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Chapter 1

Introduction

PCP (Pattern Classification Program) is an open-source program for supervised classification of
patterns. In the context of PCP, pattern is defined as a multidimensional vector of measurements
(features or attributes), and pattern classification refers to the problem of assigning the vectors into
one of a given number of categories (classes).

Note that sometimes different terms are used to refer to this field, for example machine learning,
pattern recognition, statistical learning, etc. We use the term pattern classification to make it clear
that PCP only supports classification of patterns, and not regression, data mining, image analysis
or other related functions.

The principal purpose of PCP is to efficiently analyze potentially large datasets using estab-
lished, state-of-the-art machine learning algorithms. This permits comparison with other methods,
for example those which the user is developing, or other published methods not implemented in
PCP.

PCP uses character-driven menus, and thus does not require graphics support or libraries. Input
data is read from tab-delimited text (ASCII) files. Commands are issued interactively or supplied
in a batch file. Results are presented in tabular form on the screen, and also saved in text files
in easily parsable formats. The files can then be used for graphical display or further analyses by
other programs.

This User’s Guide provides detailed instructions for using PCP. It assumes that the reader is
familiar with the concepts and purpose of pattern classification. Understanding of the internal
workings of the algorithms, other than familiarity with the basic parameters, is not required for
the use of PCP.

A brief overview of PCP has been published in journal Bioiformatics [29]. Please cite this article
if you publish work which uses PCP.

The main features of PCP are:

• efficient, industrial-strength implementation of a variety of algorithms for pattern classifi-
cation, feature extraction and feature selection, including support for very large datasets,
limited only by the amount of available memory

• PCP consists of a single binary executable which does not depend on any special run-time
environment, libraries or interpreters

• it allows easy binding of source code functions from many programming languages
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6 CHAPTER 1. INTRODUCTION

• simple installation (no configuration required)

• interactive or batch processing

• unrestricted redistribution of the program in binary and source formats (including unre-
stricted incorporation in commercial products)

PCP implements the following machine learning algorithms:

• parametric classifiers (linear and quadratic)

• least-squares (pseudo-inverse) linear discriminant

• k-Nearest Neighbor (k-NN)

• neural networks (Multi-Layer Perceptron, MLP)

• Support Vector Machine (SVM) algorithm

• model selection for SVM, MLP and k-NN

• Bayes error estimation

• cross-validation

• bagging (committee) classification

• Fisher’s linear discriminant

• dimensionality reduction using Singular Value Decomposition

• Principal Component Analysis

• feature subset selection using feature ranking, forward selection or backward elimination



Chapter 2

Getting Started

This chapter describes unpacking and installation of PCP and basic usage. PCP distribution
contains executables for Linux and Windows (running under the free Cygwin environment).

2.1 Downloading and Installation

PCP home page is at http://pcp.sourceforge.net. To download the program, scroll down to
Downloading and Installing section. The software is distributed in a single compressed archive.
The file is named pcp-ver.tar.gz for GNU/Linux, and pcp-ver.zip for Windows, where ver is
the current version number.

Windows version of PCP runs under the free Cygwin environment. Cygwin provides Linux-like
utilities and API for Windows, and is available for free download at http://www.cygwin.com. Note
that PCP does not actually need entire Cygwin distribution; only the API library file cygwin1.dll
is required to run PCP.

The contents of the GNU/Linux and Windows archives is identical; only the compression method
differs. To decompress and unpack the file on GNU/Linux, type:

% gunzip -c pcp-ver.tar.gz | tar xvf -

On Windows, double-click on the archive to start the unpacking.
The unpacking/decompression will create a directory pcp-ver. In the directory, file Linux/pcp

is the PCP executable for GNU/Linux, and Windows/pcp.exe is the Windows executable. There
is no configuration - upon unpacking the program is immediately ready for use.

2.2 Basic Usage

This section describes basic PCP usage by performing simple classification of the well-known IRIS
dataset [1] (the data files are provided with the distribution). This dataset is widely used for
algorithm demonstrations in the pattern recognition community. It represents four measurements
of the petal and sepal dimensions for three species of IRIS flowers. The pattern classification task is
to assign correct IRIS species for a given flower, using the four measurements. In this experiment,
we will estimate the error rate of such assignment for nearest-neighbor classifier.

PCP is run from command line. To start PCP, type:
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8 CHAPTER 2. GETTING STARTED

% pcp

at the command-line prompt, assuming the executable pcp is in your PATH. Otherwise, use the
full path to the executable.

Upon startup, PCP displays the Main Menu shown in Fig. 2.1.

Figure 2.1: PCP Main Menu

The first step is to define the training dataset. Press a to enter Data Loading menu shown in
Fig. 2.2. In the Data Loading menu, press a, and the data loading dialog will start.

To define the training dataset, answer the questions as follows. Note that PCP suggests a
reasonable default value for most questions, in this and other menus. The default values are given
in square brackets. To accept the default, press Enter in response to the question.

Load training (0) or test (1) dataset [0]:
0 (or Enter)
File format: header line (0: no; 1: yes) [0]:
1
File format: named rows (0: no; 1: yes) [0]:
0 (or Enter)
Enter number of classes:
3
Enter file name for class 1:
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Figure 2.2: Data Loading menu
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iris_setosa.dat
Enter file name for class 2:
iris_versicolor.dat
Enter file name for class 3:
iris_virginica.dat

Control returns to the Data Loading menu. Press Enter to return to the Main Menu. The
information about the dataset is now stored in pcp.sts file and will be used in each subsequent
session (invocation) of the program, until it is redefined.

In order to perform a simple supervised learning analysis of the IRIS data, press b to enter
Pattern Classification menu, and d to enter Nearest Neighbors Classifiers menu shown in
Fig. 2.3.

Figure 2.3: Nearest Neighbors Classifiers menu

To start cross-validation of the k-NN classifier, press c and press Enter in response to each of
the following questions except Enter number of experiments, where you should enter 10:

Enter number of nearest neighbors (>= 1) [ 1]:

Use Euclidean (1), city-block (2) or Mahalanobis distance (3) [1]:

Enter k-NN cross-validation file name [pcp.xnn]:
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Enter number of cross-validation subsets (2..50) [ 10]:

Enter seed for pseudo-random number generator [ 1]:

Enter number of experiments [1]:
10
Use raw (0) or normalized data (1) [0]:

Choose dim. reduction method: none (0), FLD (2), PCA (3), EMAP (4), feature ra
nking (5), forward selection (6), or backward elimination (7) [0]:

Pressing Enter accepts the default choice for a parameter. In this example, the default choices
are reasonable. The training will now start, and the results for individual cross-validation exper-
iments will sequentially appear on the screen. Shortly, the program finishes the calculation and
pauses. Press any key to return to the Nearest Neighbors menu, and press e to view the detailed
results. Press Enter twice in response to the questions.

The results should look similar to Fig. 2.4. The table shows the cumulative and clas-conditional
error rates and standard deviations for the 10 cross-validation experiments. The detailed results
are saved in text file pcp.xnn.

Now press Enter repeatedly to leave PCP. This concludes the introduction to basic usage of
PCP for pattern classification, which demonstrates that relatively elaborate pattern classification
analysis can be completed with a few keystrokes.
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+----------------------------------------------------------------------------+
| |
| C R O S S - V A L I D A T I O N R E S U L T S |
| |
+----------------------------------------------------------------------------+
| Classifier: k-nearest neighbor |
| Number of experiments: 10 |
| Number of cross-validation subsets: 10 |
| Normalization: no |
| Dimensionality reduction method: none |
| Seed: 1 |
| Number of neighbors: 1 |
| Distance measure: 1 (Euclidean) |
+----------------------------------------------------------------------------+
+----------------------------------------------------------------------------+
| | Cumulative error rate |
+----------------------------------------------------------------------------+
| Mean | 4.07 |
| Std. dev. | 0.21 |
+----------------------------------------------------------------------------+
| | Error rate for class iris_setosa |
+----------------------------------------------------------------------------+
| Mean | 0.00 |
| Std. dev. | 0.00 |
+----------------------------------------------------------------------------+
| | Error rate for class iris_versicolor |
+----------------------------------------------------------------------------+
| Mean | 6.00 |
| Std. dev. | 0.00 |
+----------------------------------------------------------------------------+
| | Error rate for class iris_virginica |
+----------------------------------------------------------------------------+
| Mean | 6.20 |
| Std. dev. | 0.63 |
+----------------------------------------------------------------------------+

Figure 2.4: Cross-validation results for 1-NN classifier trained on IRIS data. All error rate values
are given in percents.
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PCP Basics

3.1 Running PCP

Entire PCP is contained in a single executable file. The distribution contains two prebuilt binaries,
for GNU/Linux and Windows/Cygwin operating systems. The program uses no configuration files.
As shown earlier, to start PCP type

% pcp

from command line, assuming the location of the executable is in your PATH environment
variable (otherwise, use the full path to the executable).

To get help on command-line options for PCP, use -h argument:

% pcp -h
pcp (Pattern Classification Program) version 2.2

Usage: pcp [-h] [-b batch_file] [-q] [-d]
-h display this message
-b batch_file run in batch mode, reading commands from batch_file
-q quiet mode (no screen output)
-d enable debug mode (produces pcp.dbg file)

To kill the program, use SIGINT (Ctrl-C) or SIGQUIT (Ctrl-\)

PCP has two modes of operation: interactive and batch. In batch mode, activated with -b
command line option, a sequence of commands are read from a file previously created by the user.
The program comes with a sample batch file iris.bat which can be used to load the IRIS dataset
used as an example in Chapter 2. Batch processing is further explained in Section 3.5.

The debug mode produces a potentially large pcp.dbg file used for bug fixing and regression
testing.
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14 CHAPTER 3. PCP BASICS

3.2 Platform Support

PCP runs under Linux and Windows/Cygwin operating systems on i386 architecture CPUs such as
Intel Pentium or AMD Athlon. It uses GNU Autoconf package for building, and should therefore
be easily portable to any UNIX-like platform.

PCP has been developed and tested on RedHat Linux 9.0 distribution. It has also been tested
on SUSE Linux 9.1 and Fedora Core 2 and verified to run on Knoppix 3.7 distribution, as well
as on Windows XP Home Edition and Windows 2000 Professional operating systems under Cygwin
environment.

3.3 Navigation

For navigation and execution of commands, PCP uses uses a set of menus organized in a tree
structure. Examples of menus have been shown previously in Figs. 2.1- 2.3. Each menu page has
title field, six or nine action fields, and message field. The title field contains menu name and level,
which is the depth of the menu within the tree hierarchy. The top level menu (level 1) is called
Main Menu. The complete menu tree hierarchy is shown in Fig. 3.1.

   
 Main
 Menu

  Data
Loading

  Pattern
Classification

Feature
Extraction

Feature
Selection

Principal Component

Analysis

Bayes Error
Estimation

Parametric
Classifiers

Linear
Discriminants

Nearest Neighbor
Classifiers

Multi−Layer
Perceptron

Support Vector
Machine

Linear
Classifier

Quadratic
Classifier

Model Selection

Figure 3.1: PCP menu hierarchy

Each menu option displays a letter indicating the keyboard key used to run the action associated
with the option (the keys are case-insensitive). In all menus, the last active option (the rectangle
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in the lower right corner of the menu display) is Return to the previous menu (except in the
Main menu, where it is labeled Exit). Enter key is used to activate the Return option; as a
convenience, Escape and x keys can also be used for the same purpose.

