Theory Set

Up to index of Isabelle/HOL

theory Set
imports LOrder
uses [Set.ML]
begin

(*  Title:      HOL/Set.thy
    ID:         $Id: Set.thy,v 1.101 2005/09/29 10:43:40 paulson Exp $
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
*)

header {* Set theory for higher-order logic *}

theory Set
imports LOrder
begin

text {* A set in HOL is simply a predicate. *}


subsection {* Basic syntax *}

global

typedecl 'a set
arities set :: (type) type

consts
  "{}"          :: "'a set"                             ("{}")
  UNIV          :: "'a set"
  insert        :: "'a => 'a set => 'a set"
  Collect       :: "('a => bool) => 'a set"              -- "comprehension"
  Int           :: "'a set => 'a set => 'a set"          (infixl 70)
  Un            :: "'a set => 'a set => 'a set"          (infixl 65)
  UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
  INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
  Union         :: "'a set set => 'a set"                -- "union of a set"
  Inter         :: "'a set set => 'a set"                -- "intersection of a set"
  Pow           :: "'a set => 'a set set"                -- "powerset"
  Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
  Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
  image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)

syntax
  "op :"        :: "'a => 'a set => bool"                ("op :")
consts
  "op :"        :: "'a => 'a set => bool"                ("(_/ : _)" [50, 51] 50)  -- "membership"

local

instance set :: (type) "{ord, minus}" ..


subsection {* Additional concrete syntax *}

syntax
  range         :: "('a => 'b) => 'b set"             -- "of function"

  "op ~:"       :: "'a => 'a set => bool"                 ("op ~:")  -- "non-membership"
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ~: _)" [50, 51] 50)

  "@Finset"     :: "args => 'a set"                       ("{(_)}")
  "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
  "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
  "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ :/ _./ _})")
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" 10)
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" 10)
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" 10)
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" 10)

  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)

syntax (HOL)
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)

translations
  "range f"     == "f`UNIV"
  "x ~: y"      == "~ (x : y)"
  "{x, xs}"     == "insert x {xs}"
  "{x}"         == "insert x {}"
  "{x. P}"      == "Collect (%x. P)"
  "{x:A. P}"    => "{x. x:A & P}"
  "UN x y. B"   == "UN x. UN y. B"
  "UN x. B"     == "UNION UNIV (%x. B)"
  "UN x. B"     == "UN x:UNIV. B"
  "INT x y. B"  == "INT x. INT y. B"
  "INT x. B"    == "INTER UNIV (%x. B)"
  "INT x. B"    == "INT x:UNIV. B"
  "UN x:A. B"   == "UNION A (%x. B)"
  "INT x:A. B"  == "INTER A (%x. B)"
  "ALL x:A. P"  == "Ball A (%x. P)"
  "EX x:A. P"   == "Bex A (%x. P)"

syntax (output)
  "_setle"      :: "'a set => 'a set => bool"             ("op <=")
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ <= _)" [50, 51] 50)
  "_setless"    :: "'a set => 'a set => bool"             ("op <")
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ < _)" [50, 51] 50)

syntax (xsymbols)
  "_setle"      :: "'a set => 'a set => bool"             ("op ⊆")
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ ⊆ _)" [50, 51] 50)
  "_setless"    :: "'a set => 'a set => bool"             ("op ⊂")
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ ⊂ _)" [50, 51] 50)
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "∩" 70)
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "∪" 65)
  "op :"        :: "'a => 'a set => bool"                 ("op ∈")
  "op :"        :: "'a => 'a set => bool"                 ("(_/ ∈ _)" [50, 51] 50)
  "op ~:"       :: "'a => 'a set => bool"                 ("op ∉")
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ∉ _)" [50, 51] 50)
  Union         :: "'a set set => 'a set"                 ("\<Union>_" [90] 90)
  Inter         :: "'a set set => 'a set"                 ("\<Inter>_" [90] 90)
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3∀_∈_./ _)" [0, 0, 10] 10)
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3∃_∈_./ _)" [0, 0, 10] 10)

syntax (HTML output)
  "_setle"      :: "'a set => 'a set => bool"             ("op ⊆")
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ ⊆ _)" [50, 51] 50)
  "_setless"    :: "'a set => 'a set => bool"             ("op ⊂")
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ ⊂ _)" [50, 51] 50)
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "∩" 70)
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "∪" 65)
  "op :"        :: "'a => 'a set => bool"                 ("op ∈")
  "op :"        :: "'a => 'a set => bool"                 ("(_/ ∈ _)" [50, 51] 50)
  "op ~:"       :: "'a => 'a set => bool"                 ("op ∉")
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ∉ _)" [50, 51] 50)
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3∀_∈_./ _)" [0, 0, 10] 10)
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3∃_∈_./ _)" [0, 0, 10] 10)

syntax (xsymbols)
  "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ ∈/ _./ _})")
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" 10)
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" 10)
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_∈_./ _)" 10)
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_∈_./ _)" 10)
(*
syntax (xsymbols)
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00_)/ _)" 10)
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00_)/ _)" 10)
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00_∈_)/ _)" 10)
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00_∈_)/ _)" 10)
*)
syntax (latex output)
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00_)/ _)" 10)
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00_)/ _)" 10)
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00_∈_)/ _)" 10)
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00_∈_)/ _)" 10)

text{* Note the difference between ordinary xsymbol syntax of indexed
unions and intersections (e.g.\ @{text"\<Union>a1∈A1. B"})
and their \LaTeX\ rendition: @{term"\<Union>a1∈A1. B"}. The
former does not make the index expression a subscript of the
union/intersection symbol because this leads to problems with nested
subscripts in Proof General.  *}


translations
  "op ⊆" => "op <= :: _ set => _ set => bool"
  "op ⊂" => "op <  :: _ set => _ set => bool"

typed_print_translation {*
  let
    fun le_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
          list_comb (Syntax.const "_setle", ts)
      | le_tr' _ _ _ = raise Match;

    fun less_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
          list_comb (Syntax.const "_setless", ts)
      | less_tr' _ _ _ = raise Match;
  in [("op <=", le_tr'), ("op <", less_tr')] end
*}


subsubsection "Bounded quantifiers"

syntax
  "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
  "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
  "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
  "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)

syntax (xsymbols)
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3∀_⊂_./ _)"  [0, 0, 10] 10)
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3∃_⊂_./ _)"  [0, 0, 10] 10)
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3∀_⊆_./ _)" [0, 0, 10] 10)
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3∃_⊆_./ _)" [0, 0, 10] 10)

syntax (HOL)
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)

syntax (HTML output)
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3∀_⊂_./ _)"  [0, 0, 10] 10)
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3∃_⊂_./ _)"  [0, 0, 10] 10)
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3∀_⊆_./ _)" [0, 0, 10] 10)
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3∃_⊆_./ _)" [0, 0, 10] 10)

translations
 "∀A⊂B. P"   =>  "ALL A. A ⊂ B --> P"
 "∃A⊂B. P"    =>  "EX A. A ⊂ B & P"
 "∀A⊆B. P"  =>  "ALL A. A ⊆ B --> P"
 "∃A⊆B. P"   =>  "EX A. A ⊆ B & P"

print_translation {*
let
  fun
    all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
             Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
  (if v=v' andalso T="set"
   then Syntax.const "_setlessAll" $ Syntax.mark_bound v' $ n $ P
   else raise Match)

  | all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
             Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
  (if v=v' andalso T="set"
   then Syntax.const "_setleAll" $ Syntax.mark_bound v' $ n $ P
   else raise Match);

  fun
    ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
            Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
  (if v=v' andalso T="set"
   then Syntax.const "_setlessEx" $ Syntax.mark_bound v' $ n $ P
   else raise Match)

  | ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
            Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
  (if v=v' andalso T="set"
   then Syntax.const "_setleEx" $ Syntax.mark_bound v' $ n $ P
   else raise Match)
in
[("ALL ", all_tr'), ("EX ", ex_tr')]
end
*}



text {*
  \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
  "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
  only translated if @{text "[0..n] subset bvs(e)"}.
*}

parse_translation {*
  let
    val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));

    fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
      | nvars _ = 1;

    fun setcompr_tr [e, idts, b] =
      let
        val eq = Syntax.const "op =" $ Bound (nvars idts) $ e;
        val P = Syntax.const "op &" $ eq $ b;
        val exP = ex_tr [idts, P];
      in Syntax.const "Collect" $ Abs ("", dummyT, exP) end;

  in [("@SetCompr", setcompr_tr)] end;
*}

(* To avoid eta-contraction of body: *)
print_translation {*
let
  fun btr' syn [A,Abs abs] =
    let val (x,t) = atomic_abs_tr' abs
    in Syntax.const syn $ x $ A $ t end
in
[("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
 ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
end
*}

print_translation {*
let
  val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));

  fun setcompr_tr' [Abs (abs as (_, _, P))] =
    let
      fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
        | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
            ((0 upto (n - 1)) subset add_loose_bnos (e, 0, []))
        | check _ = false

        fun tr' (_ $ abs) =
          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs]
          in Syntax.const "@SetCompr" $ e $ idts $ Q end;
    in if check (P, 0) then tr' P
       else let val (x as _ $ Free(xN,_), t) = atomic_abs_tr' abs
                val M = Syntax.const "@Coll" $ x $ t
            in case t of
                 Const("op &",_)
                   $ (Const("op :",_) $ (Const("_bound",_) $ Free(yN,_)) $ A)
                   $ P =>
                   if xN=yN then Syntax.const "@Collect" $ x $ A $ P else M
               | _ => M
            end
    end;
  in [("Collect", setcompr_tr')] end;
*}


subsection {* Rules and definitions *}

text {* Isomorphisms between predicates and sets. *}

axioms
  mem_Collect_eq: "(a : {x. P(x)}) = P(a)"
  Collect_mem_eq: "{x. x:A} = A"
finalconsts
  Collect
  "op :"

defs
  Ball_def:     "Ball A P       == ALL x. x:A --> P(x)"
  Bex_def:      "Bex A P        == EX x. x:A & P(x)"

defs (overloaded)
  subset_def:   "A <= B         == ALL x:A. x:B"
  psubset_def:  "A < B          == (A::'a set) <= B & ~ A=B"
  Compl_def:    "- A            == {x. ~x:A}"
  set_diff_def: "A - B          == {x. x:A & ~x:B}"

defs
  Un_def:       "A Un B         == {x. x:A | x:B}"
  Int_def:      "A Int B        == {x. x:A & x:B}"
  INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
  UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
  Inter_def:    "Inter S        == (INT x:S. x)"
  Union_def:    "Union S        == (UN x:S. x)"
  Pow_def:      "Pow A          == {B. B <= A}"
  empty_def:    "{}             == {x. False}"
  UNIV_def:     "UNIV           == {x. True}"
  insert_def:   "insert a B     == {x. x=a} Un B"
  image_def:    "f`A            == {y. EX x:A. y = f(x)}"


subsection {* Lemmas and proof tool setup *}

subsubsection {* Relating predicates and sets *}

declare mem_Collect_eq [iff]  Collect_mem_eq [simp]

lemma CollectI: "P(a) ==> a : {x. P(x)}"
  by simp

lemma CollectD: "a : {x. P(x)} ==> P(a)"
  by simp

lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
  by simp

lemmas CollectE = CollectD [elim_format]


subsubsection {* Bounded quantifiers *}

lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
  by (simp add: Ball_def)

lemmas strip = impI allI ballI

lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
  by (simp add: Ball_def)

lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
  by (unfold Ball_def) blast
ML {* bind_thm("rev_ballE",permute_prems 1 1 (thm "ballE")) *}

text {*
  \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
  @{prop "a:A"}; creates assumption @{prop "P a"}.
*}

ML {*
  local val ballE = thm "ballE"
  in fun ball_tac i = etac ballE i THEN contr_tac (i + 1) end;
*}

text {*
  Gives better instantiation for bound:
*}

ML_setup {*
  claset_ref() := claset() addbefore ("bspec", datac (thm "bspec") 1);
*}

lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
  -- {* Normally the best argument order: @{prop "P x"} constrains the
    choice of @{prop "x:A"}. *}
  by (unfold Bex_def) blast

lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
  -- {* The best argument order when there is only one @{prop "x:A"}. *}
  by (unfold Bex_def) blast

lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
  by (unfold Bex_def) blast

lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
  by (unfold Bex_def) blast

lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
  -- {* Trival rewrite rule. *}
  by (simp add: Ball_def)

lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
  -- {* Dual form for existentials. *}
  by (simp add: Bex_def)

lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
  by blast

lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
  by blast

lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
  by blast

lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
  by blast

lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
  by blast

lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
  by blast

ML_setup {*
  local
    val Ball_def = thm "Ball_def";
    val Bex_def = thm "Bex_def";

    val simpset = Simplifier.clear_ss HOL_basic_ss;
    fun unfold_tac ss th =
      ALLGOALS (full_simp_tac (Simplifier.inherit_bounds ss simpset addsimps [th]));

    fun prove_bex_tac ss =
      unfold_tac ss Bex_def THEN Quantifier1.prove_one_point_ex_tac;
    val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;

    fun prove_ball_tac ss =
      unfold_tac ss Ball_def THEN Quantifier1.prove_one_point_all_tac;
    val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
  in
    val defBEX_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
      "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex;
    val defBALL_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
      "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;
  end;

