
ModSecurity Reference Manual
Version 2.0.4 / (November 15, 2006)

Copyright © 2004-2006 Breach Security, Inc. (http://www.breach.com)

Table of Contents

Introduction ...4

Licensing ...4

Installation ...5

Configuration Directives ...7

SecAction ..7

SecArgumentSeparator ...7

SecAuditEngine ..7

SecAuditLog ..7

SecAuditLogParts ...7

SecAuditLogRelevantStatus ..8

SecAuditLogStorageDir ..8

SecAuditLogType ..8

SecChrootDir ...8

SecCookieFormat ...9

SecDataDir ..9

SecDebugLog ...9

SecDebugLogLevel ..9

SecDefaultAction ...9

SecGuardianLog ...9

SecRequestBodyAccess ..10

SecRequestBodyLimit ..10

1

http://www.breach.com

SecRequestBodyInMemoryLimit ...10

SecResponseBodyLimit ..10

SecResponseBodyMimeType ..10

SecResponseBodyMimeTypesClear ...11

SecResponseBodyAccess ..11

SecRule ...11

SecRuleInheritance ...13

SecRuleEngine ...13

SecRuleRemoveById ..13

SecRuleRemoveByMsg ..13

SecServerSignature ...14

SecTmpDir ..14

SecUploadDir ...14

SecUploadKeepFiles ...14

SecWebAppId ..14

Processing Phases ...15

Phase Request Headers ...15

Phase Request Body ...15

Phase Response Headers ...15

Phase Response Body ...15

Phase Logging ..15

Variables ..17

Transformation functions ..20

Actions ..22

allow ...22

auditlog ..22

capture ...22

chain ..22

ctl ..22

deny ..23

deprecatevar ...23

drop ...23

exec ...24

expirevar ..24

id ...24

initcol ..24

log ...24

msg ...25

multiMatch ..25

noauditlog ..25

nolog ...25

pass ...25

ModSecurity Reference Manual

2

pause ...25

phase ...25

proxy ...25

redirect ..25

rev ...25

sanitiseArg ...26

sanitiseMatched ..26

sanitiseRequestHeader ..26

sanitiseResponseHeader ..26

severity ..26

setuid ...26

setsid ...26

setenv ..27

setvar ...27

skip ...27

status ...27

t ...27

xmlns ...28

Operators ...29

eq ..29

ge ..29

gt ...29

inspectFile ...29

le ...29

lt ..29

rbl ..29

rx ...29

validateByteRange ..30

validateDTD ..30

validateSchema ..30

validateUrlEncoding ...30

validateUtf8Encoding ...30

ModSecurity Reference Manual

3

Introduction
ModSecurity™ is an embeddable web application firewall. It provides protection from a range of attacks

against web applications and allows for HTTP traffic monitoring and real-time analysis with no changes

to existing infrastructure.

Licensing
ModSecurity is available under two licenses. Users can choose to use the software under the terms of the

GNU General Public License (http://www.gnu.org/licenses/gpl.html), as an Open Source / Free Software

product. A range of commercial licenses is also available, together with a range of commercial support

contracts. For more information on commercial licensing please contact Breach Security.

Note
ModSecurity and mod_security are trademarks of Thinking Stone.

ModSecurity Reference Manual

4

http://www.gnu.org/licenses/gpl.html

Installation
ModSecurity installation consists of the following steps:

1. ModSecurity 2.x works with Apache 2.0.x or better.

2. Make sure you have mod_unique_id installed.

3. (Optional) Install the latest version of libxml2, if it isn't already installed on the server.

4. Unpack the ModSecurity archive

5. Edit Makefile to configure the path to Apache (for example: top_dir = /

usr/local/apache2).

6. (Optional) Edit Makefile to enable ModSecurity to use libxml2 (uncomment line DEFS = -

DWITH_LIBXML2) and configure the include path (for example: IN-

CLUDES=-I/usr/include/libxml2)

7. Compile with make

8. Stop Apache

9. Install with make install

10. (Optional) Add one line to your configuration to load libxml2: LoadFile /

usr/lib/libxml2.so

11. Add one line to your configuration to load ModSecurity: LoadModule secur-

ity2_module modules/mod_security2.so

12. Configure ModSecurity

13. Start Apache

14. You now have ModSecurity 2.x up and running.

Note
If you have compiled Apache yourself you might experience problems compiling ModSecurity

against PCRE. This is because Apache bundles PCRE but this library is also typically provided

by the operating system. I would expect most (all) vendor-packaged Apache distributions to be

configured to use an external PCRE library (so this should not be a problem).

