Theory AC_in_L

Up to index of Isabelle/ZF/Constructible

theory AC_in_L
imports Formula
begin

(*  Title:      ZF/Constructible/AC_in_L.thy
    ID: $Id: AC_in_L.thy,v 1.8 2005/06/17 14:15:10 haftmann Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

header {* The Axiom of Choice Holds in L! *}

theory AC_in_L imports Formula begin

subsection{*Extending a Wellordering over a List -- Lexicographic Power*}

text{*This could be moved into a library.*}

consts
  rlist   :: "[i,i]=>i"

inductive
  domains "rlist(A,r)" ⊆ "list(A) * list(A)"
  intros
    shorterI:
      "[| length(l') < length(l); l' ∈ list(A); l ∈ list(A) |]
       ==> <l', l> ∈ rlist(A,r)"

    sameI:
      "[| <l',l> ∈ rlist(A,r); a ∈ A |]
       ==> <Cons(a,l'), Cons(a,l)> ∈ rlist(A,r)"

    diffI:
      "[| length(l') = length(l); <a',a> ∈ r;
          l' ∈ list(A); l ∈ list(A); a' ∈ A; a ∈ A |]
       ==> <Cons(a',l'), Cons(a,l)> ∈ rlist(A,r)"
  type_intros list.intros


subsubsection{*Type checking*}

lemmas rlist_type = rlist.dom_subset

lemmas field_rlist = rlist_type [THEN field_rel_subset]

subsubsection{*Linearity*}

lemma rlist_Nil_Cons [intro]:
    "[|a ∈ A; l ∈ list(A)|] ==> <[], Cons(a,l)> ∈ rlist(A, r)"
by (simp add: shorterI)

lemma linear_rlist:
    "linear(A,r) ==> linear(list(A),rlist(A,r))"
apply (simp (no_asm_simp) add: linear_def)
apply (rule ballI)
apply (induct_tac x)
 apply (rule ballI)
 apply (induct_tac y)
  apply (simp_all add: shorterI)
apply (rule ballI)
apply (erule_tac a=y in list.cases)
 apply (rename_tac [2] a2 l2)
 apply (rule_tac [2] i = "length(l)" and j = "length(l2)" in Ord_linear_lt)
     apply (simp_all add: shorterI)
apply (erule_tac x=a and y=a2 in linearE)
    apply (simp_all add: diffI)
apply (blast intro: sameI)
done


subsubsection{*Well-foundedness*}

text{*Nothing preceeds Nil in this ordering.*}
inductive_cases rlist_NilE: " <l,[]> ∈ rlist(A,r)"

inductive_cases rlist_ConsE: " <l', Cons(x,l)> ∈ rlist(A,r)"

lemma not_rlist_Nil [simp]: " <l,[]> ∉ rlist(A,r)"
by (blast intro: elim: rlist_NilE)

lemma rlist_imp_length_le: "<l',l> ∈ rlist(A,r) ==> length(l') ≤ length(l)"
apply (erule rlist.induct)
apply (simp_all add: leI)
done

lemma wf_on_rlist_n:
  "[| n ∈ nat; wf[A](r) |] ==> wf[{l ∈ list(A). length(l) = n}](rlist(A,r))"
apply (induct_tac n)
 apply (rule wf_onI2, simp)
apply (rule wf_onI2, clarify)
apply (erule_tac a=y in list.cases, clarify)
 apply (simp (no_asm_use))
apply clarify
apply (simp (no_asm_use))
apply (subgoal_tac "∀l2 ∈ list(A). length(l2) = x --> Cons(a,l2) ∈ B", blast)
apply (erule_tac a=a in wf_on_induct, assumption)
apply (rule ballI)
apply (rule impI)
apply (erule_tac a=l2 in wf_on_induct, blast, clarify)
apply (rename_tac a' l2 l')
apply (drule_tac x="Cons(a',l')" in bspec, typecheck)
apply simp
apply (erule mp, clarify)
apply (erule rlist_ConsE, auto)
done