3.4 PCP Input File Formats

Datasets in PCP are modeled after the rigorous machine learning principles as defined in [7], Section
3.4.2, Model Selection via Resampling. See Section 5.1 for a detailed explanation. In this section,
we describe the format of the required input data files.

From the user’s point of view, PCP distinguishes two datasets: training and test. Training
dataset is used to adjust parameters of a classifier (typically through a series of cross-validation
experiments); test dataset is an independent data set used to evaluate performance of the previously
built classifier. Most pattern classification menus have a learning and prediction function. Learning
uses training dataset; prediction uses test dataset (an exception is k-NN algorithm, for which there
is no training; the learning machine is defined by the training dataset itself).

The information about the currently defined datasets is stored in file pcp.sts. This file is
used to maintain information between invocations of PCP. Like all files produced by PCP, it is a
human-readable text file. Given that there can only be one pcp.sts file per directory, only one
training/test dataset combination can be defined in a given directory. To analyze multiple datasets
simultaneously, run PCP from different directories. Results are undetermined if multiple instances
of PCP are simultaneously defining different PCP datasets in the same directory.

PCP uses text files for input data, and recognizes four file formats: raw, named column, named
row and named. In all four cases, an input vector (pattern) is assumed to be stored in a single, tab-
or space-delimited row. In raw format, input files contain the vector attribute values (floating-point
numbers). In named row format, the first column in each row is the vector (row) name. The name
can be an arbitrary string of non-whitespace characters. The vector names are used in various
analyses reports to identify individual vectors. In named column format, the first (header) line in
each input file contains column names. Again, the names may be arbitrary strings which may not
contain whitespace characters. named format has both row and column names. In all four formats,
all rows must have identical number of columns.

If row names are not provided, the vectors are referred to by their internal vector indexes. The
indexes correspond to line numbers of the vectors within input files. If column names are not
provided, the attributes are referred to by the corresponding column indexes in input files. The
columns are numbered sequentially starting from 1.

The default input data format in PCP is the raw format.
Figs. 3.2-3.5 show first five lines of an input file for IRIS dataset in raw, named vector, named

column and named formats, respectively.
For training dataset, each class must be stored in a separate file. The file name without suffix

(extension) is used as class name in PCP, therefore it is helpful if the file names are mnemonic.
For test dataset, there is no requirement to put each class into a separate file, since the class

labels of the test set patterns may not be known. In practice, however, the classification of patterns
in the test dataset usually is known, since the test dataset is commonly used to estimate error rate
of a classifier previously built using training dataset. If this is the case, the user has to signal
somehow to PCP the class labels of the test set vectors. The convention in PCP is the same as
for the training set: the test set vectors have to be divided into files corresponding to the classes.
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5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2

Figure 3.2: Section of an IRIS dataset
input file in raw format.

vec1 5.1 3.5 1.4 0.2
vec2 4.9 3.0 1.4 0.2
vec3 4.7 3.2 1.3 0.2
vec4 4.6 3.1 1.5 0.2
vec5 5.0 3.6 1.4 0.2

Figure 3.3: Section of an IRIS dataset
input file in named row format.

sepal_length sepal_width petal_length petal_width
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2

Figure 3.4: Section of an IRIS dataset input file in named column format.

rowID sepal_length sepal_width petal_length petal_width
vec1 5.1 3.5 1.4 0.2
vec2 4.9 3.0 1.4 0.2
vec3 4.7 3.2 1.3 0.2
vec4 4.6 3.1 1.5 0.2
vec5 5.0 3.6 1.4 0.2

Figure 3.5: Section of an IRIS dataset input file in named format.
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Specifically, if the test dataset has more than one file, PCP will assume that each file corresponds
to one class. Furthermore, PCP assumes that test dataset file 1 corresponds to training class 1, test
dataset file 2 to training class 2, etc. Based on this information, the program is able to calculate
and report test set error rates and other performance statistics. This is obviously impossible when
the class labels for the test data are not available (i.e., when the test dataset is in a single file).

3.5 Batch Usage of PCP

PCP can also be run in batch mode, using a file listing the sequence of operations to be performed.
Each line in the batch file corresponds to a navigation key used to activate PCP functions, or to
keyboard input entered by user in response to PCP questions. A simple batch file which loads
IRIS dataset into PCP is shown in Fig. 3.6. The data files used in the batch file are part of PCP
distribution.

a data loading
a load dataset
0 training dataset
1 header line
0 no named rows
3 number of classes
iris_setosa.dat
iris_versicolor.dat
iris_virginica.dat
e copy dataset
0 training to test
x return
x return

Figure 3.6: Sample batch file for importing the IRIS dataset into PCP.

Batch files are created by manually entering the sequence of steps into the file in a text editor.
The command sequence should first be verified by running it interactively. Once the file is created,
use the following command to execute it (optionally, you can also use the -q command-line argument
to disable screen output):

% pcp -b batch_file

Comments in the batch file are optional, but helpful to track down errors. Note that the lines
with file names should have no comments, otherwise the comment will also be considered part of
the file name. Also, it is recommended to perform data analyses through the use of multiple smaller
batch files, instead of a single large one, since this makes debugging easier.
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3.6 Limits

PCP is written in C programming language (with the exception of an SVM external function, which
is written in C++). PCP dynamically allocates memory for all functions, and thus the only known
limit to the amount of data that can be processed is the available virtual memory in the computer.

3.7 Error Handling and Exit Codes

In case of error, PCP displays appropriate message in the message line on the screen, and appends
it to file pcp.err along with a timestamp. The content of the file is never erased by PCP; all error
messages are concatenated to an existing file.

Upon exit, PCP sets the exit code. Exit code 0 indicates successful completion; codes 1..127 are
reserved for system error codes (defined in file errno.h), while codes 128..255 are PCP-proprietary
error codes. The list of codes is given in Table 3.1. Note that exit code 0 does not necessarily mean
that no errors were encountered during execution; indeed, the exit code only reflects the status of
the most recent operation. In contrast, pcp.err contains all error messages. Therefore, if PCP is
used within a script, the caller should verify the exit status and contents of the error file pcp.err.
Of course, in interactive mode the status of each function is displayed in the message line of the
corresponding menu after completion, and thus there is no need to additionally examine pcp.err
(which is nevertheless updated).
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Table 3.1: PCP exit error codes.
Exit status Description

128 The training dataset is not defined.
129 The test dataset is not defined.
130 The datasets are not defined.
131 The dataset is too large.
132 This operation only available for two classes.
133 At least two classes must be defined.
134 Each training class must have at least two samples.
138 The dataset is inconsistent with the MLP file.
139 Unrecognized MLP file format.
140 Unrecognized SVM file format.
141 The dimension of the data must be greater than the number of data points.
142 Data dimension must be less or equal the number of data points.
143 The dataset is inconsistent with the linear mapping.
144 Status file pcp.sts is inconsistent with input file
145 Unrecognized data file format.
146 Conjugate gradient unable to obtain descent direction.
147 Internal software error.
148 The dataset is inconsistent with the model.
149 The dataset is inconsistent with the linear model.
150 Singular covariance matrix.
151 Attempted inversion of a singular matrix.
152 Reached iteration limit in an iterative procedure.
153 Variable number of columns in an input file.
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Chapter 4

Data Loading

Data Loading menu is shown in Fig. 2.2. It implements data manipulation functions such
as data input and display, status, copying of datasets, normalization, eigenanalysis and correla-
tion/covariance estimation. To enter Data Loading menu, press a in the Main Menu.

Following is a description of the individual options.

• Load Dataset function is used to define training and test datasets

• Status displays basic information about the datasets

• Display Dataset displays actual data vectors in the chosen dataset

• Copy Dataset copies datasets (training into test, or vice versa). This is occassionally useful
for diagnostic purposes.

• Normalize Data normalizes the dataset(s) and saves the results. The normalization trans-
formation consists of shifting and scaling each feature to zero mean and unit standard devi-
ation. The normalization parameters (feature means and standard deviations) are computed
using the training dataset, and the resulting transformation is then applied to both datasets.
The results are stored in output files. The output file names have string ’ nrm’ inserted just
before the file extension. Thus, if the original file name is iris.dat, the normalized data will
be saved in file iris nrm.dat.

Optionally, this function allows the user to replace the current data sets with their normalized
counterparts.

• Eigenvalues computes and displays eigenvectors, eigenvalues and condition numbers of class-
conditional covariance matrices. The condition numbers are of particular interest here, since
too large a condition number indicates that the corresponding matrix is near-singular, which
in turn may affect algorithms involving inversion of covariance matrices, for example k-NN
algorithm using Mahalanobis distance (Section 5.5), and Bayes error estimation (Section 5.9).

• Covariance and Correlation computes and displays class-conditional covariance and cor-
relation matrices. This may occasionally be useful for diagnostic purposes.

Load Dataset is the most commonly used function in this menu. An interactive session for
loading a dataset into PCP has been shown earlier in Chapter 2.

21



22 CHAPTER 4. DATA LOADING



Chapter 5

Pattern Classification

This chapter describes in detail the supervised pattern classification functionality available in PCP.

5.1 Statistical Learning Paradigm

The supervised learning in PCP is based on the following statistical learning paradigm (see [7],
Section 3.4.2, Model Selection via Resampling for further details):

Step 1. divide the available data into training and test datasets

Step 2. select optimal parameters (for example, number of hidden nodes in a neural network,
or cost C and γ parameters in SVMs) for a given algorithm. This step is known as model
selection, and is performed using cross-validation and the training dataset. It involves the
standard cross-validation technique of dividing the training dataset into k subsets (where k
is a user-defined parameter), building the learning machine using k − 1 subsets (the learning
set) and calculating the prediction error using the remaining validation subset. The cross-
validation procedure is repeated for different values of the classifier parameters. The optimal
model uses parameters which give minimum error rate (or other performance criterion).

Step 3. build model using entire training dataset and the optimal parameters found in Step 2.
Estimate the error rate of the optimal model (classifier) by comparing actual and predicted
class labels for the samples in the test dataset.

Step 1 has to be performed by the user before submitting data to PCP. Clearly, the separation
into training and test datasets may significantly reduce the amount of data available for training,
but is required for a statistically rigorous approach to the design of learning machines ([7], [8]).

In addition, the prescribed procedure may result in large variance of the resulting estimate of
prediction risk. The bagging (committee) learning described in Section 5.2 may be useful in dealing
with this problem.

The cross-validation in Step 2 is completely automated within PCP. The program divides the
training dataset into subsets, performs all necessary experiments and reports results. Internally,
the k−1 subsets are called learning set, and the remaining subset is called validation set, consistent
with the terminology in [7]. However, since the process is entirely automatic, these subsets are not
normally visible to the end user.

23
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The model selection in Step 2 is automated within PCP for Support Vector Machine algorithm,
MLP and k-NN. For SVM, PCP automatically selects the optimal values of the SVM parameters
which minimize cross-validation error rate, as described in Section 5.8.1. For MLP, PCP performs
cross-validation for varying number of nodes in the hidden layer. The optimal number of nodes is
the value giving the lowest cross-validation error rate. For k-NN, PCP performs cross-validation
for varying number of nearest neighbors. The optimal k is the value which achieves the lowest
cross-validation error rate.

Step 3 is performed by building a model using the training dataset, and then applying it to the
test dataset. PCP automatically calculates error rates and other performance criteria for the test
dataset. For SVM, MLP and k-NN, this step is also automatic, and follows execution of Step 2.

As a result of this paradigm, the PCP supervised classification menus have a certain common
general structure and learning parameters. They are described in the next section.