  Addsimprocs [defBALL_regroup, defBEX_regroup];
*}


subsubsection {* Congruence rules *}

lemma ball_cong:
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
    (ALL x:A. P x) = (ALL x:B. Q x)"
  by (simp add: Ball_def)

lemma strong_ball_cong [cong]:
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
    (ALL x:A. P x) = (ALL x:B. Q x)"
  by (simp add: simp_implies_def Ball_def)

lemma bex_cong:
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
    (EX x:A. P x) = (EX x:B. Q x)"
  by (simp add: Bex_def cong: conj_cong)

lemma strong_bex_cong [cong]:
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
    (EX x:A. P x) = (EX x:B. Q x)"
  by (simp add: simp_implies_def Bex_def cong: conj_cong)


subsubsection {* Subsets *}

lemma subsetI [intro!]: "(!!x. x:A ==> x:B) ==> A ⊆ B"
  by (simp add: subset_def)

text {*
  \medskip Map the type @{text "'a set => anything"} to just @{typ
  'a}; for overloading constants whose first argument has type @{typ
  "'a set"}.
*}

lemma subsetD [elim]: "A ⊆ B ==> c ∈ A ==> c ∈ B"
  -- {* Rule in Modus Ponens style. *}
  by (unfold subset_def) blast

declare subsetD [intro?] -- FIXME

lemma rev_subsetD: "c ∈ A ==> A ⊆ B ==> c ∈ B"
  -- {* The same, with reversed premises for use with @{text erule} --
      cf @{text rev_mp}. *}
  by (rule subsetD)

declare rev_subsetD [intro?] -- FIXME

text {*
  \medskip Converts @{prop "A ⊆ B"} to @{prop "x ∈ A ==> x ∈ B"}.
*}

ML {*
  local val rev_subsetD = thm "rev_subsetD"
  in fun impOfSubs th = th RSN (2, rev_subsetD) end;
*}

lemma subsetCE [elim]: "A ⊆  B ==> (c ∉ A ==> P) ==> (c ∈ B ==> P) ==> P"
  -- {* Classical elimination rule. *}
  by (unfold subset_def) blast

text {*
  \medskip Takes assumptions @{prop "A ⊆ B"}; @{prop "c ∈ A"} and
  creates the assumption @{prop "c ∈ B"}.
*}

ML {*
  local val subsetCE = thm "subsetCE"
  in fun set_mp_tac i = etac subsetCE i THEN mp_tac i end;
*}

lemma contra_subsetD: "A ⊆ B ==> c ∉ B ==> c ∉ A"
  by blast

lemma subset_refl: "A ⊆ A"
  by fast

lemma subset_trans: "A ⊆ B ==> B ⊆ C ==> A ⊆ C"
  by blast


subsubsection {* Equality *}

lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B"
  apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals])
   apply (rule Collect_mem_eq)
  apply (rule Collect_mem_eq)
  done

(* Due to Brian Huffman *)
lemma expand_set_eq: "(A = B) = (ALL x. (x:A) = (x:B))"
by(auto intro:set_ext)

lemma subset_antisym [intro!]: "A ⊆ B ==> B ⊆ A ==> A = B"
  -- {* Anti-symmetry of the subset relation. *}
  by (iprover intro: set_ext subsetD)

lemmas equalityI [intro!] = subset_antisym

text {*
  \medskip Equality rules from ZF set theory -- are they appropriate
  here?
*}

lemma equalityD1: "A = B ==> A ⊆ B"
  by (simp add: subset_refl)

lemma equalityD2: "A = B ==> B ⊆ A"
  by (simp add: subset_refl)

text {*
  \medskip Be careful when adding this to the claset as @{text
  subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
  ⊆ A"} and @{prop "A ⊆ {}"} and then back to @{prop "A = {}"}!
*}

lemma equalityE: "A = B ==> (A ⊆ B ==> B ⊆ A ==> P) ==> P"
  by (simp add: subset_refl)

lemma equalityCE [elim]:
    "A = B ==> (c ∈ A ==> c ∈ B ==> P) ==> (c ∉ A ==> c ∉ B ==> P) ==> P"
  by blast

text {*
  \medskip Lemma for creating induction formulae -- for "pattern
  matching" on @{text p}.  To make the induction hypotheses usable,
  apply @{text spec} or @{text bspec} to put universal quantifiers over the free
  variables in @{text p}.
*}

lemma setup_induction: "p:A ==> (!!z. z:A ==> p = z --> R) ==> R"
  by simp

lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
  by simp

lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
  by simp


subsubsection {* The universal set -- UNIV *}

lemma UNIV_I [simp]: "x : UNIV"
  by (simp add: UNIV_def)

declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}

lemma UNIV_witness [intro?]: "EX x. x : UNIV"
  by simp

lemma subset_UNIV: "A ⊆ UNIV"
  by (rule subsetI) (rule UNIV_I)

text {*
  \medskip Eta-contracting these two rules (to remove @{text P})
  causes them to be ignored because of their interaction with
  congruence rules.
*}

lemma ball_UNIV [simp]: "Ball UNIV P = All P"
  by (simp add: Ball_def)

lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
  by (simp add: Bex_def)


subsubsection {* The empty set *}

lemma empty_iff [simp]: "(c : {}) = False"
  by (simp add: empty_def)

lemma emptyE [elim!]: "a : {} ==> P"
  by simp

lemma empty_subsetI [iff]: "{} ⊆ A"
    -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
  by blast

lemma equals0I: "(!!y. y ∈ A ==> False) ==> A = {}"
  by blast

lemma equals0D: "A = {} ==> a ∉ A"
    -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
  by blast

lemma ball_empty [simp]: "Ball {} P = True"
  by (simp add: Ball_def)

lemma bex_empty [simp]: "Bex {} P = False"
  by (simp add: Bex_def)

lemma UNIV_not_empty [iff]: "UNIV ~= {}"
  by (blast elim: equalityE)


subsubsection {* The Powerset operator -- Pow *}

lemma Pow_iff [iff]: "(A ∈ Pow B) = (A ⊆ B)"
  by (simp add: Pow_def)

lemma PowI: "A ⊆ B ==> A ∈ Pow B"
  by (simp add: Pow_def)

lemma PowD: "A ∈ Pow B ==> A ⊆ B"
  by (simp add: Pow_def)

lemma Pow_bottom: "{} ∈ Pow B"
  by simp

lemma Pow_top: "A ∈ Pow A"
  by (simp add: subset_refl)


subsubsection {* Set complement *}

lemma Compl_iff [simp]: "(c ∈ -A) = (c ∉ A)"
  by (unfold Compl_def) blast

lemma ComplI [intro!]: "(c ∈ A ==> False) ==> c ∈ -A"
  by (unfold Compl_def) blast

text {*
  \medskip This form, with negated conclusion, works well with the
  Classical prover.  Negated assumptions behave like formulae on the
  right side of the notional turnstile ... *}

lemma ComplD [dest!]: "c : -A ==> c~:A"
  by (unfold Compl_def) blast

lemmas ComplE = ComplD [elim_format]


subsubsection {* Binary union -- Un *}

lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
  by (unfold Un_def) blast

lemma UnI1 [elim?]: "c:A ==> c : A Un B"
  by simp

lemma UnI2 [elim?]: "c:B ==> c : A Un B"
  by simp

text {*
  \medskip Classical introduction rule: no commitment to @{prop A} vs
  @{prop B}.
*}

lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
  by auto

lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
  by (unfold Un_def) blast


subsubsection {* Binary intersection -- Int *}

lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
  by (unfold Int_def) blast

lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
  by simp

lemma IntD1: "c : A Int B ==> c:A"
  by simp

lemma IntD2: "c : A Int B ==> c:B"
  by simp

lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
  by simp


subsubsection {* Set difference *}

lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
  by (unfold set_diff_def) blast

lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
  by simp

lemma DiffD1: "c : A - B ==> c : A"
  by simp

lemma DiffD2: "c : A - B ==> c : B ==> P"
  by simp

lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
  by simp


subsubsection {* Augmenting a set -- insert *}

lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
  by (unfold insert_def) blast

lemma insertI1: "a : insert a B"
  by simp

lemma insertI2: "a : B ==> a : insert b B"
  by simp

lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
  by (unfold insert_def) blast

lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
  -- {* Classical introduction rule. *}
  by auto

lemma subset_insert_iff: "(A ⊆ insert x B) = (if x:A then A - {x} ⊆ B else A ⊆ B)"
  by auto


subsubsection {* Singletons, using insert *}

lemma singletonI [intro!]: "a : {a}"
    -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
  by (rule insertI1)

lemma singletonD [dest!]: "b : {a} ==> b = a"
  by blast

lemmas singletonE = singletonD [elim_format]

lemma singleton_iff: "(b : {a}) = (b = a)"
  by blast

lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
  by blast

lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A ⊆ {b})"
  by blast

lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A ⊆ {b})"
  by blast

lemma subset_singletonD: "A ⊆ {x} ==> A = {} | A = {x}"
  by fast

lemma singleton_conv [simp]: "{x. x = a} = {a}"
  by blast

lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
  by blast

lemma diff_single_insert: "A - {x} ⊆ B ==> x ∈ A ==> A ⊆ insert x B"
  by blast


subsubsection {* Unions of families *}

text {*
  @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
*}

lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
  by (unfold UNION_def) blast

lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
  -- {* The order of the premises presupposes that @{term A} is rigid;
    @{term b} may be flexible. *}
  by auto

lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
  by (unfold UNION_def) blast

lemma UN_cong [cong]:
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
  by (simp add: UNION_def)


subsubsection {* Intersections of families *}

text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}

lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
  by (unfold INTER_def) blast

lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
  by (unfold INTER_def) blast

lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
  by auto

lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
  by (unfold INTER_def) blast

lemma INT_cong [cong]:
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
  by (simp add: INTER_def)


subsubsection {* Union *}

lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)"
  by (unfold Union_def) blast

lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C"
  -- {* The order of the premises presupposes that @{term C} is rigid;
    @{term A} may be flexible. *}
  by auto

lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R"
  by (unfold Union_def) blast


subsubsection {* Inter *}

lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)"
  by (unfold Inter_def) blast

lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
  by (simp add: Inter_def)

text {*
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
  contains @{term A} as an element, but @{prop "A:X"} can hold when
  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
*}

lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
  by auto

lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
  -- {* ``Classical'' elimination rule -- does not require proving
    @{prop "X:C"}. *}
  by (unfold Inter_def) blast

text {*
  \medskip Image of a set under a function.  Frequently @{term b} does
  not have the syntactic form of @{term "f x"}.
*}

lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A"
  by (unfold image_def) blast

lemma imageI: "x : A ==> f x : f ` A"
  by (rule image_eqI) (rule refl)

lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A"
  -- {* This version's more effective when we already have the
    required @{term x}. *}
  by (unfold image_def) blast

lemma imageE [elim!]:
  "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P"
  -- {* The eta-expansion gives variable-name preservation. *}
  by (unfold image_def) blast

lemma image_Un: "f`(A Un B) = f`A Un f`B"
  by blast

lemma image_iff: "(z : f`A) = (EX x:A. z = f x)"
  by blast

lemma image_subset_iff: "(f`A ⊆ B) = (∀x∈A. f x ∈ B)"
  -- {* This rewrite rule would confuse users if made default. *}
  by blast

lemma subset_image_iff: "(B ⊆ f`A) = (EX AA. AA ⊆ A & B = f`AA)"
  apply safe
   prefer 2 apply fast
  apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
  done

lemma image_subsetI: "(!!x. x ∈ A ==> f x ∈ B) ==> f`A ⊆ B"
  -- {* Replaces the three steps @{text subsetI}, @{text imageE},
    @{text hypsubst}, but breaks too many existing proofs. *}
  by blast

text {*
  \medskip Range of a function -- just a translation for image!
*}

lemma range_eqI: "b = f x ==> b ∈ range f"
  by simp

lemma rangeI: "f x ∈ range f"
  by simp

lemma rangeE [elim?]: "b ∈ range (λx. f x) ==> (!!x. b = f x ==> P) ==> P"
  by blast


subsubsection {* Set reasoning tools *}

text {*
  Rewrite rules for boolean case-splitting: faster than @{text
  "split_if [split]"}.
*}

lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
  by (rule split_if)

lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
  by (rule split_if)

text {*
  Split ifs on either side of the membership relation.  Not for @{text
  "[simp]"} -- can cause goals to blow up!
*}

lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
  by (rule split_if)

lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
  by (rule split_if)

lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2

lemmas mem_simps =
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}

(*Would like to add these, but the existing code only searches for the
  outer-level constant, which in this case is just "op :"; we instead need
  to use term-nets to associate patterns with rules.  Also, if a rule fails to
  apply, then the formula should be kept.
  [("uminus", Compl_iff RS iffD1), ("op -", [Diff_iff RS iffD1]),
   ("op Int", [IntD1,IntD2]),
   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
 *)

ML_setup {*
  val mksimps_pairs = [("Ball", [thm "bspec"])] @ mksimps_pairs;
  simpset_ref() := simpset() setmksimps (mksimps mksimps_pairs);
*}

declare subset_UNIV [simp] subset_refl [simp]


subsubsection {* The ``proper subset'' relation *}

lemma psubsetI [intro!]: "A ⊆ B ==> A ≠ B ==> A ⊂ B"
  by (unfold psubset_def) blast

lemma psubsetE [elim!]: 
    "[|A ⊂ B;  [|A ⊆ B; ~ (B⊆A)|] ==> R|] ==> R"
  by (unfold psubset_def) blast

lemma psubset_insert_iff:
  "(A ⊂ insert x B) = (if x ∈ B then A ⊂ B else if x ∈ A then A - {x} ⊂ B else A ⊆ B)"
  by (auto simp add: psubset_def subset_insert_iff)

lemma psubset_eq: "(A ⊂ B) = (A ⊆ B & A ≠ B)"
  by (simp only: psubset_def)

lemma psubset_imp_subset: "A ⊂ B ==> A ⊆ B"
  by (simp add: psubset_eq)

lemma psubset_trans: "[| A ⊂ B; B ⊂ C |] ==> A ⊂ C"
apply (unfold psubset_def)
apply (auto dest: subset_antisym)
done

lemma psubsetD: "[| A ⊂ B; c ∈ A |] ==> c ∈ B"
apply (unfold psubset_def)
apply (auto dest: subsetD)
done

lemma psubset_subset_trans: "A ⊂ B ==> B ⊆ C ==> A ⊂ C"
  by (auto simp add: psubset_eq)

lemma subset_psubset_trans: "A ⊆ B ==> B ⊂ C ==> A ⊂ C"
  by (auto simp add: psubset_eq)

lemma psubset_imp_ex_mem: "A ⊂ B ==> ∃b. b ∈ (B - A)"
  by (unfold psubset_def) blast

lemma atomize_ball:
    "(!!x. x ∈ A ==> P x) == Trueprop (∀x∈A. P x)"
  by (simp only: Ball_def atomize_all atomize_imp)

declare atomize_ball [symmetric, rulify]


subsection {* Further set-theory lemmas *}

subsubsection {* Derived rules involving subsets. *}

text {* @{text insert}. *}

lemma subset_insertI: "B ⊆ insert a B"
  apply (rule subsetI)
  apply (erule insertI2)
  done

