
Orber Application

version 3.5

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 The Orber Application 1

1.1 Content Overview . 1

1.2 Brief Description of the User's Guide . 1

1.2.1 ORB Kernel and IIOP Support . 2

1.2.2 Interface Repository . 2

1.2.3 IDL to Erlang Mapping . 2

1.2.4 CosNaming Service . 2

1.2.5 Resolving Initial References from Java or C++ 2

1.2.6 Orber Stub/Skeleton . 2

1.2.7 CORBA Exceptions . 2

1.2.8 Interceptors . 2

1.2.9 OrberWeb . 2

1.2.10 Debugging . 3

2 Introduction to Orber and the IFR 5

2.1 Introduction to Orber . 5

2.1.1 Overview . 5

2.2 The Orber Application . 7

2.2.1 ORB Kernel and IIOP . 7

2.2.2 The Object Request Broker (ORB) . 8

2.2.3 Internet Inter-Object Protocol (IIOP) . 9

2.3 Interface Repository . 10

2.3.1 Interface Repository(IFR) . 10

iiiOrber Application

3 Installing Orber 11

3.1 Installation Process . 11

3.1.1 Preparation . 11

3.1.2 Jump Start Orber . 12

3.1.3 Install Single Node Orber . 12

3.1.4 Install RAM Based Multi Node Orber . 13

3.1.5 Install Disc Based Multi Node Orber . 13

3.1.6 Running Java clients against Orber. 14

3.2 Configuration . 14

3.2.1 Orber Environment Flags . 16

3.3 Firewall Configuration . 17

4 OMG IDL to Erlang Mapping 21

4.1 OMG IDL to Erlang Mapping - Overview . 21

4.2 OMG IDL Mapping Elements . 21

4.3 Getting Started . 22

4.4 Basic OMG IDL Types . 22

4.5 Template OMG IDL Types and Complex Declarators 23

4.5.1 String/WString Data Types . 24

4.5.2 Sequence Data Type . 24

4.5.3 Array Data Type . 24

4.5.4 Fixed Data Type . 25

4.6 Constructed OMG IDL Types . 26

4.6.1 Struct Data Type . 26

4.6.2 Enum Data Type . 26

4.6.3 Union Data Type . 27

4.7 Scoped Names and Generated Files . 29

4.7.1 Scoped Names . 29

4.7.2 Generated Files . 31

4.8 Typecode, Identity and Name Access Functions . 32

4.9 References to Constants . 33

4.10 References to Objects Defined in OMG IDL . 33

4.11 Exceptions . 33

4.12 Access to Attributes . 34

4.13 Invocations of Operations . 34

4.14 Implementing the DB Application . 35

4.15 Reserved Compiler Names and Keywords . 38

4.16 Type Code Representation . 39

iv Orber Application

5 CosNaming Service 41

5.1 Overview of the CosNaming Service . 41

5.2 The Basic Use-cases of the Naming Service . 43

5.2.1 Fetch Initial Reference to the Naming Service 43

5.2.2 Creating a Naming Context . 43

5.2.3 Binding and Unbinding Names to Objects . 44

5.2.4 Resolving a Name to an Object . 44

5.2.5 Listing the Bindings in a NamingContext . 44

5.2.6 Destroying a Naming Context . 45

5.3 Interoperable Naming Service . 45

5.3.1 IOR . 45

5.3.2 corbaloc . 46

5.3.3 corbaname . 47

6 How to use security in Orber 49

6.1 Security in Orber . 49

6.1.1 Introduction . 49

6.1.2 Enable Usage of Secure Connections . 49

6.1.3 Configurations when Orber is Used on the Server Side 49

6.1.4 Configurations when Orber is Used on the Client Side 50

7 Service Implementation 53

7.1 Orber Examples . 53

7.1.1 A Tutorial on How to Create a SimpleSservice 53

7.1.2 A Tutorial on How to Start Orber as Lightweight 61

7.2 Orber Stubs/Skeletons . 62

7.2.1 Orber Stubs and Skeletons Description . 62

8 CORBA System and User Defined Exceptions 69

8.1 System Exceptions . 69

8.1.1 Status Field . 69

8.1.2 Minor Field . 69

8.1.3 Supported System Exceptions . 70

8.2 User Defined Exceptions . 71

8.3 Throwing Exceptions . 71

8.4 Catching Exceptions . 72

vOrber Application

9 Orber Interceptors 73

9.1 Using Interceptors . 73

9.1.1 Configure Orber to Use Interceptors . 73

9.1.2 Creating Interceptors . 73

9.2 Interceptor Example . 75

10 Tools, Debugging and FAQ 79

10.1 OrberWeb . 79

10.1.1 Using OrberWeb . 79

10.1.2 Starting OrberWeb . 88

10.2 Debugging . 88

10.2.1 Tools and FAQ . 88

11 Orber Reference Manual 93

11.1 CosNaming . 108

11.2 CosNaming BindingIterator . 111

11.3 CosNaming NamingContext . 113

11.4 CosNaming NamingContextExt . 117

11.5 Module Interface . 119

11.6 any . 125

11.7 corba . 127

11.8 corba object . 133

11.9 fixed . 135

11.10 interceptors . 137

11.11 lname . 142

11.12 lname component . 144

11.13 orber . 146

11.14 orber diagnostics . 154

11.15 orber ifr . 155

11.16 orber tc . 170

vi Orber Application

12 Orber Release Notes 175

12.1 Orber 3.5.3, Release Notes . 175

12.1.1 Improvements and new features . 175

12.1.2 Fixed bugs and malfunctions . 175

12.1.3 Incompatibilities . 175

12.1.4 Known bugs and problems . 175

12.2 Orber 3.5.2, Release Notes . 175

12.2.1 Improvements and new features . 175

12.2.2 Fixed bugs and malfunctions . 176

12.2.3 Incompatibilities . 176

12.2.4 Known bugs and problems . 176

12.3 Orber 3.5.1, Release Notes . 176

12.3.1 Improvements and new features . 176

12.3.2 Fixed bugs and malfunctions . 176

12.3.3 Incompatibilities . 176

12.3.4 Known bugs and problems . 176

12.4 Orber 3.5.0.1, Release Notes . 177

12.4.1 Improvements and new features . 177

12.4.2 Fixed bugs and malfunctions . 177

12.4.3 Incompatibilities . 177

12.4.4 Known bugs and problems . 177

12.5 Orber 3.5, Release Notes . 177

12.5.1 Improvements and new features . 177

12.5.2 Fixed bugs and malfunctions . 178

12.5.3 Incompatibilities . 178

12.5.4 Known bugs and problems . 178

12.6 Orber 3.4.2.2, Release Notes . 178

12.6.1 Improvements and new features . 178

12.6.2 Fixed bugs and malfunctions . 178

12.6.3 Incompatibilities . 179

12.6.4 Known bugs and problems . 179

12.7 Orber 3.4.2.1, Release Notes . 179

12.7.1 Improvements and new features . 179

12.7.2 Fixed bugs and malfunctions . 179

12.7.3 Incompatibilities . 179

12.7.4 Known bugs and problems . 179

12.8 Orber 3.4.2, Release Notes . 179

12.8.1 Improvements and new features . 179

12.8.2 Fixed bugs and malfunctions . 180

12.8.3 Incompatibilities . 180

viiOrber Application

12.8.4 Known bugs and problems . 180

12.9 Orber 3.4.1, Release Notes . 180

12.9.1 Improvements and new features . 180

12.9.2 Fixed bugs and malfunctions . 180

12.9.3 Incompatibilities . 180

12.9.4 Known bugs and problems . 180

12.10 Orber 3.4, Release Notes . 181

12.10.1Improvements and new features . 181

12.10.2Fixed bugs and malfunctions . 181

12.10.3Incompatibilities . 181

12.10.4Known bugs and problems . 181

List of Figures 183

List of Tables 185

Glossary 187

viii Orber Application

Chapter 1

The Orber Application

1.1 Content Overview

The Orber documentation is divided into three sections:

� PART ONE - The User's Guide
Description of the Orber Application including IDL-to-Erlang language mapping, services and a
small tutorial demonstrating the development of a simple service.

� PART TWO - Release Notes
A concise history of Orber.

� PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in Orber.

1.2 Brief Description of the User's Guide

The User's Guide contains the following parts:

� ORB kernel and IIOP support

� Interface Repository

� IDL to Erlang mapping

� CosNaming Service

� Resolving initial reference from Java or C++

� Tutorial - creating a simple service

� CORBA Exceptions

� Interceptors

� OrberWeb

� Debugging

1Orber Application

Chapter 1: The Orber Application

1.2.1 ORB Kernel and IIOP Support

The ORB kernel which has IIOP support will allow the creation of persistent server objects in Erlang.
These objects can also be accessed via Erlang and Java environments. For the moment a Java enabled
ORB is needed to generate Java from IDL to use Java server objects (this has been tested using
OrbixWeb).

1.2.2 Interface Repository

The IFR is an interface repository used for some type-checking when coding/decoding IIOP. The IFR is
capable of storing all interfaces and declarations of OMG IDL.

1.2.3 IDL to Erlang Mapping

The OMG IDL mapping for Erlang, which is necessary to access the functionality of Orber, is
described, The mapping structure is included as the basic and the constructed OMG IDL types
references, invocations and Erlang characteristics. An example is also provided.

1.2.4 CosNaming Service

Orber contains a CosNaming compliant service.

1.2.5 Resolving Initial References from Java or C++

A couple of classes are added to Orber to simplify initial reference access from Java or C++.

Resolving initial reference from Java
A class with only one method which returns an IOR on the external string format to the INIT object
(see “Interoperable Naming Service” specification).

Resolving initial reference from C++
A class (and header file) with only one method which returns an IOR on the external string format to
the INIT object (see “Interoperable Naming Service” specification).

1.2.6 Orber Stub/Skeleton

An example which describes the API and behavior of Orber stubs and skeletons.

1.2.7 CORBA Exceptions

A listing of all system exceptions supported by Orber and how one should handle them. This chapter
also describe how to generate user defined exceptions.

1.2.8 Interceptors

Descibes how to implement and activate interceptors.

1.2.9 OrberWeb

Offers the possibility to administrate and supervise Orber via a GUI.

2 Orber Application

1.2: Brief Description of the User's Guide

1.2.10 Debugging

Descibes how to use different tools when debugging and/or developing new applications using Orber.
Also includes a FAQ, which deal with the most common mistakes when using Orber.

3Orber Application

Chapter 1: The Orber Application

4 Orber Application

Chapter 2

Introduction to Orber and the IFR

This chapter contains an introduction to Orber and the IFR (Interface Repository).

2.1 Introduction to Orber

2.1.1 Overview

The Orber application is a CORBA compliant Object Request Brokers (ORB), which provides CORBA
functionality in an Erlang environment. Essentially, the ORB channels communication or transactions
between nodes in a heterogeneous environment.

CORBA (Common Object Request Broker Architecture) provides an interface definition language
allowing efficient system integration and also supplies standard specifications for some services.

The Orber application contains the following parts:

� ORB kernel and IIOP support

� Interface Repository

� Interface Definition Language Mapping for Erlang

� CosNaming Service

Benefits

Orber provides CORBA functionality in an Erlang environment that enables:

� Platform interoperability and transparency
Orber enables communication between OTP applications or Erlang environment applications and
other platforms; for example, Windows NT, Solaris etc, allowing platform transparency. This is
especially helpful in situations where there are many users with different platforms. For example,
booking airline tickets would require the airline database and hundreds of travel agents (who may
not have the same platform) to book seats on flights.

5Orber Application

Chapter 2: Introduction to Orber and the IFR

� Application level interoperability and transparency
As Orber is a CORBA compliant application, its purpose is to provide interoperability and
transparency on the application level. Orber simplifies the distributed system software by defining
the environment as objects, which in effect, views everything as identical regardless of
programming languages.
Previously, time-consuming programming was required to facilitate communication between
different languages. However, with CORBA compliant Orber the Application Programmer is
relieved of this task. This makes communication on an application level relatively transparent to
the user.

Purpose and Dependencies

The system architecture and OTP dependencies of Orber are illustrated in figure 1 below:

Figure 2.1: Figure 1: Orber Dependencies and Structure.

Orber is dependent on Mnesia (see the Mnesia documentation) - an Erlang database management
application used to store object information.

Note:
Although Orber does not have a run-time application dependency to IC (an IDL compiler for
Erlang), it is necessary when building services and applications. See the IC documentation for further
details.

6 Orber Application

2.2: The Orber Application

Figure 2.2: Figure 2: ORB interface between Java and Erlang Environment Nodes.

This simplified illustration in figure 2 demonstrates how Orber can facilitate communication in a
heterogeneous environment. The Erlang Nodes running OTP and the other Node running applications
written in Java can communicate via an ORB (Object Request Broker). Using Orber means that
CORBA functions can be used to achive this communication.

For example, if one of the above nodes requests an object, it does not need to know if that object is
located on the same, or different, Erlang or Java nodes. The ORB will channel the information creating
platform and application transparency for the user.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is
familiar with distributed programming and CORBA (Common Object Request Broker Architecture).

Recommended reading includes Open Telecom Platform Documentation Set and Concurrent Programming
in Erlang.

2.2 The Orber Application

2.2.1 ORB Kernel and IIOP

This chapter gives a brief overview of the ORB and its relation to objects in a distributed environment
and the usage of Domains in Orber. Also Internet-Inter ORB Protocol (IIOP) is discussed and how
this protocol facilitates communication between ORBs to allow the accessory of persistent server
objects in Erlang.

7Orber Application

Chapter 2: Introduction to Orber and the IFR

2.2.2 The Object Request Broker (ORB)

An ORB kernel can be best described as the middle-ware, which creates relationships between clients
and servers, but is defined by its interfaces. This allows transparency for the user, as they do not have to
be aware of where the requested object is located. Thus, the programmer can work with any other
platform provided that an IDL mapping and interfaces exist.

The IDL mapping which is described in a later chapter is the translator between other platforms, and
languages. However, it is the ORB, which provides objects with a structure by which they can
communicate with other objects.

ORBs intercept and direct messages from one object, pass this message using IIOP to another ORB,
which then directs the message to the indicated object.

An ORB is the base on which interfaces, communication stubs and mapping can be built to enable
communication between objects. Orber uses domains to group objects of different nodes

How the ORB provides communication is shown very simply in figure 1 below:

Figure 2.3: Figure 1: How the Object Request Broker works.

The domain in Orber gives an extra aspect to the distributed object environment as each domain has
one ORB, but it is distributed over a number of object in different nodes. The domain binds objects on

8 Orber Application

2.2: The Orber Application

nodes more closely than distributed objects in different domains. The advantage of a domain is that a
faster communication exists between nodes and objects of the same domain. An internal
communication protocol (other than IIOP) allows a more efficient communication between these
objects.

Note:
Unlike objects, domains can only have one name so that no communication ambiguities exist
between domains.

2.2.3 Internet Inter-Object Protocol (IIOP)

IIOP is a communication protocol developed by the OMG to facilitate communication in a distributed
object-oriented environment.

Figure 2 below demonstrates how IIOP works between objects:

Figure 2.4: Figure 2: IIOP communication between domains and objects.

Note:
Within the Orber domains the objects communicate without using the IIOP. However, the user is
unaware of the difference in protocols, as this difference is not visible.

9Orber Application

Chapter 2: Introduction to Orber and the IFR

2.3 Interface Repository

2.3.1 Interface Repository(IFR)

The IFR is an interface repository built on the Mnesia application. Orber uses the IFR for some
type-checking when coding/decoding IIOP. The IFR is capable of storing all interfaces and declarations
of OMG IDL.

The interface repository is mainly used for dynamical interfaces, and as none are currently supported
this function is only really used for retrieving information about interfaces.

Functions relating to the manipulation of the IFR including, initialization of the IFR, as well as, locating,
creating and destroying initial references are detailed further in the Manual Pages.

10 Orber Application

Chapter 3

Installing Orber

3.1 Installation Process

This chapter describes how to install Orber in an Erlang Environment.

3.1.1 Preparation

To begin with, you must decide if you want to run Orber as a:

� Single node (non-distributed) - all communication with other Orber intsances and ORB's supplied
by other vendors use the OMG GIOP protocol.

� Multi node (distributed) - all Orber nodes, within the same domain, communicate via the Erlang
distribution protocol. For all other Orber instances, i.e. not part of the same domain, and ORB's
supplied by other vendors, the OMG GIOP protocol is used.

Which approach to use is highly implementation specific, but a few things you should consider:

� All nodes within an Orber domain should have the same security level.

� If the capacity is greater than load (volume of traffic) a single-node Orber might be a good
solution.

� In some cases the distributed system architecture requires a single-node Orber installation .

� A multi-node Orber makes it possible to load balance and create a more fault tolerant system.
The Objects can also have a uniform view if you use distributed Mnesia tables.

� Since the GIOP protocol creates a larger overhead than the Erlang distribution protocol, the
performance will be better when communicating with Objects within the same Orber domain
compared with inter ORB communcation (GIOP).

You also have to decide if you want Orber to store internal data using disc copies and/or ram copies.
Which storage type you should depends if/how you intend to use Mnesia in your application. If you
intend to use disc copies you must start with creating a Mnesia schema, which contain information
about the location of the Erlang nodes where Orber is planned to be run. For more background
information, see the Mnesia documentation.

In some cases it is absolutely necessary to change the default configuration of Orber. For example, if
two Orber-ORB's shall be able to communicate via GIOP, they must have a unique domain domain.
Consult the configuration settings [page 14] section. If you encounter any problems; see the chapter
about Debugging in this User's Guide.

11Orber Application

Chapter 3: Installing Orber

3.1.2 Jump Start Orber

The easiest way to start Orber is to use orber:jump start(Port), which start a single-node ORB with
(most likely) a unique domain (i.e. “IP-number:Port”). This function may only be used during
development and testing. For any other situation, install and start Orber as described in the following
sections. The listen port, i.e. iiop port configuration parameter, is set to the supplied Port.

Warning:
How Orber is configured when using orber:jump start(Port) may change at any time without
warning. Hence, this operation must not be used in systems delivered to a customer.

3.1.3 Install Single Node Orber

Since a single node Orber communicate via the OMG GIOP protocol it is not necessary to start the
Erlang distribution (i.e. using -name/-sname).

If we use ram copies there is no need for creating a disc based schema. Simply use:

erl> mnesia:start().
erl> corba:orb_init([{domain, "MyRAMSingleNodeORB"}]).
erl> orber:install([node()], [{ifr_storage_type, ram_copies}]).
erl> orber:start().

If you installation requires disc copies you must begin with creating a Mnesia schema. Otherwise, the
installation is similar to a RAM installation:

erl> mnesia:create_schema([node()]).
erl> mnesia:start().
erl> corba:orb_init([{domain, "MyDiscSingleNodeORB"}]).
erl> orber:install([node()], [{ifr_storage_type, disc_copies},

{nameservice_storage_type, disc_copies}]).
erl> orber:start().

You can still choose to store the IFR data as ram copies, but then the data must be re-installed (i.e.
invoke orber:install/2) if the node is restarted. Hence, since the IFR data is rather static you should
use disc copies. For more information see the orber section in the reference manual.

If you do not need to change Orber's configuration you can skip orb init/1 [page 127]. But, you should
at least set the IIOP timeout parameters.

Note:
When starting Orber as lightweight, mnesia and orber:install/* are not required. You must,
however, use the configuration [page 14] parameter lightweight.

12 Orber Application

3.1: Installation Process

3.1.4 Install RAM Based Multi Node Orber

Within a domain Orber uses the Erlang distribution protocol. Hence, you must start it first by, for
example, using:

hostA> erl -sname nodeA

In this example, we assume that we want to use two nodes; nodeA and nodeB. Since Mnesia must know
which other nodes should a part of the distribution we either need to add the Mnesia configuration
parameter extra db nodes or use mnesia:change config/2. To begin with, Mnesia must be started on
all nodes before we can install Orber:

nodeA@hostA> mnesia:start().
nodeA@hostA> mnesia:change_config(extra_db_nodes,

[nodeA@hostA, nodeB@hostB]).

After that the above have been repeated on nodeB we must first make sure that both nodes will use the
same domain name, then we can install Orber:

nodeA@hostA> corba:orb_init([{domain, "MyRAMMultiNodeORB"}]).
nodeA@hostA> orber:install([nodeA@hostA, nodeB@hostB],

[{ifr_storage_type, ram_copies}]).
nodeA@hostA> orber:start().

Note that you can only invoke orber:install/1/2 on one of the nodes. Now we can start Orber on
the other node:

nodeB@hostB> corba:orb_init([{domain, "MyRAMMultiNodeORB"}]).
nodeB@hostB> orber:start().

3.1.5 Install Disc Based Multi Node Orber

As for RAM based multi-node Orber installations, the Erlang distribution must be started (e.g. erl
-sname nodeA). The major difference is that when it is disc based a Mnesia schema must be created:

nodeA@hostA> mnesia:create_schema([nodeA@hostA, nodeB@hostB]).
nodeA@hostA> mnesia:start().

In this example, we assume that we want to use two nodes; nodeA and nodeB. Since it is not possible to
create a schema on more than one node. Hence, all we have to do is to start Mnesia (i.e. invoke
mnesia:start()) on nodeB.

After Mnesia have been started on all nodes, you must confirm that all nodes have the same domain
name, then Orber is ready to be installed:

nodeA@hostA> corba:orb_init([{domain, "MyDiscMultiNodeORB"}]).
nodeA@hostA> orber:install([nodeA@hostA, nodeB@hostB],

[{ifr_storage_type, disc_copies}]).
nodeA@hostA> orber:start().

Note that you can only invoke orber:install/1/2 on one of the nodes. Now we can start Orber on
the other node:

nodeB@hostB> corba:orb_init([{domain, "MyDiscMultiNodeORB"}]).
nodeB@hostB> orber:start().

13Orber Application

Chapter 3: Installing Orber

3.1.6 Running Java clients against Orber.

If you intend to run Java clients and your Java ORB does not support the Interoperable Naming Service
(INS), a specific

<OTP_INSTALLPATH>/lib/orber-<current-version>/priv

must be added to your CLASSPATH variable to allow Orber support for the initial references. For more
information about INS, see the Name Service chapter in this User's Guide.

3.2 Configuration

The following configuration parameters exist:

� domain - default is “ORBER”. The value is a string. Since Orber domains must have unique
names, communication will fail if two domains have the same name. The domain name MAY
NOT contain ^G (i.e. \007).

� iiop port - default 4001. The value is an integer greater than 0.
Note:On a UNIX system it is preferable to have a IIOP port higher than 1023, since it is not
recommended to run Erlang as a root user.

� nat iiop port - default the same as iiop port. The value is an integer greater than 0. See also
Firewall Configuration. [page 17].

� iiop out ports - default 0 (i.e. use any available port). If set, Orber will only use the local ports
within the interval when trying to connect to another ORB (Orber acts as a client ORB). If all
ports are in use communication will fail. Hence, it is absolutely necessary to set
iiop connection timeout as well. Otherwise, connections no longer in use will block further
communication. If one use, for example, erl -orber iiop out ports "f5000,5020g", Orber
will only use port 5000 to 5020 when connecting. SSL do not support this feature. Hence, one
MAY NOT combine these settings. See also Firewall Configuration. [page 17].

� iiop max fragments - default infinity. Limits the number of IIOP fragments allowed per request.

� iiop max in requests - default infinity. Limits the number of concurrent incoming requests.

� iiop max in connections - default infinity. Limits the number of concurrent incoming
connnections.

� iiop backlog - default 5. Defines the maximum length the queue of pending incoming connections
may grow to.

� iiop packet size - default infinity. Defines the maximum size of incoming requests. If this limit is
exceeded, the connection is closed.

� ip address - default is all interfaces. This option is used if orber only should listen on a specific ip
interface on a multi-interface host or if exported IOR:s should contain multiple components. The
value is the IPv4 or IPv6 address as a string or fmultiple, IPListg. IPList must be a list of IPv4
or IPv6 address strings.

� nat ip address - default is the same as ip address. The value is the ip address as a string (IPv4 or
IPv6) or fmultiple, IPListg. See also Firewall Configuration. [page 17].

� objectkeys gc time - default is infinity. This option should be set if objects are started using the
option fpersistent, trueg. The value is integer() seconds.

� giop version - default is IIOP 1.1. It is possible to IIOP Versions 1.0 or 1.2 as well, e.g., erl
-orber giop version "f1,2g"

14 Orber Application

3.2: Configuration

� iiop setup connection timeout - default is infinity. The value is an integer (seconds) or the atom
infinity. This option is only valid for client-side connections. If this option is set, attempts to
connect to other ORB's will timeout after the given time limit. Note, if the time limit is large the
TCP protocol may timeout before the supplied value.

� iiop connection timeout - default is infinity. The value is an integer (timeout in seconds between 0
and 1000000) or the atom infinity. This option is only valid for client object connections, i.e., will
have no effect on server connections. Setting this option will cause client connections to be
terminated, if and only if, there are no pending requests. If there are a client still waiting for a
reply, Orber will try again after the given seceonds have passed. The main purpose for this option
is to reduce the number of open connections; it is, for example, not necessary to keep a
connection, only used once a day, open at all time.

� iiop in connection timeout - the same as for iiop connection timeout. The only difference is that
this option only affects incoming connections (i.e. Orber act as server-side ORB.

� iiop timeout - default is infinity. The value is an integer (timeout in seconds between 0 and
1000000) or the atom infinity. This option is only valid on the client side. Setting this option,
cause all intra-ORB requests to timeout and raise a system exception, e.g. TIMEOUT, if no replies
are delivered within the given time limit.

� interceptors - if one set this parameter, e.g., erl -orber interceptors "fnative,
[’myInterceptor’]g", Orber will use the supplied interceptor(s) for all inter-ORB
communication. ’myInterceptor’ is the module name of the interceptor. For more information,
see the interceptor chapter in the User's Guide and the Reference Manual.

� local interceptors - configured in the same way as the interceptors parameter. If defined, its value
will be used when activating local interceptors via Orber Environment Flags [page 16]. If not
defined, but the flag is set, Orber will use the value of the interceptors parameter.

� lightweight - default is false. This option must be set if Orber is supposed to be started as
lightweight. The value is a list of RemoteModifiers, equal to the
orber:resolve initial references remote/2 argument. The list must contain Orber nodes
addresses, to which we have access and are not started as lightweight.

� orbInitRef - default is undefined. Setting this option, e.g., erl -orber orbInitRef
[\"NameService=corbaloc::host.com/NameService\"], will alter the location from where
corba:resolve initial references(Key) tries to find an object matching the given Key. The
keys will also appear when invoking corba:list initial services(). This variable overrides
orbDefaultInitRef

� orbDefaultInitRef - default is undefined. If a matching Key for orbInitRef is not found, and this
variable is set, it determines the location from where orber:resolve initial references(Key)
tries to find an object matching the given Key. Usage: erl -orber orbDefaultInitRef
\"corbaloc::host.com\"

� orber debug level - default is 0 and the range is 0 to 10. Using level 10 is the most verbose
configuration. This option will generate reports, using the error logger, for abnormal situations.
It is not recommended to use this option for delivered systems since some of the reports is not to
be considered as errors. The main puropse is to assist during development.

