, ify J;_, A; = 1;

e aconvexcombination, if it is both positive and affine.

We denote byinear.hull(S) (resp.conic.hull(.S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors.in

Let P,C C R", whereP U C = S. We denote byinc.hull(P, C) the set of all convex combinations of
the vectors inS such that\; > 0 for somex; € P (informally, we say that there exists a vector/othat
plays an active role in the convex combination). Note thathull(P, C) = nnc.hull(P, P U C) so that,
if C CP,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed théinear.hull(S) is an affine space;onic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, angc.hull(P, C) is an NNC polytope.

Points, Closure Points, Rays and Lines
LetP € P, be an NNC polyhedron. Then

e avectorp € P is called apoint of P;
e avectorc € R" is called aclosure pointof P if it is a point of the topological closure G?;

e avectorr € R”, wherer # 0, is called aay (or direction of infinity) of P if P # @ andp+Ar € P,
for all pointsp € P and allA € R;

e avectorl € R" is called dine of P if both I and—I are rays ofP.

A point of an NNC polyhedror? € P, is avertexif and only if it cannot be expressed as a convex
combination of any other pair of distinct points# A ray » of a polyhedrorP is anextreme rayf and
only if it cannot be expressed as a positive combination of any otherpaindr. of rays of P, where

T # Ary, v # Arg andr; # Arp for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation

Each NNC polyhedrofP € P,, can be represented by finite sets of lidesaysR, points P and closure
pointsC of P. The 4-tupleg = (L, R, P, C) is said to be generator systerfor P, in the sense that

P = linear.hull(L) + conic.hull(R) 4+ nnc.hull(P, C),

where the symboH-’ denotes the Minkowski’s sum.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

WhenP € CP, is a closed polyhedron, then it can be represented by finite sets ofllineys R and
points P of P. In this case, the 3-tuplg = (L, R, P) is said to be generator systerfor P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).
Thus, in this case, every closure point@fs a point ofP.

For anyP € PP,, and generator systeéh= (L, R, P, C) for P, we haveP = @ ifand only if P = @. Also
P must contain all the vertices &f althoughP can be non-empty and have no vertices. In this cask,ias
necessarily non-empty, it must contain pointstofhat arenot vertices. For instance, the half-spaceRsf
corresponding to the single constraint- 0 can be represented by the generator sysiem(L, R, P, C)
such thatL = {(1,0)T}, R = {(0,1)T}, P = {(0,0)"}, andC' = @. Itis also worth noting that the
only ray in R is notan extreme ray oP.

Minimized Representations

A constraints syster@ for an NNC polyhedrorP € P, is said to beminimizedif no proper subset of is
a constraint system fop.

Similarly, a generator systeth = (L, R, P, C') for an NNC polyhedrorP < P, is said to beminimized
if there does not exist a generator systém= (L', R', P',C") # G for P such thatl’ C L, R’ C R,
P’ C PandC’ C C.

Double Description

Any NNC polyhedrorP can be described by using a constraint sysfera generator systed, or both

by means of thelouble description pair (DD pair}C, G). Thedouble description methad a collection

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedrBris necessarily closed, we can ignore the closure points
contained in its generator systedn= (L, R, P,C) (as every closure point is also a point) and represent

P by the triple(L, R, P). Similarly, P can be represented by a constraint system that has no strict in-
equalities. Thus a necessarily closed polyhedron can have a smaller representation than one that is not
necessarily closed. Moreover, operators restricted to work on closed polyhedra only can be implemented
more efficiently. For this reason the library provides two alternative “topological kinds” for a polyhedron,
NNCandC. We shall abuse terminology by referring to the topologcal kind of a polyhedrontapdt®gy

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:
e polyhedra are topologically-compatible if and only if they have the same topology;

¢ all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

e strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 6

Space Dimensions and Dimension-compatibility

The space dimensionf an NNC polyhedrorP € P, (resp., a C polyhedro® € CP,,) is the dimension
n € N of the corresponding vector spa&. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following spacdimension-compatibilityules:

e polyhedra are dimension-compatible if and only if they have the same space dimension;

e the constraint{a, x) < b wherexi € {=,>,>} anda,z € R™, is dimension-compatible with a
polyhedron having space dimensiotif and only if m < n;

¢ the generato € R™ is dimension-compatible with a polyhedron having space dimensiband
only if m < n;

e a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

Rational Polyhedra

An NNC polyhedron is calledational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.
Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedr®,, P, € P,,, theintersectionof P; andP,, defined as the set intersection
P1 NPy, is the biggest NNC polyhedron included in b@h andP,; similarly, theconvex polyhedral hull
(or poly-hull) of P; andP,, denoted byP; & Ps, is the smallest NNC polyhedron that includes bith
and?P,. The intersection and poly-hull of any pair of closed polyhedr@l, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the rhetignd the
binaryjoin operators on the latticés, andCP,,.

Convex Polyhedral Difference

For any pair of NNC polyhedr®,, P, € P, theconvex polyhedral differender poly-differencg of P,
and?P; is defined as the smallest convex polyhedron containing the set-theoretic differghcardP;.

In general, even thougR;, P, € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formallycdheatenatiorof the polyhedra

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

P € P, andQ € P, (taken in this order) is the polyhedréd € P,,,,, such that

lef
R (é {(an ooy Tn—1,Y05- - 7ym71)T S Rn+m (x07 R 71.77.71)’]:‘ € 7)7 (y07' . 'ay’rnfl)T S Q}

Another way of seeing it is as follows: first embed polyhedfomto a vector space of dimensiort m
and then add a suitably renamed-apart version of the constraints defining
Adding New Dimensions to the Vector Space

The library provides two operators for adding a numbef space dimensions to an NNC polyhedron
P € P,, therefore transforming it into a new NNC polyhedreh € P,,,;. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatoadd_dimensions_and_embed  embedghe polyhedrorP into the new vector space of
dimensioni + n and returns the polyhedro@ defined by all and only the constraints definiRg(the
variables corresponding to the added dimensions are unconstrained). For instance, when starting from a
polyhedronP C R? and adding a third dimension, the result will be the polyhedron

Q = { (1'07$1,$2)T S Rg ’ (.’Eo,xl)T cp }

In contrast, the operat@dd_dimensions_and_project projectsthe polyhedrorP into the new
vector space of dimensian+ n and returns the polyhedra® whose constraint system, besides the con-
straints definingP, will include additional constraints on the added dimensions. Namely, the corresponding
variables are all constrained to be equal to 0. For instance, when starting from a polyRedr@&? and
adding a third dimension, the result will be the polyhedron

Q= { (ZL’(),IEl,O)T € Rg | ($0,.’E1)T S P}

Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhBdeor®,,,
therefore transforming it into a new NNC polyhedr@ne P,,, wherem < n.

Given a set of variables, the operatemove_dimensions  removes all the space dimensions specified
by the variables in the set. For instance, lettidge P, be the singleton sef(3,1,0,2)"} C R*, then
after invoking this operator with the set of variables, 2, } the resulting polyhedron is

Q = {(3’ 2)T} g Rz'

Given a space dimension less than or equal to that of the polyhedron, the operatapve_higher_-
dimensions removes the dimensions having indices greater than or equal tBor instance, letting
P € P, defined as before, by invoking this operator with= 2 the resulting polyhedron will be

9={@B1"} CR%.

Mapping the Dimensions of the Vector Space

The operatomap_dimensions provided by the library maps the dimensions of the vector sfdce
according to a partial injective functign {0,...,n—1} »— Nsuch thato({(), e 7n,1}) ={0,...,m—
1} with m < n. Dimensions corresponding to indices that are not mappeddsg removed.

If m =0, i.e., ifthe functiorp is undefined everywhere, then the operator projects the argument polyhedron
P € P, onto the zero-dimension spalR&; otherwise the result i§ € P,, given by

Q déf { (Up71(0), .. .,Upfl(m_l))T ’ (Uo, R ,Un_l)T epP }

Expanding One Dimension of the Vector Space to Multiple Dimensions

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

The operatoexpand_dimension  provided by the library adds: new dimensions to a polyhedron
P € P,, withn > 0, so that dimensions, n + 1, ..., n + m — 1 of the resultQ are exact copies of the
i-th dimension ofP. More formally,

Jv,weP.u; =v;
Qdéf u e R AVj=n,n+1,....,n+m—1:1u; =w
AVE=0,....n—1:k#i = up =vr = wyg

This operation has been proposed@DMDRS04](p.16).

Folding Multiple Dimensions of the Vector Space into One Dimension

The operatofold_dimensions provided by the library, given a polyhedréhe P,,, with n > 0, folds
a set of dimensiond = {jo,...,Jjm-1}, Withm < nandj < n for eachj € J, into dimension < n,
wherei ¢ J. The result is given by

Q% [H Q4
d=0
where
deéf e JveP . uy = |
AVE=0,....n—1:k#i = up = v

and, ford =0, ...,m —1,

FveP . uy =vy,
AVE=0,....n—1:k#i = up =g ’

and, finally, fork =0, ..., n — 1,
K k—#{jed|k>j},

(# S denotes the cardinality of the finite &t
This operation has been proposed@DMDRS04](p.16).
Affine Images and Preimages

For each function mapping: R” — R™, we denote by (S) C R™ theimageunder¢ of the setS C R";
formally,

$(5) < {p(v) eR™ v e S}

Similarly, we denote by ~1(S’) C R" the preimageunderg of S’ C R™, that is the largest s&t C R”
such thatp(S) C S’; formally,

618 Y {veR" | (v) €5}

The function mapping : R — R™ is anaffine transformatiorif there exist a matrixd € R™ x R™ and
a vectorb € R™ such that, for alle € R™, we havep(x) = Az + b. If n = m, then the function is said
to bespace-dimension preserving

Both P,, andCP,, are closed under the application of any space-dimension preserving affine image and

preimage operators.
The library provides two operators, one computes an affine image and the other an affine preimage of a
n

polyhedronP € P, for a given variabler;, and linear expressiosxpr = Ziz’ol a;x; + b. This variable
and expression determine the affine transformatidhat is to be used by the operator. Thatdss the

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 9

transformation defined by the matrix and vector

1 0 0 0 0
0 1 0o - 0 0
A=]ao k-1 Qx  Gkt1 an-1 |, b=1|0b
0 0 1 0 0
0 o0 e 0 0 1 0

where theu; (resp.,b) occurs in the(k + 1)st row in A (resp., position irb). Thus¢ transforms any point
(z0,...,2,_1)T in the polyhedrorP to

n—1 T
(330, ey (Zi:() a;T; + b), N ,l’n,1) .

The affine image operator computes the affine image ahder¢. For instance, suppose the polyhedron
P to be transformed is the squareld generated by the set of poinf$0,0)™, (0,3)T, (3,0)T, (3,3)™}.
Then, for example if the considered variablecisand the linear expressian + 2z, + 4 (so thatk = 0,

ag = l,a1 = 2,b = 4), the affine image operator will translafe to the parallelogranP; generated
by the set of point{(4,0)™, (10,3)™, (7,0)T, (13,3)"} with height equal to the side of the square and
oblique sides parallel to the ling — 2z . If the considered variable is as before (ife= 0) but the linear
expression ig; (so thatay = 0,a; = 1,b = 0), then the resulting polyhedrd®, is the positive diagonal
of the square.

The affine preimage operator computes the affine preimagewfderg. For instance, suppose now that
we apply the affine preimage operator as given in the first example using variadha linear expression
o + 221 + 4 to the parallelograr®; ; then we get the original squafe back. If, on the other hand, we
apply the affine preimage operator as given in the second example using vagiaold linear expression
x1 to Po, then the resulting polyhedron is a line that corresponds ta tlaxes.

Observe that provided the coefficient of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Generalized Affine Images

The library provides another operator which is a generalization of the affine image operator. Given a
n—1 !

polyhedronP < PP, an affine expressiolhs = > ., a;x; + V', arelation symbak € {<, <, =,>, >},

n—1

and an affine expressiaths = ) " a;z; + b, the image ofP with respect to the transfer function
lhs < rhs is defined as

(UOa s 7vn—1)T S P7
(wo, ..., wp_1)T € R" (ie {0,....n—1}Na; =0 = wi:vi),
Z?;Ol alw; + b > Z?;Ol a;v; + b
Note that, wherlhs = 2, and € {=}, then the above operator is equivalent to the application of the

standard affine image @ with respect to the variable, and the affine expressiafis (hence the name
given to this operator).

Time-Elapse Operator

Thetime-elapseperator has been defined[HPR97](p.17). Actually, the time-elapse operator provided

by the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two
NNC polyhedraP, Q € P,, the time-elapse betweén and Q, denotedP ,~ Q, is the smallest NNC
polyhedron containing the set

{p+XeR" |peP,qc QNER, }.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 10

Note that, ifP, @ € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron an@ an arbitrary constraint system representfhgSuppose also that
¢ = ((a,x) > b) is a constraint with< € {=, >, >} and Q the set of points that satisfy The possible
relations betweef® andc are as follows.

e Pisdisjointfrom cif P N Q = @; that is, adding: to C gives us the empty polyhedron.

e P strictly intersects: if PN Q # @ andP N Q C P; that is, adding: to C gives us a non-empty
polyhedron strictly smaller thaR.

e Pisincludedin cif P C Q; thatis, adding: to C leavesP unchanged.

e P saturatesc if P C H, where is the hyperplane induced by constraini.e., the set of points
satisfying the equality constraiiit, ) = b; that is, adding the constraigt, ) = b to C leavesP
unchanged.

The polyhedronP subsumethe generatoy if adding g to any generator system representipgloes not
changeP.

Intervals, boxes and bounding boxes

An interval in R is a pair ofbounds calledlower andupper. Each bound can be either (&psed and
bounded (2) open and boundear (3) open and unboundedf the bound isbounded then it has a value
in R. An n-dimensionaboxB in R™ is a sequence of intervals inR.

The polyhedrorP represents a bo® in R™ if P is described by a constraint systemRf that con-
sists of one constraint for each bounded bound (lower and upper) in an interial iretting e; =
0,...,1,...,0)T be the vector ifR™ with 1 in thei'th position and zeroes in every other position; if
the lower bound of théth interval in B is bounded, the corresponding constraint is define@gas:) > b,
whereb is the value of the bound amdis > if itis a closed bound and if it is an open bound. Similarly, if
the upper bound of théth interval in B is bounded, the corresponding constraint is defing@ase) i b,
whereb is the value of the bound and is < if it is a closed bound ang if it is an open bound.

If every bound in the intervals defining a b#s either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boxof an NNC polyhedrorP is the smallest-dimensional box containing.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

Widening Operators

The library provides two widening operators for the domain of NNC polyhedra. The first one, that we call
H79-widening mainly follows the specification provided in the PhD thesis of N. Halbwfida& 9] (p. 16),

also described ifHPR97](p.17). There are a few differences between the H79-widening and the widening
described in the cited paper. In particular, the H79-widening of an NNC polyh&lroiP,, using the NNC
polyhedronQ € P,,:

¢ allows for equalities inP and @ (the original definition is restricted to inequalities);

e requires as a precondition thatC P.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.5 The Powerset Construction 11

The second widening operator, that we &HRZ03-wideningis an instance of the specification provided
in [BHRZ03a](p.15). This operator also requires as a precondition that P and it is guaranteed to
provide a result which is at least as precise as the H79-widening.

Both widening operators can be applied to polyhedra that are not topologically closed. The user is warned
that, in such a case, the results may not closely match the geometric intuition which is at the base of the
specification of the two widenings. The reason is that, in the current implementation, the widenings are not
directly applied to the NNC polyhedra, but rather to their internal representations. Implementation work is

in progress and future versions of the library may provide an even better integration of the two widenings

with the domain of NNC polyhedra.

Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parametek and only apply widenings starting from tleth iteration.

The library also supports an improved widening delay strategy, that wewed#ning with tokens
[BHRZ03a](p.15). A token is a sort of wildcard allowing for the replacement of the widening application

by the exact upper bound computation: the token is used (and thus consumed) only when the widening
would have resulted in an actual precision loss (as opposed fotkatial precision loss of the classical

delay strategy). Thus, all widening operators can be supplied with an optional argument, recording the
number of available tokens, which is decremented when tokens are used. The approximated fixpoint com-
putation will start with a fixed numbéyr of tokens, which will be used if and when needed. When there are

no tokens left, the widening is always applied.

Extrapolation Operators

Besides the two widening operators, the library also implements semdrapolationoperators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponlifinited extrapolation operator, which

can be used to implement theédening “up to” technique as described jHIPR97](p.17). Each limited
extrapolation operator takes a constraint system as an additional parameter and uses it to improve the
approximation yielded by the corresponding widening operator. Note that a convergence guarantee can
only be obtained by suitably restricting the set of constraints that can occur in this additional parameter.
For instance, ifHPR97](p.17) this set is fixed once and for all before starting the computation of the
upward iteration sequence.

The boundedextrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the simalladtng box(p.10) en-
closing the two argument polyhedra.

1.5 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to
one that can represent disjunctive information (by usirfinige number of disjucts). The construction
follows the approach described [[Bag98](p.15), also summarised ifBHZ04] (p.15) where there is an
account of generic widenings for the powerset domain (some of which are supported in the instantiation of
this construction by the domain of convex polyhedra and described in Sddt@Polyhedra Powerset
Domain(p.12)).

The Powerset Domain

The domain is built from a pre-existing base-level dom&invhich must include an entailment relation
‘', a meet operation®’, a top element1’ and bottom elemen('.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.6 Operations on the Powerset Construction 12

As the intended semantics of an element of the powerset of the base-level domain is that of disjunction,
elements of the powerset are alwagducedto semantically-equivalent non-redundant elements.

A setS € p(D) is callednon-redundantvith respect tot-’ if and only if 0 ¢ S andVd;,d; € S : dy F

dos = dy = dy. The set of finite non-redundant subsetgofwith respect tot-’) is denoted byp;, (D).

The reduction functiof?’, : p¢(D) — g, (D) mapping a finite set into its non-redundant counterpart is
defined, for eacls € p;(D), by

QO (S) Y s\ {deS|d=00r3d €S .dIFd }.

The restriction to the finite subsets reflects the fact that here disjunctions are implemented by explicit
collections of elements of the base-level abstract domain. As a consequence of this restriction, for any
S € p¢(D) such thatS # {0}, 2, (S) is the (finite) set of the maximal elements&f

Thefinite powerset domaiover a domainD is the set of all finite reduced sets bfand denoted by)s.
The domain includes an approximation orderirg’‘defined so thasS; +, S, if and only if

Vdi € §1 :3dy € Sy . dy F ds.

Therefore the top element{4} and the bottom element is the emptyset.

1.6 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain.

Meet and Upper Bound

Given the setss; andS; € D, themeetandupper boundperators provided by the library returns the set
Q5 ({d1 ® d2 | dy € S1,dy € S2}) and reduced set unidiX, (S; U S») respectively.

Adding a Disjunct

Given the powerset elemefite Dy and the base-level elemeht D, theadd_disjuncbperator provided
by the library returns the powerset eleméXyt(S U {d}).

Collapsing a Powerset Element

If the given powerset element is not empty, then¢hbapseoperator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.7 The Polyhedra Powerset Domain

The Polyhedra powerset doma(R,, ), provided by the PPL is the finite powerset domain (defined in
SectionThe Powerset Constructiorfp.11)) over the domain of NNC polyhedi, .

In addition to the operations described for the generic powerset domain in SE@genations on the
Powerset Constructior(p. 12), we provide some operations that are specific to this instantiation. Of these,
most correspond to the application of the equivalent operation on each of the NNC polyhedron that are in
the given set. Here we just describe those operations that are particular to the polyhedra powerset domain.

Geometric Comparisons

Given the setsS;,S; € (P,)», then we say thals; geometrically_coversS, if every point (in some
element) in a polyhedron ifi; is also a point in a polyhedron i . If S; geometrically_covers, andS,
geometrically_covers;, then we say that they ageometrically_equal

Pairwise Merge

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.8 Using the Library 13

Given the powersef € (P,):, then thepairwise_mergeperator takes pairs of distinct elementsSin
whose poly-hull is the same as their set-theoretical union and replaces them by their union. This re-
placement is done recursively so that, for each @ai@ of distinct polyhedra in the result set, we have
PUQAPUQ.

Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in
[BGP99](p.15). The operatoBGP99_extrapolation_assign is made parametric by allowing for

the specification of a base-level extrapolation operator different from the H79 widening (e.g., the BHRZ03
widening can be used). Note that, in the general case, this operator cannot guarantee the convergence of
the iteration sequence in a finite number of steps (for a counter-examp[8H£e4] (p. 15)).

Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the powerset domain
of convex polyhedra. In particular, this version of the library implements an instancea#fttifecate-based
widening frameworlproposed ifBHZ03b] (p. 15).

A finite convergence certificat®r an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain, together with the corresponding convergence certificate, the BHZ03 framework shows how it is
possible to lift this widening so as to work on the finite powerset domain, while still ensuring convergence
in a finite number of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operd&6tZ03_widening_assign  <Certificate,

Widening > which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the least upper bound is tried; second@R99 extrapolation opera-

tor (p.13) is tried, possibly applyingairwise merging(p. 12). If both heuristics fail to converge according

to the convergence certificate, then an attempt is made to apply the base-level widening to the poly-hulls of
the two arguments, possibly improving the result obtained by means pbtpalifference(p. 6) operator.

For more details and a justification of the overall approach[BE&03b](p.15) and[BHZ04](p.15).

The library provides two convergence certificates: whildRZ03_Certificate(p. 70) is compatible with

both the BHRZ03 and the H79 widenindg$79_Certificate(p.88) is only compatible with the latter. Note

that using different certificates will change the results obtained, even when using the same base-level widen-
ing operator. It is also worth stressing that it is up to the user to see that the widening operator is actually
compatible with a given convergence certificate. If such a requirement is not met, then an extrapolation
operator will be obtained.

1.8 Using the Library

A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavdezy aersion

and aneagerversion, the latter having the operator name ending withd_minimize . In principle,

only the lazy versions should be used. The eager versions were added to help a knowledgeble user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.8 Using the Library 14

0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation still makes sense is when the wellf&ihdivat principle

comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly
suspect that the result will become empty after a few of these intersections, then you may obtain a better
performance by calling the eager version of the intersection operator, since the minimization process also
enforces an emptyness check. Note anyway that the same effect can be obtained by interleaving the calls
of the lazy operator with explicit emptyness checks.

On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to — i.e., they should not — be used polymorphically
(since, e.g., most of the destructors are not declairtgl ). In practice, this restriction means that the
library types should not be used psblic base classe® be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by usordainmentinstead of inheritance; even

when there is the need to overridpmtected method, non-public inheritance should suffice.

On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

/I Find a reference to the first point of the non-empty polyhedron ‘ph’.
const GenSys& gs = ph.generators();

GenSys::const_iterator i = gs.begin();
for (GenSys::const_iterator gs_end = gs.end(); i != gs_end; ++i)
if (i->is_point())
break;

const Generator& p = *i;

/I Get the constraints of ‘ph’.

const ConSys& cs = ph.constraints();

/I Both the const iterator ‘i’ and the reference ‘p’

/I are no longer valid at this point.

cout << p.divisor() << endl; // Undefinded behavior!

++i; /I Undefinded behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iteratori and the referencp. Anyway, if really needed, it is always possible to take a copy of, instead of

a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

GenSys gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.9 Bibliography 15

1.9 Bibliography

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languagesScience of Computer Programmirg@p(1-2):119-155, 1998.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental résDisTransactions
on Programming Languages and Systefig4):747-789, 1999.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editdBtatic Analysis: Proceedings of the 10th International Sympagsium
volume 2694 ofLecture Notes in Computer Sciengages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[BHRZO03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Universita di Parma, Italy, 2003. Available
at http://lwww.cs.unipr.it/Publications/

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Universita di Parma,
Italy, 2002. Available ahttp://www.cs.unipr.it/Publications/

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editBr®ceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systempages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informatica.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, eBitocgedings of
the 3rd Workshop on Automated Verification of Critical Systgrages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
B. Steffen and G. Levi, editor®roceedings of the Fifth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2004)lume 2937 ot ecture Notes in Com-
puter Sciencegpages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Universita di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors§tatic Analysis: Proceedings of the 6th International Sympagsium
volume 1694 ofLecture Notes in Computer Sciengages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZH02a] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, ed&tat¢c Analysis: Pro-
ceedings of the 9th International Symposjwmlume 2477 olecture Notes in Computer Science
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZHO2b] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill.  Possibly not closed con-
vex polyhedra and the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matem-
atica, Universita di Parma, Italy, 2002. See alfBRZHO02c](p.16). Available at
http://www.cs.unipr.it/Publications/ .

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.9 Bibliography 16

[BRZHO02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report
“Quaderno 286”. Available ahttp://www.cs.unipr.it/Publications/ , 2002. See
[BRZHO02b](p.15).

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editBreceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programminge
631 ofLecture Notes in Computer Scienpages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. InConference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languagespages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equationd).S.S.R. Computational Mathematics and Mathematical Phy${d%151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities.U.S.S.R. Computational Mathematics and Mathematical Physics
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem.U.S.S.R. Computational Mathematics and Mathematical Phy&(i6%282-293, 1968.

[Dan63] G. B. Dantzig.Linear Programming and ExtensianBrinceton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and Y.
Manoussakis, editor§ombinatorics and Computer Science, 8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papkmne 1120 ot ecture Notes
in Computer Sciengg@ages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral =~ computation FAQ. Swiss Federal Insti-
tute  of  Technology, Lausanne and  Zurich, Switzerland, available  at
http://www.ifor.math.ethz.ch/ ~fukuda/fukuda.html , 1998.

[GDD"' 04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editdmxls and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 20[4ne 2988 oL ecture Notes in
Computer Sciencgages 512-529. Springer-Verlag, Berlin, 2004.

[GJO0] E. Gawrilow and M. Joswig.polymake : a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editorolytopes - Combinatorics and Computatiqrages 43-74.
Birkhauser, 2000.

[GJO1] E. Gawrilow and M. Joswigpolymake : an approach to modular software design in computa-
tional geometry. IrProceedings of the 17th Annual Symposium on Computational Geqpatygs
222-231, Medford, MA, USA, 2001. ACM.

[Hal79] N. Halbwachs.Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’'un ProgrammeThése de 3éme cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, €ditoputer
Aided Verification: Proceedings of the 5th International Conferenotume 697 ofLecture Notes
in Computer Scien¢@ages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

1.9 Bibliography 17

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editbisghrid Systems |lvolume 999 of
Lecture Notes in Computer Scienpages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy?OLyhedra INtegrated Environmenderimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interneB30, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, edit&tatic Analysis: Proceedings of the 1st Inter-
national Symposiumvolume 864 ofLecture Notes in Computer Sciengeages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysisFormal Methods in System Desigiil(2):157-185, 1997.

[HPWTO1] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Copagles 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B.  Jeannet. Convex  Polyhedra  Library release 1.1.3c  edition,
March  2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html

[Kuh56] H.W. Kuhn. Solvability and consistency for linear equations and inequaliiegrican Math-
ematical Monthly63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithublication internes35, IRISA, Campus de
Beaulieu, Rennes, France, 1992,

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/ ~loechner/polylib/ , March 1999. Declares itself to be
a continuation ofWil93] (p. 18).

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their verficesnational Journal
of Parallel Programming25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercompptuggs 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy.Array Indicgs Relational Semantic Analysis Using Rational Cosets and Trape-
zoids Thése d'informatique, Ecole Polytechnique, Palaiseau, France, December 1993.

[MRTT53] T.S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editor§ontributions to the Theory of Games - Volumellimber
28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NROQ] S. P. K. Nookala and T. Risset. A library for Z-polyhedral operatidhsblication internel330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G.L.Nemhauserand L. A. Wolselteger and Combinatorial OptimizatioiViley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sch99] A. Schrijver. Theory of Linear and Integer Programming@Viley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

2 PPL Module Index 18

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraintsAnnals of Mathematics and Atrtificial Intelligend®(3-4):315-343, 1993.

[SW70] J. Stoer and C. WitzgallConvexity and Optimization in Finite DimensionsSpringer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyed@ommentarii Mathematici Helvetici
7:290-306, 1935. English translation[Wey50](p. 18).

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, ed@ontributions to
the Theory of Games - Volumeiumber 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated[f¢en35](p. 18) by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRFblication interne785, Rennes,
France, 1993.