lemma subset_insertI2: "A ⊆ B ==> A ⊆ insert b B"
by blast

lemma subset_insert: "x ∉ A ==> (A ⊆ insert x B) = (A ⊆ B)"
  by blast


text {* \medskip Big Union -- least upper bound of a set. *}

lemma Union_upper: "B ∈ A ==> B ⊆ Union A"
  by (iprover intro: subsetI UnionI)

lemma Union_least: "(!!X. X ∈ A ==> X ⊆ C) ==> Union A ⊆ C"
  by (iprover intro: subsetI elim: UnionE dest: subsetD)


text {* \medskip General union. *}

lemma UN_upper: "a ∈ A ==> B a ⊆ (\<Union>x∈A. B x)"
  by blast

lemma UN_least: "(!!x. x ∈ A ==> B x ⊆ C) ==> (\<Union>x∈A. B x) ⊆ C"
  by (iprover intro: subsetI elim: UN_E dest: subsetD)


text {* \medskip Big Intersection -- greatest lower bound of a set. *}

lemma Inter_lower: "B ∈ A ==> Inter A ⊆ B"
  by blast

lemma Inter_subset:
  "[| !!X. X ∈ A ==> X ⊆ B; A ~= {} |] ==> \<Inter>A ⊆ B"
  by blast

lemma Inter_greatest: "(!!X. X ∈ A ==> C ⊆ X) ==> C ⊆ Inter A"
  by (iprover intro: InterI subsetI dest: subsetD)

lemma INT_lower: "a ∈ A ==> (\<Inter>x∈A. B x) ⊆ B a"
  by blast

lemma INT_greatest: "(!!x. x ∈ A ==> C ⊆ B x) ==> C ⊆ (\<Inter>x∈A. B x)"
  by (iprover intro: INT_I subsetI dest: subsetD)


text {* \medskip Finite Union -- the least upper bound of two sets. *}

lemma Un_upper1: "A ⊆ A ∪ B"
  by blast

lemma Un_upper2: "B ⊆ A ∪ B"
  by blast

lemma Un_least: "A ⊆ C ==> B ⊆ C ==> A ∪ B ⊆ C"
  by blast


text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}

lemma Int_lower1: "A ∩ B ⊆ A"
  by blast

lemma Int_lower2: "A ∩ B ⊆ B"
  by blast

lemma Int_greatest: "C ⊆ A ==> C ⊆ B ==> C ⊆ A ∩ B"
  by blast


text {* \medskip Set difference. *}

lemma Diff_subset: "A - B ⊆ A"
  by blast

lemma Diff_subset_conv: "(A - B ⊆ C) = (A ⊆ B ∪ C)"
by blast


text {* \medskip Monotonicity. *}

lemma mono_Un: "mono f ==> f A ∪ f B ⊆ f (A ∪ B)"
  by (auto simp add: mono_def)

lemma mono_Int: "mono f ==> f (A ∩ B) ⊆ f A ∩ f B"
  by (auto simp add: mono_def)

subsubsection {* Equalities involving union, intersection, inclusion, etc. *}

text {* @{text "{}"}. *}

lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
  -- {* supersedes @{text "Collect_False_empty"} *}
  by auto

lemma subset_empty [simp]: "(A ⊆ {}) = (A = {})"
  by blast

lemma not_psubset_empty [iff]: "¬ (A < {})"
  by (unfold psubset_def) blast

lemma Collect_empty_eq [simp]: "(Collect P = {}) = (∀x. ¬ P x)"
  by auto

lemma Collect_neg_eq: "{x. ¬ P x} = - {x. P x}"
  by blast

lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} ∪ {x. Q x}"
  by blast

lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} ∪ {x. Q x}"
  by blast

lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} ∩ {x. Q x}"
  by blast

lemma Collect_all_eq: "{x. ∀y. P x y} = (\<Inter>y. {x. P x y})"
  by blast

lemma Collect_ball_eq: "{x. ∀y∈A. P x y} = (\<Inter>y∈A. {x. P x y})"
  by blast

lemma Collect_ex_eq: "{x. ∃y. P x y} = (\<Union>y. {x. P x y})"
  by blast

lemma Collect_bex_eq: "{x. ∃y∈A. P x y} = (\<Union>y∈A. {x. P x y})"
  by blast


text {* \medskip @{text insert}. *}

lemma insert_is_Un: "insert a A = {a} Un A"
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
  by blast

lemma insert_not_empty [simp]: "insert a A ≠ {}"
  by blast

lemmas empty_not_insert = insert_not_empty [symmetric, standard]
declare empty_not_insert [simp]

lemma insert_absorb: "a ∈ A ==> insert a A = A"
  -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
  -- {* with \emph{quadratic} running time *}
  by blast

lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
  by blast

lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
  by blast

lemma insert_subset [simp]: "(insert x A ⊆ B) = (x ∈ B & A ⊆ B)"
  by blast

lemma mk_disjoint_insert: "a ∈ A ==> ∃B. A = insert a B & a ∉ B"
  -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
  apply (rule_tac x = "A - {a}" in exI, blast)
  done

lemma insert_Collect: "insert a (Collect P) = {u. u ≠ a --> P u}"
  by auto

lemma UN_insert_distrib: "u ∈ A ==> (\<Union>x∈A. insert a (B x)) = insert a (\<Union>x∈A. B x)"
  by blast

lemma insert_inter_insert[simp]: "insert a A ∩ insert a B = insert a (A ∩ B)"
  by blast

lemma insert_disjoint[simp]:
 "(insert a A ∩ B = {}) = (a ∉ B ∧ A ∩ B = {})"
 "({} = insert a A ∩ B) = (a ∉ B ∧ {} = A ∩ B)"
  by auto

lemma disjoint_insert[simp]:
 "(B ∩ insert a A = {}) = (a ∉ B ∧ B ∩ A = {})"
 "({} = A ∩ insert b B) = (b ∉ A ∧ {} = A ∩ B)"
  by auto

text {* \medskip @{text image}. *}

lemma image_empty [simp]: "f`{} = {}"
  by blast

lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)"
  by blast

lemma image_constant: "x ∈ A ==> (λx. c) ` A = {c}"
  by auto

lemma image_image: "f ` (g ` A) = (λx. f (g x)) ` A"
  by blast

lemma insert_image [simp]: "x ∈ A ==> insert (f x) (f`A) = f`A"
  by blast

lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
  by blast


lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
  -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
      with its implicit quantifier and conjunction.  Also image enjoys better
      equational properties than does the RHS. *}
  by blast

lemma if_image_distrib [simp]:
  "(λx. if P x then f x else g x) ` S
    = (f ` (S ∩ {x. P x})) ∪ (g ` (S ∩ {x. ¬ P x}))"
  by (auto simp add: image_def)

lemma image_cong: "M = N ==> (!!x. x ∈ N ==> f x = g x) ==> f`M = g`N"
  by (simp add: image_def)


text {* \medskip @{text range}. *}

lemma full_SetCompr_eq: "{u. ∃x. u = f x} = range f"
  by auto

lemma range_composition [simp]: "range (λx. f (g x)) = f`range g"
by (subst image_image, simp)


text {* \medskip @{text Int} *}

lemma Int_absorb [simp]: "A ∩ A = A"
  by blast

lemma Int_left_absorb: "A ∩ (A ∩ B) = A ∩ B"
  by blast

lemma Int_commute: "A ∩ B = B ∩ A"
  by blast

lemma Int_left_commute: "A ∩ (B ∩ C) = B ∩ (A ∩ C)"
  by blast

lemma Int_assoc: "(A ∩ B) ∩ C = A ∩ (B ∩ C)"
  by blast

lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
  -- {* Intersection is an AC-operator *}

lemma Int_absorb1: "B ⊆ A ==> A ∩ B = B"
  by blast

lemma Int_absorb2: "A ⊆ B ==> A ∩ B = A"
  by blast

lemma Int_empty_left [simp]: "{} ∩ B = {}"
  by blast

lemma Int_empty_right [simp]: "A ∩ {} = {}"
  by blast

lemma disjoint_eq_subset_Compl: "(A ∩ B = {}) = (A ⊆ -B)"
  by blast

lemma disjoint_iff_not_equal: "(A ∩ B = {}) = (∀x∈A. ∀y∈B. x ≠ y)"
  by blast

lemma Int_UNIV_left [simp]: "UNIV ∩ B = B"
  by blast

lemma Int_UNIV_right [simp]: "A ∩ UNIV = A"
  by blast

lemma Int_eq_Inter: "A ∩ B = \<Inter>{A, B}"
  by blast

lemma Int_Un_distrib: "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)"
  by blast

lemma Int_Un_distrib2: "(B ∪ C) ∩ A = (B ∩ A) ∪ (C ∩ A)"
  by blast

lemma Int_UNIV [simp]: "(A ∩ B = UNIV) = (A = UNIV & B = UNIV)"
  by blast

lemma Int_subset_iff [simp]: "(C ⊆ A ∩ B) = (C ⊆ A & C ⊆ B)"
  by blast

lemma Int_Collect: "(x ∈ A ∩ {x. P x}) = (x ∈ A & P x)"
  by blast


text {* \medskip @{text Un}. *}

lemma Un_absorb [simp]: "A ∪ A = A"
  by blast

lemma Un_left_absorb: "A ∪ (A ∪ B) = A ∪ B"
  by blast

lemma Un_commute: "A ∪ B = B ∪ A"
  by blast

lemma Un_left_commute: "A ∪ (B ∪ C) = B ∪ (A ∪ C)"
  by blast

lemma Un_assoc: "(A ∪ B) ∪ C = A ∪ (B ∪ C)"
  by blast

lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
  -- {* Union is an AC-operator *}

lemma Un_absorb1: "A ⊆ B ==> A ∪ B = B"
  by blast

lemma Un_absorb2: "B ⊆ A ==> A ∪ B = A"
  by blast

lemma Un_empty_left [simp]: "{} ∪ B = B"
  by blast

lemma Un_empty_right [simp]: "A ∪ {} = A"
  by blast

lemma Un_UNIV_left [simp]: "UNIV ∪ B = UNIV"
  by blast

lemma Un_UNIV_right [simp]: "A ∪ UNIV = UNIV"
  by blast

lemma Un_eq_Union: "A ∪ B = \<Union>{A, B}"
  by blast

lemma Un_insert_left [simp]: "(insert a B) ∪ C = insert a (B ∪ C)"
  by blast

lemma Un_insert_right [simp]: "A ∪ (insert a B) = insert a (A ∪ B)"
  by blast

lemma Int_insert_left:
    "(insert a B) Int C = (if a ∈ C then insert a (B ∩ C) else B ∩ C)"
  by auto

lemma Int_insert_right:
    "A ∩ (insert a B) = (if a ∈ A then insert a (A ∩ B) else A ∩ B)"
  by auto

lemma Un_Int_distrib: "A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)"
  by blast

lemma Un_Int_distrib2: "(B ∩ C) ∪ A = (B ∪ A) ∩ (C ∪ A)"
  by blast

lemma Un_Int_crazy:
    "(A ∩ B) ∪ (B ∩ C) ∪ (C ∩ A) = (A ∪ B) ∩ (B ∪ C) ∩ (C ∪ A)"
  by blast

lemma subset_Un_eq: "(A ⊆ B) = (A ∪ B = B)"
  by blast

lemma Un_empty [iff]: "(A ∪ B = {}) = (A = {} & B = {})"
  by blast

lemma Un_subset_iff [simp]: "(A ∪ B ⊆ C) = (A ⊆ C & B ⊆ C)"
  by blast

lemma Un_Diff_Int: "(A - B) ∪ (A ∩ B) = A"
  by blast


text {* \medskip Set complement *}

lemma Compl_disjoint [simp]: "A ∩ -A = {}"
  by blast

lemma Compl_disjoint2 [simp]: "-A ∩ A = {}"
  by blast

lemma Compl_partition: "A ∪ -A = UNIV"
  by blast

lemma Compl_partition2: "-A ∪ A = UNIV"
  by blast

lemma double_complement [simp]: "- (-A) = (A::'a set)"
  by blast

lemma Compl_Un [simp]: "-(A ∪ B) = (-A) ∩ (-B)"
  by blast

lemma Compl_Int [simp]: "-(A ∩ B) = (-A) ∪ (-B)"
  by blast

lemma Compl_UN [simp]: "-(\<Union>x∈A. B x) = (\<Inter>x∈A. -B x)"
  by blast

lemma Compl_INT [simp]: "-(\<Inter>x∈A. B x) = (\<Union>x∈A. -B x)"
  by blast

lemma subset_Compl_self_eq: "(A ⊆ -A) = (A = {})"
  by blast

lemma Un_Int_assoc_eq: "((A ∩ B) ∪ C = A ∩ (B ∪ C)) = (C ⊆ A)"
  -- {* Halmos, Naive Set Theory, page 16. *}
  by blast

lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
  by blast

lemma Compl_empty_eq [simp]: "-{} = UNIV"
  by blast

lemma Compl_subset_Compl_iff [iff]: "(-A ⊆ -B) = (B ⊆ A)"
  by blast

lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
  by blast


text {* \medskip @{text Union}. *}

lemma Union_empty [simp]: "Union({}) = {}"
  by blast

lemma Union_UNIV [simp]: "Union UNIV = UNIV"
  by blast

lemma Union_insert [simp]: "Union (insert a B) = a ∪ \<Union>B"
  by blast

lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A ∪ \<Union>B"
  by blast

lemma Union_Int_subset: "\<Union>(A ∩ B) ⊆ \<Union>A ∩ \<Union>B"
  by blast

lemma Union_empty_conv [iff]: "(\<Union>A = {}) = (∀x∈A. x = {})"
  by blast

lemma empty_Union_conv [iff]: "({} = \<Union>A) = (∀x∈A. x = {})"
  by blast

lemma Union_disjoint: "(\<Union>C ∩ A = {}) = (∀B∈C. B ∩ A = {})"
  by blast


text {* \medskip @{text Inter}. *}

lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
  by blast

lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
  by blast

lemma Inter_insert [simp]: "\<Inter>(insert a B) = a ∩ \<Inter>B"
  by blast

lemma Inter_Un_subset: "\<Inter>A ∪ \<Inter>B ⊆ \<Inter>(A ∩ B)"
  by blast

lemma Inter_Un_distrib: "\<Inter>(A ∪ B) = \<Inter>A ∩ \<Inter>B"
  by blast

lemma Inter_UNIV_conv [iff]:
  "(\<Inter>A = UNIV) = (∀x∈A. x = UNIV)"
  "(UNIV = \<Inter>A) = (∀x∈A. x = UNIV)"
  by blast+


text {*
  \medskip @{text UN} and @{text INT}.