You want to avoid Apache using the bundled PCRE library and ModSecurity linking against the

one provided by the operating system. The easiest way to do this is to compile Apache against the

PCRE library provided by the operating system (or you can compile it against the latest PCRE

version you downloaded from the main PCRE distribution site). You can do this at configure time

using the --with-pcre switch. If you are not in a position to recompile Apache then, to com-

pile ModSecurity successfully, you'd still need to have access to the bundled PCRE headers (they

are available only in the Apache source code) and change the include path for ModSecurity (as

you did in step 7 above) to point to them.

Do note that if your Apache is using an external PCRE library you can compile ModSecurity with

WITH_PCRE_STUDY defined, which would possibly give you a slight performance edge in regu-

ModSecurity Reference Manual

5

lar expression processing.

ModSecurity Reference Manual

6

Configuration Directives

SecAction
Unconditionally processes the action list it receives as the first and only parameter. It accepts one para-

meter, the syntax of which is identical to the third parameter of SecRule.

SecArgumentSeparator
Specifies which character to use as separator for application/x-www-form-urlencoded con-

tent. Defaults to &. Applications are sometimes (very rarely) written to use a semicolon (;).

SecAuditEngine
Configures the audit logging engine. Possible values are:

• On - log all transactions by default.

• Off - do not log transactions by default.

• RelevantOnly - by default only log transactions that have triggered a warning or an error, or

have a status code that is considered to be relevant (see SecAuditLogRelevantStatus).

SecAuditLog
Path to the main audit logging file. This file will be used to store the audit log entries if serial audit log-

ging format is used. If concurrent audit logging format is used this file will be used as an index, and con-

tain a record of all audit log files created.

Note
This file is open on startup when the server typically still runs as root. You should not allow non-

root users to have write privileges for this file or for the directory it is stored in.

SecAuditLogParts
Default ABCFHZ.

Available audit log parts:

• A – audit log header (mandatory)

• B – request headers

• C – request body (present only if the request body exists and ModSecurity is configured to inter-

cept it)

• D - RESERVED for intermediary response headers, not implemented yet.

• E – intermediary response body (present only if ModSecurity is configured to intercept response

ModSecurity Reference Manual

7

bodies, and if the audit log engine is configured to record it). Intermediary response body is the

same as the actual response body unless ModSecurity intercepts the intermediary response body,

in which case the actual response body will contain the error message (either the Apache default

error message, or the ErrorDocument page).

• F – final response headers (excluding the Date and Server headers, which are always added by

Apache in the late stage of content delivery).

• G – RESERVED for the actual response body, not implemented yet.

• H - audit log trailer

• I - This part is a replacement for part C. It will log the same data as C in all cases except when

multipart/form-data encoding in used. In this case it will log a fake application/

x-www-form-urlencoded body that contains the information about parameters but not

about the files. This is handy if you don't want to have (often large) files stored in your audit

logs.

• J - RESERVED. This part, when implemented, will contain information about the files up-

loaded using multipart/form-data encoding.

• Z – final boundary, signifies the end of the entry (mandatory)

Note
At this time ModSecurity does not log response bodies of stock Apache responses (e.g. 404), or

the Server and Date response headers.

SecAuditLogRelevantStatus
Configures which response status code is to be considered relevant for the purpose of audit logging. The

parameter is a regular expression.

SecAuditLogStorageDir
Configures the storage directory where concurrent audit log entries are to be stored. It must be writable by

the web server user as new files are generated at runtime.

SecAuditLogType
Possible values are:

1. Serial - all audit log entries will be stored in the main audit logging file. This is more con-

venient for casual use but it is slower as only one audit log entry can be written to the file at

any one file.

2. Concurrent - audit log entries will be stored in a file each.

SecChrootDir

ModSecurity Reference Manual

8

Configures the directory path that will be used to jail the web server process.

SecCookieFormat
Selects the cookie format that will be used in the current configuration context. Possible values are:

• 0 - use version 0 (Netscape) cookies. This is what most applications use. It is the default value.

• 1 - use version 1 cookies.

SecDataDir
Path where persistent data (e.g. IP address data, session data, etc) is to be stored. Must be writable by the

web server user.

SecDebugLog
Path to the debug log.

SecDebugLogLevel
Possible values are:

• 0 - no logging.

• 1 - errors (intercepted requests) only.

• 2 - warnings.

• 3 - notices.

• 4 - details of how transactions are handled.

• 5 - as above, but including information about each piece of information handled.

• 9 - log everything, including very detailed debugging information.