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

The Library 20
Library Defines 20
C Language Interface 21
Prolog Language Interface 49

3 PPL Namespace Index

3.1 PPL Namespace List
Here is a list of all documented namespaces with brief descriptions:
Parma_Polyhedra_Library (The entire library is confined to this namespace ) 67

Parma_Polyhedra_Library::10_Operators (All input/output operators are confined to this
namespace ) 69

std (The standard C++ namespace ) 70

4 PPL Hierarchical Index

4.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::BHRZ03_ Certificate 70

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

5 PPL Class Index 19
Parma_Polyhedra_Library::BHRZ03_Certificate::Compare 71
Parma_Polyhedra_Library::Constraint 74
Parma_Polyhedra_Library::Determinate< PH > 79
Parma_Polyhedra_Library::Generator 83
Parma_Polyhedra_Library::H79_Certificate 88
Parma_Polyhedra_Library::H79_Certificate::Compare 89
Parma_Polyhedra_Library::LinExpression 89
Parma_Polyhedra_Library::Poly_Con_Relation 95
Parma_Polyhedra_Library::Poly_Gen_Relation 96
Parma_Polyhedra_Library::Polyhedron 104

Parma_Polyhedra_Library::C_Polyhedron 71
Parma_Polyhedra_Library::NNC_Polyhedron 93
Parma_Polyhedra_Library::PowerSet< CS > 130

Parma_Polyhedra_Library::PowerSet< Parma_Polyhedra_Library::Determinate< PH > >130

Parma_Polyhedra_Library::Polyhedra_PowerSek PH > 97
Parma_Polyhedra_Library::Variable 132
Parma_Polyhedra_Library::Variable::Compare 133

5 PPL Class Index

5.1 PPL Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::BHRZ03_ Certificate (The convergence certificate for the

BHRZ03 widening operator ) 70
Parma_Polyhedra_Library::BHRZ03_Certificate::Compare (A total ordering on BHRZ03

certificates ) 71
Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron ) 71
Parma_Polyhedra_Library::Constraint (A linear equality or inequality ) 74

Parma_Polyhedra_Library::Determinate < PH > (Wraps a PPL class into a determinate con-
straint system interface ) 79

Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 83

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

6 PPL Page Index 20

Parma_Polyhedra_Library::H79_Certificate (A convergence certificate for the H79 widening

operator ) 88
Parma_Polyhedra_Library::H79_Certificate::Compare (A total ordering on H79 certificates

) 89
Parma_Polyhedra_Library::LinExpression (A linear expression ) 89

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedron 3

Parma_Polyhedra_Library::Poly_Con_Relation (The relation between a polyhedron and a
constraint) 95

Parma_Polyhedra_Library::Poly _Gen_Relation (The relation between a polyhedron and a
generator ) 96

Parma_Polyhedra_Library::Polyhedra_PowerSek PH > (The powerset construction instan-
tiated on PPL polyhedra) 97

Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra ) 104

Parma_Polyhedra_Library::PowerSet< CS > (The powerset construction on constraint sys-
tems) 130

Parma_Polyhedra_Library::Variable (A dimension of the space ) 132

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering
on variables) 133

6 PPL Page Index

6.1 PPL Related Pages

Here is a list of all related documentation pages:
GNU General Public License 134

GNU Free Documentation License 138

7 PPL Module Documentation

7.1 The Library

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

7.2 Library Defines
Defines

o #definePPL_VERSION_MAJOR 0

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 21

The major number of the PPL version.

o #definePPL_VERSION_MINOR 6
The minor number of the PPL version.

#definePPL_VERSION_REVISION 1
The revision number of the PPL version.

#definePPL_VERSION_BETA O

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

#definePPL_VERSION "0.6.1"
A string containing the PPL version.

7.2.1 Define Documentation

7.2.1.1 #define PPL_VERSION "0.6.1"
A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION K "." m if both PPL_VERSION_REVISIONT() and
PPL_VERSION_BETA i)are zeroM "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zerayl "." m "." r  if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zeroM "" m "" r "pre" b if neither PPL_VERSION_REVISION

nor PPL_VERSION_BETA are zero.

7.3 C Language Interface

Some details about the C Interfacép.40).

Version Checking

o #definePPL_VERSION_MAJOR 0
The major number of the PPL version.

#definePPL_VERSION_MINOR 6
The minor number of the PPL version.

#definePPL_VERSION_REVISION 1
The revision number of the PPL version.

o #definePPL_VERSION_BETA O

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

o #definePPL_VERSION "0.6.1"
A string containing the PPL version.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface

22

e int ppl_version_major (void)
Returns the major number of the PPL version.

e int ppl_version_minor (void)
Returns the minor number of the PPL version.

e int ppl_version_revision(void)
Returns the revision number of the PPL version.

e int ppl_version_beta(void)
Returns the beta number of the PPL version.

o int ppl_version (const chakxp)
Writes toma pointer to a character string containing the PPL version.

o int ppl_banner (const chak:xp)
Writes toma pointer to a character string containing the PPL banner.

Simple I/0O Functions

e typedef const chat ppl_io_variable_output_function_type (ppl_dimension_typevar)
The type of output functions used for printing variables.

e intppl_io_print_variable (ppl_dimension_typevar)
Pretty-printsx to stdout

e intppl_io_fprint_variable (FILE xstreamppl_dimension_typevar)
Pretty-printsvar to the given outpustream .

e int ppl_io_print_Coefficient (ppl_const_Coefficient_tx)
Printsx to stdout

o int ppl_io_fprint_Coefficient (FILE xstreamppl_const_Coefficient_tx)
Printsx to the given outpustream .

e int ppl_io_print_LinExpression (ppl_const_LinExpression_tx)
Prints x to stdout

e int ppl_io_fprint_LinExpression (FILE «streamppl_const_LinExpression_tx)
Printsx to the given outpustream .

e int ppl_io_print_Constraint (ppl_const_Constraint_tx)
Prints x to stdout

e int ppl_io_fprint_Constraint (FILE xstreamppl_const_Constraint_tx)
Printsx to the given outpustream .

e intppl_io_print_ConSys(ppl_const_ConSys_k)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 23

Prints x to stdout

e intppl_io_fprint_ConSys (FILE xstreamppl_const_ConSys_Kk)

Prints x to the given outpustream .

e int ppl_io_print_Generator (ppl_const_Generator_tx)
Prints x to stdout

e int ppl_io_fprint_Generator (FILE xstreamppl_const_Generator_tx)
Printsx to the given outpustream .

e int ppl_io_print_GenSys(ppl_const_GenSys_x)
Printsx to stdout

e int ppl_io_fprint_GenSys(FILE «streamppl_const_GenSys_X)
Printsx to the given outpustream .

e int ppl_io_print_Polyhedron (ppl_const_Polyhedron_tx)
Printsx to stdout

e int ppl_io_fprint_Polyhedron (FILE «xstreamppl_const_Polyhedron_tx)
Printsx to the given outpustream .

e intppl_io_set variable_output_function(ppl_io_variable_output_function_type*p)
Sets the output function to be used for printing variableg.to

e intppl_io_get_variable_output_function(ppl_io_variable_output_function_type xxpp)
Writes a pointer to the current variable output functiorpi.

Initialization, Error Handling and Auxiliary Functions

e int ppl_max_space_dimensiofppl_dimension_typexm)
Writes tomthe maximum space dimension this library can handle.

e int ppl_not_a_dimension(ppl_dimension_typexm)
Writes toma value that does not designate a valid dimension.

e int ppl_initialize (void)
Initializes the Parma Polyhedra Library. This function must be called before any other function.

e int ppl_finalize (void)
Finalizes the Parma Polyhedra Library. This function must be called after any other function.

e int ppl_set error_handler (void(xh)(enum ppl_enum_error_code code, const char
xdescription))

Installs the user-defined error handler pointedhy

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 24

Functions Related to Coefficients

e int ppl_new_Coefficient(ppl_Coefficient_txpc)
Creates a new coefficient with value 0 and writes an handle for the newly created coefficient at pddress

¢ int ppl_new_Coefficient_from_mpz_t(ppl_Coefficient_t«pc, mpz_t z)

Creates a new coefficient with the value given by the GMP integand writes an handle for the newly
created coefficient at addreps .

e int ppl_new_Coefficient_from_Coefficient{ppl_Coefficient_t«pc, ppl_const_Coefficient_tc)
Builds a coefficient that is a copy of writes an handle for the newly created coefficient at addpess

e int ppl_assign_Coefficient_from_mpz_{ppl_Coefficient_tdst, mpz_t z)
Assign tadst  the value given by the GMP integer

e int ppl_assign_Coefficient_from_Coefficient(ppl_Coefficient_t dst, ppl_const_Coefficient t
src)

Assigns a copy of the coefficiestt todst .

o int ppl_delete_Coefficienfppl_const_Coefficient_tc)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

e int ppl_Coefficient_to_mpz_t(ppl_const_Coefficient_tc, mpz_t z)
Sets the value of the GMP integeto the value of.

o int ppl_Coefficient_OK (ppl_const_Coefficient_tc)

Returns a positive integer d is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise i broken. Useful for debugging purposes.

Functions Related to Linear Expressions

e int ppl_new_LinExpression(ppl_LinExpression_t xple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes an
handle for the new linear expression at addrpks .

e int ppl_new_LinExpression_with_dimension(ppl_LinExpression_t *ple, ppl_dimension_type
d)
Creates a new linear expression corresponding to the constant @-dimensional space; writes an handle
for the new linear expression at addrase .

e int ppl_new_LinExpression_from_LinExpression (ppl_LinExpression_t «ple, ppl_const_Lin-
Expression_tle)

Builds a linear expression that is a copylef; writes an handle for the newly created linear expression at
addresgle .

e int ppl_new_LinExpression_from_Constraint (ppl_LinExpression_t «ple, ppl_const_-
Constraint_t c¢)

Builds a linear expression corresponding to constraintwrites an handle for the newly created linear
expression at addregde .

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 25

e int ppl_new_LinExpression_from_Generator (ppl_LinExpression_t xple, ppl_const_-
Generator_tg)

Builds a linear expression corresponding to generagorwrites an handle for the newly created linear
expression at addregse .

e int ppl_delete_LinExpression(ppl_const_LinExpression_tle)
Invalidates the handlie: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_LinExpression_from_LinExpression(ppl_LinExpression_t dst, ppl_const_Lin-
Expression_tsrc)
Assigns a copy of the linear express&m todst .

e int ppl_LinExpression_add_to_coefficient(ppl_LinExpression_t le, ppl_dimension_type var,
ppl_const_Coefficient_tn)

Addsn to the coefficient of variablear in the linear expressiote . The space dimension is set to be the
maximum betweevar + 1 and the old space dimension.

e int ppl_LinExpression_add_to_inhomogeneous (ppl_LinExpression_t le, ppl_const_-
Coefficient_tn)

Addsn to the inhomogeneous term of the linear expresion

e int ppl_add_LinExpression_to_LinExpression (ppl_LinExpression_t dst, ppl_const_Lin-
Expression_tsrc)
Adds the linear expressia@rc todst .

e int ppl_subtract_LinExpression_from_LinExpression (ppl_LinExpression_t dst, ppl_const_-
LinExpression_t src)

Subtracts the linear expressienc fromdst .

e int ppl_multiply_LinExpression_by_Coefficient (ppl_LinExpression_t le, ppl_const_-
Coefficient_tn)

Multiply the linear expressiodst byn.

e int ppl_LinExpression_space_dimensioifppl_const_LinExpression_tle)
Returns the space dimensionef.

e int ppl_LinExpression_coefficient (ppl_const_LinExpression_t le, ppl_dimension_type var,
ppl_Coefficient_tn)
Copies inton the coefficient of variablear in the linear expressiofe .

e intppl_LinExpression_inhomogeneous_ternfppl_const_LinExpression_tle, ppl_Coefficient t
n)

Copies inton the inhomogeneous term of linear expresdon

e int ppl_LinExpression_OK (ppl_const_LinExpression_tle)

Returns a positive integerlé is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noistif is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 26

Functions Related to Constraints

e int ppl_new_Constraint (ppl_Constraint_t *pc, ppl_const_LinExpression_tle, enumppl_-
enum_Constraint_Typerel)

Creates the new constrairie‘rel 0’ and writes an handle for it at addregg . The space dimension of
the new constraint is equal to the space dimenside of

e int ppl_new_Constraint_zero_dim_fals€ppl_Constraint_t xpc)

Creates the unsatisfiable (zero-dimension space) constaiatl and writes an handle for it at address
pc.

e int ppl_new_Constraint_zero_dim_positivity(ppl_Constraint_t «pc)

Creates the true (zero-dimension space) constr@irt 1, also known agositivity constraint An handle
for the newly created constraint is written at addrgss

e int ppl_new_Constraint_from_Constraint (ppl_Constraint_t xpc, ppl_const_Constraint_tc)
Builds a constraint that is a copy of, writes an handle for the newly created constraint at addmss

e int ppl_delete_Constraint(ppl_const_Constraint_tc)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Constraint_from_Constraint (ppl_Constraint_t dst, ppl_const_Constraint_t
src)

Assigns a copy of the constraisic to dst .

e int ppl_Constraint_space_dimensior{ppl_const_Constraint_tc)
Returns the space dimensioncof

e int ppl_Constraint_type (ppl_const_Constraint_tc)
Returns the type of constraiat

e int ppl_Constraint_coefficient (ppl_const_Constraint_t ¢, ppl _dimension_type var, ppl_-
Coefficient_tn)

Copies inton the coefficient of variablear in constraintc.

e int ppl_Constraint_inhomogeneous_termppl_const_Constraint_tc, ppl_Coefficient_tn)
Copies inton the inhomogeneous term of constraint

e int ppl_Constraint_OK (ppl_const_Constraint_tc)

Returns a positive integer d is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise i broken. Useful for debugging purposes.

Functions Related to Constraint Systems

e int ppl_new_ConSydqppl_ConSys_txpcs)
Builds an empty system of constraints and writes an handle to it at adgcsss

e intppl_new_ConSys_zero_dim_empt{ppl_ConSys_txpcs)
Builds a zero-dimensional, unsatisfiable constraint system and writes an handle to it at guitiess

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 27

e int ppl_new_ConSys_from_Constraint{ppl_ConSys_t«pcs,ppl_const_Constraint_tc)

Builds the singleton constraint system containing only a copy of constramtites an handle for the newly
created system at addregss .

e int ppl_new_ConSys_from_ConSy¢ppl_ConSys_t«pcs,ppl_const_ConSys_ts)

Builds a constraint system that is a copyosf; writes an handle for the newly created system at address
pcs .

e int ppl_delete_ConSygppl_const_ConSys_ts)
Invalidates the handles: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_ConSys_from_ConSy®pl_ConSys_tdst,ppl_const_ConSys_strc)
Assigns a copy of the constraint systerm to dst .

e int ppl_ConSys_space_dimensiofppl_const_ConSys_ts)
Returns the dimension of the vector space enclosing

e intppl_ConSys_clear(ppl_ConSys_tcs)
Removes all the constraints from the constraint systerand sets its space dimension to 0.

e int ppl_ConSys_insert_Constraint(ppl_ConSys_tcs,ppl_const_Constraint_tc)
Inserts a copy of the constraintinto cs ; the space dimension is increased, if necessary.

e int ppl_ConSys_OK(ppl_const_ConSys_t)

Returns a positive integer @s is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisesfis broken. Useful for debugging purposes.

e intppl_new_ConSys_const_iteratofppl_ConSys_const_iterator_t«pcit)
Builds a new ‘const iterator’ and writes an handle to it at addrpsi

e int  ppl_new_ConSys_const_iterator_from_ConSys_const_iterator (ppl_ConSys_const_-
iterator_t «pcit, ppl_const_ConSys_const_iterator_tit)

Builds a const iterator thatis a copy oit ; writes an handle for the newly created const iterator at address
pcit

e int ppl_delete_ConSys_const_iteratofppl_const_ConSys_const_iterator_tit)
Invalidates the handleit:  this makes sure the corresponding resources will eventually be released.

e int ppl_assign_ConSys_const_iterator_from_ConSys_const_iterator(ppl_ConSys_const_-
iterator_t dst,ppl_const_ConSys_const_iterator_src)

Assigns a copy of the const iteratenc to dst .

e int ppl_ConSys_beginppl_const_ ConSys_ts,ppl_ConSys_const_iterator_fit)
Assigns tait  a const iterator "pointing" to the beginning of the constraint systsm

e int ppl_ConSys_endppl_const_ConSys_ts,ppl_ConSys_const_iterator_tit)
Assigns tait a const iterator "pointing” past the end of the constraint systsm

e int ppl_ConSys_const_iterator_dereference(ppl_const_ConSys_const_iterator_tcit, ppl_-
const_Constraint_txpc)

Dereferenceit writing a const handle to the resulting constraint at addrpss

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 28

e int ppl_ConSys_const_iterator_incremen{ppl_ConSys_const_iterator_tcit)
Incrementcit  so that it "points” to the next constraint.

e int ppl_ConSys_const_iterator_equal_tesfppl_const_ConSys_const_iterator_x, ppl_const_-
ConSys_const_iterator_ty)

Returns a positive integer if the iterators corresponding tandy are equal; return 0 if they are different.

Functions Related to Generators

e int ppl_new_Generator (ppl_Generator_t xpg, ppl_const_LinExpression_tle, enumppl_-
enum_Generator_Typet, ppl_const_Coefficient_td)

Creates a new generator of directite and typet . If the generator to be created is a point or a closure
point, the divisord is applied tole . For other types of generatosis simply disregarded. An handle for
the new generator is written at addresg. The space dimension of the new generator is equal to the space
dimension ofe .

e int ppl_new_Generator_zero_dim_poin{ppl_Generator_t xpg)

Creates the point that is the origin of the zero-dimensional sfacaNrites an handle for the new generator
at addresgg.

e int ppl_new_Generator_zero_dim_closure_poinfppl_Generator_t xpg)

Creates, as a closure point, the point that is the origin of the zero-dimensional BSat#rites an handle
for the new generator at addrepg .

e int ppl_new_Generator_from_Generator(ppl_Generator_t «pg, ppl_const_Generator_tg)
Builds a generator that is a copy gf writes an handle for the newly created generator at addmss

e int ppl_delete_Generator(ppl_const_Generator_tg)
Invalidates the handlg: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Generator_from_Generatoppl_Generator_tdst,ppl_const_Generator_tsrc)
Assigns a copy of the generatenc to dst .

e int ppl_Generator_space_dimensioiippl_const_Generator_tg)
Returns the space dimensiongof

e int ppl_Generator_type (ppl_const_Generator_tg)
Returns the type of generatgr

e int ppl_Generator_coefficient (ppl_const_Generator_t g, ppl_dimension_type var, ppl_-
Coefficient_tn)

Copies inton the coefficient of variablear in generatorg.

e int ppl_Generator_divisor (ppl_const_Generator_tg, ppl_Coefficient_tn)
If g is a point or a closure point assigns its divisorro

e int ppl_Generator_OK (ppl_const_Generator_tg)

Returns a positive integer ¢f is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisg i broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 29

Functions Related to Generator Systems

e int ppl_new_GenSygppl_GenSys_t«pgs)
Builds an empty system of generators and writes an handle to it at adalysss

e int ppl_new_GenSys_from_Generatofppl_GenSys_t«pgs,ppl_const_Generator_tg)

Builds the singleton generator system containing only a copy of geneyataiites an handle for the newly
created system at addrepgs .

e int ppl_new_GenSys_from_GenSygpl_GenSys_t«pgs,ppl_const_GenSys_ys)
Builds a generator system that is a copygsf;, writes an handle for the newly created system at address
pgs.

e int ppl_delete_GenSygppl_const_GenSys_{s)
Invalidates the handlgs: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_GenSys_from_GenSyppl_GenSys_tdst,ppl_const_GenSys_src)
Assigns a copy of the generator systam to dst .

e int ppl_GenSys_space_dimensiofppl_const_GenSys_ugs)
Returns the dimension of the vector space encloging

e int ppl_GenSys_clealppl_GenSys_tgs)
Removes all the generators from the generator sygtemnd sets its space dimension to 0.

e int ppl_GenSys_insert_Generatofppl_GenSys_tgs,ppl_const_Generator_tg)
Inserts a copy of the generatgrinto gs ; the space dimension is increased, if necessary.

e int ppl_GenSys_OK(ppl_const_GenSys_t)

Returns a positive integer @fs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisgsf is broken. Useful for debugging purposes.

e int ppl_new_GenSys_const_iteratofppl_GenSys_const_iterator_tpgit)
Builds a new ‘const iterator’ and writes an handle to it at addrpg#t .

e int  ppl_new_GenSys_const_iterator_from_GenSys_const_iterator (ppl_GenSys_const_-
iterator_t xpgit, ppl_const_GenSys_const_iterator_git)

Builds a const iterator that is a copy git ; writes an handle for the newly created const iterator at address
pgit .

e int ppl_delete_GenSys_const_iteratofppl_const_GenSys_const_iterator_git)
Invalidates the handlgit:  this makes sure the corresponding resources will eventually be released.

e int ppl_assign_GenSys_const_iterator_from_GenSys_const_iterator(ppl_GenSys_const_-
iterator_t dst,ppl_const_GenSys_const_iterator_src)

Assigns a copy of the const iteratenc to dst .

e int ppl_GenSys_begin(ppl_const_GenSys_gs,ppl_GenSys_const_iterator_git)
Assigns tait a const iterator "pointing" to the beginning of the generator sysgsm

e int ppl_GenSys_endppl_const_GenSys_ys,ppl_GenSys_const_iterator_git)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 30

Assigns tajit a const iterator "pointing” past the end of the generator sysism

e int ppl_GenSys_const_iterator_dereferencg(ppl_const_GenSys_const_iterator_tgit, ppl_-
const_Generator_txpg)

Dereferenceait writing a const handle to the resulting generator at addnegs

e int ppl_GenSys_const_iterator_incremenfppl_GenSys_const_iterator_git)
Incremenfit  so that it "points” to the next generator.

e int ppl_GenSys_const_iterator_equal_tegfppl_const_GenSys_const_iterator_x, ppl_const_-
GenSys_const_iterator_ty)

Return a positive integer if the iterators correspondingtandy are equal; return 0 if they are different.

Functions Related to Polyhedra

e intppl_new_C_Polyhedron_from_dimensior(ppl_Polyhedron_t«pph,ppl_dimension_typed)
Builds an universe closed polyhedron of dimensl@nd writes an handle to it at addrepgh.

e intppl_new_NNC_Polyhedron_from_dimensior{ppl_Polyhedron_txpph,ppl_dimension_type
d)

Builds an universe NNC polyhedron of dimensiband writes an handle to it at addrepph.

e int  ppl_new_C_Polyhedron_empty_from_dimension (ppl_Polyhedron_t «pph, ppl_-
dimension_typed)

Builds an empty closed polyhedron of dimengicemd writes an handle to it at addrepph .

e int ppl_new_NNC_Polyhedron_empty from_dimension (ppl_Polyhedron_t xpph, ppl_-
dimension_typed)

Builds an empty NNC polyhedron of dimensiband writes an handle to it at addrepph.

e int ppl_new_C_Polyhedron_from_C _Polyhedron (ppl_Polyhedron_t xpph, ppl_const -
Polyhedron_tph)

Builds a closed polyhedron that is a copypif; writes an handle for the newly created polyhedron at
addresgpph.

e int ppl_new_C_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t «pph, ppl_const_-
Polyhedron_tph)

Builds a closed polyhedron that is a copy of of the NNC polyhegionwrites an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_NNC_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t «pph, ppl_const_-
Polyhedron_tph)

Builds an NNC polyhedron that is a copy of of the closed polyheghgnwrites an handle for the newly
created polyhedron at addrepph.

e int ppl_new_NNC_Polyhedron_from_NNC_Polyhedron(ppl_Polyhedron_t xpph, ppl_const_-
Polyhedron_tph)

Builds an NNC polyhedron that is a copy joifi; writes an handle for the newly created polyhedron at
addresph.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 31

e int ppl_new_C_Polyhedron_from_ConSy¢ppl_Polyhedron_txpph,ppl_const_ConSys_ts)

Builds a new closed polyhedron from the system of constreénesd writes an handle for the newly created
polyhedron at addregsph .

e int ppl_new_C_Polyhedron_recycle_ConSypl_Polyhedron_t«pph,ppl_ConSys_tcs)

Builds a new closed polyhedron recycling the system of constresntnd writes an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_NNC_Polyhedron_from_ConSys(ppl_Polyhedron_t «pph, ppl_const_ConSys_t
cs)

Builds a new NNC polyhedron from the system of constramtand writes an handle for the newly created
polyhedron at addressph.

e int ppl_new_NNC_Polyhedron_recycle ConSy®pl_Polyhedron_txpph,ppl_ConSys_tcs)

Builds a new NNC polyhedron recycling the system of constragtand writes an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_C_Polyhedron_from_GenSy$ppl_Polyhedron_txpph,ppl_const_GenSys_gs)

Builds a new closed polyhedron from the system of genergsosend writes an handle for the newly created
polyhedron at addregsph .

e intppl_new_C_Polyhedron_recycle_GenSy®pl_Polyhedron_tx«pph,ppl_GenSys_tgs)

Builds a new closed polyhedron recycling the system of genergsoend writes an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_NNC_Polyhedron_from_GenSyqppl_Polyhedron_t «pph, ppl_const_GenSys_t
9s)
Builds a new NNC polyhedron from the system of genera®rand writes an handle for the newly created
polyhedron at addregsph.

e int ppl_new_NNC_Polyhedron_recycle_GenSypl_Polyhedron_t«pph,ppl_GenSys_tgs)

Builds a new NNC polyhedron recycling the system of genergwrand writes an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_C_Polyhedron_from_bounding_box(ppl_Polyhedron_t «pph, ppl_dimension_-
type(xspace_dimension)(void), iri§_empty)(void), int¢get_lower_boundjpl_dimension_type
k, int closed,ppl_Coefficient_tn, ppl_Coefficient_td), int(xget_upper_bound)¢l_dimension_-
type k, int closed ppl_Coefficient_tn, ppl_Coefficient_td))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepgph.

e int ppl_new_NNC_Polyhedron_from_bounding_box (ppl_Polyhedron_t xpph, ppl_-
dimension_typdxspace_dimension)(void), iri6_empty)(void), int¢get lower boundjpl -
dimension_type k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d), int(xget upper_-
bound)ppl_dimension_typek, int closed ppl_Coefficient_tn, ppl_Coefficient_td))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepph.

e int ppl_assign_C_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t dst, ppl_const_-
Polyhedron_tsrc)

Assigns a copy of the closed polyhedssa to the closed polyhedroast .

