
gputils 0.10.3

James Bowman

May 12 2002

Contents

1 gpasm 3
1.1 Running gpasm . 3

1.1.1 Using gpasm with “make” . 4
1.1.2 Dealing with errors . 4

1.2 Syntax . 4
1.2.1 File structure . 4
1.2.2 Expressions . 4
1.2.3 Numbers . 5
1.2.4 Preprocessor . 6

1.3 Directives . 7
1.3.1 Code generation . 7
1.3.2 Configuration . 7
1.3.3 Conditional assembly . 7
1.3.4 Macros . 7
1.3.5 Suggestions for structuring your code . 8
1.3.6 Directive summary . 8

1.4 Instructions . 14
1.4.1 Supported processors . 14
1.4.2 Instruction set summary . 15

1.5 Errors/Warnings/Messages . 17
1.5.1 Errors . 17
1.5.2 Warnings . 19
1.5.3 Messages . 19

2 gplib 21

3 gplink 22

4 Utilities 23
4.1 gpdasm . 23

4.1.1 Running gpdasm . 23
4.1.2 Comments on Disassembling . 23

4.2 gpvc . 24
4.2.1 Running gpvc . 24

4.3 gpvo . 24
4.3.1 Running gpvo . 24

1

Introduction

gputils is a collection of tools for Microchip (TM) PIC microcontrollers. It includes gpasm, gplink, and
gplib. Each tool is intended to be an open source replacement for a corresponding Microchip (TM) tool.
This manual covers the basics of running the tools. For more details on a microcontroller, consult the
manual for the specific PICmicro product that you are using.

This document is part of gputils.
gputils is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2, or (at your option) any
later version.

gputils is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with gpasm; see the file
COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

2

Chapter 1

gpasm

1.1 Running gpasm

The general syntax for running gpasm is

gpasm <options> <asm-file>

Where options can be one of:

Option Meaning

a <format> Produce hex file in one of four formats: inhx8m (the default), inhx8s,
inhx16, inhx32.

c
Ignore case in source code. By default gpasms to treats “fooYa” and
“FOOYA” as being different.

d symbol[=value] Equivalent to “#define <symbol> <value>”.
e [ON|OFF] Expand macros in listing file.
h Display the help message.
I <directory> Specify an include directory.
l List the supported processors.
L Ignore nolist directives.
m Memory dump.
n Use DOS style newlines (CRLF) in hex file. This option is disabled on

win32 systems.
o <file> Alternate name of hex output file.
p<processor> Select target processor.
q Quiet
r <radix> Set the radix, i.e. the number base that gpasm uses when interpreting

numbers. <radix> can be one of “oct”, “dec” and “hex” for bases eight,
ten, and sixteen respectively. Default is “hex”.

w [0 | 1 | 2] Set the message level.
v Print gpasm version information and exit.

Unless otherwise specified, gpasm removes the “.asm” suffix from its input file, replacing it with
“.lst” and “.hex” for the list and hex output files respectively. On most modern operating systems case is
significant in filenames. For this reason you should ensure that filenames are named consistently, and that
the “.asm” suffix on any source file is in lower case.

gpasm always produces a “.lst” file. If it runs without errors, it also produces a “.hex” file.

3

CHAPTER 1. GPASM 4

1.1.1 Using gpasm with “make”

On most operating systems, you can build a project using the make utility. To use gpasm with make, you
might have a “makefile” like this:

tree.hex: tree.asm treedef.inc
gpasm tree.asm

This will rebuild “tree.hex” whenever either of the “tree.asm” or “treedef.inc” files change. A more
comprehensive example of using gpasm with makefiles is included as example1 in the gpasm source
distribution.

1.1.2 Dealing with errors

gpasm doesn’t specifically create an error file. This can be a problem if you want to keep a record of
errors, or if your assembly produces so many errors that they scroll off the screen. To deal with this if your
shell is “sh”, “bash” or “ksh”, you can do something like:

gpasm tree.asm 2>&1 | tee tree.err

This redirects standard error to standard output (“2>&1”), then pipes this output into “tee”, which copies
it input to “tree.err”, and then displays it.

