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Abstract

Locales provide a module system for the Isabelle proof assistant. Re-
cently, locales have been ported to the new Isar format for structured
proofs. At the same time, they have been extended by locale expressions,
a language for composing locale specifications, and by structures, which
provide syntax for algebraic structures. The present paper presents both
and is suitable as a tutorial to locales in Isar, because it covers both basics
and recent extensions, and contains many examples.

1 Overview

The present text is based on [3]. It was updated for for Isabelle2005, but does
not cover locale interpretation.
Locales are an extension of the Isabelle proof assistant. They provide support
for modular reasoning. Locales were initially developed by Kammüller [7] to
support reasoning in abstract algebra, but are applied also in other domains —
for example, bytecode verification [8].
Kammüller’s original design, implemented in Isabelle99, provides, in addition
to means for declaring locales, a set of ML functions that were used along with
ML tactics in a proof. In the meantime, the input format for proof in Isabelle
has changed and users write proof scripts in ML only rarely if at all. Two new
proof styles are available, and can be used interchangeably: linear proof scripts
that closely resemble ML tactics, and the structured Isar proof language by
Wenzel [11]. Subsequently, Wenzel re-implemented locales for the new proof
format. The implementation, available with Isabelle2002 or later, constitutes
a complete re-design and exploits that both Isar and locales are based on the
notion of context, and thus locales are seen as a natural extension of Isar.
Nevertheless, locales can also be used with proof scripts: their use does not
require a deep understanding of the structured Isar proof style.

1



At the same time, Wenzel considerably extended locales. The most impor-
tant addition are locale expressions, which allow to combine locales more freely.
Previously only linear inheritance was possible. Now locales support multiple
inheritance through a normalisation algorithm. New are also structures, which
provide special syntax for locale parameters that represent algebraic structures.
Unfortunately, Wenzel provided only an implementation but hardly any docu-
mentation. Besides providing documentation, the present paper is a high-level
description of locales, and in particular locale expressions. It is meant as a
first step towards the semantics of locales, and also as a base for comparing
locales with module concepts in other provers. It also constitutes the base for
future extensions of locales in Isabelle. The description was derived mainly by
experimenting with locales and partially also by inspecting the code.
The main contribution of the author of the present paper is the abstract de-
scription of Wenzel’s version of locales, and in particular of the normalisation
algorithm for locale expressions (see Section 4.2). Contributions to the imple-
mentation are confined to bug fixes and to provisions that enable the use of
locales with linear proof scripts.
Concepts are introduced along with examples, so that the text can be used as
tutorial. It is assumed that the reader is somewhat familiar with Isabelle proof
scripts. Examples have been phrased as structured Isar proofs. However, in
order to understand the key concepts, including locales expressions and their
normalisation, detailed knowledge of Isabelle is not necessary.

2 Locales: Beyond Proof Contexts

In tactic-based provers the application of a sequence of proof tactics leads to
a proof state. This state is usually hard to predict from looking at the tactic
script, unless one replays the proof step-by-step. The structured proof language
Isar is different. It is additionally based on proof contexts, which are directly
visible in Isar scripts, and since tactic sequences tend to be short, this commonly
leads to clearer proof scripts.
Goals are stated with the theorem command. This is followed by a proof.
When discharging a goal requires an elaborate argument (rather than the ap-
plication of a single tactic) a new context may be entered (proof). Inside the
context, variables may be fixed (fix), assumptions made (assume) and interme-
diate goals stated (have) and proved. The assumptions must be dischargeable
by premises of the surrounding goal, and once this goal has been proved (show)
the proof context can be closed (qed). Contexts inherit from surrounding con-
texts, but it is not possible to export from them (with exception of the proved
goal); they “disappear” after the closing qed. Facts may have attributes — for
example, identifying them as default to the simplifier or classical reasoner.
Locales extend proof contexts in various ways:

• Locales are usually named. This makes them persistent.
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• Fixed variables may have syntax.

• It is possible to add and export facts.

• Locales can be combined and modified with locale expressions.

The Locales facility extends the Isar language: it provides new ways of stating
and managing facts, but it does not modify the language for proofs. Its purpose
is to support writing modular proofs.