5.2 Menu Structure and Common Learning Parameters

Pattern Classification menu provides access to the implementations of the following popular
supervised pattern classification algorithms: Multi-Layer Perceptron (MLP), k-Nearest Neighbor
classifier, linear and quadratic parametric classifiers, linear discriminant classifier and Support
Vector Machine (SVM) algorithm. In addition, is also implements Bayes Error Estimation
algorithm, an important although not widely known method for estimating classification error due
to Fukunaga [4].

Supervised pattern classification menus, with the exception of Bayes Error Estimation, have
similar structure based on the principles of statistical learning. As an example of the menu options,
Fig. 5.1 shows Multi-Layer Perceptron menu. The seven active options provide the following
functionality:

• Learning builds a classifier (in this case Multi-Layer Perceptron) using the training dataset,
and stores it in a model file.

• Bagging (Committee) Learning builds a bagging MLP classifier. Bagging (also known as
committee) classifiers are built by combining multiple classifiers, each trained on a set created
by pseudo-randomly resampling the original training dataset. The prediction is obtained by
taking a majority vote of the individual classifiers. The PCP implementation of bagging
classifiers is based on [13], Sections 2.2.2 and 2.3.3. The result of the learning is a committee
classifier stored in the model file.

• Prediction uses a previously built classifier to assign class predictions to the test dataset
vectors. In case the test set is split into files corresponding to the classes, as explained in
Section 3.4, this function also computes and displays performance measures.

• Cross-validation performs the requested number of cross-validation experiments using the
training dataset. The result of the analysis is a text file with detailed performance results for
each experiment. The file format is described in Section 5.3.1.

• Bagging Cross-validation performs the cross-validation experiments using a bagging ver-
sion of the classifier.
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Figure 5.1: Multi-Layer Perceptron menu
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• Cross-validation Results option displays summary of previously performed cross-validation
experiments.

• Model Selection automatically chooses best classifier parameter(s), and is available for
MLP, k-NN and SVM.

Cross-validation, Bagging Cross-validation and Model Selection correspond to Step 2
in the statistical learning paradigm; Learning, Bagging and Prediction correspond to Step 3.

The learning process described above is controlled by a set of user-defined parameters which
can be divided in two groups: parameters common to all algorithms, and parameters specific to a
particular algorithm. In the next section, we explain the common learning parameters by using the
example of linear parametric classifier. The algorithm-specific parameters are described in detail
in the pertaining sections.

5.2.1 Common Parameters for Supervised Learning

The examples in this section use IRIS dataset. To define the dataset in PCP, type:

% pcp -b iris.bat

and then restart PCP. To access linear parametric classifier menu, use Parametric Classi-
fiers... menu option in Pattern Classification menu, and then choose Linear Classifier.... The
menu is shown in Fig. 5.2.

Learning and Prediction

To start learning, press a key. The program asks:

Enter the classifier file name [pcp.plc]:

Press Enter, or supply the file name. PCP will store the classifier parameters in the specified
file. In many situations, the default name is most convenient.

Upon learning, PCP displays error rates achieved on the training data set and pauses. Press
any key to return to the menu.

To start bagging (committee) learning, press b. The program asks:

Enter the classifier file name [pcp.plc]:

Enter seed for pseudo-random number generator [ 1]:

Enter number of classifiers to combine (>= 1) [ 10]:

Again, PCP will store classifier parameters for the bagging classifier in the specified file. The
seed initializes pseudo-random number generator used to resample the training dataset. Bagging
classifier is constructed by combining the given number of classifiers.

To perform prediction using the IRIS test dataset, press c:
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Figure 5.2: Parametric Linear Classifier menu
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Enter parametric linear classifier file name [pcp.plc]:

Short (0) or long (1) output [0]:

+----------------------------------------------------------------------------+
| Class | Actual/predicted card. | Error rate |
+----------------------------------------------------------------------------+
| | 150/150 | 2.00% ( 3/ 150) |
| 1/iris_setosa | 50/50 | 0.00% ( 0/ 50) |
| 2/iris_versicolor | 50/49 | 4.00% ( 2/ 50) |
| 3/iris_virginica | 50/51 | 2.00% ( 1/ 50) |
+----------------------------------------------------------------------------+
| Vector | Actual class | Parametric linear prediction |
+----------------------------------------------------------------------------+
| 71 | iris_versicolor | iris_virginica |
| 84 | iris_versicolor | iris_virginica |
| 134 | iris_virginica | iris_versicolor |
+----------------------------------------------------------------------------+

The Prediction is performed using classifier defined in the user-supplied file name. The default
file name is pcp.plc, the same as the default output file name used in Learning. By choosing the
default file name for learning and prediction, interaction with the program is simplified since there
is no need to type any file names.

The first part of the output table shows cumulative and class-conditional actual and predicted
cardinalities, and error rates (the cumulative actual and predicted cardinalities are, by definition,
the same).

The lower part of the output shows predictions for individual vectors (patterns). In the short
output format, the default, only the misclassified vectors are shown; in the long format, prediction
results for all vectors in the test set are shown.

Note that the display slightly differs if the datasets contain two classes. The error rates and
additional performance measures computed for two-class case are further described in Section 5.10.
Also, when input files are in the named vector format, the individual vector names are displayed in
the Vector column, instead of the vector indexes.

Cross-validation

To launch cross-validation of linear parametric classifier using the currently active training dataset,
press d key:

Enter the classifier file name [pcp.xpl]:

Enter number of cross-validation subsets (2..50) [ 10]:

Enter seed for pseudo-random number generator [ 1]:

Enter number of experiments [1]:
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100
Use raw (0) or normalized data (1) [0]:

Choose dim. reduction method: none (0), FLD (2), PCA (3), EMAP (4), feature ra
nking (5), forward selection (6), backward elimination (7), or forward floatin
g search (8) [0]:

The training dataset is automatically split into the given number of cross-validation subsets
(the number k as detailed in Section 5.1). Seed is used to initialize the pseudo-random number
generator to split the data. The reported performance measures are averages over the given number
of experiments.

Dimensionality reduction method is used to select method for optionally mapping the training
dataset into the lower dimension, where a more accurate classifier may be built. Description of
dimensionality reduction algorithms available in PCP is given in Chapter 6. In case normalization
is selected, the data is first scaled and shifted to zero-mean and unit-variance.

Note that both dimensionality reduction and normalization are performed in a rigorous cross-
validation manner: the parameters for the operation are computed using the learning dataset, and
are then applied to both learning and validation datasets.

Once cross-validation is completed, the results are available in the chosen output file, for display
or analysis by external programs. To view the results, press f.

The bagging cross-validation (e) is very similar, except that it also requires that the user specifies
the number of combined classifiers. Results are again available through the Cross-validation
Results option.

The above dialog accurately represents the interaction with PCP in case no dimensionality
reduction is requested; otherwise, the program requests additional parameters, described in Chap-
ter 6.

5.3 Output File Formats

Pattern classifiers in PCP produce three different output files:

• cross-validation file

• model selection file

• prediction file

Cross-validation file contains results of cross-validation error estimation for a given classifier.
Model selection performs repeated cross-validation simulations for different values of classifier pa-
rameters in order to choose optimal combination of the parameters. Prediction results file contains
predictions and optionally prediction strengths for the test set samples, given a fixed classifier.
The general formats of these files are described in the following sections; the details depend on the
classifier and are further explained in the relevant classifier sections.
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5.3.1 Cross-validation File

Cross-validation output file contains detailed performance results for individual experiments in a
cross-validation analysis.

A typical file for multi-class cross-validation has the following format:

# classifier: parametric linear classifier
# number of models: 1
# number of experiments: 10
# number of cross-validation subsets: 10
# number of classes: 3
# normalization: no
# dimensionality reduction method: none
# number of features: 4
# seed: 1
1 2.00 (3/150) 0.00 (0/50) 4.00 (2/50) 2.00 (1/50)
2 2.00 (3/150) 0.00 (0/50) 4.00 (2/50) 2.00 (1/50)
3 2.00 (3/150) 0.00 (0/50) 4.00 (2/50) 2.00 (1/50)
4 2.00 (3/150) 0.00 (0/50) 4.00 (2/50) 2.00 (1/50)
5 2.00 (3/150) 0.00 (0/50) 4.00 (2/50) 2.00 (1/50)
...

The comment lines (lines starting with # character) should be largely self-explanatory. Note
that the number of features refers to the number of features after reduction of dimensionality.
Each non-comment line corresponds to a single experiment and has the experiment ID in the
first column. The second column is the cumulative error rate. It is followed by actual counts of
misclassified vectors and total vectors in the training dataset, given in parentheses. Thus, in the
above example, the first cross-validation experiment misclassified 3 vectors out of 150, for an error
rate of 2%. The remaining columns have corresponding information for each class. In the example
above, there are 3 classes, and thus six additional columns.

The two-class cross-validation introduces four additional performance measures (sensitivity,
specificity, positive and negative predictive value) as shown in the following segment:

# classifier: SVM
# number of models: 1
# number of experiments: 10
# number of cross-validation subsets: 10
# number of classes: 2
# normalization: no
# dimensionality reduction method: none
# number of features: 1994
# seed: 1
# SVM type: C-SVM
# kernel type: RBF
# gamma: 0.01
# stopping criterion: 0.001
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# cost (C): 1000
1 5.26 (2/38) 0.00 (0/27) 18.18 (2/11) 100.00 81.82 93.10 100.00
2 5.26 (2/38) 0.00 (0/27) 18.18 (2/11) 100.00 81.82 93.10 100.00
3 5.26 (2/38) 0.00 (0/27) 18.18 (2/11) 100.00 81.82 93.10 100.00
4 5.26 (2/38) 0.00 (0/27) 18.18 (2/11) 100.00 81.82 93.10 100.00
5 5.26 (2/38) 0.00 (0/27) 18.18 (2/11) 100.00 81.82 93.10 100.00
...

The first seven columns have the same meaning as the multi-class file format described above.
The remaining four columns are sensitivity, specificity, positive and negative predictive value, re-
spectively, which are important quantities in the analysis of two-class classifiers. Section 5.10
provides definition and detailed description of these performance indicators.

5.3.2 Model Selection File

The model selection file pcp.msl contains performance value for each combination of classifier
parameters evaluated during the model selection search. A typical SVM model selection file for
RBF kernel, applied to the IRIS dataset, may look like this:

8.13 0.1 1e-08 1
9.00 0.1 6.3096e-08 2
8.60 0.1 3.9811e-07 3
8.67 0.1 2.5119e-06 4
8.67 0.1 1.5849e-05 5
8.67 0.1 0.0001 6

...

Each line corresponds to a combination of parameters evaluated by the search. The first column
is misclassification error rate (in percents). The next two columns are the values of SVM parameters
C or ν, and γ, and the last column is iteration number.

In case of linear kernel, there is only one variable parameter (C or ν) and thus the model
selection file has three columns.

Similarly, in case of MLP and k-NN model selection, the file has three columns. The first
column is misclassification error rate, the second column is number of hidden nodes or number of
nearest neighbors, respectively, and the last column is the iteration number.

The format is slightly more verbose for two-class problems, as follows (the example is for k-NN
model selection):

2.63 1 1 100.00 90.91 96.43 100.00
5.26 2 2 96.30 90.91 96.30 90.91
2.63 3 3 100.00 90.91 96.43 100.00
5.26 4 4 100.00 81.82 93.10 100.00
2.63 5 5 100.00 90.91 96.43 100.00
7.89 6 6 96.30 81.82 92.86 90.00
5.26 7 7 100.00 81.82 93.10 100.00
5.26 8 8 100.00 81.82 93.10 100.00
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7.89 9 9 100.00 72.73 90.00 100.00
7.89 10 10 100.00 72.73 90.00 100.00

...