lemma list_eq_UN_length: "list(A) = (\<Union>n∈nat. {l ∈ list(A). length(l) = n})"
by (blast intro: length_type)


lemma wf_on_rlist: "wf[A](r) ==> wf[list(A)](rlist(A,r))"
apply (subst list_eq_UN_length)
apply (rule wf_on_Union)
  apply (rule wf_imp_wf_on [OF wf_Memrel [of nat]])
 apply (simp add: wf_on_rlist_n)
apply (frule rlist_type [THEN subsetD])
apply (simp add: length_type)
apply (drule rlist_imp_length_le)
apply (erule leE)
apply (simp_all add: lt_def)
done


lemma wf_rlist: "wf(r) ==> wf(rlist(field(r),r))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_rlist])
apply (blast intro: wf_on_rlist)
done

lemma well_ord_rlist:
     "well_ord(A,r) ==> well_ord(list(A), rlist(A,r))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_rlist)
apply (simp add: well_ord_def tot_ord_def linear_rlist)
done


subsection{*An Injection from Formulas into the Natural Numbers*}

text{*There is a well-known bijection between @{term "nat*nat"} and @{term
nat} given by the expression f(m,n) = triangle(m+n) + m, where triangle(k)
enumerates the triangular numbers and can be defined by triangle(0)=0,
triangle(succ(k)) = succ(k + triangle(k)).  Some small amount of effort is
needed to show that f is a bijection.  We already know that such a bijection exists by the theorem @{text well_ord_InfCard_square_eq}:
@{thm[display] well_ord_InfCard_square_eq[no_vars]}

However, this result merely states that there is a bijection between the two
sets.  It provides no means of naming a specific bijection.  Therefore, we
conduct the proofs under the assumption that a bijection exists.  The simplest
way to organize this is to use a locale.*}

text{*Locale for any arbitrary injection between @{term "nat*nat"}
      and @{term nat}*}
locale Nat_Times_Nat =
  fixes fn
  assumes fn_inj: "fn ∈ inj(nat*nat, nat)"


consts   enum :: "[i,i]=>i"
primrec
  "enum(f, Member(x,y)) = f ` <0, f ` <x,y>>"
  "enum(f, Equal(x,y)) = f ` <1, f ` <x,y>>"
  "enum(f, Nand(p,q)) = f ` <2, f ` <enum(f,p), enum(f,q)>>"
  "enum(f, Forall(p)) = f ` <succ(2), enum(f,p)>"

lemma (in Nat_Times_Nat) fn_type [TC,simp]:
    "[|x ∈ nat; y ∈ nat|] ==> fn`<x,y> ∈ nat"
by (blast intro: inj_is_fun [OF fn_inj] apply_funtype)

lemma (in Nat_Times_Nat) fn_iff:
    "[|x ∈ nat; y ∈ nat; u ∈ nat; v ∈ nat|]
     ==> (fn`<x,y> = fn`<u,v>) <-> (x=u & y=v)"
by (blast dest: inj_apply_equality [OF fn_inj])

lemma (in Nat_Times_Nat) enum_type [TC,simp]:
    "p ∈ formula ==> enum(fn,p) ∈ nat"
by (induct_tac p, simp_all)

lemma (in Nat_Times_Nat) enum_inject [rule_format]:
    "p ∈ formula ==> ∀q∈formula. enum(fn,p) = enum(fn,q) --> p=q"
apply (induct_tac p, simp_all)
   apply (rule ballI)
   apply (erule formula.cases)
   apply (simp_all add: fn_iff)
  apply (rule ballI)
  apply (erule formula.cases)
  apply (simp_all add: fn_iff)
 apply (rule ballI)
 apply (erule_tac a=qa in formula.cases)
 apply (simp_all add: fn_iff)
 apply blast
apply (rule ballI)
apply (erule_tac a=q in formula.cases)
apply (simp_all add: fn_iff, blast)
done

