(* Title: HOL/inductive_codegen.ML ID: $Id: inductive_codegen.ML,v 1.31 2005/09/20 14:18:15 haftmann Exp $ Author: Stefan Berghofer, TU Muenchen Code generator for inductive predicates. *) signature INDUCTIVE_CODEGEN = sig val add : string option -> theory attribute val setup : (theory -> theory) list end; structure InductiveCodegen : INDUCTIVE_CODEGEN = struct open Codegen; (**** theory data ****) structure CodegenData = TheoryDataFun (struct val name = "HOL/inductive_codegen"; type T = {intros : (thm * string) list Symtab.table, graph : unit Graph.T, eqns : (thm * string) list Symtab.table}; val empty = {intros = Symtab.empty, graph = Graph.empty, eqns = Symtab.empty}; val copy = I; val extend = I; fun merge _ ({intros=intros1, graph=graph1, eqns=eqns1}, {intros=intros2, graph=graph2, eqns=eqns2}) = {intros = Symtab.merge_multi (Drule.eq_thm_prop o pairself fst) (intros1, intros2), graph = Graph.merge (K true) (graph1, graph2), eqns = Symtab.merge_multi (Drule.eq_thm_prop o pairself fst) (eqns1, eqns2)}; fun print _ _ = (); end); fun warn thm = warning ("InductiveCodegen: Not a proper clause:\n" ^ string_of_thm thm); fun add_node (g, x) = Graph.new_node (x, ()) g handle Graph.DUP _ => g; fun add optmod (p as (thy, thm)) = let val {intros, graph, eqns} = CodegenData.get thy; fun thyname_of s = (case optmod of NONE => thyname_of_const s thy | SOME s => s); in (case concl_of thm of _ $ (Const ("op :", _) $ _ $ t) => (case head_of t of Const (s, _) => let val cs = foldr add_term_consts [] (prems_of thm) in (CodegenData.put {intros = intros |> Symtab.update (s, Symtab.lookup_multi intros s @ [(thm, thyname_of s)]), graph = foldr (uncurry (Graph.add_edge o pair s)) (Library.foldl add_node (graph, s :: cs)) cs, eqns = eqns} thy, thm) end | _ => (warn thm; p)) | _ $ (Const ("op =", _) $ t $ _) => (case head_of t of Const (s, _) => (CodegenData.put {intros = intros, graph = graph, eqns = eqns |> Symtab.update (s, Symtab.lookup_multi eqns s @ [(thm, thyname_of s)])} thy, thm) | _ => (warn thm; p)) | _ => (warn thm; p)) end; fun get_clauses thy s = let val {intros, graph, ...} = CodegenData.get thy in case Symtab.lookup intros s of NONE => (case InductivePackage.get_inductive thy s of NONE => NONE | SOME ({names, ...}, {intrs, ...}) => SOME (names, thyname_of_const s thy, preprocess thy intrs)) | SOME _ => let val SOME names = find_first (fn xs => s mem xs) (Graph.strong_conn graph); val intrs = List.concat (map (fn s => the (Symtab.lookup intros s)) names); val (_, (_, thyname)) = split_last intrs in SOME (names, thyname, preprocess thy (map fst intrs)) end end; (**** improper tuples ****) fun prod_factors p (Const ("Pair", _) $ t $ u) = p :: prod_factors (1::p) t @ prod_factors (2::p) u | prod_factors p _ = []; fun split_prod p ps t = if p mem ps then (case t of Const ("Pair", _) $ t $ u => split_prod (1::p) ps t @ split_prod (2::p) ps u | _ => error "Inconsistent use of products") else [t]; fun full_split_prod (Const ("Pair", _) $ t $ u) = full_split_prod t @ full_split_prod u | full_split_prod t = [t]; datatype factors = FVar of int list list | FFix of int list list; exception