3 Simple Locales

3.1 Syntax and Terminology

The grammar of Isar is extended by commands for locales as shown in Fig-
ure 1. A key concept, introduced by Wenzel, is that locales are (internally)
lists of context elements. There are five kinds, identified by the keywords fixes,
constrains, assumes, defines and notes.
At the theory level — that is, at the outer syntactic level of an Isabelle input file
— locale declares a named locale. Other kinds of locales, locale expressions and
unnamed locales, will be introduced later. When declaring a named locale, it is
possible to import another named locale, or indeed several ones by importing a
locale expression. The second part of the declaration, also optional, consists of
a number of context element declarations.
A number of Isar commands have an additional, optional target argument, which
always refers to a named locale. These commands are theorem (together with
lemma and corollary), theorems (and lemmas), and declare. The effect of
specifying a target is that these commands focus on the specified locale, not the
surrounding theory. Commands that are used to prove new theorems will add
them not to the theory, but to the locale. Similarly, declare modifies attributes
of theorems that belong to the specified target. Additionally, for theorem (and
related commands), theorems stored in the target can be used in the associated
proof scripts.
The Locales package provides a long goals format for propositions stated with
theorem (and friends). While normally a goal is just a formula, a long goal
is a list of context elements, followed by the keyword shows, followed by the
formula. Roughly speaking, the context elements are (additional) premises. For
an example, see Section 4.4. The list of context elements in a long goal is also
called unnamed locale.
Finally, there are two commands to inspect locales when working in interactive
mode: print locales prints the names of all targets visible in the current theory,
print locale outputs the elements of a named locale or locale expression.
The following presentation will use notation of Isabelle’s meta logic, hence a
few sentences to explain this. The logical primitives are universal quantification
(
∧

), entailment (=⇒) and equality (≡). Variables (not bound variables) are
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attr-name ::= name | attribute | name attribute
locale-expr ::= locale-expr1 ( “+” locale-expr1 )∗

locale-expr1 ::= ( qualified-name | “(” locale-expr “)” )
( name [ mixfix ] | “ ” )∗

fixes ::= name [ “::” type ] [ “(” structure “)” | mixfix ]
constrains ::= name “::” type
assumes ::= [ attr-name “:” ] proposition
defines ::= [ attr-name “:” ] proposition
notes ::= [ attr-name “=” ] ( qualified-name [ attribute ] )+

element ::= fixes fixes ( and fixes )∗

| constrains constrains ( and constrains )∗

| assumes assumes ( and assumes )∗

| defines defines ( and defines )∗

| notes notes ( and notes )∗

element1 ::= element
| includes locale-expr

locale ::= element+

| locale-expr [ “+” element+ ]
in-target ::= “(” in qualified-name “)”
theorem ::= ( theorem | lemma | corollary ) [ in-target ] [ attr-name ]
theory-level ::= . . .

| locale name [ “=” locale ]
| ( theorems | lemmas )

[ in-target ] [ attr-name “=” ] ( qualified-name [ attribute ] )+

| declare [ in-target ] ( qualified-name [ attribute ] )+

| theorem proposition proof
| theorem element1 ∗ shows proposition proof
| print locale locale
| print locales

Figure 1: Locales extend the grammar of Isar.
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sometimes preceded by a question mark. The logic is typed. Type variables are
denoted by ’a, ’b etc., and ⇒ is the function type. Double brackets [[ and ]] are
used to abbreviate nested entailment.

3.2 Parameters, Assumptions and Facts

From a logical point of view a context is a formula schema of the form∧
x1. . . xn. [[ C1; . . . ;Cm ]] =⇒ . . .

The variables x1, . . . , xn are called parameters, the premises C1, . . . , Cn assump-
tions. A formula F holds in this context if

(1)
∧

x1. . . xn. [[ C1; . . . ;Cm ]] =⇒ F

is valid. The formula is called a fact of the context.
A locale allows fixing the parameters x1, . . . , xn and making the assumptions
C1, . . . , Cm. This implicitly builds the context in which the formula F can be
established. Parameters of a locale correspond to the context element fixes,
and assumptions may be declared with assumes. Using these context elements
one can define the specification of semigroups.

locale semi =

fixes prod :: "[’a, ’a] ⇒ ’a" (infixl "·" 70)

assumes assoc: "(x · y) · z = x · (y · z)"

The parameter prod has a syntax annotation enabling the infix “·” in the as-
sumption of associativity. Parameters may have arbitrary mixfix syntax, like
constants. In the example, the type of prod is specified explicitly. This is not
necessary. If no type is specified, a most general type is inferred simultaneously
for all parameters, taking into account all assumptions (and type specifications
of parameters, if present).1

Free variables in assumptions are implicitly universally quantified, unless they
are parameters. Hence the context defined by the locale semi is∧

prod. [[
∧

x y z. prod (prod x y) z = prod x (prod y z) ]] =⇒ . . .