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 32

e int ppl_assign_NNC_Polyhedron_from_NNC_Polyhedrorfppl_Polyhedron_t dst, ppl_const_-
Polyhedron_tsrc)

Assigns a copy of the NNC polyhedine to the NNC polyhedrodst .

e int ppl_delete_Polyhedron(ppl_const_Polyhedron_tph)
Invalidates the handlph: this makes sure the corresponding resources will eventually be released.

e int ppl_Polyhedron_space_dimensiofppl_const_Polyhedron_tph)
Returns the dimension of the vector space enclgsing

e int ppl_Polyhedron_constraints(ppl_const_Polyhedron_tph, ppl_const_ConSys_#&pcs)
Writes a const handle to the constraint system defining the polyhetiram addresspcs .

e int ppl_Polyhedron_minimized_constraints(ppl_const_Polyhedron_tph, ppl_const_ConSys _t
*PCS)
Writes a const handle to the minimized constraint system defining the polyh@dedraddresspcs .

e int ppl_Polyhedron_generatorgppl_const_Polyhedron_tph, ppl_const_GenSys_&pgs)
Writes a const handle to the generator system defining the polyhptrahaddresggs .

e int ppl_Polyhedron_minimized_generators(ppl_const_Polyhedron_tph, ppl_const_GenSys t
*Ppgs)
Writes a const handle to the minimized generator system defining the polypddatraddrespgs .

e int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_t ph, ppl_const_-
Constraint_t ¢)

Checks the relation between the polyhedpbnwith the constraint.

e int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_t ph, ppl_const_-
Generator_t Q)

Checks the relation between the polyhedobnwith the generatog.

e int ppl_Polyhedron_shrink_bounding_box(ppl_const_Polyhedron_tph, unsigned int complex-
ity, void(xset_empty)(void), void{raise_lower_boundppl_dimension_typek, int closed,ppl_-
const_Coefficient_tn, ppl_const_Coefficient_td), void(xlower_upper_boundppl_dimension_-
type k, int closed ppl_const_Coefficient_tn, ppl_const_Coefficient_td))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters.

e int ppl_Polyhedron_is_empty(ppl_const_Polyhedron_tph)
Returns a positive integer jifh is empty; returns 0 iph is not empty.

e int ppl_Polyhedron_is_universgppl_const_Polyhedron_tph)
Returns a positive integer ifh is a universe polyhedron; returns 0 if it is not.

e int ppl_Polyhedron_is_boundedppl_const_Polyhedron_tph)
Returns a positive integer fifh is bounded; returns O ibh is unbounded.

e int ppl_Polyhedron_bounds_from_above (ppl_const Polyhedron_t ph, ppl_const Lin-
Expression_tle)

Returns a positive integerlié is bounded from above ijoh; returns 0 otherwise.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 33

e int ppl_Polyhedron_bounds_from_below (ppl_const_Polyhedron_t ph, ppl_const_Lin-
Expression_tle)

Returns a positive integerlié is bounded from below iph; returns O otherwise.

e int ppl_Polyhedron_maximize (ppl_const_Polyhedron_t ph, ppl_const_LinExpression_t le,
ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int«pmaximum, ppl_const_Generator_t
xppoint)

Returns a positive integer fh is not empty ande is bounded from above iph, in which case the
supremum value and a point whéee reaches it are computed.

e int ppl_Polyhedron_minimize (ppl_const Polyhedron_t ph, ppl_const_LinExpression_t le,
ppl_Coefficient_t inf_n, ppl_Coefficient t inf_d, int xpminimum, ppl_const _Generator t
xppoint)

Returns a positive integerih is not empty ante is bounded from above ph, in which case the infimum
value and a point wherke reaches it are computed.

e int ppl_Polyhedron_is_topologically closedppl_const_Polyhedron_tph)
Returns a positive integer fifh is topologically closed; returns 0 gh is not topologically closed.

e int ppl_Polyhedron_contains_Polyhedror{ppl_const_Polyhedron_tx, ppl_const_Polyhedron_t
y)
Returns a positive integer ¥ contains or is equal tg; returns O if it does not.

e int ppl_Polyhedron_strictly contains_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Returns a positive integer X strictly containsy; returns 0 if it does not.

e int ppl_Polyhedron_is_disjoint_from_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Returns a positive integerxf andy are disjoint; returns 0 if they are not.

e int ppl_Polyhedron_equals_Polyhedron(ppl_const_Polyhedron_tx, ppl_const_Polyhedron_t
y)
Returns a positive integer¥f andy are the same polyhedron; return 0 if they are different.

e int ppl_Polyhedron_OK (ppl_const_Polyhedron_tph)

Returns a positive integer|ih is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noiselif is broken. Useful for debugging purposes.

e int ppl_Polyhedron_add_constraint(ppl_Polyhedron_tph, ppl_const_Constraint_tc)
Adds a copy of the constraintto the system of constraints joifi.

e int ppl_Polyhedron_add_constraint_and_minimize (ppl_Polyhedron_t ph, ppl_const_-
Constraint_t ¢)

Adds a copy of the constraintto the system of constraintsoifi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful repliris guaranteed to be minimized.

e int ppl_Polyhedron_add_generator(ppl_Polyhedron_tph, ppl_const_Generator_tg)
Adds a copy of the generatgrto the system of generatorsati.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 34

e int ppl_Polyhedron_add_generator_and_minimize (ppl_Polyhedron_t ph, ppl_const_ -
Generator_tQ)

Adds a copy of the generatgrto the system of generatorsyi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgpliris guaranteed to be minimized.

e int ppl_Polyhedron_add_constraintyppl_Polyhedron_tph, ppl_const_ConSys_ts)
Adds a copy of the system of constraicgsto the system of constraints joffi.

e int ppl_Polyhedron_add_constraints_and_minimize(ppl_Polyhedron_t ph, ppl_const_Con-
Sys_tcs)

Adds a copy of the system of constraicgsto the system of constraintsjoli. Returns a positive integer if
the resulting polyhedron is non-empty; returns O if it is empty. Upon successful rptuis,guaranteed to
be minimized.

¢ int ppl_Polyhedron_add_generatorgppl_Polyhedron_tph, ppl_const_GenSys_us)
Adds a copy of the system of generaigssto the system of generatorsif.

e int ppl_Polyhedron_add_generators_and_minimize(ppl_Polyhedron_t ph, ppl_const_Gen-
Sys_tgs)

Adds a copy of the system of generassto the system of generatorspifi. Returns a positive integer if
the resulting polyhedron is non-empty; returns O if it is empty. Upon successful rptuis,guaranteed to
be minimized.

e int ppl_Polyhedron_add_recycled_constraint§ppl_Polyhedron_tph, ppl_ConSys_tcs)
Adds the system of constraims to the system of constraints oifi.

e int ppl_Polyhedron_add_recycled_constraints_and_minimiz&pl_Polyhedron_tph,ppl_Con-
Sys_tcs)
Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful retiaris, guaranteed to be
minimized.
e int ppl_Polyhedron_add_recycled_generator§opl_Polyhedron_tph, ppl_GenSys_tgs)
Adds the system of generat@s to the system of generatorsif.

e int ppl_Polyhedron_add_recycled_generators_and_minimiz@pl_Polyhedron_tph, ppl_Gen-
Sys_tgs)

Adds the system of generatgs to the system of generatorspi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgpliris guaranteed to be minimized.

e int ppl_Polyhedron_intersection_assigrippl_Polyhedron_tx, ppl_const_Polyhedron_ty)
Intersectsx with polyhedrory and assigns the resutt

e int ppl_Polyhedron_intersection_assign_and_minimize(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Intersect with polyhedrory and assigns the result Returns a positive integer if the resulting polyhedron
is non-empty; returns 0 if it is empty. Upon successful retyris,also guaranteed to be minimized.

o int ppl_Polyhedron_poly_hull_assignppl_Polyhedron_tx, ppl_const_Polyhedron_ty)
Assigns to the poly-hull ofx andy.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 35

e int ppl_Polyhedron_poly hull_assign_and_minimize (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Assigns tax the poly-hull ofx andy. Returns a positive integer if the resulting polyhedron is non-empty;
returns 0 if it is empty. Upon successful retuxnis also guaranteed to be minimized.

e int ppl_Polyhedron_poly_difference_assigiippl_Polyhedron_tx, ppl_const_Polyhedron_ty)
Assigns tx thepoly-difference(p.6) of x andy.

e int ppl_Polyhedron_affine_image(ppl_Polyhedron_t ph, ppl_dimension_typevar, ppl_const_-
LinExpression_tle, ppl_const_Coefficient_td)
Transforms the polyhedrgoh, assigning an affine expression to the specified variable.

e int ppl_Polyhedron_affine_preimage(ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_-
const_LinExpression_tle, ppl_const_Coefficient_td)
Transforms the polyhedrgrh, substituting an affine expression to the specified variable.

e int ppl_Polyhedron_generalized_affine_image(ppl_Polyhedron_t ph, ppl_dimension_type
var, enumppl_enum_Constraint_Type relsym, ppl_const_LinExpression_t le, ppl_const_-
Coefficient_td)

Assigns toph the image ofph with respect to thegeneralized affine transfer function(p.9) var’
i wherex is the relation symbol encoded bsisym .

e int ppl_Polyhedron_generalized_affine_image_lhs_rhgpl_Polyhedron_t ph, ppl_const_Lin-
Expression_tlhs, enumppl_enum_Constraint_Typerelsym,ppl_const_LinExpression_trhs)

Assigns tgh the image oph with respect to thgeneralized affine transfer functior(p.9) lhs’ > rhs,
wherex is the relation symbol encoded bgisym .

e int ppl_Polyhedron_time_elapse_assigippl_Polyhedron_tx, ppl_const_Polyhedron_ty)
Assigns tx thetime-elapsép.9) between the polyhedraandy.

¢ int ppl_Polyhedron_BHRZ03_widening_assign_with_tokengpl_Polyhedron_tx, ppl_const_-
Polyhedron_ty, unsignedktp)
If the polyhedrony is contained in (or equal to) the polyhedran, assigns tox the BHRZO3-
widening(p.10) of x andy. If tp is not the null pointer, th&videning with tokens(p.11) delay technique
is applied with«tp available tokens.

e int ppl_Polyhedron_BHRZ03_widening_assigrippl_Polyhedron_tx, ppl_const_Polyhedron_t

y)
If the polyhedrony is contained in (or equal to) the polyhedran, assigns tox the BHRZO3-
widening(p.10) of x andy.

e int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_tokens(ppl_Polyhedron_t
X, ppl_const_Polyhedron_ty, ppl_const_ConSys_ts, unsignedtp)

If the polyhedrony is contained in (or equal to) the polyhedran, assigns tox the BHRZO3-
widening(p.10) of x andy intersected with the constraints os that are satisfied by all the points of
x. If tp is not the null pointer, thevidening with tokens(p.11) delay technique is applied witktp
available tokens.

e int ppl_Polyhedron_limited BHRZ03_extrapolation_assignppl_Polyhedron_tx, ppl_const_-
Polyhedron_ty, ppl_const_ConSys_ts)
If the polyhedrony is contained in (or equal to) the polyhedran, assigns tox the BHRZO3-

widening(p.10) of x andy intersected with the constraints s that are satisfied by all the points of
X.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 36

e int ppl_Polyhedron_bounded_BHRZO03_extrapolation_assign_with_token@@pl_Polyhedron_t
X, ppl_const_Polyhedron_ty, ppl_const_ConSys_ts, unsignedtp)

If the polyhedrony is contained in (or equal to) the polyhedran, assigns tox the BHRZO3-
widening(p.10) of x andy intersected with the constraints os that are satisfied by all the points of
X, further intersected with all the constraints of the foitme < r and+v < r, withr € Q, that are satis-
fied by all the points of. If tp is not the null pointer, thavidening with tokens(p.11) delay technique is
applied with«tp available tokens.

e int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(ppl_Polyhedron_t x, ppl_-
const_Polyhedron_ty, ppl_const_ConSys_ts)
If the polyhedrony is contained in (or equal to) the polyhedran, assigns tox the BHRZO03-
widening(p.10) of x andy intersected with the constraints s that are satisfied by all the points of
x, further intersected with all the constraints of the forw < r and+v < r, withr € Q, that are
satisfied by all the points of.

e int ppl_Polyhedron_H79 widening_assign_with_tokens(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, unsignedktp)
If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-widening(p. 10) of

x andy. If tp is not the null pointer, thavidening with tokens(p. 11) delay technique is applied witttp
available tokens.

e int ppl_Polyhedron_H79_ widening_assigiippl_Polyhedron_tx, ppl_const_Polyhedron_ty)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-widening(p. 10) of
x andy.

e int ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokens (ppl_Polyhedron_t x,
ppl_const_Polyhedron_ty, ppl_const_ConSys_ts, unsignedtp)
If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-widening(p. 10) of
x andy intersected with the constraints @3 that are satisfied by all the points ®f If tp is not the null
pointer, thewidening with tokens(p.11) delay technique is applied witiip available tokens.

e int ppl_Polyhedron_limited_H79_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, ppl_const_ConSys_ts)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-widening(p. 10) of
x andy intersected with the constraints @3 that are satisfied by all the points »f

e int ppl_Polyhedron_bounded_H79 extrapolation_assign_with_tokengppl_Polyhedron_t x,
ppl_const_Polyhedron_ty, ppl_const_ConSys_ts, unsignedtp)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-widening(p. 10) of
x andy intersected with the constraints s that are satisfied by all the points &f further intersected
with all the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points xf
If tp is not the null pointer, thevidening with tokens(p. 11) delay technique is applied witlip available
tokens.

e int ppl_Polyhedron_bounded_H79 extrapolation_assigrn(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, ppl_const_ConSys_ts)
If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-widening(p. 10) of
x andy intersected with the constraints os that are satisfied by all the points &f further intersected

with all the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points of
X.

e int ppl_Polyhedron_topological_closure_assig(ppl_Polyhedron_tph)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 37

Assigns tgh its topological closure.

e int ppl_Polyhedron_add_dimensions_and_embefppl_Polyhedron_t ph, ppl_dimension_type
d)
Addsd new dimensions to the space enclosing the polyheglnoand toph itself.

e int ppl_Polyhedron_add_dimensions_and_projectppl_Polyhedron_tph, ppl_dimension_type
d)

Addsd new dimensions to the space enclosing the polyheginon

e int ppl_Polyhedron_concatenate_assigfppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

Seeing a polyhedron as a set of tuples (its points), assignsat the tuples that can be obtained by
concatenating, in the order given, a tuplexofvith a tuple ofy.

e int ppl_Polyhedron_remove_dimensions(ppl_Polyhedron_t ph, ppl_dimension_type ds[],
size_tn)

Removes fromh and its containing space the dimensions that are specified imfjsisitions of the array
ds. The presence of duplicatesds is a waste but an innocuous one.

¢ int ppl_Polyhedron_remove_higher_dimension§pl_Polyhedron_tph, ppl_dimension_typed)

Removes the higher dimensions frpim and its enclosing space so that, upon successful return, the new
space dimension @.

e int ppl_Polyhedron_map_dimensions(ppl_Polyhedron_t ph, ppl_dimension_type mapsl],
size_tn)

Remaps the dimensions of the vector space according#otal function (p.7). This function is specified
by means of thenaps array, which has entries.

o int ppl_Polyhedron_expand_dimension(ppl_Polyhedron_t ph, ppl_dimension_typed, ppl_-
dimension_typem)

Expandg(p. 7) the d-th dimension oph to mnew dimensions.

e int ppl_Polyhedron_fold_dimensiongppl_Polyhedron_tph, ppl_dimension_typeds[], size_tn,
ppl_dimension_typed)

Modifiesph byfolding(p.8) the dimensions contained in the firspositions of the arragls into dimension
d. The presence of duplicatesds is a waste but an innocuous one.

Typedefs

o typedef size_ppl_dimension_type
An unsigned integral type for representing space dimensions.

o typedef ppl_Coefficient_tagppl_Coefficient_t
Opaque pointer.

o typedef ppl_Coefficient_tag consppl_const_Coefficient t
Opaque pointer to const object.

o typedef ppl_LinExpression_tagppl_LinExpression_t
Opaque pointer.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface

38

o typedef ppl_LinExpression_tag consppl_const_LinExpression_t
Opaque pointer to const object.

o typedef ppl_Constraint_tagppl_Constraint_t
Opaque pointer.

o typedef ppl_Constraint_tag consppl_const_Constraint_t
Opaque pointer to const object.

o typedef ppl_ConSys_tagppl_ConSys t
Opaque pointer.

o typedef ppl_ConSys_tag consppl_const_ConSys _t
Opaque pointer to const object.

o typedef ppl_ConSys_const_iterator_tagpl_ConSys_const_iterator_t
Opaque pointer.

o typedef ppl_ConSys_const_iterator_tag cangpl_const_ConSys_const_iterator_t
Opaque pointer to const object.

o typedef ppl_Generator_tagppl_Generator_t
Opaque pointer.

o typedef ppl_Generator_tag corgppl_const_Generator_t
Opaque pointer to const object.

o typedef ppl_GenSys_tagppl_GenSys_t
Opaque pointer.

o typedef ppl_GenSys_tag consppl_const_GenSys _t
Opaque pointer to const object.

o typedef ppl_GenSys_const_iterator_tagpl GenSys_const_iterator_t
Opaque pointer.

o typedef ppl_GenSys_const_iterator_tag cengpl_const_GenSys_const_iterator_t
Opaque pointer to const object.

o typedef ppl_Polyhedron_tagppl_Polyhedron_t
Opaque pointer.

o typedef ppl_Polyhedron_tag consppl_const_Polyhedron_t
Opaque pointer to const object.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 39

Enumerations

e enumppl_enum_error_code{

PPL_ERROR_OUT_OF_MEMORY, PPL_ERROR_INVALID_ARGUMENT , PPL_-
ERROR_LENGTH_ERROR, PPL_ARITHMETIC_OVERFLOW

PPL_STDIO_ERROR, PPL_ERROR_INTERNAL_ERROR, PPL_ERROR_UNKNOWN_-
STANDARD_EXCEPTION, PPL_ERROR_UNEXPECTED_ERROR}

Defines the error codes that any function may return.

e enumppl_enum_Constraint_Type{

PPL_CONSTRAINT _TYPE_LESS THAN, PPL_CONSTRAINT TYPE_LESS_THAN -
OR_EQUAL,  PPL_CONSTRAINT_TYPE_EQUAL,  PPL_CONSTRAINT TYPE._-
GREATER_THAN_OR_EQUAL ,

PPL_CONSTRAINT_TYPE_GREATER_THAN }
Describes the relations represented by a constraint.

e enumppl_enum_Generator_Type{ PPL_GENERATOR_TYPE_LINE ,PPL_GENERATOR_-
TYPE_RAY, PPL_GENERATOR_TYPE_POINT, PPL_GENERATOR_TYPE_CLOSURE_-
POINT }

Describes the different kinds of generators.

Variables

e unsigned inPPL_COMPLEXITY_CLASS POLYNOMIAL
Code of the worst-case polynomial complexity class.

e unsigned inPPL_COMPLEXITY_CLASS_SIMPLEX
Code of the worst-case exponential but typically polynomial complexity class.

e unsigned inPPL_COMPLEXITY_CLASS_ANY
Code of the universal complexity class.

e unsigned inPPL_POLY_CON_RELATION_IS_DISJOINT
Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

e unsigned inPPL_POLY_CON_RELATION_STRICTLY_INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

e unsigned inPPL_POLY_CON_RELATION_IS_INCLUDED
Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

e unsigned inPPL_POLY_CON_RELATION_SATURATES
Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

e unsigned inPPL_POLY_GEN_RELATION_SUBSUMES
Individual bit saying that adding the generator would not change the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 40

7.3.1 Detailed Description

Some details about the C Interfacép.40).

All the declarations needed for using the PPLs C interface (preprocessor symbols, data types, variables
and functions) are collected in the header fifd_c.h(p.??). This file, which is designed to work with
pre-ANSI and ANSI C compilers as well as C99 and C++ compilers, should be included, either directly or
via some other header file, with the directive

#include <ppl_c.h>

If this directive does not work, then your compiler is unable to find thepfile c.h(p. ??). So check that the
library is installed (if it is not installed, you may want teake install , perhaps with root privileges);

that it is installed in the right place (if not you may want to reconfigure the library using the appropriate
pathname for theprefix ~ option); and that your compiler knows where it is installed (if not you should
add the path to the directory wheppl_c.h(p.??) is located to the compiler’s include file search path; this

is usually done with thel option).

The name space of the PPL's C interfacdPBL_x for preprocessor symbols, enumeration values and
variables; angpl_ « for data types and function names. The interface systematicallyogsegie data
types(generic pointers that completely hide the internal representations from the client code) and provides
all required access functions. By using just the interface, the client code can exploit all the functionalities
of the library yet avoid directly manipulating the library’s data structures. The advantages are that (1)
applications do not depend on the internals of the library (these may change from release to release), and
(2) the interface invariants can be thoroughly checked (by the access functions).

The PPL’s C interface is initialized by means of i@ _initialize function. This function must be
calledbefore using any other interface of the librarfhe application can release the resources allocated
by the library by calling theapl_finalize function. After this function is calledo other interface of

the library may be usedntil the interface is re-initialized usingpl_initialize

Any application using the PPL should make sure that only the intended version(s) of the library are ever
used. The version used can be checked at compile-time thanks to the macros PPL_VERSION_MAJOR,
PPL_VERSION_MINOR, PPL_VERSION_REVISION and PPL_VERSION_BETA, which give, respec-
tively major, minor, revision and beta numbers of the PPL version. This is an example of their use:

#if PPL_VERSION_MAJOR == 0 && PPL_VERSION_MINOR < 6
# error "PPL version 0.6 or following is required"
#endif

Compile-time checking, however, is not normally enough, particularly in an environment where there is dy-
namic linking. Run-time checking can be performed by means of the fungtighgersion_major ,
ppl_version_minor , ppl_version_revision , andppl_version_beta . The PPL’s C inter-

face also provides functionqgpl_version |, returning character string containing the full version number,
andppl_banner |, returning a string that, in addition, provides (pointers to) other useful information for
the library user.

All programs using the PPL's C interface must link with the following librariébppl_c (PPLs C
interface) libppl  (PPL's core))ibgmpxx (GMP’s C++ interface), antbbgmp (GMP’s library core).
On most Unix-like systems, this is done by addifgpl ¢ , -lppl , -lgmpxx , and-lgmp to the
compiler’s or linker’s command line. For example:

gcc myprogram.o -lppl_c -lppl -Ilgmpxx -lgmp

If this does not work, it means that your compiler/linker is not finding the libraries where it expects. Again,
this could be because you forgot to install the library or you installed it in a non-standard location. In the

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 41

latter case you will need to use the appropriate options (ustlallyand, if you use shared libraries, some
sort of run-time path selection mechanisms. Consult your compiler's documentation for details. Notice
that the PPL is built usingibtool  and an application can exploit this fact to significantly simplify the
linking phase. See Libtool’'s documentation for details. Those working under Linux can find a lot of useful
information on how to use program libraries (including static, shared, and dynamically loaded libraries) in
theProgram Library HOWTO .

For examples on how to use the functions provided by the C interface, you are referred to the
interfaces/C/lpenum/ directory in the source distribution. It contains a tdpear Programming
solver written in C. In order to use this solver you will need to insEIPK(the GNU Linear Programming

Kit): this is used to read linear programs in MPS format.

7.3.2 Define Documentation

7.3.2.1 #define PPL_VERSION "0.6.1"
A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSIONI4 "." m if both PPL_VERSION_REVISIONr() and
PPL_VERSION_BETA lp)are zeroM " m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zerayl "." m ".* r  if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zeroM " m " r "pre" b if neither PPL_VERSION_REVISION

nor PPL_VERSION_BETA are zero.

7.3.3 Typedef Documentation

7.3.3.1 typedef const char ppl_io_variable_output_function_type(ppl_dimension_type var)
The type of output functions used for printing variables.

An output function for variables must write a textual representatiorvéor to a character buffer, null-
terminate it, and return a pointer to the beginning of the buffer. In case the operation fails, 0 should be
returned and perhagsrno should be set in a meaningful way. The library does nothing with the buffer,
besides printing its contents.

7.3.4 Enumeration Type Documentation

7.3.4.1 enum ppl_enum_error_code

Defines the error codes that any function may return.

Enumeration values:
PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been ex-
hausted.

PPL_ERROR_INVALID_ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_LENGTH_ERROR The construction of an object that would exceed its maximum
permitted size was attempted.

PPL_ARITHMETIC_OVERFLOW An arithmetic overflow occurred and the computation was con-
sequently interrupted. This camly happen in library’s incarnations using bounded integers as
coefficients.

PPL_STDIO_ERROR An error occurred during a C input/output operation. A more precise indica-
tion of what went wrong is availble viarrno .

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 42

PPL_ERROR_INTERNAL_ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN_STANDARD_EXCEPTIONA standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERRORA totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

7.3.4.2 enum ppl_enum_Constraint_Type

Describes the relations represented by a constraint.

Enumeration values:
PPL_CONSTRAINT_TYPE_LESS THANThe constraint is of the forra < 0.

PPL_CONSTRAINT_TYPE_LESS THAN_OR_EQUALThe constraint is of the forma < 0.
PPL_CONSTRAINT_TYPE_EQUAL The constraint is of the forma = 0.
PPL_CONSTRAINT_TYPE_GREATER_THAN_OR_EQUALThe constraint is of the form > 0.

PPL_CONSTRAINT_TYPE_GREATER_THANThe constraint is of the forrma > 0.

7.3.4.3 enum ppl_enum_Generator_Type

Describes the different kinds of generators.

Enumeration values:
PPL_GENERATOR_TYPE_LINE The generator is a line.

PPL_GENERATOR_TYPE_RAY The generator is a ray.
PPL_GENERATOR_TYPE_POINT The generator is a point.
PPL_GENERATOR_TYPE_CLOSURE_POINTThe generator is a closure point.

7.3.5 Function Documentation

7.3.5.1 int ppl_banner (const char«x p)
Writes toma pointer to a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

7.3.5.2 int ppl_initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

Returns:
PPL_ERROR_INVALID_ARGUMEN(Tthe library was already initialized.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 43

7.3.5.3 int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

Returns:
PPL_ERROR_INVALID_ARGUMENfTthe library was already finalized.

7.3.5.4 int ppl_set_error_handler (voidé¢ h)(enum ppl_enum_error_code code, const char
xdescription))

Installs the user-defined error handler pointechby

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence it not guaranteed
after the handler has returned.

7.3.5.5 int ppl_new_C_Polyhedron_from_ConSys (ppl_Polyhedron  pph, ppl_const_ConSys t
c9)

Builds a new closed polyhedron from the system of constraist@and writes an handle for the newly
created polyhedron at addrgssh.

The new polyhedron will inherit the space dimensiorc®f

7.3.5.6 intppl_new_C_Polyhedron_recycle_ConSys (ppl_Polyhedrornx pph, ppl_ConSys_tcs)

Builds a new closed polyhedron recycling the system of constrasntend writes an handle for the newly
created polyhedron at addrggsh.

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

7.3.5.7 int ppl_new_NNC_Polyhedron_from_ConSys (ppl_Polyhedron_# pph, ppl_const Con-
Sys_tcs)

Builds a new NNC polyhedron from the system of constraist@nd writes an handle for the newly created
polyhedron at addreggph.

The new polyhedron will inherit the space dimensiorcsf

7.3.5.8 intppl_new_NNC_Polyhedron_recycle ConSys (ppl_Polyhedron« pph, ppl_ConSys_tcs)

Builds a new NNC polyhedron recycling the system of constraiat&ind writes an handle for the newly
created polyhedron at addrggsh .

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 44

7.3.5.9 int ppl_new_C_Polyhedron_from_GenSys (ppl_Polyhedron s pph, ppl_const_GenSys t
g9

Builds a new closed polyhedron from the system of generasrand writes an handle for the newly
created polyhedron at addrggsh.

The new polyhedron will inherit the space dimensionysf

7.3.5.10 int ppl_new_C_Polyhedron_recycle_GenSys (ppl_Polyhedron« toph, ppl_GenSys_tgs)

Builds a new closed polyhedron recycling the system of genergsoed writes an handle for the newly
created polyhedron at addrggsh.

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

7.3.5.11 int ppl_new_NNC_Polyhedron_from_GenSys (ppl_Polyhedron s pph, ppl_const_Gen-
Sys_tg9

Builds a new NNC polyhedron from the system of generagsrand writes an handle for the newly created
polyhedron at addreggph.

The new polyhedron will inherit the space dimensiomysf

7.3.5.12 int ppl_new_NNC_Polyhedron_recycle _GenSys (ppl_Polyhedron« tpph, ppl_GenSys t
g9

Builds a new NNC polyhedron recycling the system of generajsrand writes an handle for the newly
created polyhedron at addrggsh.

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.

Warning:
This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

7.3.5.13 int ppl_new_C_Polyhedron_from_bounding_box (ppl_Polyhedron_tx pph, ppl_-
dimension_typef space_dimensiofvoid), int(x is_empty(void), int(x get lower_bouny{ppl_-
dimension_type k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d), int{(get_upper_bouni{ppl_-
dimension_type k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addreggsh .

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the value’PL_ERROR_INVALID_ARGUMENS returned. The bounding box is accessed by
using the following functions, passed as arguments:

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 45

int is_empty()

returns O if and only if the bounding box describes a non-empty set. The furistiempty()  will
always be called before the other functions. Howeveis ieEmpty()  does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Iff is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed is set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.ofhe fractionn/d is in canonical form

if and only if n andd have no common factors amlds positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Ifl is not bounded from above, simply return O.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary 6fis open and is
set to a value different from 0 otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

7.3.5.14 int ppl_new_NNC_Polyhedron_from_bounding_box (ppl_Polyhedron_t pph, ppl_-
dimension_typef space_dimensiofvoid), int(x is_empty(void), int(x get lower_bouny{ppl_-
dimension_type k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d), int(get_upper_boungppl_-
dimension_type k, int closed, ppl_Coefficient_t n, ppl_Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addrexgsh .

The bounding box is accessed by using the following functions, passed as arguments:
ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The furistiempty()  will
always be called before the other functions. Howeveis iempty()  does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Iff is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed s set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.cThe fractionn/d is in canonical form

if and only if n andd have no common factors amlis positive,0/1 being the unique representation for
zero.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 46

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. IfI is not bounded from above, simply return O.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary éfis open and is
set to a value different from 0 otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

7.3.5.15 int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_ph, ppl_const -
Constraint_t ¢)

Checks the relation between the polyhedpbnwith the constraint.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (cho-
sen among PPL_POLY_CON_RELATION_IS_DISJOINT PPL_POLY_CON_RELATION_STRICTLY_-
INTERSECTS, PPL_POLY_CON_RELATION_IS_INCLUDED, and PPL_POLY_CON_RELATION_-
SATURATES) that describe the relation betwgdmandc.