Levels 1-3 are always sent to the Apache error log. Therefore you can always use level 0 as the default

logging level in production. Level 5 is useful when debugging. It is not advisable to use higher logging

levels in production as excessive logging can slow down server significantly.

SecDefaultAction
Defines the default action to take on a rule match. The default value is:

SecDefaultAction log,auditlog,deny,status:403,phase:2,\
t:lowercase,t:replaceNulls,t:compressWhitespace

SecGuardianLog
Integration hook for httpd-guardian (see http://www.apachesecurity.net/tools/). For example:

ModSecurity Reference Manual

9

http://www.apachesecurity.net/tools/

SecGuardianLog |/path/to/httpd-guardian

SecRequestBodyAccess
Configures whether request bodies will be buffered and processed by ModSecurity by default. Possible

values are:

• On - access request bodies.

• Off - do not attempt to access request bodies.

SecRequestBodyLimit
Configures the maximum request body size ModSecurity will accept for buffering. Anything over this

limit will be rejected with status code 413 Request Entity Too Large.

SecRequestBodyInMemoryLimit
Configures the maximum request body size ModSecurity will store in memory. By default the limit is 128

KB:

Store up to 128 KB in memory
SecRequestBodyInMemoryLimit 131072

SecResponseBodyLimit
Configures the maximum response body size that will be accepted for buffering. Anything over this limit

will be rejected with status code 500 Internal Server Error. This setting will not affect the responses with

MIME types that are not marked for buffering. By default this limit is configured to 512 KB:

Buffer response bodies of up to 512 KB in length
SecResponseBodyLimit 524288

There is a hard limit of 1 GB.

SecResponseBodyMimeType
Configures which MIME types are to be considered for response body buffering. The default value is

text/plain text/html:

SecResponseBodyMimeType text/plain text/html

Multiple SecResponseBodyMimeType directives can be used to add MIME types.

ModSecurity Reference Manual

10

SecResponseBodyMimeTypesClear
Clears the list of MIME types considered for response body buffering, allowing you to start populating the

list from scratch.

SecResponseBodyAccess
Configures whether response bodies are to be buffer and analysed or not. Possible values are:

• On - access response bodies (but only if the MIME type matches, see above).

• Off - do not attempt to access response bodies.

SecRule
SecRule is the main ModSecurity directive. It is used to analyse data and perform actions based on the

results. In general, the format of this rule is as follows:

SecRule VARIABLES OPERATOR [ACTIONS]

The second part, OPERATOR, specifies how they are going to be checked. The third (optional) part, AC-

TIONS, specifies what to do whenever the operator used performs a successful match against a variable.

Variables in rules
The first part, VARIABLES, specifies which variables are to be checked. For example, the following rule

will reject a transaction that has the word dirty in the URI:

SecRule REQUEST_URI dirty

Each rule can specify one or more variables:

SecRule REQUEST_URI|QUERY_STRING dirty

So far we have used only simple variables in our rules. Some variables are actually collections, which are

expanded into more variables at runtime. The following example will examine all request arguments:

SecRule ARGS dirty

Sometimes, however, you will want to look only at parts of a collection. This can be achieved with the

help of the selection operator (colon). The following example will only look at the arguments named p

(do note that, in general, requests can contain multiple arguments with the same name):

SecRule ARGS:p dirty

It is also possible to specify exclusions. The following will examine all request arguments for the word

dirty, except the ones named z (again, there can be zero or more arguments named z):

ModSecurity Reference Manual

11

SecRule ARGS|!ARGS:z dirty

There is a special operator that allows you to count how many variables there are in a collection. The fol-

lowing rule will trigger if there is more than zero arguments in the request (ignore the second parameter

for the time being):

SecRule &ARGS !^0$

And sometimes you need to look at an array of parameters, each with a slightly different name. In this

case you can specify a regular expression in the selection operator itself. The following rule will look into

all arguments whose names begin with id_:

SecRule ARGS:/^id_/ dirty

There is a third format supported by the selection operator - XPath expression. XPath expressions can

only used against the special variable XML, which is available only of the request body was processed as

XML.

SecRule XML:/xPath/Expression dirty

Note
As you have just seen, not all collections support all selection operator format types. You should

refer to the documentation of each collection to determine what is and isn't supported.

Operators in rules
In the simplest possible case you will use a regular expression pattern as the second rule parameter. This

is what we've done in the examples above. If you do this ModSecurity assumes you want to use the rx

operator. You can explicitly specify the operator you want to use by using @ as the first character in the

second rule parameter:

SecRule REQUEST_URI "@rx dirty"

Note how we had to use double quotes to delimit the second rule parameter. This is because the second

parameter now has a whitespace in it. Any number of whitespace characters can follow the name of the

operator. If there are any non-whitespace characters there, they will all be treated as a special parameter to

the operator. In the case of the regular expression operator the special parameter is the pattern that will be

used for comparison.

