
Concurrency and occam-π 
  

occam-π  Exercises (Cylons)  
  
 

The Cylons are a race of robots with a laser scanner for vision, motors to enable movement and an 
imperative to explore their environment. 

  
“The Cylons were created by man … They evolved … They rebelled … There are many 
copies … And they have a plan …” 
 

[Universal Television and Sci-Fi Channel, “Battlestar Galactica”, R.D.Moore et al, 2004.] 
 

For this exercise, Cylons live in a walled 2D rectangular world containing free space, in which they 
can move, and obstacles, through which they cannot move. Only Cylons live in this world – and 
they are solid and cannot pass through each other. 

 
Figure 1 shows two Cylons, each occupying a circular footprint, approaching obstructions. 
Laser rays (some of them) are shown emanating from each Cylon. These scan the area ahead 
through a range of evenly spaced angles. The central ray has an arrow-head (in the figure) to 
indicate the current direction of motion of the Cylon. The rays are used for range finding and 
have a maximum length of effectiveness. If a ray strikes an object within that length, a sensor 
on the Cylon detects the reflection and uses that to determine distance. If no reflection is 
detected, a distance equal to the maximum effective length of the laser ray is recorded. Either 
way, an array of distances known to be free of obstacles is obtained – one for each ray angle. 
Other Cylons are detected by this laser range finder, but the information obtained (only 
distances) does not distinguish between Cylons, walls and other obstacles. However, Cylons 
may be moving. 

Figure 1: two Cylons approaching a corner.



Cylon movement is implemented by an undisclosed technology, but operated through two 
parameters: linear velocity (forward speed) and angular velocity (rotational speed). No limits 
are known for these parameters, but Cylons should not push them beyond what their control 
logic (their brains) can safely manage. 
 

 
Cylons are built as a network of, at least, the following components (see Figure 2): 
 

• range finder: this delivers a stream of arrays of integers – each array holding the set 
of distances obtained from the latest laser scan; 

 
• motors: this receives linear and angular velocity  instructions and makes it so; 
 
• brain: this receives the laser scans from the range finder, computes a plan and sends 

movement instructions to its motors. 
 

This exercise is to program the Cylon brain so that:  
 

• Cylons keep moving as fast as it is safe; 
  
• Cylons do not crash into walls, obstacles or other Cylons; 
  
• They explore as much territory as possible (e.g. they do not just run in circles). 
 

However, this exercise is open-ended and you are encouraged to devise your own rules – for 
instance, wall-following behaviours may be interesting. A short report has to be submitted 
along with your code. Any different rules implemented by your Cylon brain should be 
explained there. Please communicate with your seminar leader or me (phw@kent.ac.uk) if 
you are unsure whether your rules will be acceptable. Implementation of the basic rules above 
will be worth around 80% of the marks for this exercise. 
 
The starter file for this exercise is cylons.occ. This contains a complete simulated 
environment for any number of Cylons, together with graphics animation and (limited) user 
control. The opening occamdoc in the file shows the network diagram for the simulation. 
There are VAL INT constants defining the number of robots, number of laser rays per robot, 
laser scan sweep angle, and sizes for the (raster) graphics window. Leave these alone – 
certainly to begin with! 
 
The range finder and motors components for each Cylon are combined into one process, 
drone, in this system. However, each Cylon does have a brain process and it is this that has 
to be (re-)programmed. 
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Figure 2: Cylon basic network. 



In fact, this starter system supports two brain processes – brain.0 and brain.1. Interaction 
at the start of a simulation allows the user to specify which brain the Cylons will use. Also 
offered is a mixture, with half the Cylons using brain.0 and the other half brain.1. If the 
mixed option is chosen, brain.0 Cylons will be coloured red and brain.1 Cylons coloured 
green. If a single brain type is chosen, the Cylons will be randomly coloured. 
 
Each brain process has the same header and pattern of synchronization with its environment: 
 
  PROC brain.x (VAL INT initial.linear.velocity, 
                VAL ANGLE initial.angular.velocity, 
                VAL INT robot.radius, 
                CHAN MOVE move!, 
                CHAN LASER laser?) 
 
    INITIAL INT linear.velocity IS initial.linear.velocity: 
    INITIAL ANGLE angular.velocity IS initial.angular.velocity: 
 
    ...  other local variables 
 
    SEQ 
      ...  initialization code (maybe) 
      WHILE TRUE 
        RANGES ranges: 
        SEQ 
          laser ? ranges 
          ...  decide new linear.velocity and angular.velocity 
          move ! linear.velocity; angular.velocity 
 
  : 
 
A crucial part of the above behaviour, which must not be changed, is that in each loop cycle a 
LASER message is first input and, then, a MOVE instruction is output. These must be the only 
actions on a brain’s external channels – otherwise, the system will deadlock. 
 