7.3.5.16 int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_ph, ppl_const_-
Generator_tQ)

Checks the relation between the polyhedpbnwith the generatog.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPL_POLY_-
GEN_RELATION_SUBSUMES, at present) that describe the relation betpleemdg.

7.3.5.17 int ppl_Polyhedron_shrink_bounding_box (ppl_const_Polyhedron pgh, unsigned intcom-
plexity, void(x set_empt)(void), void(x raise_lower_bouni{ppl_dimension_type k, int closed, ppl_-
const_Coefficient_t n, ppl_const_Coefficient_t d), voic(lower_upper_boun}{ppl_dimension_type K,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t d))

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters.

Parameters:
ph The polyhedron that is used to shrink the bounding box;

complexity The code of the complexity class of the algorithm to be used. Must be one of
PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_COMPLEXITY_CLASS_SIMPLEX, or
PPL_COMPLEXITY_CLASS_ANY;

set_emptyA pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set;

raise_lower_boundA pointer to a void function with argument{ppl_dimension_type Kk,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to khth dimension within/d, +oo) if closed
is non-zero, with'n/d, +00) if closed is zero. The fractiom/d is in canonical form, that is,
n andd have no common factors arlds positive,0/1 being the unique representation for zero;

lower_upper_bounda pointer to a void function with argumefpl_dimension_type Kk,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to kit dimension with(—oo, n/d] if closed
is non-zero, with(—oo, n/d) if closed is zero. The fractiom/d is in canonical form.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface a7

7.3.5.18 intppl_Polyhedron_maximize (ppl_const_Polyhedron ph, ppl_const_LinExpression_te,
ppl_Coefficient_tsup_n ppl_Coefficient_tsup_d int x pmaximum ppl_const_Generator_tx ppoint)

Returns a positive integer ph is not empty ande is bounded from above iph, in which case the
supremum value and a point wheee reaches it are computed.

Parameters:
ph The polyhedron constrainirlg ;

le The linear expression to be maximized subjeqiho

sup_n Will be assigned the numerator of the supremum value;

sup_d Will be assigned the denominator of the supremum value;

pmaximum Will store 1 in this location if the supremum is also the maximum, will store 0 otherwise;

ppoint When nonzero, a point or closure point whée reaches the extremum value will be stored
here. Ifph is empty orle is not bounded from above, 0 is returned aup n, sup _d,
xpmaximum andxppoint  are left untouched.

7.3.5.19 int ppl_Polyhedron_minimize (ppl_const_Polyhedron _gh, ppl_const_LinExpression_te,
ppl_Coefficient_tinf_n, ppl_Coefficient_tinf_d, int * pminimum, ppl_const_Generator_t« ppoinf)

Returns a positive integer gh is not empty ande is bounded from above iph, in which case the
infimum value and a point whete reaches it are computed.

Parameters:
ph The polyhedron constrainirlg ;

le The linear expression to be minimized subjegplg

inf_n Will be assigned the numerator of the infimum value;

inf_d Will be assigned the denominator of the infimum value;

pminimum Will store 1 in this location if the infimum is also the minimum, will store 0 otherwise;

ppoint When nonzero, a point or closure point whére reaches the extremum value will be stored
here. Ifph is empty orle is not bounded from below, O is returned aimd n , inf d
xpminimum ands=ppoint are left untouched.

7.3.5.20 int ppl_Polyhedron_equals_Polyhedron (ppl_const_Polyhedron_tx, ppl_const_-
Polyhedron_ty)

Returns a positive integer i andy are the same polyhedron; return O if they are different.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

7.3.5.21 intppl_Polyhedron_add_recycled_constraints (ppl_Polyhedronph, ppl_ConSys_tcs
Adds the system of constraints to the system of constraints ph.
Warning:

This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.3 C Language Interface 48

7.3.5.22 intppl_Polyhedron_add_recycled_constraints_and_minimize (ppl_Polyhedronph, ppl_-
ConSys_tcg)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns O if it is empty. Upon successful rgthiris, guaranteed to be
minimized.
Warning:
This function modifies the constraint system referenced9y upon return, no assumption can be
made on its value.

7.3.5.23 int ppl_Polyhedron_add_recycled_generators (ppl_Polyhedronph, ppl_GenSys_tg9

Adds the system of generatags to the system of generators offi.

Warning:
This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

7.3.5.24 int ppl_Polyhedron_add_recycled_generators_and_minimize (ppl_Polyhedrorph, ppl_-
GenSys_tg9)

Adds the system of generatogs to the system of generators ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful regiins, guaranteed to be
minimized.
Warning:
This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

7.3.5.25 int ppl_Polyhedron_affine_image (ppl_Polyhedron_ph, ppl_dimension_typevar, ppl_-
const_LinExpression_tle, ppl_const_Coefficient_td)

Transforms the polyhedrgrh, assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed;

var The variable to which the affine expression is assigned;
le The numerator of the affine expression;
d The denominator of the affine expression.

7.3.5.26 intppl_Polyhedron_affine_preimage (ppl_Polyhedron gh, ppl_dimension_typevar, ppl_-
const_LinExpression_tle, ppl_const_Coefficient_td)

Transforms the polyhedrgoh, substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed;

var The variable to which the affine expression is substituted;
le The numerator of the affine expression;
d The denominator of the affine expression.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 49

7.3.5.27 int ppl_Polyhedron_generalized_affine_image (ppl_Polyhedron gh, ppl_dimension_-
type var, enum ppl_enum_Constraint_Type relsym ppl_const_LinExpression_tle, ppl _const_-
Coefficient_td)

Assigns toph the image ofph with respect to thegeneralized affine transfer function(p.9) var’
oXp wherex is the relation symbol encoded bgisym .

denominator’

Parameters:
ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer function;
relsym The relation symbol;

le The numerator of the right hand side affine expression;

d The denominator of the right hand side affine expression.

7.3.5.28 int ppl_Polyhedron_generalized_affine_image_lhs_rhs (ppl_Polyhedrorph, ppl_const_-
LinExpression_tlhs, enum ppl_enum_Constraint_Typerelsym ppl_const_LinExpression_trhs)

Assigns toph the image oph with respect to thgeneralized affine transfer functior(p. 9) Ihs’ > rhs,
whererx is the relation symbol encoded bgisym .

Parameters:
ph The polyhedron that is transformed;

Ihs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

7.3.5.29 int ppl_Polyhedron_map_dimensions (ppl_Polyhedron gh, ppl_dimension_typemapg],
size_tn)

Remaps the dimensions of the vector space accordingaatial function (p. 7). This function is specified
by means of thenaps array, which has entries.

The partial function is defined on dimensioif i < nandmaps[i] != ppl_not_a_dimension ;
otherwise it is undefined on dimension If the function is defined on dimension then dimension is
mapped onto dimensiamapsi]

The result is undefined haps does not encode a partial function with the properties described in the
specification of the mapping operato(p. 7).

7.4 Prolog Language Interface

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in Se®yistem-Independent Fea-
tures(p.49). SectionCompilation and Installation (p.65) explains how the various incarnations of the
Prolog interface are compiled and installed. Sectystem-Dependent Featurdg.65) illustrates the
system-dependent features of the interface for all the supported systems.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 50

System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in Sé&ttehsain
Featureqp.1), Convex Polyhedrgp.2), Representations of Convex Polyhedrg.3) and Operations

on Convex Polyhedrdp.6) of this manual. Here we just describe those aspects that are specific to the
Prolog interface.

Overview First, here is a list of notes with general information and advice on the use of the interface.

e The Prolog interface to the PPL is initialized and finalized by the prediggteitialize/0
andppl_finalize/0 . Thus the only interface predicates callable aftglr finalize/O are
ppl_finalize/0 itself (this further call has no effect) ampbl_initialize/0 , after which
the interface’s services are usable again. Some Prolog systems allow the specification of initializa-
tion and deinitialization functions in their foreign language interfaces. The corresponding incarna-
tions of the PPL-Prolog interface have been written so pipatinitialize/0 and/orppl_-
finalize/0 are called automatically. Secti@ystem-Dependent Featurgp.65) will detail in
which cases initialization and finalization is automatically performed or is left to the Prolog program-
mer’s responsibility. However, for portable applications, it is best to inyKeinitialize/0
andppl_finalize/0 explicitly: since they can be called multiple times without problems, this
will result in enhanced portability at a cost that is, by all means, negligible.

e A PPL polyhedron can only be accessed by means of a Prolog term chitedie Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

e A Prolog term can be bound to a valid handle by using:

ppl_new_Polyhedron_from_dimension/3,
ppl_new_Polyhedron_empty_from_dimension/3,
ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referenc-
ing it. The first argument (in the case @bl_new_Polyhedron_from_Polyhedron/4 , the

first and third arguments) denotes the topology and can be &itbennc indicating a C or NNC
polyhedron, respectively. The third argument (in the casgpbfnew_Polyhedron_from_-
Polyhedron/4 , the fourth argument) is a Prolog term that is unified with a new valid handle for
accessing this polyhedron.

e As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicatgpl_delete_Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argumelirdelete_Polyhedron/1 , it becomes in-
valid.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 51

e For a PPL polyhedron with space dimenslonthe identifiers used for the PPL variables must lie
between 0 an& — 1 and correspond to the indices of the associated Cartesian axes. When using
the predicates that combine PPL polyhedra or add constraints or generators to a representation of
a PPL polyhedron, the polyhedra referenced and any constraints or generators in the call should
follow all the space dimension-compatibility rules stated in SecRepresentations of Convex
Polyhedra(p. 3).

e As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectidRepresentations of Convex Polyhedrg. 3).

e Any application using the PPL should make sure that only the intended version(s) of the library are
ever used. Predicates

ppl_version_major/1,
ppl_version_minor/1,
ppl_version_revision/1,
ppl_version_beta/l,
ppl_version/1,
ppl_banner.

allow run-time checking of information about the version being used.

PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.
ppl_version_major(?Integer)

ppl_version_minor(?Integer)

ppl_version_revision(?Integer)

ppl_version_beta(?Integer)

ppl_version(?Atom)

ppl_banner(?Atom)

ppl_max_space_dimension(?Integer)

ppl_initialize

ppl_finalize

ppl_set_timeout_exception_atom(+Atom)

ppl_set_timeout(+Integer)

ppl_reset_timeout

ppl_new_Polyhedron_from_dimension(+Topology, +Integer, -Handle)
ppl_new_Polyhedron_empty from_dimension(+Topology, +Integer, -Handle)

ppl_new_Polyhedron_from_Polyhedron(+Topology 1, +Handle_1, +Topology_-
2, -Handle_2)

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle)

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle)

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 52

ppl_Polyhedron_swap(+Handlel, +Handle2)
ppl_delete_Polyhedron(+Handle)
ppl_Polyhedron_space_dimension(+Handle, -Integer)
ppl_Polyhedron_get_constraints(+Handle, -Constraint_System)
ppl_Polyhedron_get _minimized_constraints(+Handle, -Constraint_System)
ppl_Polyhedron_get _generators(+Handle, -Generator_System)
ppl_Polyhedron_get minimized_generators(+Handle, -Generator System)

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,
-Relation)

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,
-Relation)

ppl_Polyhedron_get bounding_box(+Handle, +Complexity, -Box)
ppl_Polyhedron_is_empty(+Handle)

ppl_Polyhedron_is_universe(+Handle)
ppl_Polyhedron_is_bounded(+Handle)
ppl_Polyhedron_bounds_from_above(+Handle, +LinExpr)
ppl_Polyhedron_bounds_from_below(+Handle, +LinExpr)
ppl_Polyhedron_maximize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)

ppl_Polyhedron_maximize_with_point(+Handle, +LinExpr, ?Integer,
?Integer, ?Bool, ?Point)

ppl_Polyhedron_minimize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)

ppl_Polyhedron_minimize_with_point(+Handle, +LinExpr, ?Integer,
?Integer, ?Bool, ?Point)

ppl_Polyhedron_is_topologically closed(+Handle)
ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_strictly _contains_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_OK(+Handle)
ppl_Polyhedron_add_constraint(+Handle, +Constraint)
ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint)
ppl_Polyhedron_add_generator(+Handle, +Generator)
ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator)
ppl_Polyhedron_add_constraints(+Handle, +Constraint_System)

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System)

ppl_Polyhedron_add_generators(+Handle, +Generator_System)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface

53

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_-
System)

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +LinExpr, +Integer)
ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +LinExpr, +Integer)

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol, +LinExpr, +Integer)

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +LinExprl,
+Relation_Symbol, +LinExpr2)

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle 2,
?Integer)

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?Integer)

ppl_Polyhedron_limited_ BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?Integer)

ppl_Polyhedron_bounded BHRZO03 extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_H79 widening_assign_with_token(+Handle_1, +Handle_2,
?Integer)

ppl_Polyhedron_H79_ widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_H79_ extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?Integer)

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_bounded_H79 extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System, ?Integer)

ppl_Polyhedron_topological_closure_assign(+Handle)
ppl_Polyhedron_add_dimensions_and_embed(+Handle, +Integer)
ppl_Polyhedron_add_dimensions_and_project(+Handle, +Integer)
ppl_Polyhedron_concatenate_assign(+Handlel, +Handle2)

ppl_Polyhedron_remove_dimensions(+Handle, +List_of PPL_Vars)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface

ppl_Polyhedron_remove_higher_dimensions(+Handle, +Integer))

ppl_Polyhedron_expand_dimension(+Handle, +PPL_Var, +Integer))

ppl_Polyhedron_fold dimensions(+Handle, +List of PPL_Vars, +PPL_Var))

ppl_Polyhedron_map_dimensions(+Handle, +P_Func))

PPL Predicate Specifications The PPL predicates provided by the Prolog interface are specified below.

The specification uses the following grammar rules:

Handle
Topology
Varld
PPL_Var

LinExpr

--> Prolog term

-> ¢ | nnc

--> number | + number variable identifier
--> "$VAR’(Varld) PPL variable
--> PPL_Var PPL variable
| number

| + LinExpr unary plus
| - LinExpr unary minus
| LinExpr + LinExpr addition

| LinExpr - LinExpr subtraction

| number * LinExpr multiplication
| LinExpr * number multiplication

Relation_Symbol

> = equals

| =< less than or equal

| >= greater than or equal
| < strictly less than

| > strictly greater than

Denominator --> number

| + number | - number number must be non-zero
Constraint --> LinExpr Relation_Symbol LinExpr
constraint
Constraint_System list of constraints
- []
| [Constraint | Constraint_System]
Generator  --> point(LinExpr) point
| point(LinExpr, Denominator)
point
| closure_point(LinExpr) closure point
| closure_point(LinExpr, Denominator)
closure point
(the point or closure point is defined by LinExpr/Denominator.)
| ray(LinExpr) ray
| line(LinExpr) line
Generator_System list of generators
-—_ I]
| [Generator | Generator_System]
Atom --> Prolog atom
Relation --> is_disjoint between a constraint and a polyhedron
| strictly_intersects between a constraint and a polyhedron
| is_included between a constraint and a polyhedron

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 55

| saturates between a constraint and a polyhedron

| subsumes between a generator and a polyhedron
Relation_List list of relations

- I]

| [Relation | Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator
--> number | + number | - number

Rational_Denominator
--> number number must be non-zero

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction
Interval --> i(Bound, Bound) rational interval
Box -> ] list of intervals

| [Interval | Box]
Vars_Pair  --> PPLVar - PPLVar map relation

P_Func --> ] list of map relations
| [Vars_Pair | P_Func].

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see Sectiorfthe Main Featuregp. 1), Convex Polyhedrgp.2), Representations of Convex Poly-
hedra(p. 3) andOperations on Convex Polyhedrgp.6) of this manual.

ppl_version_major(?Integer) UnifiesInteger  with the major number of the PPL version.
ppl_version_minor(?Integer) Unifiesinteger  with the minor number of the PPL version.
p_pl_version_revision(?lnteger) UnifiesInteger  with the revision number of the PPL ver-
sion.

ppl_version_beta(?Integer) UnifiesInteger  with the beta number of the PPL version.
ppl_version(?Atom) Unifies Atom with the PPL version.

ppl_banner(?Atom) Unifies Atom with information about the PPL version, the licensing, the lack

of any warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to
look for further information.

ppl_max_space_dimension(?Integer) Unifies Integer  with the maximum space dimen-
sion this library can handle.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 56

ppl_initialize Initializes the PPL interface. Multiple calls pipl_initialize does no harm.
ppl_finalize Finalizes the PPL interface. Once this is executed, the next call to an interface pred-
icate must either be tppl_initialize or to ppl_finalize . Multiple calls toppl_finalize

does no harm.

ppl_set_timeout_exception_atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value iime_out

ppl_timeout_exception_atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.
ppl_set_timeout(+Integer) Computations taking exponential time will be interrupted some

time afterinteger ms after that call. If the computation is interrupted that way, the current timeout
exception atom will be throwrinteger  must be strictly greater than zero.

ppl_reset_timeout Resets the timeout time so that the computation is not interrupted.

ppl_new_Polyhedron_from_dimension(+Topology, +Integer, -Handle) Creates a
new universe C or NNC polyhedrdn, depending on the value ®bpology , with Integer  dimensions.
Handle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X).

creates the C polyhedron defining the 3-dimensional vector paeegth X bound to a valid handle for
accessing it.

ppl_new_Polyhedron_empty_from_dimension(+Topology, +Integer, -Handle)
Creates a new empty C or NNC polyhedrBn depending on the value diopology , with Integer
dimensionsHandle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X).

creates an empty NNC polyhedron embeddeRwith X bound to a valid handle for accessing it.

ppl_new_Polyhedron_from_Polyhedron(+Topology 1, +Handle_1, +Topology_-

2, -Handle_2) If Handle_1 refers to a C or NNC polyhedro®; (depending on the value of
Topology_1 ), then this creates a cof, of P; with topology C or NNC, depending on the value of
Topology 2 . Handle_2 is unified with the handle foP,. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedde®&irreferenced byK and then makes a copy, converting the
topology to an NNC polyhedron. withi bound to a valid handle for accessing it.

When usingppl_new_Polyhedron_from_Polyhedron/2 , when the source polyhedron is NNC
and the copy is C, care must be taken that the source polyhedron referendaddigl is topologically
closed.

The Parma Polyhedra Library User’s Manual (version 0.6.1).r8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 57

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle) Creates a polyhedrdR represented bZonstraint_System with topology C or NNC,
depending on the value dPbpology . Handle is unified with the handle foP.

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle) Creates a polyhedrofP represented byGenerator System  with topology C or
NNC, depending on the value ®bpology . Handle is unified with the handle foP.

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle) Creates a
polyhedronP represented bdox with topology C or NNC, depending on the valueTa@pology , and
Handle is unified with the handle foP. A bound of the formo(Rational) can be included in an
interval inBox only if Topology isnnc.

ppl_Polyhedron_swap(+Handlel, +Handle2) Swaps the polyhedron referenced by
Handlel with the one referenced Wiyandle2 . The polyhedrg® and Q must have the same topology.

ppl_delete_Polyhedron(+Handle) Deletes the polyhedron referencedHigndle . After exe-
cution,Handle is no longer a valid handle for a PPL polyhedron.

ppl_Polyhedron_space_dimension(+Handle, ?Integer) Unifies the space dimension
of the polyhedron referenced bjandle with Integer

ppl_Polyhedron_get_constraints(+Handle, ?Constraint_System) Unifies
Constraint_System with a list of the constraints in the constraints system representing the
polyhedron referenced byandle .

ppl_Polyhedron_get _minimized_constraints(+Handle, ?Constraint_System)
Unifies Constraint_System with a minimized list of the constraints in the constraints system
representing the polyhedron referencecHandle .

ppl_Polyhedron_get generators(+Handle, ?Generator_System) Unifies
Generator_System  with a list of the generators in the generators system representing the poly-
hedron referenced iyandle .

ppl_Polyhedron_get _minimized_generators(+Handle, ?Generator_System)
Unifies Generator_System  with a minimized list of the generators in the generators system
representing the polyhedron referencedHandle .

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,

?Relation_List) Unifies Relation_List with the list of relations the polyhedron refer-
enced byHandle has with Constraint . The possible relations are listed in the grammar rules
above; their meaning is given in the paragraplecifying the relation_with operationgp.10) in Section
Operations on Convex Polyhedrép.6).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 58

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,

?Relation_List) Unifies Relation_List with the list of relations the polyhedron refer-
enced byHandle has withGenerator . The possible relations are listed in the grammar rules above;
their meaning is given in the paragrapipecifying the relation_with operationgp.10) in Section
Operations on Convex Polyhedrgp.6).

ppl_Polyhedron_get bounding_box(+Handle, +Complexity, ?Box) Succeeds  if
and only if the bounding box of the polyhedron referencedHaydle unifies with the box defined by
Box. E.g.,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].
Note that the rational numbersBox are in canonical form. E.g., the following will fail:

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),

Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

The complexity clas€omplexity  determining the algorithm to be used has the following meaning:

e polynomial allows code of the worst-case polynomial complexity class;
e simplex allows code of the worst-case exponential but typically polynomial complexity class;

e any allows code of the universal complexity class.

ppl_Polyhedron_is_empty(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is empty.

ppl_Polyhedron_is_universe(+Handle) Succeeds if and only if the polyhedron referenced
by Handle is the universe.

ppl_Polyhedron_is_bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl_Polyhedron_bounds_from_above(+Handle, +LinExpr) Succeeds if and only if
LinExpr is bounded from above in the polyhedron referencetiagdle .

ppl_Polyhedron_bounds_from_below(+Handle, +LinExpr) Succeeds if and only if
LinExpr is bounded from below in the polyhedron referencedHiayndle .

ppl_Polyhedron_maximize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)
Succeeds if and only if the polyhedrénreferenced byHandle is not empty and.inExpr is bounded
from above inP.

Integerl s unified with the numerator of the supremum value &rtdger2  with the denominator
of the supremum value. If the supremum is also the maxin®wo] is unified with the atontrue and,
otherwise, unified with the atofalse

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 59

ppl_Polyhedron_maximize_with_point(+Handle, +LinExpr, ?Integerl,
?Integer2, ?Bool, ?Point) Succeeds if and only if the polyhedrdhreferenced byHandle
is not empty andLinExpr is bounded from above if.

Integerl is unified with the numerator of the supremum vallredeger2  with the denominator of
the supremum value, arRbint  with a point or closure point wheldenExpr reaches this value. If the
supremum is also the maximurBpol is unified with the atontrue and, otherwise, unified with the
atomfalse

ppl_Polyhedron_minimize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)
Succeeds if and only if the polyhedréhreferenced byHandle is not empty and.inExpr is bounded
from below inP.

Integerl is unified with the numerator of the infimum value dnteger2  with the denominator of the
infimum value. If the infimum is also the minimurBpol is unified with the atontrue and, otherwise,
unified with the atonfalse

ppl_Polyhedron_minimize_with_point(+Handle, +LinExpr, ?Integer,
?Integer, ?Bool, ?Point) Succeeds if and only if the polyhedréhreferenced byHandle is
not empty and.inExpr is bounded from below .

Integerl is unified with the numerator of the infimum valuateger2  with the denominator of the
infimum value, andPoint  with a point or closure point whetgnExpr reaches this value. If the infimum
is also the minimumBool is unified with the atontrue and, otherwise, unified with the atoi@se

ppl_Polyhedron_is_topologically closed(+Handle) Succeeds if and only if the poly-
hedron referenced kiyandle is topologically closed.

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2) Succeeds if and
only if the polyhedron referenced byandle_1 is included in or equal to the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_strictly _contains_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referencedHpndle_1 is included in but not equal to the polyhedron
referenced byandle_2 .

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referencedHgndle 1 is disjoint from the polyhedron referenced
by Handle_2 .

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2) Succeeds if and only if
the polyhedron referenced blandle_1 is equal to the polyhedron referencedgndle 2 .

ppl_Polyhedron_OK(+Handle) Succeeds only if the polyhedron referencedHgndle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 60

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint) Up-
dates the polyhedron referenced Hgndle to one obtained by addinGonstraint  to its constraint
system. Thus, the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handkéto consist of the set of points in the vector sp&esatisfying
the constrainiz +y — 2z >=5.

Note thatppl_Polyhedron_add_constraint_and_minimize/2 will fail if, after adding the
constraint, the polyhedron is empty.

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator) Updates
the polyhedron referenced byandle to one obtained by addinGenerator to its generator system.
Thus, after the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR'(0), B = '$VAR(1), C = '$VAR'(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handkto be the single point—12.5, —0.625,0)™ in the vector space
R3.

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System) Updates the
polyhedron referenced hbijandle to one obtained by adding to its constraint system the constraints in
Constraint_System .E.g,

| ?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR'(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced Hgndle can be empty and a query will succeed even when
Constraint_System is unsatisfiable.

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System)  Updates the polyhedron referenced lbgndle to one obtained by adding to its constraint
system the constraints @onstraint_System .E.g.,

?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR’(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 61

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_dimension(c, 2, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0)),
ppl_Polyhedron_get_constraints(X, CS).

ppl_Polyhedron_add_generators(+Handle, +Generator_System) Updates the poly-
hedron referenced bilandle to one obtained by adding to its generator system the generators in
Generator_System

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in Se®igpresentations of Convex Polyhedr@. 3)). Thus care

must be taken to ensure that, before calling this predicate, either the polyhedron referehiceilzy is
non-empty or that whenev&enerator_System  is non-empty the first element defines a point. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_System)
Updates the polyhedron referenced Hgndle to one obtained by adding to its generator system the
generators ifcenerator_System

Unlike the predicatepl_add_generators , the order of the generators @enerator_System is
not important. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
Assigns to the polyhedron referenced Hgndle_1 its intersection with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly hull_assign(+Handle_1, +Handle 2)

ppl_Polyhedron_poly hull_assign_and_minimize(+Handle_1, +Handle_2) As-
signs to the polyhedron referenced biandle 1 its poly-hull with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle 2) Assigns to the
polyhedron referenced byandle_1 its poly-difference with the polyhedron referencedHigndle_2 .

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 62

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +LinExpr, +Integer)
Transforms the polyhedron referencedibgndle assigning the affine expressibmExpr /Integer
to PPL_Var.

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +LinExpr, +Integer)
This is the inverse transformation to that fapl_affine_image

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-

Symbol +LinExpr, +Integer) Transforms the polyhedron referenced Hgndle assigning
the generalized affine image with respect to the transfer fund®Bh_Var Relation_Symbol
LinExpr /Integer

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +LinExprl,

+Relation_Symbol +LinExpr2) Transforms the polyhedron referenced Hgndle assigning
the generalized affine image with respect to the transfer fundtinExprl Relation_Symbol
LinExpr2

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedronP referenced byHandle_1 the time-elapséP ,~ Q) with the polyhedronQ referenced by
Handle_2 .

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle_2,

?Integer) The polyhedra referenced hbiandle_1 and Handle_2 are unaltered. The token
Integer is 0 if a BHRZ03 widening would have changed the polyhedron referencéthhgle_1 and
is 1 otherwise.

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced byandle_1 its BHRZ03-widening with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_limited BHRZ03_extrapolation_assign_with_token(

+Handle_1, +Handle_2, +Constraint_System, ?Integer) The polyhedra referenced
by Handle_1 andHandle 2 are unaltered. The tokemteger is O if a BHRZ03-widening with
the polyhedron referenced tiyandle_2 , improved by enforcing those constraintsGonstraint_-
System would have changed the polyhedron referencetiagdle_1 and is 1 otherwise.

ppl_Polyhedron_limited_ BHRZ03_extrapolation_assign(+Handle_1,

+Handle_2, +Constraint_System) Assigns to the polyhedrof? referenced byHandle_1
the result of its BHRZ03-widening with the polyhedron referenceéibpdle_2 , improved by enforcing
those constraints i@onstraint_System

ppl_Polyhedron_bounded_BHRZO03_extrapolation_assign_with_token(
+Handle_1, +Handle_2, +Constraint_System, ?Integer) The polyhedra P; and
P- referenced bHandle_1 andHandle_2 , respectively are unaltered. The tokeweger isOifa
BHRZ03-widening withP, , improved by enforcing all the constraints of the fofitm < r and+z < r
that are satisfied by all the points B together with the constraints @onstraint_System would
have changed the polyhedron referencedHapdle_1 and is 1 otherwise.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 63

ppl_Polyhedron_bounded_BHRZO03_extrapolation_assign(+Handle_1,

+Handle_2, +Constraint_System) Assigns to the polyhedrof® referenced byHandle_1
the result of its BHRZ03-widening with the polyhedron referencetibpdle_2 improved by enforcing
all the constraints of the formtz < r and+x < r that are satisfied by all the points Bftogether with
the constraints iConstraint_System

ppl_Polyhedron_H79 widening_assign_with_token(+Handle_1, +Handle_2,

?Integer) The polyhedra referenced byandle 1 and Handle_2 are unaltered. The token
Integer is 0 if an H79 widening would have changed the polyhedron referencéthhdle 1 and is
1 otherwise.

ppl_Polyhedron_H79 widening_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedron referenced iyandle_1 its H79-widening with the polyhedron referencedtigndle 2 .

ppl_Polyhedron_limited H79_extrapolation_assign_with_token(+Handle_1,

+Handle_2, +Constraint_System, ?Integer) The polyhedra referenced kyandle 1
andHandle_2 are unaltered. The tokdnteger is 0 if a H79-widening with the polyhedron referenced
by Handle_2 , improved by enforcing those constraintgdonstraint_System would have changed
the polyhedron referenced blandle_1 and is 1 otherwise.