The locale can be extended to commutative semigroups.

locale comm_semi = semi +

assumes comm: "x · y = y · x"

This locale imports all elements of semi. The latter locale is called the import
of comm_semi. The definition adds commutativity, hence its context is∧

prod. [[
∧

x y z. prod (prod x y) z = prod x (prod y z);∧
x y. prod x y = prod y x ]] =⇒ . . .

1Type inference also takes into account type constraints, definitions and import, as intro-
duced later.

5



One may now derive facts — for example, left-commutativity — in the context
of comm_semi by specifying this locale as target, and by referring to the names
of the assumptions assoc and comm in the proof.
theorem (in comm_semi) lcomm:

"x · (y · z) = y · (x · z)"
proof -

have "x · (y · z) = (x · y) · z" by (simp add: assoc)

also have ". . . = (y · x) · z" by (simp add: comm)

also have ". . . = y · (x · z)" by (simp add: assoc)

finally show ?thesis .
qed

In this equational Isar proof, “. . . ” refers to the right hand side of the preceding
equation. After the proof is finished, the fact lcomm is added to the locale
comm_semi. This is done by adding a notes element to the internal representation
of the locale, as explained the next section.

3.3 Locale Predicates and the Internal Representation of
Locales

In mathematical texts, often arbitrary but fixed objects with certain properties
are considered — for instance, an arbitrary but fixed group G — with the
purpose of establishing facts valid for any group. These facts are subsequently
used on other objects that also have these properties.
Locales permit the same style of reasoning. Exporting a fact F generalises the
fixed parameters and leads to a (valid) formula of the form of equation (1).
If a locale has many assumptions (possibly accumulated through a number of
imports) this formula can become large and cumbersome. Therefore, Wenzel
introduced predicates that abbreviate the assumptions of locales. These predi-
cates are not confined to the locale but are visible in the surrounding theory.
The definition of the locale semi generates the locale predicate semi over the
type of the parameter prod, hence the predicate’s type is ([’a, ’a] ⇒ ’a) ⇒
bool. Its definition is
semi_def:

semi ?prod ≡ ∀ x y z. ?prod (?prod x y) z = ?prod x (?prod y z).

In the case where the locale has no import, the generated predicate abbreviates
all assumptions and is over the parameters that occur in these assumptions.
The situation is more complicated when a locale extends another locale, as is the
case for comm_semi. Two predicates are defined. The predicate comm_semi_axioms

corresponds to the new assumptions and is called delta predicate, the locale
predicate comm_semi captures the content of all the locale, including the import.
If a locale has neither assumptions nor import, no predicate is defined. If a
locale has import but no assumptions, only the locale predicate is defined.

The Locales package generates a number of theorems for locale and delta pred-
icates. All predicates have a definition and an introduction rule. Locale predi-
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Theorems generated for the predicate semi.

semi ?prod ≡ ∀ x y z. ?prod (?prod x y) z = ?prod x (?prod y z)

semi_def:

(
∧

x y z. ?prod (?prod x y) z = ?prod x (?prod y z)) =⇒ semi ?prod

semi.intro:

Figure 2: Theorems for the locale predicate semi.

cates that are defined in terms of other predicates (which is the case if and only
if the locale has import) also have a number of elimination rules (called axioms).
All generated theorems for the predicates of the locales semi and comm_semi are
shown in Figures 2 and 3, respectively.

Theorems generated for the predicate comm_semi_axioms.

comm_semi_axioms ?prod ≡ ∀ x y. ?prod x y = ?prod y x

comm_semi_axioms_def:

(
∧

x y. ?prod x y = ?prod y x) =⇒ comm_semi_axioms ?prod

comm_semi_axioms.intro:

Theorems generated for the predicate comm_semi.

comm_semi ?prod ≡ semi ?prod ∧ comm_semi_axioms ?prodcomm_semi_def:

[[semi ?prod; comm_semi_axioms ?prod]] =⇒ comm_semi ?prod

comm_semi.intro:

comm_semi.axioms:
comm_semi ?prod =⇒ semi ?prod

comm_semi ?prod =⇒ comm_semi_axioms ?prod

Figure 3: Theorems for the predicates comm_semi_axioms and comm_semi.