1.2 Syntax

1.2.1 File structure

gpasm source files consist of a series of lines. Lines can contain a label (starting in column 1) or an
operation (starting in any column after 1), both, or neither. Comments follow a “;” character, and are
treated as a newline. Labels may be any series of the letters A-z, digits 0-9, and the underscore (“_”); they
may not begin with a digit. Labels may be followed by a colon (“:”).

An operation is a single identifier (the same rules as for a label above) followed by a space, and a
comma-separated list of parameters. For example, the following are all legal source lines:

; Blank line
loop sleep ; Label and operation

incf 6,1 ; Operation with 2 parameters
goto loop ; Operation with 1 parameter

1.2.2 Expressions

gpasm supports a full set of operators, based on the C operator set. The operators in the following table
are arranged in groups of equal precedence, but the groups are arranged in order of increasing precedence.
When gpasm encounters operators of equal precedence, it always evaluates from left to right.

CHAPTER 1. GPASM 5

Operator Description

= assignment

|| logical or

&& logical and

& bitwise and
| bitwise or
^ bitwise exclusive-or

< less than
> greater than

== equals
!= not equals
>= greater than or equal
<= less than or equal

<< left shift
>> right shift

+ addition
- subtraction

* multiplication
/ division

% modulo

HIGH high byte
LOW low byte

- negation
! logical not
~ bitwise no

Any symbol appearing in column 1 may be assigned a value using the assignment operator (=) in the
previous table. Additionally, any value previously assigned may be modified using one of the operators
in the table below. Each of these operators evaluates the current value of the symbol and then assigns a
new value based on the operator.

Operator Description

= assignment
++ increment by 1
– decrement by 1

+= increment
-= decrement
*= multiply
/= divide

%= modulo
<<= left shift
>>= right shift
&= bitwise and
|= bitwise or
^= bitwise exclusive-or

1.2.3 Numbers

gpasm gives you several ways of specifying numbers. You can use a syntax that uses an initial character
to indicate the number’s base. The following table summarizes the alternatives. Note the C-style option
for specifying hexadecimal numbers.

CHAPTER 1. GPASM 6

base general syntax 21 decimal written as

binary B’[01]*’ B’10101’
octal O’[0-7]*’ O’25’

decimal D’[0-9]*’ D’21’
hex H’[0-F]*’ H’15’
hex 0x[0-F]* 0x15

When you write a number without a specifying prefix such as “45”, gpasm uses the current radix (base)
to interpret the number. You can change this radix with the RADIX directive, or with the “-r” option on
gpasm’s command-line. If you do not start hexadecimal numbers with a digit, gpasm will attempt to
interpret what you’ve written as an identifier. For example, instead of writing C2, write either 0C2, 0xC2
or H’C2’.

Case is not significant when interpreting numbers: 0ca, 0CA, h’CA’ and H’ca’ are all equivalent.
Several legacy mpasm number formats are also supported. These formats have various shortcomings,

but are still supported. The table below summarizes them.

base general syntax 21 decimal written as

binary [01]*b 10101b
octal q’[0-7]*’ q’25’
octal [0-7]*o 25o
octal [0-7]*q 25q

decimal 0-9]*d 21d
decimal .[0-9]* .21

hex [0-F]*h 15h

You can write the ASCII code for a character X using ’X’, or A’X’.

1.2.4 Preprocessor

A line such as:

include foo.inc

will make gpasm fetch source lines from the file “foo.inc” until the end of the file, and then return to the
original source file at the line following the include.

Lines beginning with a “#” are preprocessor directives, and are treated differently by gpasm. They
may contain a “#define”, or a “#undefine” directive.

Once gpasm has processed a line such as:

#define X Y

every subsequent occurrence of X is replaced with Y, until the end of file or a line

#undefine X

appears.
The preprocessor will replace an occurance of #v(expression) in a symbol with the value of “expres-

sion” in decimal. In the following expression:

number equ 5
label_#v((number +1) * 5)_suffix equ 0x10

gpasm will place the symbol “label_30_suffix” with a value of 0x10 in the symbol table.
The preprocessor in gpasm is only like the C preprocessor; its syntax is rather different from that of

the C preprocessor. gpasm uses a simple internal preprocessor to implement “include”, “#define” and
“#undefine”.

CHAPTER 1. GPASM 7

1.3 Directives

1.3.1 Code generation

To set the PIC memory location where gpasm will start assembling code, use the ORG directive. If you
don’t specify an address with ORG, gpasm assumes 0x0000.

