Theory set

Up to index of Isabelle/HOL/ex

theory set
imports Main
begin

(*  Title:      HOL/ex/set.thy
    ID:         $Id: set.thy,v 1.9 2005/07/20 15:01:20 paulson Exp $
    Author:     Tobias Nipkow and Lawrence C Paulson
    Copyright   1991  University of Cambridge
*)

header {* Set Theory examples: Cantor's Theorem, Schröder-Berstein Theorem, etc. *}

theory set imports Main begin

text{*
  These two are cited in Benzmueller and Kohlhase's system description
  of LEO, CADE-15, 1998 (pages 139-143) as theorems LEO could not
  prove.
*}

lemma "(X = Y ∪ Z) =
    (Y ⊆ X ∧ Z ⊆ X ∧ (∀V. Y ⊆ V ∧ Z ⊆ V --> X ⊆ V))"
  by blast

lemma "(X = Y ∩ Z) =
    (X ⊆ Y ∧ X ⊆ Z ∧ (∀V. V ⊆ Y ∧ V ⊆ Z --> V ⊆ X))"
  by blast

text {*
  Trivial example of term synthesis: apparently hard for some provers!
*}

lemma "a ≠ b ==> a ∈ ?X ∧ b ∉ ?X"
  by blast


subsection {* Examples for the @{text blast} paper *}

lemma "(\<Union>x ∈ C. f x ∪ g x) = \<Union>(f ` C)  ∪  \<Union>(g ` C)"
  -- {* Union-image, called @{text Un_Union_image} in Main HOL *}
  by blast

lemma "(\<Inter>x ∈ C. f x ∩ g x) = \<Inter>(f ` C) ∩ \<Inter>(g ` C)"
  -- {* Inter-image, called @{text Int_Inter_image} in Main HOL *}
  by blast

text{*Both of the singleton examples can be proved very quickly by @{text
"blast del: UNIV_I"} but not by @{text blast} alone.  For some reason, @{text
UNIV_I} greatly increases the search space.*}

lemma singleton_example_1:
     "!!S::'a set set. ∀x ∈ S. ∀y ∈ S. x ⊆ y ==> ∃z. S ⊆ {z}"
  by (meson subsetI subset_antisym insertCI)

lemma singleton_example_2:
     "∀x ∈ S. \<Union>S ⊆ x ==> ∃z. S ⊆ {z}"
  -- {*Variant of the problem above. *}
by (meson subsetI subset_antisym insertCI UnionI) 


lemma "∃!x. f (g x) = x ==> ∃!y. g (f y) = y"
  -- {* A unique fixpoint theorem --- @{text fast}/@{text best}/@{text meson} all fail. *}
  apply (erule ex1E, rule ex1I, erule arg_cong)
  apply (rule subst, assumption, erule allE, rule arg_cong, erule mp)
  apply (erule arg_cong)
  done



subsection {* Cantor's Theorem: There is no surjection from a set to its powerset *}

lemma cantor1: "¬ (∃f:: 'a => 'a set. ∀S. ∃x. f x = S)"
  -- {* Requires best-first search because it is undirectional. *}
  by best

lemma "∀f:: 'a => 'a set. ∀x. f x ≠ ?S f"
  -- {*This form displays the diagonal term. *}
  by best

lemma "?S ∉ range (f :: 'a => 'a set)"
  -- {* This form exploits the set constructs. *}
  by (rule notI, erule rangeE, best)

lemma "?S ∉ range (f :: 'a => 'a set)"
  -- {* Or just this! *}
  by best


subsection {* The Schröder-Berstein Theorem *}

lemma disj_lemma: "- (f ` X) = g ` (-X) ==> f a = g b ==> a ∈ X ==> b ∈ X"
  by blast

lemma surj_if_then_else:
  "-(f ` X) = g ` (-X) ==> surj (λz. if z ∈ X then f z else g z)"
  by (simp add: surj_def) blast

lemma bij_if_then_else:
  "inj_on f X ==> inj_on g (-X) ==> -(f ` X) = g ` (-X) ==>
    h = (λz. if z ∈ X then f z else g z) ==> inj h ∧ surj h"
  apply (unfold inj_on_def)
  apply (simp add: surj_if_then_else)
  apply (blast dest: disj_lemma sym)
  done

lemma decomposition: "∃X. X = - (g ` (- (f ` X)))"
  apply (rule exI)
  apply (rule lfp_unfold)
  apply (rule monoI, blast)
  done

theorem Schroeder_Bernstein:
  "inj (f :: 'a => 'b) ==> inj (g :: 'b => 'a)
    ==> ∃h:: 'a => 'b. inj h ∧ surj h"
  apply (rule decomposition [where f=f and g=g, THEN exE])
  apply (rule_tac x = "(λz. if z ∈ x then f z else inv g z)" in exI) 
    --{*The term above can be synthesized by a sufficiently detailed proof.*}
  apply (rule bij_if_then_else)
     apply (rule_tac [4] refl)
    apply (rule_tac [2] inj_on_inv)
    apply (erule subset_inj_on [OF _ subset_UNIV])
   apply blast
  apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric])
  done


text {*
  From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages
  293-314.