Note that the theorems generated by a locale definition may be inspected imme-
diately after the definition in the Proof General interface [1] of Isabelle through
the menu item “Isabelle/Isar>Show me . . . >Theorems”.
Locale and delta predicates are used also in the internal representation of locales
as lists of context elements. While all fixes in a declaration generate internal
fixes, all assumptions of one locale declaration contribute to one internal as-
sumes element. The internal representation of semi is

fixes prod :: "[’a, ’a] ⇒ ’a"(infixl"·"70)
assumes "semi prod"

notes assoc : "?x · ?y · ?z = ?x · (?y · ?z)"
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and the internal representation of "comm_semi" is

(2)

fixes prod :: "[’a, ’a] ⇒ ’a" (infixl "·" 70)
assumes "semi prod"

notes assoc : "?x · ?y · ?z = ?x · (?y · ?z)"
assumes "comm_semi_axioms prod"

notes comm : "?x · ?y = ?y · ?x"
notes lcomm : "?x · (?y · ?z) = ?y · (?x · ?z)"

The notes elements store facts of the locales. The facts assoc and comm were
added during the declaration of the locales. They stem from assumptions, which
are trivially facts. The fact lcomm was added later, after finishing the proof in
the respective theorem command above.
By using notes in a declaration, facts can be added to a locale directly. Of
course, these must be theorems. Typical use of this feature includes adding
theorems that are not usually used as a default rewrite rules by the simplifier
to the simpset of the locale by a notes element with the attribute [simp].
This way it is also possible to add specialised versions of theorems to a locale by
instantiating locale parameters for unknowns or locale assumptions for premises.

3.4 Definitions

Definitions were available in Kammüller’s version of Locales, and they are in
Wenzel’s. The context element defines adds a definition of the form p x1 . . .

xn ≡ t as an assumption, where p is a parameter of the locale (possibly an
imported parameter), and t a term that may contain the xi. The parameter
may neither occur in a previous assumes or defines element, nor on the right
hand side of the definition. Hence recursion is not allowed. The parameter may,
however, occur in subsequent assumes and on the right hand side of subsequent
defines. We call p defined parameter.
locale semi2 = semi +

fixes rprod (infixl "�" 70)

defines rprod_def: "rprod x y ≡ y · x "

This locale extends semi by a second binary operation "�" that is like "·" but
with reversed arguments. The definition of the locale generates the predicate
semi2, which is equivalent to semi, but no semi2_axioms. The difference between
assumes and defines lies in the way parameters are treated on export.

3.5 Export

A fact is exported out of a locale by generalising over the parameters and adding
assumptions as premises. For brevity of the exported theorems, locale predicates
are used. Exported facts are referenced by writing qualified names consisting of
the locale name and the fact name — for example,
semi.assoc:

semi ?prod =⇒ ?prod (?prod ?x ?y) ?z = ?prod ?x (?prod ?y ?z).
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Defined parameters receive special treatment. Instead of adding a premise for
the definition, the definition is unfolded in the exported theorem. In order to
illustrate this we prove that the reverse operation "�" defined in the locale semi2

is also associative.

theorem (in semi2) r_assoc: "(x � y) � z = x � (y � z)"

by (simp only: rprod_def assoc)

The exported fact is
semi2.r_assoc:

semi2 ?prod =⇒ ?prod ?z (?prod ?y ?x) = ?prod (?prod ?z ?y) ?x.

The defined parameter is not present but is replaced by its definition. Note that
the definition itself is not exported, hence there is no semi2.rprod_def.2

4 Locale Expressions

Locale expressions provide a simple language for combining locales. They are
an effective means of building complex specifications from simple ones. Locale
expressions are the main innovation of the version of Locales discussed here.
Locale expressions are also reason for introducing locale predicates.

4.1 Rename and Merge

The grammar of locale expressions is part of the grammar in Figure 1. Locale
names are locale expressions, and further expressions are obtained by rename
and merge.

Rename. The locale expression e q1 . . . qn denotes the locale of e where para-
meters, in the order in which they are fixed, are renamed to q1 to qn. The
expression is only well-formed if n does not exceed the number of parame-
ters of e. Underscores denote parameters that are not renamed. Renaming
by default removes mixfix syntax, but new syntax may be specified.