The columns are:

• misclassification error rate

• number of nearest neighbors

• iteration number

• the last four columns are sensitivity, specificity, positive predictive value and negative predic-
tion value in percentages

5.3.3 Prediction File

Prediction file pcp.rcl is a tab-delimited ASCII file which contains results of PCP prediction.
Each line corresponds to a sample in the test set. For more than two classes, the file format is as
follows:

1 ews_test ews 1
2 ews_test ews 1
3 ews_test ews 1
4 ews_test ews 1
5 ews_test ews 1
6 ews_test rms 0
7 ews_test ews 1
8 rms_test rms 1
...

The first column has vector ID, in case input data is in the raw format. If input data is in
the named or named row format, the first column contains vector names. The second column is
actual class, the third column is predicted class. The fourth column is 1 for correct prediction,
0 for incorrect. As explained in Section 3.4, this column is only present if the test set files (i.e.,
classes) correspond to the training set files/classes. This means that the number of test set files
must be equal the number of training set files. PCP then assumes that test file 1 corresponds to
class 1 of the training dataset, test file 2 corresponds to class 2 of the training dataset, etc. In the
example above, test class 1 is named ews test, after the file ews test.dat, and the corresponding
training class is named ews, after the file ews.dat. Test class 2 is named rms test, after the file
rms test.dat, and training class 2 is named rms, after the file rms.dat. The classification for
vector 1 is correct because the classifier predicts class 1, and the actual class is also class 1. In
contrast, the classification for vector 6 is incorrect because the classifier predicts class 2 (rms),
whereas the actual class is class 1 (ews test).

For SVM classifier, the file has additional c columns, where c is the number of classes. The
additional columns represent class probability estimates as computed by the LIBSVM library [30].
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1 iris_setosa iris_setosa 1 0.975769 0.0162202 0.00801093
2 iris_setosa iris_setosa 1 0.961227 0.0286403 0.0101325
3 iris_setosa iris_setosa 1 0.974465 0.0175656 0.00796911
4 iris_setosa iris_setosa 1 0.957805 0.0310942 0.011101
5 iris_setosa iris_setosa 1 0.978092 0.0142806 0.007627
...

For two classes, additional four columns (flags) are stored in the file. The columns are true
positive, false negative, false positive and true negative, respectively. See Section 5.10 for definitions
of these terms.

39 all_test all_train 1 1 0 0 0
40 all_test aml_train 0 0 1 0 0
42 all_test all_train 1 1 0 0 0
47 all_test all_train 1 1 0 0 0
48 all_test all_train 1 1 0 0 0
49 all_test all_train 1 1 0 0 0
...

Again, for SVM, PCP also saves class probability estimates:

39 all_test all_train 1 1 0 0 0 0.955901 0.0440991

40 all_test all_train 1 1 0 0 0 0.859633 0.140367

42 all_test all_train 1 1 0 0 0 0.869194 0.130806

47 all_test all_train 1 1 0 0 0 0.960011 0.039989

48 all_test all_train 1 1 0 0 0 0.994483 0.00551723

49 all_test all_train 1 1 0 0 0 0.932164 0.0678358

...

5.4 Parametric Linear and Quadratic Classifiers

Linear and quadratic classifier menus have the standard menu structure described previously. To
access either of the menus, press b in Pattern Classification menu, and then press a or b
to access the Linear or Quadratic classifier menu, respectively. The two algorithms implement
Bayesian classifier for normal distributions with common or arbitrary class-conditional covariance
matrices. For details of the algorithms, see for example [20].

The algorithms do not require any user-specified parameters, and thus the Section 5.2.1 com-
pletely describes the interaction.

5.5 k-Nearest Neighbor Classifier

The k-NN menu is slightly different from the standard described in Section 5.2. k-NN algorithm,
as defined in any machine learning textbook (for example [20], [4]), assigns an unlabeled vector
to the dominant class among the k nearest vectors in the training set. Consequently, there is no
learning mode, and this is reflected in the menu layout shown in Fig. 5.3.

In addition to the absence of learning mode, there is no file which stores the parameters of
the classifier; in effect, the entire training dataset serves as the model file(s). Also, the user must
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Figure 5.3: Nearest Neighbors Classifiers menu
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specify the distance measure to be used for defining the neighbors. The Prediction function dialog
proceeds as follows:

Enter number of nearest neighbors (1..50) [ 1]:

Use Euclidean (1), city-block (2) or Mahalanobis distance (3) [1]:

Short (0) or long (1) output [0]:

The remaining functionality, except Model Selection, follows the general flow of processing
described in Section 5.2.1. Model Selection is used to choose the optimal value of k via cross-
validation. To start Model Selection, press key f. A complete transaction using the default values
of all parameters is shown as follows:

Use Euclidean (1), city-block (2) or Mahalanobis distance (3) [1]:

Enter number of cross-validation subsets (2..11) [ 10]:

Enter number of experiments [1]:

Enter seed for pseudo-random number generator [ 1]:

Use raw (0) or normalized data (1) [0]:

Choose dim. reduction method: none (0), SVD (1), EMAP (4), feature ranking (5)

, forward selection (6), or backward elimination (7) [0]:

Enter starting number of nearest neighbors (1..10) [1]:

Enter ending number of nearest neighbors (1..10) [10]:

Enter step (>= 1) [1]:

Experiment 1 cross-validation error rate: 2.63%

Iteration 1; mean error rate: 2.63%

Current k: 1; error rate: 2.63%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 5.26%

Iteration 2; mean error rate: 5.26%

Current k: 2; error rate: 5.26%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 2.63%

Iteration 3; mean error rate: 2.63%

Current k: 3; error rate: 2.63%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 5.26%

Iteration 4; mean error rate: 5.26%

Current k: 4; error rate: 5.26%.

Optimal k: 1; error rate: 2.63%.
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Experiment 1 cross-validation error rate: 2.63%

Iteration 5; mean error rate: 2.63%

Current k: 5; error rate: 2.63%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 7.89%

Iteration 6; mean error rate: 7.89%

Current k: 6; error rate: 7.89%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 5.26%

Iteration 7; mean error rate: 5.26%

Current k: 7; error rate: 5.26%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 5.26%

Iteration 8; mean error rate: 5.26%

Current k: 8; error rate: 5.26%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 7.89%

Iteration 9; mean error rate: 7.89%

Current k: 9; error rate: 7.89%.

Optimal k: 1; error rate: 2.63%.

Experiment 1 cross-validation error rate: 7.89%

Iteration 10; mean error rate: 7.89%

Current k: 10; error rate: 7.89%.

Optimal k: 1; error rate: 2.63%.

Applying the optimal classifier to the test dataset...

+----------------------------------------------------------------------------+

| Class | Actual/predicted card. | Error rate |

+----------------------------------------------------------------------------+

| | 34/34 | 11.76% ( 4/ 34) |

| 1/all_test | 20/22 | 5.00% ( 1/ 20) |

| 2/aml_test | 14/12 | 21.43% ( 3/ 14) |

+----------------------------------------------------------------------------+

| Sensitivity | 95.00% ( 19/ 20) |

| Specificity | 78.57% ( 11/ 14) |

| Positive Predictive Value | 86.36% ( 19/ 22) |

| Negative Predictive Value | 91.67% ( 11/ 12) |

+----------------------------------------------------------------------------+

| Vector | Actual class | k-NN prediction |

+----------------------------------------------------------------------------+

| 40 | all_test | aml_test |

| 52 | aml_test | all_test |

| 54 | aml_test | all_test |

| 60 | aml_test | all_test |

+----------------------------------------------------------------------------+

As can be seen from this dialog, the procedure is consistent with the algorithm described in
Section 5.1, PCP computes k-NN cross-validation error rates for 1 ≤ k ≤ 10. Once the optimal
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value (1, in this case) is found, it is used for the classification of the test set. The results of the
model selection and test set prediction are saved in files pcp.msl and pcp.rcl, respectively.

5.6 Linear Discriminant Classifier

The implementation follows the standard, least-squares linear discriminant classifer algorithm as
described in [15], Section 3.4.3 (note that the development in the reference assumes a non-linear
transformation of input variables; for our purposes, the transformation is identity function, except
for the bias term for which the corresponding transformation equals one).

The Linear Discriminant Classifier menu is shown in Fig. 5.4. The current implementation
does not require any user-defined parameters, and all dialogs use only common supervised learning
parameters defined in Section 5.2.1.

Figure 5.4: Linear Discriminant Classifier menu

5.7 Multi-layer Perceptron

The multi-layer perceptron (MLP) menu, shown in Fig. 5.1, provides the standard functions de-
scribed in Section 5. In this section we describe the structure of MLP as used in PCP, parameters
specific to this learning method, MLP file format, and model selection functionality. The section
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assumes familiarity with the MLP model of machine learning; for an excellent introduction, see
[15].

5.7.1 MLP Structure

Fig. 5.5 shows the structure of a single hidden layer MLP in PCP. As indicated in the picture, the
first hidden layer is called layer 0, and further layers are labeled layer 1, layer 2, etc. Internally, all
nodes in the network are indexed sequentially starting from 0. Thus, in Fig. 5.5, first (and only)
hidden layer has four nodes labeled 0 – 3, and the output nodes are labeled 4 – 6. Each node
implements sigmoid transfer function (5.1).

σ(x) =
1

1 + exp(−x)
(5.1)

1 x
1 x2 x3 x4

5

3210

4 6 layer 1

layer 0
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Figure 5.5: The MLP structure in PCP. Filled circles labeled xi represent the d inputs, where d is
dimension of the input space. Filled circles labeled 1 correspond to the bias terms.

PCP also implements support for multi-layer perceptrons with multiple hidden layers. This
functionality is not fully tested in the present release (see Section 8.1).

5.7.2 MLP Learning Parameters

The MLP implementation in PCP uses the batch mode learning. The following dialog is used to
specify parameters for MLP learning:

Begin learning (0), or continue (1) [0]:

Enter MLP file name [pcp.mlp]:

Enter number of hidden layers (>= 1) [1]:
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Number of inputs is 4.
Number of output nodes is 3.

Enter number of nodes in hidden layer 1:
5
Enter seed for pseudo-random number generator [ 1]:

Enter amplitude of initial weights [ 1.00]:

Enter optimization method - conj. grad (1), grad. descent (2) [ 1]:

Enter number of iterations (-1 for no iterations) [100]:

The following parameters are specific to MLP learning:

• number of hidden layers

• number of nodes in each of the hidden layers

• amplitude of initial weights

• optimization method

• number of learning iterations (also known as epochs)

In case user chooses a non-default optimization procedure (gradient descent), two additional
parameters must be specified: learning rate and momentum term.

The seed is used to initialize the pseudo-random number generator which generates initial
weights in the network. range is amplitude of the weights. The default value for range is 1.0, in
which case the initial weights will be pseudo-random numbers in the interval [−1.0, 1.0].

MLP learning in PCP implements two optimization procedures to adjust the weights of the
network: a conjugate gradient method, and the standard gradient descent, sometimes misleadingly
known as backpropagation.1 The conjugate gradient algorithm is a C version of the FORTRAN
package CG+, written by Guanghui Liu, J. Nocedal and R. Waltz [6], and is typically far more
efficient than the gradient descent.

