Theory Ring

Up to index of Isabelle/ZF/ex

theory Ring
imports Group
begin

(* Title:  ZF/ex/Ring.thy
  Id:     $Id: Ring.thy,v 1.3 2005/09/05 14:47:28 wenzelm Exp $

*)

header {* Rings *}

theory Ring imports Group begin

(*First, we must simulate a record declaration:
record ring = monoid +
  add :: "[i, i] => i" (infixl "⊕\<index>" 65)
  zero :: i ("\<zero>\<index>")
*)

constdefs
  add_field :: "i => i"
   "add_field(M) == fst(snd(snd(snd(M))))"

  ring_add :: "[i, i, i] => i" (infixl "⊕\<index>" 65)
   "ring_add(M,x,y) == add_field(M) ` <x,y>"

  zero :: "i => i" ("\<zero>\<index>")
   "zero(M) == fst(snd(snd(snd(snd(M)))))"


lemma add_field_eq [simp]: "add_field(<C,M,I,A,z>) = A"
  by (simp add: add_field_def)

lemma add_eq [simp]: "ring_add(<C,M,I,A,z>, x, y) = A ` <x,y>"
  by (simp add: ring_add_def)

lemma zero_eq [simp]: "zero(<C,M,I,A,Z,z>) = Z"
  by (simp add: zero_def)


text {* Derived operations. *}

constdefs (structure R)
  a_inv :: "[i,i] => i" ("\<ominus>\<index> _" [81] 80)
  "a_inv(R) == m_inv (<carrier(R), add_field(R), zero(R), 0>)"

  minus :: "[i,i,i] => i" (infixl "\<ominus>\<index>" 65)
  "[|x ∈ carrier(R); y ∈ carrier(R)|] ==> x \<ominus> y == x ⊕ (\<ominus> y)"

locale abelian_monoid = struct G +
  assumes a_comm_monoid: 
    "comm_monoid (<carrier(G), add_field(G), zero(G), 0>)"

text {*
  The following definition is redundant but simple to use.
*}

locale abelian_group = abelian_monoid +
  assumes a_comm_group: 
    "comm_group (<carrier(G), add_field(G), zero(G), 0>)"

locale ring = abelian_group R + monoid R +
  assumes l_distr: "[|x ∈ carrier(R); y ∈ carrier(R); z ∈ carrier(R)|]
      ==> (x ⊕ y) · z = x · z ⊕ y · z"
    and r_distr: "[|x ∈ carrier(R); y ∈ carrier(R); z ∈ carrier(R)|]
      ==> z · (x ⊕ y) = z · x ⊕ z · y"

locale cring = ring + comm_monoid R

locale "domain" = cring +
  assumes one_not_zero [simp]: "\<one> ≠ \<zero>"
    and integral: "[|a · b = \<zero>; a ∈ carrier(R); b ∈ carrier(R)|] ==>
                  a = \<zero> | b = \<zero>"


subsection {* Basic Properties *}

lemma (in abelian_monoid) a_monoid:
     "monoid (<carrier(G), add_field(G), zero(G), 0>)"
apply (insert a_comm_monoid) 
apply (simp add: comm_monoid_def) 
done

lemma (in abelian_group) a_group:
     "group (<carrier(G), add_field(G), zero(G), 0>)"
apply (insert a_comm_group) 
apply (simp add: comm_group_def group_def) 
done


lemma (in abelian_monoid) l_zero [simp]:
     "x ∈ carrier(G) ==> \<zero> ⊕ x = x"
apply (insert monoid.l_one [OF a_monoid])
apply (simp add: ring_add_def) 
done

lemma (in abelian_monoid) zero_closed [intro, simp]:
     "\<zero> ∈ carrier(G)"
by (rule monoid.one_closed [OF a_monoid, simplified])

lemma (in abelian_group) a_inv_closed [intro, simp]:
     "x ∈ carrier(G) ==> \<ominus> x ∈ carrier(G)"
by (simp add: a_inv_def  group.inv_closed [OF a_group, simplified])

lemma (in abelian_monoid) a_closed [intro, simp]:
     "[| x ∈ carrier(G); y ∈ carrier(G) |] ==> x ⊕ y ∈ carrier(G)"
by (rule monoid.m_closed [OF a_monoid, 
                  simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_group) minus_closed [intro, simp]:
     "[|x ∈ carrier(G); y ∈ carrier(G)|] ==> x \<ominus> y ∈ carrier(G)"
by (simp add: minus_def)

