Theory Hoare

Up to index of Isabelle/HOL/IMPP

theory Hoare
imports Natural
uses [Hoare.ML]
begin

(*  Title:      HOL/IMPP/Hoare.thy
    ID:         $Id: Hoare.thy,v 1.3 2005/09/17 18:14:30 wenzelm Exp $
    Author:     David von Oheimb
    Copyright   1999 TUM
*)

header {* Inductive definition of Hoare logic for partial correctness *}

theory Hoare
imports Natural
begin

text {*
  Completeness is taken relative to completeness of the underlying logic.

  Two versions of completeness proof: nested single recursion
  vs. simultaneous recursion in call rule
*}

types 'a assn = "'a => state => bool"
translations
  "a assn"   <= (type)"a => state => bool"

constdefs
  state_not_singleton :: bool
  "state_not_singleton == ∃s t::state. s ~= t" (* at least two elements *)

  peek_and    :: "'a assn => (state => bool) => 'a assn" (infixr "&>" 35)
  "peek_and P p == %Z s. P Z s & p s"

datatype 'a triple =
  triple "'a assn"  com  "'a assn"       ("{(1_)}./ (_)/ .{(1_)}" [3,60,3] 58)

consts
  triple_valid ::            "nat => 'a triple     => bool" ( "|=_:_" [0 , 58] 57)
  hoare_valids ::  "'a triple set => 'a triple set => bool" ("_||=_"  [58, 58] 57)
  hoare_derivs :: "('a triple set *  'a triple set)   set"
syntax
  triples_valid::            "nat => 'a triple set => bool" ("||=_:_" [0 , 58] 57)
  hoare_valid  ::  "'a triple set => 'a triple     => bool" ("_|=_"   [58, 58] 57)
"@hoare_derivs"::  "'a triple set => 'a triple set => bool" ("_||-_"  [58, 58] 57)
"@hoare_deriv" ::  "'a triple set => 'a triple     => bool" ("_|-_"   [58, 58] 57)

defs triple_valid_def: "|=n:t  ==  case t of {P}.c.{Q} =>
                                !Z s. P Z s --> (!s'. <c,s> -n-> s' --> Q Z s')"
translations          "||=n:G" == "Ball G (triple_valid n)"
defs hoare_valids_def: "G||=ts   ==  !n. ||=n:G --> ||=n:ts"
translations         "G |=t  " == " G||={t}"
                     "G||-ts"  == "(G,ts) : hoare_derivs"
                     "G |-t"   == " G||-{t}"

(* Most General Triples *)
constdefs MGT    :: "com => state triple"            ("{=}._.{->}" [60] 58)
         "{=}.c.{->} == {%Z s0. Z = s0}. c .{%Z s1. <c,Z> -c-> s1}"

inductive hoare_derivs intros

  empty:    "G||-{}"
  insert: "[| G |-t;  G||-ts |]
        ==> G||-insert t ts"

  asm:      "ts <= G ==>
             G||-ts" (* {P}.BODY pn.{Q} instead of (general) t for SkipD_lemma *)

  cut:   "[| G'||-ts; G||-G' |] ==> G||-ts" (* for convenience and efficiency *)

  weaken: "[| G||-ts' ; ts <= ts' |] ==> G||-ts"

  conseq: "!Z s. P  Z  s --> (? P' Q'. G|-{P'}.c.{Q'} &
                                   (!s'. (!Z'. P' Z' s --> Q' Z' s') --> Q Z s'))
          ==> G|-{P}.c.{Q}"


  Skip:  "G|-{P}. SKIP .{P}"

  Ass:   "G|-{%Z s. P Z (s[X::=a s])}. X:==a .{P}"

  Local: "G|-{P}. c .{%Z s. Q Z (s[Loc X::=s'<X>])}
      ==> G|-{%Z s. s'=s & P Z (s[Loc X::=a s])}. LOCAL X:=a IN c .{Q}"

