Theory GenPrefix

Up to index of Isabelle/ZF/UNITY

theory GenPrefix
imports Main
begin

(*  ID:         $Id: GenPrefix.thy,v 1.4 2005/03/28 14:19:57 paulson Exp $
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2001  University of Cambridge

   <xs,ys>:gen_prefix(r)
     if ys = xs' @ zs where length(xs) = length(xs')
     and corresponding elements of xs, xs' are pairwise related by r

Based on Lex/Prefix
*)

header{*Charpentier's Generalized Prefix Relation*}

theory GenPrefix
imports Main 

begin

constdefs (*really belongs in ZF/Trancl*)
  part_order :: "[i, i] => o"
  "part_order(A, r) == refl(A,r) & trans[A](r) & antisym(r)"

consts
  gen_prefix :: "[i, i] => i"
  
inductive
  (* Parameter A is the domain of zs's elements *)
  
  domains "gen_prefix(A, r)" <= "list(A)*list(A)"
  
  intros
    Nil:     "<[],[]>:gen_prefix(A, r)"

    prepend: "[| <xs,ys>:gen_prefix(A, r);  <x,y>:r; x:A; y:A |]
              ==> <Cons(x,xs), Cons(y,ys)>: gen_prefix(A, r)"

    append:  "[| <xs,ys>:gen_prefix(A, r); zs:list(A) |]
              ==> <xs, ys@zs>:gen_prefix(A, r)"
    type_intros app_type list.Nil list.Cons

constdefs
   prefix :: "i=>i"
  "prefix(A) == gen_prefix(A, id(A))"

   strict_prefix :: "i=>i"
  "strict_prefix(A) == prefix(A) - id(list(A))"

syntax
  (* less or equal and greater or equal over prefixes *)
  pfixLe :: "[i, i] => o"               (infixl "pfixLe" 50)
  pfixGe :: "[i, i] => o"               (infixl "pfixGe" 50)

translations
   "xs pfixLe ys" == "<xs, ys>:gen_prefix(nat, Le)"
   "xs pfixGe ys" == "<xs, ys>:gen_prefix(nat, Ge)"
  

lemma reflD: 
 "[| refl(A, r); x ∈ A |] ==> <x,x>:r"
apply (unfold refl_def, auto)
done

(*** preliminary lemmas ***)

lemma Nil_gen_prefix: "xs ∈ list(A) ==> <[], xs> ∈ gen_prefix(A, r)"
by (drule gen_prefix.append [OF gen_prefix.Nil], simp)
declare Nil_gen_prefix [simp]


lemma gen_prefix_length_le: "<xs,ys> ∈ gen_prefix(A, r) ==> length(xs) ≤ length(ys)"
apply (erule gen_prefix.induct)
apply (subgoal_tac [3] "ys ∈ list (A) ")
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
            intro: le_trans simp add: length_app)
done


lemma Cons_gen_prefix_aux:
  "[| <xs', ys'> ∈ gen_prefix(A, r) |]  
   ==> (∀x xs. x ∈ A --> xs'= Cons(x,xs) -->  
       (∃y ys. y ∈ A & ys' = Cons(y,ys) & 
       <x,y>:r & <xs, ys> ∈ gen_prefix(A, r)))"
apply (erule gen_prefix.induct)
prefer 3 apply (force intro: gen_prefix.append, auto) 
done

lemma Cons_gen_prefixE:
  "[| <Cons(x,xs), zs> ∈ gen_prefix(A, r);  
    !!y ys. [|zs = Cons(y, ys); y ∈ A; x ∈ A; <x,y>:r;  
      <xs,ys> ∈ gen_prefix(A, r) |] ==> P |] ==> P"
apply (frule gen_prefix.dom_subset [THEN subsetD], auto) 
apply (blast dest: Cons_gen_prefix_aux) 
done
declare Cons_gen_prefixE [elim!]

lemma Cons_gen_prefix_Cons: 
"(<Cons(x,xs),Cons(y,ys)> ∈ gen_prefix(A, r))  
  <-> (x ∈ A & y ∈ A & <x,y>:r & <xs,ys> ∈ gen_prefix(A, r))"
apply (auto intro: gen_prefix.prepend)
done
declare Cons_gen_prefix_Cons [iff]

(** Monotonicity of gen_prefix **)

lemma gen_prefix_mono2: "r<=s ==> gen_prefix(A, r) <= gen_prefix(A, s)"
apply clarify
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (erule rev_mp)
apply (erule gen_prefix.induct)
apply (auto intro: gen_prefix.append)
done

lemma gen_prefix_mono1: "A<=B ==>gen_prefix(A, r) <= gen_prefix(B, r)"
apply clarify
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (erule rev_mp)
apply (erule_tac P = "y ∈ list (A) " in rev_mp)
apply (erule_tac P = "xa ∈ list (A) " in rev_mp)
apply (erule gen_prefix.induct)
apply (simp (no_asm_simp))
apply clarify
apply (erule ConsE)+
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
            intro: gen_prefix.append list_mono [THEN subsetD])
done

lemma gen_prefix_mono: "[| A <= B; r <= s |] ==> gen_prefix(A, r) <= gen_prefix(B, s)"
apply (rule subset_trans)
apply (rule gen_prefix_mono1)
apply (rule_tac [2] gen_prefix_mono2, auto)
done

(*** gen_prefix order ***)

(* reflexivity *)
lemma refl_gen_prefix: "refl(A, r) ==> refl(list(A), gen_prefix(A, r))"
apply (unfold refl_def, auto)
apply (induct_tac "x", auto)
done
declare refl_gen_prefix [THEN reflD, simp]

