Theory Separation

Up to index of Isabelle/ZF/Constructible

theory Separation
imports L_axioms WF_absolute
begin

(*  Title:      ZF/Constructible/Separation.thy
    ID:         $Id: Separation.thy,v 1.25 2005/06/17 14:15:10 haftmann Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

header{*Early Instances of Separation and Strong Replacement*}

theory Separation imports L_axioms WF_absolute begin

text{*This theory proves all instances needed for locale @{text "M_basic"}*}

text{*Helps us solve for de Bruijn indices!*}
lemma nth_ConsI: "[|nth(n,l) = x; n ∈ nat|] ==> nth(succ(n), Cons(a,l)) = x"
by simp

lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
                   fun_plus_iff_sats

lemma Collect_conj_in_DPow:
     "[| {x∈A. P(x)} ∈ DPow(A);  {x∈A. Q(x)} ∈ DPow(A) |]
      ==> {x∈A. P(x) & Q(x)} ∈ DPow(A)"
by (simp add: Int_in_DPow Collect_Int_Collect_eq [symmetric])

lemma Collect_conj_in_DPow_Lset:
     "[|z ∈ Lset(j); {x ∈ Lset(j). P(x)} ∈ DPow(Lset(j))|]
      ==> {x ∈ Lset(j). x ∈ z & P(x)} ∈ DPow(Lset(j))"
apply (frule mem_Lset_imp_subset_Lset)
apply (simp add: Collect_conj_in_DPow Collect_mem_eq
                 subset_Int_iff2 elem_subset_in_DPow)
done

lemma separation_CollectI:
     "(!!z. L(z) ==> L({x ∈ z . P(x)})) ==> separation(L, λx. P(x))"
apply (unfold separation_def, clarify)
apply (rule_tac x="{x∈z. P(x)}" in rexI)
apply simp_all
done

text{*Reduces the original comprehension to the reflected one*}
lemma reflection_imp_L_separation:
      "[| ∀x∈Lset(j). P(x) <-> Q(x);
          {x ∈ Lset(j) . Q(x)} ∈ DPow(Lset(j));
          Ord(j);  z ∈ Lset(j)|] ==> L({x ∈ z . P(x)})"
apply (rule_tac i = "succ(j)" in L_I)
 prefer 2 apply simp
apply (subgoal_tac "{x ∈ z. P(x)} = {x ∈ Lset(j). x ∈ z & (Q(x))}")
 prefer 2
 apply (blast dest: mem_Lset_imp_subset_Lset)
apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)
done

text{*Encapsulates the standard proof script for proving instances of 
      Separation.*}
lemma gen_separation:
 assumes reflection: "REFLECTS [P,Q]"
     and Lu:         "L(u)"
     and collI: "!!j. u ∈ Lset(j)
                ==> Collect(Lset(j), Q(j)) ∈ DPow(Lset(j))"
 shows "separation(L,P)"
apply (rule separation_CollectI)
apply (rule_tac A="{u,z}" in subset_LsetE, blast intro: Lu)
apply (rule ReflectsE [OF reflection], assumption)
apply (drule subset_Lset_ltD, assumption)
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2, clarify)
apply (rule collI, assumption)
done

text{*As above, but typically @{term u} is a finite enumeration such as
  @{term "{a,b}"}; thus the new subgoal gets the assumption
  @{term "{a,b} ⊆ Lset(i)"}, which is logically equivalent to 
  @{term "a ∈ Lset(i)"} and @{term "b ∈ Lset(i)"}.*}
lemma gen_separation_multi:
 assumes reflection: "REFLECTS [P,Q]"
     and Lu:         "L(u)"
     and collI: "!!j. u ⊆ Lset(j)
                ==> Collect(Lset(j), Q(j)) ∈ DPow(Lset(j))"
 shows "separation(L,P)"
apply (rule gen_separation [OF reflection Lu])
apply (drule mem_Lset_imp_subset_Lset)
apply (erule collI) 
done