5.7.3 MLP Classifier File Format

Contents of an MLP file corresponding to perceptron in Fig. 5.5 is shown in Fig. 5.6.
The first line is used for bagging version of MLP; in that case, the MLP file contains multiple

classifiers. The first number in the line is index of the individual network comprising the committee
classifier, and the second number is the corresponding weight. In the case shown, no bagging was

1The backpropagation is actually a remarkably efficient method for computing gradient of the MLP criterion
function, which is completely independent of the optimization method used to find the optimum of the function.
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combined model / combined weight: 1 / 1.000000
iterations: 100
optimization method: CG+ conjugate gradient
seed: 1
range of initial weights: 1.000000
misclassified samples: 3
avg. error per node and sample (MSE): 0.037898
number of layers: 2
nodes in layer 0: 4
nodes in layer 1: 3
number of inputs: 4
number of weights: 35
weights from inputs to node 0: -2.031595 -1.036182 -1.129723 1.863392 1.789858
weights from inputs to node 1: -0.663014 -0.649625 0.370059 -0.628752 0.062194
weights from inputs to node 2: 0.148260 1.240165 0.345430 0.403361 0.980632
weights from inputs to node 3: 0.586543 -0.495635 5.023008 -4.666823 1.263193
weights from layer 0 to node 4: -0.465108 -11.170246 -0.277840 0.819177 1.552297
weights from layer 0 to node 5: 1.136494 -6.228109 -1.066593 2.439004 -5.501239
weights from layer 0 to node 6: -3.874971 13.272957 -0.070897 -4.026823 -4.078823

Figure 5.6: MLP file for IRIS data

applied, thus there is only one classifier. The weight of all classifiers in the bagging model is equal
to 1.0; this parameter is reserved for future use in AdaBoost [24] learning algorithm.

The line weights from inputs to node 0 corresponds to weights labeled w0−w4 in Fig. 5.5.
The first coefficient in the line is the weight associated with the bias term; the rest of the line lists
weights from the d inputs to node 0.

The next line, weights from inputs to node 1 corresponds to weights labeled w5 − w9 in
Fig. 5.5; again, the first coefficient in the line is the bias term.

The remaining weight lines can be interpreted accordingly.
The rest of the file should be self-explanatory.

5.7.4 MLP Model Selection

MLP Model Selection is used to determine the optimal number of hidden nodes. The dialog
is similar to Model Sekection for k-nearest neighbor algorithm, described in Section 5.5, and is
started by pressing key g:

Enter amplitude of initial weights [ 1.00]:

Enter optimization method - conj. grad (1), grad. descent (2) [ 1]:

Enter number of iterations (-1 for no iterations) [100]:

Enter number of cross-validation subsets (2..50) [ 10]:
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Enter number of experiments [1]:

Enter seed for pseudo-random number generator [ 1]:

Use raw (0) or normalized data (1) [0]:

Choose dim. reduction method: none (0), FLD (2), PCA (3), EMAP (4), feature ra

nking (5), forward selection (6), or backward elimination (7) [0]:

Enter starting number of nodes (>= 1) [5]:

Enter ending number of nodes (>= 5) [10]:

Enter step (>= 1) [1]:

Experiment 1 cross-validation error rate: 2.67%

Iteration 1; mean error rate: 2.67%

Current number of hidden nodes: 5; error rate: 2.67%.

Optimal number of hidden nodes: 5; error rate: 2.67%.

Experiment 1 cross-validation error rate: 2.67%

Iteration 2; mean error rate: 2.67%

Current number of hidden nodes: 6; error rate: 2.67%.

Optimal number of hidden nodes: 5; error rate: 2.67%.

Experiment 1 cross-validation error rate: 2.67%

Iteration 3; mean error rate: 2.67%

Current number of hidden nodes: 7; error rate: 2.67%.

Optimal number of hidden nodes: 5; error rate: 2.67%.

Experiment 1 cross-validation error rate: 2.67%

Iteration 4; mean error rate: 2.67%

Current number of hidden nodes: 8; error rate: 2.67%.

Optimal number of hidden nodes: 5; error rate: 2.67%.

Experiment 1 cross-validation error rate: 2.67%

Iteration 5; mean error rate: 2.67%

Current number of hidden nodes: 9; error rate: 2.67%.

Optimal number of hidden nodes: 5; error rate: 2.67%.

Experiment 1 cross-validation error rate: 6.67%

Iteration 6; mean error rate: 6.67%

Current number of hidden nodes: 10; error rate: 6.67%.

Optimal number of hidden nodes: 5; error rate: 2.67%.

Applying the optimal classifier to the test dataset...

Epoch: 0; avg. error per output node: 0.2607191; error rate: 66.67

Epoch: 10; avg. error per output node: 0.0618523; error rate: 4.67

Epoch: 10; avg. error per output node: 0.0585874; error rate: 15.33

Epoch: 10; avg. error per output node: 0.0580851; error rate: 10.00

Epoch: 10; avg. error per output node: 0.0580256; error rate: 12.00

Epoch: 20; avg. error per output node: 0.0156552; error rate: 2.00

Epoch: 20; avg. error per output node: 0.0152103; error rate: 2.00
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Epoch: 20; avg. error per output node: 0.0145961; error rate: 2.00

...

Epoch: 100; avg. error per output node: 0.0090650; error rate: 2.00

Epoch: 100; avg. error per output node: 0.0090649; error rate: 2.00

+----------------------------------------------------------------------------+

| Class | Actual/predicted card. | Error rate |

+----------------------------------------------------------------------------+

| | 150/150 | 2.00% ( 3/ 150) |

| 1/iris_setosa | 50/50 | 0.00% ( 0/ 50) |

| 2/iris_versicolor | 50/47 | 6.00% ( 3/ 50) |

| 3/iris_virginica | 50/53 | 0.00% ( 0/ 50) |

+----------------------------------------------------------------------------+

| Vector | Actual class | MLP prediction |

+----------------------------------------------------------------------------+

| 71 | iris_versicolor | iris_virginica |

| 73 | iris_versicolor | iris_virginica |

| 84 | iris_versicolor | iris_virginica |

+----------------------------------------------------------------------------+

In the above example, PCP estimates error rates of the MLP for 5 ≤ h ≤ 10 hidden nodes, and
determines that the lowest error rate is achieved for h = 5. Subsequently it builds an MLP with 5
hidden nodes using entire training dataset, and applies it to the test dataset. The results of model
selection and test set prediction are saved in files pcp.msl and pcp.rcl, respectively.

5.8 Support Vector Machine Algorithm

Support Vector Machine (SVM) algorithm [10, 17, 22] is a recent outgrowth of a comprehensive the-
ory of machine learning known as Statistical Learning Theory, developed over the past four decades
primarily by Vladimir N. Vapnik of AT & T Labs. The method has achieved wide acceptance due to
the following important properties which distinguish it from other pattern classification algorithms
(in addition to the demonstrated good performance on real-life problems):

• SVM has been demonstrated in practice to be able to handle input vectors with thousands
of attributes

• Statistical Learning Theory provides rigorous foundation for understanding and estimating
the generalization ability of SVM

• SVM is formulated in terms of a quadratic optimization problem, for which a global minimum
can efficiently be found

SVM can generally be used in the same way as other pattern classification algorithms, however
some knowledge of the parameters is helpful in order to achieve good performance.

PCP incorporates a widely used open-source SVM implementation called LIBSVM [30]. The
SVM menu is shown in Fig. 5.7.

In addition to the standard supervised pattern classification options, the menu has Save Prob-
lem in LIBSVM Format. This function can be used to save training dataset in the LIBSVM-
compatible file format known as sparse file format, in case further analysis by LIBSVM is required.

Pressing a key launches the following dialog and starts SVM learning:
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Figure 5.7: Support Vector Machines menu
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Enter SVM type (1: NU-SVM; 2: C-SVM) [2]:

Enter kernel type (1: linear; 2: polynomial; 3: RBF; 4: sigmoid) [3]:

Enter cost parameter C [1000.00]:

Change class costs (1: yes; 0: no) [0]:

Enter gamma [ 0.010000]:

Enter output model file name [pcp.svm]:

This dialog occurs if user chooses the default C-SVM SVM type, and RBF kernel. The parameter
C (cost) is related to the penalty assigned to the input samples misclassified by the SVM. Presently
there is no particular guidance as to the choice of value for C. The values in the range of 0.001 -
100000 have been used successfully, depending on the dataset.

The program enables the user to change the individual class costs. This may be useful to achieve
a desired balance among class-conditional error rates.

Certain parameters are specific to the choice of SVM kernel function. PCP (through LIBSVM
[30]) provides four kernel types (in the equations below, ‖X − Y ‖ is Euclidean distance between
input vectors X and Y , and X · Y is dot (scalar) product):

• RBF: κ(X, Y ) = exp(−γ‖X − Y ‖2)

• linear: κ(X, Y ) = X · Y

• polynomial: κ(X, Y ) = (γX · Y + c0)d

• sigmoid: κ(X, Y ) = tanh(X · Y + c0)

The gamma (γ) parameter is specific to the choice of Radial Basis Function (RBF) or polynomial
kernels. c0 is specific to polynomial and sigmoid kernels, and d is specific to polynomial kernel.

The recently developed NU-SVM algorithm [19] attempts to provide a more approachable alter-
native to the C parameter of C-SVM.

The nu (ν) parameter of NU-SVM is a real number in the [0, 1] interval, and it represents an
upper bound on the training set error rate. In other words, when the SVM optimization algorithm
converges, the fraction of misclassified samples in the training set will be at most ν2 (this doesn’t
say anything about the error rate on the independent test set).

Note that not all [0, 1] values of ν are feasible. The corresponding NU-SVM problem does not
have a solution if ν exceeds νmax, defined for two-class case as:

νmax = 2
min(n1, n2)

n1 + n2
(5.2)

2This statement is strictly true only if the SVM optimization problem is solved exactly. This, of course, can never
be achieved due to, at least, floating-point round-off error, but in most practical cases it does appear to hold true.
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where n1, n2 are the class cardinalities [25]. For multiple-class case, the condition ν ≤ νmax

must be satisfied for each pair of classes.
The above interpretation, along with a bounded interval for the values of ν, should provide a

more intuitive means of controlling SVM generalization than the cost parameter C. For example,
setting ν to 0.01 means that we tolerate up to 1% error rate on the training dataset, but at a cost
of potentially poor performance on previously unseen examples. Conversely, setting ν to a higher
value permits more errors during training, thus allowing a smoother discrimination function, and
potentially better generalization performance.

A typical PCP SVM learning dialog involving the NU-SVM algorithm and RBF kernel might
proceed as follows:

Enter SVM type (1: NU-SVM; 2: C-SVM) [2]:
1
Enter kernel type (1: linear; 2: polynomial; 3: RBF; 4: sigmoid) [3]:

Enter nu (max. allowed frac. of training errors) (0.00..0.58) [0.20]:
0.6
The value must be between 0.000000 and 0.580645.

Enter nu (max. allowed frac. of training errors) (0.00..0.58) [0.20]:
0.3
Enter gamma [ 0.010000]:

Enter SVM model file name [pcp.svm]:

As shown in this example, the feasible region for ν for this particular dataset is [0, 0.58]. PCP
does not accept input values outside the feasible region.

5.8.1 Model Selection

Model selection refers to the process of finding optimal values of classifier parameters, as previ-
ously defined in Section 5.1. For classifiers with a single, discrete-valued parameter, such as the
number of nearest neighbors in k-NN or the number of hidden nodes in MLP, model selection is
straightforward: perform cross-validation for a set of plausible values of the parameter, and choose
the parameter value which minimizes a performance criterion.

Things are more complicated for SVM. The most commonly used configurations (C-SVM or
NU-SVM with RBF kernel) have two continuous-valued parameters (C or ν, and γ). This makes it
impractical to determine optimal combination by manually running cross-validation experiments.
In addition, the performance criterion - typically cross-validation error rate - is a piecewise-constant
function of the parameters, making it impossible to use gradient-based optimization procedures.