  Comp:  "[| G|-{P}.c.{Q};
             G|-{Q}.d.{R} |]
         ==> G|-{P}. (c;;d) .{R}"

  If:    "[| G|-{P &>        b }.c.{Q};
             G|-{P &> (Not o b)}.d.{Q} |]
         ==> G|-{P}. IF b THEN c ELSE d .{Q}"

  Loop:  "G|-{P &> b}.c.{P} ==>
          G|-{P}. WHILE b DO c .{P &> (Not o b)}"

(*
  BodyN: "(insert ({P}. BODY pn  .{Q}) G)
           |-{P}.  the (body pn) .{Q} ==>
          G|-{P}.       BODY pn  .{Q}"
*)
  Body:  "[| G Un (%p. {P p}.      BODY p  .{Q p})`Procs
               ||-(%p. {P p}. the (body p) .{Q p})`Procs |]
         ==>  G||-(%p. {P p}.      BODY p  .{Q p})`Procs"

  Call:     "G|-{P}. BODY pn .{%Z s. Q Z (setlocs s (getlocs s')[X::=s<Res>])}
         ==> G|-{%Z s. s'=s & P Z (setlocs s newlocs[Loc Arg::=a s])}.
             X:=CALL pn(a) .{Q}"

ML {* use_legacy_bindings (the_context ()) *}

end

theorem single_stateE:

  state_not_singleton ==> ∀t. (∀s. s = t) --> False

validity

theorem triple_valid_def2:

  |=n:{P}. c .{Q} = (∀Z s. P Z s --> (∀s'. <c,s> -n-> s' --> Q Z s'))

theorem Body_triple_valid_0:

  |=0:{P}. BODY pn .{Q}

theorem Body_triple_valid_Suc:

  |=n:{P}. the (body pn) .{Q} = |=Suc n:{P}. BODY pn .{Q}

theorem triple_valid_Suc:

  |=Suc n:t ==> |=n:t

theorem triples_valid_Suc:

  ||=Suc n:ts ==> ||=n:ts

derived rules

theorem conseq12:

  [| G|-{P'}. c .{Q'};
     ∀Z s. P Z s --> (∀s'. (∀Z'. P' Z' s --> Q' Z' s') --> Q Z s') |]
  ==> G|-{P}. c .{Q}

theorem conseq1:

  [| G|-{P'}. c .{Q}; ∀Z s. P Z s --> P' Z s |] ==> G|-{P}. c .{Q}

theorem conseq2:

  [| G|-{P}. c .{Q'}; ∀Z s. Q' Z s --> Q Z s |] ==> G|-{P}. c .{Q}

theorem Body1:

  [| G ∪ (%p. {P p}. BODY p .{Q p}) `
         Procs||-(%p. {P p}. the (body p) .{Q p}) ` Procs;
     pnProcs |]
  ==> G|-{P pn}. BODY pn .{Q pn}

theorem BodyN:

  insert ({P}. BODY pn .{Q}) G|-{P}. the (body pn) .{Q} ==> G|-{P}. BODY pn .{Q}

theorem escape:

Z s. P Z s --> G|-{%Z s'. s' = s}. c .{%Z'. Q Z} ==> G|-{P}. c .{Q}

theorem constant:

  (C ==> G|-{P}. c .{Q}) ==> G|-{%Z s. P Z sC}. c .{Q}

theorem LoopF:

  G|-{%Z s. P Z s ∧ ¬ b s}. WHILE b DO c .{P}

theorem thin:

  [| G'||-ts; G'G |] ==> G||-ts

theorem weak_Body:

  G|-{P}. the (body pn) .{Q} ==> G|-{P}. BODY pn .{Q}

theorem derivs_insertD:

  G||-insert t ts ==> G|-tG||-ts

theorem finite_pointwise:

  [| finite U; ∀p. G|-{P' p}. c0.0 p .{Q' p} --> G|-{P p}. c0.0 p .{Q p};
     G||-(%p. {P' p}. c0.0 p .{Q' p}) ` U |]
  ==> G||-(%p. {P p}. c0.0 p .{Q p}) ` U

soundness

theorem Loop_sound_lemma:

  G|={P &> b}. c .{P} ==> G|={P}. WHILE b DO c .{P &> Not o b}

theorem Body_sound_lemma:

  G ∪ (%pn. {P pn}. BODY pn .{Q pn}) `
      Procs||=(%pn. {P pn}. the (body pn) .{Q pn}) ` Procs
  ==> G||=(%pn. {P pn}. BODY pn .{Q pn}) ` Procs

theorem hoare_sound:

  G||-ts ==> G||=ts

completeness

theorem MGT_alternI:

  G|-{=}.c.{->} ==> G|-{%Z s0. ∀s1. <c,s0> -c-> s1 --> Z = s1}. c .{op =}

theorem MGT_alternD:

  [| state_not_singleton; G|-{%Z s0. ∀s1. <c,s0> -c-> s1 --> Z = s1}. c .{op =} |]
  ==> G|-{=}.c.{->}

theorem MGF_complete:

  [| {}|-{=}.c.{->}; {}|={P}. c .{Q} |] ==> {}|-{P}. c .{Q}

theorem MGF_lemma1:

  [| state_not_singleton; ∀pn∈dom body. G|-{=}.BODY pn.{->}; WT c |]
  ==> G|-{=}.c.{->}

theorem nesting_lemma:

  [| !!G ts. tsG ==> P G ts;
     !!G pn.
        P (insert (mgt_call pn) G) {mgt (the (body pn))} ==> P G {mgt_call pn};
     !!G c. [| wt c; ∀pnU. P G {mgt_call pn} |] ==> P G {mgt c};
     !!pn. pnU ==> wt (the (body pn)); finite U; uG = mgt_call ` U; GuG;
     n ≤ card uG; card G = card uG - n; wt c |]
  ==> P G {mgt c}

theorem MGT_BodyN:

  insert ({=}.BODY pn.{->}) G|-{=}.the (body pn).{->} ==> G|-{=}.BODY pn.{->}

theorem MGF:

  [| state_not_singleton; WT_bodies; WT c |] ==> {}|-{=}.c.{->}

theorem MGT_Body:

  [| G ∪ (%pn. {=}.BODY pn.{->}) ` Procs||-(%pn. {=}.the (body pn).{->}) ` Procs;
     finite Procs |]
  ==> G||-(%pn. {=}.BODY pn.{->}) ` Procs

theorem MGF_lemma2_simult:

  [| state_not_singleton; WT_bodies;
     F ⊆ (%pn. {=}.the (body pn).{->}) ` dom body |]
  ==> (%pn. {=}.BODY pn.{->}) ` dom body||-F

theorem MGF':

  [| state_not_singleton; WT_bodies; WT c |] ==> {}|-{=}.c.{->}

theorem hoare_complete:

  [| state_not_singleton; WT_bodies; WT c; {}|={P}. c .{Q} |] ==> {}|-{P}. c .{Q}

unused derived rules

theorem falseE:

  G|-{%Z s. False}. c .{Q}

theorem trueI:

  G|-{P}. c .{%Z s. True}

theorem disj:

  [| G|-{P}. c .{Q}; G|-{P'}. c .{Q'} |]
  ==> G|-{%Z s. P Z sP' Z s}. c .{%Z s. Q Z sQ' Z s}

theorem hoare_SkipI:

Z s. P Z s --> Q Z s ==> G|-{P}. SKIP .{Q}

useful derived rules

theorem single_asm:

  {t}|-t

theorem export_s:

  (!!s'. G|-{%Z s. s' = sP Z s}. c .{Q}) ==> G|-{P}. c .{Q}

theorem weak_Local:

  [| G|-{P}. c .{Q}; ∀k Z s. Q Z s --> Q Z (s[Loc Y::=k]) |]
  ==> G|-{%Z s. P Z (s[Loc Y::=a s])}. LOCAL Y:=a IN c .{Q}