(* Transitivity *)
(* A lemma for proving gen_prefix_trans_comp *)

lemma append_gen_prefix [rule_format (no_asm)]: "xs ∈ list(A) ==>  
   ∀zs. <xs @ ys, zs> ∈ gen_prefix(A, r) --> <xs, zs>: gen_prefix(A, r)"
apply (erule list.induct)
apply (auto dest: gen_prefix.dom_subset [THEN subsetD])
done

(* Lemma proving transitivity and more*)

lemma gen_prefix_trans_comp [rule_format (no_asm)]:
     "<x, y>: gen_prefix(A, r) ==>  
   (∀z ∈ list(A). <y,z> ∈ gen_prefix(A, s)--><x, z> ∈ gen_prefix(A, s O r))"
apply (erule gen_prefix.induct)
apply (auto elim: ConsE simp add: Nil_gen_prefix)
apply (subgoal_tac "ys ∈ list (A) ")
prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
apply (drule_tac xs = ys and r = s in append_gen_prefix, auto)
done

lemma trans_comp_subset: "trans(r) ==> r O r <= r"
by (auto dest: transD)

lemma trans_gen_prefix: "trans(r) ==> trans(gen_prefix(A,r))"
apply (simp (no_asm) add: trans_def)
apply clarify
apply (rule trans_comp_subset [THEN gen_prefix_mono2, THEN subsetD], assumption)
apply (rule gen_prefix_trans_comp)
apply (auto dest: gen_prefix.dom_subset [THEN subsetD])
done

lemma trans_on_gen_prefix: 
 "trans(r) ==> trans[list(A)](gen_prefix(A, r))"
apply (drule_tac A = A in trans_gen_prefix)
apply (unfold trans_def trans_on_def, blast)
done

lemma prefix_gen_prefix_trans:
    "[| <x,y> ∈ prefix(A); <y, z> ∈ gen_prefix(A, r); r<=A*A |]  
      ==>  <x, z> ∈ gen_prefix(A, r)"
apply (unfold prefix_def)
apply (rule_tac P = "%r. <x,z> ∈ gen_prefix (A, r) " in right_comp_id [THEN subst])
apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+
done


lemma gen_prefix_prefix_trans: 
"[| <x,y> ∈ gen_prefix(A,r); <y, z> ∈ prefix(A); r<=A*A |]  
  ==>  <x, z> ∈ gen_prefix(A, r)"
apply (unfold prefix_def)
apply (rule_tac P = "%r. <x,z> ∈ gen_prefix (A, r) " in left_comp_id [THEN subst])
apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+
done

(** Antisymmetry **)

lemma nat_le_lemma [rule_format]: "n ∈ nat ==> ∀b ∈ nat. n #+ b ≤ n --> b = 0"
by (induct_tac "n", auto)

lemma antisym_gen_prefix: "antisym(r) ==> antisym(gen_prefix(A, r))"
apply (simp (no_asm) add: antisym_def)
apply (rule impI [THEN allI, THEN allI])
apply (erule gen_prefix.induct, blast) 
apply (simp add: antisym_def, blast)
txt{*append case is hardest*}
apply clarify
apply (subgoal_tac "length (zs) = 0")
apply (subgoal_tac "ys ∈ list (A) ")
prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
apply (drule_tac psi = "<ys @ zs, xs> ∈ gen_prefix (A,r) " in asm_rl)
apply simp
apply (subgoal_tac "length (ys @ zs) = length (ys) #+ length (zs) &ys ∈ list (A) &xs ∈ list (A) ")
prefer 2 apply (blast intro: length_app dest: gen_prefix.dom_subset [THEN subsetD])
apply (drule gen_prefix_length_le)+
apply clarify
apply simp
apply (drule_tac j = "length (xs) " in le_trans)
apply blast
apply (auto intro: nat_le_lemma)
done

(*** recursion equations ***)

lemma gen_prefix_Nil: "xs ∈ list(A) ==> <xs, []> ∈ gen_prefix(A,r) <-> (xs = [])"
by (induct_tac "xs", auto)
declare gen_prefix_Nil [simp]

lemma same_gen_prefix_gen_prefix: 
 "[| refl(A, r);  xs ∈ list(A) |] ==>  
    <xs@ys, xs@zs>: gen_prefix(A, r) <-> <ys,zs> ∈ gen_prefix(A, r)"
apply (unfold refl_def)
apply (induct_tac "xs")
apply (simp_all (no_asm_simp))
done
declare same_gen_prefix_gen_prefix [simp]

lemma gen_prefix_Cons: "[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==>  
    <xs, Cons(y,ys)> ∈ gen_prefix(A,r)  <->  
      (xs=[] | (∃z zs. xs=Cons(z,zs) & z ∈ A & <z,y>:r & <zs,ys> ∈ gen_prefix(A,r)))"
apply (induct_tac "xs", auto)
done

lemma gen_prefix_take_append: "[| refl(A,r);  <xs,ys> ∈ gen_prefix(A, r); zs ∈ list(A) |]  
      ==>  <xs@zs, take(length(xs), ys) @ zs> ∈ gen_prefix(A, r)"
apply (erule gen_prefix.induct)
apply (simp (no_asm_simp))
apply (frule_tac [!] gen_prefix.dom_subset [THEN subsetD], auto)
apply (frule gen_prefix_length_le)
apply (subgoal_tac "take (length (xs), ys) ∈ list (A) ")
apply (simp_all (no_asm_simp) add: diff_is_0_iff [THEN iffD2] take_type)
done

lemma gen_prefix_append_both: "[| refl(A, r);  <xs,ys> ∈ gen_prefix(A,r);    
         length(xs) = length(ys); zs ∈ list(A) |]  
      ==>  <xs@zs, ys @ zs> ∈ gen_prefix(A, r)"
apply (drule_tac zs = zs in gen_prefix_take_append, assumption+)
apply (subgoal_tac "take (length (xs), ys) =ys")
apply (auto intro!: take_all dest: gen_prefix.dom_subset [THEN subsetD])
done