1.3.2 Configuration

You can choose the fuse settings for your PIC implementation using the __CONFIG directive, so that
the hex file set the fuses explicitly. Naturally you should make sure that these settings match your PIC
hardware design.

The __MAXRAM and __BADRAM directives specify which RAM locations are legal. These direc-
tives are mostly used in processor-specific configuration files.

1.3.3 Conditional assembly

The IF, IFNDEF, IFDEF, ELSE and ENDIF directives enable you to assemble certain sections of code
only if a condition is met. In themselves, they do not cause gpasm to emit any PIC code. The example in
section 1.3.4 for demonstrates conditional assembly.

1.3.4 Macros

gpasm supports a simple macro scheme; you can define and use macros like this:

any macro parm
movlw parm
endm

...
any 33

A more useful example of some macros in use is:

; Shift reg left, result (w or f) in ’dst’
slf macro reg,dst

clrc
rlf reg,f

endm

; Scale W by “factor”. Result in “reg”, W unchanged.
scale macro reg, factor

if (factor == 1)
movwf reg ; 1 X is easy

else
scale reg, (factor / 2) ; W * (factor / 2)
slf reg,f ; double reg
if ((factor & 1) == 1) ; if lo-bit set ..

addwf reg,f ; .. add W to reg
endif

endif
endm

This recursive macro generates code to multiply W by a constant “factor”, and stores the result in “reg”.
So writing:

scale tmp,D’10’

CHAPTER 1. GPASM 8

is the same as writing:

movwf tmp ; tmp = W
clrc
rlf tmp,f ; tmp = 2 * W
clrc
rlf tmp,f ; tmp = 4 * W
addwf tmp,f ; tmp = (4 * W) + W = 5 * W
clrc
rlf tmp,f ; tmp = 10 * W

1.3.5 Suggestions for structuring your code

Nested IF operations can quickly become confusing. Indentation is one way of making code clearer.
Another way is to add braces on IF, ELSE and ENDIF, like this:

IF (this) ; {
...

ELSE ; }{
...

ENDIF ; }

After you’ve done this, you can use your text editor’s show-matching-brace to check matching parts of the
IF structure. In vi this command is “%”, in emacs it’s M-C-f and M-C-b.

1.3.6 Directive summary

__BADRAM

__BADRAM <expression> [, <expression]*

Instructs gpasm that it should generate an error if there is any use of the given RAM locations. Specify a
range of addresses with <lo>-<hi>. See any processor-specific header file for an example.

See also: __MAXRAM

__CONFIG

__CONFIG <expression>

Sets the PIC processor’s configuration fuses.

__IDLOCS

__IDLOCS <expression> or __IDLOCS <expression1>,<expression2>

Sets the PIC processor’s identification locations. For 12 and 14 bit processors, the four id locations are set
to the hexidecimal value of expression. For 18cxx devices idlocation expression1 is set to the hexidecimal
value of expression2.

__MAXRAM

__MAXRAM <expression>

Instructs gpasm that an attempt to use any RAM location above the one specified should be treated as an
error. See any processor specific header file for an example.

See also: __BADRAM

CHAPTER 1. GPASM 9

CBLOCK

CBLOCK [<expression>]
<label>[:<increment>][,<label>[:<increment>]]

ENDC

Marks the beginning of a block of constants <label>. gpasm allocates values for symbols in the block
starting at the value <expression> given to CBLOCK. An optional <increment> value leaves space after
the <label> before the next <label>.

See also: EQU

CONSTANT

CONSTANT <label>=<expression> [, <label>=<expression>]*

Delcares <label> equal to <expression>. Similar to SET and VARIABLE, except it can not be changed
once assigned.

See also: SET, VARIABLE

DA

<label> DA <expression> [, <expression]*

Stores Strings in program memory. The data is stored as one 14 bit word representing two 7 bit ASCII
characters.