  Basic identities: *}

lemma UN_empty [simp]: "(\<Union>x∈{}. B x) = {}"
  by blast

lemma UN_empty2 [simp]: "(\<Union>x∈A. {}) = {}"
  by blast

lemma UN_singleton [simp]: "(\<Union>x∈A. {x}) = A"
  by blast

lemma UN_absorb: "k ∈ I ==> A k ∪ (\<Union>i∈I. A i) = (\<Union>i∈I. A i)"
  by auto

lemma INT_empty [simp]: "(\<Inter>x∈{}. B x) = UNIV"
  by blast

lemma INT_absorb: "k ∈ I ==> A k ∩ (\<Inter>i∈I. A i) = (\<Inter>i∈I. A i)"
  by blast

lemma UN_insert [simp]: "(\<Union>x∈insert a A. B x) = B a ∪ UNION A B"
  by blast

lemma UN_Un: "(\<Union>i ∈ A ∪ B. M i) = (\<Union>i∈A. M i) ∪ (\<Union>i∈B. M i)"
  by blast

lemma UN_UN_flatten: "(\<Union>x ∈ (\<Union>y∈A. B y). C x) = (\<Union>y∈A. \<Union>x∈B y. C x)"
  by blast

lemma UN_subset_iff: "((\<Union>i∈I. A i) ⊆ B) = (∀i∈I. A i ⊆ B)"
  by blast

lemma INT_subset_iff: "(B ⊆ (\<Inter>i∈I. A i)) = (∀i∈I. B ⊆ A i)"
  by blast

lemma INT_insert [simp]: "(\<Inter>x ∈ insert a A. B x) = B a ∩ INTER A B"
  by blast

lemma INT_Un: "(\<Inter>i ∈ A ∪ B. M i) = (\<Inter>i ∈ A. M i) ∩ (\<Inter>i∈B. M i)"
  by blast

lemma INT_insert_distrib:
    "u ∈ A ==> (\<Inter>x∈A. insert a (B x)) = insert a (\<Inter>x∈A. B x)"
  by blast

lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x∈A. B x)"
  by blast

lemma image_Union: "f ` \<Union>S = (\<Union>x∈S. f ` x)"
  by blast

lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x∈A. B x)"
  by blast

lemma UN_constant [simp]: "(\<Union>y∈A. c) = (if A = {} then {} else c)"
  by auto

lemma INT_constant [simp]: "(\<Inter>y∈A. c) = (if A = {} then UNIV else c)"
  by auto

lemma UN_eq: "(\<Union>x∈A. B x) = \<Union>({Y. ∃x∈A. Y = B x})"
  by blast

lemma INT_eq: "(\<Inter>x∈A. B x) = \<Inter>({Y. ∃x∈A. Y = B x})"
  -- {* Look: it has an \emph{existential} quantifier *}
  by blast

lemma UNION_empty_conv[iff]:
  "({} = (UN x:A. B x)) = (∀x∈A. B x = {})"
  "((UN x:A. B x) = {}) = (∀x∈A. B x = {})"
by blast+

lemma INTER_UNIV_conv[iff]:
 "(UNIV = (INT x:A. B x)) = (∀x∈A. B x = UNIV)"
 "((INT x:A. B x) = UNIV) = (∀x∈A. B x = UNIV)"
by blast+


text {* \medskip Distributive laws: *}

lemma Int_Union: "A ∩ \<Union>B = (\<Union>C∈B. A ∩ C)"
  by blast

lemma Int_Union2: "\<Union>B ∩ A = (\<Union>C∈B. C ∩ A)"
  by blast

lemma Un_Union_image: "(\<Union>x∈C. A x ∪ B x) = \<Union>(A`C) ∪ \<Union>(B`C)"
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
  -- {* Union of a family of unions *}
  by blast

lemma UN_Un_distrib: "(\<Union>i∈I. A i ∪ B i) = (\<Union>i∈I. A i) ∪ (\<Union>i∈I. B i)"
  -- {* Equivalent version *}
  by blast

lemma Un_Inter: "A ∪ \<Inter>B = (\<Inter>C∈B. A ∪ C)"
  by blast

lemma Int_Inter_image: "(\<Inter>x∈C. A x ∩ B x) = \<Inter>(A`C) ∩ \<Inter>(B`C)"
  by blast

lemma INT_Int_distrib: "(\<Inter>i∈I. A i ∩ B i) = (\<Inter>i∈I. A i) ∩ (\<Inter>i∈I. B i)"
  -- {* Equivalent version *}
  by blast

lemma Int_UN_distrib: "B ∩ (\<Union>i∈I. A i) = (\<Union>i∈I. B ∩ A i)"
  -- {* Halmos, Naive Set Theory, page 35. *}
  by blast

lemma Un_INT_distrib: "B ∪ (\<Inter>i∈I. A i) = (\<Inter>i∈I. B ∪ A i)"
  by blast

lemma Int_UN_distrib2: "(\<Union>i∈I. A i) ∩ (\<Union>j∈J. B j) = (\<Union>i∈I. \<Union>j∈J. A i ∩ B j)"
  by blast

lemma Un_INT_distrib2: "(\<Inter>i∈I. A i) ∪ (\<Inter>j∈J. B j) = (\<Inter>i∈I. \<Inter>j∈J. A i ∪ B j)"
  by blast


text {* \medskip Bounded quantifiers.

  The following are not added to the default simpset because
  (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}

lemma ball_Un: "(∀x ∈ A ∪ B. P x) = ((∀x∈A. P x) & (∀x∈B. P x))"
  by blast

lemma bex_Un: "(∃x ∈ A ∪ B. P x) = ((∃x∈A. P x) | (∃x∈B. P x))"
  by blast

lemma ball_UN: "(∀z ∈ UNION A B. P z) = (∀x∈A. ∀z ∈ B x. P z)"
  by blast

lemma bex_UN: "(∃z ∈ UNION A B. P z) = (∃x∈A. ∃z∈B x. P z)"
  by blast


text {* \medskip Set difference. *}

lemma Diff_eq: "A - B = A ∩ (-B)"
  by blast

lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A ⊆ B)"
  by blast

lemma Diff_cancel [simp]: "A - A = {}"
  by blast

lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
by blast

lemma Diff_triv: "A ∩ B = {} ==> A - B = A"
  by (blast elim: equalityE)

lemma empty_Diff [simp]: "{} - A = {}"
  by blast

lemma Diff_empty [simp]: "A - {} = A"
  by blast

lemma Diff_UNIV [simp]: "A - UNIV = {}"
  by blast

lemma Diff_insert0 [simp]: "x ∉ A ==> A - insert x B = A - B"
  by blast

lemma Diff_insert: "A - insert a B = A - B - {a}"
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
  by blast

lemma Diff_insert2: "A - insert a B = A - {a} - B"
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
  by blast

lemma insert_Diff_if: "insert x A - B = (if x ∈ B then A - B else insert x (A - B))"
  by auto

lemma insert_Diff1 [simp]: "x ∈ B ==> insert x A - B = A - B"
  by blast

lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
by blast

lemma insert_Diff: "a ∈ A ==> insert a (A - {a}) = A"
  by blast

lemma Diff_insert_absorb: "x ∉ A ==> (insert x A) - {x} = A"
  by auto

lemma Diff_disjoint [simp]: "A ∩ (B - A) = {}"
  by blast

lemma Diff_partition: "A ⊆ B ==> A ∪ (B - A) = B"
  by blast

lemma double_diff: "A ⊆ B ==> B ⊆ C ==> B - (C - A) = A"
  by blast

lemma Un_Diff_cancel [simp]: "A ∪ (B - A) = A ∪ B"
  by blast

lemma Un_Diff_cancel2 [simp]: "(B - A) ∪ A = B ∪ A"
  by blast

lemma Diff_Un: "A - (B ∪ C) = (A - B) ∩ (A - C)"
  by blast

lemma Diff_Int: "A - (B ∩ C) = (A - B) ∪ (A - C)"
  by blast

lemma Un_Diff: "(A ∪ B) - C = (A - C) ∪ (B - C)"
  by blast

lemma Int_Diff: "(A ∩ B) - C = A ∩ (B - C)"
  by blast

lemma Diff_Int_distrib: "C ∩ (A - B) = (C ∩ A) - (C ∩ B)"
  by blast

lemma Diff_Int_distrib2: "(A - B) ∩ C = (A ∩ C) - (B ∩ C)"
  by blast

lemma Diff_Compl [simp]: "A - (- B) = A ∩ B"
  by auto

lemma Compl_Diff_eq [simp]: "- (A - B) = -A ∪ B"
  by blast


text {* \medskip Quantification over type @{typ bool}. *}

lemma all_bool_eq: "(∀b::bool. P b) = (P True & P False)"
  apply auto
  apply (tactic {* case_tac "b" 1 *}, auto)
  done

lemma bool_induct: "P True ==> P False ==> P x"
  by (rule conjI [THEN all_bool_eq [THEN iffD2], THEN spec])

lemma ex_bool_eq: "(∃b::bool. P b) = (P True | P False)"
  apply auto
  apply (tactic {* case_tac "b" 1 *}, auto)
  done

lemma Un_eq_UN: "A ∪ B = (\<Union>b. if b then A else B)"
  by (auto simp add: split_if_mem2)

lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True ∪ A False)"
  apply auto
  apply (tactic {* case_tac "b" 1 *}, auto)
  done

lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True ∩ A False)"
  apply auto
  apply (tactic {* case_tac "b" 1 *}, auto)
  done


text {* \medskip @{text Pow} *}

lemma Pow_empty [simp]: "Pow {} = {{}}"
  by (auto simp add: Pow_def)

lemma Pow_insert: "Pow (insert a A) = Pow A ∪ (insert a ` Pow A)"
  by (blast intro: image_eqI [where ?x = "u - {a}", standard])

lemma Pow_Compl: "Pow (- A) = {-B | B. A ∈ Pow B}"
  by (blast intro: exI [where ?x = "- u", standard])

lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
  by blast

lemma Un_Pow_subset: "Pow A ∪ Pow B ⊆ Pow (A ∪ B)"
  by blast

lemma UN_Pow_subset: "(\<Union>x∈A. Pow (B x)) ⊆ Pow (\<Union>x∈A. B x)"
  by blast

lemma subset_Pow_Union: "A ⊆ Pow (\<Union>A)"
  by blast

lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
  by blast

lemma Pow_Int_eq [simp]: "Pow (A ∩ B) = Pow A ∩ Pow B"
  by blast

lemma Pow_INT_eq: "Pow (\<Inter>x∈A. B x) = (\<Inter>x∈A. Pow (B x))"
  by blast


text {* \medskip Miscellany. *}

lemma set_eq_subset: "(A = B) = (A ⊆ B & B ⊆ A)"
  by blast

lemma subset_iff: "(A ⊆ B) = (∀t. t ∈ A --> t ∈ B)"
  by blast

lemma subset_iff_psubset_eq: "(A ⊆ B) = ((A ⊂ B) | (A = B))"
  by (unfold psubset_def) blast

lemma all_not_in_conv [iff]: "(∀x. x ∉ A) = (A = {})"
  by blast

lemma ex_in_conv: "(∃x. x ∈ A) = (A ≠ {})"
  by blast

lemma distinct_lemma: "f x ≠ f y ==> x ≠ y"
  by iprover


text {* \medskip Miniscoping: pushing in quantifiers and big Unions
           and Intersections. *}

lemma UN_simps [simp]:
  "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
  "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
  "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
  "!!A B C. (UN x:C. A x Int B)  = ((UN x:C. A x) Int B)"
  "!!A B C. (UN x:C. A Int B x)  = (A Int (UN x:C. B x))"
  "!!A B C. (UN x:C. A x - B)    = ((UN x:C. A x) - B)"
  "!!A B C. (UN x:C. A - B x)    = (A - (INT x:C. B x))"
  "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
  "!!A B C. (UN z: UNION A B. C z) = (UN  x:A. UN z: B(x). C z)"
  "!!A B f. (UN x:f`A. B x)     = (UN a:A. B (f a))"
  by auto

lemma INT_simps [simp]:
  "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
  "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
  "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
  "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
  "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
  "!!A B C. (INT x:C. A x Un B)  = ((INT x:C. A x) Un B)"
  "!!A B C. (INT x:C. A Un B x)  = (A Un (INT x:C. B x))"
  "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
  "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
  "!!A B f. (INT x:f`A. B x)    = (INT a:A. B (f a))"
  by auto

lemma ball_simps [simp]:
  "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
  "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
  "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
  "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
  "!!P. (ALL x:{}. P x) = True"
  "!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
  "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
  "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
  "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
  "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
  "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
  "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
  by auto

lemma bex_simps [simp]:
  "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
  "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
  "!!P. (EX x:{}. P x) = False"
  "!!P. (EX x:UNIV. P x) = (EX x. P x)"
  "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
  "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
  "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
  "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
  "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
  "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
  by auto

lemma ball_conj_distrib:
  "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
  by blast

lemma bex_disj_distrib:
  "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
  by blast


text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}

lemma UN_extend_simps:
  "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
  "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
  "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
  "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
  "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
  "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
  "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
  "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
  "!!A B C. (UN  x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
  "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
  by auto

lemma INT_extend_simps:
  "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
  "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
  "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
  "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
  "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
  "!!A B C. ((INT x:C. A x) Un B)  = (INT x:C. A x Un B)"
  "!!A B C. A Un (INT x:C. B x)  = (INT x:C. A Un B x)"
  "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
  "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
  "!!A B f. (INT a:A. B (f a))    = (INT x:f`A. B x)"
  by auto


subsubsection {* Monotonicity of various operations *}

lemma image_mono: "A ⊆ B ==> f`A ⊆ f`B"
  by blast

lemma Pow_mono: "A ⊆ B ==> Pow A ⊆ Pow B"
  by blast

lemma Union_mono: "A ⊆ B ==> \<Union>A ⊆ \<Union>B"
  by blast

lemma Inter_anti_mono: "B ⊆ A ==> \<Inter>A ⊆ \<Inter>B"
  by blast

lemma UN_mono:
  "A ⊆ B ==> (!!x. x ∈ A ==> f x ⊆ g x) ==>
    (\<Union>x∈A. f x) ⊆ (\<Union>x∈B. g x)"
  by (blast dest: subsetD)

lemma INT_anti_mono:
  "B ⊆ A ==> (!!x. x ∈ A ==> f x ⊆ g x) ==>
    (\<Inter>x∈A. f x) ⊆ (\<Inter>x∈A. g x)"
  -- {* The last inclusion is POSITIVE! *}
  by (blast dest: subsetD)

lemma insert_mono: "C ⊆ D ==> insert a C ⊆ insert a D"
  by blast

lemma Un_mono: "A ⊆ C ==> B ⊆ D ==> A ∪ B ⊆ C ∪ D"
  by blast

lemma Int_mono: "A ⊆ C ==> B ⊆ D ==> A ∩ B ⊆ C ∩ D"
  by blast

lemma Diff_mono: "A ⊆ C ==> D ⊆ B ==> A - B ⊆ C - D"
  by blast

lemma Compl_anti_mono: "A ⊆ B ==> -B ⊆ -A"
  by blast

text {* \medskip Monotonicity of implications. *}

lemma in_mono: "A ⊆ B ==> x ∈ A --> x ∈ B"
  apply (rule impI)
  apply (erule subsetD, assumption)
  done

lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
  by iprover

lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
  by iprover

lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
  by iprover

lemma imp_refl: "P --> P" ..

lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
  by iprover

lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
  by iprover

lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P ⊆ Collect Q"
  by blast

lemma Int_Collect_mono:
    "A ⊆ B ==> (!!x. x ∈ A ==> P x --> Q x) ==> A ∩ Collect P ⊆ B ∩ Collect Q"
  by blast

lemmas basic_monos =
  subset_refl imp_refl disj_mono conj_mono
  ex_mono Collect_mono in_mono

lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
  by iprover

lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c"
  by iprover

lemma Least_mono:
  "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
    ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
    -- {* Courtesy of Stephan Merz *}
  apply clarify
  apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)
  apply (rule LeastI2_order)
  apply (auto elim: monoD intro!: order_antisym)
  done


subsection {* Inverse image of a function *}

constdefs
  vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
  "f -` B == {x. f x : B}"


subsubsection {* Basic rules *}

lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
  by (unfold vimage_def) blast

lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
  by simp

lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
  by (unfold vimage_def) blast

lemma vimageI2: "f a : A ==> a : f -` A"
  by (unfold vimage_def) fast

lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
  by (unfold vimage_def) blast

lemma vimageD: "a : f -` A ==> f a : A"
  by (unfold vimage_def) fast


subsubsection {* Equations *}

lemma vimage_empty [simp]: "f -` {} = {}"
  by blast

lemma vimage_Compl: "f -` (-A) = -(f -` A)"
  by blast

lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
  by blast

lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
  by fast

lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
  by blast

lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
  by blast

lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
  by blast

lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
  by blast

lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
  by blast

lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
  -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
  by blast

lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
  by blast

lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
  by blast

lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
  -- {* NOT suitable for rewriting *}
  by blast

lemma vimage_mono: "A ⊆ B ==> f -` A ⊆ f -` B"
  -- {* monotonicity *}
  by blast


subsection {* Getting the Contents of a Singleton Set *}

constdefs
  contents :: "'a set => 'a"
   "contents X == THE x. X = {x}"

lemma contents_eq [simp]: "contents {x} = x"
by (simp add: contents_def)


subsection {* Transitivity rules for calculational reasoning *}

lemma set_rev_mp: "x:A ==> A ⊆ B ==> x:B"
  by (rule subsetD)

lemma set_mp: "A ⊆ B ==> x:A ==> x:B"
  by (rule subsetD)

lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
  by (rule subst)

lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
  by (rule ssubst)

lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
  by (rule subst)

lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
  by (rule ssubst)

lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
  (!!x y. x < y ==> f x < f y) ==> f a < c"
proof -
  assume r: "!!x y. x < y ==> f x < f y"
  assume "a < b" hence "f a < f b" by (rule r)
  also assume "f b < c"
  finally (order_less_trans) show ?thesis .
qed

lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
  (!!x y. x < y ==> f x < f y) ==> a < f c"
proof -
  assume r: "!!x y. x < y ==> f x < f y"
  assume "a < f b"
  also assume "b < c" hence "f b < f c" by (rule r)
  finally (order_less_trans) show ?thesis .
qed

lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
  (!!x y. x <= y ==> f x <= f y) ==> f a < c"
proof -
  assume r: "!!x y. x <= y ==> f x <= f y"
  assume "a <= b" hence "f a <= f b" by (rule r)
  also assume "f b < c"
  finally (order_le_less_trans) show ?thesis .
qed

lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
  (!!x y. x < y ==> f x < f y) ==> a < f c"
proof -
  assume r: "!!x y. x < y ==> f x < f y"
  assume "a <= f b"
  also assume "b < c" hence "f b < f c" by (rule r)
  finally (order_le_less_trans) show ?thesis .
qed

lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
  (!!x y. x < y ==> f x < f y) ==> f a < c"
proof -
  assume r: "!!x y. x < y ==> f x < f y"
  assume "a < b" hence "f a < f b" by (rule r)
  also assume "f b <= c"
  finally (order_less_le_trans) show ?thesis .
qed

lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
  (!!x y. x <= y ==> f x <= f y) ==> a < f c"
proof -
  assume r: "!!x y. x <= y ==> f x <= f y"
  assume "a < f b"
  also assume "b <= c" hence "f b <= f c" by (rule r)
  finally (order_less_le_trans) show ?thesis .
qed

lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
proof -
  assume r: "!!x y. x <= y ==> f x <= f y"
  assume "a <= f b"
  also assume "b <= c" hence "f b <= f c" by (rule r)
  finally (order_trans) show ?thesis .
qed

lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
proof -
  assume r: "!!x y. x <= y ==> f x <= f y"
  assume "a <= b" hence "f a <= f b" by (rule r)
  also assume "f b <= c"
  finally (order_trans) show ?thesis .
qed

lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
proof -
  assume r: "!!x y. x <= y ==> f x <= f y"
  assume "a <= b" hence "f a <= f b" by (rule r)
  also assume "f b = c"
  finally (ord_le_eq_trans) show ?thesis .
qed

lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
proof -
  assume r: "!!x y. x <= y ==> f x <= f y"
  assume "a = f b"
  also assume "b <= c" hence "f b <= f c" by (rule r)
  finally (ord_eq_le_trans) show ?thesis .
qed

lemma ord_less_eq_subst: "a < b ==> f b = c ==>
  (!!x y. x < y ==> f x < f y) ==> f a < c"
proof -
  assume r: "!!x y. x < y ==> f x < f y"
  assume "a < b" hence "f a < f b" by (rule r)
  also assume "f b = c"
  finally (ord_less_eq_trans) show ?thesis .
qed

lemma ord_eq_less_subst: "a = f b ==> b < c ==>
  (!!x y. x < y ==> f x < f y) ==> a < f c"
proof -
  assume r: "!!x y. x < y ==> f x < f y"
  assume "a = f b"
  also assume "b < c" hence "f b < f c" by (rule r)
  finally (ord_eq_less_trans) show ?thesis .
qed

text {*
  Note that this list of rules is in reverse order of priorities.
*}

lemmas basic_trans_rules [trans] =
  order_less_subst2
  order_less_subst1
  order_le_less_subst2
  order_le_less_subst1
  order_less_le_subst2
  order_less_le_subst1
  order_subst2
  order_subst1
  ord_le_eq_subst
  ord_eq_le_subst
  ord_less_eq_subst
  ord_eq_less_subst
  forw_subst
  back_subst
  rev_mp
  mp
  set_rev_mp
  set_mp
  order_neq_le_trans
  order_le_neq_trans
  order_less_trans
  order_less_asym'
  order_le_less_trans
  order_less_le_trans
  order_trans
  order_antisym
  ord_le_eq_trans
  ord_eq_le_trans
  ord_less_eq_trans
  ord_eq_less_trans
  trans

end

Basic syntax

Additional concrete syntax

Bounded quantifiers

Rules and definitions

Lemmas and proof tool setup

Relating predicates and sets

lemma CollectI:

  P a ==> a ∈ {x. P x}

lemma CollectD:

  a ∈ {x. P x} ==> P a

lemma Collect_cong:

  (!!x. P x = Q x) ==> {x. P x} = {x. Q x}

lemmas CollectE:

  [| a ∈ {x. P x}; P a ==> PROP W1 |] ==> PROP W1

lemmas CollectE:

  [| a ∈ {x. P x}; P a ==> PROP W1 |] ==> PROP W1

Bounded quantifiers

lemma ballI:

  (!!x. xA ==> P x) ==> ∀xA. P x

lemmas strip:

  (P ==> Q) ==> P --> Q
  (!!x. P x) ==> ∀x. P x
  (!!x. xA ==> P x) ==> ∀xA. P x

lemmas strip:

  (P ==> Q) ==> P --> Q
  (!!x. P x) ==> ∀x. P x
  (!!x. xA ==> P x) ==> ∀xA. P x

lemma bspec:

  [| ∀xA. P x; xA |] ==> P x

lemma ballE:

  [| ∀xA. P x; P x ==> Q; xA ==> Q |] ==> Q

theorem rev_ballE:

  [| ∀xA. P x; xA ==> Q; P x ==> Q |] ==> Q

lemma bexI:

  [| P x; xA |] ==> ∃xA. P x

lemma rev_bexI:

  [| xA; P x |] ==> ∃xA. P x

lemma bexCI:

  [| ∀xA. ¬ P x ==> P a; aA |] ==> ∃xA. P x

lemma bexE:

  [| ∃xA. P x; !!x. [| xA; P x |] ==> Q |] ==> Q

lemma ball_triv:

  (∀xA. P) = ((∃x. xA) --> P)

lemma bex_triv:

  (∃xA. P) = ((∃x. xA) ∧ P)

lemma bex_triv_one_point1:

  (∃xA. x = a) = (aA)

lemma bex_triv_one_point2:

  (∃xA. a = x) = (aA)

lemma bex_one_point1:

  (∃xA. x = aP x) = (aAP a)

lemma bex_one_point2:

  (∃xA. a = xP x) = (aAP a)

lemma ball_one_point1:

  (∀xA. x = a --> P x) = (aA --> P a)

lemma ball_one_point2:

  (∀xA. a = x --> P x) = (aA --> P a)

Congruence rules

lemma ball_cong:

  [| A = B; !!x. xB ==> P x = Q x |] ==> (∀xA. P x) = (∀xB. Q x)

lemma strong_ball_cong:

  [| A = B; !!x. xB =simp=> P x = Q x |] ==> (∀xA. P x) = (∀xB. Q x)

lemma bex_cong:

  [| A = B; !!x. xB ==> P x = Q x |] ==> (∃xA. P x) = (∃xB. Q x)

lemma strong_bex_cong:

  [| A = B; !!x. xB =simp=> P x = Q x |] ==> (∃xA. P x) = (∃xB. Q x)

Subsets

lemma subsetI:

  (!!x. xA ==> xB) ==> AB

lemma subsetD:

  [| AB; cA |] ==> cB

lemma rev_subsetD:

  [| cA; AB |] ==> cB

lemma subsetCE:

  [| AB; cA ==> P; cB ==> P |] ==> P

lemma contra_subsetD:

  [| AB; cB |] ==> cA

lemma subset_refl:

  AA

lemma subset_trans:

  [| AB; BC |] ==> AC

Equality

lemma set_ext:

  (!!x. (xA) = (xB)) ==> A = B

lemma expand_set_eq:

  (A = B) = (∀x. (xA) = (xB))

lemma subset_antisym:

  [| AB; BA |] ==> A = B

lemmas equalityI:

  [| AB; BA |] ==> A = B

lemmas equalityI:

  [| AB; BA |] ==> A = B

lemma equalityD1:

  A = B ==> AB

lemma equalityD2:

  A = B ==> BA

lemma equalityE:

  [| A = B; [| AB; BA |] ==> P |] ==> P

lemma equalityCE:

  [| A = B; [| cA; cB |] ==> P; [| cA; cB |] ==> P |] ==> P

lemma setup_induction:

  [| pA; !!z. zA ==> p = z --> R |] ==> R

lemma eqset_imp_iff:

  A = B ==> (xA) = (xB)

lemma eqelem_imp_iff:

  x = y ==> (xA) = (yA)

The universal set -- UNIV

lemma UNIV_I:

  x ∈ UNIV

lemma UNIV_witness:

x. x ∈ UNIV

lemma subset_UNIV:

  A ⊆ UNIV

lemma ball_UNIV:

  Ball UNIV P = All P

lemma bex_UNIV:

  Bex UNIV P = Ex P

The empty set

lemma empty_iff:

  (c ∈ {}) = False

lemma emptyE:

  a ∈ {} ==> P

lemma empty_subsetI:

  {} ⊆ A

lemma equals0I:

  (!!y. yA ==> False) ==> A = {}

lemma equals0D:

  A = {} ==> aA

lemma ball_empty:

  Ball {} P = True

lemma bex_empty:

  Bex {} P = False

lemma UNIV_not_empty:

  UNIV ≠ {}

The Powerset operator -- Pow

lemma Pow_iff:

  (A ∈ Pow B) = (AB)

lemma PowI:

  AB ==> A ∈ Pow B

lemma PowD:

  A ∈ Pow B ==> AB

lemma Pow_bottom:

  {} ∈ Pow B

lemma Pow_top:

  A ∈ Pow A

Set complement

lemma Compl_iff:

  (c ∈ - A) = (cA)

lemma ComplI:

  (cA ==> False) ==> c ∈ - A

lemma ComplD:

  c ∈ - A ==> cA

lemmas ComplE:

  [| c ∈ - A; cA ==> PROP W1 |] ==> PROP W1

lemmas ComplE:

  [| c ∈ - A; cA ==> PROP W1 |] ==> PROP W1

Binary union -- Un

lemma Un_iff:

  (cAB) = (cAcB)

lemma UnI1:

  cA ==> cAB

lemma UnI2:

  cB ==> cAB

lemma UnCI:

  (cB ==> cA) ==> cAB

lemma UnE:

  [| cAB; cA ==> P; cB ==> P |] ==> P

Binary intersection -- Int

lemma Int_iff:

  (cAB) = (cAcB)

lemma IntI:

  [| cA; cB |] ==> cAB

lemma IntD1:

  cAB ==> cA

lemma IntD2:

  cAB ==> cB

lemma IntE:

  [| cAB; [| cA; cB |] ==> P |] ==> P

Set difference

lemma Diff_iff:

  (cA - B) = (cAcB)

lemma DiffI:

  [| cA; cB |] ==> cA - B

lemma DiffD1:

  cA - B ==> cA

lemma DiffD2:

  [| cA - B; cB |] ==> P

lemma DiffE:

  [| cA - B; [| cA; cB |] ==> P |] ==> P

Augmenting a set -- insert

lemma insert_iff:

  (a ∈ insert b A) = (a = baA)

lemma insertI1:

  a ∈ insert a B

lemma insertI2:

  aB ==> a ∈ insert b B

lemma insertE:

  [| a ∈ insert b A; a = b ==> P; aA ==> P |] ==> P

lemma insertCI:

  (aB ==> a = b) ==> a ∈ insert b B

lemma subset_insert_iff:

  (A ⊆ insert x B) = (if xA then A - {x} ⊆ B else AB)

Singletons, using insert

lemma singletonI:

  a ∈ {a}

lemma singletonD:

  b ∈ {a} ==> b = a

lemmas singletonE:

  [| b ∈ {a}; b = a ==> PROP W1 |] ==> PROP W1

lemmas singletonE:

  [| b ∈ {a}; b = a ==> PROP W1 |] ==> PROP W1

lemma singleton_iff:

  (b ∈ {a}) = (b = a)

lemma singleton_inject:

  {a} = {b} ==> a = b

lemma singleton_insert_inj_eq:

  ({b} = insert a A) = (a = bA ⊆ {b})

lemma singleton_insert_inj_eq':

  (insert a A = {b}) = (a = bA ⊆ {b})

lemma subset_singletonD:

  A ⊆ {x} ==> A = {} ∨ A = {x}

lemma singleton_conv:

  {x. x = a} = {a}

lemma singleton_conv2:

  {x. a = x} = {a}

lemma diff_single_insert:

  [| A - {x} ⊆ B; xA |] ==> A ⊆ insert x B

Unions of families

lemma UN_iff:

  (b ∈ (UN x:A. B x)) = (∃xA. bB x)

lemma UN_I:

  [| aA; bB a |] ==> b ∈ (UN x:A. B x)

lemma UN_E:

  [| b ∈ (UN x:A. B x); !!x. [| xA; bB x |] ==> R |] ==> R

lemma UN_cong:

  [| A = B; !!x. xB ==> C x = D x |] ==> (UN x:A. C x) = (UN x:B. D x)

Intersections of families

lemma INT_iff:

  (b ∈ (INT x:A. B x)) = (∀xA. bB x)

lemma INT_I:

  (!!x. xA ==> bB x) ==> b ∈ (INT x:A. B x)

lemma INT_D:

  [| b ∈ (INT x:A. B x); aA |] ==> bB a

lemma INT_E:

  [| b ∈ (INT x:A. B x); bB a ==> R; aA ==> R |] ==> R

lemma INT_cong:

  [| A = B; !!x. xB ==> C x = D x |] ==> (INT x:A. C x) = (INT x:B. D x)

Union

lemma Union_iff:

  (A ∈ Union C) = (∃XC. AX)

lemma UnionI:

  [| XC; AX |] ==> A ∈ Union C

lemma UnionE:

  [| A ∈ Union C; !!X. [| AX; XC |] ==> R |] ==> R

Inter

lemma Inter_iff:

  (A ∈ Inter C) = (∀XC. AX)

lemma InterI:

  (!!X. XC ==> AX) ==> A ∈ Inter C

lemma InterD:

  [| A ∈ Inter C; XC |] ==> AX

lemma InterE:

  [| A ∈ Inter C; XC ==> R; AX ==> R |] ==> R

lemma image_eqI:

  [| b = f x; xA |] ==> bf ` A

lemma imageI:

  xA ==> f xf ` A

lemma rev_image_eqI:

  [| xA; b = f x |] ==> bf ` A

lemma imageE:

  [| bf ` A; !!x. [| b = f x; xA |] ==> P |] ==> P

lemma image_Un:

  f ` (AB) = f ` Af ` B

lemma image_iff:

  (zf ` A) = (∃xA. z = f x)

lemma image_subset_iff:

  (f ` AB) = (∀xA. f xB)

lemma subset_image_iff:

  (Bf ` A) = (∃AAA. B = f ` AA)

lemma image_subsetI:

  (!!x. xA ==> f xB) ==> f ` AB

lemma range_eqI:

  b = f x ==> b ∈ range f

lemma rangeI:

  f x ∈ range f

lemma rangeE:

  [| b ∈ range f; !!x. b = f x ==> P |] ==> P

Set reasoning tools

lemma split_if_eq1:

  ((if Q then x else y) = b) = ((Q --> x = b) ∧ (¬ Q --> y = b))

lemma split_if_eq2:

  (a = (if Q then x else y)) = ((Q --> a = x) ∧ (¬ Q --> a = y))

lemma split_if_mem1:

  ((if Q then x else y) ∈ b) = ((Q --> xb) ∧ (¬ Q --> yb))

lemma split_if_mem2:

  (a ∈ (if Q then x else y)) = ((Q --> ax) ∧ (¬ Q --> ay))

lemmas split_ifs:

  (if P then Q else R) = ((P --> Q) ∧ (¬ P --> R))
  ((if Q then x else y) = b) = ((Q --> x = b) ∧ (¬ Q --> y = b))
  (a = (if Q then x else y)) = ((Q --> a = x) ∧ (¬ Q --> a = y))
  ((if Q then x else y) ∈ b) = ((Q --> xb) ∧ (¬ Q --> yb))
  (a ∈ (if Q then x else y)) = ((Q --> ax) ∧ (¬ Q --> ay))

lemmas split_ifs:

  (if P then Q else R) = ((P --> Q) ∧ (¬ P --> R))
  ((if Q then x else y) = b) = ((Q --> x = b) ∧ (¬ Q --> y = b))
  (a = (if Q then x else y)) = ((Q --> a = x) ∧ (¬ Q --> a = y))
  ((if Q then x else y) ∈ b) = ((Q --> xb) ∧ (¬ Q --> yb))
  (a ∈ (if Q then x else y)) = ((Q --> ax) ∧ (¬ Q --> ay))

lemmas mem_simps:

  (a ∈ insert b A) = (a = baA)
  (c ∈ {}) = False
  (cAB) = (cAcB)
  (cAB) = (cAcB)
  (c ∈ - A) = (cA)
  (cA - B) = (cAcB)
  (a ∈ {x. P x}) = P a
  (b ∈ (UN x:A. B x)) = (∃xA. bB x)
  (A ∈ Union C) = (∃XC. AX)
  (b ∈ (INT x:A. B x)) = (∀xA. bB x)
  (A ∈ Inter C) = (∀XC. AX)

lemmas mem_simps:

  (a ∈ insert b A) = (a = baA)
  (c ∈ {}) = False
  (cAB) = (cAcB)
  (cAB) = (cAcB)
  (c ∈ - A) = (cA)
  (cA - B) = (cAcB)
  (a ∈ {x. P x}) = P a
  (b ∈ (UN x:A. B x)) = (∃xA. bB x)
  (A ∈ Union C) = (∃XC. AX)
  (b ∈ (INT x:A. B x)) = (∀xA. bB x)
  (A ∈ Inter C) = (∀XC. AX)

The ``proper subset'' relation

lemma psubsetI:

  [| AB; AB |] ==> AB

lemma psubsetE:

  [| AB; [| AB; ¬ BA |] ==> R |] ==> R

lemma psubset_insert_iff:

  (A ⊂ insert x B) =
  (if xB then AB else if xA then A - {x} ⊂ B else AB)

lemma psubset_eq:

  (AB) = (ABAB)

lemma psubset_imp_subset:

  AB ==> AB

lemma psubset_trans:

  [| AB; BC |] ==> AC

lemma psubsetD:

  [| AB; cA |] ==> cB

lemma psubset_subset_trans:

  [| AB; BC |] ==> AC

lemma subset_psubset_trans:

  [| AB; BC |] ==> AC

lemma psubset_imp_ex_mem:

  AB ==> ∃b. bB - A

lemma atomize_ball:

  (!!x. xA ==> P x) == ∀xA. P x

Further set-theory lemmas

Derived rules involving subsets.

lemma subset_insertI:

  B ⊆ insert a B

lemma subset_insertI2:

  AB ==> A ⊆ insert b B

lemma subset_insert:

  xA ==> (A ⊆ insert x B) = (AB)

lemma Union_upper:

  BA ==> B ⊆ Union A

lemma Union_least:

  (!!X. XA ==> XC) ==> Union AC

lemma UN_upper:

  aA ==> B a ⊆ (UN x:A. B x)

lemma UN_least:

  (!!x. xA ==> B xC) ==> (UN x:A. B x) ⊆ C

lemma Inter_lower:

  BA ==> Inter AB

lemma Inter_subset:

  [| !!X. XA ==> XB; A ≠ {} |] ==> Inter AB

lemma Inter_greatest:

  (!!X. XA ==> CX) ==> C ⊆ Inter A

lemma INT_lower:

  aA ==> (INT x:A. B x) ⊆ B a

lemma INT_greatest:

  (!!x. xA ==> CB x) ==> C ⊆ (INT x:A. B x)

lemma Un_upper1:

  AAB

lemma Un_upper2:

  BAB

lemma Un_least:

  [| AC; BC |] ==> ABC

lemma Int_lower1:

  ABA

lemma Int_lower2:

  ABB

lemma Int_greatest:

  [| CA; CB |] ==> CAB

lemma Diff_subset:

  A - BA

lemma Diff_subset_conv:

  (A - BC) = (ABC)

lemma mono_Un:

  mono f ==> f Af Bf (AB)

lemma mono_Int:

  mono f ==> f (AB) ⊆ f Af B

Equalities involving union, intersection, inclusion, etc.

lemma Collect_const:

  {s. P} = (if P then UNIV else {})

lemma subset_empty:

  (A ⊆ {}) = (A = {})

lemma not_psubset_empty:

  ¬ A ⊂ {}

lemma Collect_empty_eq:

  (Collect P = {}) = (∀x. ¬ P x)

lemma Collect_neg_eq:

  {x. ¬ P x} = - {x. P x}

lemma Collect_disj_eq:

  {x. P xQ x} = {x. P x} ∪ {x. Q x}

lemma Collect_imp_eq:

  {x. P x --> Q x} = - {x. P x} ∪ {x. Q x}

lemma Collect_conj_eq:

  {x. P xQ x} = {x. P x} ∩ {x. Q x}

lemma Collect_all_eq:

  {x. ∀y. P x y} = (INT y. {x. P x y})

lemma Collect_ball_eq:

  {x. ∀yA. P x y} = (INT y:A. {x. P x y})

lemma Collect_ex_eq:

  {x. ∃y. P x y} = (UN y. {x. P x y})

lemma Collect_bex_eq:

  {x. ∃yA. P x y} = (UN y:A. {x. P x y})

lemma insert_is_Un:

  insert a A = {a} ∪ A

lemma insert_not_empty:

  insert a A ≠ {}

lemmas empty_not_insert:

  {} ≠ insert a A

lemmas empty_not_insert:

  {} ≠ insert a A

lemma insert_absorb:

  aA ==> insert a A = A

lemma insert_absorb2:

  insert x (insert x A) = insert x A

lemma insert_commute:

  insert x (insert y A) = insert y (insert x A)

lemma insert_subset:

  (insert x AB) = (xBAB)

lemma mk_disjoint_insert:

  aA ==> ∃B. A = insert a BaB

lemma insert_Collect:

  insert a (Collect P) = {u. ua --> P u}

lemma UN_insert_distrib:

  uA ==> (UN x:A. insert a (B x)) = insert a (UN x:A. B x)

lemma insert_inter_insert:

  insert a A ∩ insert a B = insert a (AB)

lemma insert_disjoint:

  (insert a AB = {}) = (aBAB = {})
  ({} = insert a AB) = (aB ∧ {} = AB)

lemma disjoint_insert:

  (B ∩ insert a A = {}) = (aBBA = {})
  ({} = A ∩ insert b B) = (bA ∧ {} = AB)

lemma image_empty:

  f ` {} = {}

lemma image_insert:

  f ` insert a B = insert (f a) (f ` B)

lemma image_constant:

  xA ==> (%x. c) ` A = {c}

lemma image_image:

  f ` g ` A = (%x. f (g x)) ` A

lemma insert_image:

  xA ==> insert (f x) (f ` A) = f ` A

lemma image_is_empty:

  (f ` A = {}) = (A = {})

lemma image_Collect:

  f ` {x. P x} = {f x |x. P x}

lemma if_image_distrib:

  (%x. if P x then f x else g x) ` S = f ` (S ∩ {x. P x}) ∪ g ` (S ∩ {x. ¬ P x})

lemma image_cong:

  [| M = N; !!x. xN ==> f x = g x |] ==> f ` M = g ` N

lemma full_SetCompr_eq:

  {u. ∃x. u = f x} = range f

lemma range_composition:

  range (%x. f (g x)) = f ` range g

lemma Int_absorb:

  AA = A

lemma Int_left_absorb:

  A ∩ (AB) = AB

lemma Int_commute:

  AB = BA

lemma Int_left_commute:

  A ∩ (BC) = B ∩ (AC)

lemma Int_assoc:

  ABC = A ∩ (BC)

lemmas Int_ac:

  ABC = A ∩ (BC)
  A ∩ (AB) = AB
  AB = BA
  A ∩ (BC) = B ∩ (AC)

lemmas Int_ac:

  ABC = A ∩ (BC)
  A ∩ (AB) = AB
  AB = BA
  A ∩ (BC) = B ∩ (AC)

lemma Int_absorb1:

  BA ==> AB = B

lemma Int_absorb2:

  AB ==> AB = A

lemma Int_empty_left:

  {} ∩ B = {}

lemma Int_empty_right:

  A ∩ {} = {}

lemma disjoint_eq_subset_Compl:

  (AB = {}) = (A ⊆ - B)

lemma disjoint_iff_not_equal:

  (AB = {}) = (∀xA. ∀yB. xy)

lemma Int_UNIV_left:

  UNIV ∩ B = B

lemma Int_UNIV_right:

  A ∩ UNIV = A

lemma Int_eq_Inter:

  AB = Inter {A, B}

lemma Int_Un_distrib:

  A ∩ (BC) = ABAC

lemma Int_Un_distrib2:

  (BC) ∩ A = BACA

lemma Int_UNIV:

  (AB = UNIV) = (A = UNIV ∧ B = UNIV)

lemma Int_subset_iff:

  (CAB) = (CACB)

lemma Int_Collect:

  (xA ∩ {x. P x}) = (xAP x)

lemma Un_absorb:

  AA = A

lemma Un_left_absorb:

  A ∪ (AB) = AB

lemma Un_commute:

  AB = BA

lemma Un_left_commute:

  A ∪ (BC) = B ∪ (AC)

lemma Un_assoc:

  ABC = A ∪ (BC)

lemmas Un_ac:

  ABC = A ∪ (BC)
  A ∪ (AB) = AB
  AB = BA
  A ∪ (BC) = B ∪ (AC)

lemmas Un_ac:

  ABC = A ∪ (BC)
  A ∪ (AB) = AB
  AB = BA
  A ∪ (BC) = B ∪ (AC)

lemma Un_absorb1:

  AB ==> AB = B

lemma Un_absorb2:

  BA ==> AB = A

lemma Un_empty_left:

  {} ∪ B = B

lemma Un_empty_right:

  A ∪ {} = A

lemma Un_UNIV_left:

  UNIV ∪ B = UNIV

lemma Un_UNIV_right:

  A ∪ UNIV = UNIV

lemma Un_eq_Union:

  AB = Union {A, B}

lemma Un_insert_left:

  insert a BC = insert a (BC)

lemma Un_insert_right:

  A ∪ insert a B = insert a (AB)

lemma Int_insert_left:

  insert a BC = (if aC then insert a (BC) else BC)

lemma Int_insert_right:

  A ∩ insert a B = (if aA then insert a (AB) else AB)

lemma Un_Int_distrib:

  ABC = (AB) ∩ (AC)

lemma Un_Int_distrib2:

  BCA = (BA) ∩ (CA)

lemma Un_Int_crazy:

  ABBCCA = (AB) ∩ (BC) ∩ (CA)

lemma subset_Un_eq:

  (AB) = (AB = B)

lemma Un_empty:

  (AB = {}) = (A = {} ∧ B = {})

lemma Un_subset_iff:

  (ABC) = (ACBC)

lemma Un_Diff_Int:

  A - BAB = A

lemma Compl_disjoint:

  A ∩ - A = {}

lemma Compl_disjoint2:

  - AA = {}

lemma Compl_partition:

  A ∪ - A = UNIV

lemma Compl_partition2:

  - AA = UNIV

lemma double_complement:

  - (- A) = A

lemma Compl_Un:

  - (AB) = - A ∩ - B

lemma Compl_Int:

  - (AB) = - A ∪ - B

lemma Compl_UN:

  - (UN x:A. B x) = (INT x:A. - B x)

lemma Compl_INT:

  - (INT x:A. B x) = (UN x:A. - B x)

lemma subset_Compl_self_eq:

  (A ⊆ - A) = (A = {})

lemma Un_Int_assoc_eq:

  (ABC = A ∩ (BC)) = (CA)

lemma Compl_UNIV_eq:

  - UNIV = {}

lemma Compl_empty_eq:

  - {} = UNIV

lemma Compl_subset_Compl_iff:

  (- A ⊆ - B) = (BA)

lemma Compl_eq_Compl_iff:

  (- A = - B) = (A = B)

lemma Union_empty:

  Union {} = {}

lemma Union_UNIV:

  Union UNIV = UNIV

lemma Union_insert:

  Union (insert a B) = a ∪ Union B

lemma Union_Un_distrib:

  Union (AB) = Union A ∪ Union B

lemma Union_Int_subset:

  Union (AB) ⊆ Union A ∩ Union B

lemma Union_empty_conv:

  (Union A = {}) = (∀xA. x = {})

lemma empty_Union_conv:

  ({} = Union A) = (∀xA. x = {})

lemma Union_disjoint:

  (Union CA = {}) = (∀BC. BA = {})

lemma Inter_empty:

  Inter {} = UNIV

lemma Inter_UNIV:

  Inter UNIV = {}

lemma Inter_insert:

  Inter (insert a B) = a ∩ Inter B

lemma Inter_Un_subset:

  Inter A ∪ Inter B ⊆ Inter (AB)

lemma Inter_Un_distrib:

  Inter (AB) = Inter A ∩ Inter B

lemma Inter_UNIV_conv:

  (Inter A = UNIV) = (∀xA. x = UNIV)
  (UNIV = Inter A) = (∀xA. x = UNIV)

lemma UN_empty:

  (UN x:{}. B x) = {}

lemma UN_empty2:

  (UN x:A. {}) = {}

lemma UN_singleton:

  (UN x:A. {x}) = A

lemma UN_absorb:

  kI ==> A k ∪ (UN i:I. A i) = (UN i:I. A i)

lemma INT_empty:

  (INT x:{}. B x) = UNIV

lemma INT_absorb:

  kI ==> A k ∩ (INT i:I. A i) = (INT i:I. A i)

lemma UN_insert:

  (UN x:insert a A. B x) = B a ∪ UNION A B

lemma UN_Un:

  (UN i:AB. M i) = (UN i:A. M i) ∪ (UN i:B. M i)

lemma UN_UN_flatten:

  (UN x:UN y:A. B y. C x) = (UN y:A. UN x:B y. C x)

lemma UN_subset_iff:

  ((UN i:I. A i) ⊆ B) = (∀iI. A iB)

lemma INT_subset_iff:

  (B ⊆ (INT i:I. A i)) = (∀iI. BA i)

lemma INT_insert:

  (INT x:insert a A. B x) = B a ∩ INTER A B

lemma INT_Un:

  (INT i:AB. M i) = (INT i:A. M i) ∩ (INT i:B. M i)

lemma INT_insert_distrib:

  uA ==> (INT x:A. insert a (B x)) = insert a (INT x:A. B x)

lemma Union_image_eq:

  Union (B ` A) = (UN x:A. B x)

lemma image_Union:

  f ` Union S = (UN x:S. f ` x)

lemma Inter_image_eq:

  Inter (B ` A) = (INT x:A. B x)

lemma UN_constant:

  (UN y:A. c) = (if A = {} then {} else c)

lemma INT_constant:

  (INT y:A. c) = (if A = {} then UNIV else c)

lemma UN_eq:

  (UN x:A. B x) = Union {Y. ∃xA. Y = B x}

lemma INT_eq:

  (INT x:A. B x) = Inter {Y. ∃xA. Y = B x}

lemma UNION_empty_conv:

  ({} = (UN x:A. B x)) = (∀xA. B x = {})
  ((UN x:A. B x) = {}) = (∀xA. B x = {})

lemma INTER_UNIV_conv:

  (UNIV = (INT x:A. B x)) = (∀xA. B x = UNIV)
  ((INT x:A. B x) = UNIV) = (∀xA. B x = UNIV)

lemma Int_Union:

  A ∩ Union B = (UN C:B. AC)

lemma Int_Union2:

  Union BA = (UN C:B. CA)

lemma Un_Union_image:

  (UN x:C. A xB x) = Union (A ` C) ∪ Union (B ` C)

lemma UN_Un_distrib:

  (UN i:I. A iB i) = (UN i:I. A i) ∪ (UN i:I. B i)

lemma Un_Inter:

  A ∪ Inter B = (INT C:B. AC)

lemma Int_Inter_image:

  (INT x:C. A xB x) = Inter (A ` C) ∩ Inter (B ` C)

lemma INT_Int_distrib:

  (INT i:I. A iB i) = (INT i:I. A i) ∩ (INT i:I. B i)

lemma Int_UN_distrib:

  B ∩ (UN i:I. A i) = (UN i:I. BA i)

lemma Un_INT_distrib:

  B ∪ (INT i:I. A i) = (INT i:I. BA i)

lemma Int_UN_distrib2:

  (UN i:I. A i) ∩ (UN j:J. B j) = (UN i:I. UN j:J. A iB j)

lemma Un_INT_distrib2:

  (INT i:I. A i) ∪ (INT j:J. B j) = (INT i:I. INT j:J. A iB j)

lemma ball_Un:

  (∀xAB. P x) = ((∀xA. P x) ∧ (∀xB. P x))

lemma bex_Un:

  (∃xAB. P x) = ((∃xA. P x) ∨ (∃xB. P x))

lemma ball_UN:

  (∀z∈UNION A B. P z) = (∀xA. ∀zB x. P z)

lemma bex_UN:

  (∃z∈UNION A B. P z) = (∃xA. ∃zB x. P z)

lemma Diff_eq:

  A - B = A ∩ - B

lemma Diff_eq_empty_iff:

  (A - B = {}) = (AB)

lemma Diff_cancel:

  A - A = {}

lemma Diff_idemp:

  A - B - B = A - B

lemma Diff_triv:

  AB = {} ==> A - B = A

lemma empty_Diff:

  {} - A = {}

lemma Diff_empty:

  A - {} = A

lemma Diff_UNIV:

  A - UNIV = {}

lemma Diff_insert0:

  xA ==> A - insert x B = A - B

lemma Diff_insert:

  A - insert a B = A - B - {a}

lemma Diff_insert2:

  A - insert a B = A - {a} - B

lemma insert_Diff_if:

  insert x A - B = (if xB then A - B else insert x (A - B))

lemma insert_Diff1:

  xB ==> insert x A - B = A - B

lemma insert_Diff_single:

  insert a (A - {a}) = insert a A

lemma insert_Diff:

  aA ==> insert a (A - {a}) = A

lemma Diff_insert_absorb:

  xA ==> insert x A - {x} = A

lemma Diff_disjoint:

  A ∩ (B - A) = {}

lemma Diff_partition:

  AB ==> A ∪ (B - A) = B

lemma double_diff:

  [| AB; BC |] ==> B - (C - A) = A

lemma Un_Diff_cancel:

  A ∪ (B - A) = AB

lemma Un_Diff_cancel2:

  B - AA = BA

lemma Diff_Un:

  A - (BC) = (A - B) ∩ (A - C)

lemma Diff_Int:

  A - BC = A - B ∪ (A - C)

lemma Un_Diff:

  AB - C = A - C ∪ (B - C)

lemma Int_Diff:

  AB - C = A ∩ (B - C)

lemma Diff_Int_distrib:

  C ∩ (A - B) = CA - CB

lemma Diff_Int_distrib2:

  (A - B) ∩ C = AC - BC

lemma Diff_Compl:

  A - - B = AB

lemma Compl_Diff_eq:

  - (A - B) = - AB

lemma all_bool_eq:

  (∀b. P b) = (P True ∧ P False)

lemma bool_induct:

  [| P True; P False |] ==> P x

lemma ex_bool_eq:

  (∃b. P b) = (P True ∨ P False)

lemma Un_eq_UN:

  AB = (UN b. if b then A else B)

lemma UN_bool_eq:

  (UN b. A b) = A True ∪ A False

lemma INT_bool_eq:

  (INT b. A b) = A True ∩ A False

lemma Pow_empty:

  Pow {} = {{}}

lemma Pow_insert:

  Pow (insert a A) = Pow A ∪ insert a ` Pow A

lemma Pow_Compl:

  Pow (- A) = {- B |B. A ∈ Pow B}

lemma Pow_UNIV:

  Pow UNIV = UNIV

lemma Un_Pow_subset:

  Pow A ∪ Pow B ⊆ Pow (AB)

lemma UN_Pow_subset:

  (UN x:A. Pow (B x)) ⊆ Pow (UN x:A. B x)

lemma subset_Pow_Union:

  A ⊆ Pow (Union A)

lemma Union_Pow_eq:

  Union (Pow A) = A

lemma Pow_Int_eq:

  Pow (AB) = Pow A ∩ Pow B

lemma Pow_INT_eq:

  Pow (INT x:A. B x) = (INT x:A. Pow (B x))

lemma set_eq_subset:

  (A = B) = (ABBA)

lemma subset_iff:

  (AB) = (∀t. tA --> tB)

lemma subset_iff_psubset_eq:

  (AB) = (ABA = B)

lemma all_not_in_conv:

  (∀x. xA) = (A = {})

lemma ex_in_conv:

  (∃x. xA) = (A ≠ {})

lemma distinct_lemma:

  f xf y ==> xy

lemma UN_simps:

  (UN x:C. insert a (B x)) = (if C = {} then {} else insert a (UN x:C. B x))
  (UN x:C. A xB) = (if C = {} then {} else (UN x:C. A x) ∪ B)
  (UN x:C. AB x) = (if C = {} then {} else A ∪ (UN x:C. B x))
  (UN x:C. A xB) = (UN x:C. A x) ∩ B
  (UN x:C. AB x) = A ∩ (UN x:C. B x)
  (UN x:C. A x - B) = (UN x:C. A x) - B
  (UN x:C. A - B x) = A - (INT x:C. B x)
  (UN x:Union A. B x) = (UN y:A. UN x:y. B x)
  (UN z:UNION A B. C z) = (UN x:A. UN z:B x. C z)
  (UN x:f ` A. B x) = (UN a:A. B (f a))

lemma INT_simps:

  (INT x:C. A xB) = (if C = {} then UNIV else (INT x:C. A x) ∩ B)
  (INT x:C. AB x) = (if C = {} then UNIV else A ∩ (INT x:C. B x))
  (INT x:C. A x - B) = (if C = {} then UNIV else (INT x:C. A x) - B)
  (INT x:C. A - B x) = (if C = {} then UNIV else A - (UN x:C. B x))
  (INT x:C. insert a (B x)) = insert a (INT x:C. B x)
  (INT x:C. A xB) = (INT x:C. A x) ∪ B
  (INT x:C. AB x) = A ∪ (INT x:C. B x)
  (INT x:Union A. B x) = (INT y:A. INT x:y. B x)
  (INT z:UNION A B. C z) = (INT x:A. INT z:B x. C z)
  (INT x:f ` A. B x) = (INT a:A. B (f a))

lemma ball_simps:

  (∀xA. P xQ) = ((∀xA. P x) ∨ Q)
  (∀xA. PQ x) = (P ∨ (∀xA. Q x))
  (∀xA. P --> Q x) = (P --> (∀xA. Q x))
  (∀xA. P x --> Q) = ((∃xA. P x) --> Q)
  (∀x∈{}. P x) = True
  (∀x∈UNIV. P x) = (∀x. P x)
  (∀x∈insert a B. P x) = (P a ∧ (∀xB. P x))
  (∀x∈Union A. P x) = (∀yA. ∀xy. P x)
  (∀x∈UNION A B. P x) = (∀aA. ∀xB a. P x)
  (∀x∈Collect Q. P x) = (∀x. Q x --> P x)
  (∀xf ` A. P x) = (∀xA. P (f x))
  (¬ (∀xA. P x)) = (∃xA. ¬ P x)

lemma bex_simps:

  (∃xA. P xQ) = ((∃xA. P x) ∧ Q)
  (∃xA. PQ x) = (P ∧ (∃xA. Q x))
  (∃x∈{}. P x) = False
  (∃x∈UNIV. P x) = (∃x. P x)
  (∃x∈insert a B. P x) = (P a ∨ (∃xB. P x))
  (∃x∈Union A. P x) = (∃yA. ∃xy. P x)
  (∃x∈UNION A B. P x) = (∃aA. ∃xB a. P x)
  (∃x∈Collect Q. P x) = (∃x. Q xP x)
  (∃xf ` A. P x) = (∃xA. P (f x))
  (¬ (∃xA. P x)) = (∀xA. ¬ P x)

lemma ball_conj_distrib:

  (∀xA. P xQ x) = ((∀xA. P x) ∧ (∀xA. Q x))

lemma bex_disj_distrib:

  (∃xA. P xQ x) = ((∃xA. P x) ∨ (∃xA. Q x))

lemma UN_extend_simps:

  insert a (UN x:C. B x) = (if C = {} then {a} else UN x:C. insert a (B x))
  (UN x:C. A x) ∪ B = (if C = {} then B else UN x:C. A xB)
  A ∪ (UN x:C. B x) = (if C = {} then A else UN x:C. AB x)
  (UN x:C. A x) ∩ B = (UN x:C. A xB)
  A ∩ (UN x:C. B x) = (UN x:C. AB x)
  (UN x:C. A x) - B = (UN x:C. A x - B)
  A - (INT x:C. B x) = (UN x:C. A - B x)
  (UN y:A. UN x:y. B x) = (UN x:Union A. B x)
  (UN x:A. UN z:B x. C z) = (UN z:UNION A B. C z)
  (UN a:A. B (f a)) = (UN x:f ` A. B x)

lemma INT_extend_simps:

  (INT x:C. A x) ∩ B = (if C = {} then B else INT x:C. A xB)
  A ∩ (INT x:C. B x) = (if C = {} then A else INT x:C. AB x)
  (INT x:C. A x) - B = (if C = {} then UNIV - B else INT x:C. A x - B)
  A - (UN x:C. B x) = (if C = {} then A else INT x:C. A - B x)
  insert a (INT x:C. B x) = (INT x:C. insert a (B x))
  (INT x:C. A x) ∪ B = (INT x:C. A xB)
  A ∪ (INT x:C. B x) = (INT x:C. AB x)
  (INT y:A. INT x:y. B x) = (INT x:Union A. B x)
  (INT x:A. INT z:B x. C z) = (INT z:UNION A B. C z)
  (INT a:A. B (f a)) = (INT x:f ` A. B x)

Monotonicity of various operations

lemma image_mono:

  AB ==> f ` Af ` B

lemma Pow_mono:

  AB ==> Pow A ⊆ Pow B

lemma Union_mono:

  AB ==> Union A ⊆ Union B

lemma Inter_anti_mono:

  BA ==> Inter A ⊆ Inter B

lemma UN_mono:

  [| AB; !!x. xA ==> f xg x |] ==> (UN x:A. f x) ⊆ (UN x:B. g x)

lemma INT_anti_mono:

  [| BA; !!x. xA ==> f xg x |] ==> (INT x:A. f x) ⊆ (INT x:A. g x)

lemma insert_mono:

  CD ==> insert a C ⊆ insert a D

lemma Un_mono:

  [| AC; BD |] ==> ABCD

lemma Int_mono:

  [| AC; BD |] ==> ABCD

lemma Diff_mono:

  [| AC; DB |] ==> A - BC - D

lemma Compl_anti_mono:

  AB ==> - B ⊆ - A

lemma in_mono:

  AB ==> xA --> xB

lemma conj_mono:

  [| P1.0 --> Q1.0; P2.0 --> Q2.0 |] ==> P1.0P2.0 --> Q1.0Q2.0

lemma disj_mono:

  [| P1.0 --> Q1.0; P2.0 --> Q2.0 |] ==> P1.0P2.0 --> Q1.0Q2.0

lemma imp_mono:

  [| Q1.0 --> P1.0; P2.0 --> Q2.0 |] ==> (P1.0 --> P2.0) --> Q1.0 --> Q2.0

lemma imp_refl:

  P --> P

lemma ex_mono:

  (!!x. P x --> Q x) ==> (∃x. P x) --> (∃x. Q x)

lemma all_mono:

  (!!x. P x --> Q x) ==> (∀x. P x) --> (∀x. Q x)

lemma Collect_mono:

  (!!x. P x --> Q x) ==> Collect P ⊆ Collect Q

lemma Int_Collect_mono:

  [| AB; !!x. xA ==> P x --> Q x |] ==> A ∩ Collect PB ∩ Collect Q

lemmas basic_monos:

  AA
  P --> P
  [| P1.0 --> Q1.0; P2.0 --> Q2.0 |] ==> P1.0P2.0 --> Q1.0Q2.0
  [| P1.0 --> Q1.0; P2.0 --> Q2.0 |] ==> P1.0P2.0 --> Q1.0Q2.0
  (!!x. P x --> Q x) ==> (∃x. P x) --> (∃x. Q x)
  (!!x. P x --> Q x) ==> Collect P ⊆ Collect Q
  AB ==> xA --> xB

lemmas basic_monos:

  AA
  P --> P
  [| P1.0 --> Q1.0; P2.0 --> Q2.0 |] ==> P1.0P2.0 --> Q1.0Q2.0
  [| P1.0 --> Q1.0; P2.0 --> Q2.0 |] ==> P1.0P2.0 --> Q1.0Q2.0
  (!!x. P x --> Q x) ==> (∃x. P x) --> (∃x. Q x)
  (!!x. P x --> Q x) ==> Collect P ⊆ Collect Q
  AB ==> xA --> xB

lemma eq_to_mono:

  [| a = b; c = d; b --> d |] ==> a --> c

lemma eq_to_mono2:

  [| a = b; c = d; ¬ b --> ¬ d |] ==> ¬ a --> ¬ c

lemma Least_mono:

  [| mono f; ∃xS. ∀yS. xy |] ==> (LEAST y. yf ` S) = f (LEAST x. xS)

Inverse image of a function

Basic rules

lemma vimage_eq:

  (af -` B) = (f aB)

lemma vimage_singleton_eq:

  (af -` {b}) = (f a = b)

lemma vimageI:

  [| f a = b; bB |] ==> af -` B

lemma vimageI2:

  f aA ==> af -` A

lemma vimageE:

  [| af -` B; !!x. [| f a = x; xB |] ==> P |] ==> P

lemma vimageD:

  af -` A ==> f aA

Equations

lemma vimage_empty:

  f -` {} = {}

lemma vimage_Compl:

  f -` (- A) = - f -` A

lemma vimage_Un:

  f -` (AB) = f -` Af -` B

lemma vimage_Int:

  f -` (AB) = f -` Af -` B

lemma vimage_Union:

  f -` Union A = (UN X:A. f -` X)

lemma vimage_UN:

  f -` (UN x:A. B x) = (UN x:A. f -` B x)

lemma vimage_INT:

  f -` (INT x:A. B x) = (INT x:A. f -` B x)

lemma vimage_Collect_eq:

  f -` Collect P = {y. P (f y)}

lemma vimage_Collect:

  (!!x. P (f x) = Q x) ==> f -` Collect P = Collect Q

lemma vimage_insert:

  f -` insert a B = f -` {a} ∪ f -` B

lemma vimage_Diff:

  f -` (A - B) = f -` A - f -` B

lemma vimage_UNIV:

  f -` UNIV = UNIV

lemma vimage_eq_UN:

  f -` B = (UN y:B. f -` {y})

lemma vimage_mono:

  AB ==> f -` Af -` B

Getting the Contents of a Singleton Set

lemma contents_eq:

  contents {x} = x

Transitivity rules for calculational reasoning

lemma set_rev_mp:

  [| xA; AB |] ==> xB

lemma set_mp:

  [| AB; xA |] ==> xB

lemma ord_le_eq_trans:

  [| ab; b = c |] ==> ac

lemma ord_eq_le_trans:

  [| a = b; bc |] ==> ac

lemma ord_less_eq_trans:

  [| a < b; b = c |] ==> a < c

lemma ord_eq_less_trans:

  [| a = b; b < c |] ==> a < c

lemma order_less_subst2:

  [| a < b; f b < c; !!x y. x < y ==> f x < f y |] ==> f a < c

lemma order_less_subst1:

  [| a < f b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c

lemma order_le_less_subst2:

  [| ab; f b < c; !!x y. xy ==> f xf y |] ==> f a < c

lemma order_le_less_subst1:

  [| af b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c

lemma order_less_le_subst2:

  [| a < b; f bc; !!x y. x < y ==> f x < f y |] ==> f a < c

lemma order_less_le_subst1:

  [| a < f b; bc; !!x y. xy ==> f xf y |] ==> a < f c

lemma order_subst1:

  [| af b; bc; !!x y. xy ==> f xf y |] ==> af c

lemma order_subst2:

  [| ab; f bc; !!x y. xy ==> f xf y |] ==> f ac

lemma ord_le_eq_subst:

  [| ab; f b = c; !!x y. xy ==> f xf y |] ==> f ac

lemma ord_eq_le_subst:

  [| a = f b; bc; !!x y. xy ==> f xf y |] ==> af c

lemma ord_less_eq_subst:

  [| a < b; f b = c; !!x y. x < y ==> f x < f y |] ==> f a < c

lemma ord_eq_less_subst:

  [| a = f b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c

lemmas basic_trans_rules:

  [| a < b; f b < c; !!x y. x < y ==> f x < f y |] ==> f a < c
  [| a < f b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c
  [| ab; f b < c; !!x y. xy ==> f xf y |] ==> f a < c
  [| af b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c
  [| a < b; f bc; !!x y. x < y ==> f x < f y |] ==> f a < c
  [| a < f b; bc; !!x y. xy ==> f xf y |] ==> a < f c
  [| ab; f bc; !!x y. xy ==> f xf y |] ==> f ac
  [| af b; bc; !!x y. xy ==> f xf y |] ==> af c
  [| ab; f b = c; !!x y. xy ==> f xf y |] ==> f ac
  [| a = f b; bc; !!x y. xy ==> f xf y |] ==> af c
  [| a < b; f b = c; !!x y. x < y ==> f x < f y |] ==> f a < c
  [| a = f b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c
  [| a = b; P b |] ==> P a
  [| P a; a = b |] ==> P b
  [| P; P --> Q |] ==> Q
  [| P --> Q; P |] ==> Q
  [| xA; AB |] ==> xB
  [| AB; xA |] ==> xB
  [| ab; ab |] ==> a < b
  [| ab; ab |] ==> a < b
  [| x < y; y < z |] ==> x < z
  [| a < b; b < a |] ==> P
  [| xy; y < z |] ==> x < z
  [| x < y; yz |] ==> x < z
  [| xy; yz |] ==> xz
  [| xy; yx |] ==> x = y
  [| ab; b = c |] ==> ac
  [| a = b; bc |] ==> ac
  [| a < b; b = c |] ==> a < c
  [| a = b; b < c |] ==> a < c
  [| r = s; s = t |] ==> r = t

lemmas basic_trans_rules:

  [| a < b; f b < c; !!x y. x < y ==> f x < f y |] ==> f a < c
  [| a < f b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c
  [| ab; f b < c; !!x y. xy ==> f xf y |] ==> f a < c
  [| af b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c
  [| a < b; f bc; !!x y. x < y ==> f x < f y |] ==> f a < c
  [| a < f b; bc; !!x y. xy ==> f xf y |] ==> a < f c
  [| ab; f bc; !!x y. xy ==> f xf y |] ==> f ac
  [| af b; bc; !!x y. xy ==> f xf y |] ==> af c
  [| ab; f b = c; !!x y. xy ==> f xf y |] ==> f ac
  [| a = f b; bc; !!x y. xy ==> f xf y |] ==> af c
  [| a < b; f b = c; !!x y. x < y ==> f x < f y |] ==> f a < c
  [| a = f b; b < c; !!x y. x < y ==> f x < f y |] ==> a < f c
  [| a = b; P b |] ==> P a
  [| P a; a = b |] ==> P b
  [| P; P --> Q |] ==> Q
  [| P --> Q; P |] ==> Q
  [| xA; AB |] ==> xB
  [| AB; xA |] ==> xB
  [| ab; ab |] ==> a < b
  [| ab; ab |] ==> a < b
  [| x < y; y < z |] ==> x < z
  [| a < b; b < a |] ==> P
  [| xy; y < z |] ==> x < z
  [| x < y; yz |] ==> x < z
  [| xy; yz |] ==> xz
  [| xy; yx |] ==> x = y
  [| ab; b = c |] ==> ac
  [| a = b; bc |] ==> ac
  [| a < b; b = c |] ==> a < c
  [| a = b; b < c |] ==> a < c
  [| r = s; s = t |] ==> r = t