lemma (in Nat_Times_Nat) inj_formula_nat:
    "(λp ∈ formula. enum(fn,p)) ∈ inj(formula, nat)"
apply (simp add: inj_def lam_type)
apply (blast intro: enum_inject)
done

lemma (in Nat_Times_Nat) well_ord_formula:
    "well_ord(formula, measure(formula, enum(fn)))"
apply (rule well_ord_measure, simp)
apply (blast intro: enum_inject)
done

lemmas nat_times_nat_lepoll_nat =
    InfCard_nat [THEN InfCard_square_eqpoll, THEN eqpoll_imp_lepoll]


text{*Not needed--but interesting?*}
theorem formula_lepoll_nat: "formula \<lesssim> nat"
apply (insert nat_times_nat_lepoll_nat)
apply (unfold lepoll_def)
apply (blast intro: Nat_Times_Nat.inj_formula_nat Nat_Times_Nat.intro)
done


subsection{*Defining the Wellordering on @{term "DPow(A)"}*}

text{*The objective is to build a wellordering on @{term "DPow(A)"} from a
given one on @{term A}.  We first introduce wellorderings for environments,
which are lists built over @{term "A"}.  We combine it with the enumeration of
formulas.  The order type of the resulting wellordering gives us a map from
(environment, formula) pairs into the ordinals.  For each member of @{term
"DPow(A)"}, we take the minimum such ordinal.*}

constdefs
  env_form_r :: "[i,i,i]=>i"
    --{*wellordering on (environment, formula) pairs*}
   "env_form_r(f,r,A) ==
      rmult(list(A), rlist(A, r),
            formula, measure(formula, enum(f)))"

  env_form_map :: "[i,i,i,i]=>i"
    --{*map from (environment, formula) pairs to ordinals*}
   "env_form_map(f,r,A,z)
      == ordermap(list(A) * formula, env_form_r(f,r,A)) ` z"

  DPow_ord :: "[i,i,i,i,i]=>o"
    --{*predicate that holds if @{term k} is a valid index for @{term X}*}
   "DPow_ord(f,r,A,X,k) ==
           ∃env ∈ list(A). ∃p ∈ formula.
             arity(p) ≤ succ(length(env)) &
             X = {x∈A. sats(A, p, Cons(x,env))} &
             env_form_map(f,r,A,<env,p>) = k"

  DPow_least :: "[i,i,i,i]=>i"
    --{*function yielding the smallest index for @{term X}*}
   "DPow_least(f,r,A,X) == μ k. DPow_ord(f,r,A,X,k)"

  DPow_r :: "[i,i,i]=>i"
    --{*a wellordering on @{term "DPow(A)"}*}
   "DPow_r(f,r,A) == measure(DPow(A), DPow_least(f,r,A))"


lemma (in Nat_Times_Nat) well_ord_env_form_r:
    "well_ord(A,r)
     ==> well_ord(list(A) * formula, env_form_r(fn,r,A))"
by (simp add: env_form_r_def well_ord_rmult well_ord_rlist well_ord_formula)

lemma (in Nat_Times_Nat) Ord_env_form_map:
    "[|well_ord(A,r); z ∈ list(A) * formula|]
     ==> Ord(env_form_map(fn,r,A,z))"
by (simp add: env_form_map_def Ord_ordermap well_ord_env_form_r)

lemma DPow_imp_ex_DPow_ord:
    "X ∈ DPow(A) ==> ∃k. DPow_ord(fn,r,A,X,k)"
apply (simp add: DPow_ord_def)
apply (blast dest!: DPowD)
done

lemma (in Nat_Times_Nat) DPow_ord_imp_Ord:
     "[|DPow_ord(fn,r,A,X,k); well_ord(A,r)|] ==> Ord(k)"
apply (simp add: DPow_ord_def, clarify)
apply (simp add: Ord_env_form_map)
done