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,

+Constraint_System) Assigns to the polyhedrorP referenced byHandle_1 its H79-
widening with the polyhedron referenced biandle_2 , improved by enforcing those constraints in
Constraint_System

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,

+Handle_2, +Constraint_System, ?Integer) The polyhedraP; and P, referenced by
Handle_1 andHandle_2 , respectively are unaltered. The tokateger is 0 if a H79-widening with
P- , improved by enforcing all the constraints of the fotm < r and+z < r that are satisfied by all the
points of P; together with the constraints @onstraint_System would have changed the polyhedron
referenced byHandle_1 and is 1 otherwise.

ppl_Polyhedron_bounded_H79 _extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System) Assigns to the polyhedro® referenced byHandle_1 the result of its
H79-widening with the polyhedron referenced Hgndle_2 improved by enforcing all the constraints
of the form+x < r and+x < r that are satisfied by all the points Bftogether with the constraints in
Constraint_System

ppl_Polyhedron_topological_closure_assign(+Handle) Assigns to the polyhedron
referenced bydandle its topological closure.

ppl_Polyhedron_add_dimensions_and_embed(+Handle, +Integer) Embeds the
polyhedron referenced ldiyandle in a space that is enlarged byteger  dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 64

Cs = [
GS = [point(0),line(1*A),line(1*B)]
ppl_Polyhedron_concatenate_assign(+Handlel, +Handle2) Updates the polyhedron

‘P1 referenced byHandlel by first embedding?; in a new space enlarged by the space dimensions of the

polyhedronP; referenced bylandle2 , and then adds to its system of constraints a renamed-apart version
of the constraints oPs.

E.g.,

?- ppl_new_Polyhedron_from_dimension(nnc, 2, X),
A = '$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
D = '$VAR'(3), E = '$VAR'(4),
ppl_new_Polyhedron_from_constraints(nnc, [A > 1, B >= 0, C >= 0], V),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= (]

ppl_Polyhedron_add_dimensions_and_project(+Handle, +Integer) Projects the
polyhedron referenced biyandle onto a space that is enlarged loyeger  dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = 0],
GS = [point(0)]
ppl_Polyhedron_remove_dimensions(+Handle, +List_of PPL_Vars) Removes the

space dimensions given by the identifiers of the PPL variables ihikstof PPL_Vars from the
polyhedron referenced biyandle . The identifiers for the remaining PPL variables are renumbered so
that they are consecutive and the maximum index is less than the number of dimensions. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_remove_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl_Polyhedron_remove_higher_dimensions(+Handle, +Integer)) Projects  the
polyhedron referenced to Byandle onto the firsinteger dimension. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 5, X),
ppl_Polyhedron_remove_higher_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

ppl_Polyhedron_expand_dimension(+Handle, +PPL_Var, +Integer)) Integer

copies of the space dimension referencedPBL_Var are added to the polyhedron referenced to by
Handle .

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 65

ppl_Polyhedron_fold_dimensions(+Handle, +List of PPL_Vars, +PPL_Var))

The space dimensions referenced by the PPL variables inidistof PPL_Vars are folded into the
dimension referenced BYPL_Var and removed. The result is undefinedLiét_ of PPL Vars does
not have the properties described in the paragrgpécifying the fold_dimensions operatdp.8) in
SectionOperations on Convex Polyhedrgp.6).

ppl_Polyhedron_map_dimensions(+Handle, +P_Func)) Maps the dimensions of the
polyhedron referenced yandle using the partial function defined B/ Func. The result is undefined
if P_Func does not encode a partial function with the properties described in the paragegtying the
map_dimensions operatofp. 7) in SectionOperations on Convex Polyhedrép.6).

Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequelprefix is the prefix under which you have installed the library (typicdligr or
{usr/local ).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library addiDBROLOG_TRACK_ALLOCATION the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

System-Dependent Features

CIAO Prolog Support for CIAO Prolog is under development and will be available in a future release.
Only Ciao Prolog 1.9 #44 or later is supported.

GNU Prolog The GNU Prolog interface to the PPL library is available both as “PPL enhanced” GNU
Prolog interpreter and as a library that can be linked to GNU Prolog programs. Only GNU Prolog version
1.2.12 or later is supported.

Notice that GNU Prolog version 1.2.12 suffers from a serious limitation as far as for-
eign code is concerned. In order to be safe you must configure GNU Prolog with
the -disable-ebp option (note that this has a negative effect on performance). See
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777 .html ,
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html ,

http://lwww.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html and
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html for more
information.

We have experienced other serious problems with the GNU Pro-
log interface, up to and including GNU Prolog version 1.2.16: see
http://www.cs.unipr.it/pipermail/ppl-devel/2002-October/002657.html

for more information.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 66

The ppl_gprolog  Executable If an appropriate version of GNU Prolog is installed on the machine
on which you compiled the library, the commanthke install will install the executablgpl_-

gprolog in the directoryprefix/bin . Theppl_gprolog  executable is simply the GNU Prolog
interpreter with the Parma Polyhedra library linked in. The only thing you should do to use the library is
to call ppl_initialize/0 before any other PPL predicate and to ggdl_finalize/0 when you

are done with the library.

Linking the Library To GNU Prolog Programs  In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directqsefix/lib/ppl . ppl_gprolog.pl contains

the required foreign declaratiorigyppl_gprolog. x contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, saygourcel.pl andsource2.pl and you want to create the executabigprog ,

your compilation command may look like

gplc -0 myprog prefix/lib/ppl/ppl_gprolog.pl sourcel.pl source2.pl \
-L -Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -Istdc++’

SICStus Prolog The SICStus Prolog interface to the PPL library is available both as a statically linked
module or as a dynamically linked one. Only SICStus Prolog version 3.9.0 or later is supported.

The Statically Linked ppl_sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the commaaice install will install the
executablgpl_sicstus in the directoryprefix/bin . Theppl_sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra library statically linked. The only thing you should do to
use the library is to loagrefix/lib/ppl/ppl_sicstus.pl .

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply loagrefix/lib/ppl/ppl_sicstus.pl . Notice that, for dynamic linking
to work, you should have configured the library with teeable-shared option.

SWI-Prolog The SWI-Prolog interface of the library is available both as a statically linked module or as
a dynamically linked one. Only SWI-Prolog version 5.0 or later is supported.

The ppl_pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the commanubke install will install the executabl@pl_pl in the direc-

tory prefix/bin . Theppl_pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
library statically linked: from withinppl_pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWiI-
Prolog you should simply loagdrefix/lib/ppl/ppl_swiprolog.pl . This will invoke ppl_-
initialize/0 automatically but, at least for SWI-Prolog versions up to 5.0.7, it is the programmer’s
responsibility to calppl_finalize/0 . Alternatively, you can load the library directly with

:- load_foreign_library('prefix/lib/ppl/libppl_swiprolog’).

This will call ppl_initialize/0 automatically. Analogously,

- unload_foreign_library('prefix/lib/ppl/libppl_swiprolog’).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

8 PPL Namespace Documentation 67

will, as part of the unload process, invogpl_finalize/0

Notice that, for dynamic linking to work, you should have configured the library with the
-enable-shared option.

XSB The XSB Prolog interface to the PPL library is available as a dynamically linked module. Only
XSB version 2.5 and following is supported.

In order to dynamically load the library from XSB you should load pip xsb module and import the
predicates you need. For things to work, you may have to copy thepfiefi/lib/ppl/ppl_-

xsb.xwam and prefix/lib/ppl/ppl_xsb.so in your current directory or in one of the XSB li-
brary directories.

YAP The YAP Prolog interface to the PPL library is available as a dynamically linked module. Only
YAP version 4.4 or later is supported.

In order to dynamically load the library from YAP you should simply lqadfix/lib/ppl/ppl_-

yap.pl . This will invoke ppl_initialize/0 automatically; it is the programmer’s responsibility to
call ppl_finalize/0 when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with Hemable-shared option.

8 PPL Namespace Documentation

8.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Classes

e classParma_Polyhedra_Library::Variable
A dimension of the space.

e structParma_Polyhedra_Library::Variable::Compare
Binary predicate defining the total ordering on variables.

e classParma_Polyhedra_Library::LinExpression

A linear expression.

e classParma_Polyhedra_Library::Constraint
A linear equality or inequality.

e classParma_Polyhedra_Library::Generator
A line, ray, point or closure point.

e classParma_Polyhedra_Library::Poly Con_Relation
The relation between a polyhedron and a constraint.

e classParma_Polyhedra_Library::Poly Gen_Relation
The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

8.1 Parma_Polyhedra_Library Namespace Reference

e classParma_Polyhedra_Library::BHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.

e structParma_Polyhedra_Library::BHRZ03_Certificate::Compare

A total ordering on BHRZO03 certificates.

e classParma_Polyhedra_Library::H79_Certificate
A convergence certificate for the H79 widening operator.

e structParma_Polyhedra_Library::H79 _Certificate::Compare

A total ordering on H79 certificates.

e classParma_Polyhedra_Library::Polyhedron
The base class for convex polyhedra.

e classParma_Polyhedra_Library::C_Polyhedron
A closed convex polyhedron.

e classParma_Polyhedra_Library::NNC_Polyhedron
A not necessarily closed convex polyhedron.

e classParma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

e classParma_Polyhedra_Library::PowerSet< CS >
The powerset construction on constraint systems.

e classParma_Polyhedra_Library::Polyhedra_PowerSek PH >

The powerset construction instantiated on PPL polyhedra.

Typedefs

o typedef mpz_claskteger
See the GMP’s manual available latp://swox.com/gmp/

o typedef std::set Variable, Variable::Compare > Variables_Set

An std::set containing variables in increasing order of dimension index.

Functions

e unsignedversion_major ()
Returns the major number of the PPL version.

e unsignedversion_minor ()
Returns the minor number of the PPL version.

e unsignedversion_revision()

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/

for more information.


http://www.cs.unipr.it/ppl/

8.2 Parma_Polyhedra_Library::10_Operators Namespace Reference 69

Returns the revision number of the PPL version.

e unsignedversion_beta()
Returns the beta number of the PPL version.

e const chak version ()
Returns a character string containing the PPL version.

e const chak banner ()
Returns a character string containing the PPL banner.

8.1.1 Detailed Description

The entire library is confined to this namespace.

8.1.2 Function Documentation

8.1.2.1 const cha* banner ()
Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

8.2 Parma_Polyhedra_Library::I0_Operators Namespace Reference

All input/output operators are confined to this namespace.

8.2.1 Detailed Description

All input/output operators are confined to this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::10_Operators;

would suffice for most uses. In more complex situations, such as

const ConSys& cs = ...;
copy(cs.begin(), cs.end(),
ostream_iterator<Constraint>(cout, "\n"));

theParma_Polyhedra_Library(p.67) namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
/I Import all the output operators into the main PPL namespace.
using |O_Operators::operator<<;

}

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

8.3 std Namespace Reference 70

8.3 std Namespace Reference

The standard C++ namespace.

8.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templates swap() and iter_swap() (25.2.2, [lib.alg.swap]).

9 PPL Class Documentation

9.1 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

Public Member Functions

e BHRZ03 Certificate ()
Default constructor.

e BHRZ03_Certificate (constPolyhedron &ph)
Constructor: computes the certificate fain.

e BHRZ03_Certificate (constBHRZ03_Certificate &y)
Copy constructor.

e ~BHRZ03_Certificate ()
Destructor.

e int compare(constBHRZ03_Certificate &y) const
The comparison function for certificates.

e int compare (constPolyhedron &ph) const
Comparestthis  with the certificate for polyhedroph.

9.1.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZz03_Certificate(p. 70) can certify the convergence of both the BHRZ03 and the H79 widenings.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.2 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference 71

9.1.2 Member Function Documentation

9.1.2.1 intParma_Polyhedra_Library::BHRZ03_Certificate::compare (const BHRZ03_Certificate
& y) const

The comparison function for certificates.

Returns:
—1, 0 or 1 depending on whetheithis is smaller than, equal to, or greater thamespectively.

Comparestthis  with y, using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.
9.2 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference

A total ordering on BHRZO03 certificates.

Public Member Functions

e booloperator() (constBHRZ03_Certificate &x, constBHRZ03_Certificate &y) const
Returngrue if and only ifx comes beforg.

9.2.1 Detailed Description

A total ordering on BHRZ03 certificates.

This binary predicate defines a total ordering on BHRZ03 certificates which is used when storing informa-
tion about sets of polyhedra.
9.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron.

Public Member Functions

e C_Polyhedron(dimension_type num_dimensionsEggenerate_Kindkind=UNIVERSE)
Builds either the universe or the empty C polyhedron.

e C_Polyhedron(const ConSys &cs)
Builds a C polyhedron from a system of constraints.

e C_Polyhedron(ConSys &cs)
Builds a C polyhedron recycling a system of constraints.

e C_Polyhedron(const GenSys &gs)
Builds a C polyhedron from a system of generators.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference 72

C_Polyhedron(GenSys &gs)
Builds a C polyhedron recycling a system of generators.

C_Polyhedron(constNNC_Polyhedron&y)
Builds a C polyhedron from the NNC polyhedmpn

templatectypename Box C_Polyhedron(const Box &box, From_Bounding_Box dummy)
Builds a C polyhedron out of a generic, interval-based bounding box.

C_Polyhedron(constC_Polyhedron&y)
Ordinary copy-constructor.

C_Polyhedron& operator= (constC_Polyhedron&y)
The assignment operatokthis andy can be dimension-incompatible.).

~C_Polyhedron()
Destructor.

Static Public Member Functions

e dimension_typenax_space_dimensio)
Returns the maximum space dimensidd &olyhedron(p.71) can handle.

9.3.1 Detailed Description

A closed convex polyhedron.

An object of the clas€_Polyhedron(p.71) represents #opologically closedconvex polyhedron in the
vector spac®”.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains atrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containiciggure point

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all the
strict inequality constraints (resp., all the closure points). In contrast, when building a closed polyhe-
dron starting from an object of the claN®C_Polyhedron(p.93), the precise topological closure test
will be performed.

9.3.2 Constructor & Destructor Documentation

9.3.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type num_-
dimensions= 0, Degenerate_Kindkind = UNIVERSB [explicit]

Builds either the universe or the empty C polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference 73

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the C polyhedron;

kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

9.3.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const ConSys &9)
Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

9.3.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (ConSys &cs)
Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declanedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

9.3.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const GenSys &9
Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::Constraint Class Reference 74

9.3.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (GenSys &9
Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declzoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

9.3.2.6 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const NNC_Polyhedron &y)
[explicit]

Builds a C polyhedron from the NNC polyhedrgn

Exceptions:
std::invalid_argument Thrown if the polyhedroly is not topologically closed.

9.3.2.7 templatectypename Box> Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Box & box, From_Bounding_Boxdummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templateypename Box Polyhedron::Polyhedron(Topology topol, const
Box& box)(p.114);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.
Exceptions:

std::invalid_argument Thrown if box has intervals that are not topologically closed (i.e., having
some finite but open bounds).

9.4 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

Public Types

e enumType { EQUALITY , NONSTRICT_INEQUALITY , STRICT_INEQUALITY }
The constraint type.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::Constraint Class Reference

Public Member Functions

e Constraint (constConstraint &c)
Ordinary copy-constructor.

e ~Constraint ()
Destructor.

e Constraint & operator= (constConstraint &c)
Assignment operator.

e dimension_typepace_dimensior{) const
Returns the dimension of the vector space enclosinig

e Type type() const
Returns the constraint type ethis

e boolis_equality () const
Returngrue if and only ifxthis is an equality constraint.

e boolis_inequality () const
Returngrue if and only ifxthis is an inequality constraint (either strict or non-strict).

e boolis_nonstrict_inequality () const
Returngrue if and only ifxthis is a non-strict inequality constraint.

e boolis_strict_inequality () const
Returngrue if and only ifxthis s a strict inequality constraint.

e constinteger & coefficient(Variable v) const
Returns the coefficient efin xthis

e constinteger & inhomogeneous_term() const
Returns the inhomogeneous termxtifis

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e constConstraint & zero_dim_false()
The unsatisfiable (zero-dimension space) constfaiat1.

e constConstraint & zero_dim_positivity ()

The true (zero-dimension space) constréint 1, also known agositivity constraint

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::Constraint Class Reference 76

Related Functions

(Note that these are not member functions.)

std::ostream Soperator< < (std::ostream &s, con&onstraint &c)
Output operator.

Constraint operator== (constLinExpression &el, constLinExpression &e2)
Returns the constrairgl = e2.

Constraint operator== (constLinExpression &e, constinteger &n)
Returns the constrairg = n.

Constraint operator== (constinteger &n, constLinExpression &e)
Returns the constraint = e.

Constraint operator <= (constLinExpression &e1l, constLinExpression &e2)

Returns the constrairgl <= e2.

Constraint operator <= (constLinExpression &e, constinteger &n)
Returns the constrairg <= n.

Constraint operator <= (constinteger &n, constLinExpression &e)
Returns the constraint <= e.

Constraint operator >= (constLinExpression &e1l, constLinExpression &e2)
Returns the constraidl >= e2.

Constraint operator >= (constLinExpression &e, constinteger &n)
Returns the constrairg >= n.

Constraint operator >= (constinteger &n, constLinExpression &e)
Returns the constraint >= e.

Constraint operator < (constLinExpression &el, constLinExpression &e2)
Returns the constrairgl < e2.

Constraint operator < (constLinExpression &e, constinteger &n)
Returns the constrairg < n.

Constraint operator < (constinteger &n, constLinExpression &e)
Returns the constraint < e.

Constraint operator> (constLinExpression &el, constLinExpression &e2)
Returns the constrairgl > e2.

Constraint operator > (constLinExpression &e, constinteger &n)
Returns the constrairg > n.

Constraint operator> (constinteger &n, constLinExpression &e)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::Constraint Class Reference 77

Returns the constraint > e.

e void swap (Parma_Polyhedra_Library::Constraint &x, Parma_Polyhedra_-
Library::Constraint &y)

Specializestd::swap

9.4.1 Detailed Description

A linear equality or inequality.

An object of the clas€onstraint(p.74) is either:
e an equality:Z:f:—O1 a;x; +b=0;
e anon-strict inequalityZ?:_O1 a;x; +b>0;o0r

e astrictinequality>"""" a;z; +b > 0;

wheren is the dimension of the space; is the integer coefficient of variable; andb is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equalitg€), non-strict inequalitiesX= and <=) and strict inequalities< and
>). The space-dimension of a constraint is defined as the maximum space-dimension of the arguments
of its constructor.

In the following examples it is assumed that variableg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraiat + 5y — z = 0, having space-dimensich

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constrdint> 2y — 13, having space-dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constraint > 2y — 13 is obtained as follows:
Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension sfidlcean be specified as follows:
Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:
Constraint false_c1(LinExpression::zero() == 1);

Constraint false_c2(LinExpression::zero() >= 1);
Constraint false_c3(LinExpression::zero() > 0);

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::Constraint Class Reference 78

In contrast, the following code defines an unsatisfiable constraint having space-dinmgnsion

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space-dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case— 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraibt + 3z > 4).

Constraint c1(x - 5%y + 3*z <= 4);
cout << "Constraint cl: " << cl << endl;
if (cl.is_equality())
cout << "Constraint ¢l is not an inequality." << endl;

else {
LinExpression e;
for (int i = cl.space_dimension() - 1; i >= 0; i-)

e += cl.coefficient(Variable(i)) * Variable(i);
e += cl.inhomogeneous_term();
Constraint c2 = cl.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << ¢2 << endl;

}
The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= 4
Complement ¢2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

9.4.2 Member Enumeration Documentation

9.4.2.1 enum Parma_Polyhedra_Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.
STRICT_INEQUALITY The constraint is a strict inequality.

9.4.3 Member Function Documentation

9.4.3.1 constInteger& Parma_Polyhedra_Library::Constraint::coefficient (Variable v) const
Returns the coefficient of in xthis
Exceptions:

std::invalid_argumentthrown if the index ofv is greater than or equal to the space-dimension of
xthis

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 79

9.5 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference

Wraps a PPL class into a determinate constraint system interface.

Public Member Functions
Constructors and Destructor

¢ Determinate (dimension_type num_dimensions=0, bool universe=true)

Builds either the top or the bottom of the determinate constraint system defined on the vector space
havingnum_dimensions dimensions.

Determinate (const PH &p)

Injection operator: builds the determinate constraint system element corresponding to the base-level
elemenp.

Determinate (const ConSys &cs)

Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented log .

Determinate (constDeterminate &y)
Copy constructor.

~Determinate ()
Destructor.

Member Functions that Do Not Modify the Domain Element

e dimension_typspace_dimensior{) const
Returns the dimension of the vector space enclosinig

e const ConSys &onstraints () const
Returns the system of constraints.

e const ConSys &ninimized_constraints() const
Returns the system of constraints, with no redundant constraint.

e const PH &element() const
Returns a const reference to the embedded element.

e PH & element()
Returns a reference to the embedded element.

e boolis_top() const

Returngrue if and only ifxthis is the top of the determinate constraint system (i.e., the whole vector
space).

e boolis_bottom () const
Returngrue if and only ifthis is the bottom of the determinate constraint system (i.e., the emptyset).

¢ bool definitely_entails (constDeterminate &y) const
Returngrue if and only ifxthis entailsy (i.e.,xthis is contained iry).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 80

e boolis_definitely _equivalent_to(constDeterminate &y) const
Returngrue if and only ifxthis andy are equivalent.

e boolOK () const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Domain Element

e void upper_bound_assign(constDeterminate &y)
Assigns tocthis  the upper bound ofthis  andy.

e void meet_assigr(constDeterminate &y)
Assigns tocthis  the meet okthis  andy.

¢ void add_constraint (constConstraint &c)
Assigns tocthis  the meet ofthis  and the element represented by constraint

e void add_constraints(ConSys &cs)
Assigns tosthis  the meet okthis  and the element represented by the constraintsin

Member Functions that May Modify the Dimension of the Vector Space

e Determinate & operator= (constDeterminate &y)
Assignment operator.

¢ void swap (Determinate &y)
Swapskthis  withy.

e void add_dimensions_and_embe¢dimension_type m)
Addsmnew dimensions and embeds the old domain element in the new vector space.

¢ void add_dimensions_and_projectdimension_type m)
Addsmnew dimensions to the domain element and does not embed it in the new vector space.

e void concatenate_assigfconstDeterminate &y)
Assigns tocthis  theconcatenatior(p. 6) of «this andy, taken in this order.

¢ void remove_dimensiongconstVariables Set&to be removed)
Removes all the specified dimensions.

e void remove_higher_dimensiongdimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeegiodimension

o templatectypename PartialFunctionvoid map_dimensions(const PartialFunction &pfunc)
Remaps the dimensions of the vector space according to a partial function.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 81

Friends

e booloperator== (constDeterminate< PH > &x, constDeterminate< PH > &y)
Returngrue if and only ifx andy are the same domain element.

e booloperator!= (constDeterminate< PH > &x, constDeterminate< PH > &y)
Returngrue if and only ifx andy are different domain elements.

Related Functions
(Note that these are not member functions.)

e std::ostream &operator<< (std::ostream &, conddeterminate< PH > &)
Output operator.

e void swap (Parma_Polyhedra_Library::Determinate< PH > &x, Parma_Polyhedra_-
Library::Determinate < PH > &y)

Specializestd::swap

9.5.1 Detailed Description
template<typename PH> class Parma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

9.5.2 Constructor & Destructor Documentation
9.5.2.1 templatectypename PH> Parma_Polyhedra_Library::Determinate< PH >::Determinate
(dimension_typenum_dimensions= 0, bool universe=true ) [explicit]

Builds either the top or the bottom of the determinate constraint system defined on the vector space having
num_dimensions dimensions.

The top element, corresponding to the whole vector space, is builiverse istrue ; otherwise the
bottom element, corresponding to the emptyset, is built. By default, the top of a zero-dimension vector
space is built.

9.5.3 Member Function Documentation

9.5.3.1 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH >:add -
constraint (const Constraint & c)

Assigns toxthis  the meet ofthis and the element represented by constraint

Exceptions:

std::invalid_argument Thrown if «this and constraint are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 82

9.5.3.2 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH >:add_-
constraints (ConSys &c9)

Assigns toxthis  the meet ofthis  and the element represented by the constraints in

Parameters:
cs The constraints to intersect with. This parameter is not dectayest because it can be modified.

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

9.5.3.3 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_dimensions (const Variables_Set & be_removed

Removes all the specified dimensions.

Parameters:
to_be_removedrhe set oiVariable(p.132) objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible with one of tMariable (p. 132
objects contained ito_be_removed

9.5.3.4 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_higher_dimensions (dimension_typaew_dimensioh

Removes the higher dimensions so that the resulting space will have dimeesgiodimension

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimensiortbiis

9.5.3.5 templatectypename PH> template<typename PartialFunction> void Parma_Polyhedra_-
Library::Determinate < PH >::map_dimensions (const PartialFunction &pfunc)

Remaps the dimensions of the vector space according to a partial function.

SeePolyhedron::map_dimensiongp.128).

9.5.4 Friends And Related Function Documentation

9.5.4.1 templatectypename PH> bool operator== (const Determinatec PH > & X, const
Determinate< PH > & y) [friend]

Returngrue if and only if x andy are the same domain element.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Generator Class Reference 83

9.5.4.2 templatectypename PH> bool operator!= (const Determinate<c PH > & X, const
Determinate< PH > & y) [friend]

Returngrue if and only if x andy are different domain elements.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.
9.6 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.

Public Types

e enumType { LINE, RAY, POINT, CLOSURE_POINT }
The generator type.

Public Member Functions

e Generator (constGenerator &9)
Ordinary copy-constructor.

e ~Generator ()
Destructor.

e Generator & operator= (constGenerator &g)
Assignment operator.

e dimension_typespace_dimensior) const
Returns the dimension of the vector space enclosihig

e Type type() const
Returns the generator type sthis

e boolis_line() const
Returngrue if and only if«this is aline.

e boolis_ray () const
Returngrue if and only ifxthis is a ray.

e boolis_point () const
Returngtrue if and only ifxthis is a point.

e boolis_closure_point() const
Returngrue if and only ifxthis is a closure point.

e constinteger & coefficient(Variable v) const
Returns the coefficient ofin xthis

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Generator Class Reference 84

e constinteger & divisor () const
If xthis is either a point or a closure point, returns its divisor.

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Generator line (constLinExpression &e)
Shorthand foiGenerator(p.83) Generator::line(const LinExpression& e)(p.87).

e Generator ray (constLinExpression &e)
Shorthand foiGenerator(p.83) Generator::ray(const LinExpression& e)(p.87).

e Generator point (constLinExpression &e=LinExpression::zero(), conshteger &d=Integer_-
one()

Shorthand foiGenerator(p.83) Generator::point(const LinExpression& e, const Integer& d)(p. 87).

e Generator closure_point (const LinExpression &e=LinExpression::zero(), consinteger
&d=Integer_one())

Shorthand forGenerator(p.83) Generator::closure_point(const LinExpression& e, const Integer&
d)(p.89).

e constGenerator & zero_dim_point()
Returns the origin of the zero-dimensional sp&e

e constGenerator & zero_dim_closure_point()
Returns, as a closure point, the origin of the zero-dimensional sRéce

Related Functions
(Note that these are not member functions.)

e std::ostream &operator< < (std::ostream &s, cong&kenerator &Q)
Output operator.

e void swap (Parma_Polyhedra_Library::Generator &X, Parma_Polyhedra_-
Library::Generator &y)

Specializestd::swap

9.6.1 Detailed Description

A line, ray, point or closure point.