The @ can be the second character if you are using negation to negate the result returned by the operator:

SecRule &ARGS "!@rx ^0$"

ModSecurity Reference Manual

12

Actions in rules
The third parameter, ACTIONS, can be omitted only because there is a helper feature that specifies the

default action list. If the parameter isn't omitted the actions specified in the parameter will be merged with

the default action list to create the actual list of actions that will be processed on a rule match.

SecRuleInheritance
Configures whether the current context will inherit rules from the parent context (configuration options

are inherited in most cases - you should look up the documentation for every directive to determine if it is

inherited or not). Possible values are:

• On - inherit rules from the parent context.

• Off - do not inherit rules from the parent context.

Note
Resource-specific contexts (e.g. Location, Directory, etc) cannot override phase 1 rules

configured in the main server or in the virtual server. This is because phase 1 is run early in the

request processing process, before Apache maps request to resource. Virtual host context can

override phase 1 rules configured in the main server.

SecRuleEngine
Configures whether or not the ModSecurity Rule Engine will process transactions or not. Possible values

are:

• On - process rules.

• Off - do not process rules.

• DetectionOnly - process rules but never intercept transactions, even when rules are con-

figured to do so.

SecRuleRemoveById
Removes matching rules from the parent contexts. This directive supports multiple parameters, where

each parameter can either be a rule ID, or a range. Parameters that contain spaces must be delimited using

double quotes.

SecRuleRemoveById 1 2 5 10-20 "400 - 556" 673

SecRuleRemoveByMsg
Removes matching rules from the parent contexts. This directive supports multiple parameters. Each

parameter is a regular expression that will be applied to the message (specified using the msg action).

ModSecurity Reference Manual

13

SecServerSignature
Instructs ModSecurity to change web server signature.

SecServerSignature MyServer/1.0

SecTmpDir
Configures the directory where temporary files will be created.

SecUploadDir
Configures the directory where intercepted files will be stored. This directory must be on the same

filesystem as the temporary directory defined with SecTmpDir.

SecUploadKeepFiles
Configures whether or not the intercepted files will be kept after transaction is processed. Possible values

are:

• On -

• Off -

• RelevantOnly -

This directive requires the storage directory to be defined (using SecUploadDir).

SecWebAppId
Creates a partition on the server that belongs to one web application. Partitions are used to avoid colli-

sions between session IDs and user IDs. This directive must be used if there are multiple applications de-

ployed on the same server. If it isn't a collision between session IDs might occur. The default value is

default.

SecWebAppId "Intranet"

ModSecurity Reference Manual

14

Processing Phases
ModSecurity 2.x allows rules to be placed in one of the following five phases:

1. Request headers

2. Request body

3. Response headers

4. Response body

5. Logging

In order to select the phase a rule executes during, use the phase action either directly in the rule or in us-

ing the SecDefaultActions directive:

SecRule HTTP_Host "!^$" "deny,phase:1"
SecDefaultAction "log,pass,phase:2"

Phase Request Headers
Rules in this phase immediately after Apache completes reading the request headers. At this point the re-

quest body has not been read yet, meaning not all request arguments are available. Rules should be placed

in this phase if you need to have them run early (before Apache does something with the request), to do

something before the request body has been read, determine whether or not the request body should be

buffered, or decide how you want the request body to be processed (e.g. whether to parse it as XML or

not).

Phase Request Body
This is the general-purpose input analysis phase. Most of the application-oriented rules should go here. In

this phase you are guaranteed to have received the request argument (provided

Phase Response Headers
This phase takes place just before response headers are sent back to the client. Run here if you want to ob-

serve the response before that happens, and if you want to use the response headers to determine if you

want to buffer the response body.

Phase Response Body
This is the general-purpose output analysis phase. At this point you can run rules against the response

body (provided it was buffered, of course).

Phase Logging
This phase is run just before logging takes place. The rules placed into this phase can only affect how the

ModSecurity Reference Manual

15

logging is performed.

ModSecurity Reference Manual

16

Variables
The following variables are supported in ModSecurity 2.x:

• ARGS - can be used on its own (means all arguments), with a static parameter (matches argu-

ments with that name), or with a regular expression (matches all arguments with name that

matches the regular expression). Note: ARGS:p will not result in any invocations against the op-

erator if argument p does not exist.