See also: DT

DATA

DATA <expression> [, <expression]*

Generates the specified data.
See also: DA, DB, DE, DW

DB

<label> DB <expression> [, <expression]*

Declare data of one byte. The values are packed two per word.
See also: DA, DATA, DE, DW

DE

<label> DE <expression> [, <expression]*

Define EEPROM data. Each character in a string is stored in a seperate word.
See also: DA, DATA, DB, DW

DT

DT <expression> [, <expression]*

Generates the specified data as bytes in a sequence of RETLW instructions.
See also: DATA

CHAPTER 1. GPASM 10

DW

<label> DW <expression> [, <expression]*

Declare data of one word.
See also: DA, DATA, DB, DW

ELSE

ELSE

Marks the alternate section of a conditional assembly block.
See also: IF, IFDEF, IFNDEF, ELSE, ENDIF

END

END

Marks the end of the source file.

ENDC

ENDC

Marks the end of a CBLOCK.
See also: CBLOCK

ENDIF

ENDIF

Ends a conditional assembly block.
See also: IFDEF, IFNDEF, ELSE, ENDIF

ENDM

ENDM

Ends a macro definition.
See also: MACRO

ENDW

ENDW

Ends a while loop.
See also: WHILE

EQU

<label> EQU <expression>

Permanently assigns the value obtained by evaluating <expression> to the symbol <label>.
See also: SET

CHAPTER 1. GPASM 11

ERROR

ERROR <string>

Issues an error message.
See also: MESSG

ERRORLEVEL

ERRORLEVEL {0 | 1 | 2 | +<msgnum> | -<msgnum>}[, ...]

Sets the types of messages that are printed.

Setting Affect

0 Messages, warnings and errors printed.
1 Warnings and error printed.
2 Errors printed.

+<msgnum> Inhibits the printing of message <msgnum>.
-<msgnum> Enables the printing of message <msgnum>.

See also: LIST

EXITM

EXITM

Immediately return from macro expansion during assembly.
See also: ENDM

EXPAND

EXPAND

Expand the macro in the listing file.
See also: ENDM

FILL

<label> FILL <expression>,<count>

Generates <count> occurances of the program word or byte <expression>. If expression is enclosed by
parentheses, expression is a line of assembly.

See also: DATA DW ORG

IF

IF <expression>

Begin a conditional assembly block. If the value obtained by evaluating <expression> is true (i.e. non-
zero), code up to the following ELSE or ENDIF is assembled. If the value is false (i.e. zero), code is not
assembled until the corresponding ELSE or ENDIF.

See also: IFDEF, IFNDEF, ELSE, ENDIF

IFDEF

IFDEF <symbol>

Begin a conditional assembly block. If <symbol> appears in the symbol table, gpasm assembles the
following code.

See also: IF, IFNDEF, ELSE, ENDIF

CHAPTER 1. GPASM 12

IFNDEF

IFNDEF <symbol>

Begin a conditional assembly block. If <symbol>does not appear in the symbol table, gpasm assembles
the following code.

See also: IF, IFNDEF, ELSE, ENDIF

LIST

LIST <expression> [, <expression>] *

Enables output to the list (“.lst”) file. All arguments are interpretted as decimal regardless of the current
radix setting. “list n=0” may be used to prevent page breaks in the code section of the list file. Other
options are listed in the table below:

option description

b=nnn Sets the tab spaces
f=<format> Set the hex file format. Can be inhx8m, inhx8s, inhx16, or inhx32.

mm=[ON|OFF] Memory Map on or off
n=nnn Sets the number of lines per page

p = <symbol> Sets the current processor
r= [oct | dec | hex] Sets the radix
st = [ON | OFF] Symbol table dump on or off

w=[0 | 1| 2] Sets the message level.
x=[ON|OFF] Macro expansion on or off

See also: NOLIST, RADIX, PROCESSOR

LOCAL

LOCAL <symbol>[[=<expression>], [<symbol>[=<expression>]]*]

Declares <symbol> as local to the macro that’s currently being defined. This means that further occur-
rences of <symbol> in the macro definition refer to a local variable, with scope and lifetime limited to the
execution of the macro.

See also: MACRO, ENDM

MACRO

<label> MACRO [<symbol> [, <symbol>]*]

Declares a macro with name <label>. gpasm replaces any occurrences of <symbol> in the macro definition
with the parameters given at macro invocation.