(*NOT suitable for rewriting since [y] has the form y#ys*)
lemma append_cons_conv: "xs ∈ list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys"
by (auto simp add: app_assoc)

lemma append_one_gen_prefix_lemma [rule_format]:
     "[| <xs,ys> ∈ gen_prefix(A, r);  refl(A, r) |]  
      ==> length(xs) < length(ys) -->  
          <xs @ [nth(length(xs), ys)], ys> ∈ gen_prefix(A, r)"
apply (erule gen_prefix.induct, blast)
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (simp_all add: length_type)
(* Append case is hardest *)
apply (frule gen_prefix_length_le [THEN le_iff [THEN iffD1]])
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (subgoal_tac "length (xs) :nat&length (ys) :nat &length (zs) :nat")
prefer 2 apply (blast intro: length_type, clarify)
apply (simp_all add: nth_append length_type length_app)
apply (rule conjI)
apply (blast intro: gen_prefix.append)
apply (erule_tac V = "length (xs) < length (ys) -->?u" in thin_rl)
apply (erule_tac a = zs in list.cases, auto)
apply (rule_tac P1 = "%x. <?u (x), ?v>:?w" in nat_diff_split [THEN iffD2])
apply auto
apply (simplesubst append_cons_conv)
apply (rule_tac [2] gen_prefix.append)
apply (auto elim: ConsE simp add: gen_prefix_append_both)
done 

lemma append_one_gen_prefix: "[| <xs,ys>: gen_prefix(A, r);  length(xs) < length(ys);  refl(A, r) |]  
      ==> <xs @ [nth(length(xs), ys)], ys> ∈ gen_prefix(A, r)"
apply (blast intro: append_one_gen_prefix_lemma)
done


(** Proving the equivalence with Charpentier's definition **)

lemma gen_prefix_imp_nth_lemma [rule_format]: "xs ∈ list(A) ==>   
  ∀ys ∈ list(A). ∀i ∈ nat. i < length(xs)  
          --> <xs, ys>: gen_prefix(A, r) --> <nth(i, xs), nth(i, ys)>:r"
apply (induct_tac "xs", simp, clarify) 
apply simp 
apply (erule natE, auto) 
done

lemma gen_prefix_imp_nth: "[| <xs,ys> ∈ gen_prefix(A,r); i < length(xs)|]  
      ==> <nth(i, xs), nth(i, ys)>:r"
apply (cut_tac A = A in gen_prefix.dom_subset)
apply (rule gen_prefix_imp_nth_lemma)
apply (auto simp add: lt_nat_in_nat)
done

lemma nth_imp_gen_prefix [rule_format]: "xs ∈ list(A) ==>  
  ∀ys ∈ list(A). length(xs) ≤ length(ys)   
      --> (∀i. i < length(xs) --> <nth(i, xs), nth(i,ys)>:r)   
      --> <xs, ys> ∈ gen_prefix(A, r)"
apply (induct_tac "xs")
apply (simp_all (no_asm_simp))
apply clarify
apply (erule_tac a = ys in list.cases, simp)
apply (force intro!: nat_0_le simp add: lt_nat_in_nat)
done

lemma gen_prefix_iff_nth: "(<xs,ys> ∈ gen_prefix(A,r)) <->  
      (xs ∈ list(A) & ys ∈ list(A) & length(xs) ≤ length(ys) &  
      (∀i. i < length(xs) --> <nth(i,xs), nth(i, ys)>: r))"
apply (rule iffI)
apply (frule gen_prefix.dom_subset [THEN subsetD])
apply (frule gen_prefix_length_le, auto) 
apply (rule_tac [2] nth_imp_gen_prefix)
apply (drule gen_prefix_imp_nth)
apply (auto simp add: lt_nat_in_nat)
done

(** prefix is a partial order: **)

lemma refl_prefix: "refl(list(A), prefix(A))"
apply (unfold prefix_def)
apply (rule refl_gen_prefix)
apply (auto simp add: refl_def)
done
declare refl_prefix [THEN reflD, simp]

lemma trans_prefix: "trans(prefix(A))"
apply (unfold prefix_def)
apply (rule trans_gen_prefix)
apply (auto simp add: trans_def)
done

lemmas prefix_trans = trans_prefix [THEN transD, standard]

lemma trans_on_prefix: "trans[list(A)](prefix(A))"
apply (unfold prefix_def)
apply (rule trans_on_gen_prefix)
apply (auto simp add: trans_def)
done

lemmas prefix_trans_on = trans_on_prefix [THEN trans_onD, standard]

(* Monotonicity of "set" operator WRT prefix *)

lemma set_of_list_prefix_mono: 
"<xs,ys> ∈ prefix(A) ==> set_of_list(xs) <= set_of_list(ys)"

apply (unfold prefix_def)
apply (erule gen_prefix.induct)
apply (subgoal_tac [3] "xs ∈ list (A) &ys ∈ list (A) ")
prefer 4 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
apply (auto simp add: set_of_list_append)
done