Factors; fun mg_factor (FVar f) (FVar f') = FVar (f inter f') | mg_factor (FVar f) (FFix f') = if f' subset f then FFix f' else raise Factors | mg_factor (FFix f) (FVar f') = if f subset f' then FFix f else raise Factors | mg_factor (FFix f) (FFix f') = if f subset f' andalso f' subset f then FFix f else raise Factors; fun dest_factors (FVar f) = f | dest_factors (FFix f) = f; fun infer_factors sg extra_fs (fs, (optf, t)) = let fun err s = error (s ^ "\n" ^ Sign.string_of_term sg t) in (case (optf, strip_comb t) of (SOME f, (Const (name, _), args)) => (case AList.lookup (op =) extra_fs name of NONE => AList.update (op =) (name, getOpt (Option.map (mg_factor f) (AList.lookup (op =) fs name), f)) fs | SOME (fs', f') => (mg_factor f (FFix f'); Library.foldl (infer_factors sg extra_fs) (fs, map (Option.map FFix) fs' ~~ args))) | (SOME f, (Var ((name, _), _), [])) => AList.update (op =) (name, getOpt (Option.map (mg_factor f) (AList.lookup (op =) fs name), f)) fs | (NONE, _) => fs | _ => err "Illegal term") handle Factors => err "Product factor mismatch in" end; fun string_of_factors p ps = if p mem ps then "(" ^ string_of_factors (1::p) ps ^ ", " ^ string_of_factors (2::p) ps ^ ")" else "_"; (**** check if a term contains only constructor functions ****) fun is_constrt thy = let val cnstrs = List.concat (List.concat (map (map (fn (_, (_, _, cs)) => map (apsnd length) cs) o #descr o snd) (Symtab.dest (DatatypePackage.get_datatypes thy)))); fun check t = (case strip_comb t of (Var _, []) => true | (Const (s, _), ts) => (case AList.lookup (op =) cnstrs s of NONE => false | SOME i => length ts = i andalso forall check ts) | _ => false) in check end; (**** check if a type is an equality type (i.e. doesn't contain fun) ****) fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts | is_eqT _ = true; (**** mode inference ****) fun string_of_mode (iss, is) = space_implode " -> " (map (fn NONE => "X" | SOME js => enclose "[" "]" (commas (map string_of_int js))) (iss @ [SOME is])); fun print_modes modes = message ("Inferred modes:\n" ^ space_implode "\n" (map (fn (s, ms) => s ^ ": " ^ commas (map string_of_mode ms)) modes)); val term_vs = map (fst o fst o dest_Var) o term_vars; val terms_vs = distinct o List.concat o (map term_vs); (** collect all Vars in a term (with duplicates!) **) fun term_vTs tm = fold_aterms (fn Var ((x, _), T) => cons (x, T) | _ => I) tm []; fun get_args _ _ [] = ([], []) | get_args is i (x::xs) = (if i mem is then apfst else apsnd) (cons x) (get_args is (i+1) xs); fun merge xs [] = xs | merge [] ys = ys | merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys) else y::merge (x::xs) ys; fun subsets i j = if i <= j then let val is = subsets (i+1) j in merge (map (fn ks => i::ks) is) is end else [[]]; fun cprod ([], ys) = [] | cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys); fun cprods xss = foldr (map op :: o cprod) [[]] xss; datatype mode = Mode of (int list option list * int list) * mode option list; fun modes_of modes t = let fun mk_modes name args = List.concat (map (fn (m as (iss, is)) => map (Mode o pair m) (cprods (map (fn (NONE, _) => [NONE] | (SOME js, arg) => map SOME (List.filter (fn Mode ((_, js'), _) => js=js') (modes_of modes arg))) (iss ~~ args)))) ((the o AList.lookup (op =) modes) name)) in (case strip_comb t of (Const ("op =", Type (_, [T, _])), _) => [Mode (([], [1]), []), Mode (([], [2]), [])] @ (if is_eqT T then [Mode (([], [1, 2]), [])] else []) | (Const (name, _), args) => mk_modes name args | (Var ((name, _), _), args) => mk_modes name args | (Free (name, _), args) => mk_modes name args) end; datatype indprem = Prem of term list * term | Sidecond of term; fun select_mode_prem thy modes vs ps = find_first (isSome o snd) (ps ~~ map (fn Prem (us, t) => find_first (fn Mode ((_, is), _) => let val (in_ts, out_ts) = get_args is 1 us; val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts; val vTs = List.concat (map term_vTs out_ts'); val dupTs = map snd (duplicates vTs) @ List.mapPartial (AList.lookup (op =) vTs) vs; in terms_vs (in_ts @ in_ts') subset vs andalso forall (is_eqT o fastype_of) in_ts' andalso term_vs t subset vs andalso forall is_eqT dupTs end) (modes_of modes t handle Option => [Mode (([], []), [])]) | Sidecond t => if term_vs t subset vs then SOME (Mode (([], []), [])) else NONE) ps); fun check_mode_clause thy arg_vs modes (iss, is) (ts, ps) = let val modes' = modes @ List.mapPartial (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)])) (arg_vs ~~ iss); fun check_mode_prems vs [] = SOME vs | check_mode_prems vs ps = (case select_mode_prem thy modes' vs ps of NONE => NONE | SOME (x, _) => check_mode_prems (case x of Prem (us, _) => vs union terms_vs us | _ => vs) (filter_out (equal x) ps)); val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (get_args is 1 ts)); val in_vs = terms_vs in_ts; val concl_vs = terms_vs ts in forall is_eqT (map snd (duplicates (List.concat (map term_vTs in_ts)))) andalso forall (is_eqT o fastype_of) in_ts' andalso (case check_mode_prems (arg_vs union in_vs) ps of NONE => false | SOME vs => concl_vs subset vs) end; fun check_modes_pred thy arg_vs preds modes (p, ms) = let val SOME rs = AList.lookup (op =) preds p in (p, List.filter (fn m => case find_index (not o check_mode_clause thy arg_vs modes m) rs of ~1 => true | i => (message ("Clause " ^ string_of_int (i+1) ^ " of " ^ p ^ " violates mode " ^ string_of_mode m); false)) ms) end; fun fixp f x = let val y = f x in if x = y then x else fixp f y end; fun infer_modes thy extra_modes factors arg_vs preds = fixp (fn modes => map (check_modes_pred thy arg_vs preds (modes @ extra_modes)) modes) (map (fn (s, (fs, f)) => (s, cprod (cprods (map (fn NONE => [NONE] | SOME f' => map SOME (subsets 1 (length f' + 1))) fs), subsets 1 (length f + 1)))) factors); (**** code generation ****) fun mk_eq (x::xs) = let fun mk_eqs _ [] = [] | mk_eqs a (b::cs) = Pretty.str (a ^ " = " ^ b) :: mk_eqs b cs in mk_eqs x xs end; fun mk_tuple xs = Pretty.block (Pretty.str "(" :: List.concat (separate [Pretty.str ",", Pretty.brk 1] (map single xs)) @ [Pretty.str ")"]); (* convert nested pairs to n-tuple *) fun conv_ntuple [_] t ps = ps | conv_ntuple [_, _] t ps = ps | conv_ntuple us t ps = let val xs = map (fn i => Pretty.str ("x" ^ string_of_int i)) (1 upto length us); fun ntuple (ys as (x, T) :: xs) U = if T = U then (x, xs) else let val Type ("*", [U1, U2]) = U; val (p1, ys1) = ntuple ys U1; val (p2, ys2) = ntuple ys1 U2 in (mk_tuple [p1, p2], ys2) end in [Pretty.str "Seq.map (fn", Pretty.brk 1, fst (ntuple (xs ~~ map fastype_of us) (HOLogic.dest_setT (fastype_of t))), Pretty.str " =>", Pretty.brk 1, mk_tuple xs, Pretty.str ")", Pretty.brk 1, parens (Pretty.block ps)] end; (* convert n-tuple to nested pairs *) fun conv_ntuple' fs T ps = let fun mk_x i = Pretty.str ("x" ^ string_of_int i); fun conv i js (Type ("*", [T, U])) = if js mem fs then let val (p, i') = conv i (1::js) T; val (q, i'') = conv i' (2::js) U in (mk_tuple [p, q], i'') end else (mk_x i, i+1) | conv i js _ = (mk_x i, i+1) val (p, i) = conv 1 [] T in if i > 3 then [Pretty.str "Seq.map (fn", Pretty.brk 1, mk_tuple (map mk_x (1 upto i-1)), Pretty.str " =>", Pretty.brk 1, p, Pretty.str ")", Pretty.brk 1, parens (Pretty.block ps)] else ps end; fun mk_v ((names, vs), s) = (case AList.lookup (op =) vs s of NONE => ((names, (s, [s])::vs), s) | SOME xs => let val s' = variant names s in ((s'::names, AList.update (op =) (s, s'::xs) vs), s') end); fun distinct_v (nvs, Var ((s, 0), T)) = apsnd (Var o rpair T o rpair 0) (mk_v (nvs, s)) | distinct_v (nvs, t $ u) = let val (nvs', t') = distinct_v (nvs, t); val (nvs'', u') = distinct_v (nvs', u); in (nvs'', t' $ u') end | distinct_v x = x; fun is_exhaustive (Var _) = true | is_exhaustive (Const ("Pair", _) $ t $ u) = is_exhaustive t andalso is_exhaustive u | is_exhaustive _ = false; fun compile_match nvs eq_ps out_ps success_p can_fail = let val eqs = List.concat (separate [Pretty.str " andalso", Pretty.brk 1] (map single (List.concat (map (mk_eq o snd) nvs) @ eq_ps))); in Pretty.block ([Pretty.str "(fn ", mk_tuple out_ps, Pretty.str " =>", Pretty.brk 1] @ (Pretty.block ((if eqs=[] then [] else Pretty.str "if " :: [Pretty.block eqs, Pretty.brk 1, Pretty.str "then "]) @ (success_p :: (if eqs=[] then [] else [Pretty.brk 1, Pretty.str "else Seq.empty"]))) :: (if can_fail then [Pretty.brk 1, Pretty.str "| _ => Seq.empty)"] else [Pretty.str ")"]))) end; fun modename module s (iss, is) gr = let val (gr', id) = if s = "op =" then (gr, ("", "equal")) else mk_const_id module s gr in (gr', space_implode "__" (mk_qual_id module id :: map (space_implode "_" o map string_of_int) (List.mapPartial I iss @ [is]))) end; fun compile_expr thy defs dep module brack (gr, (NONE, t)) = apsnd single (invoke_codegen thy defs dep module brack (gr, t)) | compile_expr _ _ _ _ _ (gr, (SOME _, Var ((name, _), _))) = (gr, [Pretty.str name]) | compile_expr thy defs dep module brack (gr, (SOME (Mode (mode, ms)), t)) = let val (Const (name, _), args) = strip_comb t; val (gr', (ps, mode_id)) = foldl_map (compile_expr thy defs dep module true) (gr, ms ~~ args) |>>> modename module name mode; in (gr', (if brack andalso not (null ps) then single o parens o Pretty.block else I) (List.concat (separate [Pretty.brk 1] ([Pretty.str mode_id] :: ps)))) end; fun compile_clause thy defs gr dep module all_vs arg_vs