Theory Mutil

Up to index of Isabelle/HOL/Induct

theory Mutil
imports Main
begin

(*  Title:      HOL/Induct/Mutil.thy
    ID:         $Id: Mutil.thy,v 1.17 2005/06/17 14:13:07 haftmann Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge
*)

header {* The Mutilated Chess Board Problem *}

theory Mutil imports Main begin

text {*
  The Mutilated Chess Board Problem, formalized inductively.

  Originator is Max Black, according to J A Robinson.  Popularized as
  the Mutilated Checkerboard Problem by J McCarthy.
*}

consts tiling :: "'a set set => 'a set set"
inductive "tiling A"
  intros
    empty [simp, intro]: "{} ∈ tiling A"
    Un [simp, intro]:    "[| a ∈ A; t ∈ tiling A; a ∩ t = {} |] 
                          ==> a ∪ t ∈ tiling A"

consts domino :: "(nat × nat) set set"
inductive domino
  intros
    horiz [simp]: "{(i, j), (i, Suc j)} ∈ domino"
    vertl [simp]: "{(i, j), (Suc i, j)} ∈ domino"

text {* \medskip Sets of squares of the given colour*}

constdefs
  coloured :: "nat => (nat × nat) set"
   "coloured b == {(i, j). (i + j) mod 2 = b}"

syntax whites  :: "(nat × nat) set"
       blacks  :: "(nat × nat) set"

translations
  "whites" == "coloured 0"
  "blacks" == "coloured (Suc 0)"


text {* \medskip The union of two disjoint tilings is a tiling *}

lemma tiling_UnI [intro]:
     "[|t ∈ tiling A; u ∈ tiling A; t ∩ u = {} |] ==>  t ∪ u ∈ tiling A"
  apply (induct set: tiling)
  apply (auto simp add: Un_assoc)
  done


text {* \medskip Chess boards *}

lemma Sigma_Suc1 [simp]:
     "lessThan (Suc n) × B = ({n} × B) ∪ ((lessThan n) × B)"
  by (auto simp add: lessThan_def)

lemma Sigma_Suc2 [simp]:
     "A × lessThan (Suc n) = (A × {n}) ∪ (A × (lessThan n))"
  by (auto simp add: lessThan_def)

lemma sing_Times_lemma: "({i} × {n}) ∪ ({i} × {m}) = {(i, m), (i, n)}"
  by auto

lemma dominoes_tile_row [intro!]: "{i} × lessThan (2 * n) ∈ tiling domino"
  apply (induct n)
   apply (simp_all add: Un_assoc [symmetric])
  apply (rule tiling.Un)
    apply (auto simp add: sing_Times_lemma)
  done

lemma dominoes_tile_matrix: "(lessThan m) × lessThan (2 * n) ∈ tiling domino"
  by (induct m, auto)


text {* \medskip @{term coloured} and Dominoes *}

lemma coloured_insert [simp]:
     "coloured b ∩ (insert (i, j) t) =
      (if (i + j) mod 2 = b then insert (i, j) (coloured b ∩ t)
       else coloured b ∩ t)"
  by (auto simp add: coloured_def)

lemma domino_singletons:
     "d ∈ domino ==>
       (∃i j. whites ∩ d = {(i, j)}) ∧
       (∃m n. blacks ∩ d = {(m, n)})";
  apply (erule domino.cases)
   apply (auto simp add: mod_Suc)
  done

lemma domino_finite [simp]: "d ∈ domino ==> finite d"
  by (erule domino.cases, auto)


text {* \medskip Tilings of dominoes *}

lemma tiling_domino_finite [simp]: "t ∈ tiling domino ==> finite t"
  by (induct set: tiling, auto)

declare
  Int_Un_distrib [simp]
  Diff_Int_distrib [simp]

lemma tiling_domino_0_1:
     "t ∈ tiling domino ==> card(whites ∩ t) = card(blacks ∩ t)"
  apply (induct set: tiling)
   apply (drule_tac [2] domino_singletons)
   apply auto
  apply (subgoal_tac "∀p C. C ∩ a = {p} --> p ∉ t")
    -- {* this lemma tells us that both ``inserts'' are non-trivial *}
   apply (simp (no_asm_simp))
  apply blast
  done


text {* \medskip Final argument is surprisingly complex *}

theorem gen_mutil_not_tiling:
       "t ∈ tiling domino ==>
         (i + j) mod 2 = 0 ==> (m + n) mod 2 = 0 ==>
         {(i, j), (m, n)} ⊆ t
       ==> (t - {(i, j)} - {(m, n)}) ∉ tiling domino"
  apply (rule notI)
  apply (subgoal_tac
          "card (whites ∩ (t - {(i, j)} - {(m, n)})) <
           card (blacks ∩ (t - {(i, j)} - {(m, n)}))")
   apply (force simp only: tiling_domino_0_1)
  apply (simp add: tiling_domino_0_1 [symmetric])
  apply (simp add: coloured_def card_Diff2_less)
  done

text {* Apply the general theorem to the well-known case *}

theorem mutil_not_tiling:
       "t = lessThan (2 * Suc m) × lessThan (2 * Suc n)
         ==> t - {(0, 0)} - {(Suc (2 * m), Suc (2 * n))} ∉ tiling domino"
  apply (rule gen_mutil_not_tiling)
     apply (blast intro!: dominoes_tile_matrix)
    apply auto
  done

end

lemma tiling_UnI:

  [| t ∈ tiling A; u ∈ tiling A; tu = {} |] ==> tu ∈ tiling A

lemma Sigma_Suc1:

  {..<Suc n} × B = {n} × B ∪ {..<n} × B

lemma Sigma_Suc2:

  A × {..<Suc n} = A × {n} ∪ A × {..<n}

lemma sing_Times_lemma:

  {i} × {n} ∪ {i} × {m} = {(i, m), (i, n)}

lemma dominoes_tile_row:

  {i} × {..<2 * n} ∈ tiling domino

lemma dominoes_tile_matrix:

  {..<m} × {..<2 * n} ∈ tiling domino

lemma coloured_insert:

  coloured b ∩ insert (i, j) t =
  (if (i + j) mod 2 = b then insert (i, j) (coloured bt) else coloured bt)

lemma domino_singletons:

  d ∈ domino ==> (∃i j. whites ∩ d = {(i, j)}) ∧ (∃m n. blacks ∩ d = {(m, n)})

lemma domino_finite:

  d ∈ domino ==> finite d

lemma tiling_domino_finite:

  t ∈ tiling domino ==> finite t

lemma tiling_domino_0_1:

  t ∈ tiling domino ==> card (whites ∩ t) = card (blacks ∩ t)

theorem gen_mutil_not_tiling:

  [| t ∈ tiling domino; (i + j) mod 2 = 0; (m + n) mod 2 = 0;
     {(i, j), (m, n)} ⊆ t |]
  ==> t - {(i, j)} - {(m, n)} ∉ tiling domino

theorem mutil_not_tiling:

  t = {..<2 * Suc m} × {..<2 * Suc n}
  ==> t - {(0, 0)} - {(Suc (2 * m), Suc (2 * n))} ∉ tiling domino