subsection{*Separation for Intersection*}

lemma Inter_Reflects:
     "REFLECTS[λx. ∀y[L]. y∈A --> x ∈ y,
               λi x. ∀y∈Lset(i). y∈A --> x ∈ y]"
by (intro FOL_reflections)

lemma Inter_separation:
     "L(A) ==> separation(L, λx. ∀y[L]. y∈A --> x∈y)"
apply (rule gen_separation [OF Inter_Reflects], simp)
apply (rule DPow_LsetI)
 txt{*I leave this one example of a manual proof.  The tedium of manually
      instantiating @{term i}, @{term j} and @{term env} is obvious. *}
apply (rule ball_iff_sats)
apply (rule imp_iff_sats)
apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
apply (rule_tac i=0 and j=2 in mem_iff_sats)
apply (simp_all add: succ_Un_distrib [symmetric])
done

subsection{*Separation for Set Difference*}

lemma Diff_Reflects:
     "REFLECTS[λx. x ∉ B, λi x. x ∉ B]"
by (intro FOL_reflections)  

lemma Diff_separation:
     "L(B) ==> separation(L, λx. x ∉ B)"
apply (rule gen_separation [OF Diff_Reflects], simp)
apply (rule_tac env="[B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

subsection{*Separation for Cartesian Product*}

lemma cartprod_Reflects:
     "REFLECTS[λz. ∃x[L]. x∈A & (∃y[L]. y∈B & pair(L,x,y,z)),
                λi z. ∃x∈Lset(i). x∈A & (∃y∈Lset(i). y∈B &
                                   pair(##Lset(i),x,y,z))]"
by (intro FOL_reflections function_reflections)

lemma cartprod_separation:
     "[| L(A); L(B) |]
      ==> separation(L, λz. ∃x[L]. x∈A & (∃y[L]. y∈B & pair(L,x,y,z)))"
apply (rule gen_separation_multi [OF cartprod_Reflects, of "{A,B}"], auto)
apply (rule_tac env="[A,B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

subsection{*Separation for Image*}

lemma image_Reflects:
     "REFLECTS[λy. ∃p[L]. p∈r & (∃x[L]. x∈A & pair(L,x,y,p)),
           λi y. ∃p∈Lset(i). p∈r & (∃x∈Lset(i). x∈A & pair(##Lset(i),x,y,p))]"
by (intro FOL_reflections function_reflections)

lemma image_separation:
     "[| L(A); L(r) |]
      ==> separation(L, λy. ∃p[L]. p∈r & (∃x[L]. x∈A & pair(L,x,y,p)))"
apply (rule gen_separation_multi [OF image_Reflects, of "{A,r}"], auto)
apply (rule_tac env="[A,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Separation for Converse*}

lemma converse_Reflects:
  "REFLECTS[λz. ∃p[L]. p∈r & (∃x[L]. ∃y[L]. pair(L,x,y,p) & pair(L,y,x,z)),
     λi z. ∃p∈Lset(i). p∈r & (∃x∈Lset(i). ∃y∈Lset(i).
                     pair(##Lset(i),x,y,p) & pair(##Lset(i),y,x,z))]"
by (intro FOL_reflections function_reflections)

lemma converse_separation:
     "L(r) ==> separation(L,
         λz. ∃p[L]. p∈r & (∃x[L]. ∃y[L]. pair(L,x,y,p) & pair(L,y,x,z)))"
apply (rule gen_separation [OF converse_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Separation for Restriction*}

lemma restrict_Reflects:
     "REFLECTS[λz. ∃x[L]. x∈A & (∃y[L]. pair(L,x,y,z)),
        λi z. ∃x∈Lset(i). x∈A & (∃y∈Lset(i). pair(##Lset(i),x,y,z))]"
by (intro FOL_reflections function_reflections)

lemma restrict_separation:
   "L(A) ==> separation(L, λz. ∃x[L]. x∈A & (∃y[L]. pair(L,x,y,z)))"
apply (rule gen_separation [OF restrict_Reflects], simp)
apply (rule_tac env="[A]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Separation for Composition*}