modes (iss, is) (ts, ps) = let val modes' = modes @ List.mapPartial (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)])) (arg_vs ~~ iss); fun check_constrt ((names, eqs), t) = if is_constrt thy t then ((names, eqs), t) else let val s = variant names "x"; in ((s::names, (s, t)::eqs), Var ((s, 0), fastype_of t)) end; fun compile_eq (gr, (s, t)) = apsnd (Pretty.block o cons (Pretty.str (s ^ " = ")) o single) (invoke_codegen thy defs dep module false (gr, t)); val (in_ts, out_ts) = get_args is 1 ts; val ((all_vs', eqs), in_ts') = foldl_map check_constrt ((all_vs, []), in_ts); fun is_ind t = (case head_of t of Const (s, _) => s = "op =" orelse AList.defined (op =) modes s | Var ((s, _), _) => s mem arg_vs); fun compile_prems out_ts' vs names gr [] = let val (gr2, out_ps) = foldl_map (invoke_codegen thy defs dep module false) (gr, out_ts); val (gr3, eq_ps) = foldl_map compile_eq (gr2, eqs); val ((names', eqs'), out_ts'') = foldl_map check_constrt ((names, []), out_ts'); val (nvs, out_ts''') = foldl_map distinct_v ((names', map (fn x => (x, [x])) vs), out_ts''); val (gr4, out_ps') = foldl_map (invoke_codegen thy defs dep module false) (gr3, out_ts'''); val (gr5, eq_ps') = foldl_map compile_eq (gr4, eqs') in (gr5, compile_match (snd nvs) (eq_ps @ eq_ps') out_ps' (Pretty.block [Pretty.str "Seq.single", Pretty.brk 1, mk_tuple out_ps]) (exists (not o is_exhaustive) out_ts''')) end | compile_prems out_ts vs names gr ps = let val vs' = distinct (List.concat (vs :: map term_vs out_ts)); val SOME (p, mode as SOME (Mode ((_, js), _))) = select_mode_prem thy modes' vs' ps; val ps' = filter_out (equal p) ps; val ((names', eqs), out_ts') = foldl_map check_constrt ((names, []), out_ts); val (nvs, out_ts'') = foldl_map distinct_v ((names', map (fn x => (x, [x])) vs), out_ts'); val (gr0, out_ps) = foldl_map (invoke_codegen thy defs dep module false) (gr, out_ts''); val (gr1, eq_ps) = foldl_map compile_eq (gr0, eqs) in (case p of Prem (us, t) => let val (in_ts, out_ts''') = get_args js 1 us; val (gr2, in_ps) = foldl_map (invoke_codegen thy defs dep module false) (gr1, in_ts); val (gr3, ps) = if is_ind t then apsnd (fn ps => ps @ [Pretty.brk 1, mk_tuple in_ps]) (compile_expr thy defs dep module false (gr2, (mode, t))) else apsnd (fn p => conv_ntuple us t [Pretty.str "Seq.of_list", Pretty.brk 1, p]) (invoke_codegen thy defs dep module true (gr2, t)); val (gr4, rest) = compile_prems out_ts''' vs' (fst nvs) gr3 ps'; in (gr4, compile_match (snd nvs) eq_ps out_ps (Pretty.block (ps @ [Pretty.str " :->", Pretty.brk 1, rest])) (exists (not o is_exhaustive) out_ts'')) end | Sidecond t => let val (gr2, side_p) = invoke_codegen thy defs dep module true (gr1, t); val (gr3, rest) = compile_prems [] vs' (fst nvs) gr2 ps'; in (gr3, compile_match (snd nvs) eq_ps out_ps (Pretty.block [Pretty.str "?? ", side_p, Pretty.str " :->", Pretty.brk 1, rest]) (exists (not o is_exhaustive) out_ts'')) end) end; val (gr', prem_p) = compile_prems in_ts' arg_vs all_vs' gr ps; in (gr', Pretty.block [Pretty.str "Seq.single inp :->", Pretty.brk 1, prem_p]) end; fun compile_pred thy defs gr dep module prfx all_vs arg_vs