An object of the clas&enerator(p.83) is one of the following:

e alinel = (ag,...,an_1)"%;

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Generator Class Reference 85

e arayr = (ag,...,an_1)"%;
o apointp = (%, ..., “2)7;
e aclosure point = (%4,..., “==1)T;

wheren is the dimension of the space and, for points and closure pdints) is the divisor.

A note on terminology.
As observed in SectioRepresentations of Convex Polyhedr@. 3), there are cases when, in order
to represent a polyhedrdP using the generator systeth= (L, R, P, C'), we need to include in the
finite setP even points ofP that arenot vertices of P. This situation is even more frequent when
working with NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other
libraries use the word ‘vertex’.

How to build a generator.
Each type of generator is built by applying the corresponding functioe (, ray , point or
closure_point ) to alinear expression, representing a direction in the space; the space-dimension
of the generator is defined as the space-dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply
ignored). When defining points and closure points, an optional Integer argument can be used as a
commondivisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variabdeg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds a line with direction— y — z and having space-dimensién

Generator | = line(x - y - 2);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator | = line(x - y - z + 15);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator | = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the point = (1,0,2)" € R3:

Generator p = point(1*x + O*y + 2*z);

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Generator Class Reference 86

The same effect can be obtained by using the following code:
Generator p = point(x + 2*z);
Similarly, the origin0 € R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0O*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, nanelR?:
Generator origin2 = point(0*y);

The following two lines of code both define the only point having space-dimension zero, namely
0 ¢ R° In the second case we exploit the fact that the first argument of the furmion is
optional.

Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the funptamt  (the divisor):

Generator p = point(2*x + O*y + 4*z, 2);
Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-

nal) coordinates. For instance, the pajnt (—1.5,3.2,2.1)T € R? can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);
If a zero divisor is provided, an exception is thrown.
Example 5

Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point (1,0,2)" € R? is defined by

Generator ¢ = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space-dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0O_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its
space-dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a genergtbr. If
is a point having coordinat€®y, . .., a,_1)T, we construct the closure poig2 having coordinates
(ap,2ay,...,(i +1ag,...,nap,_1)T

if (gl.is_point()) {
cout << "Point gl: " << gl << endl;
LinExpression e;
for (int i = gl.space_dimension() - 1; i >= 0; i--)
e += (i + 1) * gl.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, gl.divisor());
cout << "Closure point g2: " << g2 << endl;
}
else
cout << "Generator gl is not a point." << endl;

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Generator Class Reference 87

Therefore, for the point
Generator g1 = point(2*x - y + 3*z, 2);
we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the noti@moefficientwvith the notion
of coordinate these are equivalent only when the divisor of the (closure) pointis 1.

9.6.2 Member Enumeration Documentation

9.6.2.1 enum Parma_Polyhedra_Library::Generator::Type

The generator type.

Enumeration values:
LINE The generator is a line.

RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

9.6.3 Member Function Documentation

9.6.3.1 Generator line (const LinExpression &) [static]

Shorthand foiGenerator(p.83) Generator::line(const LinExpression& e)p. 87).

Exceptions:
std::invalid_argument Thrown if the homogeneous partefrepresents the origin of the vector space.

9.6.3.2 Generator ray (const LinExpression &) [static]

Shorthand folGenerator(p.83) Generator::ray(const LinExpression& e)(p.87).

Exceptions:
std::invalid_argument Thrown if the homogeneous part@frepresents the origin of the vector space.

9.6.3.3 Generator point (const LinExpression & = LinExpression::zero() , const Integer &
d=Integer_one() ) [static]

Shorthand foiGenerator(p.83) Generator::point(const LinExpression& e, const Integer& d)(p.87).

Bothe andd are optional arguments, with default valugsExpression::zero()(p.90) and Integer_one(),
respectively.

Exceptions:
std::invalid_argument Thrown ifd is zero.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::H79_Certificate Class Reference 88

9.6.3.4 Generator closure_point (const LinExpression & = LinExpression::zero() , const
Integer & d=Integer _one() ) [static]

Shorthand forGenerator(p.83) Generator::closure_point(const LinExpression& e, const Integer&
d)(p.88).

Bothe andd are optional arguments, with default valugsExpression::zero()(p.90) and Integer_one(),
respectively.

Exceptions:
std::invalid_argument Thrown if d is zero.

9.6.3.5 const Integer& Parma_Polyhedra_Library::Generator::coefficient (Variablev) const

Returns the coefficient of in *this

Exceptions:
std::invalid_argument Thrown if the index ofv is greater than or equal to the space-dimension of
xthis

9.6.3.6 const Integer& Parma_Polyhedra_Library::Generator::divisor () const
If xthis is either a point or a closure point, returns its divisor.
Exceptions:

std::invalid_argument Thrown if «this  is neither a point nor a closure point.

9.7 Parma_Polyhedra_Library::H79_Certificate Class Reference

A convergence certificate for the H79 widening operator.

Public Member Functions

e H79 Certificate ()
Default constructor.

e H79 Certificate (constPolyhedron &ph)
Constructor: computes the certificate foin.

e H79 Certificate (constH79_Certificate &y)
Copy constructor.

e ~H79_Certificate ()
Destructor.

e int compare(constH79_Certificate &y) const
The comparison function for certificates.

e int compare (constPolyhedron &ph) const
Comparesctthis  with the certificate for polyhedroph.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 89

9.7.1 Detailed Description

A convergence certificate for the H79 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
The convergence of the H79 widening can also be certifietBHRZ03_Certificate(p. 70).

9.7.2 Member Function Documentation

9.7.2.1 int Parma_Polyhedra_Library::H79_ Certificate::compare (const H79_ Certificate &y)
const

The comparison function for certificates.

Returns:
—1, 0 or 1 depending on whetheithis is smaller than, equal to, or greater thanespectively.

Comparestthis  with y, using a total ordering which is a refinement of the limited growth ordering
relation for the H79 widening.

9.8 Parma_Polyhedra_Library::H79 Certificate::Compare Struct Reference

A total ordering on H79 certificates.

Public Member Functions

e booloperator() (constH79_Certificate &x, constH79_Certificate &y) const
Returngrue if and only ifx comes beforg.

9.8.1 Detailed Description

A total ordering on H79 certificates.

This binary predicate defines a total ordering on H79 certificates which is used when storing information
about sets of polyhedra.

9.9 Parma_Polyhedra_Library::LinExpression Class Reference

A linear expression.

Public Member Functions

e LinExpression ()
Default constructor: returns a copy afnExpression::zero()(p.90).

e LinExpression (constLinExpression &e)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::LinExpression Class Reference 90

Ordinary copy-constructor.

e ~LinExpression ()
Destructor.

e LinExpression (constinteger &n)
Builds the linear expression corresponding to the inhomogeneousterm

e LinExpression (constVariable v)
Builds the linear expression corresponding to the variahle

e LinExpression (constConstraint &c)
Builds the linear expression corresponding to constraint

e LinExpression (constGenerator &Q)

Builds the linear expression corresponding to generatgfor points and closure points, the divisor is not
copied).

o dimension_typepace_dimensior{) const
Returns the dimension of the vector space enclosinig

e constinteger & coefficient(Variable v) const
Returns the coefficient ofin «this

e constinteger & inhomogeneous_term() const
Returns the inhomogeneous ternxtfis

Static Public Member Functions

e constLinExpression & zero()
Returns the (zero-dimension space) constant 0.

Related Functions
(Note that these are not member functions.)

e LinExpression operator+ (constLinExpression &el, constLinExpression &e2)
Returns the linear expressi@i + e2.

e LinExpression operator+ (constinteger &n, constLinExpression &e)
Returns the linear expression+ e.

e LinExpression operator+ (constLinExpression &e, constinteger &n)
Returns the linear expressi@+ n.

e LinExpression operator+ (constLinExpression &e)
Returns the linear expressi@n

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::LinExpression Class Reference 91

e LinExpression operator- (constLinExpression &e)
Returns the linear expressiore:

e LinExpression operator- (constLinExpression &el, constLinExpression &e2)
Returns the linear expressi@il - e2.

e LinExpression operator- (constinteger &n, constLinExpression &e)
Returns the linear expressiaon- e.

e LinExpression operator- (constLinExpression &e, constinteger &n)
Returns the linear expressi@n- n.

e LinExpression operator x (constinteger &n, constLinExpression &e)
Returns the linear expressianx e.

e LinExpression operator x (constLinExpression &e, constinteger &n)
Returns the linear expressi@nx n.

e LinExpression & operator+= (LinExpression &e1l, constLinExpression &e2)
Returns the linear expressi@l + e2 and assigns it tel.

e LinExpression & operator+= (LinExpression &e, constVariable v)
Returns the linear expressien+ v and assigns it te.

e LinExpression & operator+= (LinExpression &e, constinteger &n)
Returns the linear expressien+ n and assigns it te.

e LinExpression & operator-= (LinExpression &e1l, constLinExpression &e2)
Returns the linear expressi@l - e2 and assigns it tel.

e LinExpression & operator-= (LinExpression &e, constVariable v)
Returns the linear expressi@n- v and assigns it t@.

e LinExpression & operator-= (LinExpression &e, constinteger &n)
Returns the linear expressi@n- n and assigns it t@.

e LinExpression & operator x= (LinExpression &e, constinteger &n)
Returns the linear expression« e and assigns it t@.

e std::ostream &operator<< (std::ostream &s, constinExpression &e)
Output operator.

e void swap (Parma_Polyhedra_Library::LinExpression &x, Parma_Polyhedra_Library::Lin-
Expression&y)

Specializestd::swap

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::LinExpression Class Reference 92

9.9.1 Detailed Description

A linear expression.

An object of the claskinExpression(p.89) represents the linear expression

n—1
1=0

wheren is the dimension of the space, eaghis the integer coefficient of thie -th variablex; andb is the
integer for the inhomogeneous term.

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classeVariable(p.132) and Integer: available operators include unary negation, binary addition and
subtraction, as well as multiplication by an Integer. The space-dimension of a linear expression is defined
as the maximum space-dimension of the arguments used to build it: in particular, the space-dimension of
a Variable(p.132 x is defined ax.id()+1 , whereas all the objects of the class Integer have space-
dimension zero.

Example
The following code builds the linear expressibn— 2y — z + 14, having space-dimensidh

LinExpression e = 4*x - 2*y - z + 14,
Another way to build the same linear expression is:

LinExpression el
LinExpression e2 2%y,
LinExpression e3 = z;

LinExpression e = LinExpression(14);
e += el - e2 - e3;

4*x;

Note thatel, e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

9.9.2 Constructor & Destructor Documentation

9.9.2.1 Parma_Polyhedra_Library::LinExpression::LinExpression (const Constraint & )
[explicit]
Builds the linear expression corresponding to consti@int

n—1

Given the constraint = (Zi:o a;x; + b O), wherext € {=,>, >}, builds the linear expression

Z?:_ol a;x; + b. If ¢ is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

9.9.2.2 Parma_Polyhedra_Library::LinExpression::LinExpression (const Generator & Q)
[explicit]

Builds the linear expression corresponding to genemtdor points and closure points, the divisor is not
copied).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.10 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 93

Given the generatay = (“2,. .., 2n=1)T (where, for lines and rays, we hade= 1), builds the linear

d
expressionzyz’o1 a;x;. The inhomogeneous term of the linear expression will always be @.idfa ray,

point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

9.10 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron.

Public Member Functions

e NNC_Polyhedron(dimension_type num_dimensionskgenerate_Kindkind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

e NNC_Polyhedron(const ConSys &cs)
Builds an NNC polyhedron from a system of constraints.

e NNC_Polyhedron(ConSys &cs)
Builds an NNC polyhedron recycling a system of constraints.

e NNC_Polyhedron(const GenSys &gs)
Builds an NNC polyhedron from a system of generators.

e NNC_Polyhedron(GenSys &gs)
Builds an NNC polyhedron recycling a system of generators.

e NNC_Polyhedron(constC_Polyhedron&y)
Builds an NNC polyhedron from the C polyhedson

o templatectypename Box NNC_Polyhedron(const Box &box, From_Bounding_Box dummy)
Builds an NNC polyhedron out of a generic, interval-based bounding box.

e NNC_Polyhedron(constNNC_Polyhedron&y)

Ordinary copy-constructor.

e NNC_Polyhedron& operator= (constNNC_Polyhedron&y)
The assignment operatokthis andy can be dimension-incompatible.).

e ~NNC_Polyhedron()
Destructor.

Static Public Member Functions

e dimension_typenax_space_dimensioif)
Returns the maximum space dimensidd &olyhedron(p.71) can handle.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.10 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 94

9.10.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the clasBINC_Polyhedron(p.93) represents aot necessarily close@NNC) convex polyhe-
dron in the vector spade™.

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of theQlass
Polyhedron(p.71) can be (explicitly) converted into an object of the claBdéC_Polyhedron(p.93).
The reason for defining two different classes is that objects of the €aBslyhedron(p.71) are
characterized by a more efficient implementation, requiring less time and memory resources.

9.10.2 Constructor & Destructor Documentation

9.10.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions= 0, Degenerate_Kindkind = UNIVERSB [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

9.10.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const ConSys &s)
Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron. It is not declenedt because its data-
structures will be recycled to build the polyhedron.

9.10.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (ConSys &9)
Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron. It is not declenedt because its data-
structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.11 Parma_Polyhedra_Library::Poly _Con_Relation Class Reference 95

9.10.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const GenSys &9
Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declzoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

9.10.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (GenSys &9
Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declsoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

9.10.2.6 templatectypename Box> Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box &box, From_Bounding_Boxdummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templateypename Box Polyhedron::Polyhedron(Topology topol, const
Box& box)(p.114);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

9.11 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

e boolimplies (constPoly _Con_Relation&y) const
True if and only if«this  impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.12 Parma_Polyhedra_Library::Poly _Gen_Relation Class Reference 96

Static Public Member Functions

e Poly_Con_Relation nothing()
The assertion that says nothing.

Poly_Con_Relation is_disjoint()
The polyhedron and the set of points satisfying the constraint are disjoint.

Poly_Con_Relation strictly_intersecty)
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

Poly_Con_Relation is_included)
The polyhedron is included in the set of points satisfying the constraint.

Poly_Con_Relation saturatey)
The polyhedron is included in the set of points saturating the constraint.

Related Functions
(Note that these are not member functions.)

e booloperator== (constPoly _Con_Relation&x, constPoly Con_Relation&y)
True if and only ifx andy are logically equivalent.

bool operator!= (constPoly _Con_Relation&x, constPoly _Con_Relation&y)
True if and only ifx andy are not logically equivalent.

Poly_Con_Relation operator && (constPoly _Con_Relation&x, constPoly_Con_Relation&y)

Yields the logical conjunction of andy.

Poly _Con_Relation operator-(constPoly _Con_Relation&x, constPoly _Con_Relation&y)

Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream &operator< < (std::ostream &s, con§toly _Con_Relation&r)

Output operator.

9.11.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

9.12 Parma_Polyhedra_Library::Poly Gen_Relation Class Reference

The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 97

Public Member Functions

e boolimplies (constPoly _Gen_Relation&y) const
True if and only if«this  impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Poly Gen_Relation nothing()
The assertion that says nothing.

e Poly_Gen_Relation subsume§
Adding the generator would not change the polyhedron.

Related Functions

(Note that these are not member functions.)

e booloperator== (constPoly _Gen_Relation&x, constPoly Gen_Relation&y)
True if and only ifx andy are logically equivalent.

bool operator!= (constPoly _Gen_Relation&x, constPoly Gen_Relation&y)
True if and only ifx andy are not logically equivalent.

Poly_Gen_Relation operator && (constPoly _Gen_Relation&x, constPoly Gen_Relation&y)
Yields the logical conjunction of andy.

Poly_Gen_Relation operator{constPoly _Gen_Relation&x, constPoly _Gen_Relation&y)
Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream Soperator< < (std::ostream &s, congtoly_Gen_Relation&r)
Output operator.

9.12.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template
Reference

The powerset construction instantiated on PPL polyhedra.

Inherits Parma_Polyhedra_Library::PowerSet< Parma_Polyhedra_Library::Determinate< PH >
>,

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 98

Public Member Functions
Constructors

e Polyhedra_PowerSet (dimension_type num_dimensions=®olyhedron::Degenerate_Kind
kind=Polyhedron::UNIVERSE)
Builds a universe (top) or empty (bottoPdlyhedra_PowerSefp. 97).

e Polyhedra PowerSe{(constPolyhedra_PowerSet&y)
Ordinary copy-constructor.

e Polyhedra PowerSe{const ConSys &cs)
Creates aPolyhedra_PowerSep. 97) with the same information contents &s.

Member Functions that Do Not Modify the Powerset of Polyhedra

e dimension_typspace_dimensior{) const
Returns the dimension of the vector space enclosing

e boolgeometrically_coverg(constPolyhedra PowerSety) const

Returnstrue if and only ifxthis geometrically covery, i.e., if any point (in some element) yfis
also a point (of some element)ghis

e boolgeometrically_equalsconstPolyhedra_PowerSet&y) const

Returnstrue if and only if xthis is geometrically equal tg, i.e., if (the elements ofithis andy
contain the same set of points.

e boolOK () const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Powerset of Polyhedra

e void add_constraint (constConstraint &c)
Intersectstthis  with constraintc.

booladd_constraint_and_minimize(constConstraint &c)
Intersectskthis  with the constraint, minimizing the result.

void add_constraints(const ConSys &cs)
Intersectstthis  with the constraints ircs .

booladd_constraints_and_minimize(const ConSys &cs)
Intersectstthis  with the constraints irts , minimizing the result.

void pairwise_reduce()

Assign toxthis  the result of (recursively) merging together the pairs of polyhedra whose poly-hull is
the same as their set-theoretical union.

templatectypename Widening void BGP99_extrapolation_assigr(constPolyhedra_Power-
Set&y, Widening wf, unsigned max_disjuncts)
Assigns torthis  the result of applying the BGP99 extrapolation operatoktbis andy, using the
widening functiorwf and the cardinality thresholchax_disjuncts

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 99

e templatectypename Cert, typename Wideningvoid BHZ03_widening_assign (const
Polyhedra_PowerSety, Widening wf)

Assigns torthis  the result of computing thBHZ03-widening(p. 13) betweenxthis andy, using the
widening functiorwf certified by the convergence certificaiert .

e templatectypename Widening void BHZ03_widening_assign(const Polyhedra_PowerSet
&y, Widening wf)

An instance of the BHZ03 framework using the widening functidn certified by BHRZ03_-
Certificate(p. 70).

Member Functions that May Modify the Dimension of the Vector Space

e Polyhedra_PowerSet& operator= (constPolyhedra_PowerSe®&y)
The assignment operatorthis andy can be dimension-incompatible).

e void swap (Polyhedra_PowerSet&y)
Swapstthis  withy.

¢ void add_dimensions_and_embe¢dimension_type m)

Addsmnew dimensions to the space containitbis and embeds each polyhedronsithis in the
new space.

¢ void add_dimensions_and_projectdimension_type m)
For each polyhedron irthis , addsmnew dimensions without embedding it in the new space.

e void concatenate_assigfconstPolyhedra_PowerSe&y)
Assigns tocthis  the concatenation ofthis  andy.

¢ void remove_dimensiongconstVariables Set&to be_removed)
Removes all the specified dimensions.

e void remove_higher_dimensiongdimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeeasiodimension

o templatectypename PartialFunctionvoid map_dimensions(const PartialFunction &pfunc)
Remaps the dimensions of the vector space according to a partial function.

Static Public Member Functions

e dimension_typenax_space_dimensioif)
Returns the maximum space dimension a Polyhedra_Powd?set can handle.

Related Functions
(Note that these are not member functions.)

¢ Widening_Functior: PH > widen_fun (void(PH:xwm)(const PH &, unsigned))
Wraps a widening method into a function object.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 100

e Limited_Widening_Functior PH > widen_fun (void(PH:xlwm)(const PH &, const ConSys &,
unsignedk), const ConSys &cs)

Wraps a limited widening method into a function object.

e void swap (Parma_Polyhedra_Library::Polyhedra_PowerSek PH > &x, Parma_Polyhedra_-
Library::Polyhedra_PowerSet< PH > &y)

Specializestd::swap

e std::paik PH, Polyhedra_PowerSet. NNC_Polyhedron > > linear_partition (const PH &p,
const PH &q)

Partitionsq with respect tg.

9.13.1 Detailed Description
template<typename PH> class Parma_Polyhedra_Library::Polyhedra_PowerSet PH >

The powerset construction instantiated on PPL polyhedra.

9.13.2 Constructor & Destructor Documentation

9.13.2.1 templatectypename PH> Parma_Polyhedra_Library::Polyhedra_PowerSek.  PH
>::Polyhedra_PowerSet (dimension_type&um_dimensions= 0, Polyhedron::Degenerate_Kindkind
= Polyhedron::UNIVERSE ) [explicit]

Builds a universe (top) or empty (bottofblyhedra_PowerSefp.97).

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

9.13.3 Member Function Documentation

9.13.3.1 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::geometrically_covers (const Polyhedra_PowerSetPH > & y) const

Returngrue if and only if «this geometrically coversy, i.e., if any point (in some element) gfis also
a point (of some element) ethis

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Warning:
This may beeally expensive!

9.13.3.2 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSet PH
>::geometrically_equals (const Polyhedra_PowerSetPH > & y) const

Returnstrue if and only if xthis is geometrically equal tg, i.e., if (the elements ofythis andy
contain the same set of points.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 101

Exceptions:
std::iinvalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

Warning:
This may beeally expensive!

9.13.3.3 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraint (const Constraint & c)

Intersectscthis  with constraintc.

Exceptions:
std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

9.13.3.4 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSet PH
>::add_constraint_and_minimize (const Constraint &c)

Intersectscthis  with the constraint, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and ¢ are topology-incompatible or dimension-
incompatible.

9.13.3.5 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraints (const ConSys &cs)

Intersectscthis  with the constraints ilgs .

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if «this and cs are topology-incompatible or dimension-
incompatible.

9.13.3.6 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraints_and_minimize (const ConSys &9

Intersectscthis ~ with the constraints ics , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if «this and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 102

9.13.3.7 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::pairwise_reduce ()

Assign toxthis  the result of (recursively) merging together the pairs of polyhedra whose poly-hull is the
same as their set-theoretical union.

On exit, for all the pairs?, O of different polyhedra inthis , we haveP W Q # P U Q.

9.13.3.8 templatectypename PH> template<typename Widening> void Parma_Polyhedra_-
Library::Polyhedra_PowerSet< PH >::BGP99_extrapolation_assign (const Polyhedra_PowerSet
PH > & y, Widening wf, unsignedmax_disjunct3

Assigns toxthis  the result of applying the BGP99 extrapolation operatokttds andy, using the
widening functionwf and the cardinality thresholdax_disjuncts

Parameters:

y A finite powerset of polyhedra. thustdefinitely entail«this ;

wf The widening function to be used on polyhedra objects. It is obtained from the corresponding
widening method by using the helper function Parma_Polyhedra_Library::widen_fun. Legal
values are, e.gwiden_fun(&Polyhedron::H79_widening_assign) andwiden_-
fun(&Polyhedron::limited_H79_extrapolation_assign, cs) X

max_disjuncts The maximum number of disjuncts occurring in the powessleis beforestarting
the computation. If this number is exceeded, some of the disjunetbim are collapsed (i.e.,
joined together).

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

For a description of the extrapolation operator, [E@&P99](p. 15) and[BHZ03b] (p. 15).

9.13.3.9 templatectypename PH> template<typename Cert, typename Widening- void Parma_-
Polyhedra_Library::Polyhedra_PowerSet< PH >::BHZ03_widening_assign (const Polyhedra_-
PowerSek PH > & y, Widening wf)

Assigns toxthis  the result of computing thBHZ03-widening(p. 13) betweenxthis andy, using the
widening functionwf certified by the convergence certificatert .

Parameters:
y The finite powerset of polyhedra computed in the previous iteration stapustdefinitely entalil
xthis
wf The widening function to be used on polyhedra objects. It is obtained from the cor-
responding widening method by using the helper function widen_fun. Legal val-
ues are, e.g.widen_fun(&Polyhedron::H79_widening_assign) and widen_-
fun(&Polyhedron::limited_H79_extrapolation_assign, cs)

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Warning:
In order to obtain a proper widening operator, the template parar@etér should be a finite con-
vergence certificate for the base-level widening functidn otherwise, an extrapolation operator
is obtained. For a description of the methods that should be providedeby, seeBHRZ03_-
Certificate(p.70) or H79_Certificate(p. 88).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 103

9.13.3.10 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::concatenate_assign (const Polyhedra_PowerSePH > & )

Assigns tokthis  the concatenation afthis andy.

The result is obtained by computing the pairnisacatenatior(p.6) of each polyhedron inthis  with
each polyhedron ig.

9.13.3.11 templatetypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSet PH
>::remove_dimensions (const Variables_Set & be removed

Removes all the specified dimensions.

Parameters:
to_be_removedlhe set ofVariable(p.132) objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if xthis  is dimension-incompatible with one of tMariable(p.132)
objects contained ito_be_removed

9.13.3.12 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSet PH
>::remove_higher_dimensions (dimension_typeew_dimensioh

Removes the higher dimensions so that the resulting space will have dimeesiodimension

Exceptions:
std::invalid_argument Thrown if new_dimensions s greater than the space dimensiortbiis

9.13.3.13 templatetypename PH> template<typename PartialFunction> void Parma_-
Polyhedra_Library::Polyhedra_PowerSet< PH >:map_dimensions (const PartialFunction &
pfunc)

Remaps the dimensions of the vector space according to a partial function.

See alsd’olyhedron::map_dimensiongp.128).

9.13.4 Friends And Related Function Documentation
9.13.4.1 templatectypename PH> Widening_Function< PH > widen_fun (void(PH::x wm)(const
PH &, unsigned %)) [related]

Wraps a widening method into a function object.

Parameters:
wm The widening method.

9.13.4.2 templatectypename PH> Limited_Widening_Function< PH > widen_fun (void(PH::x
Iwm)(const PH &, const ConSys &, unsigned), const ConSys &cs) [related]

Wraps a limited widening method into a function object.

Parameters:
lwm The limited widening method.

cs The constraint system limiting the widening.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 104

9.13.4.3 templatectypename PH> std::pair < PH, Polyhedra_PowerSet. NNC_Polyhedron > >
linear_partition (const PH & p, const PH & g) [related]

Partitionsg with respect t.

Let p andq be two polyhedra. The function returns an objedf type std::pair <PH, Polyhedra_-
PowerSe{p.97)<NNC_Polyhedronp.93)> > such that

o r.first is the intersection gb andq;

e r.second has the property that all its elements are not empty, pairwise disjoint, and disjoint from
p;

e the union oftr.first with all the elements af.second givesq (i.e.,r isthe representation of a
partition ofq).

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited by Parma_Polyhedra_Library::C_Polyhedron, and Parma_Polyhedra_Library::NNC_-
Polyhedron.
Public Types

e enumDegenerate_Kind{ UNIVERSE, EMPTY }
Kinds of degenerate polyhedra.

