
 Concurrency and occam-π

occam-π Exercises (extra)

[For all these exercises, starter files are given in your exercises folder. The file for this is e1.occ.]

Exercise e1:

A strictly ascending sequence of numbers is one in which there are no repeats and each number is
the sequence is bigger than the one before it.

Write a process ascending.merge.2 that connects two strictly ascending input streams of INTs
to an output stream. The output stream must be the strictly ascending merge of the input streams –
i.e. it must contain all the numbers from its input streams in ascending order, eliminating repeats:

To test this, use the following process:

where multiples(n)is a process that outputs the stream of (INT) numbers:

 0*n, 1*n, 2*n, 3*n, 4*n, 5*n, 6*n, ...

which, so long as n > 0, is strictly ascending. Test using the following circuit:

which should produce the ascending sequence of multiples of 2 and 3, with no repeats:

 0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, …
 /continued

out
multiples (n)

out
ascending.merge.2

in.0

in.1

keyboard

error

e1

multiples (2)

multiples (3)
ascending.merge.2

screen
print.stream (100000)

Now, write a three-way merge process:

and a four-way:

Hint: build these with a network of ascending.merge.2 processes.

Modify your e1 process to demonstrate that these work.

Challenge: write a merge process for an array of strictly ascending input streams:

Hint: build this as a network of ascending.merge and ascending.merge.2 processes (i.e.
with recursion and concurrency).   

Finally, modify e1 to demonstrate ascending.mƒåerge.

out
ascending.merge.3

in.0

in.1

in.2

out
ascending.merge.4

in.0

in.1

in.2

in.3

out
ascending.merge

in[0]

in[1]

in[n-1]

.

.

.