(** recursion equations **)

lemma Nil_prefix: "xs ∈ list(A) ==> <[],xs> ∈ prefix(A)"

apply (unfold prefix_def)
apply (simp (no_asm_simp) add: Nil_gen_prefix)
done
declare Nil_prefix [simp]


lemma prefix_Nil: "<xs, []> ∈ prefix(A) <-> (xs = [])"

apply (unfold prefix_def, auto)
apply (frule gen_prefix.dom_subset [THEN subsetD])
apply (drule_tac psi = "<xs, []> ∈ gen_prefix (A, id (A))" in asm_rl)
apply (simp add: gen_prefix_Nil)
done
declare prefix_Nil [iff]

lemma Cons_prefix_Cons: 
"<Cons(x,xs), Cons(y,ys)> ∈ prefix(A) <-> (x=y & <xs,ys> ∈ prefix(A) & y ∈ A)"
apply (unfold prefix_def, auto)
done
declare Cons_prefix_Cons [iff]

lemma same_prefix_prefix: 
"xs ∈ list(A)==> <xs@ys,xs@zs> ∈ prefix(A) <-> (<ys,zs> ∈ prefix(A))"
apply (unfold prefix_def)
apply (subgoal_tac "refl (A,id (A))")
apply (simp (no_asm_simp))
apply (auto simp add: refl_def)
done
declare same_prefix_prefix [simp]

lemma same_prefix_prefix_Nil: "xs ∈ list(A) ==> <xs@ys,xs> ∈ prefix(A) <-> (<ys,[]> ∈ prefix(A))"
apply (rule_tac P = "%x. <?u, x>:?v <-> ?w (x) " in app_right_Nil [THEN subst])
apply (rule_tac [2] same_prefix_prefix, auto)
done
declare same_prefix_prefix_Nil [simp]

lemma prefix_appendI: 
"[| <xs,ys> ∈ prefix(A); zs ∈ list(A) |] ==> <xs,ys@zs> ∈ prefix(A)"
apply (unfold prefix_def)
apply (erule gen_prefix.append, assumption)
done
declare prefix_appendI [simp]

lemma prefix_Cons: 
"[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==>  
  <xs,Cons(y,ys)> ∈ prefix(A) <->  
  (xs=[] | (∃zs. xs=Cons(y,zs) & <zs,ys> ∈ prefix(A)))"
apply (unfold prefix_def)
apply (auto simp add: gen_prefix_Cons)
done

lemma append_one_prefix: 
  "[| <xs,ys> ∈ prefix(A); length(xs) < length(ys) |]  
  ==> <xs @ [nth(length(xs),ys)], ys> ∈ prefix(A)"
apply (unfold prefix_def)
apply (subgoal_tac "refl (A, id (A))")
apply (simp (no_asm_simp) add: append_one_gen_prefix)
apply (auto simp add: refl_def)
done

lemma prefix_length_le: 
"<xs,ys> ∈ prefix(A) ==> length(xs) ≤ length(ys)"
apply (unfold prefix_def)
apply (blast dest: gen_prefix_length_le)
done

lemma prefix_type: "prefix(A)<=list(A)*list(A)"
apply (unfold prefix_def)
apply (blast intro!: gen_prefix.dom_subset)
done

lemma strict_prefix_type: 
"strict_prefix(A) <= list(A)*list(A)"
apply (unfold strict_prefix_def)
apply (blast intro!: prefix_type [THEN subsetD])
done

lemma strict_prefix_length_lt_aux: 
     "<xs,ys> ∈ prefix(A) ==> xs≠ys --> length(xs) < length(ys)"
apply (unfold prefix_def)
apply (erule gen_prefix.induct, clarify)
apply (subgoal_tac [!] "ys ∈ list(A) & xs ∈ list(A)")
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
            simp add: length_type)
apply (subgoal_tac "length (zs) =0")
apply (drule_tac [2] not_lt_imp_le)
apply (rule_tac [5] j = "length (ys) " in lt_trans2)
apply auto
done

lemma strict_prefix_length_lt: 
     "<xs,ys>:strict_prefix(A) ==> length(xs) < length(ys)"
apply (unfold strict_prefix_def)
apply (rule strict_prefix_length_lt_aux [THEN mp])
apply (auto dest: prefix_type [THEN subsetD])
done

(*Equivalence to the definition used in Lex/Prefix.thy*)
lemma prefix_iff: 
    "<xs,zs> ∈ prefix(A) <-> (∃ys ∈ list(A). zs = xs@ys) & xs ∈ list(A)"
apply (unfold prefix_def)
apply (auto simp add: gen_prefix_iff_nth lt_nat_in_nat nth_append nth_type app_type length_app)
apply (subgoal_tac "drop (length (xs), zs) ∈ list (A) ")
apply (rule_tac x = "drop (length (xs), zs) " in bexI)
apply safe
 prefer 2 apply (simp add: length_type drop_type)
apply (rule nth_equalityI)
apply (simp_all (no_asm_simp) add: nth_append app_type drop_type length_app length_drop)
apply (rule nat_diff_split [THEN iffD2], simp_all, clarify)
apply (drule_tac i = "length (zs) " in leI)
apply (force simp add: le_subset_iff, safe)
apply (subgoal_tac "length (xs) #+ (i #- length (xs)) = i")
apply (subst nth_drop)
apply (simp_all (no_asm_simp) add: leI split add: nat_diff_split)
done