lemma (in abelian_group) a_l_cancel [simp]:
     "[|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] 
      ==> (x ⊕ y = x ⊕ z) <-> (y = z)"
by (rule group.l_cancel [OF a_group, 
             simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_group) a_r_cancel [simp]:
     "[|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] 
      ==> (y ⊕ x = z ⊕ x) <-> (y = z)"
by (rule group.r_cancel [OF a_group, simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_monoid) a_assoc:
  "[|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] 
   ==> (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
by (rule monoid.m_assoc [OF a_monoid, simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_group) l_neg:
     "x ∈ carrier(G) ==> \<ominus> x ⊕ x = \<zero>"
by (simp add: a_inv_def
     group.l_inv [OF a_group, simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_monoid) a_comm:
     "[|x ∈ carrier(G); y ∈ carrier(G)|] ==> x ⊕ y = y ⊕ x"
by (rule comm_monoid.m_comm [OF a_comm_monoid,
    simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_monoid) a_lcomm:
     "[|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] 
      ==> x ⊕ (y ⊕ z) = y ⊕ (x ⊕ z)"
by (rule comm_monoid.m_lcomm [OF a_comm_monoid,
    simplified, simplified ring_add_def [symmetric]])

lemma (in abelian_monoid) r_zero [simp]:
     "x ∈ carrier(G) ==> x ⊕ \<zero> = x"
  using monoid.r_one [OF a_monoid]
  by (simp add: ring_add_def [symmetric])

lemma (in abelian_group) r_neg:
     "x ∈ carrier(G) ==> x ⊕ (\<ominus> x) = \<zero>"
  using group.r_inv [OF a_group]
  by (simp add: a_inv_def ring_add_def [symmetric])

lemma (in abelian_group) minus_zero [simp]:
     "\<ominus> \<zero> = \<zero>"
  by (simp add: a_inv_def
    group.inv_one [OF a_group, simplified ])

lemma (in abelian_group) minus_minus [simp]:
     "x ∈ carrier(G) ==> \<ominus> (\<ominus> x) = x"
  using group.inv_inv [OF a_group, simplified]
  by (simp add: a_inv_def)

lemma (in abelian_group) minus_add:
     "[|x ∈ carrier(G); y ∈ carrier(G)|] ==> \<ominus> (x ⊕ y) = \<ominus> x ⊕ \<ominus> y"
  using comm_group.inv_mult [OF a_comm_group]
  by (simp add: a_inv_def ring_add_def [symmetric])

lemmas (in abelian_monoid) a_ac = a_assoc a_comm a_lcomm

text {* 
  The following proofs are from Jacobson, Basic Algebra I, pp.~88--89
*}

lemma (in ring) l_null [simp]:
  "x ∈ carrier(R) ==> \<zero> · x = \<zero>"
proof -
  assume R: "x ∈ carrier(R)"
  then have "\<zero> · x ⊕ \<zero> · x = (\<zero> ⊕ \<zero>) · x"
    by (blast intro: l_distr [THEN sym]) 
  also from R have "... = \<zero> · x ⊕ \<zero>" by simp
  finally have "\<zero> · x ⊕ \<zero> · x = \<zero> · x ⊕ \<zero>" .
  with R show ?thesis by (simp del: r_zero)
qed

lemma (in ring) r_null [simp]:
  "x ∈ carrier(R) ==> x · \<zero> = \<zero>"
proof -
  assume R: "x ∈ carrier(R)"
  then have "x · \<zero> ⊕ x · \<zero> = x · (\<zero> ⊕ \<zero>)"
    by (simp add: r_distr del: l_zero r_zero)
  also from R have "... = x · \<zero> ⊕ \<zero>" by simp
  finally have "x · \<zero> ⊕ x · \<zero> = x · \<zero> ⊕ \<zero>" .
  with R show ?thesis by (simp del: r_zero)
qed

lemma (in ring) l_minus:
  "[|x ∈ carrier(R); y ∈ carrier(R)|] ==> \<ominus> x · y = \<ominus> (x · y)"
proof -
  assume R: "x ∈ carrier(R)" "y ∈ carrier(R)"
  then have "(\<ominus> x) · y ⊕ x · y = (\<ominus> x ⊕ x) · y" by (simp add: l_distr)
  also from R have "... = \<zero>" by (simp add: l_neg l_null)
  finally have "(\<ominus> x) · y ⊕ x · y = \<zero>" .
  with R have "(\<ominus> x) · y ⊕ x · y ⊕ \<ominus> (x · y) = \<zero> ⊕ \<ominus> (x · y)" by simp
  with R show ?thesis by (simp add: a_assoc r_neg)
qed