See also: LOCAL, ENDM

MESSG

MESSG <string>

Writes <string> to the list file, and to the standard error output.
See also: ERROR

NOEXPAND

NOEXPAND

Turn off macro expansion in the list file.
See also: EXPAND

CHAPTER 1. GPASM 13

NOLIST

NOLIST

Disables list file output.
See also: LIST

ORG

ORG <expression>

Sets the location at which instructions will be placed. If the source file does not specify an address with
ORG, gpasm assumes an ORG of zero.

PAGE

PAGE

Causes the list file to advance to the next page.
See also: LIST

PROCESSOR

PROCESSOR <symbol>

Selects the target processor. See section ?? for more details.
See also: LIST

RADIX

RADIX <symbol>

Selects the default radix from “oct” for octal, “dec” for decimal or “hex” for hexadecimal. gpasm uses
this radix to interpret numbers that don’t have an explicit radix.

See also: LIST

RES

RES <mem_units>

Causes the memory location pointer to be advanced <mem_unitsl>. Can be used to reserve data storage.
See also: FILL, ORG

SET

<label> SET <expression>

Temporarily assigns the value obtained by evaluating <expression> to the symbol <label>.
See also: SET

SPACE

SPACE <expression>

Inserts <expression> number of blank lines into the listing file.
See also: LIST

CHAPTER 1. GPASM 14

SUBTITLE

SUBTITLE <string>

This directive establishes a second program header line for use as a subtitle in the listing output. <string>
is an ASCII string enclosed by double quotes, no longer than 60 characters.

See also: TITLE

TITLE

TITLE <string>

This directive establishes a program header line for use as a title in the listing output. <stringt> is an
ASCII string enclosed by double quotes, no longer than 60 characters.

See also: SUBTITLE

VARIABLE

VARIABLE <label>[=<expression>, <label>[=<expression>]]*

Delcares variable with the name <label>. The value of <label> may later be reassigned. The value of
<label> does not have to be assigned at declaration.

See also: CONSTANT

WHILE

WHILE <expression>

Performs loop while <expression> is true.
See also: ENDW

1.4 Instructions

1.4.1 Supported processors

gpasm currently supports the following processors:
eeprom8 gen p12c508 p12c508a p12c509 p12c509a
p12c671 p12c672 p12ce518 p12ce519 p12ce673 p12ce674
p12cr509a p14000 p16c5x p16cxx p16c432 p16c433
p16c461 p16c505 p16c52 p16c54 p16c54a p16c54b
p16c54c p16c55 p16c55a p16c554 p16c558 p16c56
p16c56a p16c57 p16c57c p16c58 p16c58a p16c58b
p16c61 p16c62 p16c62a p16c62b p16c620 p16c620a
p16c621 p16c621a p16c622 p16c622a p16c63 p16c63a
p16c64 p16c64a p16c641 p16c642 p16c65 p16c65a
p16c65b p16c66 p16c661 p16c662 p16c67 p16c70
p16c71 p16c71a p16c710 p16c711 p16c712 p16c715
p16c716 p16c717 p16c72 p16c72a p16c73 p16c73a
p16c73b p16c74 p16c745 p16c74a p16c74b p16c76
p16c765 p16c77 p16c770 p16c771 p16c773 p16c774
p16c781 p16c782 p16c83 p16c84 p16c85 p16c86
p16c923 p16c924 p16c925 p16c926 p16ce623 p16ce624
p16ce625 p16cr54 p16cr54a p16cr54b p16cr54c p16cr56
p16cr56a p16cr57a p16cr57b p16cr57c p16cr58a p16cr58b
p16cr62 p16cr620a p16cr63 p16cr64 p16cr65 p16cr72
p16cr83 p16cr84 p16f73 p16f74 p16f83 p16f84

CHAPTER 1. GPASM 15

p16f85 p16f86 p16f84a p16f627 p16f628 p16f870
p16f871 p16f872 p16f873 p16f874 p16f876 p16f877
p16f877a p16hv540 p16lc74b p17cxx p17c42 p17c42a
p17c43 p17c44 p17c752 p17c756 p17c756a p17c762
p17c766 p17cr42 p17cr43 p18cxx2 p18c242 p18c252
p18c442 p18c452 p18c601 p18c658 p18c801 p18c858
p18f010 p18f012 p18f020 p18f022 p18f242 p18f248
p18f252 p18f258 p18f442 p18f448 p18f452 p18f458
sx18 sx20 sx28