PCP provides automated way to determine the best SVM parameters through the Model
Selection menu. The menu is accessed by pressing g key from Support Vector Machines
menu, and is shown in Fig. 5.8.

PCP provides two algorithms for SVM model selection: Simplex, and Grid Search.
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Figure 5.8: Model Selection Menu
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The simpler method, Grid Search, computes cross-validation error rate on the training set over
a 10 by 10 grid of parameter values (for a total of 121 (C/ν, γ) pairs) and reports the pair of values
which give minimum error rate.

The Simplex search uses a heuristic based on Simplex algorithm for multivariate optimization
without gradient ([5], [12]).

The searches are initiated by pressing the a or b key, respectively. The processing parameters
are entered during the following dialog (the example applies to simplex search):

Enter SVM type (1: NU-SVM; 2: C-SVM) [2]:

Change class costs (1: yes; 0: no) [0]:

Enter number of cross-validation subsets (2..50) [ 10]:

Enter number of experiments [1]:

Enter seed for pseudo-random number generator [ 1]:

Use raw (0) or normalized data (1) [0]:

Choose dim. reduction method: none (0), FLD (2), PCA (3), EMAP (4), feature ra
nking (5), forward selection (6), backward elimination (7), or forward floatin
g search (8) [0]:

Enter maximum number of iterations [20]:

The only differences in comparison with cross-validation are fixed kernel type (Simplex model
selection only supports RBF kernel, while Grid Search currently supports linear and RBF kernels),
and lack of C/ν, γ parameters in the dialog. This is understanable since the purpose of the search
is to find the optimal parameter values.

The optimal parameters and the corresponding error rate are displayed on screen at the con-
clusion of the search as follows:

Optimization completed in 4 iterations; minimum error rate: 2.00%.
Optimal parameters: C = 31.623; gamma = 0.01

As indicated previously (Section 5.3.2), detailed results of model selection are stored in file
named pcp.msl. The file has the following format (the specific example is a result of Simplex
search on IRIS dataset):

8.13 0.1 1e-08 0
8.13 10000 1e-08 0
1.93 31.623 0.01 0
6.60 3.1623e+06 0.01 1
6.60 3.1623e+06 0.01 1
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64.13 10000 10000 2
3.00 10000 1e-05 2
3.00 10000 1e-05 2
8.67 0.1 1e-05 3
3.47 42170 0.0017783 3
3.47 42170 0.0017783 3
...

The four columns are: error rate, C or ν, γ, and iteration number, respectively. The file records
all parameter pairs examined by the program. To find the optimal parameters, sort the file as:

% sort -g pcp.svp

Simplex search starts with iteration 0 which serves to initialize vertices of the initial simplex (see
[[5]] for details). Note that, unlike Grid Search, in Simplex algorithm a single iteration may involve
multiple parameter pairs and function evaluations, hence multiple lines with identical iteration
number in the above file segment. In Grid Search, iterations start with 1, and each iteration
occupies exactly one line.

In our experience, Simplex is considerably faster and often reaches better optimum than Grid
Search. On rare occasions, however, it gets trapped in a local minimum. A recommended procedure
is to run Grid Search if Simplex produces an unexpectedly poor value of the performance criterion.

At the end of the parameter search, if the test set is defined, PCP will automatically build a
classifier using entire training dataset and the optimal parameters, and apply it to the test dataset.
Thus, a single function implements virtually entire Statistical Learning Paradigm of Section 5.1.

Last, but not least, model selection, as implemented in PCP, offers dramatic performance advan-
tages when used with dimensionality reduction. It is easy to demonstrate that if a classifier being
developed includes dimensionality reduction of a high-dimensional dataset (a routine requirement
for such datasets), manual selection of SVM parameters is not only tedious, but virtually impossible
to complete in reasonable time. This is further elaborated in Section 6.3.

5.9 Bayes Error Estimation

Bayes Error Estimation differs from the rest of the supervised classification algorithms. The
menu is shown in Fig. 5.9, and is accessed by pressing a key in the Pattern Classification menu.

For an introduction to the notion of Bayes error rate in pattern classification, see any standard
text ([20], [26]). In summary, it is the error rate achieved by the optimal pattern classification
algorithm known as the Bayes rule. It is not attainable in practice, since the Bayes rule requires
knowledge of class-conditional probability distributions, never available in real-life situations.

The theory of this elaborate algorithm has been developed by K. Fukunaga and collaborators
([3], [4]). The algorithm has not gained wide acceptance due to the following properties of the
method:

• the algorithm uses Mahalanobis distance (5.3) for the k-NN method which lies at the heart
of the algorithm; this in turn requires sufficiently large datasets in order to calculate reliable
estimates of the covariance matrices.
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Figure 5.9: Bayes Error Estimation menu
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Mahalanobis distance between a vector X, and vector Y from class i is defined as:

d(X, Y ) =
√

(X − Y )T Σ−1
i (X − Y ) (5.3)

where Σi is covariance matrix of class i (the class to which Y belongs). Clearly, the use of this
distance measure requires that a covariance matrix estimate of each class be non-singular.

• computational complexity: error estimation for sizable datasets (thousands of vectors with
hundreds of features) can easily take days on powerful computers

• difficult software implementation and testing

Nonetheless, in cases where it can be applied effectively, the Bayes error estimation can be
exceptionally useful tool, since it may provide a solid estimate of the theoretical limit of the classi-
fication accuracy for the problem at hand, independent of the learning algorithm. If this quantity
does not satisfy the requirements of the problem statement, the researcher/system designer has to
collect additional features (measurements).

The menu contains two basic functions: estimation of Bayes error, and display of results. The
third function, Approximate Leave-one-out, implements an approximation of the method which
is generally interesting for diagnostic purposes. To estimate Bayes error using the training dataset,
press a key and respond to the two questions:

Enter index of the first nearest neighbor [1]:

Enter index of the last nearest neighbor [ 49]:
10

The numbers define the range of values for k in the nearest neighbor procedures on which the
algorithm is based. The results are stored in file pcp.bee.

To display the results, press c. A typical output for IRIS data may look like:

+----------------------------------------------------------------------------+
| |
| B A Y E S E R R O R E S T I M A T I O N |
| |
+----------------------------------------------------------------------------+
| k | Leave-one-out error estimate | Resubstitution error estimate |
+----------------------------------------------------------------------------+
| 1 | 4.00 | 0.00 |
| 2 | 5.33 | 2.00 |
| 3 | 2.67 | 1.33 |
| 4 | 4.00 | 1.33 |
| 5 | 2.00 | 1.33 |
| 6 | 2.67 | 1.33 |
| 7 | 2.00 | 1.33 |
| 8 | 2.00 | 0.67 |
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| 9 | 2.67 | 0.67 |
| 10 | 2.00 | 1.33 |
+----------------------------------------------------------------------------+

leave-one-out and resubstitution refer to the upper and lower limit of the Bayes error
estimate for a given k.

Bayes error estimation is useful if the gap between the reported upper and lower bounds is
relatively narrow. When number of samples is small compared with the input dimension, the
bounds will be loose, and the resulting gap too wide to be useful.

In the above case, the bounds are very close to what is believed to be the best achievable error
rate for this widely-analyzed dataset.

5.10 Measures of Classification Performance in PCP

In this section we describe the performance measures used to report supervised classification results
in PCP.3

PCP distinguishes between two-class and multiple-class classification problems. For multi-class
problems, overall and class-conditional error rates (defined shortly) are calculated and displayed; for
two-class problems, sensitivity, specificity, positive and negative predictive value are also computed,
saved and displayed.

For multi-class problems, class-conditional error rate for class i, ei, is defined as the number of
class i samples assigned to another class (Ei), divided by the cardinality of the training data set
for class i (ni). The overall error rate e (also known as misclassification rate) equals the number of
incorrectly assigned samples divided by the total number of samples used for learning (n). Hence
we have:

ei =
Ei

ni
(5.4)

e =
∑c

i=1 Ei

n
, n =

c∑
i=1

ni (5.5)

The sensitivity, specificity, positive and negative predictive value error measures are defined for
two-class pattern classification problems, and assume that one of the classes is labeled positive (P ),
while the other is labeled negative (N) [23]. These terms are widely used in medical diagnostics,
where such labels naturally correspond to diseased and healthy classification subjects (patients),
respectively4; however the concepts apply to all two-class pattern classification problems. In PCP,
it is assumed that class 1 has the positive samples, and class 2 has negative samples.

Introducing the notions of true positive rate tP as the fraction of correctly assigned class P
samples, false negative rate as the fraction of incorrectly assigned class P samples, true negative
rate tN as the fraction of correctly assigned class N samples and false positive rate fP as the fraction
of incorrectly assigned class N samples, sensitivity and specificity can be defined as:

3All performance measures described in this section are fractions in the interval [0, 1]. PCP displays and saves the
equivalent percentage values, i.e., the measures multiplied by 100.

4The term positive for an ill patient comes from the fact that the individual tested positive for the disease.
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sens := tP =
TP

nP
= 1− fN , nP := n1 (5.6)

spec := 1− fP = 1− FP

nN
= tN , nN := n2 (5.7)

Using the previously defined error rates and noting that FP = EN and FN = EP , these
quantities can also be expressed as:

sens =
nP − FN

nP
= 1− FN

nP
= 1− eP , eP := e1 (5.8)

spec = 1− EN

nN
= 1− eN , eN := e2 (5.9)

and, conversely,

e :=
EP + EN

n
=

(1− sens)nP + (1− spec)nN

nP + nN
(5.10)

Positive predictive value (PPV) is defined as the number of true positives divided by the sum
of true positives and false positives:

ppv =
TP

TP + FP
=

1
1 + nN

nP

1−spec
sens

(5.11)

Negative predictive value (NPV) is defined as the number of true negatives divided by the sum
of true negatives and false negatives:

ppv =
TN

TN + FN
=

1
1 + nP

nN

1−sens
spec

(5.12)

PPV and NPV quantify what fraction of the positive/negative predictions are correct5, or, in
other words, what is the confidence of positive/negative prediction. Ideally, of course, sensitivity,
specificity, positive and negative predictive value should all equal 1. However, depending on the
problem domain, much lower values may be acceptable [27].

In some applications PPV is known as precision, and sensitivity is known as recall.
These concepts are illustrated in the confusion matrix shown in Table 5.1.

Table 5.1: Confusion matrix for two-class problems.
predicted

class 1 (positive) class 2 (negative) Σ
actual class 1 TP FN nP sens = TP

nP

class 2 FP TN nN spec = TN
nN

ppv = TP
TP +FP

npv = TN
TN+FN

PCP automatically computes and displays sensitivity, specificity, positive and negative predic-
tive value when the number of classes is two.

5If all samples were assigned to class N (i.e., TP +FP is 0), PPV is undefined. PCP sets it to 0. Likewise for NPV.
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Dimensionality Reduction

Dimensionality reduction is the process of transforming input data into a lower-dimensional space
where a more efficient classifier can be built. In PCP, the dimensionality reduction methods are
divided in two groups: feature extraction, which map input data using linear transformation (i.e.,
a transformation matrix), and feature selection, which performs the mapping by selecting a subset
of the original features.

Feature extraction methods supported in PCP are Fischer’s linear discriminant fuction, Princi-
pal Component Analysis, Singular Value Decomposition and EMAP algorithm. The feature subset
selection methods implemented in PCP are feature ranking, forward selection and backward elim-
ination.