Note that a brain has no knowledge of absolute position (its coordinates in its world) or 
absolute bearing. It only knows how fast it is moving and turning. This corresponds with real 
brains (do you really know where you are and which way you are facing … assuming you 
don’t have a GPS receiver and don’t have a fixed external reference … like the stars?). 
 
The starter file contains a fully programmed brain.0 and a brain.1, which just invokes 
brain.0 to do its thinking. Your task is to reprogram brain.1 (brain.0 is not too clever). 
 
This process (and the rest of the system) may contain a few aspects of occam-π that have not 
yet been covered in the course. Those in the rest of the system may be ignored for now. Here, 
there are possibly three aspects to note: channel protocols (LASER and MOVE), data types 
(RANGES and ANGLE) and functions. For this exercise, all we need to know is:  
 

• LASER (defined soon after the opening VAL INT constants): a channel carrying this 
protocol delivers a single item of type RANGES. 

 
• MOVE (defined just after LASER): a channel carrying this protocol delivers two items – 

an INT followed by an ANGLE. Channels receiving them must provide two variables 
(an INT followed by an ANGLE and separated by a semi-colon). Channels sending 
them must provide two values (INT; ANGLE) – as shown above. 



 
• RANGES (defined just before LASER): this is a mobile array of integers. A mobile type 

can be operated on as if it were the underlying data type – in OO terminology, think 
of it as a sub-class (a specialised version of the array super-class, inheriting all its 
capabilities). So, a RANGES variable may be indexed (like an ordinary array), SIZEd 
(like an ordinary array) or passed to processes (or functions) expecting an ordinary 
array,[]INT (as is done with the min function, used by brain.0). Do not worry 
about the mobile aspect of RANGES – it allows us to receive arrays of different sizes 
(not needed here, unless the Cylon laser scanner becomes dynamically adjustable) 
and gives more efficient transport than non-mobile arrays (which is why its here). 

 
• ANGLE: this is a specialised form of INT (in OO terminology, a subclass of INT). 

Anything we can do with an INT (e.g. arithmetic) we can do with an ANGLE. 
 

An ANGLE divides a full turn into 2^32 units. So, a right-angle (a quarter turn) is 
2^30 units, straight ahead (no turn) is 0, straight behind (a half turn) is 2^31 units, a 
degree is (2^32)/360 units and a radian is (2^31)/π units. ANGLE arithmetic, like 
that for TIMERs, must allow for integer wrap-around (e.g. two half-turns are the same 
as no turn). So, using the operators PLUS, MINUS and TIMES is required (rather than 
+, - and *). 
 
ANGLE is defined in the rastergraphics.module,  imported at the start of the file. 
Constants are provided for ANGLE.RADIAN, ANGLE.DEGREE, ANGLE.RIGHT … and 
others. In fact, operators +, - and * are overridden by this module to enforce wrap-
around; but PLUS, MINUS and TIMES are preferred (because their semantics are more 
logical, the code compiled is smaller and their execution costs are lower).  
 
Look up ANGLE in rastergraphics in the “occamdoc documentation for all the 
occam-pi libraries” (linked from the course web page). 

 
• FUNCTION: occam-π functions can take only VAL data parameters and return a list 

(comma separated) of results. No side-effects are allowed. They have a weird(ish) 
syntax. The brain.0 process uses two of them: min and compute.speed (each 
returning a single result). See the shared-etc slides for a summary … also presented 
in the “occam-pi reference/checklist” Wiki (linked from the course web page). 

 
Final hints for re-programming brain.1:  
 

• find the maximum and minimum distances in the RANGES array; 
• if the minimum is less than the robot radius, it’s bumped – back off quick; 
• if the minimum is less than twice the robot radius, slow down fast and do something; 
• otherwise, head for the direction giving the maximum clear distance, basing your 

speed on how far that is (if there is a tie for maximum, go for the one in the nearest 
straight-on direction) – consider reusing compute.speed (which brain.0 uses); 

• sometimes the above rules lead to Cylons getting stuck in corners or in huddles with 
each other – watch out for this and break out (you’ll need new rules here); 

• consider using different processes for different rules (and coordinate them); 
• manageable linear velocities lie between +6 and -6 (see the compute.speed code); 
• manageable angular velocities lie between +10 and -10 degrees. 

 
Please feel free to reject and/or enhance the above. Please be imaginative – we like surprises! 