modes s cls mode = let val (gr', (cl_ps, mode_id)) = foldl_map (fn (gr, cl) => compile_clause thy defs gr dep module all_vs arg_vs modes mode cl) (gr, cls) |>>> modename module s mode in ((gr', "and "), Pretty.block ([Pretty.block (separate (Pretty.brk 1) (Pretty.str (prfx ^ mode_id) :: map Pretty.str arg_vs) @ [Pretty.str " inp ="]), Pretty.brk 1] @ List.concat (separate [Pretty.str " ++", Pretty.brk 1] (map single cl_ps)))) end; fun compile_preds thy defs gr dep module all_vs arg_vs modes preds = let val ((gr', _), prs) = foldl_map (fn ((gr, prfx), (s, cls)) => foldl_map (fn ((gr', prfx'), mode) => compile_pred thy defs gr' dep module prfx' all_vs arg_vs modes s cls mode) ((gr, prfx), ((the o AList.lookup (op =) modes) s))) ((gr, "fun "), preds) in (gr', space_implode "\n\n" (map Pretty.string_of (List.concat prs)) ^ ";\n\n") end; (**** processing of introduction rules ****) exception Modes of (string * (int list option list * int list) list) list * (string * (int list list option list * int list list)) list; fun lookup_modes gr dep = apfst List.concat (apsnd List.concat (ListPair.unzip (map ((fn (SOME (Modes x), _, _) => x | _ => ([], [])) o get_node gr) (Graph.all_preds (fst gr) [dep])))); fun print_factors factors = message ("Factors:\n" ^ space_implode "\n" (map (fn (s, (fs, f)) => s ^ ": " ^ space_implode " -> " (map (fn NONE => "X" | SOME f' => string_of_factors [] f') (fs @ [SOME f]))) factors)); fun prep_intrs intrs = map (rename_term o #prop o rep_thm o standard) intrs; fun constrain cs [] = [] | constrain cs ((s, xs) :: ys) = (s, case AList.lookup (op =) cs s of NONE => xs | SOME xs' => xs inter xs') :: constrain cs ys; fun mk_extra_defs thy defs gr dep names module ts = Library.foldl (fn (gr, name) => if name mem names then gr else (case get_clauses thy name of NONE => gr | SOME (names, thyname, intrs) => mk_ind_def thy defs gr dep names (if_library thyname module) [] [] (prep_intrs intrs))) (gr, foldr add_term_consts [] ts) and mk_ind_def thy defs gr dep names module modecs factorcs intrs = add_edge (hd names, dep) gr handle Graph.UNDEF _ => let val _ $ (_ $ _ $ u) = Logic.strip_imp_concl (hd intrs); val (_, args) = strip_comb u; val arg_vs = List.concat (map term_vs args); fun dest_prem factors (_ $ (p as (Const ("op :", _) $ t $ u))) = (case AList.lookup (op =) factors (case head_of u of Const (name, _) => name | Var ((name, _), _) => name) of NONE => Prem (full_split_prod t, u) | SOME f => Prem (split_prod [] f t, u)) | dest_prem factors (_ $ ((eq as Const ("op =", _)) $ t $ u)) = Prem ([t, u], eq) | dest_prem factors (_ $ t) = Sidecond t; fun add_clause factors (clauses, intr) = let val _ $ (_ $ t $ u) = Logic.strip_imp_concl intr; val Const (name, _) = head_of u; val prems = map (dest_prem factors) (Logic.strip_imp_prems intr); in AList.update (op =) (name, ((these o AList.lookup (op =) clauses) name) @ [(split_prod [] ((the o AList.lookup (op =) factors) name) t, prems)]) clauses end; fun check_set (Const (s, _)) = s mem names orelse isSome (get_clauses thy s) | check_set (Var ((s, _), _)) = s mem arg_vs | check_set _ = false; fun add_prod_factors