lemma (in ring) r_minus:
  "[|x ∈ carrier(R); y ∈ carrier(R)|] ==> x · \<ominus> y = \<ominus> (x · y)"
proof -
  assume R: "x ∈ carrier(R)" "y ∈ carrier(R)"
  then have "x · (\<ominus> y) ⊕ x · y = x · (\<ominus> y ⊕ y)" by (simp add: r_distr)
  also from R have "... = \<zero>" by (simp add: l_neg r_null)
  finally have "x · (\<ominus> y) ⊕ x · y = \<zero>" .
  with R have "x · (\<ominus> y) ⊕ x · y ⊕ \<ominus> (x · y) = \<zero> ⊕ \<ominus> (x · y)" by simp
  with R show ?thesis by (simp add: a_assoc r_neg)
qed

lemma (in ring) minus_eq:
  "[|x ∈ carrier(R); y ∈ carrier(R)|] ==> x \<ominus> y = x ⊕ \<ominus> y"
  by (simp only: minus_def)


subsection {* Morphisms *}

constdefs
  ring_hom :: "[i,i] => i"
  "ring_hom(R,S) == 
    {h ∈ carrier(R) -> carrier(S).
      (∀x y. x ∈ carrier(R) & y ∈ carrier(R) -->
        h ` (x ·R y) = (h ` x) ·S (h ` y) &
        h ` (x ⊕R y) = (h ` x) ⊕S (h ` y)) &
      h ` \<one>R = \<one>S}"

lemma ring_hom_memI:
  assumes hom_type: "h ∈ carrier(R) -> carrier(S)"
    and hom_mult: "!!x y. [|x ∈ carrier(R); y ∈ carrier(R)|] ==>
      h ` (x ·R y) = (h ` x) ·S (h ` y)"
    and hom_add: "!!x y. [|x ∈ carrier(R); y ∈ carrier(R)|] ==>
      h ` (x ⊕R y) = (h ` x) ⊕S (h ` y)"
    and hom_one: "h ` \<one>R = \<one>S"
  shows "h ∈ ring_hom(R,S)"
by (auto simp add: ring_hom_def prems)

lemma ring_hom_closed:
     "[|h ∈ ring_hom(R,S); x ∈ carrier(R)|] ==> h ` x ∈ carrier(S)"
by (auto simp add: ring_hom_def)

lemma ring_hom_mult:
     "[|h ∈ ring_hom(R,S); x ∈ carrier(R); y ∈ carrier(R)|] 
      ==> h ` (x ·R y) = (h ` x) ·S (h ` y)"
by (simp add: ring_hom_def)

lemma ring_hom_add:
     "[|h ∈ ring_hom(R,S); x ∈ carrier(R); y ∈ carrier(R)|] 
      ==> h ` (x ⊕R y) = (h ` x) ⊕S (h ` y)"
by (simp add: ring_hom_def)

lemma ring_hom_one: "h ∈ ring_hom(R,S) ==> h ` \<one>R = \<one>S"
by (simp add: ring_hom_def)

locale ring_hom_cring = cring R + cring S + var h +
  assumes homh [simp, intro]: "h ∈ ring_hom(R,S)"
  notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
    and hom_mult [simp] = ring_hom_mult [OF homh]
    and hom_add [simp] = ring_hom_add [OF homh]
    and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]:
     "h ` \<zero>R = \<zero>S"
proof -
  have "h ` \<zero>RS h ` \<zero> = h ` \<zero>RS \<zero>S"
    by (simp add: hom_add [symmetric] del: hom_add)
  then show ?thesis by (simp del: S.r_zero)
qed

lemma (in ring_hom_cring) hom_a_inv [simp]:
     "x ∈ carrier(R) ==> h ` (\<ominus>R x) = \<ominus>S h ` x"
proof -
  assume R: "x ∈ carrier(R)"
  then have "h ` x ⊕S h ` (\<ominus> x) = h ` x ⊕S (\<ominus>S (h ` x))"
    by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
  with R show ?thesis by simp
qed

lemma (in ring) id_ring_hom [simp]: "id(carrier(R)) ∈ ring_hom(R,R)"
apply (rule ring_hom_memI)  
apply (auto simp add: id_type) 
done

end


lemma add_field_eq:

  add_field(⟨C, M, I, A, z⟩) = A

lemma add_eq:

  xC, M, I, A, z y = A ` ⟨x, y

lemma zero_eq:

  \<zero>C, M, I, A, Z, z = Z

Basic Properties

lemma a_monoid:

  abelian_monoid(G) ==> monoid(⟨carrier(G), add_field(G), \<zero>G, 0⟩)

lemma a_group:

  abelian_group(G) ==> group(⟨carrier(G), add_field(G), \<zero>G, 0⟩)

lemma l_zero:

  [| abelian_monoid(G); x ∈ carrier(G) |] ==> \<zero>GG x = x

lemma zero_closed:

  abelian_monoid(G) ==> \<zero>G ∈ carrier(G)

lemma a_inv_closed:

  [| abelian_group(G); x ∈ carrier(G) |] ==> \<ominus>G x ∈ carrier(G)

lemma a_closed:

  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G) |] ==> xG y ∈ carrier(G)

lemma minus_closed:

  [| abelian_group(G); x ∈ carrier(G); y ∈ carrier(G) |]
  ==> x \<ominus>G y ∈ carrier(G)

lemma a_l_cancel:

  [| abelian_group(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |]
  ==> xG y = xG z <-> y = z

lemma a_r_cancel:

  [| abelian_group(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |]
  ==> yG x = zG x <-> y = z

lemma a_assoc:

  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |]
  ==> xG yG z = xG (yG z)

lemma l_neg:

  [| abelian_group(G); x ∈ carrier(G) |] ==> \<ominus>G xG x = \<zero>G

lemma a_comm:

  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G) |] ==> xG y = yG x

lemma a_lcomm:

  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |]
  ==> xG (yG z) = yG (xG z)

lemma r_zero:

  [| abelian_monoid(G); x ∈ carrier(G) |] ==> xG \<zero>G = x

lemma r_neg:

  [| abelian_group(G); x ∈ carrier(G) |] ==> xG \<ominus>G x = \<zero>G

lemma minus_zero:

  abelian_group(G) ==> \<ominus>G \<zero>G = \<zero>G

lemma minus_minus:

  [| abelian_group(G); x ∈ carrier(G) |] ==> \<ominus>G (\<ominus>G x) = x

lemma minus_add:

  [| abelian_group(G); x ∈ carrier(G); y ∈ carrier(G) |]
  ==> \<ominus>G (xG y) = \<ominus>G xG \<ominus>G y

lemmas a_ac:

  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |]
  ==> xG yG z = xG (yG z)
  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G) |] ==> xG y = yG x
  [| abelian_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |]
  ==> xG (yG z) = yG (xG z)

lemma l_null:

  [| ring(R); x ∈ carrier(R) |] ==> \<zero>R ·R x = \<zero>R

lemma r_null:

  [| ring(R); x ∈ carrier(R) |] ==> x ·R \<zero>R = \<zero>R

lemma l_minus:

  [| ring(R); x ∈ carrier(R); y ∈ carrier(R) |]
  ==> \<ominus>R x ·R y = \<ominus>R (x ·R y)

lemma r_minus:

  [| ring(R); x ∈ carrier(R); y ∈ carrier(R) |]
  ==> x ·R \<ominus>R y = \<ominus>R (x ·R y)

lemma minus_eq:

  [| ring(R); x ∈ carrier(R); y ∈ carrier(R) |]
  ==> x \<ominus>R y = xR \<ominus>R y

Morphisms

lemma ring_hom_memI:

  [| h ∈ carrier(R) -> carrier(S);
     !!x y. [| x ∈ carrier(R); y ∈ carrier(R) |]
            ==> h ` (x ·R y) = h ` x ·S h ` y;
     !!x y. [| x ∈ carrier(R); y ∈ carrier(R) |]
            ==> h ` (xR y) = h ` xS h ` y;
     h ` \<one>R = \<one>S |]
  ==> h ∈ ring_hom(R, S)

lemma ring_hom_closed:

  [| h ∈ ring_hom(R, S); x ∈ carrier(R) |] ==> h ` x ∈ carrier(S)

lemma ring_hom_mult:

  [| h ∈ ring_hom(R, S); x ∈ carrier(R); y ∈ carrier(R) |]
  ==> h ` (x ·R y) = h ` x ·S h ` y

lemma ring_hom_add:

  [| h ∈ ring_hom(R, S); x ∈ carrier(R); y ∈ carrier(R) |]
  ==> h ` (xR y) = h ` xS h ` y

lemma ring_hom_one:

  h ∈ ring_hom(R, S) ==> h ` \<one>R = \<one>S

lemma hom_zero:

  ring_hom_cring(R, S, h) ==> h ` \<zero>R = \<zero>S

lemma hom_a_inv:

  [| ring_hom_cring(R, S, h); x ∈ carrier(R) |]
  ==> h ` (\<ominus>R x) = \<ominus>S h ` x

lemma id_ring_hom:

  ring(R) ==> id(carrier(R)) ∈ ring_hom(R, R)