lemma comp_Reflects:
     "REFLECTS[λxz. ∃x[L]. ∃y[L]. ∃z[L]. ∃xy[L]. ∃yz[L].
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
                  xy∈s & yz∈r,
        λi xz. ∃x∈Lset(i). ∃y∈Lset(i). ∃z∈Lset(i). ∃xy∈Lset(i). ∃yz∈Lset(i).
                  pair(##Lset(i),x,z,xz) & pair(##Lset(i),x,y,xy) &
                  pair(##Lset(i),y,z,yz) & xy∈s & yz∈r]"
by (intro FOL_reflections function_reflections)

lemma comp_separation:
     "[| L(r); L(s) |]
      ==> separation(L, λxz. ∃x[L]. ∃y[L]. ∃z[L]. ∃xy[L]. ∃yz[L].
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
                  xy∈s & yz∈r)"
apply (rule gen_separation_multi [OF comp_Reflects, of "{r,s}"], auto)
txt{*Subgoals after applying general ``separation'' rule:
     @{subgoals[display,indent=0,margin=65]}*}
apply (rule_tac env="[r,s]" in DPow_LsetI)
txt{*Subgoals ready for automatic synthesis of a formula:
     @{subgoals[display,indent=0,margin=65]}*}
apply (rule sep_rules | simp)+
done


subsection{*Separation for Predecessors in an Order*}

lemma pred_Reflects:
     "REFLECTS[λy. ∃p[L]. p∈r & pair(L,y,x,p),
                    λi y. ∃p ∈ Lset(i). p∈r & pair(##Lset(i),y,x,p)]"
by (intro FOL_reflections function_reflections)

lemma pred_separation:
     "[| L(r); L(x) |] ==> separation(L, λy. ∃p[L]. p∈r & pair(L,y,x,p))"
apply (rule gen_separation_multi [OF pred_Reflects, of "{r,x}"], auto)
apply (rule_tac env="[r,x]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Separation for the Membership Relation*}

lemma Memrel_Reflects:
     "REFLECTS[λz. ∃x[L]. ∃y[L]. pair(L,x,y,z) & x ∈ y,
            λi z. ∃x ∈ Lset(i). ∃y ∈ Lset(i). pair(##Lset(i),x,y,z) & x ∈ y]"
by (intro FOL_reflections function_reflections)

lemma Memrel_separation:
     "separation(L, λz. ∃x[L]. ∃y[L]. pair(L,x,y,z) & x ∈ y)"
apply (rule gen_separation [OF Memrel_Reflects nonempty])
apply (rule_tac env="[]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Replacement for FunSpace*}

lemma funspace_succ_Reflects:
 "REFLECTS[λz. ∃p[L]. p∈A & (∃f[L]. ∃b[L]. ∃nb[L]. ∃cnbf[L].
            pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
            upair(L,cnbf,cnbf,z)),
        λi z. ∃p ∈ Lset(i). p∈A & (∃f ∈ Lset(i). ∃b ∈ Lset(i).
              ∃nb ∈ Lset(i). ∃cnbf ∈ Lset(i).
                pair(##Lset(i),f,b,p) & pair(##Lset(i),n,b,nb) &
                is_cons(##Lset(i),nb,f,cnbf) & upair(##Lset(i),cnbf,cnbf,z))]"
by (intro FOL_reflections function_reflections)

lemma funspace_succ_replacement:
     "L(n) ==>
      strong_replacement(L, λp z. ∃f[L]. ∃b[L]. ∃nb[L]. ∃cnbf[L].
                pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
                upair(L,cnbf,cnbf,z))"
apply (rule strong_replacementI)
apply (rule_tac u="{n,B}" in gen_separation_multi [OF funspace_succ_Reflects], 
       auto)
apply (rule_tac env="[n,B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Separation for a Theorem about @{term "is_recfun"}*}