All dimensionality reduction methods can be used in a stand-alone mode (through the dedicated
menus), or as a part of the cross-validation analyses. The stand-alone mode may be used to explore
the relationships among input features, and is described in Sections 6.1 and 6.2. However, it is not
particularly well suited for classifier design since it may produce heavily biased error estimates. For
classifier design, cross-validation should be applied to the combination of dimensionality reduction
and classifier, as explained in Section 6.3.

6.1 Feature Extraction

Given input vectors X of dimension d, feature extraction seeks to find an optimal m× d transfor-
mation matrix W which maps X into the m-dimensional space of vectors Y , where m < d:

Y = WoptX, Wopt = arg max
W

J(W ) (6.1)

where J(W ) is the criterion used to evaluate the discriminatory potential of the selected subset
of m features.

Feature extraction methods differ in the choice of criterion J(W ). One popular criterion is
the ratio of between-class and within-class scatter matrices SB and SW of the transformed vectors.
Following [20], Section 3.8.3 Multiple Discriminant Analysis, the measure is defined as:

J(W ) =
∣∣∣S−1

W SB

∣∣∣ (6.2)

This quantity, in effect, measures the relative average distance among class centers in the
mapped space. In order for the mapping to ensure that an accurate classifier can be built in

53
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the space of vectors Y , the average distance should be maximized. It can be shown [20] that
the matrix W which maximizes J(W ) of equation (6.2) can be computed by eigenanalysis of the
scatter matrices in the input space, and the resulting transformation is known as Fischer’s linear
discriminant.

Another well-known approach to the problem is Principal Component Analysis, which identifies
the mapping which best represents the original data in the least-squares sense. The resulting
transformation matrix is again computed by eigenanalysis, this time of the scatter matrix SB.

Finally, the transformation called EMAP [9] attempts to use a theoretically near-optimal
criterion J(W ). Instead of applying heuristic criteria such as (6.2), the algorithm directly uses
the criterion which lies at the heart of the pattern classification - probability of misclassification,
as measured by the Bayes error estimate (see Section 5.9). This quantity is a piecewise-constant
function of the transformation matrix parameters, and is thus generally not considered suitable for
optimization. [9] however demonstrates that by using a non-gradient algorithm known as Simplex
[5], effective minimization of such functions can be achieved.

The menu which implements these computations is shown in Fig. 6.1.

Figure 6.1: Feature Extraction menu

To calculate Fisher’s linear discriminant, press a in the menu:

Enter dimension of transformed space: (1..2) [ 2]:

Enter linear transformation output file name [pcp.lin]:
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The output file has m rows and d columns, where each row corresponds to a feature in the
output space.

The principal component analysis (PCA) has a submenu with two options, PCA and Singular
Value Decomposition (SVD). SVD implementation follows [18], and is used in case the number
of data points is less than the dimension of the input space. PCA employs identical dialog as
the Fisher’s linear discriminant. However, SVD adds one more input option. The transformation
can be computed using both training and test sets, or just training set. The former approach is
statistically legitimate since no class information is used in the process of computing SVD, and in
our experience it can significantly improve performance.

A SVD dialog proceeds as follows:

Use training dataset (1) or both (0) [0]:

Enter dimension of transformed space: (1..1994) [ 72]:

Enter linear transformation output file name [pcp.lin]:

SVD and PCA both produce output file in the same format as the Fisher’s linear discriminant.
EMAP algorithm is launched by pressing c in the Feature Extraction menu:

Enter dimension of transformed space (1..4):
2
Enter linear transformation output file name [pcp.emp]:

Enter kmin [1]:

Enter kmax (1..49) [ 24]:

Enter seed for pseudo-random number generator [ 1]:

Enter maximum number of iterations [1000]:

Starting point: Fisher (2), PCA (3), random (12), or file (13) [3]:

The algorithm uses the Bayes error estimate (see Section 5.9) as the optimization (minimization)
criterion. The kmin, kmax values is the range of k-nearest neighbors used for the error estimation.
seed is used to initialize the pseudo-random number generator used to resolve ties. The maximum
number of iterations controls the Simplex optimization algorithm. Starting point determines the
initial vertex which defines the simplex [5]. It is recommended that the algorithm should start from
a point defined by one of the other algorithms, for example PCA or Fisher’s linear discriminant (as
offered in the above dialog), however pseudo-random starting point, or starting point defined in a
file are also possible.
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EMAP can realistically be used only on smaller datasets (smaller in the number of data points
and dimension of input space); its’ memory complexity is O((m × d)2 ∗ M), where M is memory
required to store the nearest neighbors involved in Bayes error estimation. The computational
complexity is very high, given that calculating each of the m × d vertices of the simplex involves
a Bayes error estimate in the transformed space, already a demanding task. However, the method
does demonstrate that it is technically feasible to use the empirical error rate as a learning criterion.

Feature extraction methods described above create a linear mapping and store it in a file.
The feature extraction menu shown in Fig. 6.1 provides an option to map (transform) the current
datasets (training and/or test) into low-dimensional space using the transformation stored in the
file. To map dataset(s), press Map Datasets (d key):

Enter transformation matrix file name [pcp.lin]:

Replace current dataset(s) (1) or not (0) [0]:
1

Upon completion of the dialog, the currently defined dataset(s) will be mapped into low-
dimensional space, using the specified mapping file. The mapped data is stored in files with string
map inserted in file name just before the extension suffix. For example, if training data for class 2
is stored in file training 2.dat, the mapped data will be written to training 2 map.dat.

The second question gives an option to replace the current training dataset(s). In case a
replacement is chosen (answer 1 to the question), these files automatically become the training
and/or test datasets.

6.2 Feature Selection

The goal of feature selection is to choose an optimal subset (according to some criterion) of car-
dinality m among the d input features. The benefit of feature selection is that, once a reliable
subset has been identified, only m measurements need to be collected to predict class labels for
new samples. In contrast, feature extraction always requires the full complement of d features.
This difference may be a significant factor if obtaining the measurements is costly.

The definition of a feature selection method requires specification of the following two compo-
nents:

• search algorithm determines which subsets are evaluated

• the definition of a criterion for evaluating the fitness of each subset

The optimal subset maximizes the value of the chosen criterion.
The search problem is clearly NP-complete, since evaluation of all possible subsets of cardinality

m requires
( d
m

)
evaluations of the criterion, if m is known. If m is unknown, which is normally

the case, the number of evaluations to determine the optimal m and the optimal subset of size m
jumps to 2d. Both numbers are astronomically large for most realistic data sets.

Given that finding the optimal solution is generally not feasible, several search heuristics exist.
The PCP Feature Selection menu implements the following established algorithms [26], [31] (the
descriptions below assume that the feature selection criterion is to be maximized):
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• feature ranking. Each feature is evaluated individually according to the chosen criterion, and
the values are then sorted; the m features with the best value of the criterion are retained
for classification. The method is conceptually simple and computationally attractive, but is
only optimal in the unlikely case of independent features.

• forward selection. Start with an empty subset and add one feature at a time. The added
feature is one which optimizes the value of the criterion for the newly formed subset. The
process stops when m features have been addeed.

• backward elimination. Start with all d features and remove one feature at a time. The
subtracted feature minimally reduces the value of the feature selection criterion for the new
subset. The process stops when m features remain.

In addition to solving the search problem, feature selection requires the choice of a criterion for
evaluating the fitness of a particular feature subset. A variety of criteria have been proposed and
used with these and other feature selection algorithms. When considering the criteria, a distinction
must be made between feature ranking and feature subset selection because individual feature
ranking can use specialized criteria not available for more than one feature.

PCP implements the following criteria:

• feature ranking:

– Euclidean distance between vector of the feature values and corresponding integer class
labels

– Pearson correlation coefficient. The measure computes the Pearson correlation coefficient
between two random variables: the feature being evaluated, and class label.

– 1-NN criterion (cross-validation error rate of a nearest neighbor classifier constructed
using the feature being evaluated)

– Bayes criterion (Bayes error estimate for the feature being evaluated, see Section 5.9)

– Golub criterion (defined for two classes [14])

• feature subset selection:

– 1-NN criterion (cross-validation error rate of a nearest neighbor classifier constructed
using the subset of features being evaluated)

– Bayes criterion (Bayes error estimate (see Section 5.9) for the subset of features being
evaluated)

– inter-intra distance, defined as trace
{
S−1

W SB

}
Feature Selection menu is shown in Fig. 6.2.
The first menu option Select Feature Subset is used to select optimal subset of features,

specifying a feature evaluation criterion and a search algorithm. Pressing a triggers the following
dialog (the example uses the two-class Leukemia dataset described in Chapter 7; in case of a dataset
with more than two classes, Golub criterion would not be offered):
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Figure 6.2: Feature Selection menu
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Enter feature selection method: feature ranking (5), forward selection (6), or
backward elimination (7) [5]:

Enter feature rank output file name [pcp.rnk]:

Use Euclidean (1), Pearson (2), Golub (3), 1-NN (4) or Bayes (5) criterion [2]
:

In this case, the default method (feature ranking) has been chosen. The ranking of features is
stored in the output file in the following format:

971 0.808293 U50136_rna1_at
557 0.798445 M23197_at
1657 0.782888 U22376_cds2_s_at
1471 0.743460 Y12670_at
631 0.729944 M63138_at
...

The first column is the original input feature index, equal to the column number of the cor-
responding feature in the input data files. The second column is value of the criterion for the
corresponding feature, sorted in the decreasing order. The optional third column has the feature
name if the input files have named columns.

Option Display Feature Subset displays the user-defined number of best features:

Enter feature rank file name [pcp.rnk]:

Enter number of features to select [5]:

In case of feature subset selection using a forward selection method, the PCP interaction pro-
ceeds as follows:

Enter feature selection method: feature ranking (5), forward selection (6), or
backward elimination (7) [5]:
6
Enter feature subset output file name [pcp.set]:

Use 1-NN (1), inter-intra distance (2) or Bayes criterion (3) [1]:

Enter number of features to select (1..1994) [2]:
5
Added feature 1674 ( 1/ 5); criterion value: 92.105263
Added feature 697 ( 2/ 5); criterion value: 97.368421
Added feature 1980 ( 3/ 5); criterion value: 100.000000
Added feature 1991 ( 4/ 5); criterion value: 100.000000
...
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The display shows the index of feature being added and the value of the criterion of the resulting
subset (after the feature has been added). In this example, the 1-NN classifier accuracy reaches
100% already with three features. The default feature subset file name is pcp.set and the file
format is:

527 100.000000 M16038_at
1924 100.000000 M31523_at
1983 100.000000 X01677_f_at
1989 100.000000 L78833_cds4_at
1994 100.000000 X83863_at
...

The first and optional third column list the features which comprise the optimal subset. The
second column is the value of the criterion for the subset. The value is the same in all rows, since
it is associated with the subset, not with any particular feature.

The Subset Datasets function extracts the best features from the current datasets and saves
them in output files in the standard PCP format. These output files could then be further analyzed
in another PCP session. Optionally, this function replaces the current datasets (similar to Map
Data Sets in Feature Extraction), in which case the selected subsets become the current training
and test datasets. If this option is chosen, the additional analyses can continue in the same PCP
session. The output file names have string sel inserted before the extension in the input file
names. For example, given an input file iris.dat, the selected subset of features would be stored
in a file iris sel.dat.

In practice, feature ranking performs well on many datasets, even though it ignores feature
correlations. This may perhaps be due to well-established criteria (such as the Pearson correlation
coefficient) for evaluating individual features, rather than to the power of the method itself.