� flags - no flags activated in the default case. The available configuration settings is described in
Orber Environment Flags [page 16].

It is possible to invoke operations using the extra timeout parameter:

erl> module interface:function(ObjRef, Timeout, ..Arguments..).
erl> module interface:function(ObjRef, ..Arguments..).

15Orber Application

Chapter 3: Installing Orber

The extra Timeout argument will override the configuration parameter iiop timeout. It is, however,
not possible to use infinity to override the Timeout parameter. The Timeout option is also valid for
objects which resides within the same Orber domain .

The iiop setup connection timeout, iiop timeout, iiop connection timeout and
iiop in connection timeout variables should be used. The specified values is implementation
specific, i.e., WAN or LAN, but they should range from iiop setup connection timeout to
iiop connection timeout.

The following options are the possible configurations when using Orber with secure IIOP. Orber
currently only supports security with the help of SSL and not SECIOP. To get more information about
the SSL read the SSL application manual. The security chapter later in this manual describes how to
get security in Orber and how the options are used.

� secure - default is no security. The values are currently just the atoms ssl and no.

� iiop ssl port - default 4002. If set, the value must be an integer greater than zero and not equal to
iiop port.

� iiop ssl backlog - default 5. Defines the maximum length the queue of pending incoming
connections may grow to.

� nat iiop ssl port - default the same as iiop ssl port. If set, the value must be an integer greater
than zero. See also Firewall Configuration. [page 17].

� ssl server cacertfile - the value is a file path to a server side CA certificate.

� ssl server certfile - the value is a file path to a server side certificate.

� ssl server verify - the value is an integer less or equal than two.

� ssl server depth - the value is an integer.

� ssl server password - the value is a server side key string.

� ssl server keyfile - the value is a file path to a server side key.

� ssl server ciphers - the value is a server side cipher string.

� ssl server cachetimeout - the value is a server side cache timeout integer. Default is infinity.

� ssl client cacertfile - the value is a file path to a client side CA certificate.

� ssl client certfile - the value is a file path to a client side certificate.

� ssl client verify - the value is an integer less or equal than two.

� ssl client depth - the value is an integer.

� ssl client password - the value is a client side key string.

� ssl client keyfile - the value is a file path to a client side key.

� ssl client ciphers - the value is a client side cipher string.

� ssl client cachetimeout - the value is a client side cache timeout integer. Default is infinity.

To change these settings in the configuration file, the -config flag must be added to the erl command.
See the Reference Manual config(4) for further information. The values can also be sent separately as
options to the Erlang node when it is started, see the Reference Manual erl(1) for further information.

3.2.1 Orber Environment Flags

The Environment Flags allows the user to activate debugging facilities or change Orber's behavior.
The latter may result in that Orber is no longer compliant with the OMG standard, which may be
necessary when communicating with a non-compliant ORB.

16 Orber Application

3.3: Firewall Configuration

Hexadecimal Value OMG Compliant Description

0001 no Exclude CodeSet Component

0002 yes Local Typechecking

0004 yes Use Host Name in IOR

0008 yes Enable NAT

0020 yes Local Interceptors

0080 yes Light IFR

0100 yes Use IPv6

0200 yes EXIT Tolerance

Table 3.1: Orber Environment Flags

Any combination of the flags above may be used and changes the behavior as follows:

� Exclude CodeSet Component - instruct Orber to exclude the CodeSet component in exported
IOR:s. When activated, no negotiating regarding character and wide character conversions
between the client and the server will occur. This flag will, most likely, cause problems if your
IDL specification contains the datatypes wchar and/or wstring.

� Local Typechecking - If activated, parameters, replies and raised exceptions will be checked to
ensure that the data is correct. If an error occurs, the error logger is used to generate reports.
One MAY NOT use this option for delivered systems due to the extra overhead. Since this option
activates typechecking for all objects generated on the target node, it is also possible to use the
option flocal typecheck, boolean()g, when invoking oe create/2, oe create link/2,
corba:create/4 or corba:create link/4, to override the configuration parameter.

� Use Host Name in IOR - normally Orber inserts the IP-number in IOR:s when they are exported.
In some cases, this will cause the clients to open two connections instead of one.

� Enable NAT - if this flag is set, it is possible to use the NAT (Network Address Translation)
configuration parameters (nat iiop port, nat iiop ssl port and nat ip address).

� Local Interceptors - use interceptors for local invocations.

� Light IFR - if the IFR is not explicitly used and this flag is set, Orber will use a minimal IFR to
reduce memory usage and installation time.

� Use IPv6 - when this option is activated, Orber will use IPv6 for inter-ORB communication.

� EXIT Tolerance - servers will survive even though the call-back module caused an EXIT.

3.3 Firewall Configuration

Firewalls are used to protect objects from clients in other networks or sub-networks, but also to restrict
which hosts internal objects may connect to (i.e. inbound protection and outbound protection). A
firewall can limit access based on:

� Transport Level - performs access control decisions based on address information in TCP headers.

� Application Level - understands GIOP messages and the specific transport level inter-ORB
Protocol supported e.g. IIOP.

17Orber Application

Chapter 3: Installing Orber

This section describes how to configure a Transport Level firewall. It must have prior knowledge of
the source to destination mappings, and conceptually has a configuration table containing tuples of the
form: (finhost:inportg, fouthost:outportg). If there are no port restrictions it is rather easy to
configure the firewall. Otherwise, we must consider the following alternatives:

� Incoming Requests - Orber only uses the port-numbers specified by the configration parameters
iiop port and iiop ssl port. Other ORB's may use several ports but it should be possible to change
this behavior. Consult the other ORBs documentation.

� Outgoing Requests - Most ORB's, Orber included, ask the OS to supply a vacant local port when
connecting to the server-side ORB. It is possible to change this behavior when using Orber (i.e. set
the configuration parameter iiop out ports).

Warning:
Using the option iiop out ports may result in that Orber runs out of valid ports numbers. For
example, other applications may steal some of the ports or the number of concurrent outgoing
connections to other ORBs may be higher than expected. To reduce, but not eliminate, the risk you
should use iiop connection timeout.

Firewall configuration example:

"Plain" IIOP
To: Orber-IPNo:(iiop port) From: ORB-IPNo:X
To: ORB-IPNo:Z From: Orber-IPNo:(iiop out ports | Any Port)

IIOP via SSL
To: Orber-IPNo:(iiop port) From: ORB-IPNo:X
To: Orber-IPNo:(iiop ssl port) From: ORB-IPNo:Y
To: ORB-IPNo:Z From: Orber-IPNo:(iiop out ports | Any Port)

If the communication take place via a TCP Firewall with NAT [page 19] (Network Address
Translation), we must active this behavior and define the external address and/or ports.

18 Orber Application

3.3: Firewall Configuration

Figure 3.1: TCP Firewall With NAT

Using NAT makes it possible to use different host data for different network domains. This way we can
share Internet Protocol address resources or obscure resources. To enable this feature the Enable NAT
[page 16] flag must be set and nat iiop port, nat iiop ssl port and nat ip address configured,
which maps to iiop port, iiop ssl port and ip address respectively. Hence, the firewall must be
configured to translate the external to the internal representation correctly.

19Orber Application

Chapter 3: Installing Orber

20 Orber Application

Chapter 4

OMG IDL to Erlang Mapping

4.1 OMG IDL to Erlang Mapping - Overview

The purpose of OMG IDL, Interface Definition Language, mapping is to act as translator between
platforms and languages. An IDL specification is supposed to describe data types, object types etc.

CORBA is independent of the programming language used to construct clients or implementations. In
order to use the ORB, it is necessary for programmers to know how to access ORB functionality from
their programming languages. It translates different IDL constructs to a specific programming language.
This chapter describes the mapping of OMG IDL constructs to the Erlang programming language.

4.2 OMG IDL Mapping Elements

A complete language mapping will allow the programmer to have access to all ORB functionality in a
way that is convenient for a specified programming language.

All mapping must define the following elements:

� All OMG IDL basic and constructed types

� References to constants defined in OMG IDL

� References to objects defined in OMG IDL

� Invocations of operations, including passing of parameters and receiving of results

� Exceptions, including what happens when an operation raises an exception and how the
exception parameters are accessed

� Access to attributes

� Signatures for operations defined by the ORB, such as dynamic invocation interface, the object
adapters etc.

� Scopes; OMG IDL has several levels of scopes, which are mapped to Erlang's two scopes.

21Orber Application

Chapter 4: OMG IDL to Erlang Mapping

4.3 Getting Started

To begin with, we should decide which type of objects (i.e. servers) we need and if two, or more,
should export the same functionality. Let us assume that we want to create a system for DB (database)
access for different kind of users. For example, anyone with a valid password may extract data, but only
a few may update the DB. Usually, an application is defined within a module, and all global datatypes
are defined on the top-level. To begin with we create a module and the interfaces we need:

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
// A module is simply a container
module DB {

// An interface maps to a CORBA::Object.
interface CommonUser {

};

// Inherit the Consumer interface
interface Administrator : CommonUser {

};

interface Access {

};

};
#endif

Since the Administrator should be able to do the same things as the CommonUser, the previous inherits
from the latter. The Access interface will grant access to the DB. Now we are ready to define the
functionality and data types we need. But, this requires that we know a little bit more about the OMG
IDL.

Note:
The OMG defines a set of reserved case insensitive key-words, which may NOT be used as identifiers
(e.g. module name). For more information, see Reserved Compiler Names and Keywords [page 38]

4.4 Basic OMG IDL Types

The OMG IDL mapping is strongly typed and, even if you have a good knowledge of CORBA types, it
is essential to read carefully the following mapping to Erlang types.

The mapping of basic types is straightforward. Note that the OMG IDL double type is mapped to an
Erlang float which does not support the full double value range.

22 Orber Application

4.5: Template OMG IDL Types and Complex Declarators

OMG IDL type Erlang type Note

float Erlang float

double Erlang float value range not supported

short Erlang integer -2^15 .. 2^15-1

unsigned short Erlang integer 0 .. 2^16-1

long Erlang integer -2^31 .. 2^31-1

unsigned long Erlang integer 0 .. 2^32-1

long long Erlang integer -2^63 .. 2^63-1

unsigned long long Erlang integer 0 .. 2^64-1

char Erlang integer ISO-8859-1

wchar Erlang integer UTF-16 (ISO-10646-1:1993)

boolean Erlang atom true/false

octet Erlang integer

any Erlang record #anyftypecode, valueg

long double Not supported

Object Orber object reference Internal Representation

void Erlang atom ok

Table 4.1: OMG IDL basic types

The any value is written as a record with the field typecode which contains the Type Code
representation, see also the Type Code table [page 39], and the value field itself.

Functions with return type void will return the atom ok.

4.5 Template OMG IDL Types and Complex Declarators

Constructed types all have native mappings as shown in the table below.

Type IDL code Maps to Erlang code

string typedef string S; void op(in S a); Erlang string ok = op(Obj, ”Hello World”),

wstring typedef wstring S; void op(in S a); Erlang list of Integers ok = op(Obj, ”Hello World”),

sequence typedef sequence <long, 3> S;
void op(in S a);

Erlang list ok = op(Obj, [1, 2, 3]),

array typedef string S[2]; void op(in S
a);

Erlang tuple ok = op(Obj, f”one”, ”two”g),

fixed typedef fixed<3,2> myFixed;
void op(in myFixed a);

Erlang tuple MF = fixed:create(3, 2, 314),
ok = op(Obj, MF),

Table 4.2: OMG IDL Template and Complex Declarators

23Orber Application

Chapter 4: OMG IDL to Erlang Mapping

4.5.1 String/WString Data Types

A string consists of all possible 8-bit quantities except null. Most ORB:s uses, including Orber, the
character set Latin-1 (ISO-8859-1). The wstring type is represented as a list of integers, where each
integer represents a wide character. In this case Orber uses, as most other ORB:s, the UTF-16
(ISO-10646-1:1993) character set.

When defining a a string or wstring they can be of limited length or null terminated:

// Null terminated
typedef string myString;
typedef wstring myWString;
// Maximum length 10
typedef string<10> myString10;
typedef wstring<10> myWString10;

If we want to define a char/string or wchar/wstring constant, we can use octal (\OOO - one, two or
three octal digits), hexadecimal (\xHH - one or two hexadecimal digits) and unicode (\uHHHH - one,
two, three or four hexadecimal digits.) representation as well. For example:

const string SwedensBestSoccerTeam = "\101" "\x49" "\u004B";
const wstring SwedensBestHockeyTeam = L"\101\x49\u004B";
const char aChar = ’\u004B’;
const wchar aWchar = L’\u004C’;

Naturally, we can use "Erlang", L"Rocks", ’A’ and L’A’ as well.

4.5.2 Sequence Data Type

A sequence can be defined to be of a maximum length or unbounded, and may contain Basic and
Template types and scoped names:

typedef sequence <short, 1> aShortSequence;
typedef sequence <long> aLongSequence;
typedef sequence <aLongSequence> anEvenLongerSequence;

4.5.3 Array Data Type

Arrays are multidimensional, fixed-size arrays. The indices is language mapping specific, which is why
one should not pass them as arguments to another ORB.

typedef long myMatrix[2][3];

24 Orber Application

4.5: Template OMG IDL Types and Complex Declarators

4.5.4 Fixed Data Type

A Fixed Point literal consists of an integer part (decimal digits), decimal point and a fraction part
(decimal digits), followed by a D or d. Either the integer part or the fraction part may be missing; the
decimal point may be missing, but not d/D. The integer part must be a positive integer less than 32.
The Fraction part must be a positive integer less than or equal to the Integer part.

const fixed myFixed1 = 3.14D;
const fixed myFixed2 = .14D;
const fixed myFixed3 = 0.14D;
const fixed myFixed4 = 3.D;
const fixed myFixed5 = 3D;

It is also possible to use unary (+-) and binary (+-*/) operators:

const fixed myFixed6 = 3D + 0.14D;
const fixed myFixed7 = -3.14D;

The Fixed Point examples above are, so called, anonymous definitions. In later CORBA specifications
these have been deprecated as function parameters or return values. Hence, we strongly recommend
that you do not use them. Instead, you should use:

typedef fixed<5,3> myFixed53;
const myFixed53 myFixed53constant = 03.140d;
typedef fixed<3,2> myFixed32;
const myFixed32 myFixed32constant = 3.14d;

myFixed53 foo(in myFixed32 MF); // OK
void bar(in fixed<5,3> MF); // Illegal

For more information, see Fixed [page 135] in Orber's Reference Manual.

Now we continue to work on our IDL specification. To begin with, we want to limit the size of the
logon parameters (Id and password). Since the UserID and Password paremeters, only will be used
when invoking operations on the Access interface, we may choose to define them within the scope that
interface. To keep it simple our DB will contain employee information. Hence, as the DB key we
choose an integer (EmployeeNo).

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
module DB {

typedef unsigned long EmployeeNo;

interface CommonUser {

any lookup(in EmployeeNo ENo);

};

interface Administrator : CommonUser {

25Orber Application

Chapter 4: OMG IDL to Erlang Mapping

void delete(in EmployeeNo ENo);

};

interface Access {

typedef string<10> UserID;
typedef string<10> Password;

CommonUser logon(in UserID ID, in Password PW);

};

};
#endif

But what should, for example, the lookup operation return? One option is to use the any data type.
But, depending on what kind of data it encapsulates, this datatype can be rather expensive to use. We
might find a solution to our problems among the Constructed IDL types.

4.6 Constructed OMG IDL Types

Constructed types all have native mappings as shown in the table below.

Type IDL code Maps to Erlang code

struct struct myStruct f long a; short b;
g; void op(in myStruct a);

Erlang record ok = op(Obj, #'myStruct'fa=300,
b=127g),

union union myUnion switch(long) f
case 1: long a; g; void op(in myU-
nion a);

Erlang record ok = op(Obj, #'myUnion'flabel=1,
value=66g),

enum enum myEnum fone, twog; void
op(in myEnum a);

Erlang atom ok = op(Obj, one),

Table 4.3: OMG IDL constructed types

4.6.1 Struct Data Type

A struct may have Basic, Template, Scoped Names and Constructed types as members.

4.6.2 Enum Data Type

The maximum number of identifiers which may defined in an enumeration is 2. The order in which the
identifiers are named in the specification of an enumeration defines the relative order of the identifiers.

26 Orber Application

4.6: Constructed OMG IDL Types

4.6.3 Union Data Type

A union may consist of:

� Identifier

� Switch - may be an integer, char, boolean, enum or scoped name.

� Body - with or without a default case; may appear at most once.

A case label must match the defined type of the discriminator, and may only contain a default case if
the values given in the non-default labels do not cover the entire range of the union's discriminant type.
For example:

// Illegal default; all cases covered by
// non-default cases.
union BooleanUnion switch(boolean) {
case TRUE: long TrueValue;
case FALSE: long FalseValue;
default: long DefaultValue;

};
// OK
union BooleanUnion2 switch(boolean) {
case TRUE: long TrueValue;
default: long DefaultValue;

};

It is not necessary to list all possible values of the union discriminator in the body. Hence, the value of a
union is the value of the discriminator and, in given order, one of the following:

1. If the discriminator match a label, explicitly listed in a case statement, the value must be of the
same type.

2. If the union contains a default label, the value must match the type of the default label.

3. No value. Orber then inserts the Erlang atom undefined in the value field when receiving a union
from an external ORB.

The above can be summed up to:

// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, the atom undefined.
union LongUnion switch(long) {
case 1:
case 2: long TrueValue;

};
// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, a boolean.
union LongUnion2 switch(long) {
case 1:
case 2: long TrueValue;
default: boolean DefaultValue;

};

27Orber Application

Chapter 4: OMG IDL to Erlang Mapping

Warning:
Every field in, for example, a struct must be initiated. Otherwise it will be set to the atom
undefined, which Orber cannot encode when communicating via IIOP. In the example above,
invoking the opertion with #'myStruct'fa=300g will fail (equal to #'myStruct'fa=300,
b=undefinedg)

Now we can continue to work on our IDL specification. To begin with, we should determine the return
value of the lookup operation. Since the any type can be rather expensive we can use a struct or a
union instead. If we intend to return the same information about a employee every time we can use a
struct. Let us assume that the DB contains the name, address, employee number and department.

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
module DB {

typedef unsigned long EmployeeNo;

enum Department {Department1, Department2};

struct employee {
EmployeeNo No;
string Name;
string Address;
Department Dpt;

};

typedef employee EmployeeData;

interface CommonUser {

EmployeeData lookup(in EmployeeNo ENo);

};

interface Administrator : CommonUser {

void delete(in EmployeeNo ENo);

};

interface Access {

typedef string<10> UserID;
typedef string<10> Password;

// Since Administrator inherits from CommonUser
// the returned Object can be of either type.
CommonUser logon(in UserID ID, in Password PW);

};

28 Orber Application

4.7: Scoped Names and Generated Files

};
#endif

We can also define exceptions (i.e. not system exception) thrown by each interface. Since exceptions
are thoroughly described in the chapter System and User Defined Exceptions [page 69], we choose not
to. Hence, we are now ready to compile our IDL-file by invoking:

$ erlc DB.idl

or:

$ erl
Erlang (BEAM) emulator version 5.1.1 [threads:0]

Eshell V5.1.1 (abort with ^G)
1> ic:gen(’DB’).
ok
2> halt().

The next step is to implement our servers. But, to be able to do that, we need to know how we can
access data type definitions. For example, since a struct is mapped to an Erlang record we must include
an hrl-file in our callback module.

4.7 Scoped Names and Generated Files

4.7.1 Scoped Names

Within a scope all identifiers must be unique. The following kinds of definitions form scopes in the
OMG IDL:

� module

� interface

� operation

� valuetype

� struct

� union

� exception

For example, since enumerants do not form a scope, the following IDL code is not valid:

module MyModule {
// ’two’ is not unique
enum MyEnum {one, two};
enum MyOtherEnum {two, three};

};

29Orber Application

Chapter 4: OMG IDL to Erlang Mapping

But, since Erlang only has two levels of scope, module and function, the OMG IDL scope is mapped as
follows:

� Function Scope - used for constants, operations and attributes.

� Erlang Module Scope - the Erlang module scope handles the remaining OMG IDL scopes.

An Erlang module, corresponding to an IDL global name, is derived by converting occurencies of “::” to
underscore, and eliminating the leading “::”. Hence, accessing MyEnum from another module, one use
MyModule::MyEnum

For example, an operation foo defined in interface I, which is defined in module M, would be written in
IDL as M::I::foo and as ’M I’:foo in Erlang - foo is the function name and ’M I’ is the name of the
Erlang module. Applying this knowledge to a stripped version of the DB.idl gives:

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
// ++ topmost scope ++
// IC generates oe_XX.erl and oe_XX.hrl.
// XX is equal to the name of the IDL-file.
// Tips: create one IDL-file for each top module
// and give the file the same name (DB.idl).
// The oe_XX.erl module is used to register data
// in the IFR.
module DB {

// ++ Module scope ++
// To access ’EmployeeNo’ from another scope, use:
// DB::EmployeeNo, DB::Access etc.
typedef unsigned long EmployeeNo;

enum Department {Department1, Department2};

// Definitions of this struct is contained in:
// DB.hrl
// Access functions exported by:
// DB_employee.erl
struct employee {

... CUT ...
};

typedef employee EmployeeData;

... CUT ...

// If this interface should inherit an interface
// in another module (e.g. OtherModule) use:
// interface Access : OtherModule::OtherInterface
interface Access {

// ++ interface scope ++
// Types within this scope is accessible via:
// DB::Access::UserID
// The Stub/Skeleton for this interface is

30 Orber Application

4.7: Scoped Names and Generated Files

// placed in the module:
// DB_Access.erl
typedef string<10> UserID;
typedef string<10> Password;

// Since Administrator inherits from CommonUser
// the returned Object can be of either type.
// This operation is exported from:
// DB_Access.erl
CommonUser logon(in UserID ID, in Password PW);

};

};
#endif

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It
is advisable to avoid the use of underscores in identifiers. For example, the following definition would
generate two structures namned x y z.

module x {

struct y_z {
...

};

interface y {

struct z {
...

};
};

};

4.7.2 Generated Files

Several files can be generated for each scope.

� An Erlang source code file (.erl) is generated for top level scope as well as the Erlang header file.

� An Erlang header file (.hrl) will be generated for each scope. The header file will contain record
definitions for all struct, union and exception types in that scope.

� Modules that contain at least one constant definition, will produce Erlang source code files (.erl).
That Erlang file will contain constant functions for that scope. Modules that contain no constant
definitions are considered empty and no code will be produced for them, but only for their
included modules/interfaces.

� Interfaces will produce Erlang source code files (.erl), this code will contain all operation stub
code and implementation functions.

� In addition to the scope-related files, an Erlang source file will be generated for each definition of
the types struct, union and exception (these are the types that will be represented in Erlang as
records). This file will contain special access functions for that record.

31Orber Application

Chapter 4: OMG IDL to Erlang Mapping

� The top level scope will produce two files, one header file (.hrl) and one Erlang source file
(.erl). These files are named as the IDL file, prefixed with oe .

After compiling DB.idl, the following files have been generated:

� oe DB.hrl and oe DB.erl for the top scope level.

� DB.hrl for the module DB.

� DB Access.hrl and DB Access.erl for the interface DB Access.

� DB CommonUser.hrl and DB CommonUser.erl for the interface DB CommonUser.

� DB Administrator.hrl and DB Administrator.erl for the interface DB Administrator.

� DB employee.erl for the structure employee in module DB.

Since the employee struct is defined in the top level scope, the Erlang record definition is found in
DB.hrl. IC also generates stubs/skeletons (e.g. DB CommonUser.erl) and access functions for some
datatypes (e.g. DB employee.erl). How the stubs/skeletons are used is thoroughly described in
Stubs/Skeletons [page 62] and Module Interface [page 119].

4.8 Typecode, Identity and Name Access Functions

As mentioned in a previous section, struct, union and exception types yield record definitions and
access code for that record. For struct, union, exception, array and sequence types, a special file is
generated that holds access functions for TypeCode, Identity and Name. These functions are put in the
file corresponding to the scope where they are defined. For example, the module DB employee.erl,
representing the employee struct, exports the following functions:

� tc/0 - returns the type code for the struct.

� id/0 - returns the IFR identity of the struct. In this case the returned value is
"IDL:DB/employee:1.0", but if the struct was defined in the scope of CommonUser, the result
would be "IDL:DB/CommonUser/employee:1.0". However, the user usually do not need to know
the Id, just which Erlang module contains the correct Id.

� name/0 - returns the scoped name of the struct. The employee struct name is "DB employee".

Type Codes are, for example, used in Any [page 125] values. Hence, we can encapsulate the employee
struct in an any type by:

%% Erlang code
....
AnEmployee = #’DB_employee’{’No’ = 1,

’Name’ = "Adam Ivan Kendall",
’Address’ = "Rasunda, Solna",
’Dpt’ = ’Department1’},

EmployeeTC = ’DB_employee’:tc(),
EmployeeAny = any:create(EmployeeTC, AnEmployee),
....

For more information, see the Type Code listing [page 39].

32 Orber Application

4.9: References to Constants

4.9 References to Constants

Constants are generated as Erlang functions, and are accessed by a single function call. The functions
are put in the file corresponding to the scope where they are defined. There is no need for an object to
be started to access a constant.

Example:

// m.idl
module m {

const float pi = 3.14;

interface i {
const float pi = 3.1415;

};
};

Since the two constants are defined in different scopes, the IDL code above is valid, but not necessarily
a good approach. After compiling m.idl, the constant definitions can be extracted by invoking:

$ erlc m.idl
$ erlc m.erl
$ erl
Erlang (BEAM) emulator version 5.1.1 [threads:0]

Eshell V5.1.1 (abort with ^G)
1> m:pi().
3.14000
2> m i:pi().
3.14150
3> halt().

4.10 References to Objects Defined in OMG IDL

Objects are accessed by object references. An object reference is an opaque Erlang term created and
maintained by the ORB.

Objects are implemented by providing implementations for all operations and attributes of the Object,
see operation implementation [page 34].

4.11 Exceptions

Exceptions are handled as Erlang catch and throws. Exceptions are translated to messages over an IIOP
bridge but converted back to a throw on the receiving side. Object implementations that invoke
operations on other objects must be aware of the possibility of a non-local return. This includes
invocation of ORB and IFR services. See also the Exceptions [page 69] section.

Exception parameters are mapped as an Erlang record and accessed as such.

An object implementation that raises an exception will use the corba:raise/1 function, passing the
exception record as parameter.

33Orber Application

Chapter 4: OMG IDL to Erlang Mapping

4.12 Access to Attributes

Attributes are accessed through their access functions. An attribute implicitly defines the get and set
operations. These operations are handled in the same way as normal operations. The get operation is
defined as a readonly attribute.

readonly attribute long RAttribute;
attribute long RWAttribute;

The RAttribute requires that you implement, in your call-back module, get RAttribute. For the
RWAttribute it is necessary to implement get RWAttribute and set RWAttribute.

4.13 Invocations of Operations

A standard Erlang gen server behavior is used for object implementation. The gen server state is
then used as the object internal state. Implementation of the object function is achieved by
implementing its methods and attribute operations. These functions will usually have the internal state
as their first parameter, followed by any in and inout parameters.