Public Member Functions
Member Functions that Do Not Modify the Polyhedron

e dimension_typepace_dimensior{) const
Returns the dimension of the vector space enclosing

e const ConSys &onstraints () const
Returns the system of constraints.

e const ConSys &ninimized_constraints() const
Returns the system of constraints, with no redundant constraint.

e const GenSys &enerators() const
Returns the system of generators.

e const GenSys &ninimized_generators() const
Returns the system of generators, with no redundant generator.

e Poly_Con_Relation relation_with(constConstraint &c) const
Returns the relations holding between the polyheddthis and the constraint.

e Poly_Gen_Relation relation_with(constGenerator &g) const
Returns the relations holding between the polyheddtiis  and the generatog.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 105

e boolis_empty() const
Returngrue if and only ifxthis is an empty polyhedron.

e boolis_universe() const
Returngtrue if and only ifxthis is a universe polyhedron.

e boolis_topologically _closed) const
Returngtrue if and only ifxthis is a topologically closed subset of the vector space.

e boolis_disjoint_from (constPolyhedron &y) const
Returngtrue if and only ifxthis andy are disjoint.

e boolis_bounded() const
Returngrue if and only ifxthis is a bounded polyhedron.

e boolbounds_from_above(constLinExpression &expr) const
Returngtrue if and only ifexpr is bounded from above ithis

e boolbounds_from_below(constLinExpression &expr) const
Returngrue if and only ifexpr is bounded from below irthis

e bool maximize (constLinExpression &expr, Integer &sup_n, Integer &sup_d, bool &maxi-
mum) const

Returnstrue if and only ifxthis is not empty an@éxpr is bounded from above ithis , in which
case the supremum value is computed.

e bool maximize (constLinExpression &expr, Integer &sup_n, Integer &sup_d, bool &maxi-
mum, consiGenerator xxconst pppoint) const

Returnstrue if and only ifxthis is not empty an@xpr is bounded from above ithis , in which
case the supremum value and a point whetpr reaches it are computed.

e boolminimize (constLinExpression &expr, Integer &inf_n, Integer &inf_d, bool &minimum)
const

Returnstrue if and only if«this is not empty an@éxpr is bounded from below irthis , in which
case the infimum value is computed.

e boolminimize (constLinExpression &expr, Integer &inf_n, Integer &inf_d, bool &minimum,
constGenerator #xconst pppoint) const

Returnstrue if and only if«this is not empty an@éxpr is bounded from below irthis , in which
case the infimum value and a point wherr reaches it are computed.

e bool contains (constPolyhedron &y) const
Returngrue if and only ifxthis containsy.

e boolstrictly_contains (constPolyhedron &y) const
Returngtrue if and only ifxthis  strictly containsy.

e templatectypename Box void shrink_bounding_box(Box &box, Complexity _Class complex-
ity=ANY) const
Usesxthis  to shrink a generic, interval-based bounding box.

e boolOK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 106

Space-Dimension Preserving Member Functions that May Modify the Polyhedron

e void add_constraint (constConstraint &c)
Adds a copy of constraimt to the system of constraints ethis  (without minimizing the result).

e booladd_constraint_and_minimize(constConstraint &c)
Adds a copy of constraimt to the system of constraintsethis , minimizing the result.

e void add_generator(constGenerator &g)
Adds a copy of generat@r to the system of generatorssghis (without minimizing the result).

e booladd_generator_and_minimize(constGenerator &g)
Adds a copy of generatag to the system of generators:ghis , minimizing the result.

¢ void add_constraints(const ConSys &cs)

Adds a copy of the constraints @5 to the system of constraints ethis (without minimizing the
result).

¢ void add_recycled_constraint§ConSys &cs)
Adds the constraints ios to the system of constraintsgthis  (without minimizing the result).

e booladd_constraints_and_minimize(const ConSys &cs)
Adds a copy of the constraints@s to the system of constraintsethis , minimizing the result.

e booladd_recycled_constraints_and_minimizéConSys &cs)
Adds the constraints ios to the system of constraintsgthis , minimizing the result.

e void add_generators(const GenSys &gs)
Adds a copy of the generatorsds to the system of generatorss:ghis  (without minimizing the result).

e void add_recycled_generatorgGenSys &gs)
Adds the generators igs to the system of generators-gthis  (without minimizing the result).

e booladd_generators_and_minimizeconst GenSys &gs)
Adds a copy of the generatorsg@s to the system of generatorssghis , minimizing the result.

e booladd_recycled_generators_and_minimizéGenSys &gs)
Adds the generators igs to the system of generators-gthis , minimizing the result.

e void intersection_assignconstPolyhedron &y)
Assigns tocthis  the intersection ofthis andy. The result is not guaranteed to be minimized.

e boolintersection_assign_and_minimizéconstPolyhedron &y)
Assigns tosthis  the intersection ofthis  andy, minimizing the result.

e void poly_hull_assign(constPolyhedron &y)
Assigns tocthis  the poly-hull of«this  andy. The result is not guaranteed to be minimized.

e boolpoly_hull_assign_and_minimizgconstPolyhedron &y)
Assigns tocthis  the poly-hull of«this  andy, minimizing the result.

¢ void poly_difference_assigr(constPolyhedron &y)

Assigns torthis  the poly-difference(p.6) of «this andy. The result is not guaranteed to be mini-
mized.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 107

e void affine_image (Variable var, const LinExpression &expr, const Integer
&denominator=Integer_one())

Assigns tokthis  the affine imaggp.8) of «this under the function mapping variablear to the
affine expression specified ypr anddenominator

e void affine_preimage (Variable var, const LinExpression &expr, const Integer
&denominator=Integer_one())

Assigns torthis  theaffine preimage(p.8) of xthis  under the function mapping variablar to the
affine expression specified bypr anddenominator

e void generalized_affine_image(Variable var, const Relation_Symbol relsym, conisin-
Expression&expr, constinteger &denominator=Integer_one())

Assigns torthis  the image ofkthis  with respect to th@eneralized affine transfer function(p.9)
var’ 0 CXPE wherex is the relation symbol encoded bglsym .

denominator’

¢ void generalized_affine_image(const LinExpression &lhs, const Relation_Symbol relsym,
constLinExpression &rhs)

Assigns torthis  the image ofithis  with respect to thgeneralized affine transfer function(p.9)
lhs’ < ths, wherex is the relation symbol encoded bslsym .

e voidtime_elapse_assigfconstPolyhedron &y)
Assigns tocthis  the result of computing théme-elaps€p. 9) betweenxthis  andy.

¢ void topological_closure_assigrf)
Assigns torthis  its topological closure.

¢ void BHRZ03_widening_assign(constPolyhedron &y, unsignedx«tp=0)
Assigns torthis  the result of computing thBHRZ03-widening(p. 10) betweenxthis andy.

e void limited_BHRZ03_extrapolation_assign(constPolyhedron &y, const ConSys &cs, un-
signed«tp=0)
Improves the result of thBHRZ03-widening(p.10) computation by also enforcing those constraints in
cs that are satisfied by all the points ethis

¢ void bounded_BHRZ03_extrapolation_assigr{constPolyhedron &y, const ConSys &cs, un-
signed«tp=0)
Improves the result of thBHRZ03-widening(p.10) computation by also enforcing those constraints in
cs that are satisfied by all the points ethis , plus all the constraints of the forthz < r and+x < r,
with r € Q, that are satisfied by all the points ethis

e void H79_widening_assigr{constPolyhedron &y, unsigned«tp=0)
Assigns tocthis  the result of computing thd79-widening(p. 10) betweenxthis andy.

¢ void limited_H79_extrapolation_assign(constPolyhedron &y, const ConSys &cs, unsigned
xtp=0)
Improves the result of th79-widening(p.10) computation by also enforcing those constraintgsn
that are satisfied by all the points efhis

e void bounded_H79_extrapolation_assigiiconstPolyhedron &y, const ConSys &cs, unsigned
xtp=0)
Improves the result of thid79-widening(p.10) computation by also enforcing those constraintgsn
that are satisfied by all the points efhis , plus all the constraints of the forsiz < r and+z < r,
with » € Q, that are satisfied by all the points ethis

Member Functions that May Modify the Dimension of the Vector Space

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 108

e void add_dimensions_and_embedimension_type m)
Addsmnew dimensions and embeds the old polyhedron in the new space.

¢ void add_dimensions_and_projec{dimension_type m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

e void concatenate_assigfconstPolyhedron &y)
Assigns torthis  theconcatenatior(p.6) of «this andy, taken in this order.

e void remove_dimensiongconstVariables Set&to be removed)
Removes all the specified dimensions.

e void remove_higher_dimensiongdimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeegiodimension

o templatectypename PartialFunctionvoid map_dimensiong(const PartialFunction &pfunc)
Remaps the dimensions of the vector space according#stal function (p. 7).

¢ void expand_dimension(Variable var, dimension_type m)
Createsmcopies of the dimension corresponding/ar .

e void fold_dimensions(constVariables_Set&to _be folded Variable var)
Folds the dimensions ito_be_folded intovar .

Miscellaneous Member Functions

e ~Polyhedron()
Destructor.

¢ void swap (Polyhedron &y)
Swapstthis  with polyhedrory. (xthis andy can be dimension-incompatible.).

Static Public Member Functions

e dimension_typenax_space_dimensioif)
Returns the maximum space dimension all kind3atyhedron(p.104) can handle.

Protected Member Functions

¢ Polyhedron (Topology topol, dimension_type num_dimensiobegenerate_Kindkind)
Builds a polyhedron having the specified properties.

e Polyhedron (constPolyhedron &y)
Ordinary copy-constructor.

e Polyhedron (Topology topol, const ConSys &cs)
Builds a polyhedron from a system of constraints.

e Polyhedron (Topology topol, ConSys &cs)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 109

Builds a polyhedron recycling a system of constraints.

Polyhedron (Topology topol, const GenSys &gs)
Builds a polyhedron from a system of generators.

Polyhedron (Topology topol, GenSys &gs)
Builds a polyhedron recycling a system of generators.

templatectypename Box Polyhedron (Topology topol, const Box &box)
Builds a polyhedron out of a generic, interval-based bounding box.

Polyhedron & operator= (constPolyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

Related Functions
(Note that these are not member functions.)

e std::ostream &operator< < (std::ostream &s, con$tolyhedron &ph)
Output operator.

bool operator== (constPolyhedron &x, constPolyhedron &y)
Returngrue if and only ifx andy are the same polyhedron.

e booloperator!= (constPolyhedron &x, constPolyhedron &y)
Returngrue if and only ifx andy are different polyhedra.

e void swap (Parma_Polyhedra_Library::Polyhedron &X, Parma_Polyhedra_-
Library::Polyhedron &y)

Specializestd::swap

templatectypename PE bool poly_hull_assign_if_exac{PH &p, const PH &q)
If the poly-hull betweep andq is exact it is assigned tp.

9.14.1 Detailed Description

The base class for convex polyhedra.
An object of the clasPolyhedron(p.104) represents a convex polyhedron in the vector sfikdte

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedr@. 3)) and it is always possible to obtain either representa-

tion. That is, if we know the system of constraints, we can obtain from this the system of generators that
define the same polyhedron and vice versa. These systems can contain redundant members: in this case we
say that they are not in the minimal form. Most operators on polyhedra are provided with two implementa-
tions: one of these, denotetbperator-name  >_and_minimize , also enforces the minimization of

the representations, and returns the Boolean alse whenever the resulting polyhedron turns out to

be empty.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 110

Two key attributes of any polyhedron are its topological kind (recording whether it §_a
Polyhedron(p.71) or anNNC_Polyhedron(p.93) object) and its space dimension (the dimensioa N
of the enclosing vector space):

¢ all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

e most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SeRépnesentations of Convex
Polyhedra(p. 3));

e there is no way to change the topology of a polyhedron; rather, there are constructors of the two de-
rived classes that builds a new polyhedron having a topology when provided with the corresponding
polyhedron of the other topology;

¢ the only ways to change the space dimension of a polyhedron are:

— explicit calls to operators provided for that purpose;
— standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedRSn again either closed or NNC.

In all the examples it is assumed that variableendy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a squak?jrgiven as a system of con-
straints:

ConSys cs;
cs.insert(x >= 0);
cs.nsert(x <= 3);
cs.insert(ly >= 0);
cs.insert(ly <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-stip, igiven as a
system of constraints:

ConSys cs;

cs.insert(x >= 0);
cs.nsert(x - y <= 0);
cs.insert(x -y + 1 >= 0);
C_Polyhedron ph(cs);

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 111

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.insert(point(0*x + 0%y));
gs.insert(point(0*x + vy));
gs.insert(ray(x - y));
C_Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron iR?:

C_Polyhedron ph(2);
ph.add_constraintly >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spac&®? and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, Polyhedron:EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functemtd_dimensions_and_embed

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension sgacélhen we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singletoj2 k&t R. After the last line
of code, the resulting polyhedron is

{(2,y)TER2|yER}.

Example 5
The following code shows the use of the functemtd_dimensions_and_project

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example dddr dimensions_and_embed . After
the last line of code, the resulting polyhedron is the singletor{(SBD)T} C R2,

Example 6
The following code shows the use of the functaffine_image

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0%y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0%y));
ph.add_generator(point(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 112

In this example the starting polyhedron is a squarRinthe considered variable isand the affine
expression i 4+ 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variablis = + y:

LinExpression coeff = x + v;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line— y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expresgion

LinExpression coeff = y;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functaffine_preimage

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(ly >= 0);
ph.add_constraint(ly <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

In this example the starting polyhedrorar and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation faris x + y

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line+ y. Instead, if we do not use an invertible transformation for the
same variable, for example, the affine expressign

LinExpression coeff = vy;

the resulting polyhedron is a line that corresponds tajthgis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functi@move_dimensions

GenSys gs;

gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);

set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton :{({38, 1,0, 2)T} C R4, while the resulting polyhedron is
{(3,2)T} C R?. Be careful when removing dimensioimerementally since dimensions are auto-
matically renamed after each application of themove_dimensions  operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 113

set<Variable> to_be_removedi,;
to_be_removedLl.insert(y);
ph.remove_dimensions(to_be_removed1l);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_dimensions(to_be_removed?2);

In this case, the result is the ponhedr{)(rj;, O)T} C R2: when removing the set of dimensiotas -

be removed2 we are actually removing variable of the original polyhedron. For the same reason,
the operatoremove_dimensions is not idempotent: removing twice the same set of dimensions
iS never a no-op.

9.14.2 Member Enumeration Documentation

9.14.2.1 enum Parma_Polyhedra_Library::Polyhedron::Degenerate_Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

9.14.3 Constructor & Destructor Documentation

9.14.3.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, dimension_type
num_dimensionsDegenerate_Kindkind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num_dimensionsThe number of dimensions of the vector space enclosing the polyhedron;
kind Specifies whether the universe or the empty polyhedron has to be built.

9.14.3.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologytopol, const ConSys &cs)
[protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ots is incompatible withtopol

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 114

9.14.3.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, ConSys & c9
[protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not declapedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ots is incompatible withtopol

9.14.3.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologytopol, const GenSys &g9)
[protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

9.14.3.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, GenSys & g9
[protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declzoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

9.14.3.6 templatectypename Box> Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topol-
ogytopol, const Box & box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 115

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:
std::invalid_argument Thrown if box has intervals that are incompatible wttipol

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. Bhempty()Xp.105 method
will always be called before the methods below. Howeves iEmpty(Xp. 105 returnstrue , none of the
functions below will be called.

bool get_lower_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. IfI is not bounded from below, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the lower boundary of
T'isclosed and is set false  otherwisen andd are assigned the integet@ndd such that the canonical
fractionn/d corresponds to the greatest lower bound ofThe fractionn/d is in canonical form if and
only if n andd have no common factors amds positive,0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. Iff is not bounded from above, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the upper boundary of

Iisclosed and is set false  otherwisen andd are assigned the integetsandd such that the canonical

fractionn/d corresponds to the least upper bound of

9.14.4 Member Function Documentation

9.14.4.1 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const Con-
straint & c) const

Returns the relations holding between the polyheditbis and the constrairt.

Exceptions:
std::invalid_argument Thrown if xthis and constraint are dimension-incompatible.

9.14.4.2 Poly_Gen_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const Gener-
ator & @) const

Returns the relations holding between the polyhedithis and the generatay.

Exceptions:
std::invalid_argument Thrown if «this and generatag are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 116

9.14.4.3 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (const Polyhedron &vy)
const

Returngrue if and only if «this andy are disjoint.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

9.14.4.4 Dbool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (const LinExpression
& expr) const

Returngrue if and only if expr is bounded from above irthis

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

9.14.4.5 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (const LinExpression
& expr) const

Returngrue if and only if expr is bounded from below inthis

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

9.14.4.6 bool Parma_Polyhedra_Library::Polyhedron::maximize (const LinExpression &xpr, In-
teger & sup_n Integer & sup_d bool & maximum) const

Returnstrue if and only if xthis is not empty andéxpr is bounded from above igthis , in which
case the supremum value is computed.

Parameters:
expr The linear expression to be maximized subjectttos ;

sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value.

Exceptions:
std::invalid_argument Thrown if expr andxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from abovdalse is returned andup _n, sup_d and
maximum are left untouched.

9.14.4.7 bool Parma_Polyhedra_Library::Polyhedron::maximize (const LinExpression &xpr, In-
teger & sup_n Integer & sup_d bool & maximum, const Generatorsxconstpppoinf const

Returnstrue if and only if «this is not empty andxpr is bounded from above igthis , in which
case the supremum value and a point wheqgr reaches it are computed.

Parameters:
expr The linear expression to be maximized subjectttos ;

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 117

sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value;

pppoint When nonzero and maximization succeeds, a pointer to a point or closure pointexpere
reaches its supremum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from abovéalse isreturned andup_n,sup_d , maximum
andpppoint are left untouched.

9.14.4.8 bool Parma_Polyhedra_Library::Polyhedron::minimize (const LinExpression &expr, In-
teger & inf_n, Integer & inf_d, bool & minimum) const

Returnstrue if and only if «this is not empty anaxpr is bounded from below irthis , in which
case the infimum value is computed.

Parameters:
expr The linear expression to be minimized subjecttiois ;

inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from belowfalse is returned andnf n ,inf. d and
minimum are left untouched.

9.14.4.9 bool Parma_Polyhedra_Library::Polyhedron::minimize (const LinExpression &expr, In-
teger & inf_n, Integer & inf_d, bool & minimum, const Generatorxxconstpppoinf const

Returnstrue if and only if «this is not empty andxpr is bounded from below irthis , in which
case the infimum value and a point whesg@r reaches it are computed.

Parameters:
expr The linear expression to be minimized subjecttiois ;

inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value;

pppoint When nonzero and minimization succeeds, a pointer to a point or closure pointexipere
reaches its infimum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr andxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from belovalse isreturned anthf n ,inf_d , minimum
andpppoint are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 118

9.14.4.10 bool Parma_Polyhedra_Library::Polyhedron::contains (const Polyhedron &) const

Returngrue if and only if xthis  containsy.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.14.4.11 bool Parma_Polyhedra_Library::Polyhedron::strictly contains (const Polyhedron &y)
const

Returngrue if and only if xthis  strictly containsy.

Exceptions:
std::invalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

9.14.4.12 templateitypename Box> void Parma_Polyhedra_Library::Polyhedron::shrink_-
bounding_box (Box & box, Complexity Classcomplexity= ANY) const

Usesxthis  to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk;

complexity The complexity class of the algorithm to be used.
The template class Box must provide the following methods, whose return value, if any, is simply ignored.
set_empty()
causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to #hh dimension with[n/d, +c0) if closed is true , with
(n/d,+o0) if closed isfalse

lower_upper_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to #h¢h dimension with(—oo,n/d] if closed is true , with
(—oo,n/d) if closed isfalse

The functionraise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value fork and for all such calls the fraction/d will be in canonical form, that isp andd have

no common factors andlis positive,0/1 being the unique representation for zero. The same guarantee is
offered for the functiolower_upper_bound(k, closed, n, d)

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 119

9.14.4.13 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check _not_empty= false )
const

Checks if all the invariants are satisfied.
Returns:

true if and only if xthis  satisfies all the invariants and eittereck_not_empty isfalse or
«this  is not empty.

Parameters:
check_not_emptytrue if and only if, in addition to checking the invariantgthis must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are writtstdaerr in case invariants are violated. This is
useful for the purpose of debugging the library.

9.14.4.14 void Parma_Polyhedra_Library::Polyhedron::add_constraint (const Constraint &c)

Adds a copy of constrairt to the system of constraints ethis  (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if «this and constraint are topology-incompatible or dimension-
incompatible.

9.14.4.15 bool Parma_Polyhedra_ Library::Polyhedron::add_constraint_and_minimize (const
Constraint & c)

Adds a copy of constrairt to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if «this and constraint are topology-incompatible or dimension-
incompatible.

9.14.4.16 void Parma_Polyhedra_Library::Polyhedron::add_generator (const Generator &)

Adds a copy of generatay to the system of generators gthis (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if xthis and generatog are topology-incompatible or dimension-
incompatible, or if«this  is an empty polyhedron arglis not a point.

9.14.4.17 bool Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize (const
Generator & Q)

Adds a copy of generatar to the system of generators gthis , minimizing the result.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 120

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and generatog are topology-incompatible or dimension-
incompatible, or ifsthis  is an empty polyhedron arglis not a point.

9.14.4.18 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const ConSys &)

Adds a copy of the constraints@s to the system of constraints ethis  (without minimizing the result).

Parameters:
cs Contains the constraints that will be added to the system of constraistisief .

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

9.14.4.19 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints (ConSys &9

Adds the constraints ios to the system of constraints ethis  (without minimizing the result).

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of
xthis

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

Warning:
The only assumption that can be madecgnupon successful or exceptional return is that it can be
safely destroyed.

9.14.4.20 bool Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize (const
ConSys &c9

Adds a copy of the constraints @ to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs Contains the constraints that will be added to the system of constraistsief .

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 121

9.14.4.21 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints_and_minimize
(ConSys &cs)

Adds the constraints ios to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
¢s The constraint system that will be recycled, adding its constraints to the system of constraints of
xthis

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

Warning:
The only assumption that can be madeosnupon successful or exceptional return is that it can be
safely destroyed.

9.14.4.22 void Parma_Polyhedra_Library::Polyhedron::add_generators (const GenSys &5

Adds a copy of the generatorsgs to the system of generatorsgthis  (without minimizing the result).

Parameters:
gs Contains the generators that will be added to the system of generatdhssof .

Exceptions:
std::invalid_argument Thrown if x«this and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

9.14.4.23 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators (GenSys §9

Adds the generators igs to the system of generatorsgthis  (without minimizing the result).

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of
xthis

Exceptions:
std::invalid_argument Thrown if «this and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

Warning:
The only assumption that can be madegsnupon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 122

9.14.4.24 bool Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize (const
GenSys &g9)

Adds a copy of the generatorsds to the system of generators-ghis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs Contains the generators that will be added to the system of generatdhssof .

Exceptions:
std::invalid_argument Thrown if «this and gs are topology-incompatible or dimension-
incompatible, or ifkthis  is empty and the the system of generaggss not empty, but has no
points.

9.14.4.25 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize
(GenSys &g9

Adds the generators igs to the system of generatorsgthis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of
xthis

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifkthis  is empty and the the system of generaggds not empty, but has no
points.

Warning:
The only assumption that can be madegsnupon successful or exceptional return is that it can be
safely destroyed.

9.14.4.26 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (const Polyhedron &
y)
Assigns toxthis  the intersection ofthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.14.4.27 bool Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize (const
Polyhedron & y)

Assigns toxthis  the intersection ofthis andy, minimizing the result.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 123

Returns:
false if and only if the result is empty.

Exceptions:
std::iinvalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

9.14.4.28 void Parma_Polyhedra_Library::Polyhedron::poly_hull_assign (const Polyhedron &)

Assigns toxthis  the poly-hull ofxthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

9.14.4.29 bool Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize (const
Polyhedron & y)

Assigns toxthis  the poly-hull ofxthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

9.14.4.30 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (const Polyhedron
&)
Assigns to«this  thepoly-difference(p.6) of xthis andy. The resultis not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.14.4.31 void Parma_Polyhedra_Library::Polyhedron::affine_image (Variablevar, const Lin-
Expression & expr, const Integer & denominator= Integer_one() )

Assigns tokthis  theaffine imaggp.8) of «this under the function mapping variablar to the affine
expression specified lgxpr anddenominator

Parameters:
var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr and=xthis are dimension-
incompatible or ifvar is not a dimension ahis

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 124

9.14.4.32 void Parma_Polyhedra_Library::Polyhedron::affine_preimage (Variablevar, const Lin-
Expression & expr, const Integer & denominator= Integer_one() )

Assigns toxthis  the affine preimagégp.8) of xthis under the function mapping variablar to the
affine expression specified lexpr anddenominator

Parameters:
var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr andxthis are dimension-
incompatible or ifvar is not a dimension ofthis

9.14.4.33 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (Variablevar,
const Relation_Symbolrelsym const LinExpression & expr, const Integer & denominator =
Integer_one() )

Assigns toxthis the image ofxthis  with respect to thegeneralized affine transfer functior(p.9)
var’ g —=PL_ wherexq is the relation symbol encoded bgisym .

denominator’

Parameters:
var The left hand side variable of the generalized affine transfer function;

relsym The relation symbol,
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default

value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr andxthis are dimension-
incompatible or ifvar is not a dimension ofthis or if «this is aC_Polyhedron(p.71) and
relsym is a strict relation symbol.

9.14.4.34 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (const Lin-
Expression & lhs, const Relation_Symbolelsym const LinExpression & rhs)

Assigns toxthis the image ofkthis  with respect to theyeneralized affine transfer functiorn(p.9)
lhs’ > rhs, wherex is the relation symbol encoded bgisym .

Parameters:
Ihs The left hand side affine expression;

relsym The relation symbol,
rhs The right hand side affine expression.

Exceptions:
std::invalid_argument Thrown if xthis  is dimension-incompatible witths orrhs or if xthis is
aC_Polyhedron(p.71) andrelsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 125

9.14.4.35 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (const Polyhedron &
y)

Assigns toxthis  the result of computing thigme-elapsdp. 9) betweenxthis andy.

Exceptions:
std::invalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

9.14.4.36 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_widening_assign (const Polyhe-
dron & vy, unsignedsx tp = 0)

Assigns toxthis  the result of computing thBHRZ03-widening(p. 10) between«this andy.

Parameters:
y A polyhedron thatnustbe contained irthis ;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens(p. 11) delay technique).

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.14.4.37 void Parma_Polyhedra_Library::Polyhedron::limited BHRZO03_extrapolation_assign
(const Polyhedron &y, const ConSys &cs, unsignedsx tp = 0)

Improves the result of thBHRZ03-widening(p.10) computation by also enforcing those constraints in
cs that are satisfied by all the points ghis

Parameters:
y A polyhedron thatnustbe contained irthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens(p.11) delay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

9.14.4.38 void Parma_Polyhedra_Library::Polyhedron::bounded_BHRZ03_extrapolation_assign
(const Polyhedron &y, const ConSys &cs, unsignedsx tp = 0)

Improves the result of thBHRZ03-widening(p.10) computation by also enforcing those constraints in
cs that are satisfied by all the points gthis , plus all the constraints of the fortaz < r and+x < r,
with » € Q, that are satisfied by all the points-ghis

Parameters:
y A polyhedron thamustbe contained inthis ;

cs The system of constraints used to improve the widened polyhedron;

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 126

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens(p.11) delay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

9.14.4.39 void Parma_Polyhedra_Library::Polyhedron::H79_widening_assign (const Polyhedron
& vy, unsignedx tp = 0)

Assigns toxthis  the result of computing thEl79-widening(p.10) betweenxthis andy.

Parameters:
y A polyhedron thatnustbe contained ixthis ;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens(p.11) delay technique).

Exceptions:
std::invalid_argument Thrown if «this and y are topology-incompatible or dimension-
incompatible.

9.14.4.40 void Parma_Polyhedra_Library::Polyhedron::limited_H79_extrapolation_assign (const
Polyhedron & y, const ConSys &cs, unsignedx tp = 0)

Improves the result of thd79-widening(p. 10) computation by also enforcing those constraintssrthat
are satisfied by all the points ethis

Parameters:
y A polyhedron thatnustbe contained iathis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens(p.11) delay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.
9.14.4.41 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign

(const Polyhedron &y, const ConSys &cs, unsignedsx tp = 0)

Improves the result of thed79-widening(p. 10) computation by also enforcing those constraintssrthat
are satisfied by all the points ethis , plus all the constraints of the fortaz < r and+x < r, with
r € Q, that are satisfied by all the points:ghis

Parameters:
y A polyhedron thatnustbe contained ixthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens(p.11) delay technique).

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 127

Exceptions:
std::invalid_argument Thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.
9.14.4.42 void Parma_Polyhedra_Library::Polyhedron::add_dimensions_and_embed

(dimension_typem)

Addsmnew dimensions and embeds the old polyhedron in the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are not constrained.
For instance, when starting from the polyhedf@rC R? and adding a third dimension, the result will be
the polyhedron

{(2z,y,2)" €eR®| (w,y)" € P}

9.14.4.43 void Parma_Polyhedra_Library::Polyhedron::add_dimensions_and_project
(dimension_typem)

Addsmnew dimensions to the polyhedron and does not embed it in the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the polyhe@ran R? and adding a third dimension,

the result will be the polyhedron

{(x,y,O)T e R? | (z,y)" € 77}.

9.14.4.44 void Parma_Polyhedra_Library::Polyhedron::concatenate_assign (const Polyhedron &
y)

Assigns tokthis  theconcatenatior(p.6) of «this andy, taken in this order.

Exceptions:
std::invalid_argument Thrown if «this andy are topology-incompatible.

9.14.4.45 void Parma_Polyhedra_Library::Polyhedron::remove_dimensions (const Variables_Set
& to_be_removed

Removes all the specified dimensions.

