Theory Asig

Up to index of Isabelle/HOLCF/IOA

theory Asig
imports Main
uses [Asig.ML]
begin

(*  Title:      HOL/IOA/meta_theory/Asig.thy
    ID:         $Id: Asig.thy,v 1.7 2005/09/02 15:23:59 wenzelm Exp $
    Author:     Olaf Müller, Tobias Nipkow & Konrad Slind
*)

header {* Action signatures *}

theory Asig
imports Main
begin

types
  'a signature = "('a set * 'a set * 'a set)"

consts
  actions       :: "'action signature => 'action set"
  inputs        :: "'action signature => 'action set"
  outputs       :: "'action signature => 'action set"
  internals     :: "'action signature => 'action set"
  externals     :: "'action signature => 'action set"
  locals        :: "'action signature => 'action set"
  is_asig       ::"'action signature => bool"
  mk_ext_asig   ::"'action signature => 'action signature"

defs

asig_inputs_def:    "inputs == fst"
asig_outputs_def:   "outputs == (fst o snd)"
asig_internals_def: "internals == (snd o snd)"

actions_def:
   "actions(asig) == (inputs(asig) Un outputs(asig) Un internals(asig))"

externals_def:
   "externals(asig) == (inputs(asig) Un outputs(asig))"

locals_def:
   "locals asig == ((internals asig) Un (outputs asig))"

is_asig_def:
  "is_asig(triple) ==
     ((inputs(triple) Int outputs(triple) = {})    &
      (outputs(triple) Int internals(triple) = {}) &
      (inputs(triple) Int internals(triple) = {}))"


mk_ext_asig_def:
  "mk_ext_asig(triple) == (inputs(triple), outputs(triple), {})"

ML {* use_legacy_bindings (the_context ()) *}

end

theorems asig_projections:

  inputs == fst
  outputs == fst o snd
  internals == snd o snd

theorem asig_triple_proj:

  outputs (a, b, c) = b ∧ inputs (a, b, c) = a ∧ internals (a, b, c) = c

theorem int_and_ext_is_act:

  [| a ∉ internals S; a ∉ externals S |] ==> a ∉ actions S

theorem ext_is_act:

  a ∈ externals S ==> a ∈ actions S

theorem int_is_act:

  a ∈ internals S ==> a ∈ actions S

theorem inp_is_act:

  a ∈ inputs S ==> a ∈ actions S

theorem out_is_act:

  a ∈ outputs S ==> a ∈ actions S

theorem ext_and_act:

  (x ∈ actions Sx ∈ externals S) = (x ∈ externals S)

theorem not_ext_is_int:

  [| is_asig S; x ∈ actions S |] ==> (x ∉ externals S) = (x ∈ internals S)

theorem not_ext_is_int_or_not_act:

  is_asig S ==> (x ∉ externals S) = (x ∈ internals Sx ∉ actions S)

theorem int_is_not_ext:

  [| is_asig S; x ∈ internals S |] ==> x ∉ externals S