1.4.2 Instruction set summary

12 bit Devices (PIC12C5XX)

Syntax Description

ADDWF <f>,<dst> Add W to <f>, result in <dst>
ANDLW <f>,<dst> And W and literal, result in W
ANDWF <f>,<dst> And W and <f>, result in <dst>
BCF <f>,<bit> Clear <bit> of <f>
BSF <f>,<bit> Set <bit> of <f>
BTFSC <f>,<bit> Skip next instruction if <bit> of <f> is clear
BTFSS <f>,<bit> Skip next instruction if <bit> of <f> is set
CALL <addr> Call subroutine
CLRF <f>,<dst> Write zero to <dst>
CLRW Write zero to W
CLRWDT Reset watchdog timer
COMF <f>,<dst> Complement <f>, result in <dst>
DECF <f>,<dst> Decrement <f>, result in <dst>
DECFSZ <f>,<dst> Decrement <f>, result in <dst>, skip if zero
GOTO <addr> Go to <addr>
INCF <f>,<dst> Increment <f>, result in <dst>
INCFSZ <f>,<dst> Increment <f>, result in <dst>, skip if zero
IORLW <f>,<dst> Or W and <f>, result in <dst>
MOVF <f>,<dst> Move <f> to <dst>
MOVLW <imm8> Move literal to W
MOVWF <f> Move W to <f>
NOP No operation
OPTION
RETLW <imm8> Load W with immediate and return
RLF <f>,<dst> Rotate <f> left, result in <dst>
RRF <f>,<dst> Rotate <f> right, result in <dst>
SLEEP Enter sleep mode
SUBWF <f>,<dst> Subtract W from <f>, result in <dst>
SWAPF <f>,<dst> Swap nibbles of <f>, result in <dst>
TRIS
XORLW Xor W and <f>, result in <dst>
XORWF Xor W and immediate

CHAPTER 1. GPASM 16

14 Bit Devices (PIC16CXX)

Syntax Description

ADDLW <imm8> Add immediate to W
ADDWF <f>,<dst> Add W to <f>, result in <dst>
ANDLW <f>,<dst> And W and <f>, result in <dst>
BCF <f>,<bit> Clear <bit> of <f>
BSF <f>,<bit> Set <bit> of <f>
BTFSC <f>,<bit> Skip next instruction if <bit> of <f> is clear
BTFSS <f>,<bit> Skip next instruction if <bit> of <f> is set
CALL <addr> Call subroutine
CLRF <f>,<dst> Write zero to <dst>
CLRW Write zero to W
CLRWDT Reset watchdog timer
COMF <f>,<dst> Complement <f>, result in <dst>
DECF <f>,<dst> Decrement <f>, result in <dst>
DECFSZ <f>,<dst> Decrement <f>, result in <dst>, skip if zero
GOTO <addr> Go to <addr>
INCF <f>,<dst> Increment <f>, result in <dst>
INCFSZ <f>,<dst> Increment <f>, result in <dst>, skip if zero
IORLW <f>,<dst> Or W and <f>, result in <dst>
MOVF <f>,<dst> Move <f> to <dst>
MOVLW <imm8> Move literal to W
MOVWF <f> Move W to <f>
NOP No operation
OPTION
RETFIE Return from interrupt
RETLW <imm8> Load W with immediate and return
RETURN Return from subroutine
RLF <f>,<dst> Rotate <f> left, result in <dst>
RRF <f>,<dst> Rotate <f> right, result in <dst>
SLEEP Enter sleep mode
SUBLW Subtract W from literal
SUBWF <f>,<dst> Subtract W from <f>, result in <dst>
SWAPF <f>,<dst> Swap nibbles of <f>, result in <dst>
TRIS
XORLW Xor W and <f>, result in <dst>
XORWF Xor W and immediate

Ubicom Processors

For Ubicom (Scenix) processors, the assembler supports the following instructions, in addition to those
listed under “12 Bit Devices” above.