• ARGS_COMBINED_SIZE -

• ARGS_NAMES -

• REQBODY_PROCESSOR - Built-in processors are URLENCODED, MULTIPART, and XML.

• REQBODY_ERROR - 0 or 1. If you want to stop processing on an error you must have an explicit

rule in phase 2 to do so.

• REQBODY_ERROR_MSG - empty, or contains the error message from the processor.

• XML - can be used standalone (as a target for validateDTD and validateSchema) or with an

XPath expression parameter (which makes it a valid target for any function that accepts plain

text).

• WEBSERVER_ERROR_LOG - contains zero or more error messages produced by the web server.

• TX - Collection. This is where the transaction variables live.

• FILES - Collection. Contains a collection of original file names (as they were called on the re-

mote user's file system).

• FILES_TMPNAMES - Collection. Contains a collection of temporary files' names on the disk.

Useful when used together with @inspectFile (Note: only available if files were extracted

from the request body.).

• FILES_NAMES - Collection w/o parameter. Contains a list of form fields that were used for file

upload.

• FILES_SIZES - Collection. Contains a list of file sizes.

• FILES_COMBINED_SIZE - Single value. Total size of the uploaded files.

• ENV - Collection, requires a single parameter.

• REMOTE_HOST -

• REMOTE_ADDR -

• REMOTE_PORT -

• REMOTE_USER -

• PATH_INFO -

• QUERY_STRING -

• AUTH_TYPE -

• SERVER_NAME -

• SERVER_ADDR -

• SERVER_PORT -

ModSecurity Reference Manual

17

• TIME_YEAR -

• TIME_EPOCH - time in seconds since 1970.

• TIME_MON -

• TIME_DAY -

• TIME_HOUR -

• TIME_MIN -

• TIME_SEC -

• TIME_WDAY -

• TIME -

• REQUEST_URI - (e.g. /index.php?p=X). This variable will never contain a domain name, even

if it was provided on the request line. Warning: not urlDecoded.

• REQUEST_URI_RAW - same as above but will contain the domain name if it was provided on

the request line (e.g. http://www.example.com/index.php?p=X). Warning: not urlDecoded.

• REQUEST_LINE -

• REQUEST_METHOD -

• REQUEST_PROTOCOL -

• REQUEST_FILENAME - relative REQUEST_URI minus the QUERY_STRING part (e.g. /

index.php). Warning: not urlDecoded.

• REQUEST_BASENAME - just the filename part of REQUEST_FILENAME (e.g. index.php).

Warning: not urlDecoded.

• SCRIPT_FILENAME -

• SCRIPT_BASENAME -

• SCRIPT_UID -

• SCRIPT_GID -

• SCRIPT_USERNAME -

• SCRIPT_GROUPNAME -

• SCRIPT_MODE -

• ENV -

• REQUEST_HEADERS -

• REQUEST_HEADERS_NAMES -

• REQUEST_COOKIES -

• REQUEST_COOKIES_NAMES -

• REQUEST_BODY -

• RESPONSE_LINE -

• RESPONSE_STATUS -

• RESPONSE_PROTOCOL -

• RESPONSE_HEADERS -

ModSecurity Reference Manual

18

• RESPONSE_HEADERS_NAMES -

• RESPONSE_BODY -

• Special prefix HTTP_ followed by a header name can be used to access any request header.

• RULE - Gives access to the id, rev, severity, and msg fields of the rule that triggered the

action. Only available for expansion in action strings (e.g.

setvar:tx.varname=%{rule.id})

• SESSION - collection, available only after setsid is executed.

• WEBAPPID - the value set with SecWebAppId.

• SESSIONID - the value set with setsid.

• USERID - the value set with setuid.

ModSecurity Reference Manual

19

Transformation functions
Transformation functions are used to transform a variable before testing it in a rule. The following rule

will ensure that an attacker does not use mixed case in order to evade the ModSecurity rule:

SecRule ARG:p "xp_cmdshell" "t:lowercase"

multipe tranformation actions can be used in the same rule, for example the following rule also ensures

that an attacker does not use URL encodign (%xx encoding) for evasion. Not the order of the transforma-

tion functions, which ensures that a URL encoded letter is first decoded and than translated to lower case.

SecRule ARG:p "xp_cmdshell" "t:urlDecode,t:lowercase"

One can use the SetDefaultAction command to ensure the translation occurs for every rule until the next.

Note that translation actions are additive, so if a rule explicitly list actions, the translation actions set by

SetDefaultAction are still performed.

SecDefaultAction t:urlDecode,t:lowercase

The following transformation functions are supported:

1. lowercase (enabled by default) - converts all charactes to lowercase using the current C loc-

ale.