Parameters:
to_be_removedrlhe set ofvVariable(p.132) objects corresponding to the dimensions to be removed.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 128

Exceptions:
std::invalid_argument Thrown if xthis  is dimension-incompatible with one of tMariable(p.132)
objects contained ito_be_removed

9.14.4.46 void Parma_Polyhedra_Library::Polyhedron::remove_higher_dimensions (dimension_-
type new_dimensioi

Removes the higher dimensions so that the resulting space will have dimeesgiodimension

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimensiortbiis

9.14.4.47 templateitypename PartialFunction> void Parma_Polyhedra_-
Library::Polyhedron::map_dimensions (const PartialFunction & pfunc)

Remaps the dimensions of the vector space accordingé#otal function (p.7).

Parameters:
pfunc The partial function specifying the destiny of each dimension.

The template class PartialFunction must provide the following methods.

bool has_empty_codomain() const

returnstrue if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). Théias_empty codomain() method will always be called before the methods below.
However, ifhas_empty_codomain()  returnstrue , none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. mékein_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function ahde the value of . If f is defined ink, then f(k) is assigned to
j andtrue is returned. Iff is undefined ink, thenfalse s returned. This method is called at mast
times, wherer is the dimension of the vector space enclosing the polyhedron.

The result is undefined iffunc does not encode a partial function with the properties described in the
specification of the mapping operato(p.7).

9.14.4.48 void Parma_Polyhedra_Library::Polyhedron::expand_dimension (Variable var,
dimension_typem)

Createsncopies of the dimension corresponding/ar .

Parameters:
var The variable corresponding to the dimension to be replicated;

m The number of replica to be created.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Polyhedron Class Reference 129

Exceptions:
std::invalid_argument Thrown if var does not correspond to a dimension of the polyhedron.

If «xthis is n-dimensional, withn > 0, andi < n isvar.id() , then thei-th dimension isex-
pandedp.7) to mnew dimensions, n+1,...,n+m — 1.

9.14.4.49 void Parma_Polyhedra_Library::Polyhedron::fold_dimensions (const Variables_Set &
to_be_foldedVariable var)

Folds the dimensions ito_be_folded intovar .

Parameters:
to_be foldedThe set ofVariable(p.132) objects corresponding to the dimensions to be folded;

var The variable corresponding to the dimension that is the destination of the folding operation.

Exceptions:
std::invalid_argument Thrown if «this is dimension-incompatible witkar or with one of the
Variable(p.132) objects contained ito_be folded . Also thrown if var is contained in
to_be folded
If xthis is n-dimensional, withn > 0, i < n is var.id() , to_be_folded is a set of variables

whoseid() is also less tham, andvar is not a member ofo_be folded , then the dimensions
corresponding to variables tn_be folded  arefolded(p.8) into dimension.

9.14.4.50 void Parma_Polyhedra_Library::Polyhedron::swap (Polyhedron &y)

Swapsx«this  with polyhedrony. (xthis andy can be dimension-incompatible.).

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible.

9.14.5 Friends And Related Function Documentation

9.14.5.1 std::ostream & operatok < (std::ostream & s, const Polyhedron &ph) [related]
Output operator.

Writes a textual representation ph ons: false is written if ph is an empty polyhedronyue is
written if ph is a universe polyhedron; a minimized system of constraints defptirig written otherwise,

all constraints in one row separated by ", ".
9.14.5.2 bool operator== (const Polyhedron &, const Polyhedron &y) [related]
Returngrue if and only if x andy are the same polyhedron.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

9.14.5.3 bool operator!= (const Polyhedron &, const Polyhedron &y) [related]
Returngrue if and only if x andy are different polyhedra.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true isreturned.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::PowerSek CS > Class Template Reference 130

9.15 Parma_Polyhedra_Library::PowerSek CS > Class Template Reference

The powerset construction on constraint systems.

Public Member Functions

e PowerSet()
Default constructor.

o PowerSet(constPowerSet&y)
Ordinary copy-constructor.

e PowerSet& operator= (constPowerSet&y)
The assignment operator.

e void swap (PowerSet&y)
Swapskthis  withy.

e void add_disjunct (const CS &d)
Adds toxthis  the disjunctd.

e void upper_bound_assign(constPowerSet&y)
Assigns torthis — an upper bound ofthis  andy.

¢ void meet_assigr(constPowerSet&y)
Assigns tocthis  the meet okthis  andy.

¢ bool definitely_entails(constPowerSet&y) const

Returngrue if xthis definitely entaily/. Returndalse if xthis may not entaiy (i.e., if xthis does
not entaily or if entailment could not be decided).

e boolis_top() const

Returnstrue if and only ifxthis is the top element of the powerset constraint system (i.e., it represents

the universe).

e boolis_bottom () const

Returngrue if and only ifxthis is the bottom element of the powerset constraint system (i.e., it represents

the empty set).

e bool OK (bool disallow_bottom=false) const
Checks if all the invariants are satisfied.

e void collapse()

If xthis is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by computing

an upper-bound of all the disjuncts.

Protected Types

o typedef std::lisk CS> Sequence
A powerset is implemented as a sequence of elements.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::PowerSek CS > Class Template Reference 131

Protected Member Functions

¢ void omega_reduce) const
Erase fromxthis  all the non-maximal elements.

e boolis_omega_reduced) const
Returngrue if and only ifxthis does not contain non-maximal elements.

Static Protected Member Functions

e void add_non_bottom_disjunct(Sequence&s, const CS &d, iterator &first, iterator last)
Adds toxthis  the disjuncd, assumingl is not the bottom element and ensuring partial omega-reduction.

e void add_non_bottom_disjunct(Sequence&s, const CS &d)
Adds toxthis  the disjuncid, assumingl is not the bottom element.

Protected Attributes

e Sequence sequence
The sequence container holding powerset's elements.

e boolreduced
If true , xthis is omega-reduced.

Related Functions
(Note that these are not member functions.)

e booloperator== (constPowerSek CS> &x, constPowerSek CS> &y)
Returngrue if and only ifx andy are equivalent.

e booloperator!= (constPowerSek CS> &x, constPowerSek CS > &y)
Returngrue if and only ifx andy are not equivalent.

e std::ostream &operator< < (std::ostream &s, con§towerSek CS > &x)
Output operator.

e void swap (Parma_Polyhedra_Library::PowerSet< CS > &x, Parma_Polyhedra_-
Library::PowerSet < CS> &y)

Specializestd::swap

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Variable Class Reference 132

9.15.1 Detailed Description
template<typename CS> class Parma_Polyhedra_Library::PowerSet CS >

The powerset construction on constraint systems.

This class offers a generic implementatiorpofverset constraint systeras defined iiBag98](p. 15).

9.15.2 Member Typedef Documentation

9.15.2.1 templatectypename CS> typedef std::list<CS> Parma_Polyhedra_Library::PowerSet<
CS >::Sequence [protected]

A powerset is implemented as a sequence of elements.

The particular sequence employed must support efficient deletion in any position and efficient back inser-
tion.

9.15.3 Member Function Documentation

9.15.3.1 templatectypename CS> void Parma_Polyhedra_Library::PowerSet< CS >::add_non_-
bottom_disjunct (Sequence & s, const CS & d, iterator & first, iterator last) [static,
protected]

Adds toxthis  the disjuncd, assumingl is not the bottom element and ensuring partial omega-reduction.

If d is not the bottom element and is not redundant with respect to the elements in positions between
first andlast ,addstothis the disjunctd, erasing all the elements in the above mentioned positions
that are made omega-redundant by the additiash of

9.16 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the space.

Public Types

o typedef voidoutput_function_type (std::ostream &s, con$fariable &v)

Type of output functions.

Public Member Functions

e Variable (dimension_type i)
Builds the variable corresponding to the Cartesian axis of index

e dimension_typéd () const
Returns the index of the Cartesian axis associated to the variable.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

9.17 Parma_Polyhedra_Library::Variable::Compare Struct Reference 133

Static Public Member Functions

e void set_output_function(output_function_type xp)
Sets the output function to be used for printWayiable(p. 132 objects.

e output_function_type x get_output_function ()
Returns the pointer to the current output function.

Related Functions
(Note that these are not member functions.)

e std::ostream &operator<< (std::ostream &s, consfariable &v)
Output operator.

e boolless(Variable v, Variable w)
Defines a total ordering on variables.

9.16.1 Detailed Description

A dimension of the space.

An object of the clas¥ariable(p.132) represents a dimension of the space, that is one of the Cartesian
axes. Variables are used as base blocks in order to build more complex linear expressions. Each variable
is identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the claggriable(p.132) is completely specified by the integer
index provided to its constructor: be careful not to be mislead by C++ language variable names. For
instance, in the following example the linear expressmhsnde2 are equivalent, since the two variables

x andz denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression el
LinExpression e2

1 n
<
+

9.17 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

Public Member Functions

e booloperator() (Variable x, Variable y) const
Returngrue if and only ifx comes beforg.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10 PPL Page Documentation 134

9.17.1 Detailed Description

Binary predicate defining the total ordering on variables.

10 PPL Page Documentation

10.1 GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at alll.

The precise terms and conditions for copying, distribution and modification follow.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 135

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program"”, below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification”.) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

e a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

e b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

o c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 136

e a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

e b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

e c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7.1f, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 137

consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 138

file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show ¢’

for details.

The hypothetical commandshow w’ and‘'show ¢’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something othshthanw’ and
‘show ¢’ ;they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this

License.

10.2 GNU Free Documentation License

Version 1.2, November 2002

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 139

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft”", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring

permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (forimages composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation

to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 140

amount of text. A copy that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may

have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 141

Itis requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

e A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

e B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

e C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
e D. Preserve all the copyright notices of the Document.
e E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

¢ F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

e G. Preserve in that license naotice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

¢ H. Include an unaltered copy of this License.

e |. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

¢ J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

e K. For any section Entitled "Acknowledgements" or "Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

e M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified
Version.

e N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any
Invariant Section.

e O. Preserve any Warranty Disclaimers.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 142

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements”, and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 143

Translation is considered a kind of maodification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications”, or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detalil
to address new problems or concerns. Big//www.gnu.org/copyleft/

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents To use this License in a document you have written,
include a copy of the License in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

Index

add_constraint
Parma_Polyhedra_Library::Determinate,
81
Parma_Polyhedra_Library::Polyhedra_-
PowerSet100
Parma_Polyhedra_Library::Polyhedron,
118
add_constraint_and_minimize
Parma_Polyhedra_Library::Polyhedra_-
PowerSet100
Parma_Polyhedra_Library::Polyhedron,
118
add_constraints
Parma_Polyhedra_Library::Determinate,
81
Parma_Polyhedra_Library::Polyhedra_-
PowerSet100
Parma_Polyhedra_Library::Polyhedron,
119
add_constraints_and_minimize
Parma_Polyhedra_Library::Polyhedra_-
PowerSet100
Parma_Polyhedra_Library::Polyhedron,
119
add_dimensions_and_embed
Parma_Polyhedra_Library::Polyhedron,
126
add_dimensions_and_project
Parma_Polyhedra_Library::Polyhedron,
126
add_generator
Parma_Polyhedra_Library::Polyhedron,
118
add_generator_and_minimize
Parma_Polyhedra_Library::Polyhedron,
119
add_generators
Parma_Polyhedra_Library::Polyhedron,
120
add_generators_and_minimize
Parma_Polyhedra_Library::Polyhedron,
121
add_non_bottom_disjunct
Parma_Polyhedra_Library::PowerSE31
add_recycled_constraints
Parma_Polyhedra_Library::Polyhedron,
119
add_recycled_constraints_and_minimize
Parma_Polyhedra_Library::Polyhedron,
120

add_recycled_generators
Parma_Polyhedra_Library::Polyhedron,
120
add_recycled_generators_and_minimize
Parma_Polyhedra_Library::Polyhedron,
121
affine_image
Parma_Polyhedra_Library::Polyhedron,
122
affine_preimage
Parma_Polyhedra_Library::Polyhedron,
123

banner
Parma_Polyhedra_Librarg9
BGP99 extrapolation_assign
Parma_Polyhedra_Library::Polyhedra_-
PowerSet101
BHRZ03_widening_assign
Parma_Polyhedra_Library::Polyhedron,
124
BHZ03_widening_assign
Parma_Polyhedra_Library::Polyhedra_-
PowerSet101
bounded_BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,
124
bounded_H79 extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,
125
bounds_from_above
Parma_Polyhedra_Library::Polyhedron,
115
bounds_from_below
Parma_Polyhedra_Library::Polyhedron,
115

C Language Interfac@l
C_Polyhedron
Parma_Polyhedra_Library::C_Polyhedron,
72,73
CLOSURE_POINT
Parma_Polyhedra_Library::Generat®®,
closure_point
Parma_Polyhedra_Library::Generai®¥,
coefficient
Parma_Polyhedra_Library::Constraing
Parma_Polyhedra_Library::Generatdr,
compare
Parma_Polyhedra_Library::BHRZ03_-
Certificate,70




INDEX 145
Parma_Polyhedra_Library::H79 - Parma_Polyhedra_Library::Polyhedron,
Certificate 88 115
concatenate_assign
Parma_Polyhedra_Library::Polyhedra_- Library Defines20
PowerSet102 limited_BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, Parma_Polyhedra_Library::Polyhedron,
126 124
contains limited_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, Parma_Polyhedra_Library::Polyhedron,
117 125
LINE
Degenerate_Kind Parma_Polyhedra_Library::Generai®8,
Parma_Polyhedra_Library::Polyhedron, line
112 Parma_Polyhedra_Library::Generai®8,
Determinate linear_partition
Parma_Polyhedra_Library::Determinate, Parma_Polyhedra_Library::Polyhedra_-

80
divisor

Parma_Polyhedra_Library:

EMPTY

Parma_Polyhedra_Library:

112
EQUALITY

Parma_Polyhedra_Library:

expand_dimension

Parma_Polyhedra_Library:

128

fold_dimensions

Parma_Polyhedra_Library:

128

generalized_affine_image

Parma_Polyhedra_Library:

123
geometrically_covers

Parma_Polyhedra_Library:

PowerSet99
geometrically_equals

Parma_Polyhedra_Library:

PowerSet100

H79_widening_assign

Parma_Polyhedra_Library:

125

intersection_assign

Parma_Polyhedra_Library:

121

:Generat®r,

:Polyhedron,

:Constraing

:Polyhedron,

:Polyhedron,

:Polyhedron,

:Polyhedra_-

:Polyhedra_-

:Polyhedron,

:Polyhedron,

intersection_assign_and_minimize

Parma_Polyhedra_Library:

122
is_disjoint_from

:Polyhedron,

PowerSet103
LinExpression

Parma_Polyhedra_Library::

92

map_dimensions

Parma_Polyhedra_Library::

81

Parma_Polyhedra_Library::

PowerSet102

Parma_Polyhedra_Library::

127
maximize

Parma_Polyhedra_Library::

115 116
minimize

Parma_Polyhedra_Library::

116

NNC_Polyhedron

Parma_Polyhedra_Library::

Polyhedron93, 94
NONSTRICT_INEQUALITY

Parma_Polyhedra_Library::

OK

Parma_Polyhedra_Library::

118
operator!=

Parma_Polyhedra_Library::

82

Parma_Polyhedra_Library::

129
operatok <

Parma_Polyhedra_Library::

128
operator==

Parma_Polyhedra_Library::

82

LinExpression,

Determinate,
Polyhedra_-

Polyhedron,

Polyhedron,

Polyhedron,

NNC_-

Constraing

Polyhedron,

Determinate,

Polyhedron,

Polyhedron,

Determinate,

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/

for more information.


http://www.cs.unipr.it/ppl/

INDEX 146

Parma_Polyhedra_Library::Polyhedron, Parma_Polyhedra_Library::Poly_Con_Relation,
129 94
Parma_Polyhedra_Library::Poly_Gen_Relation,
pairwise_reduce 96
Parma_Polyhedra_Library::Polyhedra_- Parma_Polyhedra_Library::Polyhedra_-
PowerSet;LQl PowerSet97
Parma_Polyhedra_Librargs Parma_Polyhedra_Library::Polyhedra_Power-
banner69 Set
Parma_Polyhedra_Library::BHRZ03_- add_constraint100
Certificate,70 add_constraint_and_minimiz&)0
comparey0 . add_constraintg,00
Parma_Ponh_gdra_L|brary::BHRZOS_- add_constraints_and_minimizZ&)0
Certificate::Compare;1 BGP99_extrapolation_assigh)1
Parma_Polyhedra_Library::C_Polyhedr@i, BHZ03_widening_assigri,01
C_Polyhedron72, 73 concatenate_assigh(?2
Parma_Polyhedra_Library::Constrain, geometrically_cover99
coefficient,78 geometrically_equalg,00
EQUALITY, 78 linear_partition,103
NONSTRICT_INEQUALITY, 78 map_dimensions,02
STRICT_INEQUALITY, 78 pairwise_reducel01
Type, 78 Polyhedra_PowerSed9
Parma_Polyhedra_Library::Determinaf8, remove_dimensiond,02
add_constrain§1 remove_higher_dimensions)2
add_constraint§§1 widen_fun,103
DeterminateS_O Parma_Polyhedra_Library::Polyhedrdi03
map_dimensions§1 add_constraint1 18
operator!=_82 add_constraint_and_minimiz&l8
operator==82 add_constraints,19
remove_d!mensm.nﬁl _ add_constraints_and_minimiz&,9
remove_higher_dimensior] add_dimensions_and_embéag
Parma_Polyhedra_Library::Generat82, add_dimensions_and_projet26
CLOSURE_POINTB86 add_generato, 18
cIosqrg_pomtB? add_generator_and_minimizEl9
coefficient,87 add_generatord,20
divisor, 87 add_generators_and_minimiZe1
ITINE, 86 add_recycled_constraints19
line, 86 add_recycled_constraints_and_minimize,
POINT, 86 120
point, 87 add_recycled_generatof20
RAY, 86 add_recycled_generators_and_minimize,
ray, 86 121
Type,86 affine_image122
Parma_Polyhedra_Library::H79_Certificad&, affine_preimagel 23
compare38 . BHRZ03_widening_assigi,24
Parma_Polyhedra_Library::H79_- bounded_BHRZ03_extrapolation_assign,
Certificate::Compare38 124
Parma_Polyhedra_Library::IO_Operatdss, bounded_H79_extrapolation_assiga5
Parma_Polyhedra_Library::LinExpressi@&9, bounds_from_abové,15
Parma_Polyhedra_Library::LinExpression bounds_from_belowl 15
LinExpression92 concatenate_assigh?6
Parma_Polyhedra_Library::NNC_Polyhedron, contains117
92 Degenerate_Kindl12
NNC_Polyhedron93, 94 EMPTY, 112

expand_dimensiori,28

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

INDEX 147

fold_dimensions128 PPL_ARITHMETIC_OVERFLOW
generalized_affine_imag&23 PPL_C interface4l
H79_widening_assigri,25 ppl_banner
intersection_assigri21 PPL_C_interface42
intersection_assign_and_minimiZA&2 PPL_C interface
is_disjoint_from,115 PPL_ARITHMETIC_OVERFLOWA41
limited_ BHRZ03_extrapolation_assign, ppl_banner42
124 PPL_CONSTRAINT_TYPE_EQUAL41
limited_H79_extrapolation_assigh25 PPL_CONSTRAINT_TYPE_GREATER_-
map_dimensiong, 27 THAN, 41
maximize, 115 116 PPL_CONSTRAINT_TYPE_GREATER_-
minimize,116 THAN_OR_EQUAL,41
OK, 118 PPL_CONSTRAINT_TYPE_LESS_-
operator!=129 THAN, 41
operatok <, 128 PPL_CONSTRAINT_TYPE_LESS -
operator==129 THAN_OR_EQUAL,41
poly_difference_assigri,22 ppl_enum_Constraint_Typél
poly_hull_assign122 ppl_enum_error_codéd,1
poly_hull_assign_and_minimiz&22 ppl_enum_Generator_Typé]
Polyhedron112-114 PPL_ERROR_INTERNAL_ERRORi1
relation_with,115 PPL_ERROR_INVALID_ARGUMENT,
remove_dimensiond,27 41
remove_higher_dimensionk27 PPL_ERROR_LENGTH_ERROR,
shrink_bounding_box,17 PPL_ERROR_OUT_OF MEMORM1
strictly_contains117 PPL_ERROR_UNEXPECTED_ERROR,
swap,128 41
time_elapse_assigh24 PPL_ERROR_UNKNOWN_-
UNIVERSE, 112 STANDARD_EXCEPTIONA1
Parma_Polyhedra_Library::PowerSE29 ppl_finalize, 42
Parma_Polyhedra_Library::PowerSet PPL_GENERATOR_TYPE_CLOSURE_-
add_non_bottom_disjunct31 POINT, 41
Sequencel31 PPL_GENERATOR_TYPE_LINE41
Parma_Polyhedra_Library::VariabtE31 PPL_GENERATOR_TYPE_POINH1
Parma_Polyhedra_Library::Variable::Compare, PPL_GENERATOR_TYPE_RAY41
133 ppl_initialize,42
POINT ppl_io_variable_output_function_typ&0Q
Parma_Polyhedra_Library::Generai®8, ppl_new_C_Polyhedron_from_bounding_-
point box, 44
Parma_Polyhedra_Library::Generatdr, ppl_new_C_Polyhedron_from_ConS¥&,
poly_difference_assign ppl_new_C_Polyhedron_from_GenSys,
Parma_Polyhedra_Library::Polyhedron, ppl_new_C_Polyhedron_recycle_ConSys,
122 42
poly_hull_assign ppl_new_C_Polyhedron_recycle_GensSys,
Parma_Polyhedra_Library::Polyhedron, 43
122 ppl_new_NNC_Polyhedron_from_-
poly_hull_assign_and_minimize bounding_box44
Parma_Polyhedra_Library::Polyhedron, ppl_new_NNC_Polyhedron_from_-
122 ConSys42
Polyhedra_PowerSet ppl_new_NNC_Polyhedron_from_-
Parma_Polyhedra_Library::Polyhedra_- GenSys43
PowerSet99 ppl_new_NNC_Polyhedron_recycle_-
Polyhedron ConSys43
Parma_Polyhedra_Library::Polyhedron, ppl_new_NNC_Polyhedron_recycle_-
112114 GenSys43

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/ for more information.


http://www.cs.unipr.it/ppl/

INDEX

148

ppl_Polyhedron_add_recycled_constraints,

47
ppl_Polyhedron_add_recycled_-
constraints_and_minimizdy

ppl_Polyhedron_add_recycled_generators,

47
ppl_Polyhedron_add_recycled -
generators_and_minimizé7y
ppl_Polyhedron_affine_imagéy
ppl_Polyhedron_affine_preimag
ppl_Polyhedron_equals_Polyhedrd®,
ppl_Polyhedron_generalized_affine_-
image 48
ppl_Polyhedron_generalized_affine_-
image_lhs_rhs48
ppl_Polyhedron_map_dimensiods
ppl_Polyhedron_maximizd6
ppl_Polyhedron_minimizel6
ppl_Polyhedron_relation_with_Constraint,
45
ppl_Polyhedron_relation_with_Generator,
45
ppl_Polyhedron_shrink_bounding_bahg
ppl_set_error_handle42
PPL_STDIO_ERROR41
PPL_VERSION40
PPL_CONSTRAINT_TYPE_EQUAL
PPL_C interface4l
PPL_CONSTRAINT_TYPE_GREATER_-
THAN
PPL_C interface4l
PPL_CONSTRAINT_TYPE_GREATER_-
THAN_OR_EQUAL
PPL_C interface4l
PPL_CONSTRAINT_TYPE_LESS_THAN
PPL_C_interface41
PPL_CONSTRAINT_TYPE_LESS_THAN_-
OR_EQUAL
PPL_C _interface4l
PPL_defines
PPL_VERSION20
ppl_enum_Constraint_Type
PPL_C interface4l
ppl_enum_error_code
PPL_C interface4l
ppl_enum_Generator_Type
PPL_C interface4l
PPL_ERROR_INTERNAL_ERROR
PPL_C interface4l
PPL_ERROR_INVALID_ARGUMENT
PPL_C_interface4l
PPL_ERROR_LENGTH_ERROR
PPL_C interface4l
PPL_ERROR_OUT_OF MEMORY

PPL_C interface4l
PPL_ERROR_UNEXPECTED_ERROR
PPL_C_interface4l
PPL_ERROR_UNKNOWN_STANDARD_-
EXCEPTION
PPL_C interface4l
ppl_finalize
PPL_C interface42
PPL_GENERATOR_TYPE_CLOSURE._-
POINT
PPL_C interface4l
PPL_GENERATOR_TYPE_LINE
PPL_C interface4l
PPL_GENERATOR_TYPE_POINT
PPL_C interface4l
PPL_GENERATOR_TYPE_RAY
PPL_C_interface4l
ppl_initialize
PPL_C_interface42
ppl_io_variable_output_function_type
PPL_C interface40
ppl_new_C_Polyhedron_from_bounding_box
PPL_C_interface}4
ppl_new_C_Polyhedron_from_ConSys
PPL_C_interface42
ppl_new_C_Polyhedron_from_GenSys
PPL_C interface43
ppl_new_C_Polyhedron_recycle_ConSys
PPL_C interface42
ppl_new_ C_Polyhedron_recycle _GenSys
PPL_C interface43
ppl_new_ NNC_Polyhedron_from_bounding_-
box
PPL_C interface44
ppl_new_NNC_Polyhedron_from_ConSys
PPL_C_interface42
ppl_new_NNC_Polyhedron_from_GenSys
PPL_C interface43
ppl_new_NNC_Polyhedron_recycle_ConSys
PPL_C interface43
ppl_new NNC_Polyhedron_recycle_GenSys
PPL_C interface43
ppl_Polyhedron_add_recycled_constraints
PPL_C_interface47
ppl_Polyhedron_add_recycled_constraints_-
and_minimize
PPL_C interface47
ppl_Polyhedron_add_recycled_generators
PPL_C _interface}7
ppl_Polyhedron_add_recycled_generators_-
and_minimize
PPL_C_interface47
ppl_Polyhedron_affine_image
PPL_C interface}7

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/

for more information.


http://www.cs.unipr.it/ppl/

INDEX

149

ppl_Polyhedron_affine_preimage
PPL_C interface48

ppl_Polyhedron_equals_Polyhedron
PPL_C_interface46

ppl_Polyhedron_generalized_affine_image

PPL_C interface48

ppl_Polyhedron_generalized_affine_image_-

Ilhs_rhs

PPL_C_interface48
ppl_Polyhedron_map_dimensions

PPL_C interface48
ppl_Polyhedron_maximize

PPL_C interface46
ppl_Polyhedron_minimize

PPL_C interface46
ppl_Polyhedron_relation_with_Constraint

PPL_C _interface45
ppl_Polyhedron_relation_with_Generator

PPL_C_interface45
ppl_Polyhedron_shrink_bounding_box

PPL_C interface45
ppl_set_error_handler

PPL_C_interface42
PPL_STDIO_ERROR

PPL_C_interface4l
PPL_VERSION

PPL_C interface40

PPL_defines20
Prolog Language Interfacé9

RAY

Parma_Polyhedra_Library::Generat®g,

ray

Parma_Polyhedra_Library::Generai®8,

relation_with

Parma_Polyhedra_Library::Polyhedron,

115
remove_dimensions

Parma_Polyhedra_Library::Determinate,

81

Parma_Polyhedra_Library::Polyhedra_-

PowerSet102

Parma_Polyhedra_Library::Polyhedron,

127
remove_higher_dimensions

Parma_Polyhedra_Library::Determinate,

81

Parma_Polyhedra_Library::Polyhedra_-

PowerSet102

Parma_Polyhedra_Library::Polyhedron,

127

Sequence

Parma_Polyhedra_Library::PowerSE31

shrink_bounding_box

Parma_Polyhedra_Library::

117
std,69
STRICT_INEQUALITY

Parma_Polyhedra_Library:

strictly _contains

Parma_Polyhedra_Library::

117
swap

Parma_Polyhedra_Library::

128

The Library,20
time_elapse_assign

Parma_Polyhedra_Library::

124
Type

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

UNIVERSE

Parma_Polyhedra_Library::

112

widen_fun

Parma_Polyhedra_Library::

PowerSet103

Polyhedron,

:Constraing

Polyhedron,

Polyhedron,

Polyhedron,

:Constraing
:Generat®s,

Polyhedron,

Polyhedra_-

The Parma Polyhedra Library User’s Manual (version 0.6.1).H8ee//www.cs.unipr.it/ppl/

for more information.


http://www.cs.unipr.it/ppl/

	General Information on the PPL 
	PPL Module Index
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Class Index
	PPL Page Index
	PPL Module Documentation
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

