Theory FunctionOrder

Up to index of Isabelle/HOL/HOL-Complex/HahnBanach

theory FunctionOrder
imports Subspace Linearform
begin

(*  Title:      HOL/Real/HahnBanach/FunctionOrder.thy
    ID:         $Id: FunctionOrder.thy,v 1.19 2005/06/17 14:13:09 haftmann Exp $
    Author:     Gertrud Bauer, TU Munich
*)

header {* An order on functions *}

theory FunctionOrder imports Subspace Linearform begin

subsection {* The graph of a function *}

text {*
  We define the \emph{graph} of a (real) function @{text f} with
  domain @{text F} as the set
  \begin{center}
  @{text "{(x, f x). x ∈ F}"}
  \end{center}
  So we are modeling partial functions by specifying the domain and
  the mapping function. We use the term ``function'' also for its
  graph.
*}

types 'a graph = "('a × real) set"

constdefs
  graph :: "'a set => ('a => real) => 'a graph"
  "graph F f ≡ {(x, f x) | x. x ∈ F}"

lemma graphI [intro]: "x ∈ F ==> (x, f x) ∈ graph F f"
  by (unfold graph_def) blast

lemma graphI2 [intro?]: "x ∈ F ==> ∃t ∈ graph F f. t = (x, f x)"
  by (unfold graph_def) blast

lemma graphE [elim?]:
    "(x, y) ∈ graph F f ==> (x ∈ F ==> y = f x ==> C) ==> C"
  by (unfold graph_def) blast


subsection {* Functions ordered by domain extension *}

text {*
  A function @{text h'} is an extension of @{text h}, iff the graph of
  @{text h} is a subset of the graph of @{text h'}.
*}

lemma graph_extI:
  "(!!x. x ∈ H ==> h x = h' x) ==> H ⊆ H'
    ==> graph H h ⊆ graph H' h'"
  by (unfold graph_def) blast

lemma graph_extD1 [dest?]:
  "graph H h ⊆ graph H' h' ==> x ∈ H ==> h x = h' x"
  by (unfold graph_def) blast

lemma graph_extD2 [dest?]:
  "graph H h ⊆ graph H' h' ==> H ⊆ H'"
  by (unfold graph_def) blast


subsection {* Domain and function of a graph *}

text {*
  The inverse functions to @{text graph} are @{text domain} and @{text
  funct}.
*}

constdefs
  "domain" :: "'a graph => 'a set"
  "domain g ≡ {x. ∃y. (x, y) ∈ g}"

  funct :: "'a graph => ('a => real)"
  "funct g ≡ λx. (SOME y. (x, y) ∈ g)"

text {*
  The following lemma states that @{text g} is the graph of a function
  if the relation induced by @{text g} is unique.
*}

lemma graph_domain_funct:
  assumes uniq: "!!x y z. (x, y) ∈ g ==> (x, z) ∈ g ==> z = y"
  shows "graph (domain g) (funct g) = g"
proof (unfold domain_def funct_def graph_def, auto)  (* FIXME !? *)
  fix a b assume "(a, b) ∈ g"
  show "(a, SOME y. (a, y) ∈ g) ∈ g" by (rule someI2)
  show "∃y. (a, y) ∈ g" ..
  show "b = (SOME y. (a, y) ∈ g)"
  proof (rule some_equality [symmetric])
    fix y assume "(a, y) ∈ g"
    show "y = b" by (rule uniq)
  qed
qed


subsection {* Norm-preserving extensions of a function *}

text {*
  Given a linear form @{text f} on the space @{text F} and a seminorm
  @{text p} on @{text E}. The set of all linear extensions of @{text
  f}, to superspaces @{text H} of @{text F}, which are bounded by
  @{text p}, is defined as follows.
*}

constdefs
  norm_pres_extensions ::
    "'a::{plus, minus, zero} set => ('a => real) => 'a set => ('a => real)
      => 'a graph set"
    "norm_pres_extensions E p F f
      ≡ {g. ∃H h. g = graph H h
          ∧ linearform H h
          ∧ H \<unlhd> E
          ∧ F \<unlhd> H
          ∧ graph F f ⊆ graph H h
          ∧ (∀x ∈ H. h x ≤ p x)}"

lemma norm_pres_extensionE [elim]:
  "g ∈ norm_pres_extensions E p F f
  ==> (!!H h. g = graph H h ==> linearform H h
        ==> H \<unlhd> E ==> F \<unlhd> H ==> graph F f ⊆ graph H h
        ==> ∀x ∈ H. h x ≤ p x ==> C) ==> C"
  by (unfold norm_pres_extensions_def) blast

lemma norm_pres_extensionI2 [intro]:
  "linearform H h ==> H \<unlhd> E ==> F \<unlhd> H
    ==> graph F f ⊆ graph H h ==> ∀x ∈ H. h x ≤ p x
    ==> graph H h ∈ norm_pres_extensions E p F f"
  by (unfold norm_pres_extensions_def) blast

lemma norm_pres_extensionI:  (* FIXME ? *)
  "∃H h. g = graph H h
    ∧ linearform H h
    ∧ H \<unlhd> E
    ∧ F \<unlhd> H
    ∧ graph F f ⊆ graph H h
    ∧ (∀x ∈ H. h x ≤ p x) ==> g ∈ norm_pres_extensions E p F f"
  by (unfold norm_pres_extensions_def) blast

end

The graph of a function

lemma graphI:

  xF ==> (x, f x) ∈ graph F f

lemma graphI2:

  xF ==> ∃t∈graph F f. t = (x, f x)

lemma graphE:

  [| (x, y) ∈ graph F f; [| xF; y = f x |] ==> C |] ==> C

Functions ordered by domain extension

lemma graph_extI:

  [| !!x. xH ==> h x = h' x; HH' |] ==> graph H h ⊆ graph H' h'

lemma graph_extD1:

  [| graph H h ⊆ graph H' h'; xH |] ==> h x = h' x

lemma graph_extD2:

  graph H h ⊆ graph H' h' ==> HH'

Domain and function of a graph

lemma graph_domain_funct:

  (!!x y z. [| (x, y) ∈ g; (x, z) ∈ g |] ==> z = y)
  ==> graph (domain g) (funct g) = g

Norm-preserving extensions of a function

lemma norm_pres_extensionE:

  [| g ∈ norm_pres_extensions E p F f;
     !!H h. [| g = graph H h; linearform H h; subspace H E; subspace F H;
               graph F f ⊆ graph H h; ∀xH. h xp x |]
            ==> C |]
  ==> C

lemma norm_pres_extensionI2:

  [| linearform H h; subspace H E; subspace F H; graph F f ⊆ graph H h;
     ∀xH. h xp x |]
  ==> graph H h ∈ norm_pres_extensions E p F f

lemma norm_pres_extensionI:

H h. g = graph H h ∧
        linearform H h ∧
        subspace H E ∧ subspace F H ∧ graph F f ⊆ graph H h ∧ (∀xH. h xp x)
  ==> g ∈ norm_pres_extensions E p F f