  Isabelle can prove the easy examples without any special mechanisms,
  but it can't prove the hard ones.
*}

lemma "∃A. (∀x ∈ A. x ≤ (0::int))"
  -- {* Example 1, page 295. *}
  by force

lemma "D ∈ F ==> ∃G. ∀A ∈ G. ∃B ∈ F. A ⊆ B"
  -- {* Example 2. *}
  by force

lemma "P a ==> ∃A. (∀x ∈ A. P x) ∧ (∃y. y ∈ A)"
  -- {* Example 3. *}
  by force

lemma "a < b ∧ b < (c::int) ==> ∃A. a ∉ A ∧ b ∈ A ∧ c ∉ A"
  -- {* Example 4. *}
  by force

lemma "P (f b) ==> ∃s A. (∀x ∈ A. P x) ∧ f s ∈ A"
  -- {*Example 5, page 298. *}
  by force

lemma "P (f b) ==> ∃s A. (∀x ∈ A. P x) ∧ f s ∈ A"
  -- {* Example 6. *}
  by force

lemma "∃A. a ∉ A"
  -- {* Example 7. *}
  by force

lemma "(∀u v. u < (0::int) --> u ≠ abs v)
    --> (∃A::int set. (∀y. abs y ∉ A) ∧ -2 ∈ A)"
  -- {* Example 8 now needs a small hint. *}
  by (simp add: abs_if, force)
    -- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *}

text {* Example 9 omitted (requires the reals). *}

text {* The paper has no Example 10! *}

lemma "(∀A. 0 ∈ A ∧ (∀x ∈ A. Suc x ∈ A) --> n ∈ A) ∧
  P 0 ∧ (∀x. P x --> P (Suc x)) --> P n"
  -- {* Example 11: needs a hint. *}
  apply clarify
  apply (drule_tac x = "{x. P x}" in spec)
  apply force
  done

lemma
  "(∀A. (0, 0) ∈ A ∧ (∀x y. (x, y) ∈ A --> (Suc x, Suc y) ∈ A) --> (n, m) ∈ A)
    ∧ P n --> P m"
  -- {* Example 12. *}
  by auto

lemma
  "(∀x. (∃u. x = 2 * u) = (¬ (∃v. Suc x = 2 * v))) -->
    (∃A. ∀x. (x ∈ A) = (Suc x ∉ A))"
  -- {* Example EO1: typo in article, and with the obvious fix it seems
      to require arithmetic reasoning. *}
  apply clarify
  apply (rule_tac x = "{x. ∃u. x = 2 * u}" in exI, auto)
   apply (case_tac v, auto)
  apply (drule_tac x = "Suc v" and P = "λx. ?a x ≠ ?b x" in spec, force)
  done

end

lemma

  (X = YZ) = (YXZX ∧ (∀V. YVZV --> XV))

lemma

  (X = YZ) = (XYXZ ∧ (∀V. VYVZ --> VX))

lemma

  ab ==> a ∈ {a} ∧ b ∉ {a}

Examples for the @{text blast} paper

lemma

  (UN x:C. f xg x) = Union (f ` C) ∪ Union (g ` C)

lemma

  (INT x:C. f xg x) = Inter (f ` C) ∩ Inter (g ` C)

lemma singleton_example_1:

xS. ∀yS. xy ==> ∃z. S ⊆ {z}

lemma singleton_example_2:

xS. Union Sx ==> ∃z. S ⊆ {z}

lemma

  ∃!x. f (g x) = x ==> ∃!y. g (f y) = y

Cantor's Theorem: There is no surjection from a set to its powerset

lemma cantor1:

  ¬ (∃f. ∀S. ∃x. f x = S)

lemma

f x. f x ≠ {x. xf x}

lemma

  {x. xf x} ∉ range f

lemma

  {x. xf x} ∉ range f

The Schröder-Berstein Theorem

lemma disj_lemma:

  [| - f ` X = g ` (- X); f a = g b; aX |] ==> bX

lemma surj_if_then_else:

  - f ` X = g ` (- X) ==> surj (%z. if zX then f z else g z)

lemma bij_if_then_else:

  [| inj_on f X; inj_on g (- X); - f ` X = g ` (- X);
     h = (%z. if zX then f z else g z) |]
  ==> inj h ∧ surj h

lemma decomposition:

X. X = - g ` (- f ` X)

theorem Schroeder_Bernstein:

  [| inj f; inj g |] ==> ∃h. inj h ∧ surj h

lemma

A. ∀xA. x ≤ 0

lemma

  DF ==> ∃G. ∀AG. ∃BF. AB

lemma

  P a ==> ∃A. (∀xA. P x) ∧ (∃y. yA)

lemma

  a < bb < c ==> ∃A. aAbAcA

lemma

  P (f b) ==> ∃s A. (∀xA. P x) ∧ f sA

lemma

  P (f b) ==> ∃s A. (∀xA. P x) ∧ f sA

lemma

A. aA

lemma

  (∀u v. u < 0 --> u ≠ ¦v¦) --> (∃A. (∀y. ¦y¦ ∉ A) ∧ -2 ∈ A)

lemma

  (∀A. 0 ∈ A ∧ (∀xA. Suc xA) --> nA) ∧ P 0 ∧ (∀x. P x --> P (Suc x)) -->
  P n

lemma

  (∀A. (0, 0) ∈ A ∧ (∀x y. (x, y) ∈ A --> (Suc x, Suc y) ∈ A) --> (n, m) ∈ A) ∧
  P n -->
  P m

lemma

  (∀x. (∃u. x = 2 * u) = (¬ (∃v. Suc x = 2 * v))) -->
  (∃A. ∀x. (xA) = (Suc xA))