lemma (in Nat_Times_Nat) DPow_imp_DPow_least:
    "[|X ∈ DPow(A); well_ord(A,r)|]
     ==> DPow_ord(fn, r, A, X, DPow_least(fn,r,A,X))"
apply (simp add: DPow_least_def)
apply (blast dest: DPow_imp_ex_DPow_ord intro: DPow_ord_imp_Ord LeastI)
done

lemma (in Nat_Times_Nat) env_form_map_inject:
    "[|env_form_map(fn,r,A,u) = env_form_map(fn,r,A,v); well_ord(A,r);
       u ∈ list(A) * formula;  v ∈ list(A) * formula|]
     ==> u=v"
apply (simp add: env_form_map_def)
apply (rule inj_apply_equality [OF bij_is_inj, OF ordermap_bij,
                                OF well_ord_env_form_r], assumption+)
done

lemma (in Nat_Times_Nat) DPow_ord_unique:
    "[|DPow_ord(fn,r,A,X,k); DPow_ord(fn,r,A,Y,k); well_ord(A,r)|]
     ==> X=Y"
apply (simp add: DPow_ord_def, clarify)
apply (drule env_form_map_inject, auto)
done

lemma (in Nat_Times_Nat) well_ord_DPow_r:
    "well_ord(A,r) ==> well_ord(DPow(A), DPow_r(fn,r,A))"
apply (simp add: DPow_r_def)
apply (rule well_ord_measure)
 apply (simp add: DPow_least_def Ord_Least)
apply (drule DPow_imp_DPow_least, assumption)+
apply simp
apply (blast intro: DPow_ord_unique)
done

lemma (in Nat_Times_Nat) DPow_r_type:
    "DPow_r(fn,r,A) ⊆ DPow(A) * DPow(A)"
by (simp add: DPow_r_def measure_def, blast)


subsection{*Limit Construction for Well-Orderings*}

text{*Now we work towards the transfinite definition of wellorderings for
@{term "Lset(i)"}.  We assume as an inductive hypothesis that there is a family
of wellorderings for smaller ordinals.*}

constdefs
  rlimit :: "[i,i=>i]=>i"
  --{*Expresses the wellordering at limit ordinals.  The conditional
      lets us remove the premise @{term "Limit(i)"} from some theorems.*}
    "rlimit(i,r) ==
       if Limit(i) then 
         {z: Lset(i) * Lset(i).
          ∃x' x. z = <x',x> &
                 (lrank(x') < lrank(x) |
                  (lrank(x') = lrank(x) & <x',x> ∈ r(succ(lrank(x)))))}
       else 0"

  Lset_new :: "i=>i"
  --{*This constant denotes the set of elements introduced at level
      @{term "succ(i)"}*}
    "Lset_new(i) == {x ∈ Lset(succ(i)). lrank(x) = i}"

lemma Limit_Lset_eq2:
    "Limit(i) ==> Lset(i) = (\<Union>j∈i. Lset_new(j))"
apply (simp add: Limit_Lset_eq)
apply (rule equalityI)
 apply safe
 apply (subgoal_tac "Ord(y)")
  prefer 2 apply (blast intro: Ord_in_Ord Limit_is_Ord)
 apply (simp_all add: Limit_is_Ord Lset_iff_lrank_lt Lset_new_def
                      Ord_mem_iff_lt)
 apply (blast intro: lt_trans)
apply (rule_tac x = "succ(lrank(x))" in bexI)
 apply (simp add: Lset_succ_lrank_iff)
apply (blast intro: Limit_has_succ ltD)
done

lemma wf_on_Lset:
    "wf[Lset(succ(j))](r(succ(j))) ==> wf[Lset_new(j)](rlimit(i,r))"
apply (simp add: wf_on_def Lset_new_def)
apply (erule wf_subset)
apply (simp add: rlimit_def, force)
done