lemma prefix_snoc: 
"[|xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==>  
   <xs, ys@[y]> ∈ prefix(A) <-> (xs = ys@[y] | <xs,ys> ∈ prefix(A))"
apply (simp (no_asm) add: prefix_iff)
apply (rule iffI, clarify)
apply (erule_tac xs = ysa in rev_list_elim, simp)
apply (simp add: app_type app_assoc [symmetric])
apply (auto simp add: app_assoc app_type)
done
declare prefix_snoc [simp]

lemma prefix_append_iff [rule_format]: "zs ∈ list(A) ==> ∀xs ∈ list(A). ∀ys ∈ list(A).  
   (<xs, ys@zs> ∈ prefix(A)) <->  
  (<xs,ys> ∈ prefix(A) | (∃us. xs = ys@us & <us,zs> ∈ prefix(A)))"
apply (erule list_append_induct, force, clarify) 
apply (rule iffI) 
apply (simp add: add: app_assoc [symmetric])
apply (erule disjE)  
apply (rule disjI2) 
apply (rule_tac x = "y @ [x]" in exI) 
apply (simp add: add: app_assoc [symmetric], force+)
done


(*Although the prefix ordering is not linear, the prefixes of a list
  are linearly ordered.*)
lemma common_prefix_linear_lemma [rule_format]: "[| zs ∈ list(A); xs ∈ list(A); ys ∈ list(A) |]  
   ==> <xs, zs> ∈ prefix(A) --> <ys,zs> ∈ prefix(A)  
  --><xs,ys> ∈ prefix(A) | <ys,xs> ∈ prefix(A)"
apply (erule list_append_induct, auto)
done

lemma common_prefix_linear: "[|<xs, zs> ∈ prefix(A); <ys,zs> ∈ prefix(A) |]    
      ==> <xs,ys> ∈ prefix(A) | <ys,xs> ∈ prefix(A)"
apply (cut_tac prefix_type)
apply (blast del: disjCI intro: common_prefix_linear_lemma)
done


(*** pfixLe, pfixGe ∈ properties inherited from the translations ***)



(** pfixLe **)

lemma refl_Le: "refl(nat,Le)"

apply (unfold refl_def, auto)
done
declare refl_Le [simp]

lemma antisym_Le: "antisym(Le)"
apply (unfold antisym_def)
apply (auto intro: le_anti_sym)
done
declare antisym_Le [simp]

lemma trans_on_Le: "trans[nat](Le)"
apply (unfold trans_on_def, auto)
apply (blast intro: le_trans)
done
declare trans_on_Le [simp]

lemma trans_Le: "trans(Le)"
apply (unfold trans_def, auto)
apply (blast intro: le_trans)
done
declare trans_Le [simp]

lemma part_order_Le: "part_order(nat,Le)"
by (unfold part_order_def, auto)
declare part_order_Le [simp]

lemma pfixLe_refl: "x ∈ list(nat) ==> x pfixLe x"
by (blast intro: refl_gen_prefix [THEN reflD] refl_Le)
declare pfixLe_refl [simp]

lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
by (blast intro: trans_gen_prefix [THEN transD] trans_Le)

lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
by (blast intro: antisym_gen_prefix [THEN antisymE] antisym_Le)


lemma prefix_imp_pfixLe: 
"<xs,ys>:prefix(nat)==> xs pfixLe ys"

apply (unfold prefix_def)
apply (rule gen_prefix_mono [THEN subsetD], auto)
done

lemma refl_Ge: "refl(nat, Ge)"
by (unfold refl_def Ge_def, auto)
declare refl_Ge [iff]

lemma antisym_Ge: "antisym(Ge)"
apply (unfold antisym_def Ge_def)
apply (auto intro: le_anti_sym)
done
declare antisym_Ge [iff]

lemma trans_Ge: "trans(Ge)"
apply (unfold trans_def Ge_def)
apply (auto intro: le_trans)
done
declare trans_Ge [iff]

lemma pfixGe_refl: "x ∈ list(nat) ==> x pfixGe x"
by (blast intro: refl_gen_prefix [THEN reflD])
declare pfixGe_refl [simp]

lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
by (blast intro: trans_gen_prefix [THEN transD])

lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
by (blast intro: antisym_gen_prefix [THEN antisymE])

lemma prefix_imp_pfixGe: 
  "<xs,ys>:prefix(nat) ==> xs pfixGe ys"
apply (unfold prefix_def Ge_def)
apply (rule gen_prefix_mono [THEN subsetD], auto)
done
(* Added by Sidi ∈ prefix and take *)

lemma prefix_imp_take: 
"<xs, ys> ∈ prefix(A) ==> xs = take(length(xs), ys)"

apply (unfold prefix_def)
apply (erule gen_prefix.induct)
apply (subgoal_tac [3] "length (xs) :nat")
apply (auto dest: gen_prefix.dom_subset [THEN subsetD] simp add: length_type)
apply (frule gen_prefix.dom_subset [THEN subsetD])
apply (frule gen_prefix_length_le)
apply (auto simp add: take_append)
apply (subgoal_tac "length (xs) #- length (ys) =0")
apply (simp_all (no_asm_simp) add: diff_is_0_iff)
done

lemma prefix_length_equal: "[|<xs,ys> ∈ prefix(A); length(xs)=length(ys)|] ==> xs = ys"
apply (cut_tac A = A in prefix_type)
apply (drule subsetD, auto)
apply (drule prefix_imp_take)
apply (erule trans, simp)
done