6.3 Dimensionality Reduction in Cross-validation

In many applications, the learning machine consists of two stages: dimensionality reduction and
classification. The structure is shown in Fig. 6.3.

dimension 
reduction

classifier
prediction

d
m

Figure 6.3: The combined learning machine consisting of dimensionality reduction and classification
steps. d is dimensionality of input vectors, m the dimension of transformed vectors. Multiple arrows
are meant to convey the effect of reducing the dimensionality of the input data.

This section describes how PCP incorporates dimensionality reduction in the design and error
estimation of classifiers.

Dimensionality reduction as a stand-alone process independent of the design of the classifier
stage leads to over-fitting. The reason is as follows. Independent feature subset selection/mapping
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is performed using the training dataset. If the resulting features are then used to cross-validate a
classifier (which is again done on the training dataset), the same data would have been used for
training (the dimensionality reduction stage), and testing (the cross-validation of the classifier).
This is over-fitting, and may produce heavily biased error estimates.

In contrast, PCP supports building dimensionality reduction and classifier stages together,
and simultaneously estimating the error rate of both stages. In this scenario, each cross-validation
learning dataset will first be used to compute the dimensionality reduction parameters, and then the
computed transformation will be applied to the learning and validation datasets. This is followed by
building a classifier using the mapped learning dataset, and testing it using the mapped validation
dataset. Thus, validation subset is never used for either dimensionality reduction nor classifier
learning, but exclusively for testing. This is a statistically rigorous approach to machine learning
which avoids over-fitting.

As an example of the joint design of dimensionality reduction and classifier stages, the following
dialog reflects calculation of the cross-validation error estimate of a combined classifier consisting
of the two stages (the example uses the Leukemia dataset described in 7). The dimensionality
reduction stage is Singular Value Decomposition feature extraction method, whereas the classifier
is SVM in the in the 33-dimensional transformed space. To perform the calculation, start Pattern
Classification→ Support Vector Machine→ Cross-validation (as usual, the empty response
lines indicate acceptance of the default parameter value):

Enter SVM type (1: NU-SVM; 2: C-SVM) [2]:

Enter kernel type (1: linear; 2: polynomial; 3: RBF; 4: sigmoid) [3]:

Enter gamma [ 0.010000]:

Enter tolerance of termination criterion [0.00100]:

Enter cost parameter C [1000.00]:

Enter number of cross-validation subsets (2..11) [ 10]:

Enter SVM cross-validation file name [pcp.xsv]:

Enter seed for pseudo-random number generator [ 1]:

Enter number of experiments [1]:

Dimension reduction method - none (0), Golub (1), SVD (3), EMAP (6) [0]:
3
Enter dimension of transformed space (1..33) [33]:

Use raw (0) or normalized data (1) [0]:

Since SVD has been chosen as the dimension reduction method, the dialog requests input of
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additional parameter, the dimension of the transformed space. The SVM classifier is constructed
in the lower-dimensional space.

The next example, using the same dataset, illustrates calculation of cross-validation error rate of
a feature selection using feature ranking, followed by MLP classifier in the 10-dimensional space. To
perform the calculation, start Pattern Classification → Multi-Layer Perceptron → Cross-
validation:

Enter MLP cross-validation file name [pcp.xmp]:

Enter number of hidden layers (>= 1) [1]:

Number of inputs is 1994.
Number of output nodes is 2.

Enter number of nodes in hidden layer 1:
5
Enter seed for pseudo-random number generator [ 1]:

Enter amplitude of initial weights [ 1.00]:

Enter optimization method - conj. grad (1), grad. descent (2) [ 1]:

Enter number of iterations (-1 for no iterations) [100]:

Enter number of cross-validation subsets (2..11) [ 10]:

Enter number of experiments [1]:

Use raw (0) or normalized data (1) [0]:

Choose dim. reduction method: none (0), FLD (2), PCA (3), EMAP (4), feature ra
nking (5), forward selection (6), or backward elimination (7) [0]:
5
Use Euclidean (1), Pearson (2), Golub (3), 1-NN (4) or Bayes (5) criterion [2]
:

Enter dimension of transformed space (1..1994) [1994]:
10

The specification of feature ranking as a dimensionality reduction stage triggered the input
of two additional parameters: the number of features to select, and the choice of criterion for
evaluating the features. The MLP is constructed in the space of the selected features.

This functionality performs cross-validation error estimation of the combined dimensionality
reduction/classifier. Once the estimate is obtained, it can be used for model selection, as described
in Section 6.4.
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6.4 Dimensionality Reduction in Model Selection

Statistically valid model selection (see Section 5.8.1) becomes a computationally challenging process
in the presence of dimensionality reduction, particularly for methods (such as SVM) with multiple
continuous classifier parameters. It is easy to recognize this by considering the following:

• model selection involves finding the parameter values which give the lowest value of the chosen
criterion (Section 5.1)

• frequently, error rate is used as a criterion, and cross-validation is used to estimate the error
rate

• each cross-validation experiment has to perform dimensionality reduction followed by learning
of the classifier, for each cross-validation subset (Section 6.3)

For example, for 10-fold cross-validation, this means that for each parameter value combina-
tion, the dimensionality reduction has to be performed 10 times for each possible combination of
parameter values. This has to be multiplied by the number of parameter value combinations to be
evaluated. For SVM, the number of (C/ν, γ) pairs can be in the hundreds for grid search, therefore
the total number of dimensionality reduction computations easily reaches thousands.1 Given the
complexity of dimensionality reduction algorithms themselves, the total computational burden may
quickly become impractical even for small datasets.

PCP solves this problem by an efficient design of model selection incorporating the dimension-
ality reduction. The implementation is currently available for Support Vector Machine algorithm,
where the issue is the most challenging. The implementation is based on the idea that the dimen-
sionality reduction computations are exactly the same for each pair (C/ν, γ) of SVM parameter
values. Thus, it can be performed once, and then reused for each new combination of parameter
values.2 As a result, the effective required number of dimensionality reduction calculations equals
the number of cross-validation subsets multiplied by the number of cross-validation experiments,
a much more manageable complexity. This enables the rigorous use of dimensionality reduction
algorithms within SVM model selection.

The dimensionality reduction is performed for each cross-validation subset, therefore the feature
subsets (in case of feature selection dimensionality reduction) will differ slightly between the subsets.
PCP stores the chosen feature subsets for each cross-validation subset in file pcp.xsf. A sample
file recording selection of feature subsets of cardinality five is shown in Table 6.1. The file can be
used to analyze which features get selected most frequently.

1In order to reduce bias of the cross-validation error estimates, each cross-validation experiment may optionally
be performed multiple times (the Number of experiments parameter in cross-validation fuctionality). This increases
the number of dimensionality reduction computations by at least another order of magnitude.

2The suggestion is due to Sasha Jaksic of San Francisco State University.
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Table 6.1: Sample pcp.xsf file. Each line lists feature subset selected in a particular step of the
parameter selection. For example, line 1 has the feature subset selected in experiment 1, cross-
validation subset 1; line 2 has the feature subset select in experiment 1, cross-validation subset 2,
etc. The feature names correspond to the Leukemia sample dataset 7.

U50136_rna1_at U46751_at M23197_at U22376_cds2_s_at Y12670_at
U50136_rna1_at M23197_at U22376_cds2_s_at M92287_at M55150_at
M23197_at U50136_rna1_at U22376_cds2_s_at Y12670_at D26308_at
U50136_rna1_at M23197_at U22376_cds2_s_at M63138_at Y12670_at
...



Chapter 7

Sample Datasets

PCP is accompanied by a set of data files and batch files used to demonstrate the functionality.
Table 7.1 lists the names and properties of the datasets.

Table 7.1: Sample datasets. The column Batch file has the name of the accompanying batch file
which can be used to load the data into PCP.

Name Classes Features Training samples Test samples Batch file Reference
IRIS 3 4 150 0 iris.bat [1]

Leukemia 2 1994 38 34 al.bat [14]
SRBCT 4 2308 63 25 srbct.bat [21]

LANDSAT 6 36 4856 2000 landsat.bat [11]

The following batch file, srbct svm.bat serves as an example of the Support Vector Machine
classifier learning using the SRBCT data set:

b pattern classification
f Support Vector Machine menu
a learning
2 SVM type: C-SVM
2 kernel type: polynomial
1000 cost
0 default class costs
3 polynomial degree
0.01 gamma
0.0 constant term in kernel function
pcp.svm
x return
x return
x return

To run the experiment, first load the dataset, then run the learning:
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% pcp -b srbct.bat
% pcp -b srbct_svm.bat

After the learning is finished and control returns to the command prompt, start PCP again,
and go to Support Vector Machine. Press c to view the SVM predictions, and press Enter
twice in response to the questions. You should see the classifier predictions as:

+----------------------------------------------------------------------------+
| Class | Actual/predicted card. | Error rate |
+----------------------------------------------------------------------------+
| | 25/25 | 8.00% ( 2/ 25) |
| 1/ews_test | 7/8 | 0.00% ( 0/ 7) |
| 2/rms_test | 8/8 | 12.50% ( 1/ 8) |
| 3/nb_test | 7/6 | 14.29% ( 1/ 7) |
| 4/bl_test | 3/3 | 0.00% ( 0/ 3) |
+----------------------------------------------------------------------------+
| Vector | Actual class | SVM prediction |
+----------------------------------------------------------------------------+
| 13 | rms_test | ews_test |
| 22 | nb_test | rms_test |
+----------------------------------------------------------------------------+

The lower part of the table lists the samples misclassified by the SVM. To view the SVM
parameters, type or print file pcp.svm. In this particular case, 3-rd degree polynomial kernel has
been used, with γ = 0.01 and C = 1000.
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Bugs, Issues and Enhancements

This chapter lists known bugs, issues and possible enhancements as of the current release.

8.1 Bugs

• Support for multiple hidden layers in multi-layer perceptrons has not been thoroughly tested.

8.2 Issues

• There is an issue involving KDE Konsole terminal emulator. PCP uses inverse video to dis-
play most results. KDE Konsole, for some reason, renders entire screen in inverse video, once
the first screenful of content has scrolled off the window. This problem is not present in other
VT100 terminal emulators, for example GNOME terminal emulator, and the stock xterm pro-
gram. I would consider this a Konsole issue, especially given that it does not perform as well as
the other emulators on the VT100 compatibility test program (http://freshmeat.net/projects/vttest).
In any case, the defect is not serious, the results are perfectly readable, but may look slightly
different than in other terminal emulators.

WORKAROUND: I recommend using xterm terminal emulator, or switching to GNOME.

• Same problem plagues Windows Command Prompt terminal. I recommend using Cygwin
xterm instead (you have to download Cygwin anyway, in order to run Windows version of
PCP).

• Linear discriminant classifier performance for multi-class case is poor. This issue is under
investigation.

• The MLP conjugate gradient learning algorithm frequently reports a warning message Line
search failure in optimization procedure, and yet practice shows that it is often able
to find a reasonable minimum of the criterion function. In my experience, in case the learning
produces satisfactory minimum, the message can be ignored; if it doesn’t, retry with a different
set of learning parameters.
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8.3 Enhancements

These are the potential enhancements being considered for future releases of PCP (in no particular
order). Implementation depends on user feedback and available resources.

• Add GUI (Graphical User Interface).

• Expand Model Selection functionality to other SVM kernels.

• Add graphical output. Presently all results are displayed in the terminal window, and saved
in files.

• Implement Decision Tree classification algorithm.

• Add Help.

• Build PCL (Pattern Classification Library), a library of pattern classification functions based
on the PCP functionality.
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