lemma wf_on_rlimit:
    "(∀j<i. wf[Lset(j)](r(j))) ==> wf[Lset(i)](rlimit(i,r))"
apply (case_tac "Limit(i)") 
 prefer 2
 apply (simp add: rlimit_def wf_on_any_0)
apply (simp add: Limit_Lset_eq2)
apply (rule wf_on_Union)
  apply (rule wf_imp_wf_on [OF wf_Memrel [of i]])
 apply (blast intro: wf_on_Lset Limit_has_succ Limit_is_Ord ltI)
apply (force simp add: rlimit_def Limit_is_Ord Lset_iff_lrank_lt Lset_new_def
                       Ord_mem_iff_lt)
done

lemma linear_rlimit:
    "[|Limit(i); ∀j<i. linear(Lset(j), r(j)) |]
     ==> linear(Lset(i), rlimit(i,r))"
apply (frule Limit_is_Ord)
apply (simp add: Limit_Lset_eq2 Lset_new_def)
apply (simp add: linear_def rlimit_def Ball_def lt_Ord Lset_iff_lrank_lt)
apply (simp add: ltI, clarify)
apply (rename_tac u v)
apply (rule_tac i="lrank(u)" and j="lrank(v)" in Ord_linear_lt, simp_all) 
apply (drule_tac x="succ(lrank(u) Un lrank(v))" in ospec)
 apply (simp add: ltI)
apply (drule_tac x=u in spec, simp)
apply (drule_tac x=v in spec, simp)
done

lemma well_ord_rlimit:
    "[|Limit(i); ∀j<i. well_ord(Lset(j), r(j)) |]
     ==> well_ord(Lset(i), rlimit(i,r))"
by (blast intro: well_ordI wf_on_rlimit well_ord_is_wf
                           linear_rlimit well_ord_is_linear)

lemma rlimit_cong:
     "(!!j. j<i ==> r'(j) = r(j)) ==> rlimit(i,r) = rlimit(i,r')"
apply (simp add: rlimit_def, clarify) 
apply (rule refl iff_refl Collect_cong ex_cong conj_cong)+
apply (simp add: Limit_is_Ord Lset_lrank_lt)
done


subsection{*Transfinite Definition of the Wellordering on @{term "L"}*}

constdefs
 L_r :: "[i, i] => i"
  "L_r(f) == %i.
      transrec3(i, 0, λx r. DPow_r(f, r, Lset(x)), 
                λx r. rlimit(x, λy. r`y))"

subsubsection{*The Corresponding Recursion Equations*}
lemma [simp]: "L_r(f,0) = 0"
by (simp add: L_r_def)

lemma [simp]: "L_r(f, succ(i)) = DPow_r(f, L_r(f,i), Lset(i))"
by (simp add: L_r_def)

text{*The limit case is non-trivial because of the distinction between
object-level and meta-level abstraction.*}
lemma [simp]: "Limit(i) ==> L_r(f,i) = rlimit(i, L_r(f))"
by (simp cong: rlimit_cong add: transrec3_Limit L_r_def ltD)

lemma (in Nat_Times_Nat) L_r_type:
    "Ord(i) ==> L_r(fn,i) ⊆ Lset(i) * Lset(i)"
apply (induct i rule: trans_induct3_rule)
  apply (simp_all add: Lset_succ DPow_r_type well_ord_DPow_r rlimit_def
                       Transset_subset_DPow [OF Transset_Lset], blast)
done

lemma (in Nat_Times_Nat) well_ord_L_r:
    "Ord(i) ==> well_ord(Lset(i), L_r(fn,i))"
apply (induct i rule: trans_induct3_rule)
apply (simp_all add: well_ord0 Lset_succ L_r_type well_ord_DPow_r
                     well_ord_rlimit ltD)
done

lemma well_ord_L_r:
    "Ord(i) ==> ∃r. well_ord(Lset(i), r)"
apply (insert nat_times_nat_lepoll_nat)
apply (unfold lepoll_def)
apply (blast intro: Nat_Times_Nat.well_ord_L_r Nat_Times_Nat.intro)
done