2. replaceNulls (enabled by default) - replaces NULL bytes in input with spaces (32).

3. removeNulls - removes NULL bytes from input.

4. compressWhitespace (enabled by default) - converts whitespace characters (32, \f, \t, \n,

\r, \v, 160) to spaces (32) and then compresses multiple space characters into only one.

5. removeWhitespace - removes all whitespace characters.

6. replaceComments - replaces each occurence of a C-style comments (/* ... */) with a

single space (multiple consecutive occurences of a space will not be compressed). Untermin-

ated comments will too be replaced with a space. However, a standalone termination of a com-

ment (*/) will not be acted upon.

7. urlDecode - decodes an URL-encoded input string. Invalid encodings (i.e. the ones that use

non-hexadecimal characters, or the ones that are at the end of string and have one or two char-

acters missing) will not be converted. If you want to detect invalid encodings use the

@validateUrlEncoding operator. The transformational function should not be used

against variables that have already been URL-decoded unless it is your intention to perform

URL decoding twice!

8. urlEncode - encodes input using URL encoding.

9. urlDecodeUni - In addition to decoding %xx like urlDecode, urlDecodeUni also

decodes %uXXXX encoding (only the lower byte will be used, the higher byte will be dis-

carded).

ModSecurity Reference Manual

20

10. base64Encode - encodes input string using base64 encoding.

11. base64Decode - decoes a base64-encoded string.

12. md5 - calculates an MD5 hash from input.

13. sha1 - calculates a SHA1 hash from input.

14. hexDecode - decodes a hex-encoded string.

15. hexEncode - encodes input as hex-encoded string.

16. htmlEntityDecode - decodes HTML entities present in input. The following variants are

supported:

• &#xHH and &#xHH; (where H is any hexadecimal number)

• &#DDD and &#DDD; (where D is any decimal number)

• " and "

• and

• < and <

• > and >

17. escapeSeqDecode - decode ANSI C escape sequences: \a, \b, \f, \n, \r, \t, \v, \\,

\?, \', \", \xHH (hexadecimal), \0OOO (octal). Invalid encodings are left in the output.

18. normalisePath - will remove multiple slashes, self-references and directory back-ref-

erences (except when they are at the beginning of the path).

19. normalisePathWin - as above, but will first convert backslash characters to forward

slashes.

20. none - this not an actual transformation function but an instruction to ModSecurity to remove

all transformation functions associated with the current rule and start from scratch.

ModSecurity Reference Manual

21

Actions
Each action belongs to one of five groups:

1. Disruptive actions; can only appear in the first rule in a chain.

2. Non-disruptive actions; can appear anywhere.

3. Flow actions; can appear only in the first rule in a chain.

4. Meta-data actions (id, rev, severity, msg); can only appear in the first rule in a chain.

5. Data actions - can appear anywhere; these actions are completely passive and only serve to

carry data used by other actions.

allow
Stops processing on a successful match and allows transaction to proceed.

auditlog
Marks the transaction for logging in the audit log.

capture
When used together with the regular expression operator capture action will create copies of regular ex-

pression captures and place them into the transaction variable collection. Up to ten captures will be copied

on a successful pattern match, each with a name consisting of a digit from 0 to 9.

chain
Chains the rule where the action is placed with the rule that immediately follows it. The result is called a

rule chain.

Refuse to accept POST requests that do
not specify request body length
SecRule REQUEST_METHOD ^POST$ chain
SecRule REQUEST_HEADER:Content-Length ^$

ctl
The ctl action allows configuration options to be updated for the transaction. The following configuration

options are supported:

1. auditEngine -

2. auditLogParts -

3. debugLogLevel -

4. requestBodyAccess -

ModSecurity Reference Manual

22

5. requestBodyLimit -

6. requestBodyProcessor -

7. responseBodyAccess -

8. responseBodyLimit -

9. ruleEngine -

With the exception of requestBodyProcessor, each configuration option corresponds to one con-

figuration directive and the usage is identical.

The requestBodyProcessor option allows you to configure the request body processor. By default ModSe-

curity will use the URLENCODED and MULTIPART processors to process an application/

x-www-form-urlencoded and a multipart/form-data body, respectively. A third processor,

XML, is also supported, but it is never used implicitly. Instead you must tell ModSecurity to use it by pla-

cing a few rules in the REQUEST_HEADERS processing phase.

Parse requests with Content-Type "text/xml" as XML
SecRule REQUEST_CONTENT_TYPE ^text/xml nolog,pass,ctl:requestBodyProcessor=XML

After the request body was processed as XML you will be able to use the XML-related features to inspect

it.