extra_fs (fs, _ $ (Const ("op :", _) $ t $ u)) = if check_set (head_of u) then infer_factors (sign_of thy) extra_fs (fs, (SOME (FVar (prod_factors [] t)), u)) else fs | add_prod_factors _ (fs, _) = fs; val gr' = mk_extra_defs thy defs (add_edge (hd names, dep) (new_node (hd names, (NONE, "", "")) gr)) (hd names) names module intrs; val (extra_modes, extra_factors) = lookup_modes gr' (hd names); val fs = constrain factorcs (map (apsnd dest_factors) (Library.foldl (add_prod_factors extra_factors) ([], List.concat (map (fn t => Logic.strip_imp_concl t :: Logic.strip_imp_prems t) intrs)))); val factors = List.mapPartial (fn (name, f) => if name mem arg_vs then NONE else SOME (name, (map (AList.lookup (op =) fs) arg_vs, f))) fs; val clauses = Library.foldl (add_clause (fs @ map (apsnd snd) extra_factors)) ([], intrs); val modes = constrain modecs (infer_modes thy extra_modes factors arg_vs clauses); val _ = print_factors factors; val _ = print_modes modes; val (gr'', s) = compile_preds thy defs gr' (hd names) module (terms_vs intrs) arg_vs (modes @ extra_modes) clauses; in (map_node (hd names) (K (SOME (Modes (modes, factors)), module, s)) gr'') end; fun find_mode gr dep s u modes is = (case find_first (fn Mode ((_, js), _) => is=js) (modes_of modes u handle Option => []) of NONE => codegen_error gr dep ("No such mode for " ^ s ^ ": " ^ string_of_mode ([], is)) | mode => mode); fun mk_ind_call thy defs gr dep module t u is_query = (case head_of u of Const (s, T) => (case (get_clauses thy s, get_assoc_code thy s T) of (NONE, _) => NONE | (SOME (names, thyname, intrs), NONE) => let fun mk_mode (((ts, mode), i), Const ("dummy_pattern", _)) = ((ts, mode), i+1) | mk_mode (((ts, mode), i), t) = ((ts @ [t], mode @ [i]), i+1); val module' = if_library thyname module; val gr1 = mk_extra_defs thy defs (mk_ind_def thy defs gr dep names module' [] [] (prep_intrs intrs)) dep names module' [u]; val (modes, factors) = lookup_modes gr1 dep; val ts = split_prod [] ((snd o the o AList.lookup (op =) factors) s) t; val (ts', is) = if is_query then fst (Library.foldl mk_mode ((([], []), 1), ts)) else (ts, 1 upto length ts); val mode = find_mode gr1 dep s u modes is; val (gr2, in_ps) = foldl_map (invoke_codegen thy defs dep module false) (gr1, ts'); val (gr3, ps) = compile_expr thy defs dep module false (gr2, (mode, u)) in SOME (gr3, Pretty.block (ps @ [Pretty.brk 1, mk_tuple in_ps])) end | _ => NONE) | _ => NONE); fun list_of_indset thy defs gr dep module brack u = (case head_of u of Const (s, T) => (case (get_clauses thy s, get_assoc_code thy s T) of (NONE, _) => NONE | (SOME (names, thyname, intrs), NONE) => let val module' = if_library thyname module; val gr1 = mk_extra_defs thy defs (mk_ind_def thy defs gr dep names module' [] [] (prep_intrs intrs)) dep names module' [u]; val (modes, factors) = lookup_modes gr1 dep; val mode = find_mode gr1 dep s u modes []; val (gr2, ps) = compile_expr thy defs dep module false (gr1, (mode, u)) in SOME (gr2, (if brack then parens else I) (Pretty.block ([Pretty.str "Seq.list_of", Pretty.brk 1, Pretty.str "("] @ conv_ntuple' (snd (valOf (AList.lookup (op =) factors s))) (HOLogic.dest_setT (fastype_of u)) (ps @ [Pretty.brk 1, Pretty.str "()"]) @ [Pretty.str ")"]))) end | _ => NONE) | _ => NONE); fun clause_of_eqn eqn = let val (t, u) = HOLogic.dest_eq (HOLogic.dest_Trueprop (concl_of eqn)); val (Const (s, T), ts) = strip_comb t; val (Ts, U) = strip_type T in rename_term (Logic.list_implies (prems_of eqn, HOLogic.mk_Trueprop (HOLogic.mk_mem (foldr1 HOLogic.mk_prod (ts @ [u]), Const (s ^ "_aux", HOLogic.mk_setT (foldr1 HOLogic.mk_prodT (Ts @ [U]))))))) end; fun mk_fun thy defs name eqns dep module module' gr = case try (get_node gr) name of NONE => let val clauses = map clause_of_eqn eqns; val pname = name ^ "_aux"; val arity = length (snd (strip_comb (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (concl_of (hd eqns))))))); val mode = 1 upto arity; val (gr', (fun_id, mode_id)) = gr |> mk_const_id module' name |>>> modename module' pname ([], mode); val vars = map (fn i => Pretty.str ("x" ^ string_of_int i)) mode; val s = Pretty.string_of (Pretty.block [mk_app false (Pretty.str ("fun " ^ snd fun_id)) vars, Pretty.str " =", Pretty.brk 1, Pretty.str "Seq.hd", Pretty.brk 1, parens (Pretty.block [Pretty.str mode_id, Pretty.brk 1, mk_tuple vars])]) ^ ";\n\n"; val gr'' = mk_ind_def thy defs (add_edge (name, dep) (new_node (name, (NONE, module', s)) gr')) name [pname] module' [(pname, [([], mode)])] [(pname, map (fn i => replicate i 2) (0 upto arity-1))] clauses; val (modes, _) = lookup_modes gr'' dep; val _ = find_mode gr'' dep pname (snd (HOLogic.dest_mem (HOLogic.dest_Trueprop (Logic.strip_imp_concl (hd clauses))))) modes mode in (gr'', mk_qual_id module fun_id) end | SOME _ => (add_edge (name, dep) gr, mk_qual_id module (get_const_id name gr)); fun inductive_codegen thy defs gr dep module brack (Const ("op :", _) $ t $ u) = ((case mk_ind_call thy defs gr dep module (Term.no_dummy_patterns t) u false of NONE => NONE | SOME (gr', call_p) => SOME (gr', (if brack then parens else I) (Pretty.block [Pretty.str "?! (", call_p, Pretty.str ")"]))) handle TERM _ => mk_ind_call thy defs gr dep module t u true) | inductive_codegen thy defs gr dep module brack t = (case strip_comb t of (Const (s, _), ts) => (case Symtab.lookup (#eqns (CodegenData.get thy)) s of NONE => list_of_indset thy defs gr dep module brack t | SOME eqns => let val (_, (_, thyname)) = split_last eqns; val (gr', id) = mk_fun thy defs s (preprocess thy (map fst eqns)) dep module (if_library thyname module) gr; val (gr'', ps) = foldl_map (invoke_codegen thy defs dep module true) (gr', ts); in SOME (gr'', mk_app brack (Pretty.str id) ps) end) | _ => NONE); val setup = [add_codegen "inductive" inductive_codegen, CodegenData.init, add_attribute "ind" (Scan.option (Args.$$$ "target" |-- Args.colon |-- Args.name) >> add)]; end; (**** combinators for code generated from inductive predicates ****) infix 5 :->; infix 3 ++; fun s :-> f = Seq.flat (Seq.map f s); fun s1 ++ s2 = Seq.append (s1, s2); fun ?? b = if b then Seq.single () else Seq.empty; fun ?! s = isSome (Seq.pull s); fun equal__1 x = Seq.single x; val equal__2 = equal__1; fun equal__1_2 (x, y) = ?? (x = y);