lemma prefix_length_le_equal: "[|<xs,ys> ∈ prefix(A); length(ys) ≤ length(xs)|] ==> xs = ys"
by (blast intro: prefix_length_equal le_anti_sym prefix_length_le)

lemma take_prefix [rule_format]: "xs ∈ list(A) ==> ∀n ∈ nat. <take(n, xs), xs> ∈ prefix(A)"
apply (unfold prefix_def)
apply (erule list.induct, simp, clarify)
apply (erule natE, auto)
done

lemma prefix_take_iff: "<xs,ys> ∈ prefix(A) <-> (xs=take(length(xs), ys) & xs ∈ list(A) & ys ∈ list(A))"
apply (rule iffI)
apply (frule prefix_type [THEN subsetD])
apply (blast intro: prefix_imp_take, clarify)
apply (erule ssubst)
apply (blast intro: take_prefix length_type)
done

lemma prefix_imp_nth: "[| <xs,ys> ∈ prefix(A); i < length(xs)|] ==> nth(i,xs) = nth(i,ys)"
by (auto dest!: gen_prefix_imp_nth simp add: prefix_def)

lemma nth_imp_prefix: 
     "[|xs ∈ list(A); ys ∈ list(A); length(xs) ≤ length(ys);   
        !!i. i < length(xs) ==> nth(i, xs) = nth(i,ys)|]   
      ==> <xs,ys> ∈ prefix(A)"
apply (auto simp add: prefix_def nth_imp_gen_prefix)
apply (auto intro!: nth_imp_gen_prefix simp add: prefix_def)
apply (blast intro: nth_type lt_trans2)
done


lemma length_le_prefix_imp_prefix: "[|length(xs) ≤ length(ys);  
        <xs,zs> ∈ prefix(A); <ys,zs> ∈ prefix(A)|] ==> <xs,ys> ∈ prefix(A)"
apply (cut_tac A = A in prefix_type)
apply (rule nth_imp_prefix, blast, blast)
 apply assumption
apply (rule_tac b = "nth (i,zs)" in trans)
 apply (blast intro: prefix_imp_nth)
apply (blast intro: sym prefix_imp_nth prefix_length_le lt_trans2)
done

end

lemma reflD:

  [| refl(A, r); xA |] ==> ⟨x, x⟩ ∈ r

lemma Nil_gen_prefix:

  xs ∈ list(A) ==> ⟨[], xs⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_length_le:

xs, ys⟩ ∈ gen_prefix(A, r) ==> length(xs) ≤ length(ys)

lemma Cons_gen_prefix_aux:

xs', ys'⟩ ∈ gen_prefix(A, r)
  ==> ∀x xs. xA -->
             xs' = Cons(x, xs) -->
             (∃y ys. yAys' = Cons(y, ys) ∧ ⟨x, y⟩ ∈ r ∧ ⟨xs, ys⟩ ∈ gen_prefix(A, r))

lemma Cons_gen_prefixE:

  [| ⟨Cons(x, xs), zs⟩ ∈ gen_prefix(A, r);
     !!y ys.
        [| zs = Cons(y, ys); yA; xA; ⟨x, y⟩ ∈ r;
           ⟨xs, ys⟩ ∈ gen_prefix(A, r) |]
        ==> P |]
  ==> P

lemma Cons_gen_prefix_Cons:

  ⟨Cons(x, xs), Cons(y, ys)⟩ ∈ gen_prefix(A, r) <->
  xAyA ∧ ⟨x, y⟩ ∈ r ∧ ⟨xs, ys⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_mono2:

  rs ==> gen_prefix(A, r) ⊆ gen_prefix(A, s)

lemma gen_prefix_mono1:

  AB ==> gen_prefix(A, r) ⊆ gen_prefix(B, r)

lemma gen_prefix_mono:

  [| AB; rs |] ==> gen_prefix(A, r) ⊆ gen_prefix(B, s)

lemma refl_gen_prefix:

  refl(A, r) ==> refl(list(A), gen_prefix(A, r))

lemma append_gen_prefix:

  [| xs ∈ list(A); ⟨xs @ ys, zs⟩ ∈ gen_prefix(A, r) |]
  ==> ⟨xs, zs⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_trans_comp:

  [| ⟨x, y⟩ ∈ gen_prefix(A, r); z ∈ list(A); ⟨y, z⟩ ∈ gen_prefix(A, s) |]
  ==> ⟨x, z⟩ ∈ gen_prefix(A, s O r)

lemma trans_comp_subset:

  trans(r) ==> r O rr

lemma trans_gen_prefix:

  trans(r) ==> trans(gen_prefix(A, r))

lemma trans_on_gen_prefix:

  trans(r) ==> trans[list(A)](gen_prefix(A, r))

lemma prefix_gen_prefix_trans:

  [| ⟨x, y⟩ ∈ prefix(A); ⟨y, z⟩ ∈ gen_prefix(A, r); rA × A |]
  ==> ⟨x, z⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_prefix_trans:

  [| ⟨x, y⟩ ∈ gen_prefix(A, r); ⟨y, z⟩ ∈ prefix(A); rA × A |]
  ==> ⟨x, z⟩ ∈ gen_prefix(A, r)

lemma nat_le_lemma:

  [| n ∈ nat; b ∈ nat; n #+ bn |] ==> b = 0

lemma antisym_gen_prefix:

  antisym(r) ==> antisym(gen_prefix(A, r))

lemma gen_prefix_Nil:

  xs ∈ list(A) ==> ⟨xs, []⟩ ∈ gen_prefix(A, r) <-> xs = []

lemma same_gen_prefix_gen_prefix:

  [| refl(A, r); xs ∈ list(A) |]
  ==> ⟨xs @ ys, xs @ zs⟩ ∈ gen_prefix(A, r) <-> ⟨ys, zs⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_Cons:

  [| xs ∈ list(A); ys ∈ list(A); yA |]
  ==> ⟨xs, Cons(y, ys)⟩ ∈ gen_prefix(A, r) <->
      xs = [] ∨
      (∃z zs. xs = Cons(z, zs) ∧ zA ∧ ⟨z, y⟩ ∈ r ∧ ⟨zs, ys⟩ ∈ gen_prefix(A, r))

lemma gen_prefix_take_append:

  [| refl(A, r); ⟨xs, ys⟩ ∈ gen_prefix(A, r); zs ∈ list(A) |]
  ==> ⟨xs @ zs, take(length(xs), ys) @ zs⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_append_both:

  [| refl(A, r); ⟨xs, ys⟩ ∈ gen_prefix(A, r); length(xs) = length(ys);
     zs ∈ list(A) |]
  ==> ⟨xs @ zs, ys @ zs⟩ ∈ gen_prefix(A, r)

lemma append_cons_conv:

  xs ∈ list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys

lemma append_one_gen_prefix_lemma:

  [| ⟨xs, ys⟩ ∈ gen_prefix(A, r); refl(A, r); length(xs) < length(ys) |]
  ==> ⟨xs @ [nth(length(xs), ys)], ys⟩ ∈ gen_prefix(A, r)

lemma append_one_gen_prefix:

  [| ⟨xs, ys⟩ ∈ gen_prefix(A, r); length(xs) < length(ys); refl(A, r) |]
  ==> ⟨xs @ [nth(length(xs), ys)], ys⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_imp_nth_lemma:

  [| xs ∈ list(A); ys ∈ list(A); i ∈ nat; i < length(xs);
     ⟨xs, ys⟩ ∈ gen_prefix(A, r) |]
  ==> ⟨nth(i, xs), nth(i, ys)⟩ ∈ r

lemma gen_prefix_imp_nth:

  [| ⟨xs, ys⟩ ∈ gen_prefix(A, r); i < length(xs) |]
  ==> ⟨nth(i, xs), nth(i, ys)⟩ ∈ r

lemma nth_imp_gen_prefix:

  [| xs ∈ list(A); ys ∈ list(A); length(xs) ≤ length(ys);
     !!i. i < length(xs) ==> ⟨nth(i, xs), nth(i, ys)⟩ ∈ r |]
  ==> ⟨xs, ys⟩ ∈ gen_prefix(A, r)

lemma gen_prefix_iff_nth:

xs, ys⟩ ∈ gen_prefix(A, r) <->
  xs ∈ list(A) ∧
  ys ∈ list(A) ∧
  length(xs) ≤ length(ys) ∧ (∀i. i < length(xs) --> ⟨nth(i, xs), nth(i, ys)⟩ ∈ r)

lemma refl_prefix:

  refl(list(A), prefix(A))

lemma trans_prefix:

  trans(prefix(A))

lemmas prefix_trans:

  [| ⟨a, b⟩ ∈ prefix(A); ⟨b, c⟩ ∈ prefix(A) |] ==> ⟨a, c⟩ ∈ prefix(A)

lemmas prefix_trans:

  [| ⟨a, b⟩ ∈ prefix(A); ⟨b, c⟩ ∈ prefix(A) |] ==> ⟨a, c⟩ ∈ prefix(A)

lemma trans_on_prefix:

  trans[list(A)](prefix(A))

lemmas prefix_trans_on:

  [| ⟨a, b⟩ ∈ prefix(A); ⟨b, c⟩ ∈ prefix(A); a ∈ list(A); b ∈ list(A);
     c ∈ list(A) |]
  ==> ⟨a, c⟩ ∈ prefix(A)

lemmas prefix_trans_on:

  [| ⟨a, b⟩ ∈ prefix(A); ⟨b, c⟩ ∈ prefix(A); a ∈ list(A); b ∈ list(A);
     c ∈ list(A) |]
  ==> ⟨a, c⟩ ∈ prefix(A)

lemma set_of_list_prefix_mono:

xs, ys⟩ ∈ prefix(A) ==> set_of_list(xs) ⊆ set_of_list(ys)

lemma Nil_prefix:

  xs ∈ list(A) ==> ⟨[], xs⟩ ∈ prefix(A)

lemma prefix_Nil:

xs, []⟩ ∈ prefix(A) <-> xs = []

lemma Cons_prefix_Cons:

  ⟨Cons(x, xs), Cons(y, ys)⟩ ∈ prefix(A) <-> x = y ∧ ⟨xs, ys⟩ ∈ prefix(A) ∧ yA

lemma same_prefix_prefix:

  xs ∈ list(A) ==> ⟨xs @ ys, xs @ zs⟩ ∈ prefix(A) <-> ⟨ys, zs⟩ ∈ prefix(A)

lemma same_prefix_prefix_Nil:

  xs ∈ list(A) ==> ⟨xs @ ys, xs⟩ ∈ prefix(A) <-> ⟨ys, []⟩ ∈ prefix(A)

lemma prefix_appendI:

  [| ⟨xs, ys⟩ ∈ prefix(A); zs ∈ list(A) |] ==> ⟨xs, ys @ zs⟩ ∈ prefix(A)

lemma prefix_Cons:

  [| xs ∈ list(A); ys ∈ list(A); yA |]
  ==> ⟨xs, Cons(y, ys)⟩ ∈ prefix(A) <->
      xs = [] ∨ (∃zs. xs = Cons(y, zs) ∧ ⟨zs, ys⟩ ∈ prefix(A))

lemma append_one_prefix:

  [| ⟨xs, ys⟩ ∈ prefix(A); length(xs) < length(ys) |]
  ==> ⟨xs @ [nth(length(xs), ys)], ys⟩ ∈ prefix(A)

lemma prefix_length_le:

xs, ys⟩ ∈ prefix(A) ==> length(xs) ≤ length(ys)

lemma prefix_type:

  prefix(A) ⊆ list(A) × list(A)

lemma strict_prefix_type:

  strict_prefix(A) ⊆ list(A) × list(A)

lemma strict_prefix_length_lt_aux:

xs, ys⟩ ∈ prefix(A) ==> xsys --> length(xs) < length(ys)

lemma strict_prefix_length_lt:

xs, ys⟩ ∈ strict_prefix(A) ==> length(xs) < length(ys)

lemma prefix_iff:

xs, zs⟩ ∈ prefix(A) <-> (∃ys∈list(A). zs = xs @ ys) ∧ xs ∈ list(A)

lemma prefix_snoc:

  [| xs ∈ list(A); ys ∈ list(A); yA |]
  ==> ⟨xs, ys @ [y]⟩ ∈ prefix(A) <-> xs = ys @ [y] ∨ ⟨xs, ys⟩ ∈ prefix(A)

lemma prefix_append_iff:

  [| zs ∈ list(A); xs ∈ list(A); ys ∈ list(A) |]
  ==> ⟨xs, ys @ zs⟩ ∈ prefix(A) <->
      ⟨xs, ys⟩ ∈ prefix(A) ∨ (∃us. xs = ys @ us ∧ ⟨us, zs⟩ ∈ prefix(A))

lemma common_prefix_linear_lemma:

  [| zs ∈ list(A); xs ∈ list(A); ys ∈ list(A); ⟨xs, zs⟩ ∈ prefix(A);
     ⟨ys, zs⟩ ∈ prefix(A) |]
  ==> ⟨xs, ys⟩ ∈ prefix(A) ∨ ⟨ys, xs⟩ ∈ prefix(A)

lemma common_prefix_linear:

  [| ⟨xs, zs⟩ ∈ prefix(A); ⟨ys, zs⟩ ∈ prefix(A) |]
  ==> ⟨xs, ys⟩ ∈ prefix(A) ∨ ⟨ys, xs⟩ ∈ prefix(A)

lemma refl_Le:

  refl(nat, Le)

lemma antisym_Le:

  antisym(Le)

lemma trans_on_Le:

  trans[nat](Le)

lemma trans_Le:

  trans(Le)

lemma part_order_Le:

  part_order(nat, Le)

lemma pfixLe_refl:

  x ∈ list(nat) ==> x pfixLe x

lemma pfixLe_trans:

  [| x pfixLe y; y pfixLe z |] ==> x pfixLe z

lemma pfixLe_antisym:

  [| x pfixLe y; y pfixLe x |] ==> x = y

lemma prefix_imp_pfixLe:

xs, ys⟩ ∈ prefix(nat) ==> xs pfixLe ys

lemma refl_Ge:

  refl(nat, Ge)

lemma antisym_Ge:

  antisym(Ge)

lemma trans_Ge:

  trans(Ge)

lemma pfixGe_refl:

  x ∈ list(nat) ==> x pfixGe x

lemma pfixGe_trans:

  [| x pfixGe y; y pfixGe z |] ==> x pfixGe z

lemma pfixGe_antisym:

  [| x pfixGe y; y pfixGe x |] ==> x = y

lemma prefix_imp_pfixGe:

xs, ys⟩ ∈ prefix(nat) ==> xs pfixGe ys

lemma prefix_imp_take:

xs, ys⟩ ∈ prefix(A) ==> xs = take(length(xs), ys)

lemma prefix_length_equal:

  [| ⟨xs, ys⟩ ∈ prefix(A); length(xs) = length(ys) |] ==> xs = ys

lemma prefix_length_le_equal:

  [| ⟨xs, ys⟩ ∈ prefix(A); length(ys) ≤ length(xs) |] ==> xs = ys

lemma take_prefix:

  [| xs ∈ list(A); n ∈ nat |] ==> ⟨take(n, xs), xs⟩ ∈ prefix(A)

lemma prefix_take_iff:

xs, ys⟩ ∈ prefix(A) <-> xs = take(length(xs), ys) ∧ xs ∈ list(A) ∧ ys ∈ list(A)

lemma prefix_imp_nth:

  [| ⟨xs, ys⟩ ∈ prefix(A); i < length(xs) |] ==> nth(i, xs) = nth(i, ys)

lemma nth_imp_prefix:

  [| xs ∈ list(A); ys ∈ list(A); length(xs) ≤ length(ys);
     !!i. i < length(xs) ==> nth(i, xs) = nth(i, ys) |]
  ==> ⟨xs, ys⟩ ∈ prefix(A)

lemma length_le_prefix_imp_prefix:

  [| length(xs) ≤ length(ys); ⟨xs, zs⟩ ∈ prefix(A); ⟨ys, zs⟩ ∈ prefix(A) |]
  ==> ⟨xs, ys⟩ ∈ prefix(A)