Do not confuse the object internal state with its object reference. The object internal state is an Erlang
term which has a format defined by the user.

Note:
It is is not always the case that the internal state will be the first parameter, as stubs can use their own
object reference as the first parameter (see the IC documentation).

A function call will invoke an operation. The first parameter of the function should be the object
reference and then all in and inout parameters follow in the same order as specified in the IDL
specification. The result will be a return value unless the function has inout or out parameters
specified; in which case, a tuple of the return value, followed by the parameters will be returned.

Example:

// IDL
module m {
interface i {

readonly attribute long RAttribute;
attribute long RWAttribute;
long foo(in short a);
long bar(in char c, inout string s, out long count);
void baz(out long Id);

};
};

Is used in Erlang as :

34 Orber Application

4.14: Implementing the DB Application

%% Erlang code
....
Obj = ... %% get object reference
RAttr = m_i:’_get_RAttribute’(Obj),
RWAttr = m_i:’_get_RWAttribute’(Obj),
ok = m_i:’_set_RWAttribute’(Obj, Long),
R1 = m_i:foo(Obj, 55),
{R2, S, Count} = m_i:bar(Obj, $a, "hello"),
....

Note how the inout parameter is passed and returned. There is no way to use a single occurrence of a
variable for this in Erlang. Also note, that ok, Orber's representation of the IDL-type void, must be
returned by baz and ’ set RWAttribute’. These operations can be implemented in the call-back
module as:

’_set_RWAttribute’(State, Long) ->
{reply, ok, State}.

’_get_RWAttribute’(State) ->
{reply, Long, State}.

’_get_RAttribute’(State) ->
{reply, Long, State}.

foo(State, AShort) ->
{reply, ALong, State}.

bar(State, AShort, AString) ->
{reply, {ALong, "MyString", ALong}, State}.

baz(State) ->
{reply, {ok, AId}, State}.

The operations may require more arguments (depends on IC options used). For more information, see
Stubs/Skeletons [page 62] and Module Interface [page 119].

Warning:
A function can also be defined to be oneway, i.e. asynchronous. But, since the behavior of a oneway
operation is not defined in the OMG specifications (i.e. the behavior can differ depending on which
other ORB Orber is communicating with), one should avoid using it.

4.14 Implementing the DB Application

Now we are ready to implement the call-back modules. There are three modules we must create:

� DB Access impl.erl

� DB CommonUser impl.erl

� DB Administrator impl.erl

35Orber Application

Chapter 4: OMG IDL to Erlang Mapping

We begin to implement the DB Access impl.erl module:

-module(’DB_Access_impl’).

%% Mandatory
-export([init/1,

terminate/2,
code_change/3]).

%% Interface functions
-export([logon/3]).

init(Env) ->
%% Usually we use the Env parameter create a State
%% but that is not in the scope of this example.
{ok, Env}.

terminate(Reason, State) ->
%% Here we clean up before terminating.
ok.

code_change(OldVsn, State, Extra) ->
{ok, State}.

logon(State, Id, Pwd) ->
%% Check if the Id/Pwd is valid and what
%% type of user it is (Common or Administrator).
Obj = case check_user(Id, Pwd) of

{ok, administrator} ->
’DB_Administrator’:oe_create();

{ok, common} ->
’DB_CommonUser’:oe_create();

error ->
%% Here we should throw an exception
corba:raise(....)

end,
{reply, Obj, State}.

Since DB Administrator inherits from DB CommonUser, we must implement delete in the
DB Administrator impl.erl module, and lookup in DB Administrator impl.erl and
DB CommonUser impl.erl. But wait, is that really necessary? Actually, it is not. We simple use the IC
compile option impl:

$ erlc +’ffimpl, "DB::CommonUser"g, "DBUser impl"g’ +’ffimpl, "DB::Administrator"g, "DBUser
$ erlc *.erl

Instead of creating, and not the least, maintaining two call-back modules, we only have to deal with
DBUser impl.erl. See also the Exceptions [page 69] chapter. In the following example, the mandatory
functions are left out:

36 Orber Application

4.14: Implementing the DB Application

-module(’DBUser_impl’).

%% Interface functions
-export([delete/2,

lookup/2]).

%% How we access the DB, for example mnesia, is not shown here.
lookup(State, No) ->
case lookup_employee(No) of

%% We assume that we receive a ’DB_employee’ struct
{ok, Employee} ->

{reply, Employee, State};
error ->

%% Here we should throw an exception if
%% there is no match.
corba:raise(....)

end.

delete(State, No) ->
case delete_employee(No) of

ok ->
{reply, ok, State};

error ->
%% Here we should throw an exception if
%% there is no match.
corba:raise(....)

end.

After you have compiled both call-back modules, and implemented the missing functionality (e.g.
lookup employee/1), we can test our application:

%% Erlang code
....
%% Create an Access object
Acc = ’DB_Access’:oe_create(),

%% Login is Common user and Administrator
Adm = ’DB_Access’:logon(A, "admin", "pw"),
Com = ’DB_Access’:logon(A, "comm", "pw"),

%% Lookup existing employee
Employee = ’DB_Administrator’:lookup(Adm, 1),
Employee = ’DB_CommonUser’:lookup(Adm, 1),

%% If we try the same using the DB_CommonUser interface
%% it result in an exit since that operation is not exported.
{’EXIT’, _} = (catch ’DB_CommonUser’:delete(Adm, 1)),

%% Try to delete the employee via the CommonUser Object
{’EXCEPTION’, _} = (catch ’DB_Administrator’:delete(Com, 1)),

%% Invoke delete operation on the Administrator object
ok = ’DB_Administrator’:delete(Adm, 1),

37Orber Application

Chapter 4: OMG IDL to Erlang Mapping

....

4.15 Reserved Compiler Names and Keywords

The use of some names is strongly discouraged due to ambiguities. However, the use of some names is
prohibited when using the Erlang mapping , as they are strictly reserved for IC.

IC reserves all identifiers starting with OE and oe for internal use.

Note also, that an identifier in IDL can contain alphabetic, digits and underscore characters, but the first
character must be alphabetic.

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as,
for example, identifiers. The keywords which are not in bold face was introduced in the OMG
CORBA-3.0 specification.

abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE

Table 4.4: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with
a keyword is illegal. For example, long is a valid keyword; Long and LONG are illegal as keywords and
identifiers. But, since the OMG must be able to expand the IDL grammar, it is possible to use Escaped
Identifiers. For example, it is not unlikely that native have been used in IDL-specifications as identifiers.
One option is to change all occurances to myNative. Usually, it is necessary to change programming
language code that depends upon that IDL as well. Since Escaped Identifiers just disable type checking
(i.e. if it is a reserved word or not) and leaves everything else unchanged, it is only necessary to update
the IDL-specification. To escape an identifier, simply prefix it with . The following IDL-code is illegal:

typedef string native;
interface i {

void foo(in native Arg);
};

};

With Escaped Identifiers the code will look like:

38 Orber Application

4.16: Type Code Representation

typedef string _native;
interface i {

void foo(in _native Arg);
};

};

4.16 Type Code Representation

Type Codes are used in any values. To avoid mistakes, you should use access functions exported by the
Data Types modules (e.g. struct, union etc) or the orber tc [page 170] module.

Type Code Example

tk null

tk void

tk short

tk long

tk longlong

tk ushort

tk ulong

tk ulonglong

tk float

tk double

tk boolean

tk char

tk wchar

tk octet

tk any

tk TypeCode

tk Principal

ftk objref, IFRId, Nameg ftk objref, ”IDL:M1\I1:1.0”, ”I1”g

ftk struct, IFRId, Name, [fElemName,
ElemTCg]g

ftk struct, ”IDL:M1\S1:1.0”, ”S1”, [f”a”, tk longg,
f”b”, tk charg]g

ftk union, IFRId, Name, DiscrTC, De-
faultNr, [fLabel, ElemName, ElemTCg]g
Note: DefaultNr tells which of tuples in the
case list that is default, or -1 if no default

ftk union, ”IDL:U1:1.0”, ”U1”, tk long, 1, [f1, ”a”,
tk longg, fdefault, ”b”, tk charg]g

ftk enum, IFRId, Name, [ElemName]g ftk enum, ”IDL:E1:1.0”, ”E1”, [”a1”, ”a2”]g

ftk string, Lengthg ftk string, 5g

continued ...

39Orber Application

Chapter 4: OMG IDL to Erlang Mapping

... continued

ftk wstring, Lengthg ftk wstring, 7g

ftk fixed, Digits, Scaleg ftk fixed, 3, 2g

ftk sequence, ElemTC, Lengthg ftk sequence, tk long, 4g

ftk array, ElemTC, Lengthg ftk array, tk char, 9g

ftk alias, IFRId, Name, TCg ftk alias, ”IDL:T1:1.0”, ”T1”, tk shortg

ftk except, IFRId, Name, [fElemName,
ElemTCg]g

ftk except, ”IDL:Exc1:1.0”, ”Exc1”, [f”a”, tk longg,
f”b”, ftk string, 0gg]g

Table 4.5: Type Code tuples

40 Orber Application

Chapter 5

CosNaming Service

5.1 Overview of the CosNaming Service

The CosNaming Service is a service developed to help users and programmers identify objects by
human readable names rather than by a reference. By binding a name to a naming context (another
object), a contextual reference is formed. This is helpful when navigating in the object space. In
addition, identifying objects by name allows you to evolve and/or relocate objects without client code
modification.

The CosNaming service has some concepts that are important:

� name binding - a name to object association.

� naming context - is an object that contains a set of name bindings in which each name is unique.
Different names can be bound to the same object.

� to bind a name - is to create a name binding in a given context.

� to resolve a name - is to determine the object associated with the name in a given context.

A name is allways resolved in a context, there no absolute names exist. Because a context is like any
other object, it can also be bound to a name in a naming context. This will result in a naming graph (a
directive graph with notes and labeled edges). The graph allows more complex names to refer to an
object. Given a context, you can use a sequence to reference an object. This sequence is henceforth
refered to as name and the individual elements in the sequence as name components. All but the last
name component are bound to naming contexts.

The diagram in figure 1 illustrates how the Naming Service provides a contextual relationship between
objects, NamingContexts and NameBindings to create an object locality,as the object itself, has no
name.

41Orber Application

Chapter 5: CosNaming Service

Figure 5.1: Figure 1: Contextual object relationships using the Naming Service.

The naming contexts provide a directory of contextual reference and naming for objects (an object can
appear to have more than one name).

In figure 1 the object to the right can either be called alpha from one context or gamma from another.

42 Orber Application

5.2: The Basic Use-cases of the Naming Service

The Naming Service has an initial naming context, which is shown in the diagram as the top-most
object in the naming graph. It has two names beta and epsilon, which are bound to other naming
contexts. The initial naming context is a well known location used to share a common name space
between multiple programs. You can traverse the naming graph until you reach a name, which is bound
to an object, which is not a naming context.

We recommend reading chapter 12, CORBA Fundamentals and Programming, for detailed information
regarding the Naming Service.

5.2 The Basic Use-cases of the Naming Service

The basic use-cases of the Naming Service are:

� Fetch initial reference to the naming service.

� Creating a naming context.

� Binding and unbinding names to objects.

� Resolving a name to an object.

� Listing the bindings of a naming context.

� Destroying a naming context.

5.2.1 Fetch Initial Reference to the Naming Service

In order to use the naming service you have to fetch an initial reference to it. This is done with:

NS = corba:resolve_initial_reference("NameService").

Note:
NS in the other use-cases refers to this initial reference.

5.2.2 Creating a Naming Context

There are two functions for creating a naming context. The first function, which only creates a naming
context object is:

NC = ’CosNaming_NamingContext’:new_context(NS).

The other function creates a naming context and binds it to a name in an already existing naming
context (the initial context in this example):

NC = ’CosNaming_NamingContext’:bind_new_context(NS, lname:new(["new"])).

43Orber Application

Chapter 5: CosNaming Service

5.2.3 Binding and Unbinding Names to Objects

The following steps illustrate how to bind/unbind an object reference to/from a name. For the example
below, assume that the NamingContexts in the path are already bound to the name
/workgroup/services, and that reference to the services context are in the variable Sc.

1. Use the naming library functions to create a name

Name = lname:new(["object"]).

2. Use CosNaming::NamingContext::bind() to bind a name to an object

’CosNaming_NamingContext’:bind(Sc, Name, Object).

3. Use CosNaming::NamingContext::unbind() to remove the NameBinding from an object

’CosNaming_NamingContext’:unbind(Sc, Name).

Note:
Objects can have more than one name, to indicate different paths to the same object.

5.2.4 Resolving a Name to an Object

The following steps show how to retrieve the object reference to the service context above
(/workgroup/services).

1. Use the naming library functions to create a name path:

Name = lname:new(["workgroup", "services"]).

2. Use CosNaming::NamingContext::resolve() to to resolve the name to an object

Sc = ’CosNaming_NamingContext’:resolve(NS, Name).

An alternative is to use:

Sc = corba:string_to_object("corbaname:rir:/NameService#workgroup/services/").

The corbaname schema is described further in the Interoperable Naming Service section.

5.2.5 Listing the Bindings in a NamingContext

1. Use CosNaming::NamingContext::list() to list all the bindings in a context
The following code retrieves and lists up to 10 bindings from a context.

{BList, BIterator} = ’CosNaming_NamingContext’:list(Sc, 10).

lists:foreach(fun({{Id, Kind},BindingType}) -> case BindingType of
nobject ->

io:format("id: %s, kind: %s, type: object~n", [Id, Kind]);
_ ->

io:format("id: %s, kind: %s, type: ncontext~n", [Id, Kind])
end end,
Blist).

44 Orber Application

5.3: Interoperable Naming Service

Note:
Normally a BindingIterator is helpful in situations where you have a large number of objects in a list,
as the programmer then can traverse it more easily. In Erlang it is not needed, because lists are easily
handled in the language itself.

Warning:
Remember that the BindingIterator (BIterator in the example) is an object and therefore must be
removed otherwise dangling processes will occur. Use CosNaming::BindingIterator::destroy() to
remove it.

’CosNaming_NamingContext’:destroy(BIterator).

5.2.6 Destroying a Naming Context

The naming contexts are persistent and must be explicitly removed. (they are also removed if all Orber
nodes in the domain are stopped).

1. Use CosNaming::NamingContext::destroy() to remove a NamingContext

’CosNaming_NamingContext’:destroy(Sc).

5.3 Interoperable Naming Service

The OMG specifies URL schemes, which represent a CORBA object and a CORBA object bound in a
NamingContext, for resolving references from other ORB:s. As of today, three schemes are defined:

� IOR

� corbaloc

� corbaname

5.3.1 IOR

A stringified IOR is a valid URL format but difficult for humans to handle through non-electronic
means. This URL format does not depeend on a specific Name Service and, thus, is robust and insulates
the client from the encapsulated transport information and object key used to reference the object.

45Orber Application

Chapter 5: CosNaming Service

5.3.2 corbaloc

The notation of this scheme is similar to the more well known URL http, and the full corbaloc BNF is:

<corbaloc> = "corbaloc:"<obj_addr_list>["/"<key_string>]
<obj_addr_list> = [<obj_addr>","]*<obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>
<rir_prot_addr> = <rir_prot_token>":"
<rir_prot_token> = rir
<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>":"
<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>":"
<iiop_default> = ":"
<iiop_prot_token> = "iiop"
<iiop_addr> = <version><host>[":"<port>]
<host> = DNS-style Host Name | ip_address
<version> = <major>"."<minor>"@" | empty_string
<port> = number
<major> = number
<minor> = number
<key_string> = for example NameService

The corbaloc scheme consists of 3 parts:

� Protocol - as of today iiop or rir is supported. Using rir means that we will resolve the given
Key locally, i.e., the same as using corba:resolve initial references("NameService").

� IIOP address - this address can be divided into Version, Host and Port. If the version or port are
left out they will be set to the default values 1.0 and 2809 respectively.

� KeyString - an object key, e.g., “NameService”. If no Key is supplied the default value
“NameService” will be used.

A corbaloc can be passed used together with
corba:string to object("corbaloc::1.0@erlang.org:4001/NameService") or set as the
configuration variables orbInitilRef or orbDefaultInitilRef and calling
corba:resolve initial references("NameService"). For more information see the Orber
installation chapter. corbaloc can also be used together with corbaname to gain an easy access to a
Name Service.

Currently, the OMG defines a set of reserved keys and the type of object, listed below, they should be
associated with. The NameService key may not be changed in Orber. If you want to add one of the
reserved keys as an initial service, simply use:

1> Factory = cosNotificationApp:start_global_factory().
2> corba:add_initial_service("NotificationService", Factory).

This object can then be easily resolved by any other ORB, supporting the Interoperable Naming
Service, by using:

3> NF = corba:string_to_object("corbaloc::1.0@erlang.org:4001/NotificationService").

46 Orber Application

5.3: Interoperable Naming Service

String Name Object Type

RootPOA PortableServer::POA

POACurrent PortableServer::Current

InterfaceRepository CORBA::Repository

NameService CosNaming::NamingContext

TradingService CosTrading::Lookup

SecurityCurrent SecurityLevel1::Current/SecurityLevel2::Current

TransactionCurrent CosTransaction::Current

DynAnyFactory DynamicAny::DynAnyFactory

ORBPolicyManager CORBA::PolicyManager

PolicyCurrent CORBA::PolicyCurrent

NotificationService CosNotifyChannelAdmin::EventChannelFactory

TypedNotificationService CosTypedNotifyChannelAdmin::TypedEventChannelFactory

CodecFactory IOP::CodecFactory

PICurrent PortableInterceptors::Current

Table 5.1: Currently reserved key strings

5.3.3 corbaname

The corbaname URL scheme is an extension of the corbaloc scheme, and the full corbaname BNF is:

<corbaname> = "corbaname:"<obj_addr_list>["/"<key_string>]["#"<string_name>]
<obj_addr_list> = as described above.
<key_string> = as described above.

The string name, concatenated to the corbaloc string, identifies a binding in a naming context. A
name component consists of two parts, i.e., id and kind, which is represented as follows:

String Name Name Sequence Comment

”id1/./id3.kind3” [f”id1”,””g,f””,””g,f”id3”,”kind3”g] The first component has no kind de-
fined while the second component's
both fields are empty.

”id1//id3.kind3” ERROR Not allowed, must insert a '.' between
the '//'.

”id1.kind1/.” [f”id1”,”kind1”g,f””,””g] The first component's fields are both
set while the second component's both
fields are empty.

”id1.kind1/id2.” ERROR An Id with a trailing '.' is not allowed.

”i\\/d1/i\\.d2” [f”i/d1”,””g,f”i.d2”,””g] Since '.' and '/' are used to separate
the components, these tokens must be
escaped to be correctly converted.

Table 5.2: Stringified Name represenation

After creating a stringified Name we can either use:

47Orber Application

Chapter 5: CosNaming Service

NameStr = "org.erlang",
NS = corba:resolve_initial_references("NameService"),
Obj = ’CosNaming_NamingContextExt’:resolve_str(NS, NameStr),

or concatenate the Name String using:

NameStr = "Swedish/Soccer/Champions",
Address = "corbaname:iiop:1.0@www.aik.se:2000/NameService",
NS = corba:resolve_initial_references("NameService"),
URLStr = ’CosNaming_NamingContextExt’:to_url(NS, Address, NameStr),
Obj = corba:string_to_object(URLStr),

Using the first alternative, the configuration variables orbInitilRef and orbDefaultInitilRef, will
determine which other ORB's or the local Name Service Orber will try to resolve the given string from.
The second alternative allows us to override any settings of the configuration variables.

The function to url/3 will perform any necessary escapes compliant with IETF/RFC 2396. US-ASCII
alphanumeric characters and "," | "/" | ":" | "?" | "@" | "&" | "=" | "+" | "$" | ";" |
"-" | " " | "." | "!" | "~" | "*" | "’" | "(" | ")" are not escaped.

48 Orber Application

Chapter 6

How to use security in Orber

6.1 Security in Orber

6.1.1 Introduction

Orber SSL provides authentication, privacy and integrity for your Erlang applications. Based on the
Secure Sockets Layer protocol, the Orber SSL ensures that your Orber clients and servers can
communicate securely over any network. This is done by tunneling IIOP through an SSL connection.
To get the node secure you will also need to have a firewall which only lets through connections to
certain ports.

6.1.2 Enable Usage of Secure Connections

To enable a secure Orber domain you have to set the configuration variable secure which currently only
can have one of two values; no if no security for IIOP should be used and ssl if secure connections is
needed (ssl is currently the only supported security mechanism).

The default is no security.

Setting of a CA certificate file with an option does not work due to weaknesses in the SSLeay package.
A work-around in the ssl application is to set the OS environment variable SSL CERT FILE before SSL
is started. However, then the CA certificate file will be global for all connections (both incomming and
outgoing calls).

6.1.3 Configurations when Orber is Used on the Server Side

The following three configuration variables can be used to configure Orber's SSL behavior on the server
side.

� ssl server certfile - which is a path to a file containing a chain of PEM encoded certificates for the
Orber domain as server.

� ssl server cacertfile - which is a path to a file containing a chain of PEM encoded certificates for the
Orber domain as server.

� ssl server verify - which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify
client once, 2 = verify peer, verify client once, fail if no peer certificate. The default value is 0.

49Orber Application

Chapter 6: How to use security in Orber

� ssl server depth - which specifies verification depth, i.e. how far in a chain of certificates the
verification process shall proceed before the verification is considered successful. The default
value is 1.

� ssl server keyfile - which is a path to a file containing a PEM encoded key for the Orber domain as
server.

� ssl server password - only used if the private keyfile is password protected.

� ssl server ciphers - which is string of ciphers as a colon separated list of ciphers.

� ssl server cachetimeout - which is the session cache timeout in seconds.

There also exist a number of API functions for accessing the values of these variables:

� orber:ssl server certfile/0

� orber:ssl server cacertfile/0

� orber:ssl server verify/0

� orber:ssl server depth/0

� orber:ssl server keyfile/0

� orber:ssl server password/0

� orber:ssl server ciphers/0

� orber:ssl server cachetimeout/0

6.1.4 Configurations when Orber is Used on the Client Side

When the Orber enabled application is the client side in the secure connection the different
configurations can be set per client process instead and not for the whole domain as for incoming calls.

One can use configuration variables to set default values for the domain but they can be changed per
client process. Below is the list of client configuration variables.

� ssl client certfile - which is a path to a file containing a chain of PEM encoded certificates used in
outgoing calls in the current process.

� ssl client cacertfile - which is a path to a file containing a chain of PEM encoded CA certificates
used in outgoing calls in the current process.

� ssl client verify - which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify
client once, 2 = verify peer, verify client once, fail if no peer certificate. The default value is 0.

� ssl client depth - which specifies verification depth, i.e. how far in a chain of certificates the
verification process shall proceed before the verification is considered successful. The default
value is 1.

� ssl client keyfile - which is a path to a file containing a PEM encoded key when Orber act as client
side ORB.

� ssl client password - only used if the private keyfile is password protected.

� ssl client ciphers - which is string of ciphers as a colon separated list of ciphers.

� ssl client cachetimeout - which is the session cache timeout in seconds.

There also exist a number of API functions for accessing and changing the values of this variables in the
client processes.

Access functions:

� orber:ssl client certfile/0

50 Orber Application

6.1: Security in Orber

� orber:ssl client cacertfile/0

� orber:ssl client verify/0

� orber:ssl client depth/0

� orber:ssl client keyfile/0

� orber:ssl client password/0

� orber:ssl client ciphers/0

� orber:ssl client cachetimeout/0

Modify functions:

� orber:set ssl client certfile/1

� orber:set ssl client cacertfile/1

� orber:set ssl client verify/1

� orber:set ssl client depth/1

51Orber Application

Chapter 6: How to use security in Orber

52 Orber Application

Chapter 7

Service Implementation

This chapter describe how to implement Orber based CORBA services.

7.1 Orber Examples

7.1.1 A Tutorial on How to Create a SimpleSservice

Interface Design

This example uses a very simple stack server. The specification contains two interfaces: the first is the
Stack itself and the other is the StackFactory which is used to create new stacks. The specification is in
the file stack.idl.

#ifndef _STACK_IDL
#define _STACK_IDL

module StackModule {

exception EmptyStack {};

interface Stack {

long pop() raises(StackModule::EmptyStack);

void push(in long value);

void empty();

};

interface StackFactory {

StackModule::Stack create_stack();
void destroy_stack(in StackModule::Stack s);

};

53Orber Application

Chapter 7: Service Implementation

};

#endif

Generating Erlang Code

Run the IDL compiler on this file by calling the ic:gen/1 function

1> ic:gen("stack").

This will produce the client stub and server skeleton. Among other files a stack API module named
StackModule Stack.erl will be produced. This will produce among other files a stack API module
called StackModule Stack.erl which contains the client stub and the server skeleton.

Implementation of Interface

After generating the API stubs and the server skeletons it is time to implement the servers and if no
special options are sent to the IDl compiler the file name should be <global interface
name> impl.erl, in our case StackModule Stack impl.erl.

%% StackModule_Stack_impl example file.

-module(’StackModule_Stack_impl’).
-include_lib("orber/include/corba.hrl").
-include_lib("orber/examples/Stack/StackModule.hrl").
-export([pop/1, push/2, empty/1, init/1, terminate/2]).

init(Env) ->
{ok, []}.

terminate(From, Reason) ->
ok.

push(Stack, Val) ->
{reply, ok, [Val | Stack]}.

pop([Val | Stack]) ->
{reply, Val, Stack};

pop([]) ->
corba:raise(#’StackModule_EmptyStack’{}).

empty(_) ->
{reply, ok, []}.

We also have the factory interface which is used to create new stacks and that implementation is in the
file StackModule StackFactory impl.erl.

54 Orber Application

7.1: Orber Examples

%% StackModule_StackFactory_impl example file.

-module(’StackModule_StackFactory_impl’).
-include_lib("orber/include/corba.hrl").
-export([create_stack/1, destroy_stack/2, init/1, terminate/2]).

init(Env) ->
{ok, []}.

terminate(From, Reason) ->
ok.

create_stack(State) ->
%% Just a create we don’t want a link.
{reply, ’StackModule_Stack’:oe_create(), State}.

destroy_stack(State, Stack) ->
{reply, corba:dispose(Stack), State}.

To start the factory server one executes the function StackModule StackFactory:oe create/0 which
in this example is done in the module stack factory.erl where the started service is also registered in
the name service.

%% stack_factory example file.

-module(’stack_factory’).
-include_lib("orber/include/corba.hrl").
-include_lib("orber/COSS/CosNaming/CosNaming.hrl").
-include_lib("orber/COSS/CosNaming/lname.hrl").

-export([start/0]).

start() ->
SFok = ’StackModule_StackFactory’:oe_create(),
NS = corba:resolve_initial_references("NameService"),
NC = lname_component:set_id(lname_component:create(), "StackFactory"),
N = lname:insert_component(lname:create(), 1, NC),
’CosNaming_NamingContext’:bind(NS, N, SFok).

Writing a Client in Erlang

At last we will write a client to access our service.

%% stack_client example file.