lemma is_recfun_reflects:
  "REFLECTS[λx. ∃xa[L]. ∃xb[L].
                pair(L,x,a,xa) & xa ∈ r & pair(L,x,b,xb) & xb ∈ r &
                (∃fx[L]. ∃gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
                                   fx ≠ gx),
   λi x. ∃xa ∈ Lset(i). ∃xb ∈ Lset(i).
          pair(##Lset(i),x,a,xa) & xa ∈ r & pair(##Lset(i),x,b,xb) & xb ∈ r &
                (∃fx ∈ Lset(i). ∃gx ∈ Lset(i). fun_apply(##Lset(i),f,x,fx) &
                  fun_apply(##Lset(i),g,x,gx) & fx ≠ gx)]"
by (intro FOL_reflections function_reflections fun_plus_reflections)

lemma is_recfun_separation:
     --{*for well-founded recursion*}
     "[| L(r); L(f); L(g); L(a); L(b) |]
     ==> separation(L,
            λx. ∃xa[L]. ∃xb[L].
                pair(L,x,a,xa) & xa ∈ r & pair(L,x,b,xb) & xb ∈ r &
                (∃fx[L]. ∃gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
                                   fx ≠ gx))"
apply (rule gen_separation_multi [OF is_recfun_reflects, of "{r,f,g,a,b}"], 
            auto)
apply (rule_tac env="[r,f,g,a,b]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done


subsection{*Instantiating the locale @{text M_basic}*}
text{*Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.*}

lemma M_basic_axioms_L: "M_basic_axioms(L)"
  apply (rule M_basic_axioms.intro)
       apply (assumption | rule
         Inter_separation Diff_separation cartprod_separation image_separation
         converse_separation restrict_separation
         comp_separation pred_separation Memrel_separation
         funspace_succ_replacement is_recfun_separation)+
  done

theorem M_basic_L: "PROP M_basic(L)"
by (rule M_basic.intro [OF M_trivial_L M_basic_axioms_L])

interpretation M_basic [L] by (rule M_basic_axioms_L)


end

lemma nth_ConsI:

  [| nth(n, l) = x; n ∈ nat |] ==> nth(succ(n), Cons(a, l)) = x

lemmas nth_rules:

  nth(0, Cons(a, l)) = a
  [| nth(n, l) = x; n ∈ nat |] ==> nth(succ(n), Cons(a, l)) = x
  0 ∈ nat
  n ∈ nat ==> succ(n) ∈ nat

lemmas nth_rules:

  nth(0, Cons(a, l)) = a
  [| nth(n, l) = x; n ∈ nat |] ==> nth(succ(n), Cons(a, l)) = x
  0 ∈ nat
  n ∈ nat ==> succ(n) ∈ nat

lemmas sep_rules:

  nth(0, Cons(a, l)) = a
  [| nth(n, l) = x; n ∈ nat |] ==> nth(succ(n), Cons(a, l)) = x
  [| nth(i, env) = x; nth(j, env) = y; env ∈ list(A) |]
  ==> xy <-> sats(A, Member(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; env ∈ list(A) |]
  ==> x = y <-> sats(A, Equal(i, j), env)
  [| P <-> sats(A, p, env); env ∈ list(A) |] ==> ¬ P <-> sats(A, Neg(p), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> PQ <-> sats(A, And(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> PQ <-> sats(A, Or(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> (P --> Q) <-> sats(A, Implies(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> (P <-> Q) <-> sats(A, Iff(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> (P --> Q) <-> sats(A, Implies(p, q), env)
  [| !!x. xA ==> P(x) <-> sats(A, p, Cons(x, env)); env ∈ list(A) |]
  ==> (∀xA. P(x)) <-> sats(A, Forall(p), env)
  [| !!x. xA ==> P(x) <-> sats(A, p, Cons(x, env)); env ∈ list(A) |]
  ==> (∃xA. P(x)) <-> sats(A, Exists(p), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> empty(##A, x) <-> sats(A, empty_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> number1(##A, x) <-> sats(A, number1_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> upair(##A, x, y, z) <-> sats(A, upair_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> pair(##A, x, y, z) <-> sats(A, pair_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> union(##A, x, y, z) <-> sats(A, union_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> big_union(##A, x, y) <-> sats(A, big_union_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> is_cons(##A, x, y, z) <-> sats(A, cons_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> successor(##A, x, y) <-> sats(A, succ_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> fun_apply(##A, x, y, z) <-> sats(A, fun_apply_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> membership(##A, x, y) <-> sats(A, Memrel_fm(i, j), env)
  [| nth(i, env) = U; nth(j, env) = x; nth(k, env) = r; nth(l, env) = B; i ∈ nat;
     j ∈ nat; k ∈ nat; l ∈ nat; env ∈ list(A) |]
  ==> pred_set(##A, U, x, r, B) <-> sats(A, pred_set_fm(i, j, k, l), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> is_domain(##A, x, y) <-> sats(A, domain_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> is_range(##A, x, y) <-> sats(A, range_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> is_field(##A, x, y) <-> sats(A, field_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> image(##A, x, y, z) <-> sats(A, image_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> pre_image(##A, x, y, z) <-> sats(A, pre_image_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> is_relation(##A, x) <-> sats(A, relation_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> is_function(##A, x) <-> sats(A, function_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> typed_function(##A, x, y, z) <-> sats(A, typed_function_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> composition(##A, x, y, z) <-> sats(A, composition_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> injection(##A, x, y, z) <-> sats(A, injection_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> surjection(##A, x, y, z) <-> sats(A, surjection_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> bijection(##A, x, y, z) <-> sats(A, bijection_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> restriction(##A, x, y, z) <-> sats(A, restriction_fm(i, j, k), env)
  [| nth(i, env) = U; nth(j, env) = r; nth(k, env) = B; nth(j', env) = s;
     nth(k', env) = f; i ∈ nat; j ∈ nat; k ∈ nat; j' ∈ nat; k' ∈ nat;
     env ∈ list(A) |]
  ==> order_isomorphism(##A, U, r, B, s, f) <->
      sats(A, order_isomorphism_fm(i, j, k, j', k'), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> finite_ordinal(##A, x) <-> sats(A, finite_ordinal_fm(i), env)
  [| nth(i, env) = x; i ∈ nat; env ∈ list(A) |]
  ==> ordinal(##A, x) <-> sats(A, ordinal_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> limit_ordinal(##A, x) <-> sats(A, limit_ordinal_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> omega(##A, x) <-> sats(A, omega_fm(i), env)

lemmas sep_rules:

  nth(0, Cons(a, l)) = a
  [| nth(n, l) = x; n ∈ nat |] ==> nth(succ(n), Cons(a, l)) = x
  [| nth(i, env) = x; nth(j, env) = y; env ∈ list(A) |]
  ==> xy <-> sats(A, Member(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; env ∈ list(A) |]
  ==> x = y <-> sats(A, Equal(i, j), env)
  [| P <-> sats(A, p, env); env ∈ list(A) |] ==> ¬ P <-> sats(A, Neg(p), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> PQ <-> sats(A, And(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> PQ <-> sats(A, Or(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> (P --> Q) <-> sats(A, Implies(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> (P <-> Q) <-> sats(A, Iff(p, q), env)
  [| P <-> sats(A, p, env); Q <-> sats(A, q, env); env ∈ list(A) |]
  ==> (P --> Q) <-> sats(A, Implies(p, q), env)
  [| !!x. xA ==> P(x) <-> sats(A, p, Cons(x, env)); env ∈ list(A) |]
  ==> (∀xA. P(x)) <-> sats(A, Forall(p), env)
  [| !!x. xA ==> P(x) <-> sats(A, p, Cons(x, env)); env ∈ list(A) |]
  ==> (∃xA. P(x)) <-> sats(A, Exists(p), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> empty(##A, x) <-> sats(A, empty_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> number1(##A, x) <-> sats(A, number1_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> upair(##A, x, y, z) <-> sats(A, upair_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> pair(##A, x, y, z) <-> sats(A, pair_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> union(##A, x, y, z) <-> sats(A, union_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> big_union(##A, x, y) <-> sats(A, big_union_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> is_cons(##A, x, y, z) <-> sats(A, cons_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> successor(##A, x, y) <-> sats(A, succ_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> fun_apply(##A, x, y, z) <-> sats(A, fun_apply_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> membership(##A, x, y) <-> sats(A, Memrel_fm(i, j), env)
  [| nth(i, env) = U; nth(j, env) = x; nth(k, env) = r; nth(l, env) = B; i ∈ nat;
     j ∈ nat; k ∈ nat; l ∈ nat; env ∈ list(A) |]
  ==> pred_set(##A, U, x, r, B) <-> sats(A, pred_set_fm(i, j, k, l), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> is_domain(##A, x, y) <-> sats(A, domain_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> is_range(##A, x, y) <-> sats(A, range_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; j ∈ nat; env ∈ list(A) |]
  ==> is_field(##A, x, y) <-> sats(A, field_fm(i, j), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> image(##A, x, y, z) <-> sats(A, image_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> pre_image(##A, x, y, z) <-> sats(A, pre_image_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> is_relation(##A, x) <-> sats(A, relation_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> is_function(##A, x) <-> sats(A, function_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> typed_function(##A, x, y, z) <-> sats(A, typed_function_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> composition(##A, x, y, z) <-> sats(A, composition_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> injection(##A, x, y, z) <-> sats(A, injection_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> surjection(##A, x, y, z) <-> sats(A, surjection_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> bijection(##A, x, y, z) <-> sats(A, bijection_fm(i, j, k), env)
  [| nth(i, env) = x; nth(j, env) = y; nth(k, env) = z; i ∈ nat; j ∈ nat; k ∈ nat;
     env ∈ list(A) |]
  ==> restriction(##A, x, y, z) <-> sats(A, restriction_fm(i, j, k), env)
  [| nth(i, env) = U; nth(j, env) = r; nth(k, env) = B; nth(j', env) = s;
     nth(k', env) = f; i ∈ nat; j ∈ nat; k ∈ nat; j' ∈ nat; k' ∈ nat;
     env ∈ list(A) |]
  ==> order_isomorphism(##A, U, r, B, s, f) <->
      sats(A, order_isomorphism_fm(i, j, k, j', k'), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> finite_ordinal(##A, x) <-> sats(A, finite_ordinal_fm(i), env)
  [| nth(i, env) = x; i ∈ nat; env ∈ list(A) |]
  ==> ordinal(##A, x) <-> sats(A, ordinal_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> limit_ordinal(##A, x) <-> sats(A, limit_ordinal_fm(i), env)
  [| nth(i, env) = x; nth(j, env) = y; i ∈ nat; env ∈ list(A) |]
  ==> omega(##A, x) <-> sats(A, omega_fm(i), env)

lemma Collect_conj_in_DPow:

  [| {xA . P(x)} ∈ DPow(A); {xA . Q(x)} ∈ DPow(A) |]
  ==> {xA . P(x) ∧ Q(x)} ∈ DPow(A)

lemma Collect_conj_in_DPow_Lset:

  [| z ∈ Lset(j); {x ∈ Lset(j) . P(x)} ∈ DPow(Lset(j)) |]
  ==> {x ∈ Lset(j) . xzP(x)} ∈ DPow(Lset(j))

lemma separation_CollectI:

  (!!z. L(z) ==> L({xz . P(x)})) ==> separation(L, %x. P(x))

lemma reflection_imp_L_separation:

  [| ∀x∈Lset(j). P(x) <-> Q(x); {x ∈ Lset(j) . Q(x)} ∈ DPow(Lset(j)); Ord(j);
     z ∈ Lset(j) |]
  ==> L({xz . P(x)})

lemma gen_separation:

  [| REFLECTS [P, Q]; L(u);
     !!j. u ∈ Lset(j) ==> Collect(Lset(j), Q(j)) ∈ DPow(Lset(j)) |]
  ==> separation(L, P)

lemma gen_separation_multi:

  [| REFLECTS [P, Q]; L(u);
     !!j. u ⊆ Lset(j) ==> Collect(Lset(j), Q(j)) ∈ DPow(Lset(j)) |]
  ==> separation(L, P)

Separation for Intersection

lemma Inter_Reflects:

  REFLECTS [%x. ∀y[L]. yA --> xy, %i x. ∀y∈Lset(i). yA --> xy]

lemma Inter_separation:

  L(A) ==> separation(L, %x. ∀y[L]. yA --> xy)

Separation for Set Difference

lemma Diff_Reflects:

  REFLECTS [%x. xB, %i x. xB]

lemma Diff_separation:

  L(B) ==> separation(L, %x. xB)

Separation for Cartesian Product

lemma cartprod_Reflects:

  REFLECTS [%z. ∃x[L]. xA ∧ (∃y[L]. yB ∧ pair(L, x, y, z)),
     %i z. ∃x∈Lset(i). xA ∧ (∃y∈Lset(i). yB ∧ pair(##Lset(i), x, y, z))]

lemma cartprod_separation:

  [| L(A); L(B) |]
  ==> separation(L, %z. ∃x[L]. xA ∧ (∃y[L]. yB ∧ pair(L, x, y, z)))

Separation for Image

lemma image_Reflects:

  REFLECTS [%y. ∃p[L]. pr ∧ (∃x[L]. xA ∧ pair(L, x, y, p)),
     %i y. ∃p∈Lset(i). pr ∧ (∃x∈Lset(i). xA ∧ pair(##Lset(i), x, y, p))]

lemma image_separation:

  [| L(A); L(r) |]
  ==> separation(L, %y. ∃p[L]. pr ∧ (∃x[L]. xA ∧ pair(L, x, y, p)))

Separation for Converse

lemma converse_Reflects:

  REFLECTS
     [%z. ∃p[L]. pr ∧ (∃x[L]. ∃y[L]. pair(L, x, y, p) ∧ pair(L, y, x, z)),
     %i z. ∃p∈Lset(i).
              pr ∧
              (∃x∈Lset(i).
                  ∃y∈Lset(i).
                     pair(##Lset(i), x, y, p) ∧ pair(##Lset(i), y, x, z))]

lemma converse_separation:

  L(r)
  ==> separation
       (L, %z. ∃p[L]. pr ∧ (∃x[L]. ∃y[L]. pair(L, x, y, p) ∧ pair(L, y, x, z)))

Separation for Restriction

lemma restrict_Reflects:

  REFLECTS [%z. ∃x[L]. xA ∧ (∃y[L]. pair(L, x, y, z)),
     %i z. ∃x∈Lset(i). xA ∧ (∃y∈Lset(i). pair(##Lset(i), x, y, z))]

lemma restrict_separation:

  L(A) ==> separation(L, %z. ∃x[L]. xA ∧ (∃y[L]. pair(L, x, y, z)))

Separation for Composition

lemma comp_Reflects:

  REFLECTS
     [%xz. ∃x[L]. ∃y[L]. ∃z[L]. ∃xy[L].
                                   ∃yz[L].
                                      pair(L, x, z, xz) ∧
                                      pair(L, x, y, xy) ∧
                                      pair(L, y, z, yz) ∧ xysyzr,
     %i xz. ∃x∈Lset(i).
               ∃y∈Lset(i).
                  ∃z∈Lset(i).
                     ∃xy∈Lset(i).
                        ∃yz∈Lset(i).
                           pair(##Lset(i), x, z, xz) ∧
                           pair(##Lset(i), x, y, xy) ∧
                           pair(##Lset(i), y, z, yz) ∧ xysyzr]

lemma comp_separation:

  [| L(r); L(s) |]
  ==> separation
       (L, %xz. ∃x[L]. ∃y[L]. ∃z[L]. ∃xy[L].
                                        ∃yz[L].
   pair(L, x, z, xz) ∧ pair(L, x, y, xy) ∧ pair(L, y, z, yz) ∧ xysyzr)

Separation for Predecessors in an Order

lemma pred_Reflects:

  REFLECTS [%y. ∃p[L]. pr ∧ pair(L, y, x, p),
     %i y. ∃p∈Lset(i). pr ∧ pair(##Lset(i), y, x, p)]

lemma pred_separation:

  [| L(r); L(x) |] ==> separation(L, %y. ∃p[L]. pr ∧ pair(L, y, x, p))

Separation for the Membership Relation

lemma Memrel_Reflects:

  REFLECTS [%z. ∃x[L]. ∃y[L]. pair(L, x, y, z) ∧ xy,
     %i z. ∃x∈Lset(i). ∃y∈Lset(i). pair(##Lset(i), x, y, z) ∧ xy]

lemma Memrel_separation:

  separation(L, %z. ∃x[L]. ∃y[L]. pair(L, x, y, z) ∧ xy)

Replacement for FunSpace

lemma funspace_succ_Reflects:

  REFLECTS
     [%z. ∃p[L]. pA ∧
                 (∃f[L]. ∃b[L]. ∃nb[L].
                                   ∃cnbf[L].
                                      pair(L, f, b, p) ∧
                                      pair(L, n, b, nb) ∧
                                      is_cons(L, nb, f, cnbf) ∧
                                      upair(L, cnbf, cnbf, z)),
     %i z. ∃p∈Lset(i).
              pA ∧
              (∃f∈Lset(i).
                  ∃b∈Lset(i).
                     ∃nb∈Lset(i).
                        ∃cnbf∈Lset(i).
                           pair(##Lset(i), f, b, p) ∧
                           pair(##Lset(i), n, b, nb) ∧
                           is_cons(##Lset(i), nb, f, cnbf) ∧
                           upair(##Lset(i), cnbf, cnbf, z))]

lemma funspace_succ_replacement:

  L(n)
  ==> strong_replacement
       (L, %p z. ∃f[L]. ∃b[L]. ∃nb[L].
                                  ∃cnbf[L].
                                     pair(L, f, b, p) ∧
                                     pair(L, n, b, nb) ∧
                                     is_cons(L, nb, f, cnbf) ∧
                                     upair(L, cnbf, cnbf, z))

Separation for a Theorem about @{term "is_recfun"}

lemma is_recfun_reflects:

  REFLECTS
     [%x. ∃xa[L].
             ∃xb[L].
                pair(L, x, a, xa) ∧
                xar ∧
                pair(L, x, b, xb) ∧
                xbr ∧
                (∃fx[L].
                    ∃gx[L].
                       fun_apply(L, f, x, fx) ∧ fun_apply(L, g, x, gx) ∧ fxgx),
     %i x. ∃xa∈Lset(i).
              ∃xb∈Lset(i).
                 pair(##Lset(i), x, a, xa) ∧
                 xar ∧
                 pair(##Lset(i), x, b, xb) ∧
                 xbr ∧
                 (∃fx∈Lset(i).
                     ∃gx∈Lset(i).
                        fun_apply(##Lset(i), f, x, fx) ∧
                        fun_apply(##Lset(i), g, x, gx) ∧ fxgx)]

lemma is_recfun_separation:

  [| L(r); L(f); L(g); L(a); L(b) |]
  ==> separation
       (L, %x. ∃xa[L].
                  ∃xb[L].
                     pair(L, x, a, xa) ∧
                     xar ∧
                     pair(L, x, b, xb) ∧
                     xbr ∧
                     (∃fx[L].
                         ∃gx[L].
                            fun_apply(L, f, x, fx) ∧
                            fun_apply(L, g, x, gx) ∧ fxgx))

Instantiating the locale @{text M_basic}

lemma M_basic_axioms_L:

  M_basic_axioms(L)

theorem M_basic_L:

  PROP M_basic(L)