Note
Request body processors will not interrupt a transaction if an error occurs during parsing. Instead

they will set variables REQBODY_PROCESSOR_ERROR and RE-

QBODY_PROCESSOR_ERROR_MSG. These variables should be inspected in the RE-

QUEST_BODY phase and an appropriate action taken.

deny
Stops rule processing and intercepts transaction.

deprecatevar
Decrement counter based on its age. The following example will decrement the counter by 60 every 300

seconds.

deprecatevar:session.score=60/300

Counter values are always positive, meaning the value will never go below zero.

drop
Note: causes error message to appear in the log "(9)Bad file descriptor: core_output_filter: writing data to

the network"

ModSecurity Reference Manual

23

exec
Executes an external script/binary supplied as parameter.

expirevar
Configures collection variable to expire after the given time in seconds.

expirevar:session.suspicious=3600

id
Assigns a unique ID to the rule or chain.

initcol
Initialises a named persistent collection, either by loading data from storage or by creating a new collec-

tion in memory. The following example initiates IP address tracking.

initcol:ip=%{REMOTE_ADDR}

Every collection contains several built-in variables that are read-only:

1. CREATE_TIME -

2. KEY -

3. LAST_UPDATE_TIME -

4. TIMEOUT -

5. UPDATE_COUNTER -

6. UPDATE_RATE - collection updates per minute.

Collections are loaded into memory when the initcol action is encountered. The collection in storage will

be updated (and the appropriate counters increased) only if it was changed during transaction processing.

Note
To create a collection to hold session variables (SESSION) use action setsid. To create a col-

lection to hold user variables (USER) use action setuid.

Note
At this time it is only possible to have three collections: IP, SESSION, and USER.

log
Indicates that a successful match of the rule needs to be logged.

ModSecurity Reference Manual

24

msg
Assigns a custom message to the rule or chain.

multiMatch
If enabled ModSecurity will perform multiple operator invocations for every target, before and after every

anti-evasion transformation is performed.

noauditlog
Indicates that a successful match of the rule should not be used as criteria whether the transaction should

be logged to the audit log.

nolog
Prevents rule matches from appearing in the log.

pass
Continues processing with the next rule in spite of a successful match. Transaction will not be interrupted

but it will be logged (unless logging has been suppressed).

pause
Pauses transaction processing for the specified number of milliseconds.

phase
Places the rule (or the rule chain) into one of five available processing phases.

proxy
Intercepts transaction by forwarding request to another web server using the proxy backend.

redirect
Intercepts transaction by issuing a redirect to the given location. If the status action is present and its

value is acceptable (301, 302, 303, or 307) it will be used for the redirection. Otherwise status code 302

will be used.

rev
Specifies rule revision. This action is used in combination with the id action to allow the same rule ID to

be used after changes take place but to still provide some indication the rule changed.

ModSecurity Reference Manual

25

sanitiseArg
Sanitises (replaces each byte with an asterisk) a named request argument prior to audit logging.

sanitiseArg:password

sanitiseMatched
Sanitises the variable (request argument, request header, or response header) that caused a rule match.

This action can be used to sanitise arbitrary transaction elements when they match a condition. For ex-

ample, the example below will sanitise any argument that contains the word password in the name.

SecRule ARGS_NAMES password nolog,pass,sanitiseMatched

sanitiseRequestHeader
Sanitises a named request header.

sanitiseRequestHeader:Authorization

sanitiseResponseHeader
Sanitises a names response header.

severity
Assigns severity to the rule it is placed with.

setuid
Special-purpose action that initialises the USER collection. After initialisation takes place the variable

USERID will be available for use in the subsequent rules.

setsid
Special-purpose action that initialises the SESSION collection. On first invocation of this action the col-

lection will be empty (not taking the pre-defined variables into account - see initcol for more informa-

tion). On subsequent invocations the contents of the collection (session, in this case) will be retrieved

from storage. After initialisation takes place the variable SESSIONID will be available for use in the sub-

sequent rules.

Initialise session variables using the session cookie value
SecRule REQUEST_COOKIES:PHPSESSID !^$ chain,nolog,pass
SecAction setsid:%{REQUEST_COOKIES.PHPSESSID}

ModSecurity Reference Manual

26

This action understands each application maintains its own set of sessions. It will utilise the current web

application ID to create a session namespace.

setenv
Creates, removes, or updates an environment variable. This action can be used to establish communica-

tion with other Apache modules.