-module(’stack_client’).
-include_lib("orber/include/corba.hrl").
-include_lib("orber/COSS/CosNaming/CosNaming.hrl").
-include_lib("orber/COSS/CosNaming/lname.hrl").

-export([run/0, run/1]).

55Orber Application

Chapter 7: Service Implementation

run() ->
NS = corba:resolve_initial_references("NameService"),
run_1(NS).

run(HostRef) ->
NS = corba:resolve_initial_references_remote("NameService", HostRef),
run_1(NS).

run_1(NS) ->
NC = lname_component:set_id(lname_component:create(), "StackFactory"),
N = lname:insert_component(lname:create(), 1, NC),
case catch ’CosNaming_NamingContext’:resolve(NS, N) of

{’EXCEPTION’, E} ->
io:format("The stack factory server is not registered~n",[]);

SF ->
%% Create the stack
SS = ’StackModule_StackFactory’:create_stack(SF),

%% io:format("SS pid ~w~n",[iop_ior:get_key(SS)]),
’StackModule_Stack’:push(SS, 4),
’StackModule_Stack’:push(SS, 7),
’StackModule_Stack’:push(SS, 1),
’StackModule_Stack’:push(SS, 1),
Res = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res]),
Res1 = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res1]),
Res2 = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res2]),
Res3 = ’StackModule_Stack’:pop(SS),
io:format("~w~n", [Res3]),

%% Remove the stack
’StackModule_StackFactory’:destroy_stack(SF, SS)

end.

Writing a Client in Java

To write a Java client for Orber you must have another ORB that uses IIOP for client-server
communication and supports a Java language mapping. It must also have support for
IDL:CosNaming/NamingContext or IDL:CosNaming/NamingContextExt. If the client ORB support
Interoperable Naming Service the Java Client can look like:

/*
* Stack example using Interoperable Naming Service.
*/

package StackModule;

56 Orber Application

7.1: Orber Examples

import org.omg.CORBA.*;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB.*;

public class StackClient
{
public static void main(String args[])
{
org.omg.CORBA.Object objRef;
StackFactory sfRef = null;
Stack sRef = null;
// The argument can look like
// "corbaname::host:4001/#StackFactory"
String corbaName = new String(args[0]);
try{

ORB orb = ORB.init(args, null);

objRef = orb.string_to_object(corbaName);
sfRef = StackFactoryHelper.narrow(objRef);
sRef = sfRef.create_stack();

sRef.push(4);
sRef.push(7);
sRef.push(1);
sRef.push(1);

try{
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
// The following operation shall
// return an EmptyStack exception
System.out.println(sRef.pop());

}
catch(EmptyStack es) {

System.out.println("Empty stack");
};

sfRef.destroy_stack(sRef);
}

catch(SystemException se)
{
System.out.println("Unexpected exception: " + se.toString());
return;

}
}

}

If the Client ORB does not support Interoperable Naming Service, a Java package named Orber is
included with our product. It contains just one class, InitialReferencewhich can be used to get the
initial reference to Orber's naming service. The Java client will then look like this:

57Orber Application

Chapter 7: Service Implementation

/*
* Stack example.
*/

package StackModule;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB.*;

public class StackClient
{
public static void main(String args[])

{
NamingContext nsContext;
org.omg.CORBA.Object objRef;
StackFactory sfRef = null;
Stack sRef = null;
org.omg.CORBA.Object nsRef, initRef;
NameComponent[] name = new NameComponent[1];
Orber.InitialReference ir = new Orber.InitialReference();
Orber.InitialReferences init;
String srvHost = new String(args[0]);
Integer srvPort = new Integer(args[1]);

try
{
ORB orb = ORB.init(args, null);

// Create Initial reference (objectkey "INIT").
String s = ir.stringified_ior(srvHost, srvPort.intValue());
initRef = orb.string_to_object(s);
init = Orber.InitialReferencesHelper.narrow(initRef);

// Fetch name service reference.
nsRef = init.get("NameService");
nsContext = NamingContextHelper.narrow(nsRef);
// Create a name
name[0] = new NameComponent("StackFactory", "");

try
{
objRef = nsContext.resolve(name);

}
catch(Exception n)
{
System.out.println("Unexpected exception: " + n.toString());
return;

}

sfRef = StackFactoryHelper.narrow(objRef);
sRef = sfRef.create_stack();

58 Orber Application

7.1: Orber Examples

sRef.push(4);
sRef.push(7);
sRef.push(1);
sRef.push(1);

try
{
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
System.out.println(sRef.pop());
// The following operation shall return an EmptyStack exception
System.out.println(sRef.pop());

}
catch(EmptyStack es)
{
System.out.println("Empty stack");

};

sfRef.destroy_stack(sRef);

}
catch(SystemException se)

{
System.out.println("Unexpected exception: " + se.toString());
return;

}
}

}

Note:
If an ORB does not support CosNaming at all the cos naming.idl file must be compiled and
imported.

Building the Example

To build the example for access from a Java client you need a Java enabled ORB. The build log below,
using OrbixWeb's IDL compiler, describes the scenario where the Client ORB does not support
Naming Service.

fingolfin 127> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(stack).
Erlang IDL compiler version 20
ok
2> make:all().
Recompile: oe_stack

59Orber Application

Chapter 7: Service Implementation

Recompile: StackModule_StackFactory
Recompile: StackModule_Stack
Recompile: StackModule
Recompile: stack_client
Recompile: stack_factory
Recompile: StackModule_StackFactory_impl
Recompile: StackModule_Stack_impl
up_to_date
3>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded

(v)ersion (k)ill (D)b-tables (d)istribution
a

fingolfin 128> idl stack.idl
fingolfin 129> idl InitialReferences.idl
fingolfin 130> idl <OTP_INSTALLATIONPATH>/lib/orber-<Orber Version>/COSS/

CosNaming/cos_naming.idl
fingolfin 131>
fingolfin 132> cd java_output/
fingolfin 133> javac *.java
fingolfin 134> cd CosNaming/
fingolfin 135> javac *.java
fingolfin 136> cd ../_NamingContext/
fingolfin 137> cd javac *.java
fingolfin 138> cd ../../Orber/
fingolfin 139> javac *.java
fingolfin 140> cd ../StackModule/
fingolfin 141> javac *.java
fingolfin 142> cd ../..
fingolfin 143> javac *.java
fingolfin 144> cp StackClient.class java_output/StackModule/.

How to Run Everything

Below is a short transcript on how to run Orber. The commands for starting the new socket
communication package will not be necessary when it is used as default in OTP R3A. In R2 it is only
available unsupported, and without documentation but Orber uses this for better IIOP performance.
An example .inetrc can also be found in Orber's example directory and is named inetrc (without the
starting .).

fingolfin 143> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> mnesia:create_schema([]).
ok
2> orber:install([]).
ok
3> orber:start().
ok
4> oe_stack:oe_register().
ok

60 Orber Application

7.1: Orber Examples

5> stack_factory:start().
ok
6> stack_client:run().
1
1
7
4
ok
7>

Before testing the Java part of this example generate and compile Java classes for
orber/examples/stack.idl, orber/examples/InitialReferences.idl and
orber/COSS/CosNaming/cos naming.idl as seen in the build example. We have tested with
OrbixWeb.

To run the Java client use the following command (the second parameter is the port number for the
bootstrap port):

fingolfin 38> java StackModule.StackClient fingolfin 4001
[New Connection (fingolfin,4001, null,null,pid=0)]
[New Connection (fingolfin.du.etx.ericsson.se,4001, null,null,pid=0)]
1
1
7
4
Empty stack
fingolfin 39>

7.1.2 A Tutorial on How to Start Orber as Lightweight

Preparation

When starting Erlang the configuration parameter lightweight must be used. The value is set to a list
of remote modifiers, equal to the orber:resolve initial references remote/2 argument, i.e.,
“iiop://host:port”. On these given nodes, all necessary oe X:oe register() calls must be done before
running a Orber lightweight.

Lightweight Orber do not allow us to:

� Create objects locally

� Accept incoming requests

� Access local NameService

� Register data in the IFR

With lightweight Orber we do not:

� Start Mnesia

� Run orber:install/1

To be able to start objects we must supply a factory on a non-lightweight node(s) which can start
necessary objects. One way to accomplish this is:

61Orber Application

Chapter 7: Service Implementation

smaug 125> erl -orber domain "ORBER_MAIN"
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> mnesia:create_schema([]).
2> orber:install([]).
3> orber:start().
4> oe_MyFactory:oe_register().
5> oe_MyObjects:oe_register(). %% Do this for all objects necessary.
6> Factory=MyFactory_Creater:oe_create().
7> NS=orber:resolve_initial_references("NameService").
8> NC=lname_component:set_id(lname_component:create(), "myFactory").
9> N =lname:insert_component(lname:create(), 1, NC).
10> ’CosNaming_NamingContext’:bind(NS, N, Factory)).

Now we have a factory we can access from, hence, we can now start a lightweight Orber:

fingolfin 14> erl -orber lightweight [\"iiop://host1:port\",
\"iiop://host2:port\"]

-orber domain \"ORBER_LIGHT\"
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> orber:start_lightweight().
2> Fac=corba:string_to_object("corbaname::Host:Port/NameService#myFactory"),
3> Obj=MyFactory_Creater:MyObject(Fac, Args).
4> MyObject:myFunction(Obj,Args2).

It is not necessary to start both Orber types using the configuration parameter domain, but at least one
of them.

7.2 Orber Stubs/Skeletons

7.2.1 Orber Stubs and Skeletons Description

This example describes the API and behavior of Orber stubs and skeletons.

Server Start

Orber servers can be started in several ways. The chosen start functions determines how the server can
be accessed and its behavior.

Using Module Interface:oe create() or oe create link():

� No initial data can be passed.

� Cannot be used as a supervisor child start function.

� Only accessible through the object reference returned by the start function. The object reference
is no longer valid if the server dies and is restarted.

Using Module Interface:oe create(Env) or oe create link(Env):

� Initial data can be passed using Env.

62 Orber Application

7.2: Orber Stubs/Skeletons

� Cannot be used as a supervisor child start function.

� Only accessible through the object reference returned by the start function. The object reference
is no longer valid if the server dies and is restarted.

Using Module Interface:oe create(Env, Options):

� Initial data can be passed using Env.

� Cannot be used as a supervisor child start function.

� Accessible through the object reference returned by the start function. If the option fregname,
RegNameg is used the object reference stays valid even if the server has been restarted.

� If the options fpersistent, trueg and fregname, fglobal, Namegg is used, the result from an
object invocation will be the exception 'OBJECT NOT EXIST' only if the object has terminated
with reason normal or shutdown. If the object is in the process of restarting, the result will be
ferror, Reasong or a system exception is raised.

� The option fpseudo, trueg makes it possible to start create non-server objects. There are,
however, some limitations, which are further described in the Pseudo objects section.

Using Module Interface:oe create link(Env, Options):

� Initial data can be passed using Env.

� Can be used as a supervisor child start function if the option fsup child, trueg used.

� Accessible through the object reference returned by the start function. If the option fregname,
RegNameg is used the object reference stays valid even if the server has been restarted.

� If the options fpersistent, trueg and fregname, fglobal, Namegg is used, the result from an
object invocation will be the exception 'OBJECT NOT EXIST' only if the object has terminated
with reason normal or shutdown. If the object is in the process of restarting, the result will be
ferror, Reasong or a system exception is raised.

� For starting a server as a supervisor child you should use the options [fpersistent, trueg,
fregname, fglobal, Namegg, fsup child, trueg] and of type transient. This configuration
allows you to delegate restarts to the supervisor and still be able to use the same object reference
and be able to see if the server is permanently terminated. Please note you must use
supervisor/stdlib-1.7 or later and that the it returns fok, Pid, Objectg instead of just Object.

� Using the option fpseudo, trueg have the same effect as using oe create/2.

Warning:
To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys gc time
Time, which will remove all object references related to servers being dead for Time seconds. To
avoid extra overhead, i.e., performing garbage collect if no persistent objects are started, the
objectkeys gc time default value is infinity. For more information, see the orber and corba
documentation.

Warning:
Orber still allow oe create(Env, fType,RegNameg) and oe create link(Env, fType,RegNameg)
to be used, but may not in future releases.

63Orber Application

Chapter 7: Service Implementation

Pseudo Objects

This section describes Orber pseudo objects.

The Orber stub can be used to start a pseudo object, which will create a non-server implementation.
A pseudo object introduce some limitations:

� The functions oe create link/2 is equal to oe create/2, i.e., no link can or will be created.

� The BIF:s self() and process flag(trap exit,true) behaves incorrectly.

� The IC option ffimpl, "M::I"g, "other impl"g has no effect. The call-back functions must be
implemented in a file called M I impl.erl

� The call-back functions must be implemented as if the IC option fthis, "M::I"g was used.

� The gen server State changes have no effect. The user can provide information via the Env start
parameter and the State returned from init/2 will be the State passed in following invocations.

� The server reply Timeout has no effect.

� The compile option from has no effect.

� The option fpseudo, trueg overrides all other start options.

� Only the functions, besides own definitions, init/2 (called via oe create*/2) and terminate/2
(called via corba:dispose/1) must be implemented.

By adopting the rules for pseudo objects described above we can use oe create/2 to create server or
pseudo objects, by excluding or including the option fpseudo, trueg, without changing the call-back
module.

To create a pseudo object do the following:

fingolfin 127> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(myDefinition, [{this, "MyModule::MyInterface"}]).
Erlang IDL compiler version 20
ok
2> make:all().
Recompile: oe_MyDefinition
Recompile: MyModule_MyInterface
Recompile: MyModule_MyInterface_impl
up_to_date
3> PseudoObj = MyModule_MyInterface:oe_create(Env, [{pseudo, true}]).

The call-back functions must be implemented as MyFunction(OE THIS, State, Args), and called by
MyModule MyInterface:MyFunction(PseudoObj, Args).

Call-back Module

This section provides an example of how a call-back module may be implemented.

Note:
Arguments and Replies are determined by the IDL-code and, hence, not further described here.

64 Orber Application

7.2: Orber Stubs/Skeletons

%%%---
%%% File : Module_Interface_impl.erl
%%% Author :
%%% Purpose :
%%% Created :
%%%---

-module(’Module_Interface_impl’).

%%--------------- INCLUDES -----------------------------------
-include_lib("orber/include/corba.hrl").
-include_lib(".. ..").

%%--------------- EXPORTS-------------------------------------
%% Arity depends on IC configuration parameters and the IDL
%% specification.
-export([own_function/X]).

%%--------------- gen_server specific ------------------------
-export([init/1, terminate/2, code_change/3, handle_info/2]).

%%--
%% function : server specific
%%--
init(InitialData) ->

%% ’trap_exit’ optional (have no effect if pseudo object).
process_flag(trap_exit,true),

%%--- Possible replies ---
%% Reply and await next request
{ok, State}.

%% Reply and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{ok, State, Timeout}

%% Return ignore in order to inform the parent, especially if it is a
%% supervisor, that the server, as an example, did not start in
%% accordance with the configuration data.
ignore
%% If the initializing procedure fails, the reason
%% is supplied as StopReason.
{stop, StopReason}

terminate(Reason, State) ->
ok.

code_change(OldVsn, State, Extra) ->
{ok, NewState}.

65Orber Application

Chapter 7: Service Implementation

%% If use IC option {{handle_info, "Module::Interface"}, true}.
%% (have no effect if pseudo object).
handle_info(Info, State) ->

%%--- Possible replies ---
%% Await the next invocation.
{noreply, State}.
%% Stop with Reason.
{stop, Reason, State}.

%%--- two-way --
%% If use IC option {this, "Module:Interface"}
%% (Required for pseudo objects)
own_function(This, State, .. Arguments ..) ->
%% IC options this and from
own_function(This, From, State, .. Arguments ..) ->
%% IC option from
own_function(From, State, .. Arguments ..) ->

%% Send explicit reply to client.
corba:reply(From, Reply),
%%--- Possible replies ---
{noreply, State}
{noreply, State, Timeout}

%% If not use IC option {this, "Module:Interface"}
own_function(State, .. Arguments ..) ->

%%--- Possible replies ---
%% Reply and await next request
{reply, Reply, State}

%% Reply and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{reply, Reply, State, Timeout}

%% Stop the server and send Reply to invoking object.
{stop, StopReason, Reply, State}

%% Stop the server and send no reply to invoking object.
{stop, StopReason, State}

%% Raise exception. Any changes to the internal State is lost.
corba:raise(Exception).

%%--- one-way --
%% If use IC option {this, "Module:Interface"}
%% (Required for pseudo objects)
own_function(This, State, .. Arguments ..) ->

%% If not use IC option {this, "Module:Interface"}
own_function(State, .. Arguments ..) ->

%%--- Possible results ---

66 Orber Application

7.2: Orber Stubs/Skeletons

{noreply, State}

%% Release and if no more requests within Time the special
%% timeout message should be handled in the
%% Module_Interface_impl:handle_info/2 call-back function (use the
%% IC option {{handle_info, "Module::Interface"}, true}).
{noreply, State, Timeout}

%% Stop the server with StopReason.
{stop, StopReason, State}

%%--------------- END OF MODULE ------------------------------

67Orber Application

Chapter 7: Service Implementation

68 Orber Application

Chapter 8

CORBA System and User Defined
Exceptions

8.1 System Exceptions

Orber, or any other ORB, may raise a System Exceptions. These exceptions contain status- and
minor-fields and may not appear in the operation's raises exception IDL-definition.

8.1.1 Status Field

The status field indicates if the request was completed or not and will be assigned one of the following
erlang atoms:

Status Description

'COMPLETED YES' The operation was invoked on the target object but an error occured after
the object replied. This occur, for example, if a server replies but Orber
is not able to marshal and send the reply to the client ORB.

'COMPLETED NO' Orber failed to invoke the operation on the target object. This occur, for
example, if the object no longer exists.

'COMPLETED MAYBE' Orber invoked the operation on the target object but an error occured
and it is impossible to decide if the request really reached the object or
not.

Table 8.1: Table 1: System Exceptions Status

8.1.2 Minor Field

The minor field contains an integer (VMCID), which is related to a more specific reason why an
invocation failed. The function orber:exception info/1 can be used to map the minor code to a
string. Note, for VMCID:s not assigned by the OMG or Orber, the documentation for that particular
ORB must be consulted.

69Orber Application

Chapter 8: CORBA System and User Defined Exceptions

8.1.3 Supported System Exceptions

The OMG CORBA specification defines the following exceptions:

� 'BAD CONTEXT' - if a request does not containt a correct context this exception is raised.

� 'BAD INV ORDER' - this exception indicates that operations has been invoked operations in the
wrong order, which would cause, for example, a dead-lock.

� 'BAD OPERATION' - raised if the target object exists, but that the invoked operation is not
supported.

� 'BAD PARAM' - is thrown if, for example, a parameter is out of range or otherwise considered
illegal.

� 'BAD TYPECODE' - if illegal type code is passed, for example, encapsulated in an any data type
the ’BAD TYPECODE’ exception will be raised.

� 'BAD QOS' - raised whenever an object cannot support the required quality of service.

� 'CODESET INCOMPATIBLE' - raised if two ORB's cannot communicate due to different
representation of, for example, char and/or wchar.

� 'COMM FAILURE' - raised if an ORB is unable to setup communication or it is lost while an
operation is in progress.

� 'DATA CONVERSION' - raised if an ORB cannot convert data received to the native
representation. See also the ’CODESET INCOMPATIBLE’ exception.

� 'FREE MEM' - the ORB failed to free dynamic memory and failed.

� 'IMP LIMIT' - an implementation limit was exceeded in the ORB at run time. A object factory
may, for example, limit the number of object clients are allowed to create.

� 'INTERNAL' - an internal failure occured in an ORB, which is unrecognized. You may consider
contacting the ORB provider's support.

� 'INTF REPOS' - the ORB was not able to reach the interface repository, or some other failure
relating to the interface repository is detected.

� 'INITIALIZE' - the ORB initialization failed due to, for example, network or configuration error.

� 'INVALID TRANSACTION' - is raised if the request carried an invalid transaction context.

� 'INV FLAG' - an invalid flag was passed to an operation, which caused, for example, a connection
to be closed.

� 'INV IDENT' - this exception indicates that an IDL identifier is incorrect.

� 'INV OBJREF' - this exception is raised if an objet reference is malformed or a nil reference (see
also corba:create nil objref/0).

� 'INV POLICY' - the invocation cannot be made due to an incompatibility between policy
overrides that apply to the particular invocation.

� 'MARSHAL' - this exception may be raised by the client- or server-side when either ORB is
unable to marshal/unmarshal requests or replies.

� 'NO IMPLEMENT' - if the operation exists but no implementation exists, this exception is raised.

� 'NO MEMORY' - the ORB has run out of memory.

� 'NO PERMISSION' - the caller has insufficient privileges, such as, for example, bad SSL
certificate.

� 'NO RESOURCES' - a general platform resource limit exceeded.

� 'NO RESPONSE' - no response available of a deferred synchronous request.

70 Orber Application

8.2: User Defined Exceptions

� 'OBJ ADAPTER' - indicates administrative mismatch; the object adapter is not able to associate
an object with the implementation repository.

� 'OBJECT NOT EXIST' - the object have been disposed or terminated; clients should remove all
copies of the object reference and initiate desired recovery process.

� 'PERSIST STORE' - the ORB was not able to establish a connection to its persistent storage or
data contained in the the storage is corrupted.

� 'REBIND' - a request resulted in, for example, a ’LOCATION FORWARD’ message; if the policies are
incompatible this exception is raised.

� 'TIMEOUT' - raised if a request fail to complete within the given time-limit.

� 'TRANSACTION MODE' - a transaction policy mismatch detected.

� 'TRANSACTION REQUIRED' - a transaction is required for the invoked operation but the
request contained no transaction context.

� 'TRANSACTION ROLLEDBACK' - the transaction associated with the request has already been
rolled back or will be.

� 'TRANSACTION UNAVAILABLE' - no transaction context can be supplied since the ORB is
unable to contact the Transaction Service.

� 'TRANSIENT' - the ORB could not determine the current status of an object since it could not be
reached. The error may be temporary.

� 'UNKNOWN' - is thrown if an implementation throws a non-CORBA, or unrecognized,
exception.

8.2 User Defined Exceptions

User exceptions is defined in IDL-files and is listed in operation's raises exception listing. For example,
if we have the following IDL code:

module MyModule {

exception MyException {};
exception MyExceptionMsg { string ExtraInfo; };

interface MyInterface {

void foo()
raises(MyException);

void bar()
raises(MyException, MyExceptionMsg);

void baz();
};

};

8.3 Throwing Exceptions

To be able to raise MyException or MyExceptionMsg exceptions, the generated MyModule.hrl must be
included, and typical usage is:

71Orber Application

Chapter 8: CORBA System and User Defined Exceptions

-module(’MyModule_MyInterface_impl’).
-include("MyModule.hrl").

bar(State) ->
case TestingSomething of

ok ->
{reply, ok, State};

{error, Reason} when list(Reason) ->
corba:raise(#’MyModule_MyExceptionMsg’{’ExtraInfo’ = Reason});

error ->
corba:raise(#’MyModule_MyException’{})

end.

8.4 Catching Exceptions

Depending on which operation we invoke we must be able to handle:

� foo - MyException or a system exception.

� bar - MyException, MyExceptionMsg or a system exception.

� baz - a system exception.

Catching and matching exceptions can bee done in different ways:

case catch ’MyModule_MyInterface’:bar(MIReference) of
ok ->

%% The operation raised no exception.
ok;

{’EXCEPTION’, #’MyModule_MyExceptionMsg’{’ExtraInfo’ = Reason}} ->
%% If we want to log the Reason we must extract ’ExtraInfo’.
error_logger:error_msg("Operation ’bar’ raised: ~p~n", [Reason]),
... do something ...;

{’EXCEPTION’, E} when record(E, ’OBJECT_NOT_EXIST’) ->
... do something ...;

{’EXCEPTION’, E} ->
... do something ...

end.

72 Orber Application

Chapter 9

Orber Interceptors

9.1 Using Interceptors

For Inter-ORB communication, e.g., via IIOP, it is possible to intercept requests and replies. To be able
to use Inteceptors Orber the configuration parameter interceptors must be defined.

9.1.1 Configure Orber to Use Interceptors

The configuration parameter interceptors must be defined, e.g., as command line option:

erl -orber interceptors "{native, [’myInterceptor’]}"

It is possible to use more than one interceptor; simply add them to the list and they will be invoked in
the same order as they appear in the list.

9.1.2 Creating Interceptors

Each supplied interceptor must export the following functions:

� new out connection/3 - this operation is called when a client application calls an object residing on
remote ORB.

� new in connection/3 - invoked when a client side ORB tries to set up a connection to the target
ORB.

� out request/6 - supplies all request data on the client side ORB.

� out request encoded/6 - similar to out request but the request body is encode.

� in request encoded/6 - after a new request arrives at the target ORB the request data is passed to
the inteceptor in encoded format.

� in request/6 - prior to invoking the operation on the target object, the interceptor in request is
called.

� out reply/6 - after the target object replied the out reply operation is called with the result of the
object invocation.

� out reply encoded/6 - before sending a reply back to the client side ORB this operation is called
with the result in encoded format.

73Orber Application

Chapter 9: Orber Interceptors

� in reply encoded/6 - after the client side ORB receives a reply this function is called with the reply
in encoded format.

� in reply/6 - before delivering the reply to the client this operation is invoked.

� closed in connection/1 - when a connection is terminated on the client side this function is called.

� closed out connection/1 - if an outgoing connection is terminated this operation will be invoked.

The operations new out connection, new in connection, closed in connection and
closed out connection operations are only invoked once per connection. The remaining operations
are called, as shown below, for every Request/Reply to/from remote CORBA Objects.

Figure 9.1: The Invocation Order of Interceptor Functions.

74 Orber Application

9.2: Interceptor Example

9.2 Interceptor Example

Assume we want to create a simple access service which purpose is to:

� Only allow incoming request from ORB's residing on a certain set of nodes.

� Restict the objects any client may invoke operations on.

� Only allow outgoing requests to call a limited set of external ORB's.

� Add a checksum to each binary request/reply body.

To restricts the access we use a protected and named ets-table holding all information. How the
ets-table is initiated and maintained is implementation specific, but it contain fNode, ObjectTable,
ChecksumModuleg where Node is used as ets-key, ObjectTable is a reference to another ets-table in
which we store which objects the clients are allowed to invoke operations on and ChecksumModule
determines which module we should use to handle the checksums.

new_in_connection(Arg, Host, Port) ->
%% Since we only use one interceptor we do not care about the
%% input Arg since it is set do undefined by Orber.
case ets:lookup(in_access_table, Host) of

[] ->
%% We may want to log the Host/Port to see if someone tried
%% to hack in to our system.
exit("Access not granted");

[{Host, ObjTable, ChecksumModule}] ->
{ObjTable, ChecksumModule}

end.

The returned tuple, i.e., fObjTable, ChecksumModuleg, will be passed as the first argument whenever
invoking one of the interceptor functions. Unless the connection attempt did not fail we are now ready
for receiving requests from the client side ORB.