Syntax Description

BANK <imm3>
IREAD
MODE <imm4>
MOVMW
MOVWM
PAGE <imm3>
RETI
RETIW
RETP
RETURN

CHAPTER 1. GPASM 17

Special macros

There are also a number of standard additional macros. These macros are:
Syntax Description

ADDCF <f>,<dst> Add carry to <f>, result in <dst>
B <addr> Branch
BC <addr> Branch on carry
BZ <addr> Branch on zero
BNC <addr> Branch on no carry
BNZ <addr> Branch on not zero
CLRC Clear carry
CLRZ Clear zero
SETC Set carry
SETZ Set zero
MOVFW <f> Move file to W
NEGF <f> Negate <f>
SKPC Skip on carry
SKPZ Skip on zero
SKPNC Skip on no carry
SKPNZ Skip on not zero
SUBCF <f>,<dst> Subtract carry from <f>, result in <dst>
TSTF <f> Test <f>

1.5 Errors/Warnings/Messages

gpasm writes every error message to two locations:

� the standard error output

� the list file (“.lst”)

The format of error messages is:

Error <src-file> <line> : <code> <description>

where:

<src-file> is the source file where gpasm encountered the error

<line> is the line number

<code> is the 3-digit code for the error, given in the list below

<description> is a short description of the error. In some cases this contains further information about
the error.

Error messages are suitable for parsing by emacs’ “compilation mode”. This chapter lists the error mes-
sages that gpasm produces.

1.5.1 Errors

101 ERROR directive

A user-generated error. See the ERROR directive for more details.

114 Divide by zero

gpasm encountered a divide by zero.

CHAPTER 1. GPASM 18

115 Duplicate Label

Duplicate label or redefining a symbol that can not be redefined.

124 Illegal Argument

gpasm encountered an illegal argument in an expression.

125 Illegal Condition

An illegal condition like a missing endif or endw has been encountered.

126 Argument out of Range

The expression has an argument that was out of range.

127 Too many arguments

gpasm encountered an expression with too many arguments.

128 Missing argument(s)

gpasm encountered an expression with at least one missing argument.

129 Expected

Expected a certain type of argument.

130 Processor type previously defined

The processor is being redefined.

131 Undefined processor

The processor type has not been defined.

132 Unknown processor

The selected processor is not valid. Check the processors listed in section ??.

133 Hex file format INHX32 required

An address above 32K was specified.

135 Macro name missing

A macro was defined without a name.

136 Duplicate macro name

A macro name was duplicated.

145 Unmatched ENDM

ENDM found without a macro definition.

159 Odd number of FILL bytes

In PIC18CXX devices the number of bytes must be even.

CHAPTER 1. GPASM 19

1.5.2 Warnings

201 Symbol not previously defined.

The symbol being #undefined was not previously defined.

202 Argument out of range

The argument does not fit in the allocated space.

211 Extraneous arguments

Extra arguments were found on the line.

215 Processor superseded by command line

The processor was specified on the command line and in the source file. The command line has prece-
dence.

216 Radix superceded by command line

The radix was specified on the command line and in the source file. The command line has precedence.

217 Hex format superceded by command line

The hex file format was specified on the command line and in the source file. The command line has
precedence.

218 Expected DEC, OCT, HEX. Will use HEX.

gpasm encountered an invalid radix.

219 Invalid RAM location specified.

gpasm encountered an invalid RAM location as specified by the __MAXRAM and __BADRAM direc-
tives.

222 Error messages can not be disabled

Error messages can not be disabled using the ERRORLEVEL directive.

223 Redefining processor

The processor is being reselected by the LIST or PROCESSOR directive.

224 Use of this instruction is not recommanded

Use of the TRIS and OPTION instructions is not recommended for a PIC16CXX device.

1.5.3 Messages

301 User Message

User message, invoked with the MESSG directive.

303 Program word too large. Truncated to core size.

gpasm has encounter a program word larger than the core size of the selected device.

304 ID Locations value too large. Last four hex digits used.

CHAPTER 1. GPASM 20

The ID locations value specified is too large.

305 Using default destination of 1 (file).

No destination was specified so the default location was used.

308 Warning level superseded by command line

The warning level was specified on the command line and in the source file. The command line has
precedence.

309 Macro expansion superseded by command line

Macro expansion was specified on the command line and in the source file. The command line has
precedence.

Chapter 2

gplib

gplib is a new and incomplete tool. When complete, it will provide the ability to archive relocatable
objects. These archives, or libraries, can be used to simplify linking.

21

Chapter 3

gplink

gplink is a new and incomplete tool. When complete, it will provide the ability to link relocatable objects
to produce an executable object.