Merge. The locale expression e1 + e2 denotes the locale obtained by merging
the locales of e1 and e2. This locale contains the context elements of e1,
followed by the context elements of e2.

In actual fact, the semantics of the merge operation is more complicated. If
e1 and e2 are expressions containing the same name, followed by identical
parameter lists, then the merge of both will contain the elements of those
locales only once. Details are explained in Section 4.2 below.

The merge operation is associative but not commutative. The latter is
because parameters of e1 appear before parameters of e2 in the composite
expression.

2The definition could alternatively be exported using a let-construct if there was one in
Isabelle’s meta-logic. Let is usually defined in object-logics.
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Rename can be used if a different parameter name seems more appropriate —
for example, when moving from groups to rings, a parameter G representing
the group could be changed to R. Besides of this stylistic use, renaming is im-
portant in combination with merge. Both operations are used in the following
specification of semigroup homomorphisms.

locale semi_hom = comm_semi sum (infixl "⊕" 65) + comm_semi +

fixes hom

assumes hom: "hom (x ⊕ y) = hom x · hom y"

This locale defines a context with three parameters sum, prod and hom. The first
two parameters have mixfix syntax. They are associative operations, the first
of type [’a, ’a] ⇒ ’a, the second of type [’b, ’b] ⇒ ’b.
How are facts that are imported via a locale expression identified? Facts are
always introduced in a named locale (either in the locale’s declaration, or by
using the locale as target in theorem), and their names are qualified by the
parameter names of this locale. Hence the full name of associativity in semi is
prod.assoc. Renaming parameters of a target also renames the qualifier of facts.
Hence, associativity of sum is sum.assoc. Several parameters are separated by
underscores in qualifiers. For example, the full name of the fact hom in the locale
semi_hom is sum_prod_hom.hom.
The following example is quite artificial, it illustrates the use of facts, though.

theorem (in semi_hom) "hom x · (hom y · hom z) = hom (x ⊕ (y ⊕ z))"

proof -

have "hom x · (hom y · hom z) = hom y · (hom x · hom z)"

by (simp add: prod.lcomm)

also have ". . . = hom (y ⊕ (x ⊕ z))" by (simp add: hom)

also have ". . . = hom (x ⊕ (y ⊕ z))" by (simp add: sum.lcomm)

finally show ?thesis .
qed

Importing via a locale expression imports all facts of the imported locales, hence
both sum.lcomm and prod.lcomm are available in hom_semi. The import is dynamic
— that is, whenever facts are added to a locale, they automatically become
available in subsequent theorem commands that use the locale as a target, or
a locale importing the locale.

4.2 Normal Forms

Locale expressions are interpreted in a two-step process. First, an expression is
normalised, then it is converted to a list of context elements.
Normal forms are based on locale declarations. These consist of an import sec-
tion followed by a list of context elements. Let I(l) denote the locale expression
imported by locale l. If l has no import then I(l) = ε. Likewise, let F(l) denote
the list of context elements, also called the context fragment of l. Note that
F(l) contains only those context elements that are stated in the declaration of
l, not imported ones.
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Example 1. Consider the locales semi and comm_semi. We have I(semi) = ε
and I(comm_semi) = semi, and the context fragments are

F(semi) =

 fixes prod :: "[’a, ’a] ⇒ ’a" (infixl "·" 70)
assumes "semi prod"

notes assoc : "?x · ?y · ?z = ?x · (?y · ?z)"

 ,

F(comm_semi) =

 assumes "comm_semi_axioms prod"

notes comm : "?x · ?y = ?y · ?x"
notes lcomm : "?x · (?y · ?z) = ?y · (?x · ?z)"

 .

Let π0(F(l)) denote the list of parameters defined in the fixes elements of F(l)
in the order of their occurrence. The list of parameters of a locale expression
π(e) is defined as follows:

π(l) = π(I(l)) @ π0(F(l)), for named locale l.
π(e q1 . . . qn) = [q1, . . . , qn, pn+1, . . . , pm], where π(e) = [p1, . . . , pm].