When a new request comes in the first interceptor function to be invoked is in request encoded. We
will remove the checksum from the coded request body in the following way:

in_request_encoded({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:remove_checksum(Bin),
{NewBin, Extra}.

If the checksum check fails the ChecksumModule should invoke exit/1. But if the check succeeded we
are now ready to check if the client-ORB objects are allowed to invoke operations on the target object.
Please note, it is possible to run both checks in in request encoded. Please note, the chceksum
calculation must be relatively fast to ensure a good throughput.

If we want to we can restrict any clients to only use a subset of operations exported by a server:

in_request({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Params, Extra) ->
case ets:lookup(ObjTable, {ObjKey, Op}) of

[] ->
exit("Client tried to invoke illegal operation");

[SomData] ->
{Params, Extra}

end.

75Orber Application

Chapter 9: Orber Interceptors

At this point Orber are now ready to invoke the operation on the target object. Since we do not care
about what the reply is the out reply function do nothing, i.e.:

out_reply(_, _, _, _, Reply, Extra) ->
{Reply, Extra}.

If the client side ORB expects a checksum to be added to the reply we add it by using:

out_reply_encoded({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:add_checksum(Bin),
{NewBin, Extra}.

Warning:
If we manipulate the binary as above the behaviour must be Bin ==
remove checksum(add checksum(Bin)).

For outgoing requests the principle is the same. Hence, it is not further described here. The complete
interceptor module would look like:

-module(myInterceptor).

%% Interceptor functions.
-export([new_out_connection/3,

new_in_connection/3,
closed_in_connection/1,
closed_out_connection/1,
in_request_encoded/6,
in_reply_encoded/6,
out_reply_encoded/6,
out_request_encoded/6,
in_request/6,
in_reply/6,
out_reply/6,
out_request/6]).

new_in_connection(Arg, Host, Port) ->
%% Since we only use one interceptor we do not care about the
%% input Arg since it is set do undefined by Orber.
case ets:lookup(in_access_table, Host) of

[] ->
%% We may want to log the Host/Port to see if someone tried
%% to hack in to our system.
exit("Access not granted");

[{Host, ObjTable, ChecksumModule}] ->
{ObjTable, ChecksumModule}

end.

new_out_connection(Arg, Host, Port) ->
case ets:lookup(out_access_table, Host) of

76 Orber Application

9.2: Interceptor Example

[] ->
exit("Access not granted");

[{Host, ObjTable, ChecksumModule}] ->
{ObjTable, ChecksumModule}

end.

in_request_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:remove_checksum(Bin),
{NewBin, Extra}.

in_request({ObjTable, _}, ObjKey, Ctx, Op, Params, Extra) ->
case ets:lookup(ObjTable, {ObjKey, Op}) of

[] ->
exit("Client tried to invoke illegal operation");

[SomData] ->
{Params, Extra}

end.

out_reply(_, _, _, _, Reply, Extra) ->
{Reply, Extra}.

out_reply_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:add_checksum(Bin),
{NewBin, Extra}.

out_request({ObjTable, _}, ObjKey, Ctx, Op, Params, Extra) ->
case ets:lookup(ObjTable, {ObjKey, Op}) of

[] ->
exit("Client tried to invoke illegal operation");

[SomeData] ->
{Params, Extra}

end.

out_request_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:add_checksum(Bin),
{NewBin, Extra}.

in_reply_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:remove_checksum(Bin),
{NewBin, Extra}.

in_reply(_, _, _, _, Reply, Extra) ->
{Reply, Extra}.

closed_in_connection(Arg) ->
%% Nothing to clean up.
Arg.

closed_out_connection(Arg) ->
%% Nothing to clean up.
Arg.

77Orber Application

Chapter 9: Orber Interceptors

Note:
One can also use interceptors for debugging purposes, e.g., print which objects and operations are
invoked with which arguments and the outcome of the operation. In conjunction with the
configuration parameter orber debug level it is rather easy to find out what went wrong or just to
log the traffic.

78 Orber Application

Chapter 10

Tools, Debugging and FAQ

This chapter describe the available tools and debugging facilities for Orber. Also contain a FAQ listing
of the most common mistakes.

10.1 OrberWeb

10.1.1 Using OrberWeb

OrberWeb is intended to make things easier when developing and testing applications using Orber. The
user is able to interact with Orber via a GUI by using a web browser.

OrberWeb requires that the application WebTool is available and started on at least one node; if so
OrberWeb can usually be used to to access Orber nodes supporting the Interoperable Naming Service.
How to start OrberWeb is described in Starting OrberWeb [page 88]

The OrberWeb GUI consists of a Menu Frame and a Data Frames.

The Menu Frame

The menu frame consists of:

� Node List - which node to access.

� Configuration - see how Orber on the current node is configured.

� Name Service - browse the NameService and add/remove a Context/Object.

� IFR Types - see which types are registered in IFR.

� Create Object - create a new object and, possibly, store it in the NameService.

79Orber Application

Chapter 10: Tools, Debugging and FAQ

Figure 10.1: The Menu Frame.

Which nodes we can access is determined by what is returned when invoking [node()|nodes()]. If
you cannot see a desired node in the list, you have to call net adm:ping(Node). But this requires that
the node is started with the distribution switched on (e.g. erl -sname myNode); this also goes for the
node OrberWeb is running on.

The Configuration Data Frame

When accessing the Configuration page OrberWeb presents a table containing the configuration settings
[page 14] for the target node.

80 Orber Application

10.1: OrberWeb

Figure 10.2: Configuration Settings.

It is also possible to change those configuration parameters which can be changed when Orber is already
started. The Key-Value pairs is given as a list of tuples, e.g., [forber debug level, 5g, fiiop timeout, 60g,
fgiop version, f1,2gg]. If one tries to update a parameter which may not be changed an error message
will be displayed.

The IFR Data Frame

All types registered in the IFR (Interface Repository) which have an associated IFR-id can be viewed via
the IFR Data Frame. This gives the user an easy way to confirm that all necessary IDL-specifications
have been properly registered. All available types are listed when choosing IFR Types in the menu
fram:

81Orber Application

Chapter 10: Tools, Debugging and FAQ

Figure 10.3: Select Type.

After selecting a type all defintions of that particular type will be displayed. If no such bindings exists
the table will be empty.

Since Orber adds defintions to the IFR when it is installed (e.g. CosNaming), not only types defined by
the user will show up in the table. In the figure below you find the the NameService exceptions listed.

82 Orber Application

10.1: OrberWeb

Figure 10.4: List Registered Exceptions.

The NameService Data Frame

The NameService main purpose is to make possible to bind object refrences, which can client
applications can resolve and invoke operations on. Initially, the NameService is empty. The most
common scenario, is that user applications create Contexts and add objects in the NameService.
OrberWeb allows the user to do the very same thing.

When referencing an object or context you must use stringified NameComponents. For more
information see the Interoperable Naming Service [page 41]. In the following example we will use the
string org/erlang/TheObjectName, where org and erlang will be contexts and TheObjectName the name
the object will be bound to.

Since the NameService is empty in the beginning, the only thing we can do is creating a new context.
Simply write org in the input field and press New Context. If OrberWeb was able to create the context
or not, is shown in the completion message. If succesfull, just press the Go Back button. Now, a link
named org should be listed in the table. In the right column the context type is displayed. Contexts are
associated with ncontext and objects with nobject.

83Orber Application

Chapter 10: Tools, Debugging and FAQ

Figure 10.5: Add a New Context.

To create the next level context (i.e. erlang), simply follow the link and repeat the procedure. If done
correctly, a table containing the same data as the following figure should be the result if you follow the
erlang link. Note, that the path is displayed in the yellow field.

If a context does not contain any sub-contexts or object bindings, it is possible to delete the context. If
these requirements are met, a Delete Context button will appear. A completion status message will be
displayed after deleting the context.

Figure 10.6: Delete Context.

Now it is possible to bind an object using the complete name string. To find out how this is done using
OrberWeb see Object Creation [page 86]. For now, we will just assume that an object have been
created and bound as TheObjectName.

84 Orber Application

10.1: OrberWeb

Figure 10.7: Object Stored in the NameService.

If you follow the TheObjectName link, data about the bound object will be presented. Note, depending
on which type of object it is, the information given differs. It would, for example, not be possible to
display a Pid for all types of objects since it might reside on a Java-ORB. In the figure below a
CosNotification FilterFactory have been bound under the name org/erlang/TheObjectName.

85Orber Application

Chapter 10: Tools, Debugging and FAQ

Figure 10.8: Object Data.

OrberWeb also makes it possible to remove a binding and dispose the associated object. Pressing
Unbind the binding will be removed but the object will still exist. But, if the Unbind & Dispose button
is pressed, the binding will be removed and the object terminated.

The Object Creation Data Frame

This part makes it possible to create a new object and, if wanted, store it the NameService.

86 Orber Application

10.1: OrberWeb

Figure 10.9: Create a New Object.

� Module - simply type the name of the module of the object type you want to create. If the
module begins with a capital letter, we normally must write ’Module Interface’. But, when
using OrberWeb, you shall NOT. Since we cannot create linked objects this is not an option.

� Arguments - the supplied arguments must be written as a single Erlang term. That is, as a list or
tuple containing other Erlang terms. The arguments will be passed to the init function of the
object. It is, however, not possible to use Erlang records. If OrberWeb is not able to parse the
arguments, an error message will be displayed. If left empty, an empty list will be passed.

� Options - the options can be the ones listed under Module Interface [page 119] in Orber's
Reference manual. Hence, they are not further described here. But, as an example, in the figure
above we started the object as globally registered. If no options supplied the object will be started
as default.

� Name String - if left empty the object will not be registered in the NameService. Hence, it is
important that you can access the object in another way, otherwise a zombie process is created. In
the previous section we used the name string org/erlang/TheObjectName. If we choose the same
name here, the listed contexts (i.e. org and erlang) must be created before we can create and bind
the object to TheObjectName. If this requirement is not met, OrberWeb cannot bind the object.
Hence, the object will be terminated and an error message displayed.

� Operation to use - which option choosed will determine the behaviour of OrberWeb. If you
choose bind and a binding already exists an error message will be displayed and the newly started
object terminated. But if you choose rebind any existing binding will over-written.

87Orber Application

Chapter 10: Tools, Debugging and FAQ

10.1.2 Starting OrberWeb

You may choose to start OrberWeb on node, on which Orber is running or not. But the Erlang
distribution must be started (e.g. by using -sname aNodeName). Now, all you have to do is to invoke:

erl> webtool:start().
WebTool is availible at http://localhost:8888/
Or http://127.0.0.1:8888/

Type one of the URL:s in your web-browser. If you want to access the WebTool application from
different machine, just replace localhost with its name. For more information, see the WebTool
documentation.

10.2 Debugging

10.2.1 Tools and FAQ

Persons who use Orber for the first time may find it hard to tell what goes wrong when tryong to setup
communication between an Orber-ORB and ORB:s supplied by another vendor or another Orber-ORB.
The purpose of this chapter is to inform about the most common mistakes and what tools one can use
to overcome these problems.

Tools

To begin with, Orber can be configured to run in debug mode. There are four ways to set this
parameter:

� erl -orber orber debug level 10 - can be added to a start-script.

� corba:orb init([forber debug level, 10g]) - this operation must be invoked before starting Orber.

� orber:configure(orber debug level, 10) - this operation can be invoked at any time.

� OrberWeb - via the Configuration menu one can easily change the configuration. For more
information, se the OrberWeb chapter in this User's Guide.

When Orber runs i debug mode, printouts will be generated if anything abnormal occurs (not
necessarily an error). An error message typically looks like:

=ERROR REPORT==== 29-Nov-2001::14:09:55 ===
=================== Orber =================
[410] corba:common_create(orber_test_server, [{pseudo,truce}]);
not a boolean(truce).
===

In the example above, we tried to create an object with an incorrect option (i.e. should have been
fpseudo,trueg).

If you are not able to solve the problem, you should include all generated reports when contacting
support or using the erlang-questions mailing list.

It is easy to forget to, for example, set all fields in a struct, which one may not discover when developing
an application using Orber. When using a typed language, such faults would cause a compile time error.
To avoid these mistakes, Orber allows the user to activate automatic typechecking of all local
invocations of CORBA Objects. For this feature to be really useful, the user must create test suites

88 Orber Application

10.2: Debugging

which cover as much as possible. For example, invoking an operation with invalid or incorrect
arguments should also be tested. This option can be activated for one object or all object via:

� 'MyModuyle MyInterface':oe create(Env, [flocal typecheck, trueg]) - This approach will only
activate, or deactivate, typechecking for the returned instance. Naturally, this option can also be
passed to oe create link/2, corba:create/4 and corba:create link/4.

� erl -orber flags 2 - can be added to a start-script. All object invocations will be typechecked, unless
overridden by the previous option.

� corba:orb init([fflags, 16#0002g]) - this operation must be invoked before starting Orber. Behaves
as the previous option.

If incorrect data is passed or returned, Orber uses the error logger to generate logs, which can look
like:

=ERROR REPORT==== 10-Jul-2002::12:36:09 ===
========= Orber Typecheck Request =========
Invoked......: MyModule_MyInterface:foo/1
Typecode.....: [{tk_enum,"IDL:MyModule/enumerant:1.0",

"enumerant",
["one","two"]}]

Arguments....: [three]
Result.......: {’EXCEPTION’,{’MARSHAL’,[],102,’COMPLETED_NO’}}
===

Note, that the arity is equivalent to the IDL-file. In the example above, an undefined enumerant was
used. In most cases, it is usefull to set the configuration parameter orber debug level 10 as well. Due
to the extra overhead, this option MAY ONLY be used during testing and development. For more
information, see also configuration settings [page 14].

It is also possible to trace all communication between an Orber-ORB and, for example, a Java-ORB,
communicating via IIOP. All you need to do is to activate an interceptor [page 73]. Normally, the users
must implement the interceptor themselves, but for your convenience Orber includes two
pre-compiled interceptors called orber iiop tracer and orber iiop tracer silent.

Warning:
Logging all traffic is expensive. Hence, only use the supplied interceptors during test and
development.

The orber iiop tracer and orber iiop tracer silent interceptors uses the error logger module
to generate the logs. If the traffic is intense you probably want to write the reports to a log-file. This is
done by, for example, invoking:

erl> error_logger:tty(false).
erl> error_logger:logfile({open, "/tmp/IIOPTrace"}).

The IIOPTrace file will contain, if you use the orber iiop tracer interceptor, reports which looks like:

89Orber Application

Chapter 10: Tools, Debugging and FAQ

=INFO REPORT==== 29-Nov-2001::15:26:28 ===
=============== new_out_connection =======
Node : ’myNode@myHost’
To Host : "123.456.789.012"
To Port : 2000
==

=INFO REPORT==== 29-Nov-2001::15:26:28 ===
=============== out_request ==============
Connection: {"123.456.789.012",2000}
Operation : resolve
Parameters: [[{’CosNaming_NameComponent’,

"AIK","SwedishIcehockeyChampions"}]]
Context : [{’IOP_ServiceContext’,1,

{’CONV_FRAME_CodeSetContext’,65537,65801}}]
==

The orber iiop tracer silent will not log GIOP encoded data. To activate one the interceptors, you
have two options:

� erl -orber interceptors “fnative,[orber iiop tracer]g” - can be added to a start-script.

� corba:orb init([finterceptors, fnative, [orber iiop tracer silent]gg]) - this operation must be invoked
before starting Orber.

FAQ

Q: When my client, typically written in C++ or Java, invoke narrow on an Orber object reference it fails?

A: You must register your application in the IFR by invoking oe register(). If the object was created
by a COS-application, you must run install (e.g. cosEventApp:install()).

A: Confirm, by consulting the IDL specifications, that the received object reference really inherit from
the interface you are trying to narrow it to.

Q: I am trying to register my application in the IFR but it fails. Why?

A: If one, or more, interface in your IDL-specification inherits from other interface(s), you must register
them before registering your application. Note, this also apply when you inherit interfaces supported by
a COS-application. Hence, they must be installed prior to registration of your application.

Q: I have a Orber client and server residing on two different Orber instances but I only get the
'OBJECT NOT EXIST' exception, even though I am sure that the object is still alive?

A: If the two Orber-ORB's are not intended to be a part of multi-node ORB, make sure that the two
Orber-ORB's have different domain names set (see configuration settings [page 14]). The easiest way to
confirm this is to invoke orber:info() on each node.

Q: When I'm trying to install and/or start Orber it fails?

A: Make sure that no other Orber-ORB is already running on the same node. If so, change the
iiop port configuration parameter (see configuration settings [page 14]).

Q: My Orber server is invoked via IIOP but Orber cannot marshal the reply?

90 Orber Application

10.2: Debugging

A: Consult your IDL file to confirm that your replies are of the correct type. If it is correct and the
return type is, for exapmle, a struct, make sure you have set every field in the struct. If you do not do
that it will be set to the atom 'undefined', which most certainly is not correct.

A: Check that you handle inout and out parameters correctly (see the IDL specification). For example,
a function which have one out-parameter and should return void, then your call-back module should
return freply, fok, OutParamg, Stateg. Note, even though the return value is void (IDL) you must
reply with ok.

Q: I cannot run Orber as a multi-node ORB?

A: Make sure that the Erlang distribution have been started for each node and the cookies are correct.
For more information, consult the Sytem Documentation

91Orber Application

Chapter 10: Tools, Debugging and FAQ

92 Orber Application

Orber Reference Manual

Short Summaries

� Erlang Module CosNaming [page 108] – The CosNaming service is a collection of
interfaces that together define the naming service.

� Erlang Module CosNaming BindingIterator [page 111] – This interface supports
iteration over a name binding list.

� Erlang Module CosNaming NamingContext [page 113] – This interface supports
different bind and access functions for names in a context.

� Erlang Module CosNaming NamingContextExt [page 117] – This interface
contains operation for converting a Name sequence to a string and back.

� Erlang Module Module Interface [page 119] – Orber generated stubs/skeletons.

� Erlang Module any [page 125] – the corba any type

� Erlang Module corba [page 127] – The functions on CORBA module level

� Erlang Module corba object [page 133] – The CORBA Object interface functions

� Erlang Module fixed [page 135] – the corba fixed type

� Erlang Module interceptors [page 137] – Describe the functions which must be
exported by any supplied Orber native interceptor.

� Erlang Module lname [page 142] – Interface that supports the name
pseudo-objects.

� Erlang Module lname component [page 144] – Interface that supports the name
pseudo-objects.

� Erlang Module orber [page 146] – The main module of the Orber application

� Erlang Module orber diagnostics [page 154] – Diagnostics API for Orber

� Erlang Module orber ifr [page 155] – The Interface Repository stores
representations of IDL information

� Erlang Module orber tc [page 170] – Help functions for IDL typecodes

CosNaming

No functions are exported.

93Orber Application

Orber Reference Manual

CosNaming BindingIterator

The following functions are exported:

� next one(BindinIterator) -> Return
[page 111] Return a binding

� next n(BindinIterator, HowMany) -> Return
[page 111] Return a binding list

� destroy(BindingIterator) -> Return
[page 111] Destroy the iterator object

CosNaming NamingContext

The following functions are exported:

� bind(NamingContext, Name, Object) -> Return
[page 114] Bind a Name to an Object

� rebind(NamingContext, Name, Object) -> Return
[page 114] Bind an Object to the Name even if the Name already is bound

� bind context(NamingContext1, Name, NamingContex2) -> Return
[page 114] Bind a Name to an NamingContext

� rebind context(NamingContext1, Name, NamingContex2) -> Return
[page 114] Bind an NamingContext to the Name even if the Name already is
bound

� resolve(NamingContext, Name) -> Return
[page 114] Retrieve an Object bound to Name

� unbind(NamingContext, Name) -> Return
[page 115] Remove the binding for a Name

� new context(NamingContext) -> Return
[page 115] Create a new NamingContext

� bind new context(NamingContext, Name) -> Return
[page 115] Create a new NamingContext and bind it to a Name

� destroy(NamingContext) -> Return
[page 115] Destroy a NamingContext

� list(NamingContext, HowMany) -> Return
[page 115] List returns a all bindings in the context

CosNaming NamingContextExt

The following functions are exported:

� to string(NamingContext, Name) -> Return
[page 117] Stringify a Name sequence to a string

� to name(NamingContext, NameString) -> Return
[page 117] Convert a stringified Name to a Name sequence

� to url(NamingContext, AddressString, NameString) -> Return
[page 117] Return an URL string constructed from the given Address and Name
strings

� resolve str(NamingContext, NameString) -> Return
[page 117] Return the object associated, if any, with the given name string

94 Orber Application

Orber Reference Manual

Module Interface

The following functions are exported:

� Module Interface:typeID() -> TypeId
[page 120] Return the Type ID related to this stub/skeleton

� Module Interface:oe create() -> ObjRef
[page 120] Start a Orber server.

� Module Interface:oe create link() -> ObjRef
[page 120] Start a linked Orber server.

� Module Interface:oe create(Env) -> ObjRef
[page 120] Start a Orber server.

� Module Interface:oe create link(Env) -> ObjRef
[page 120] Start a linked Orber server.

� Module Interface:oe create(Env, Options) -> ObjRef
[page 120] Start a Orber stub/skeleton

� Module Interface:oe create link(Env, Options) -> Return
[page 121] Start a Orber stub/skeleton

� Module Interface:own functions(ObjRef, Arg1, ..., ArgN) -> Reply
[page 122] User defined function which is not a part of Orber

� Module Interface:own functions(ObjRef, Options, Arg1, ..., ArgN) ->
Reply
[page 122] User defined function which is not a part of Orber

� Module Interface impl:init(Env) -> CallReply
[page 122] User defined function which is not a part of Orber

� Module Interface impl:terminate(Reason, State) -> ok
[page 122] User defined function which is not a part of Orber

� Module Interface impl:code change(OldVsn, State, Extra) -> CallReply
[page 122] User defined function which is not a part of Orber

� Module Interface impl:handle info(Info, State) -> CallReply
[page 123] User defined function which is not a part of Orber

� Module Interface impl:own functions(State, Arg1, ..., ArgN) ->
CallReply
[page 123] User defined function which is not a part of Orber

� Module Interface impl:own functions(This, State, Arg1, ..., ArgN) ->
CallReply
[page 123] User defined function which is not a part of Orber

� Module Interface impl:own functions(This, From, State, Arg1, ...,
ArgN) -> ExtCallReply
[page 123] User defined function which is not a part of Orber

� Module Interface impl:own functions(From, State, Arg1, ..., ArgN) ->
ExtCallReply
[page 123] User defined function which is not a part of Orber

� Module Interface impl:own functions(State, Arg1, ..., ArgN) ->
CastReply
[page 123] User defined function which is not a part of Orber

� Module Interface impl:own functions(This, State, Arg1, ..., ArgN) ->
CastReply
[page 123] User defined function which is not a part of Orber

95Orber Application

Orber Reference Manual

any

The following functions are exported:

� create() -> Result
[page 125] Create an any record

� create(Typecode, Value) -> Result
[page 125] Create an any record

� set typecode(A, Typecode) -> Result
[page 125] Set the typecode field

� get typecode(A) -> Result
[page 125] Fetch the typecode

� set value(A, Value) -> Result
[page 126] Set the value field

� get value(A) -> Result
[page 126] Fetch the value

corba

The following functions are exported:

� create(Module, TypeID) -> Object
[page 127] Create and start a new server object

� create(Module, TypeID, Env) -> Object
[page 127] Create and start a new server object

� create(Module, TypeID, Env, Optons1) -> Object
[page 127] Create and start a new server object

� create link(Module, TypeID) -> Object
[page 127] Create and start a new server object

� create link(Module, TypeID, Env) -> Object
[page 127] Create and start a new server object

� create link(Module, TypeID, Env, Options2) -> Reply
[page 127] Create and start a new server object

� dispose(Object) -> ok
[page 128] Stop a server object

� create nil objref() -> Object
[page 128] Stop a server object

� create subobject key(Object, Key) -> Result
[page 128] Add an Erlang term to a private key field

� get subobject key(Object) -> Result
[page 129] Fetch the contents of the private key field

� get pid(Object) -> Result
[page 129] Get the process id from an object key

� raise(Exception)
[page 129] Generate an Erlang throw

� reply(To, Reply) -> true
[page 129] Send explicit reply to client

96 Orber Application

Orber Reference Manual

� resolve initial references(ObjectId) -> Object
[page 129] Return the object reference for the given object id

� add initial service(ObjectId, Object) -> boolean()
[page 130] Add a new initial service and associate it with the given id

� remove initial service(ObjectId) -> boolean()
[page 130] Remove association between the given id and service

� list initial services() -> [ObjectId]
[page 130] Return a list of supported object id's

� resolve initial references remote(ObjectId, Address) -> Object
[page 130] Return the object reference for the given object id

� list initial services remote(Address) -> [ObjectId]
[page 130] Return a list of supported object id's

� object to string(Object) -> IOR string
[page 131] Convert the object reference to the external string representation

� string to object(IOR string) -> Object
[page 131] Convert the external string representation to an object reference

� print object(Data [, Type]) -> ok | f’EXCEPTION’, Eg | f’EXIT’, Rg |
string()
[page 131] Print the supplied object

� add alternate iiop address(Object, Host, Port) -> NewObject |
f’EXCEPTION’, Eg
[page 131] Add ALTERNATE IIOP ADDRESS component to the supplied local
object

� orb init(KeyValueList) -> ok | f’EXIT’, Reasong
[page 132] Configure Orber before starting it

corba object

The following functions are exported:

� get interface(Object) -> InterfaceDef
[page 133] Fetch the interface description

� is nil(Object) -> boolean()
[page 133] Return true, if the given object is a NIL object reference, otherwise
false

� is a(Object, Logical type id) -> Return
[page 133] Return true if the target object is an, or inherit from, object of the
given type

� is remote(Object) -> boolean()
[page 133] Determine whether or not an object reference is remote

� non existent(Object) -> Return
[page 134] Return false if the target object do not exist, otherwise true

� not existent(Object) -> Return
[page 134] Return false if the target object do not exist, otherwise true

� is equivalent(Object, OtherObject) -> boolean()
[page 134] Return true if the target object and the supplied object easily can be
determined to be equal, otherwise false

� hash(Object, Maximum) -> int()
[page 134] Return a hash value based on the target object

97Orber Application

Orber Reference Manual

fixed

The following functions are exported:

� create(Digits, Scale, Value) -> Result
[page 136] Create a fixed type

� get typecode(Fixed) -> Result
[page 136] Create TypeCode representing the supplied fixed type

� add(Fixed1, Fixed2) -> Result
[page 136] Add the supplied Fixed types

� subtract(Fixed1, Fixed2) -> Result
[page 136] Subtract Fixed2 from Fixed1

� multiply(Fixed1, Fixed2) -> Result
[page 136] Multiply Fixed1 with Fixed2

� divide(Fixed1, Fixed2) -> Result
[page 136] Divide Fixed1 with Fixed2

� unary minus(Fixed) -> Result
[page 136] Negate the supplied Fixed Type

interceptors

The following functions are exported:

� new in connection(Ref, Host, Port) -> NewRef
[page 138] Invoke when a new client ORB wants to setup a connection

� new out connection(Ref, Host, Port) -> NewRef
[page 138] Invoke when setting up a new connection to a server side ORB

� closed in connection(Ref) -> NewRef
[page 138] Invoke when an existing connection to a client side ORB have been
terminated

� closed out connection(Ref) -> NewRef
[page 138] Invoke when an existing connection to a server side ORB have been
terminated

� in reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply
[page 139] Invoke when replies arrives at the client side ORB

� in reply encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
[page 139] Invoke when replies arrives at the client side ORB with undecoded
reply body

� in request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply
[page 139] Invoke when requests arrive at the server side ORB

� in request encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
[page 139] Invoke when requests arrive at the server side ORB with undecoded
request body

� out reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply
[page 140] Invoke after the target object replied

� out reply encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
[page 140] Invoke after the target object replied with the reply encoded

98 Orber Application

Orber Reference Manual

� out request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply
[page 140] Invoke on the client side ORB before encoding and sending the request

� out request encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
[page 140] Invoke on the client side ORB before sending the request

lname

The following functions are exported:

� create() -> Return
[page 142] Create a new name

� insert component(Name, N, NameComponent) -> Return
[page 142] Insert a new name component in a name

� get component(Name, N) -> Return
[page 142] Get a name component from a name

� delete component(Name, N) -> Return
[page 143] Delete a name component from a name

� num components(Name) -> Return
[page 143] Count the number of name components in a name

� equal(Name1, Name2) -> Return
[page 143] Test if two names are equal

� less than(Name1, Name2) -> Return
[page 143] Test if one name is lesser than the other

� to idl form(Name) -> Return
[page 143] Transform a pseudo name to an IDL name

� from idl form(Name) -> Return
[page 143] Transform an IDL name to a pseudo name

lname component

The following functions are exported:

� create() -> Return
[page 144] Create a new name component

� get id(NameComponent) -> Return
[page 144] Get the id field of a name component

� set id(NameComponent, Id) -> Return
[page 144] Set the id field of a name component

� get kind(NameComponent) -> Return
[page 144] Get the kind field of a name component

� set kind(NameComponent, Kind) -> Return
[page 145] Set the kind field of a name component

99Orber Application

Orber Reference Manual

orber

The following functions are exported:

� start() -> ok
[page 146] Start the Orber application

� start(Type) -> ok
[page 146] Start the Orber application

� start lightweight() -> ok
[page 146] Start the Orber application as lightweight

� start lightweight(Addresses) -> ok
[page 146] Start the Orber application as lightweight

� jump start(Port) -> ok | f’EXIT’, Reasong
[page 147] Start the Orber application during tests

� stop() -> ok
[page 147] Stop the Orber application

� info() -> ok
[page 147] Generate Info Report, which contain Orber's configuration settings

� info(IoType) -> ok | f’EXIT’, Reasong | string()
[page 147] Generate Info Report, which contain Orber's configuration settings

� exception info(Exception) -> fok, string()g | ferror, Reasong
[page 147] Return a printable string, which describes the supplied exception

� is lightweight() -> boolean()
[page 147] Is the application started as lightweight?