To create a new variable (if you omit the value 1 will be used):

setenv:name=value

To remove a variable:

setenv:!name

setvar
Creates, removes, or updates a variable in the specified collection.

To create a new variable:

setvar:tx.score=10

To remove a variable prefix the name with exclamation mark:

setvar:!tx.score

To increase or decrease variable value use + and - characters in front of a numerical value:

setvar:tx.score=+5

skip
Skips one or more rules (or chains) on successful match. This action can not be used to skip rules within

one chain.

Accepts a single paramater denoting the number of rules (or chains) to skip.

skip:3

status
Specifies the response status code to use with actions deny and redirect.

t

ModSecurity Reference Manual

27

This action can be used which transformation function should be used against the specified variables be-

fore they (or the results, rather) are run against the operator specified in the rule.

xmlns
This action should be used together with an XPath expression to register a namespace.

ModSecurity Reference Manual

28

Operators
A number of operators can be used in rules, as documented below.

eq
Numerical comparison.

ge
Numerical comparison.

gt
Numerical comparison.

inspectFile
Executes the external script/binary given as parameter to the operator against every file extracted from the

request.

SecRule FILES_TMPNAMES "@inspectFile /opt/apache/bin/inspect_script.pl"

le
Numerical comparison.

lt
Numerical comparison.

rbl
Look up the parameter in the RBL given as parameter. Parameter can be an IPv4 address, or a hostname.

SecRule REMOTE_ADDR "@rbl sc.surbl.org"

rx
Regular expression operator. Regular expressions are handled by the PCRE library (http://www.pcre.org).

ModSecurity compiles its regular expressions with the following settings:

1. The entire input is treated as a single line, even when there are newline characters present.

2. All matches are case-sensitive. If you do not care about case sensitivity you either need to im-

plement the lowercase transformational function, or use the per-pattern (?s) modificator,

ModSecurity Reference Manual

29

http://www.pcre.org

as allowed by PCRE.

3. The PCRE_DOTALL flag is set during compilation, meaning a single dot will match any char-

acter, including the newlines.

validateByteRange
Validates the byte range used in the variable falls into the specified range:

SecRule ARG:text "@validateByteRange 10, 13, 32-126"

validateDTD

SecRule XML "@validateDTD /path/to/file.dtd"

This operator requires request body to be processed as XML.

validateSchema

SecRule XML "@validateSchema /path/to/file.xsd"

This operator requires request body to be processed as XML.

validateUrlEncoding
Verifies the encodings used in the variable (if any) are valid.

validateUtf8Encoding
Verifies the variable is a valid UTF-8 encoded string.

ModSecurity Reference Manual

30

	ModSecurity Reference Manual
	Table of Contents
	Introduction
	Licensing

	Installation
	Configuration Directives
	SecAction
	SecArgumentSeparator
	SecAuditEngine
	SecAuditLog
	SecAuditLogParts
	SecAuditLogRelevantStatus
	SecAuditLogStorageDir
	SecAuditLogType
	SecChrootDir
	SecCookieFormat
	SecDataDir
	SecDebugLog
	SecDebugLogLevel
	SecDefaultAction
	SecGuardianLog
	SecRequestBodyAccess
	SecRequestBodyLimit
	SecRequestBodyInMemoryLimit
	SecResponseBodyLimit
	SecResponseBodyMimeType
	SecResponseBodyMimeTypesClear
	SecResponseBodyAccess
	SecRule
	Variables in rules
	Operators in rules
	Actions in rules

	SecRuleInheritance
	SecRuleEngine
	SecRuleRemoveById
	SecRuleRemoveByMsg
	SecServerSignature
	SecTmpDir
	SecUploadDir
	SecUploadKeepFiles
	SecWebAppId

	Processing Phases
	Phase Request Headers
	Phase Request Body
	Phase Response Headers
	Phase Response Body
	Phase Logging

	Variables
	Transformation functions
	Actions
	allow
	auditlog
	capture
	chain
	ctl
	deny
	deprecatevar
	drop
	exec
	expirevar
	id
	initcol
	log
	msg
	multiMatch
	noauditlog
	nolog
	pass
	pause
	phase
	proxy
	redirect
	rev
	sanitiseArg
	sanitiseMatched
	sanitiseRequestHeader
	sanitiseResponseHeader
	severity
	setuid
	setsid
	setenv
	setvar
	skip
	status
	t
	xmlns

	Operators
	eq
	ge
	gt
	inspectFile
	le
	lt
	rbl
	rx
	validateByteRange
	validateDTD
	validateSchema
	validateUrlEncoding
	validateUtf8Encoding