π(e1 + e2) = π(e1) @ π(e2)

The operation @ concatenates two lists but omits elements from the second list
that are also present in the first list. It is not possible to rename more parameters
than there are present in an expression — that is, n ≤ m — otherwise the
renaming is illegal. If qi = then the ith entry of the resulting list is pi.
In the normalisation phase, imports of named locales are unfolded, and renames
and merges are recursively propagated to the imported locale expressions. The
result is a list of locale names, each with a full list of parameters, where locale
names occurring with the same parameter list twice are removed. Let N denote
normalisation. It is defined by these equations:

N (l) = N (I(l)) @ [l π(l)], for named locale l.
N (e q1 . . . qn) = N (e) [q1 . . . qn/π(e)]

N (e1 + e2) = N (e1) @N (e2)

Normalisation yields a list of identifiers. An identifier consists of a locale name
and a (possibly empty) list of parameters.
In the second phase, the list of identifiers N (e) is converted to a list of context
elements C(e) by converting each identifier to a list of context elements, and
flattening the obtained list. Conversion of the identifier l q1 . . . qn yields the list
of context elements F(l), but with the following modifications:

• Rename the parameter in the ith fixes element of F(l) to qi, i = 1, . . . , n.
If the parameter name is actually changed then delete the syntax annota-
tion. Renaming a parameter may also change its type.

• Perform the same renamings on all occurrences of parameters (fixed vari-
ables) in assumes, defines and notes elements.
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• Qualify names of facts by q1 . . . qn.

The locale expression is well-formed if it contains no illegal renamings and the
following conditions on C(e) hold, otherwise the expression is rejected:

• Parameters in fixes are distinct;

• Free variables in assumes and defines occur in preceding fixes;3

• Parameters defined in defines must neither occur in preceding assumes
nor defines.

4.3 Examples

Example 2. We obtain the context fragment C(comm_semi) of the locale comm_semi.
First, the parameters are computed.

π(semi) = [prod]

π(comm_semi) = π(semi) @ [] = [prod]

Next, the normal form of the locale expression comm_semi is obtained.

N (semi) = [semiprod]

N (comm_semi) = N (semi) @ [comm_semi prod] = [semi prod, comm_semi prod]

Converting this to a list of context elements leads to the list (2) shown in
Section 3.3, but with fact names qualified by prod — for example, prod.assoc.
Qualification was omitted to keep the presentation simple. Isabelle’s scoping
rules identify the most recent fact with qualified name x.a when a fact with
name a is requested.

Example 3. The locale expression comm_semi sum involves renaming. Com-
puting parameters yields π(comm_semi sum) = [sum], the normal form is

N (comm_semi sum) = N (comm_semi)[sum/prod] = [semi sum, comm_semi sum]

and the list of context elements

fixes sum :: "[’a, ’a] ⇒ ’a" (infixl "⊕" 65)
assumes "semi sum"

notes sum.assoc : "(?x ⊕ ?y) ⊕ ?z = sum ?x (sum ?y ?z)"

assumes "comm_semi_axioms sum"

notes sum.comm : "?x ⊕ ?y = ?y ⊕ ?x"

notes sum.lcomm : "?x ⊕ (?y ⊕ ?z) = ?y ⊕ (?x ⊕ ?z)"

3This restriction is relaxed for contexts obtained with includes, see Section 4.4.
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Example 4. The context defined by the locale semi_hom involves merging two
copies of comm_semi. We obtain the parameter list and normal form:

π(semi_hom) = π(comm_semi sum + comm_semi) @ [hom]

= (π(comm_semi sum) @ π(comm_semi)) @ [hom]

= ([sum] @ [prod]) @ [hom] = [sum, prod, hom]

N (semi_hom) = N (comm_semi sum + comm_semi)@
[semi_hom sum prod hom]

= (N (comm_semi sum) @N (comm_semi))@
[semi_hom sum prod hom]

= ([semi sum, comm_semi sum] @ [semi prod, comm_semi prod])@
[semi_hom sum prod hom]

= [semi sum, comm_semi sum, semi prod, comm_semi prod,

semi_hom sum prod hom].

Hence C(semi_hom), shown below, is again well-formed.