� get lightweight nodes() -> RemoteModifierList | false
[page 147] Get the Remote Modifier list.

� get tables() -> [Tables]
[page 147] Get the Mnesia tables Orber uses.

� get ORBInitRef() -> string() | undefined
[page 147] Get the initial reference address.

� get ORBDefaultInitRef() -> string() | undefined
[page 148] Get the initial reference address.

� domain() -> string()
[page 148] Display the Orber domain name

� iiop port() -> int()
[page 148] Display the IIOP port number

� iiop out ports() -> 0 | fMin, Maxg
[page 148] Display the ports Orber may use when connecting to another ORB

� iiop ssl port() -> int()
[page 148] Display the IIOP port number used for secure connections

� iiop timeout() -> int() (milliseconds)
[page 148] Display the IIOP timeout value

� iiop connection timeout() -> int() (milliseconds)
[page 148] Display the IIOP connection timeout value

� iiop connections() -> Result
[page 149] List all existing connections to/from other ORB's

100 Orber Application

Orber Reference Manual

� iiop connections(Direction) -> Result
[page 149] List all existing connections to/from other ORB's

� iiop connections pending() -> [fHost, Portg] | f’EXIT’,Reasong
[page 149] List all connections to another ORB currently being set up

� iiop in connection timeout() -> int() (milliseconds)
[page 149] Display the IIOP connection timeout value for incoming connections

� secure() -> no | ssl
[page 149] Display the security mode Orber is running in

� ssl server certfile() -> string()
[page 149] Display the path to the server certificate

� ssl client certfile() -> string()
[page 149] Display the path to the client certificate

� set ssl client certfile(Path) -> ok
[page 149] Set the value of the client certificate

� ssl server verify() -> 0 | 1 | 2
[page 150] Display the SSL verification type for incoming calls

� ssl client verify() -> 0 | 1 | 2
[page 150] Display the SSL verification type for outgoing calls

� set ssl client verify(Value) -> ok
[page 150] Set the value of the SSL verification type for outgoing calls

� ssl server depth() -> int()
[page 150] Display the SSL verification depth for incoming calls

� ssl client depth() -> int()
[page 150] Display the SSL verification depth for outgoing calls

� set ssl client depth(Depth) -> ok
[page 150] Sets the value of the SSL verification depth for outgoing calls

� objectkeys gc time() -> int() (seconds)
[page 150] Display the Object Keys GC time value

� orber nodes() -> RetVal
[page 150] Displays which nodes that this orber domain consist of.

� install(NodeList) -> ok
[page 151] Install the Orber application

� install(NodeList, Options) -> ok
[page 151] Install the Orber application

� uninstall() -> ok
[page 151] Uninstall the Orber application

� add node(Node, Options) -> RetVal
[page 151] Add a new node to a group of Orber nodes.

� remove node(Node) -> RetVal
[page 152] Removes a node from a group of Orber nodes.

� configure(Key, Value) -> ok | f’EXIT’, Reasong
[page 152] Change Orber configuration.

101Orber Application

Orber Reference Manual

orber diagnostics

The following functions are exported:

� nameservice() -> Result
[page 154] Display all objects stored in the Name Serivce

� nameservice(Flags) -> Result
[page 154] Display all objects stored in the Name Serivce

� missing modules() -> Count
[page 154] Echo missing modules required by Orber

orber ifr

The following functions are exported:

� init(Nodes,Timeout) -> ok
[page 155] Intialize the IFR

� find repository() -> #IFR Repository objref
[page 155] Find the IFR object reference for the Repository

� get def kind(Objref) -> Return
[page 156] Return the definition kind of the IFR object

� destroy(Objref) -> Return
[page 156] Destroy, except IRObject, Contained and Container, target object and
its contents

� get id(Objref) -> Return
[page 156] Return the target object's repository id

� set id(Objref,Id) -> ok
[page 156] Set the target object's repository id

� get name(Objref) -> Return
[page 156] Return the name of the target object

� set name(Objref,Name) -> ok
[page 156] Set given name to target object

� get version(Objref) -> Return
[page 157] Return the version of the target object

� set version(Objref,Version) -> ok
[page 157] Set given version of the target object

� get defined in(Objref) -> Return
[page 157] Return the Container the target object is contained in

� get absolute name(Objref) -> Return
[page 157] Return the absolute name of the target object

� get containing repository(Objref) -> Return
[page 157] Get the most derived Contained object associated with the target
object

� describe(Objref) -> Return
[page 157] Return a tuple which describe the target object

� move(Objref,New container,New name,New version) -> Return
[page 158] Move the target object from its current location to given Container,
name and version

102 Orber Application

Orber Reference Manual

� lookup(Objref,Search name) -> Return
[page 158] Return the IFR object identified by the given name

� contents(Objref,Limit type,Exclude inherited) -> Return
[page 158] Return the content of the target object limited by the given constraints

� lookup name(Objref,Search name,Levels to search, Limit type,
Exclude inherited) -> Return
[page 158] Return a list of IFR objects matching the given name

�
describe contents(Objref,Limit type,Exclude inherited,Max returned objs)
-> Return
[page 159] Return a list of descriptions of the IFR objects contained by the target
Container object

� create module(Objref,Id,Name,Version) -> Return
[page 159] Create an IFR object of given type

� create constant(Objref,Id,Name,Version,Type,Value) -> Return
[page 159] Create a ConstantDef IFR object

� create struct(Objref,Id,Name,Version,Members) -> Return
[page 159] Create a StructDef IFR object

� create union(Objref,Id,Name,Version,Discriminator type,Members) ->
Return
[page 160] Create a UnionDef IFR object

� create enum(Objref,Id,Name,Version,Members) -> Return
[page 160] Create a EnumDef IFR object

� create alias(Objref,Id,Name,Version,Original type) -> Return
[page 160] Create a AliasDef IFR object

� create interface(Objref,Id,Name,Version,Base interfaces) -> Return
[page 160] Create a InterfaceDef IFR object

� create exception(Objref,Id,Name,Version,Members) -> Return
[page 161] Create a ExceptionDef IFR object

� get type(Objref) -> Return
[page 161] Return the typecode of the target object

� lookup id(Objref,Search id) -> Return
[page 161] Return the IFR object matching the given id

� get primitive(Objref,Kind) -> Return
[page 161] Return a PrimitiveDef of the specified kind

� create string(Objref,Bound) -> Return
[page 161] Create an IFR objref of the type StringDef

� create wstring(Objref,Bound) -> Return
[page 162] Create an IFR objref of the type WstringDef

� create fixed(Objref,Digits,Scale) -> Return
[page 162] Create an IFR objref of the type FixedDef

� create sequence(Objref,Bound,Element type) -> Return
[page 162] Create an IFR objref of the type SequenceDef

� create array(Objref,Length,Element type) -> Return
[page 162] Create an IFR objref of the type ArrayDef

� create idltype(Objref,Typecode) -> Return
[page 162] Create an IFR objref of the type IDLType

103Orber Application

Orber Reference Manual

� get type def(Objref) -> Return
[page 162] Return an IFR object of the type IDLType describing the type of the
target object

� set type def(Objref,TypeDef) -> Return
[page 163] Set given TypeDef of the target object

� get value(Objref) -> Return
[page 163] Return the value attribute of the target ConstantDef object

� set value(Objref,Value) -> Return
[page 163] Set the value attribute of the target ConstantDef object

� get members(Objref) -> Return
[page 163] Return the members of the target object

� set members(Objref,Members) -> Return
[page 163] Set the members attribute of the target object

� get discriminator type(Objref) -> Return
[page 164] Get the discriminator typecode of the target object

� get discriminator type def(Objref) -> Return
[page 164] Return IDLType object describing the discriminator type of the target
object

� set discriminator type def(Objref,TypeDef) -> Return
[page 164] Set the attribute discriminator type def for the target object to the
given TypeDef

� get original type def(Objref) -> Return
[page 164] Return an IFR object of the type IDLType describing the original type

� set original type def(Objref,TypeDef) -> Return
[page 164] Set the original type def attribute which describes the original type

� get kind(Objref) -> Return
[page 164] Return an atom describing the primitive type

� get bound(Objref) -> Return
[page 165] Get the maximum size of the target object

� set bound(Objref,Bound) -> Return
[page 165] Set the maximum size of the target object

� get element type(Objref) -> Return
[page 165] Return the typecode of the elements in the IFR object

� get element type def(Objref) -> Return
[page 165] Return an IFR object of the type IDLType describing the type of the
elements in Objref

� set element type def(Objref,TypeDef) -> Return
[page 165] Set the element type def attribute of the target object to the given
TypeDef

� get length(Objref) -> Return
[page 165] Return the number of elements in the array

� set length(Objref,Length) -> Return
[page 166] Set the number of elements in the array

� get mode(Objref) -> Return
[page 166] Get the mode of the target object (AttributeDef or OperationDef)

� set mode(Objref,Mode) -> Return
[page 166] Set the mode of the target object (AttributeDef or OperationDef) to
the given mode

104 Orber Application

Orber Reference Manual

� get result(Objref) -> Return
[page 166] Return typecode describing the type of the value returned by the
operation

� get result def(Objref) -> Return
[page 166] Return an IFR object of the type IDLType describing the type of the
result

� set result def(Objref,ResultDef) -> Return
[page 166] Set the type def attribute of the target object to the given ResultDef

� get params(Objref) -> Return
[page 167] Return a list of parameter description records describing the
parameters of the target OperationDef

� set params(Objref,Params) -> Return
[page 167] Set the params attibute of the target object to the given
parameterdescription records

� get contexts(Objref) -> Return
[page 167] Return a list of context identifiers for the operation

� set contexts(Objref,Contexts) -> Return
[page 167] Set the context attribute for the operation

� get exceptions(Objref) -> Return
[page 167] Return a list of exception types that can be raised by the target object

� set exceptions(Objref,Exceptions) -> Return
[page 167] Set the exceptions attribute for the target object

� get base interfaces(Objref) -> Return
[page 168] Return a list of InterfaceDefs from which the target InterfaceDef
object inherit

� set base interfaces(Objref,BaseInterfaces) -> Return
[page 168] Set the BaseInterfaces attribute

� is a(Objref,Interface id) -> Return
[page 168] Return a boolean if the target InterfaceDef match or inherit from the
gievn id

� describe interface(Objref) -> Return
[page 168] Return a full inter face description record describing the InterfaceDef

� create attribute(Objref,Id,Name,Version,Type,Mode) -> Return
[page 168] Create an IFR object of the type AttributeDef contained in the target
InterfaceDef object

� create operation(Objref,Id,Name,Version,Result,Mode,Params,
Exceptions,Contexts) -> Return
[page 168] Create an IFR object of the type OperationDef contained in the target
InterfaceDef object

orber tc

The following functions are exported:

� null() -> TC
[page 170] Return the IDL typecode

� void() -> TC
[page 170] Return the IDL typecode

105Orber Application

Orber Reference Manual

� short() -> TC
[page 170] Return the IDL typecode

� unsigned short() -> TC
[page 170] Return the IDL typecode

� long() -> TC
[page 170] Return the IDL typecode

� unsigned long() -> TC
[page 170] Return the IDL typecode

� long long() -> TC
[page 170] Return the IDL typecode

� unsigned long long() -> TC
[page 170] Return the IDL typecode

� wchar() -> TC
[page 170] Return the IDL typecode

� float() -> TC
[page 170] Return the IDL typecode

� double() -> TC
[page 170] Return the IDL typecode

� boolean() -> TC
[page 170] Return the IDL typecode

� char() -> TC
[page 170] Return the IDL typecode

� octet() -> TC
[page 170] Return the IDL typecode

� any() -> TC
[page 170] Return the IDL typecode

� typecode() -> TC
[page 170] Return the IDL typecode

� principal() -> TC
[page 170] Return the IDL typecode

� object reference(Id, Name) -> TC
[page 170] Return the object reference IDL typecode

� struct(Id, Name, ElementList) -> TC
[page 170] Return the struct IDL typecode

� union(Id, Name, DiscrTC, Default, ElementList) -> TC
[page 171] Return the union IDL typecode

� enum(Id, Name, ElementList) -> TC
[page 171] Return the enum IDL typecode

� string(Length) -> TC
[page 171] Return the string IDL typecode

� wstring(Length) -> TC
[page 172] Return the wstring IDL typecode

� fixed(Digits, Scale) -> TC
[page 172] Return the fixed IDL typecode

� sequence(ElemTC, Length) -> TC
[page 172] Return the sequence IDL typecode

106 Orber Application

Orber Reference Manual

� array(ElemTC, Length) -> TC
[page 172] Return the array IDL typecode

� alias(Id, Name, AliasTC) -> TC
[page 172] Return the alias IDL typecode

� exception(Id, Name, ElementList) -> TC
[page 172] Return the exception IDL typecode

� get tc(Object) -> TC
[page 173] Fetch typecode

� get tc(Id) -> TC
[page 173] Fetch typecode

� check tc(TC) -> boolean()
[page 173] Check syntax of an IDL typecode

107Orber Application

CosNaming Orber Reference Manual

CosNaming
Erlang Module

The naming service provides the principal mechanism for clients to find objects in an
ORB based world. The naming service provides an initial naming context that functions
as the root context for all names. Given this context clients can navigate in the name
space.

Types that are declared on the CosNaming level are:

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

To get access to the record definitions for the structs use:
-include lib("orber/COSS/CosNaming.hrl")..

Names are not an ORB object but the can be structured in components as seen by the
definition above. There are no requirements on names so the service can support many
different conventions and standards.

There are two different interfaces supported in the service:

� NamingContext

� BindingIterator

IDL specification for CosNaming:

// Naming Service v1.0 described in CORBAservices:
// Common Object Services Specification, chapter 3
// OMG IDL for CosNaming Module, p 3-6

#pragma prefix "omg.org"

module CosNaming
{

108 Orber Application

Orber Reference Manual CosNaming

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface BindingIterator;
interface NamingContext;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed,InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

109Orber Application

CosNaming Orber Reference Manual

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
raises(NotEmpty);

void list (in unsigned long how_many,
out BindingList bl,
out BindingIterator bi);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};
};

110 Orber Application

Orber Reference Manual CosNaming BindingIterator

CosNaming BindingIterator
Erlang Module

This interface allows a client to iterate over the Bindinglist it has been initiated with.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

id and kind are strings.

The type Binding used below is defined as:

-record(’CosNaming_Binding’, {binding_name, binding_type}).

binding name is a Name = [NameComponent] and binding type is an enum which has
the values nobject and ncontext.

Both these records are defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

next one(BindinIterator) -> Return

Types:

� BindingIterator = #objref
� Return = fbool(), Bindingg

This operation returns the next binding and a boolean. The latter is set to true if the
binding is valid otherwise false. If the boolean is false there are no more bindings to
retrieve.

next n(BindinIterator, HowMany) -> Return

Types:

� BindingIterator = #objref
� HowMany = int()
� BindingList = [Binding]
� Return = fbool(), BindingListg

This operation returns a binding list with at most HowMany bindings. If there are no
more bindings it returns false otherwise true.

destroy(BindingIterator) -> Return

Types:

� BindingIterator = #objref

111Orber Application

CosNaming BindingIterator Orber Reference Manual

� Return = ok

This operation destroys the binding iterator.

112 Orber Application

Orber Reference Manual CosNaming NamingContext

CosNaming NamingContext
Erlang Module

This is the object that defines name scopes, names must be unique within a naming
context. Objects may have multiple names and may exist in multiple naming contexts.
Name context may be named in other contexts and cycles are permitted.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

where id and kind are strings.

The type Binding used below is defined as:

-record(’CosNaming_Binding’, {binding_name, binding_type}).

where binding name ia a Name and binding type is an enum which has the values
nobject and ncontext.

Both these records are defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

There are a number of exceptions that can be returned from functions in this interface.

� NotFound is defined as

-record(’CosNaming_NamingContext_NotFound’,
{rest_of_name, why}).

� CannotProceed is defined as

-record(’CosNaming_NamingContext_CannotProceed’,
{rest_of_name, cxt}).

� InvalidName is defined as

-record(’CosNaming_NamingContext_InvalidName’, {}).

� NotFound is defined as

-record(’CosNaming_NamingContext_NotFound’, {}).

� AlreadyBound is defined as

-record(’CosNaming_NamingContext_AlreadyBound’, {}).

� NotEmpty is defined as

-record(’CosNaming_NamingContext_NotEmpty’, {).

These exceptions are defined in the file CosNaming NamingContext.hrl and it is
included with:

-include_lib("orber/COSS/CosNaming/CosNaming_NamingContext.hrl").

113Orber Application

CosNaming NamingContext Orber Reference Manual

Exports

bind(NamingContext, Name, Object) -> Return

Types:

� NameContext = #objref
� Name = [NameComponent]
� Object = #objref
� Return = ok

Creates a binding of a name and an object in the naming context. Naming contexts that
are bound using bind() do not participate in name resolution.

rebind(NamingContext, Name, Object) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Object = #objref
� Return = ok

Creates a binding of a name and an object in the naming context even if the name is
already bound. Naming contexts that are bound using rebind() do not participate in
name resolution.

bind context(NamingContext1, Name, NamingContex2) -> Return

Types:

� NamingContext1 = NamingContext2 =#objref
� Name = [NameComponent]
� Return = ok

The bind context function creates a binding of a name and a naming context in the
current context. Naming contexts that are bound using bind context() participate in
name resolution.

rebind context(NamingContext1, Name, NamingContex2) -> Return

Types:

� NamingContext1 = NamingContext2 =#objref
� Name = [NameComponent]
� Return = ok

The rebind context function creates a binding of a name and a naming context in the
current context even if the name already is bound. Naming contexts that are bound
using rebind context() participate in name resolution.

resolve(NamingContext, Name) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Return = Object

114 Orber Application

Orber Reference Manual CosNaming NamingContext

� Object = #objref

The resolve function is the way to retrieve an object bound to a name in the naming
context. The given name must match exactly the bound name. The type of the object is
not returned, clients are responsible for narrowing the object to the correct type.

unbind(NamingContext, Name) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Return = ok

The unbind operation removes a name binding from the naming context.

new context(NamingContext) -> Return

Types:

� NamingContext = #objref
� Return = #objref

The new context operation creates a new naming context.

bind new context(NamingContext, Name) -> Return

Types:

� NamingContext = #objref
� Name = [NameComponent]
� Return = #objref

The new context operation creates a new naming context and binds it to Name in the
current context.

destroy(NamingContext) -> Return

Types:

� NamingContext = #objref
� Return = ok

The destroy operation disposes the NamingContext object and removes it from the
name server. The context must be empty e.g. not contain any bindings to be removed.

list(NamingContext, HowMany) -> Return

Types:

� NamingContext = #objref
� HowMany = int()
� Return = fok, BindingList, BindingIteratorg
� BindingList = [Binding]
� BindingIterator = #objref

115Orber Application

CosNaming NamingContext Orber Reference Manual

The list operation returns a BindingList with a number of bindings upto HowMany
from the context. It also returns a BindinIterator which can be used to step through the
list. If the total number of existing bindings are less than, or equal to, the HowMany
parameter a NIL object reference is returned.

Note:
One must destroy the BindingIterator, unless it is a NIL object reference, by using
'BindingIterator':destroy(). Otherwise one can get dangling objects.

116 Orber Application

Orber Reference Manual CosNaming NamingContextExt

CosNaming NamingContextExt
Erlang Module

To get access to the record definitions for the structures use:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

This module also exports the functions described in:

� CosNaming NamingContext [page 113]

Exports

to string(NamingContext, Name) -> Return

Types:

� NameContext = #objref
� Name = [NameComponent]
� Return = string() | f'EXCEPTION', NamingContext::InvalidNamefgg

Stringifies a Name sequence to a string.

to name(NamingContext, NameString) -> Return

Types:

� NameContext = #objref
� NameString = string()
� Return = [NameComponent] | f'EXCEPTION', NamingContext::InvalidNamefgg

Converts a stringified Name to a Name sequence.

to url(NamingContext, AddressString, NameString) -> Return

Types:

� NameContext = #objref
� Address = NameString = string()
� Return = URLString | f'EXCEPTION', NamingContext::InvalidNamefgg |
f'EXCEPTION', NamingContextExt::InvalidAddressfgg

This operation takes a corbaloc string and a stringified Name sequence as input and
returns a fully formed URL string.

resolve str(NamingContext, NameString) -> Return

Types:

� NameContext = #objref

117Orber Application

CosNaming NamingContextExt Orber Reference Manual

� NameString = string()
� Return = #objref | f'EXCEPTION', NamingContext::InvalidNamefgg |
f'EXCEPTION', NamingContext::NotFoundfwhy, rest of namegg |
f'EXCEPTION', NamingContext::CannotProceedfcxt, rest of namegg

This operation takes a stringified Name sequence as input and returns the associated, if
any, object.

118 Orber Application

Orber Reference Manual Module Interface

Module Interface
Erlang Module

This module contains the stub/skeleton functions generated by IC.

Starting a Orber server can be done in three ways:

� Normal - when the server dies Orber forgets all knowledge of the server.

� Supervisor child - adding the configuration parameter fsup child, trueg the
oe create link/2 function returns fok, Pid, ObjRefg which can be handled by
the application supervisor/stdlib-1.7 or later.

� Persistent object reference - adding the configuration parameters fpersistent,
trueg and fregname, fglobal, term()gg Orber will remember the object
reference until the server terminates with reason normal or shutdown. Hence, if the
server is started as a transient supervisor child we do not receive a
'OBJECT NOT EXIST' exception when it has crashed and is being restarted.

The Orber stub can be used to start a pseudo object, which will create a non-server
implementation. A pseudo object introduce some limitations:

� The functions oe create link/2 is equal to oe create/2, i.e., no link can or will
be created.

� The BIF:s self() and process flag(trap exit,true) behaves incorrectly.

� The IC option ffimpl, "M::I"g, "other impl"g has no effect. The call-back
functions must be implemented in a file called M I impl.erl

� The IC option from has no effect.

� The call-back functions must be implemented as if the IC option fthis, "M::I"g
was used.

� Server State changes have no effect. The user can provide information via the Env
start parameter and the State returned from init/2 will be the State passed in
following invocations.

� If a call-back function replies with the Timeout parameter set it have no effect.

� Operations defined as oneway are blocking until the operation replies.

� The option fpseudo, trueg overrides all other start options.

� Only the functions, besides own definitions, init/2 (called via oe create*/2) and
terminate/2 (called via corba:dispose/1) must be implemented.

By adopting the rules for pseudo objects described above we can use oe create/2 to
create server or pseudo objects, by excluding or including the option fpseudo, trueg,
without changing the call-back module.

If you start a object without fregname, RegNameg it can only be accessed through the
returned object key. Started with a fregname, RegNameg the name is registered locally
or globally.

119Orber Application

Module Interface Orber Reference Manual

Warning:
To avoid flooding Orber with old object references start erlang using the flag -orber
objectkeys gc time Time, which will remove all object references related to servers
being dead for Time seconds. To avoid extra overhead, i.e., performing garbage
collect if no persistent objects are started, the objectkeys gc time default value is
infinity. For more information, see the orber and corba documentation.

Exports

Module Interface:typeID() -> TypeId

Types:

� TypeId = string(), e.g., ”IDL:Module/Interface:1.0”

Returns the Type ID related to this stub/skeleton

Module Interface:oe create() -> ObjRef

Types:

� ObjRef = #object reference

Start a Orber server.

Module Interface:oe create link() -> ObjRef

Types:

� ObjRef = #object reference

Start a linked Orber server.

Module Interface:oe create(Env) -> ObjRef

Types:

� Env = term()
� ObjRef = #object reference

Start a Orber server passing Env to init/1.

Module Interface:oe create link(Env) -> ObjRef

Types:

� Env = term()
� ObjRef = #object reference

Start a linked Orber server passing Env to init/1.

Module Interface:oe create(Env, Options) -> ObjRef

Types:

� Env = term()
� ObjRef = #object reference

120 Orber Application

Orber Reference Manual Module Interface

� Options = [fsup child, falseg | fpersistent, Boolg | fregname, RegNameg | fpseudo,
Boolg | flocal typecheck, Boolg | fsurvive exit, Boolg | fcreate options,
[CreateOpts]g]

� Bool = true | false
� RegName = fglobal, term()g | flocal, atom()g
� CreateOpts = fdebug, [Dbg]g | ftimeout, Timeg
� Dbg = trace | log | statistics | flog to file, FileNameg

Start a Orber server passing Env to init/1.