text{*Locale for proving results under the assumption @{text "V=L"}*}
locale V_equals_L =
  assumes VL: "L(x)"

text{*The Axiom of Choice holds in @{term L}!  Or, to be precise, the
Wellordering Theorem.*}
theorem (in V_equals_L) AC: "∃r. well_ord(x,r)"
apply (insert Transset_Lset VL [of x])
apply (simp add: Transset_def L_def)
apply (blast dest!: well_ord_L_r intro: well_ord_subset)
done

end

Extending a Wellordering over a List -- Lexicographic Power

Type checking

lemmas rlist_type:

  rlist(A, r) ⊆ list(A) × list(A)

lemmas rlist_type:

  rlist(A, r) ⊆ list(A) × list(A)

lemmas field_rlist:

  field(rlist(A1, r1)) ⊆ list(A1)

lemmas field_rlist:

  field(rlist(A1, r1)) ⊆ list(A1)

Linearity

lemma rlist_Nil_Cons:

  [| aA; l ∈ list(A) |] ==> ⟨[], Cons(a, l)⟩ ∈ rlist(A, r)

lemma linear_rlist:

  linear(A, r) ==> linear(list(A), rlist(A, r))

Well-foundedness

lemmas rlist_NilE:

l, []⟩ ∈ rlist(A, r) ==> Q

lemmas rlist_ConsE:

  [| ⟨l', Cons(x, l)⟩ ∈ rlist(A, r);
     [| length(l') ≤ length(l); l' ∈ list(A); xA; l ∈ list(A) |] ==> Q;
     !!l'. [| ⟨l', l⟩ ∈ rlist(A, r); xA; l' = Cons(x, l') |] ==> Q;
     !!a' l'.
        [| length(l') = length(l); ⟨a', x⟩ ∈ r; l' ∈ list(A); l ∈ list(A); a'A;
           xA; l' = Cons(a', l') |]
        ==> Q |]
  ==> Q

lemma not_rlist_Nil:

l, []⟩ ∉ rlist(A, r)

lemma rlist_imp_length_le:

l', l⟩ ∈ rlist(A, r) ==> length(l') ≤ length(l)

lemma wf_on_rlist_n:

  [| n ∈ nat; wf[A](r) |] ==> wf[{l ∈ list(A) . length(l) = n}](rlist(A, r))

lemma list_eq_UN_length:

  list(A) = (\<Union>n∈nat. {l ∈ list(A) . length(l) = n})

lemma wf_on_rlist:

  wf[A](r) ==> wf[list(A)](rlist(A, r))

lemma wf_rlist:

  wf(r) ==> wf(rlist(field(r), r))

lemma well_ord_rlist:

  well_ord(A, r) ==> well_ord(list(A), rlist(A, r))

An Injection from Formulas into the Natural Numbers

lemma fn_type:

  [| Nat_Times_Nat(fn); x ∈ nat; y ∈ nat |] ==> fn ` ⟨x, y⟩ ∈ nat

lemma fn_iff:

  [| Nat_Times_Nat(fn); x ∈ nat; y ∈ nat; u ∈ nat; v ∈ nat |]
  ==> fn ` ⟨x, y⟩ = fn ` ⟨u, v⟩ <-> x = uy = v

lemma enum_type:

  [| Nat_Times_Nat(fn); p ∈ formula |] ==> enum(fn, p) ∈ nat

lemma enum_inject:

  [| Nat_Times_Nat(fn); p ∈ formula |]
  ==> ∀q∈formula. enum(fn, p) = enum(fn, q) --> p = q

lemma inj_formula_nat:

  Nat_Times_Nat(fn) ==> (λp∈formula. enum(fn, p)) ∈ inj(formula, nat)

lemma well_ord_formula:

  Nat_Times_Nat(fn) ==> well_ord(formula, measure(formula, enum(fn)))

lemmas nat_times_nat_lepoll_nat:

  nat × nat lepoll nat

lemmas nat_times_nat_lepoll_nat:

  nat × nat lepoll nat

theorem formula_lepoll_nat:

  formula lepoll nat

Defining the Wellordering on @{term "DPow(A)"}

lemma well_ord_env_form_r:

  [| Nat_Times_Nat(fn); well_ord(A, r) |]
  ==> well_ord(list(A) × formula, env_form_r(fn, r, A))

lemma Ord_env_form_map:

  [| Nat_Times_Nat(fn); well_ord(A, r); z ∈ list(A) × formula |]
  ==> Ord(env_form_map(fn, r, A, z))

lemma DPow_imp_ex_DPow_ord:

  X ∈ DPow(A) ==> ∃k. DPow_ord(fn, r, A, X, k)

lemma DPow_ord_imp_Ord:

  [| Nat_Times_Nat(fn); DPow_ord(fn, r, A, X, k); well_ord(A, r) |] ==> Ord(k)

lemma DPow_imp_DPow_least:

  [| Nat_Times_Nat(fn); X ∈ DPow(A); well_ord(A, r) |]
  ==> DPow_ord(fn, r, A, X, DPow_least(fn, r, A, X))

lemma env_form_map_inject:

  [| Nat_Times_Nat(fn); env_form_map(fn, r, A, u) = env_form_map(fn, r, A, v);
     well_ord(A, r); u ∈ list(A) × formula; v ∈ list(A) × formula |]
  ==> u = v

lemma DPow_ord_unique:

  [| Nat_Times_Nat(fn); DPow_ord(fn, r, A, X, k); DPow_ord(fn, r, A, Y, k);
     well_ord(A, r) |]
  ==> X = Y

lemma well_ord_DPow_r:

  [| Nat_Times_Nat(fn); well_ord(A, r) |] ==> well_ord(DPow(A), DPow_r(fn, r, A))

lemma DPow_r_type:

  Nat_Times_Nat(fn) ==> DPow_r(fn, r, A) ⊆ DPow(A) × DPow(A)

Limit Construction for Well-Orderings

lemma Limit_Lset_eq2:

  Limit(i) ==> Lset(i) = (\<Union>ji. Lset_new(j))

lemma wf_on_Lset:

  wf[Lset(succ(j))](r(succ(j))) ==> wf[Lset_new(j)](rlimit(i, r))

lemma wf_on_rlimit:

j<i. wf[Lset(j)](r(j)) ==> wf[Lset(i)](rlimit(i, r))

lemma linear_rlimit:

  [| Limit(i); ∀j<i. linear(Lset(j), r(j)) |] ==> linear(Lset(i), rlimit(i, r))

lemma well_ord_rlimit:

  [| Limit(i); ∀j<i. well_ord(Lset(j), r(j)) |]
  ==> well_ord(Lset(i), rlimit(i, r))

lemma rlimit_cong:

  (!!j. j < i ==> r'(j) = r(j)) ==> rlimit(i, r) = rlimit(i, r')

Transfinite Definition of the Wellordering on @{term "L"}

The Corresponding Recursion Equations

lemma

  L_r(f, 0) = 0

lemma

  L_r(f, succ(i)) = DPow_r(f, L_r(f, i), Lset(i))

lemma

  Limit(i) ==> L_r(f, i) = rlimit(i, L_r(f))

lemma L_r_type:

  [| Nat_Times_Nat(fn); Ord(i) |] ==> L_r(fn, i) ⊆ Lset(i) × Lset(i)

lemma well_ord_L_r:

  [| Nat_Times_Nat(fn); Ord(i) |] ==> well_ord(Lset(i), L_r(fn, i))

lemma well_ord_L_r:

  Ord(i) ==> ∃r. well_ord(Lset(i), r)

theorem AC:

  V_equals_L ==> ∃r. well_ord(x, r)