fixes sum :: "[’a, ’a] ⇒ ’a" (infixl "⊕" 65)
assumes "semi sum"

notes sum.assoc : "(?x ⊕ ?y) ⊕ ?z = ?x ⊕ (?y ⊕ ?z)"

assumes "comm_semi_axioms sum"

notes sum.comm : "?x ⊕ ?y = ?y ⊕ ?x"

notes sum.lcomm : "?x ⊕ (?y ⊕ ?z) = ?y ⊕ (?x ⊕ ?z)"

fixes prod :: "[’b, ’b] ⇒ ’b" (infixl "·" 70)
assumes "semi prod"

notes prod.assoc : "?x · ?y · ?z = ?x · (?y · ?z)"
assumes "comm_semi_axioms prod"

notes prod.comm : "?x · ?y = ?y · ?x"
notes prod.lcomm : "?x · (?y · ?z) = ?y · (?x · ?z)"
fixes hom :: "’a ⇒ ’b"

assumes "semi_hom_axioms sum"

notes sum_prod_hom.hom : hom (x ⊕ y) = hom x · hom y

Example 5. In this example, a locale expression leading to a list of context
elements that is not well-defined is encountered, and it is illustrated how nor-
malisation deals with multiple inheritance. Consider the specification of monads
(in the algebraic sense) and monoids.

locale monad =

fixes prod :: "[’a, ’a] ⇒ ’a" (infixl "·" 70) and one :: ’a ("1" 100)

assumes l_one: "1 · x = x" and r_one: "x · 1 = x"

Monoids are both semigroups and monads and one would want to specify them
as locale expression semi + monad. Unfortunately, this expression is not well-
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formed. Its normal form

N (monad) = [monad prod]

N (semi + monad) = N (semi) @N (monad) = [semi prod, monad prod]

leads to a list containing the context element

fixes prod :: "[’a, ’a] ⇒ ’a" (infixl "·" 70)

twice and thus violating the first criterion of well-formedness. To avoid this
problem, one can introduce a new locale magma with the sole purpose of fixing
the parameter and defining its syntax. The specifications of semigroup and
monad are changed so that they import magma.

locale magma = fixes prod (infixl "·" 70)

locale semi’ = magma + assumes assoc: "(x · y) · z = x · (y · z)"
locale monad’ = magma + fixes one ("1" 100)

assumes l_one: "1 · x = x" and r_one: "x · 1 = x"

Normalisation now yields

N (semi’ + monad’) = N (semi’) @N (monad’)

= (N (magma) @ [semi’ prod]) @ (N (magma) @ [monad’ prod])

= [magma prod, semi’ prod] @ [magma prod, monad’ prod])
= [magma prod, semi’ prod, monad’ prod]

where the second occurrence of magma prod is eliminated. The reader is en-
couraged to check, using the print locale command, that the list of context
elements generated from this is indeed well-formed.
It follows that importing parameters is more flexible than fixing them using a
context element. The Locale package provides the predefined locale var that
can be used to import parameters if no particular mixfix syntax is required. Its
definition is

locale var = fixes x_

The use of the internal variable x_ enforces that the parameter is renamed before
being used, because internal variables may not occur in the input syntax. Using
var, the locale magma could have been replaced by the locale expression

var prod (infixl "·" 70)

in the above locale declarations.
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4.4 Includes

The context element includes takes a locale expression e as argument. It can
only occur in long goals, where it adds, like a target, locale context to the proof
context. Unlike with targets, the proved theorem is not stored in the locale.
Instead, it is exported immediately.

theorem lcomm2:

includes comm_semi shows "x · (y · z) = y · (x · z)"
proof -

have "x · (y · z) = (x · y) · z" by (simp add: assoc)

also have ". . . = (y · x) · z" by (simp add: comm)

also have ". . . = y · (x · z)" by (simp add: assoc)

finally show ?thesis .
qed

This proof is identical to the proof of lcomm. The use of includes provides the
same context and facts as when using comm_semi as target. On the other hand,
lcomm2 is not added as a fact to the locale comm_semi, but is directly visible in
the theory. The theorem is

comm_semi ?prod =⇒ ?prod ?x (?prod ?y ?z) = ?prod ?y (?prod ?x ?z).

Note that it is possible to combine a target and (several) includes in a goal
statement, thus using contexts of several locales but storing the theorem in only
one of them.