If the option fpseudo, trueg is used, all other options are overridden. As default, this
option is set to false.

This function cannot be used for starting a server as supervisor child. If started as
persistent, the options [fpersistent, trueg, fregname, fglobal, term()gg]
must be used and Orber will only forget the object reference if it terminates with reason
normal or shutdown.

The option flocal typecheck, boolean()g, which overrides the Local Typechecking
[page 16] environment flag, turns on or off typechecking. If activated, parameters,
replies and raised exceptions will be checked to ensure that the data is correct, when
invoking operations on CORBA Objects within the same Orber domain. Due to the
extra overhead, this option MAY ONLY be used during testing and development.

fsurvive exit, boolean()g overrides the EXIT Tolerance [page 16] environment
flag. If activated, the server will not terminate, even though the call-back module
returns EXIT.

Time specifies how long time, in milliseconds, the server is allowed to spend initializing.
For more information about the Dbg options, see the sys module.

Module Interface:oe create link(Env, Options) -> Return

Types:

� Env = term()
� Return = ObjRef | fok, Pid, ObjRefg
� ObjRef = #object reference
� Options = [fsup child, Boolg | fpersistent, Boolg | fregname, RegNameg | fpseudo,

Boolg | flocal typecheck, Boolg | fsurvive exit, Boolg | fcreate options,
[CreateOpts]g]

� Bool = true | false
� RegName = fglobal, term()g | flocal, atom()g
� CreateOpts = fdebug, [Dbg]g | ftimeout, Timeg
� Dbg = trace | log | statistics | flog to file, FileNameg
�

�

�

Start a linked Orber server passing Env to init/1.

If the option fpseudo, trueg is used, all other options are overridden and no link will
be created. As default, this option is set to false.

This function can be used for starting a server as persistent or supervisor child. At the
moment [fpersistent, trueg, fregname, fglobal, term()gg] must be used to
start a server as persistent, i.e., if a server died and is in the process of being restarted a
call to the server will not raise ’OBJECT NOT EXIST’ exception. Orber will only forget

121Orber Application

Module Interface Orber Reference Manual

the object reference if it terminates with reason normal or shutdown, hence, the server
must be started as transient (for more information see the supervisor documentation).

The options flocal typecheck, boolean()g and fsurvive exit, boolean()g
behaves in the same way as for oe create/2.

Time specifies how long time, in milliseconds, the server is allowed to spend initializing.
For more information about the Dbg options, see the sys module.

Module Interface:own functions(ObjRef, Arg1, ..., ArgN) -> Reply

Module Interface:own functions(ObjRef, Options, Arg1, ..., ArgN) -> Reply

Types:

� ObjRef = #object reference
� Options = [Option] | Timeout
� Option = ftimeout, Timeoutg
� Timeout = infinity | integer(milliseconds)
� ArgX = specified in the IDL-code.
� Reply = specified in the IDL-code.

The default value for the Timeout option is infinity.

CALLBACK FUNCTIONS

The following functions should be exported from a CORBA callback module.

Exports

Module Interface impl:init(Env) -> CallReply

Types:

� Env = term()
� CallReply = fok, Stateg | fok, State, Timeoutg | ignore | fstop, StopReasong
� State = term()
� Timeout = int() >= 0 | infinity
� StopReason = term()

Whenever a new server is started, init/1 is the first function called in the specified
call-back module.

Module Interface impl:terminate(Reason, State) -> ok

Types:

� Reason = term()
� State = term()

This call-back function is called whenever the server is about to terminate.

Module Interface impl:code change(OldVsn, State, Extra) -> CallReply

Types:

122 Orber Application

Orber Reference Manual Module Interface

� OldVsn = undefined | term()
� State = term()
� Extra = term()
� CallReply = fok, NewStateg
� NewState = term()

Update the internal State.

Module Interface impl:handle info(Info, State) -> CallReply

Types:

� Info = term()
� State = term()
� CallReply = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

If the configuration parameter ffhandle info, “Module::Interface”g, trueg is passed to IC
and process flag(trap exit,true) is set in the init() call-back this function must be
exported.

Note:
To be able to handle the Timeout option in CallReply in the call-back module the
configuration parameter ffhandle info, “Module::Interface”g, trueg must be passed to
IC.

Module Interface impl:own functions(State, Arg1, ..., ArgN) -> CallReply

Module Interface impl:own functions(This, State, Arg1, ..., ArgN) -> CallReply

Module Interface impl:own functions(This, From, State, Arg1, ..., ArgN) ->
ExtCallReply

Module Interface impl:own functions(From, State, Arg1, ..., ArgN) -> ExtCallReply

Types:

� This = the servers #object reference
� State = term()
� ArgX = specified in the IDL-code.
� CallReply = freply, Reply, Stateg | freply, Reply, State, Timeoutg | fstop,

StopReason, Reply, Stateg | fstop, StopReason, Stateg | corba:raise(Exception)
� ExtCallReply = CallReply | corba:reply(From, Reply), fnoreply, Stateg |

corba:reply(From, Reply), fnoreply, State, Timeoutg
� Reply = specified in the IDL-code.
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

All two-way functions must return one of the listed replies or raise any of the
exceptions listed in the IDL code (i.e. raises(...)). If the IC compile options this and/or
from are used, the implementation must accept the This and/or From parameters.

Module Interface impl:own functions(State, Arg1, ..., ArgN) -> CastReply

123Orber Application

Module Interface Orber Reference Manual

Module Interface impl:own functions(This, State, Arg1, ..., ArgN) -> CastReply

Types:

� This = the servers #object reference
� State = term()
� CastReply = fnoreply, Stateg | fnoreply, State, Timeoutg | fstop, StopReason, Stateg
� ArgX = specified in the IDL-code.
� Reply = specified in the IDL-code.
� Timeout = int() >= 0 | infinity
� StopReason = normal | shutdown | term()

All one-way functions must return one of the listed replies. If the IC compile option this
is used, the implementation must accept the This parameter.

124 Orber Application

Orber Reference Manual any

any
Erlang Module

This module contains functions that gives an interface to the CORBA any type.

Note that the any interface in orber does not contain a destroy function because the any
type is represented as an Erlang record and therefor will be removed by the garbage
collector when not in use.

The type TC used below describes an IDL type and is a tuple according to the to the
Erlang language mapping.

The type Any used below is defined as:

-record(any, {typecode, value}).

where typecode is a TC tuple and value is an Erlang term of the type defined by the
typecode field.

Exports

create() -> Result

create(Typecode, Value) -> Result

Types:

� Typecode = TC
� Value = term()
� Result = Any

The create/0 function creates an empty any record and the create/2 function creates an
initialized record.

set typecode(A, Typecode) -> Result

Types:

� A = Any
� Typecode = TC
� Result = Any

This function sets the typecode of A and returns a new any record.

get typecode(A) -> Result

Types:

� A = Any
� Result = TC

125Orber Application

any Orber Reference Manual

This function returns the typecode of A.

set value(A, Value) -> Result

Types:

� A = Any
� Value = term()
� Result = Any

This function sets the value of A and returns a new any record.

get value(A) -> Result

Types:

� A = Any
� Result = term()

This function returns the value of A.

126 Orber Application

Orber Reference Manual corba

corba
Erlang Module

This module contains functions that are specified on the CORBA module level. It also
contains some functions for creating and disposing objects.

Exports

create(Module, TypeID) -> Object

create(Module, TypeID, Env) -> Object

create(Module, TypeID, Env, Optons1) -> Object

create link(Module, TypeID) -> Object

create link(Module, TypeID, Env) -> Object

create link(Module, TypeID, Env, Options2) -> Reply

Types:

� Module = atom()
� TypeID = string()
� Env = term()
� Options1 = [fpersistent, Boolg | fregname, RegNameg | flocal typecheck, Boolg]
� Options2 = [fsup child, Boolg | fpersistent, Boolg | fregname, RegNameg |
fpseudo, Boolg | flocal typecheck, Boolg]

� RegName = flocal, atom()g | fglobal, term()g
� Reply = #objref | fok, Pid, #objrefg
� Bool = true | false
� Object = #objref

These functions start a new server object. If you start it without RegName it can only be
accessed through the returned object key. Started with a RegName the name is
registered locally or globally.

TypeID is the repository ID of the server object type and could for example look like
“IDL:StackModule/Stack:1.0”.

Module is the name of the interface API module.

Env is the arguments passed which will be passed to the implementations init call-back
function.

A server started with create/2, create/3 or create/4 does not care about the parent,
which means that the parent is not handled explicitly in the generic process part.

A server started with create link2, create link/3 or create link/4 is initially linked to the
caller, the parent, and it will terminate whenever the parent process terminates, and
with the same reason as the parent. If the server traps exits, the terminate/2 call-back

127Orber Application

corba Orber Reference Manual

function is called in order to clean up before the termination. These functions should be
used if the server is a worker in a supervision tree.

If you use the option fsup child, trueg create link/4 will return fok, Pid,
#objrefg, otherwise #objref, and make it possible to start a server as a supervisor child
(stdlib-1.7 or later).

If you use the option fpersistent, trueg you also must use the option fregname,
fglobal, Namegg. This combination makes it possible to tell the difference between a
server permanently terminated or in the process of restarting.

The option fpseudo, trueg, allow us to create an object which is not a server. Using
fpseudo, trueg overrides all other start options. For more information see section
Module Interface.

If a server is started using the option fpersistent, trueg the object key will not be
removed unless it terminates with reason normal or shutdown. Hence, if persistent
servers is used as supervisor childs they should be transient and the objectkeys gc time
should be modified (default equals infinity).

The option flocal typecheck, boolean()g, which overrides the Local Typechecking
[page 16] environment flag, turns on or off typechecking. If activated, parameters,
replies and raised exceptions will be checked to ensure that the data is correct, when
invoking operations on CORBA Objects within the same Orber domain. Due to the
extra overhead, this option MAY ONLY be used during testing and development.

Example:

corba:create(’StackModule_Stack’, "IDL:StackModule/Stack:1.0",
{10, test})

dispose(Object) -> ok

Types:

� Object = #objref

This function is used for terminating the execution of a server object. Invoking this
operation on a NIL object reference, e.g., the return value of
corba:create nil objref/0, always return ok. For valid object references, invoking
this operation more than once, will result in a system exception.

create nil objref() -> Object

Types:

� Object = #objref representing NIL.

Creates an object reference that represents the NIL value. Attempts to invoke
operations using the returned object reference will return a system exception.

create subobject key(Object, Key) -> Result

Types:

� Object = #objref
� Key = term()
� Result = #objref

128 Orber Application

Orber Reference Manual corba

This function is used to create a subobject in a server object. It can for example be
useful when one wants unique access to separate rows in a mnesia or an ETS table. The
Result is an object reference that will be seen as a unique reference to the outside world
but will access the same server object where one can use the get subobject key/1
function to get the private key value.

Key is stored in the object reference Object. If it is a binary it will be stored as is and
otherwise it is converted to a binary before storage.

get subobject key(Object) -> Result

Types:

� Object = #objref
� Result = #binary

This function is used to fetch a subobject key from the object reference Object. The
result is a always a binary, if it was an Erlang term that was stored with
create subobject key/2 one can to do binary to term/1 to get the real value.

get pid(Object) -> Result

Types:

� Object = #objref
� Result = #pid | ferror, Reasong | f'EXCEPTION',Eg

This function is to get the process id from an object, which is a must when CORBA
objects is started/handled in a supervisor tree. The function will throw exceptions if the
key is not found or some other error occurs.

raise(Exception)

Types:

� Exception = record()

This function is used for raising corba exceptions as an Erlang user generated exit signal.
It will throw the tuple f’EXCEPTION’, Exceptiong.

reply(To, Reply) -> true

Types:

� To = client reference
� Reply = IDL type

This function can be used by a CORBA object to explicitly send a reply to a client that
invoked a two-way operation. If this operation is used, it is not possible to return a reply
in the call-back module.
To must be the From argument provided to the callback function, which requires that
the IC option from was used when compiling the IDL-file.

resolve initial references(ObjectId) -> Object

Types:

� ObjectId = string()
� Object = #objref

129Orber Application

corba Orber Reference Manual

This function returns the object reference associated with the given object id. Initially,
only "NameService" is available. To add or remove services use
add initial service/2 or remove initial service/1.

add initial service(ObjectId, Object) -> boolean()

Types:

� ObjectId = string()
� Object = #objref

This operation allows us to add initial services, which can be accessed by using
resolve initial references/1 or the corbaloc schema. If using an Id defined by the
OMG, the given object must be of the correct type; for more information see the
Interoperable Naming Service [page 45]. Returns false if the given id already exists.

remove initial service(ObjectId) -> boolean()

Types:

� ObjectId = string()

If we don not want a certain service to be accessible, invoking this function will remove
the association. Returns true if able to terminate the binding. If no such binding
existed false is returned.

list initial services() -> [ObjectId]

Types:

� ObjectId = string()

This function returns a list of allowed object id's.

resolve initial references remote(ObjectId, Address) -> Object

Types:

� Address = [RemoteModifier]
� RemoteModifier = string()
� ObjectId = string()
� Object = #objref

This function returns the object reference for the object id asked for. The remote
modifier string has the following format: "iiop://host:port".

Warning:
This operation is not supported by most ORB's. Hence, use
corba:string to object/1 instead.

list initial services remote(Address) -> [ObjectId]

Types:

� Address = [RemoteModifier]
� RemoteModifier = string()

130 Orber Application

Orber Reference Manual corba

� ObjectId = string()

This function returns a list of allowed object id's. The remote modifier string has the
following format: "iiop://host:port".

Warning:
This operation is not supported by most ORB's. Hence, avoid using it.

object to string(Object) -> IOR string

Types:

� Object = #objref
� IOR string = string()

This function returns the object reference as the external string representation of an
IOR.

string to object(IOR string) -> Object

Types:

� IOR string = string()
� Object = #objref

This function takes a corbaname, corbaloc or an IOR on the external string
representation and returns the object reference.

To lookup the NameService reference, simply use
"corbaloc:iiop:1.2@123.456.789.012:4001/NameService"

We can also resolve an object from the NameService by using
"corbaname:iiop:1.2@123.456.789.012:4001/NameService#org/Erlang/MyObj"

For more information about corbaname and corbaloc, see the User's Guide
(Interoperable Naming Service).

print object(Data [, Type]) -> ok | f’EXCEPTION’, Eg | f’EXIT’, Rg | string()

Types:

� Data = IOR string | #objref (local or external) | corbaloc/corbaname string
� Type = IoDevice | error report | ferror report, Reasong | info msg | finfo msg,

Commentg | string
� IoDevice = see the io-module
� Reason = Comment = string()

The object represented by the supplied data is dissected and presented in a more
readable form. The Type parameter is optional; if not supplied standard output is used.
For error report and info msg the error logger module is used, with or without
Reason or Comment. If the atom string is supplied this function will return a flat list.
The IoDevice is passed to the operation io:format/2.

If the supplied object is a local reference, the output is equivalent to an object exported
from the node this function is invoked on.

add alternate iiop address(Object, Host, Port) -> NewObject | f’EXCEPTION’, Eg

131Orber Application

corba Orber Reference Manual

Types:

� Object = NewObject = local #objref
� Host = string()
� Port = integer()

This operation creates a new instance of the supplied object containg an
ALTERNATE IIOP ADDRESS component. Only the new instance contains the new
component. When this object is passed to another ORB, which supports the
ALTERNATE IIOP ADDRESS, requests will be routed to the alternate address if it is
not possible to communicate with the main address.

The ALTERNATE IIOP ADDRESS component requires that IIOP-1.2 is used. Hence,
make sure both Orber and the other ORB is correctly configured.

Note:
Make sure that the given Object is accessible via the alternate Host/port. For
example, if the object is correctly started as local or pseudo, the object should be
available on all nodes within a multi-node Orber installation. Since only one instance
exists for other object types, it will not be possible to access it if the node it was
started on terminates.

orb init(KeyValueList) -> ok | f’EXIT’, Reasong

Types:

� KeyValueList = [fKey, Valueg]
� Key = any key listed in the configuration chapter
� Value = allowed value associated with the given key

This function allows the user to configure Orber in, for example, an Erlang shell. Orber
may NOT be started prior to invoking this operation. For more information, see
configuration settings [page 14] in the User's Guide.

132 Orber Application

Orber Reference Manual corba object

corba object
Erlang Module

This module contains the CORBA Object interface functions that can be called for all
objects.

Exports

get interface(Object) -> InterfaceDef

Types:

� Object = #objref
� InterfaceDef = term()

This function returns the full interface description for an object.

is nil(Object) -> boolean()

Types:

� Object = #objref

This function checks if the object reference has a nil object value, which denotes no
object. It is the reference that is tested and no object implementation is involved in the
test.

is a(Object, Logical type id) -> Return

Types:

� Object = #objref
� Logical type id = string()

The Logical type id is a string that is a share type identifier (repository id). The function
returns true if the object is an instance of that type or an ancestor of the “most derived”
type of that object.

Note: Other ORB suppliers may not support this function completely according to the
OMG specification. Thus, a is a call may raise an exception or respond unpredictable if
the Object is located on a remote node.

is remote(Object) -> boolean()

Types:

� Object = #objref

This function returns true if an object reference is remote otherwise false.

133Orber Application

corba object Orber Reference Manual

non existent(Object) -> Return

Types:

� Object = #objref
� Return = boolean() | fEXCEPTION, g

This function can be used to test if the object has been destroyed. It does this without
invoking any application level code. The ORB returns true if it knows that the object is
destroyed otherwise false.

Note: The OMG have specified two different operators, not existent (CORBA
version 2.0 and 2.2) and non existent (CORBA version 2.3), to be used for this
function. It is not mandatory to support both versions. Thus, a non existent call may
raise an exception or respond unpredictable if the Object is located on a remote node.
Depending on which version, ORB:s you intend to communicate with supports, you
can either use this function or not existent/1.

not existent(Object) -> Return

Types:

� Object = #objref
� Return = boolean() | fEXCEPTION, g

This function is implemented due to Interoperable purposes. Behaves as non existent
except the operator not existent is used when communicating with other ORB:s.

is equivalent(Object, OtherObject) -> boolean()

Types:

� Object = #objref
� OtherObject = #objref

This function is used to determine if two object references are equivalent so far the
ORB easily can determine. It returns true if the target object reference is equal to the
other object reference and false otherwise.

hash(Object, Maximum) -> int()

Types:

� Object = #objref
� Maximum = int()

This function returns a hash value based on the object reference that not will change
during the lifetime of the object. The Maximum parameter denotes the upper bound of
the value.

134 Orber Application

Orber Reference Manual fixed

fixed
Erlang Module

This module contains functions that gives an interface to the CORBA fixed type.

The type Fixed used below is defined as:

-record(fixed, {digits, scale, value}).

where digits is the total amount of digits it consists of and scale is the number of
fractional digits. The value field contains the actual Fixed value represented as an
integer. The limitations of each field are:

� Digits - integer(), -1 > Digits < 32

� Scale - integer(), -1 > Scale =< Digits

� Value - integer(), range (31 digits): 9999999999999999999999999999999

Since the Value part is represented by an integer, it is vital that the Digits and Scale
values are correct. This also means that trailing zeros cannot be left out in some cases:

� fixed<5,3> eq. 03.140d eq. 3140

� fixed<3,2> eq. 3.14d eq. 314

Leading zeros can be left out.

For your convenience, this module exports functions which handle unary (-) and binary
(+-*/) operations legal for the Fixed type. Since a unary + have no effect, this module
do not export such a function. Any of the binary operations may cause an overflow (i.e.
more than 31 significant digits; leading and trailing zeros are not considered significant).
If this is the case, the Digit and Scale values are adjusted and the Value truncated (no
rounding performed). This behavior is compliant with the OMG CORBA specification.
Each binary operation have the following upper bounds:

� Fixed1 + Fixed2 - fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

� Fixed1 - Fixed2 - fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

� Fixed1 * Fixed2 - fixed<d1+d2, s1+s2>

� Fixed1 / Fixed2 - fixed<(d1-s1+s2) + Sinf ,Sinf >

A quotient may have an arbitrary number of decimal places, which is denoted by a scale
of Sinf.

135Orber Application

fixed Orber Reference Manual

Exports

create(Digits, Scale, Value) -> Result

Types:

� Result = Fixed Type | f'EXCEPTION', #'BAD PARAM'fgg

This function creates a new instance of a Fixed Type. If the limitations is not fulfilled
(e.g. overflow) an exception is raised.

get typecode(Fixed) -> Result

Types:

� Result = TypeCode | f'EXCEPTION', #'BAD PARAM'fgg

Returns the TypeCode which represents the supplied Fixed type. If the parameter is not
of the correct type, an exception is raised.

add(Fixed1, Fixed2) -> Result

Types:

� Result = Fixed1 + Fixed2 | f'EXCEPTION', #'BAD PARAM'fgg

Performs a Fixed type addition. If the parameters are not of the correct type, an
exception is raised.

subtract(Fixed1, Fixed2) -> Result

Types:

� Result = Fixed1 - Fixed2 | f'EXCEPTION', #'BAD PARAM'fgg

Performs a Fixed type subtraction. If the parameters are not of the correct type, an
exception is raised.

multiply(Fixed1, Fixed2) -> Result

Types:

� Result = Fixed1 * Fixed2 | f'EXCEPTION', #'BAD PARAM'fgg

Performs a Fixed type multiplication. If the parameters are not of the correct type, an
exception is raised.

divide(Fixed1, Fixed2) -> Result

Types:

� Result = Fixed1 / Fixed2 | f'EXCEPTION', #'BAD PARAM'fgg

Performs a Fixed type division. If the parameters are not of the correct type, an
exception is raised.

unary minus(Fixed) -> Result

Types:

� Result = -Fixed | f'EXCEPTION', #'BAD PARAM'fgg

Negates the supplied Fixed type. If the parameter is not of the correct type, an
exception is raised.

136 Orber Application

Orber Reference Manual interceptors

interceptors
Erlang Module

This module contains the mandatory functions for user supplied native interceptors and
their intended behaviour. See also the User's Guide.

Warning:
Using Interceptors may reduce the through-put significantly if the supplied
interceptors invoke expensive operations. Hence, one should always supply
interceptors which cause as little overhead as possible.

Warning:
It is possible to alter the Data, Bin and Args parmeter for the in reply and
out reply, in reply encoded, in request encoded, out reply encoded and
out request encoded, in request and out request respectively. But, if it is done
incorrectly, the consequences can be serious.

Note:
The Extra parameter is set to 'undefined' by Orber when calling the first interceptor
and may be set to any erlang term. If an interceptor change this parameter it will be
passed on to the next interceptor in the list uninterpreted.

Note:
The Ref parameter is set to 'undefined' by Orber when calling new in connection or
new out connection using the first interceptor. The user supplied interceptor may
set NewRef to any erlang term. If an interceptor change this parameter it will be
passed on to the next interceptor in the list uninterpreted.

137Orber Application

interceptors Orber Reference Manual

Exports

new in connection(Ref, Host, Port) -> NewRef

Types:

� Ref = term() | undefined
� Host = string(), e.g., ”myHost@myServer” or ”012.345.678.910”
� Port = integer
� NewRef = term() | f'EXIT', Reasong

When a new connection is requested by a client side ORB this operation is invoked. If
more than one interceptor is supplied, e.g., fnative, [’myInterceptor1’,
’myInterceptor2’]g, the return value from 'myInterceptor1' is passed to
'myInterceptor2' as Ref. Initially, Orber uses the atom 'undefined' as Ref parameter
when calling the first interceptor. The return value from the last interceptor, in the
example above 'myInterceptor2', is passed to all other functions exported by the
interceptors. Hence, the Ref parameter can, for example, be used as a unique identifier
to mnesia or ets where information/restrictions for this connection is stored.

The Host and Port variables supplied is the peer data of the client ORB which
requested a new connection.

If, for some reason, we do not allow the client ORB to connect simply invoke
exit(Reason).

new out connection(Ref, Host, Port) -> NewRef

Types:

� Ref = term() | undefined
� Host = string(), e.g., ”myHost@myServer” or ”012.345.678.910”
� Port = integer
� NewRef = term() | f'EXIT', Reasong

When a new connection is set up this function is invoked. Behaves just like
new in connection; the only difference is that the Host and Port variables identifies the
target ORB's bootstrap data.

closed in connection(Ref) -> NewRef

Types:

� Ref = term()
� NewRef = term()

When an existing connection is terminated this operation is invoked. The main purpose
of this function is to make it possible for a user to clean up all data associated with the
associated connection.

The input parameter Ref is the return value from new in connection/3.

closed out connection(Ref) -> NewRef

Types:

� Ref = term()
� NewRef = term()

138 Orber Application

Orber Reference Manual interceptors

When an existing connection is terminated this operation is invoked. The main purpose
of this function is to make it possible for a user to clean up all data associated with the
associated connection.

The input parameter Ref is the return value from new out connection/3.

in reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()
� Data = [Result, OutParameter1, ..., OutPramaterN]
� Reply = fNewData, NewExtrag

When replies are delivered from the server side ORB to the client side ORB this
operation is invoked. The Data parameter is a list in which the first element is the
return value value from the target object and the rest is a all parameters defined as out
or inout in the IDL-specification.

in reply encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()
� Bin = #binary
� Reply = fNewBin, NewExtrag

When replies are delivered from the server side ORB to the client side ORB this
operation is invoked. The Bin parameter is the reply body still uncoded.

in request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()
� Args = [Argument] - defined in the IDL-specification
� Reply = fNewArgs, NewExtrag

When a new request arrives at the server side ORB this operation is invoked.

in request encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()

139Orber Application

interceptors Orber Reference Manual

� Bin = #binary
� Reply = fNewBin, NewExtrag

When a new request arrives at the server side ORB this operation is invoked before
decoding the request body.

out reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()
� Data = [Result, OutParameter1, ..., OutPramaterN]
� Reply = fNewData, NewExtrag

After the target object have been invoked this operation is invoked with the result. The
Data parameter is a list in which the first element is the return value value from the
target object and the rest is a all parameters defined as out or inout in the
IDL-specification.

out reply encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()
� Bin = #binary
� Reply = fNewBin, NewExtrag

This operation is similar to out reply; the only difference is that the reply body have
been encoded.

out request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]
� Op = atom()
� Args = [Argument] - defined in the IDL-specification
� Reply = fNewArgs, NewExtrag

Before a request is sent to the server side ORB, out request is invoked.

out request encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply

Types:

� Ref = term()
� Obj = #objref
� Ctx = [#'IOP ServiceContext'fg]

140 Orber Application

Orber Reference Manual interceptors

� Op = atom()
� Bin = #binary
� Reply = fNewBin, NewExtrag

This operation is similar to out request; the only difference is that the request body
have been encoded.

141Orber Application

lname Orber Reference Manual

lname
Erlang Module

This interface is a part of the names library which is used to hide the representation of
names. In orbers Erlang mapping the pseodo-object names and the real IDL names have
the same representation but it is desirable that the clients uses the names library so they
will not be dependent of the representation. The lname interface supports handling of
names e.g. adding and removing name components.