22

Chapter 4

Utilities

4.1 gpdasm

gpdasm is open source disassembler for Microchip’s popular PICmicro (TM) line of microcontrollers.
gpdasm is part of gputils.

4.1.1 Running gpdasm

The general syntax for running gpdasm is

gpdasm <options> <hex-file>

Where options can be one of:

Option Meaning

h Display the help message.
i Display hex file information
m Memory dump hex file.
p [pic12|pic14] Select processor family.
s Print short form output
v Print gpasm version information and exit.

gpdasm doesn’t specifically create an output file. It dumps its output to the screen. This helps to
reduce the risk that a good source file will be unintentionally overwritten. If you want to create an output
file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gpdasm test.hex > test.dis

This redirects standard output to the file “test.dis”.

4.1.2 Comments on Disassembling
� The gpdasm only uses a hex file as an input. Because of this it has no way to distinguish between

instructions and data in program memory.

� If gpdasm encounters an unknown instruction it uses the DW directive and treats it as raw data.

� There are DON’T CARE bits in the instruction words. Normally, this isn’t a problem. It could be,
however, if a file with data in the program memory space is disassembled and then reassembled.
Example: gpdasm will treat 0x0060 in a 14 bit device as a NOP. If the output is then reassembled,
gpasm will assign a 0x0000 value. The value has changed and both tools are behaving correctly.

23

CHAPTER 4. UTILITIES 24

4.2 gpvc

gpvc is open source cod file viewer for Microchip’s popular PICmicro (TM) line of microcontrollers. gpvc
is part of gputils.

4.2.1 Running gpvc

The general syntax for running gpdasm is

gpvc <options> <cod-file>

Where options can be one of:

Option Meaning

a Display all information
d Display directory header
s Display symbols
h Show the help message.
r Display rom
l Display source listing
m Display debug message area
v Print gpvc version information and exit.

gpvc doesn’t specifically create an output file. It dumps its output to the screen. If you want to create
an output file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gpvc test.cod > test.dump

This redirects standard output to the file “test.dump”.

4.3 gpvo

gpvo is open source object file viewer for Microchip’s popular PICmicro (TM) line of microcontrollers.
gpvo is part of gputils.

4.3.1 Running gpvo

The general syntax for running gpdasm is

gpvo <options> <object-file>

Where options can be one of:

Option Meaning

a Auxillary record
b Binary data
f File header
h Show the help message.
o Optional header
p [pic12|pic14] Select processor
s Section data
t Symbol data
v Print gpvo version information and exit.

gpvo doesn’t specifically create an output file. It dumps its output to the screen. If you want to create
an output file and your shell is “sh”, “bash” or “ksh”, you can do something like:

CHAPTER 4. UTILITIES 25

gpvo test.obj > test.dump

This redirects standard output to the file “test.dump”.

Index

ASCII, 6

BADRAM, 8
bash, 4, 23, 24

case, 3
CBLOCK, 9
character, 6
comments, 4
CONFIG, 8
CONSTANT, 9

DA, 9
DATA, 9
DB, 9
DE, 9
DT, 9
DW, 10

ELSE, 10
END, 10
ENDC, 10
ENDIF, 10
ENDM, 10
ENDW, 10
EQU, 10
ERROR, 11
error file, 4
ERRORLEVEL, 11
EXITM, 11

FILL, 11

GNU, 2
gpdasm, 23
gpvc, 24
gpvo, 24

hex file, 3

IDLOCS, 8
IF, 11
IFDEF, 11
IFNDEF, 12
include, 6

ksh, 4, 23, 24

labels, 4
License, 2
LIST, 12
LOCAL, 12

MACRO, 12
make, 4
MAXRAM, 8
MESSG, 12

NO WARRANTY, 2
NOEXPAND, 12
NOLIST, 13

operators, 4
options, 3
ORG, 13

PAGE, 13
PROCESSOR, 13

RADIX, 13
radix, 3, 5
RES, 13
Running gpdasm, 23
Running gpvc, 24
Running gpvo, 24

SET, 13
sh, 4, 23, 24
SPACE, 13
SUBTITLE, 14

tee, 4
TITLE, 14

VARIABLE, 14

WHILE, 14

26