5 Structures

The specifications of semigroups and monoids that served as examples in pre-
vious sections modelled each operation of an algebraic structure as a single
parameter. This is rather inconvenient for structures with many operations,
and also unnatural. In accordance to mathematical texts, one would rather fix
two groups instead of two sets of operations.
The approach taken in Isabelle is to encode algebraic structures with suitable
types (in Isabelle/HOL usually records). An issue to be addressed by locales is
syntax for algebraic structures. This is the purpose of the (structure) annota-
tion in fixes, introduced by Wenzel. We illustrate this, independently of record
types, with a different formalisation of semigroups.
Let ’a semi_type be a not further specified type that represents semigroups
over the carrier type ’a. Let s_op be an operation that maps an object of ’a

semi_type to a binary operation.

typedecl ’a semi_type

consts s_op :: "[’a semi_type, ’a, ’a] ⇒ ’a" (infixl "?ı " 70)

Although s_op is a ternary operation, it is declared infix. The syntax annotation
contains the token ı (\<index>), which refers to the first argument. This syn-
tax is only effective in the context of a locale, and only if the first argument is a
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structural parameter — that is, a parameter with annotation (structure). The
token has the effect of subscripting the parameter — by bracketing it between
\<^bsub> and \<^esub>. Additionally, the subscript of the first structural pa-
rameter may be omitted, as in this specification of semigroups with structures:

locale comm_semi’ =

fixes G :: "’a semi_type" (structure)
assumes assoc: "(x ? y) ? z = x ? (y ? z)" and comm: "x ? y = y ? x"

Here x ? y is equivalent to x ?G y and abbreviates s_op G x y. A specification
of homomorphisms requires a second structural parameter.

locale semi’_hom = comm_semi’ + comm_semi’ H +

fixes hom

assumes hom: "hom (x ? y) = hom x ?H hom y"

The parameter H is defined in the second fixes element of C(semi’_comm). Hence
?H abbreviates s_op H x y. The same construction can be done with records
instead of an ad-hoc type.

record ’a semi = prod :: "[’a, ’a] ⇒ ’a" (infixl "·ı " 70)

This declares the types ’a semi and (’a, ’b) semi_scheme. The latter is an
extensible record, where the second type argument is the type of the extension
field. For details on records, see [10] Chapter 8.3.

locale semi_w_records = struct G +

assumes assoc: "(x · y) · z = x · (y · z)"

The type (’a, ’b) semi_scheme is inferred for the parameter G. Using subtyping
on records, the specification can be extended to groups easily.

record ’a group = "’a semi" +

one :: "’a" ("lı " 100)

inv :: "’a ⇒ ’a" ("invı _" [81] 80)

locale group_w_records = semi_w_records +

assumes l_one: "l · x = x" and l_inv: "inv x · x = l"

Finally, the predefined locale

locale struct = fixes S_ (structure).

is analogous to var. More examples on the use of structures, including groups,
rings and polynomials can be found in the Isabelle distribution in the session
HOL-Algebra.

6 Conclusions and Outlook

Locales provide a simple means of modular reasoning. They enable to abbre-
viate frequently occurring context statements and maintain facts valid in these
contexts. Importantly, using structures, they allow syntax to be effective only

16



in certain contexts, and thus to mimic common practice in mathematics, where
notation is chosen very flexibly. This is also known as literate formalisation
[2]. Locale expressions allow to duplicate and merge specifications. This is a
necessity, for example, when reasoning about homomorphisms. Normalisation
makes it possible to deal with diamond-shaped inheritance structures, and gen-
erally with directed acyclic graphs. The combination of locales with record
types in higher-order logic provides an effective means for specifying algebraic
structures: locale import and record subtyping provide independent hierarchies
for specifications and structure elements. Rich examples for this can be found
in the Isabelle distribution in the session HOL-Algebra.
The primary reason for writing this report was to provide a better understand-
ing of locales in Isar. Wenzel provided hardly any documentation, with the
exception of [12]. The present report should make it easier for users of Isabelle
to take advantage of locales.
The report is also a base for future extensions. These include improved syn-
tax for structures. Identifying them by numbers seems unnatural and can be
confusing if more than two structures are involved — for example, when reason-
ing about universal properties — and numbering them by order of occurrence
seems arbitrary. Another desirable feature is instantiation. One may, in the
course of a theory development, construct objects that fulfil the specification
of a locale. These objects are possibly defined in the context of another locale.
Instantiation should make it simple to specialise abstract facts for the object
under consideration and to use the specified facts.
A detailed comparison of locales with module systems in type theory has not
been undertaken yet, but could be beneficial. For example, a module system for
Coq has recently been presented by Chrzaszcz [5, 6]. While the latter usually
constitute extensions of the calculus, locales are a rather thin layer that does not
change Isabelle’s meta logic. Locales mainly manage specifications and facts.
Functors, like the constructor for polynomial rings, remain objects of the logic.
Acknowledgements. Lawrence C. Paulson and Norbert Schirmer made useful
comments on a draft of this paper.
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