Note that the lname interface in orber does not contain a destroy function because the
Names are represented as standard Erlang lists and therefor will be removed by the
garbage collector when not in use.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

id and kind are strings.

The record is defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

create() -> Return

Types:

� Return = [NameComponent]

This function returns a new name.

insert component(Name, N, NameComponent) -> Return

Types:

� Name = [NameComponent]
� N = int()
� Return = Name

This function returns a name where the new name component has been inserted as
component N in Name.

get component(Name, N) -> Return

Types:

� Name = [NameComponent]
� N = int()
� Return = NameComponent

142 Orber Application

Orber Reference Manual lname

This function returns the N:th name compnent in Name.

delete component(Name, N) -> Return

Types:

� Name = [NameComponent]
� N = int()
� Return = Name

This function deletes the N:th name component from Name and returns the new name.

num components(Name) -> Return

Types:

� Name = [NameComponent]
� Return = int()

This function returns a the number of name components in Name.

equal(Name1, Name2) -> Return

Types:

� Name1 = Name2 = [NameComponent]
� Return = bool()

This function returns true if the two names are equal and false otherwise.

less than(Name1, Name2) -> Return

Types:

� Name1 = Name2 = [NameComponent]
� Return = bool()

This function returns true if Name1 are lesser than Name2 and false otherwise.

to idl form(Name) -> Return

Types:

� Name = [NameComponent]
� Return = Name

This function just checks if Name is a correct IDL name before returning it because the
name representation is the same for pseudo and IDL names in orber.

from idl form(Name) -> Return

Types:

� Name = [NameComponent]
� Return = Name

This function just returns the Name because the name representation is the same for
pseudo and IDL names in orber.

143Orber Application

lname component Orber Reference Manual

lname component
Erlang Module

This interface is a part of the name library, which is used to hide the representation of
names. In orbers Erlang mapping the pseodo-object names and the real IDL names have
the same representation but it is desirable that the clients uses the names library so they
will not be dependent of the representation. The lname component interface supports
handling of name components e.g. set and get of the struct members.

Note that the lname component interface in orber does not contain a destroy function
because the NameComponents are represented as Erlang records and therefor will be
removed by the garbage collector when not in use.

The type NameComponent used below is defined as:

-record(’CosNaming_NameComponent’, {id, kind=""}).

id and kind are strings.

The record is defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

create() -> Return

Types:

� Return = NameComponent

This function returns a new name component.

get id(NameComponent) -> Return

Types:

� Return = string()

This function returns the id string of a name component.

set id(NameComponent, Id) -> Return

Types:

� Id = string()
� Return = NameComponent

This function sets the id string of a name component and returns the component.

get kind(NameComponent) -> Return

144 Orber Application

Orber Reference Manual lname component

Types:

� Return = string()

This function returns the id string of a name component.

set kind(NameComponent, Kind) -> Return

Types:

� Kind = string()
� Return = NameComponent

This function sets the kind string of a name component and returns the component.

145Orber Application

orber Orber Reference Manual

orber
Erlang Module

This module contains the functions for starting and stopping the application. It also has
some utility functions to get some of the configuration information from running
application.

Exports

start() -> ok

start(Type) -> ok

Types:

� Type = temporary | permanent

Starts the Orber application (it also starts mnesia if it is not running). Which Type
parameter is supplied determines the behavior. If not supplied Orber is started as
temporary. See the Reference Manual application(3) for further information.

start lightweight() -> ok

Starts the Orber application as lightweight.

Preconditions:

� Erlang started on the node using the option -orber lightweight, e.g., erl -orber
lightweight Addresses.

� The Addresses must be a list of RemoteModifiers, equal to the
orber:resolve initial references remote/2 argument. The list must contain
Orber nodes addresses, to which we have access and are not started as lightweight.

start lightweight(Addresses) -> ok

Types:

� Addresses = [Address]
� Address =
� RetVal = ok | exit()

Starts the Orber application as lightweight.

Preconditions:

� If Erlang is started using the configuration parameter -orber lightweight, e.g., erl
-orber lightweight Address, the argument supplied to this function will override
the configuration parameter. Hence, this function must be used carefully.

146 Orber Application

Orber Reference Manual orber

� The Addresses must be a list of RemoteModifiers, equal to the
orber:resolve initial references remote/2 argument. The list must contain
Orber nodes addresses, to which we have access and are not started as lightweight.

jump start(Port) -> ok | f’EXIT’, Reasong

Types:

� Port = integer()

Installs and starts the Orber and the Mnesia applications with the configuration
parameters domain and iiop port set to "IP-number:Port" and the supplied Port
respectively. Theses settings are in most cases sufficient to ensure that no clash with any
other Orber instance occur. If this operation fails, check if the listen port (iiop port) is
already in use. This function MAY ONLY be used during development and tests; how
Orber is configured when using this operation may change at any time without warning.

stop() -> ok

Stops the Orber application.

info() -> ok

info(IoType) -> ok | f’EXIT’, Reasong | string()

Types:

� IoType = info msg | string | io | fio, IoDeviceg

Generates an Info Report, which contain Orber's configuration settings. If no IoType is
supplied, info msg is used (see the error logger documentation). When the atom string
is supplied this function will return a flat list. For io and fio, IoDeviceg,
io:format/1 and io:format/3 is used respectively.

exception info(Exception) -> fok, string()g | ferror, Reasong

Returns a printable string, which describes the supplied exception in greater detail.
Note, this function is mainly intended for system exceptions.

is lightweight() -> boolean()

This function returns the true if Orber is started as lightweight, false otherwise.

get lightweight nodes() -> RemoteModifierList | false

This function returns false if Orber is not started as lightweight, otherwise a list of
Remote Modifiers.

get tables() -> [Tables]

Returns a list of the Orber specific Mnesia tables. This list is required to restore Mnesia
if it has been partitioned.

get ORBInitRef() -> string() | undefined

147Orber Application

orber Orber Reference Manual

This function returns undefined if we will resolve references locally, otherwise a string
describing which host we will contact if the Key given to
corba:resolve initial references/1 matches the Key set in this configuration
variable. For more information see the user's guide.

get ORBDefaultInitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string
describing which host, or hosts, from which we will try to resolve the Key given to
corba:resolve initial references/1. For more information see the user's guide.

domain() -> string()

This function returns the domain name of the current Orber domain as a string.

iiop port() -> int()

This function returns the port-number, which is used by the IIOP protocol. It can be
configured by setting the application variable iiop port, if it is not set it will have the
default number 4001.

iiop out ports() -> 0 | fMin, Maxg

The return value of this operation is what the configuration parameter iiop out ports
[page 14] have been set to.

iiop ssl port() -> int()

This function returns the port-number, which is used by the secure IIOP protocol. It
can be configured by setting the application variable iiop ssl port, if it is not set it will
have the default number 4002 if Orber is to configured to run in secure mode.
Otherwise it returns -1.

iiop timeout() -> int() (milliseconds)

This function returns the timeout value after which outgoing IIOP requests terminate.
It can be configured by setting the application variable iiop timeout TimeVal (seconds), if
it is not set it will have the default value infinity. If a request times out a system
exception, e.g. TIMEOUT, is raised.

Note: the iiop timeout configuration parameter (TimeVal) may only range between 0
and 1000000 seconds. Otherwise, the default value is used.

Note: IC supply the compile option ic:gen(IdlFile,
[ftimeout,"module::interface"g]), which allow the user to add an extra timeout
parameter, e.g., module interface(ObjRef, Timeout, ... Arguments ...), instead
of module interface(ObjRef, ... Arguments ...). If, a stub is compiled with the
timeout option, the extra Timeout argument will override the configuration parameter
iiop timeout. It is, however, not possible to use infinity to override the Timeout
parameter. The Timeout option is also valid for objects which resides within the same
Orber domain.

iiop connection timeout() -> int() (milliseconds)

148 Orber Application

Orber Reference Manual orber

This function returns the timeout value after which outgoing IIOP connections
terminate. It can be configured by setting the application variable iiop connection timeout
TimeVal (seconds), if it is not set it will have the default value infinity. The connection
will not be terminated if there are pending requests.

Note: the iiop connection timeout configuration parameter (TimeVal) may only range
between 0 and 1000000 seconds. Otherwise, the default value is used.

iiop connections() -> Result

iiop connections(Direction) -> Result

Types:

� Result = [fHost, Portg] | f'EXIT',Reasong
� Direction = in | out | inout

The list returned by this operation contain tuples of remote hosts/ports Orber is
currently connected to. If no Direction is not supplied, both incoming and outgoing
connections are included.

iiop connections pending() -> [fHost, Portg] | f’EXIT’,Reasong

In some cases a connection attempt (i.e. trying to communicate with another ORB) may
block due to a number of reasons. This operation allows the user to check if this is the
case. The returned list contain tuples of remote hosts/ports. Normally, the list is empty.

iiop in connection timeout() -> int() (milliseconds)

This function returns the timeout value after which incoming IIOP connections
terminate. It can be configured by setting the application variable
iiop in connection timeout TimeVal (seconds), if it is not set it will have the default value
infinity. The connection will not be terminated if there are pending requests.

Note: the iiop in connection timeout configuration parameter (TimeVal) may only
range between 0 and 1000000 seconds. Otherwise, the default value is used.

secure() -> no | ssl

This function returns the security mode Orber is running in, which is either no if it is an
insecure domain or the type of security mechanism used. For the moment the only
security mechanism is ssl. This is configured by setting the application variable secure.

ssl server certfile() -> string()

This function returns a path to a file containing a chain of PEM encoded certificates for
the Orber domain as server. This is configured by setting the application variable
ssl server certfile.

ssl client certfile() -> string()

This function returns a path to a file containing a chain of PEM encoded certificates
used in outgoing calls in the current process. The default value is configured by setting
the application variable ssl client certfile.

set ssl client certfile(Path) -> ok

Types:

149Orber Application

orber Orber Reference Manual

� Path = string()

This function takes a path to a file containing a chain of PEM encoded certificates as
parameter and sets it for the current process.

ssl server verify() -> 0 | 1 | 2

This function returns the type of verification used by SSL during authentication of the
other peer for incoming calls. It is configured by setting the application variable
ssl server verify.

ssl client verify() -> 0 | 1 | 2

This function returns the type of verification used by SSL during authentication of the
other peer for outgoing calls. The default value is configured by setting the application
variable ssl client verify.

set ssl client verify(Value) -> ok

Types:

� Value = 0 | 1 | 2

This function sets the SSL verification type for the other peer of outgoing calls.

ssl server depth() -> int()

This function returns the SSL verification depth for incoming calls. It is configured by
setting the application variable ssl server depth.

ssl client depth() -> int()

This function returns the SSL verification depth for outgoing calls. The default value is
configured by setting the application variable ssl client depth.

set ssl client depth(Depth) -> ok

Types:

� Depth = int()

This function sets the SSL verification depth for the other peer of outgoing calls.

objectkeys gc time() -> int() (seconds)

This function returns the timeout value after which after which terminated object keys,
related to servers started with the configuration parameter fpersistent, trueg, will
be removed. It can be configured by setting the application variable objectkeys gc time
TimeVal (seconds), if it is not set it will have the default value infinity.

Objects terminating with reason normal or shutdown are removed automatically.

Note: the objectkeys gc time configuration parameter (TimeVal) may only range
between 0 and 1000000 seconds. Otherwise, the default value is used.

orber nodes() -> RetVal

Types:

� RetVal = [node()]

150 Orber Application

Orber Reference Manual orber

This function returns the list of node names that this orber domain consists of.

install(NodeList) -> ok

install(NodeList, Options) -> ok

Types:

� NodeList = [node()]
� Options = [Option]
� Option = finstall timeout, Timeoutg | fifr storage type, TableTypeg |
fnameservice storage type, TableTypeg | finitialreferences storage type, TableTypeg

� Timeout = infinity | integer()
� TableType = disc copies | ram copies

This function installs all the necessary mnesia tables and load default data in some of
them. If one or more Orber tables already exists the installation fails. The function
uninstall may be used, if it is safe, i.e., no other application is running Orber.

Preconditions:

� a mnesia schema must exist before the installation

� mnesia is running on the other nodes if the new installation shall be a multi node
domain

Mnesia will be started by the function if it is not already running on the installation
node and if it was started it will be stopped afterwards.

The options that can be sent to the installation program is:

� finstall timeout, Timeoutg - this timeout is how long we will wait for the
tables to be created. The Timeout value can be infinity or an integer number in
milliseconds. Default is infinity.

� fifr storage type, TableTypeg - this option sets the type of tables used for the
interface repository. The TableType can be disc copies or ram copies. Default is
disc copies.

� finitialreferences storage type, TableTypeg - this option sets the type of
table used for storing initial references. The TableType can be disc copies or
ram copies. Default is ram copies.

� fnameservice storage type, TableTypeg - the default behavior of Orber is to
install the NameService as ram copies. This option makes it possible to change this
to disc copies. But the user should be aware of that if a node is restarted, all local
object references stored in the NameService is not valid. Hence, you cannot switch
to disc copies and expect exactly the same behavior as before.

uninstall() -> ok

This function stops the Orber application, terminates all server objects and removes all
Orber related mnesia tables.

Note: Since other applications may be running on the same node using mnesia uninstall
will not stop the mnesia application.

add node(Node, Options) -> RetVal

Types:

151Orber Application

orber Orber Reference Manual

� Node = node()
� Options = IFRStorageType | [KeyValue]
� IFRStorageType = StorageType
� StorageType = disc copies | ram copies
� KeyValue = fifr storage type, StorageTypeg | finitialreferences storage type,

StorageTypeg | fnameservice storage type, StorageTypeg | ftype, Typeg
� Type = temporary | permanent
� RetVal = ok | exit()

This function add given node to a existing Orber node group and starts Orber on the
new node. orber:add node is called from a member in the Orber node group.

Preconditions for new node:

� Erlang started on the new node using the option -mnesia extra db nodes, e.g.,
erl -sname new node name -mnesia extra db nodes ConnectToNodes List

� The new node's domain name is the same for the nodes we want to connect to.

� Mnesia is running on the new node (no new schema created).

� If the new node will use disc copies the schema type must be changed using:
mnesia:change table copy type(schema, node(), disc copies).

Orber will be started by the function on the new node.

Fails if:

� Orber already installed on given node.

� Mnesia not started as described above on the new node.

� Impossible to copy data in Mnesia tables to the new node.

� Not able to start Orber on the new node, due to, for example, the iiop port is
already in use.

The function do not remove already copied tables after a failure. Use
orber:remove node to remove these tables.

remove node(Node) -> RetVal

Types:

� Node = node()
� RetVal = ok | exit()

This function removes given node from a Orber node group. The Mnesia application is
not stopped.

configure(Key, Value) -> ok | f’EXIT’, Reasong

Types:

� Key = orbDefaultInitRef | orbInitRef | giop version | iiop timeout |
iiop connection timeout | iiop setup connection timeout |
iiop in connection timeout | objectkeys gc time | orber debug level

� Value = allowed value associated with the given key

152 Orber Application

Orber Reference Manual orber

This function allows the user to configure Orber in, for example, an Erlang shell. It is
possible to invoke configure at any time the keys specified above.

Any other key must be set before installing and starting Orber.

Trying to change the configuration in any other way is NOT allowed since it may affect
the behavior of Orber.

For more information regarding allowed values, see configuration settings [page 14] in
the User's Guide.

Note:
Configuring the IIOP timeout values will not affect already existing connections. If
you want a guaranteed uniform behavior, you must set these parameters from the
start.

153Orber Application

orber diagnostics Orber Reference Manual

orber diagnostics
Erlang Module

This module contains functions which makes it possible to run simple tests.

Warning:
Functions exported by this module may only be used during test and development
phase.

Exports

nameservice() -> Result

nameservice(Flags) -> Result

Types:

� Flags = integer()
� Result = ok | f'EXCEPTION', Eg

Displays all objects stored in the NameService. Existent checks are, per default, also
performed on all local objects. This can also be activated for external objects by setting
the flag 16#01. The displayed information is the stringified Name described in
CosNaming NamingContextExt [page 117], existent status (true | false | external |
undefined) and the IFR-Id:

host/
host/resources/
host/resources/MyObj/ [false] IDL:MyMod/MyIntf:1.0

missing modules() -> Count

Types:

� Count = integer()

This operation list missing modules generated by IC and required by Orber. Requires
that all API:s are registered in the IFR.

154 Orber Application

Orber Reference Manual orber ifr

orber ifr
Erlang Module

This module contains functions for managing the Interface Repository (IFR). This
documentation should be used in conjunction with the documentation in chapter 6 of
CORBA 2.3. Whenever the term IFR object is used in this manual page, it refers to a
pseudo object used only for interaction with the IFR rather than a CORBA object.

Initialisation of the IFR

The following functions are used to initialise the Interface Repository and to obtain the
initial reference to the repository.

Exports

init(Nodes,Timeout) -> ok

Types:

� Nodes = list()
� Timeout = integer() | infinity

This function should be called to initialise the IFR. It creates the necessary
mnesia-tables. A mnesia schema should exist, and mnesia must be running.

find repository() -> #IFR Repository objref

Find the IFR object reference for the Repository. This reference should be used when
adding objects to the IFR, and when extracting information from the IFR. The first time
this function is called, it will create the repository and all the primitive definitions.

General methods

The following functions are the methods of the IFR. The first argument is always an
#IFR objref, i.e. the IFR (pseudo)object on which to apply this method. These
functions are useful when the type of IFR object is not know, but they are somewhat
slower than the specific functions listed below which only accept a particular type of
IFR object as the first argument.

155Orber Application

orber ifr Orber Reference Manual

Exports

get def kind(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = atom() (one of dk none, dk all, dk Attribute, dk Constant, dk Exception,

dk Interface, dk Module, dk Operation, dk Typedef, dk Alias, dk Struct, dk Union,
dk Enum, dk Primitive, dk String, dk Wstring, dk Fixed, dk Sequence, dk Array,
dk Repository)

Objref is an IFR object of any kind. Returns the definition kind of the IFR object.

destroy(Objref) -> Return

Types:

� Objref = #IFR object
� Return = tuple()

Objref is an IFR object of any kind except IRObject, Contained and Container. Destroys
that object and its contents (if any). Returns whatever mnesia:transaction returns.

get id(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the repository
id of that object.

set id(Objref,Id) -> ok

Types:

� Objref = #IFR object
� Id = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the repository id
of that object.

get name(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the name of
that object.

set name(Objref,Name) -> ok

Types:

� Objref = #IFR object
� Name = string()

156 Orber Application

Orber Reference Manual orber ifr

Objref is an IFR object of any kind that inherits from Contained. Sets the name of that
object.

get version(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the version of
that object.

set version(Objref,Version) -> ok

Types:

� Objref = #IFR object
� Version = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the version of
that object.

get defined in(Objref) -> Return

Types:

� Objref = #IFR object
� Return = #IFR Container objref

Objref is an IFR object of any kind that inherits from Contained. Returns the Container
object that the object is defined in.

get absolute name(Objref) -> Return

Types:

� Objref = #IFR object
� Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the absolute
(scoped) name of that object.

get containing repository(Objref) -> Return

Types:

� Objref = #IFR object
� Return = #IFR Repository objref

Objref is an IFR object of any kind that inherits from Contained. Returns the Repository
that is eventually reached by recursively following the object's defined in attribute.

describe(Objref) -> Return

Types:

� Objref = #IFR object
� Return = tuple() (a contained description record) | fexception, g

157Orber Application

orber ifr Orber Reference Manual

Objref is an IFR object of any kind that inherits from Contained. Returns a tuple
describing the object.

move(Objref,New container,New name,New version) -> Return

Types:

� Objref = #IFR objref
� New container = #IFR Container objref
� New name = string()
� New version = string()
� Return = ok | fexception, g

Objref is an IFR object of any kind that inherits from Contained. New container is an
IFR object of any kind that inherits from Container. Removes Objref from its current
Container, and adds it to New container. The name attribute is changed to New name
and the version attribute is changed to New version.

lookup(Objref,Search name) -> Return

Types:

� Objref = #IFR objref
� Search name = string()
� Return = #IFR object

Objref is an IFR object of any kind that inherits from Container. Returns an IFR object
identified by search name (a scoped name).

contents(Objref,Limit type,Exclude inherited) -> Return

Types:

� Objref = #IFR objref
� Limit type = atom() (one of dk none, dk all, dk Attribute, dk Constant,

dk Exception, dk Interface, dk Module, dk Operation, dk Typedef, dk Alias,
dk Struct, dk Union, dk Enum, dk Primitive, dk String, dk Wstring, dk Fixed,
dk Sequence, dk Array, dk Repository)

� Exclude inherited = atom() (true or false)
� Return = list() (a list of IFR# objects)

Objref is an IFR object of any kind that inherits from Container. Returns the contents of
that IFR object.

lookup name(Objref,Search name,Levels to search, Limit type, Exclude inherited) ->
Return

Types:

� Objref = #IFR objref
� Search name = string()
� Levels to search = integer()
� Limit type = atom() (one of dk none, dk all, dk Attribute, dk Constant,

dk Exception, dk Interface, dk Module, dk Operation, dk Typedef, dk Alias,
dk Struct, dk Union, dk Enum, dk Primitive, dk String, dk Wstring, dk Fixed,
dk Sequence, dk Array, dk Repository)

� Exclude inherited = atom() (true or false)

158 Orber Application

Orber Reference Manual orber ifr

� Return = list() (a list of #IFR objects)

Objref is an IFR object of any kind that inherits from Container. Returns a list of
#IFR objects with an id matching Search name.

describe contents(Objref,Limit type,Exclude inherited,Max returned objs) -> Return

Types:

� Objref = #IFR objref
� Limit type = atom() (one of dk none, dk all, dk Attribute, dk Constant,

dk Exception, dk Interface, dk Module, dk Operation, dk Typedef, dk Alias,
dk Struct, dk Union, dk Enum, dk Primitive, dk String, dk Wstring, dk Fixed,
dk Sequence, dk Array, dk Repository)

� Exclude inherited = atom() (true or false)
� Return = list() (a list of tuples (contained description records) | fexception, g

Objref is an IFR object of any kind that inherits from Container. Returns a list of
descriptions of the IFR objects in this Container's contents.

create module(Objref,Id,Name,Version) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Return = #IFR ModuleDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type ModuleDef.

create constant(Objref,Id,Name,Version,Type,Value) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Type = #IFR IDLType objref
� Value = any()
� Return = #IFR ConstantDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type ConstantDef.

create struct(Objref,Id,Name,Version,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Members = list() (list of structmember records)

159Orber Application

orber ifr Orber Reference Manual

� Return = #IFR StructDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type StructDef.

create union(Objref,Id,Name,Version,Discriminator type,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Discriminator type = #IFR IDLType Objref
� Members = list() (list of unionmember records)
� Return = #IFR UnionDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type UnionDef.

create enum(Objref,Id,Name,Version,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Members = list() (list of strings)
� Return = #IFR EnumDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type EnumDef.

create alias(Objref,Id,Name,Version,Original type) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Original type = #IFR IDLType Objref
� Return = #IFR AliasDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type AliasDef.

create interface(Objref,Id,Name,Version,Base interfaces) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()

160 Orber Application

Orber Reference Manual orber ifr

� Base interfaces = list() (a list of IFR InterfaceDef objrefs that this interface inherits
from

� Return = #IFR InterfaceDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type InterfaceDef.

create exception(Objref,Id,Name,Version,Members) -> Return

Types:

� Objref = #IFR objref
� Id = string()
� Name = string()
� Version = string()
� Members = list() (list of structmember records)
� Return = #IFR ExceptionDef objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object
of the type ExceptionDef.

get type(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = tuple() (a typecode tuple)

Objref is an IFR object of any kind that inherits from IDLType or an IFR object of the
kind ConstantDef, ExceptionDef or AttributeDef. Returns the typecode of the IFR
object.

lookup id(Objref,Search id) -> Return

Types:

� Objref = #IFR Repository objref
� Search id = string()
� Return = #IFR objref

Returns an IFR object matching the Search id.

get primitive(Objref,Kind) -> Return

Types:

� Objref = #IFR Repository objref
� Kind = atom() (one of pk null, pk void, pk short, pk long, pk ushort, pk ulong,

pk float, pk double, pk boolean, pk char, pk octet, pk any, pk TypeCode,
pk Principal, pk string, pk wstring, pk fixed, pk objref)

� Return = #IFR PrimitiveDef objref

Returns a PrimitiveDef of the specified kind.

create string(Objref,Bound) -> Return

Types:

� Objref = #IFR Repository objref

161Orber Application

orber ifr Orber Reference Manual

� Bound = integer() (unsigned long /= 0)
� Return = #IFR StringDef objref

Creates an IFR objref of the type StringDef.

create wstring(Objref,Bound) -> Return

Types:

� Objref = #IFR Repository objref
� Bound = integer() (unsigned long /= 0)
� Return = #IFR WstringDef objref

Creates an IFR objref of the type WstringDef.

create fixed(Objref,Digits,Scale) -> Return

Types:

� Objref = #IFR Repository objref
� Digits = Scale = integer()
� Return = #IFR FixedDef objref

Creates an IFR objref of the type FixedDef.

create sequence(Objref,Bound,Element type) -> Return

Types:

� Objref = #IFR Repository objref
� Bound = integer() (unsigned long)
� Element type = #IFR IDLType objref
� Return = #IFR SequenceDef objref

Creates an IFR objref of the type SequenceDef.

create array(Objref,Length,Element type) -> Return

Types:

� Objref = #IFR Repository objref
� Bound = integer() (unsigned long)
� Element type = #IFR IDLType objref
� Return = #IFR ArrayDef objref

Creates an IFR objref of the type ArrayDef.

create idltype(Objref,Typecode) -> Return

Types:

� Objref = #IFR Repository objref
� Typecode = tuple() (a typecode tuple)
� Return = #IFR IDLType objref

Creates an IFR objref of the type IDLType.

get type def(Objref) -> Return

Types:

162 Orber Application

Orber Reference Manual orber ifr

� Objref = #IFR objref
� Return = #IFR IDLType objref

Objref is an IFR object of the kind ConstantDef or AttributeDef. Returns an IFR object
of the type IDLType describing the type of the IFR object.

set type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR objref
� TypeDef = #IFR IDLType objref
� Return = ok | fexception, g

Objref is an IFR object of the kind ConstantDef or AttributeDef. Sets the type def of
the IFR Object.

get value(Objref) -> Return

Types:

� Objref = #IFR ConstantDef objref
� Return = any()

Returns the value attribute of an IFR Object of the type ConstantDef.

set value(Objref,Value) -> Return

Types:

� Objref = #IFR ConstantDef objref
� Value = any()
� Return = ok | fexception, g

Sets the value attribute of an IFR Object of the type ConstantDef.

get members(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = list()

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For
StructDef, UnionDef and ExceptionDef: Returns a list of structmember records that are
the constituent parts of the object. For EnumDef: Returns a list of strings describing the
enumerations.

set members(Objref,Members) -> Return

Types:

� Objref = #IFR objref
� Members = list()
� Return = ok | fexception, g

163Orber Application

orber ifr Orber Reference Manual

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For
StructDef, UnionDef and ExceptionDef: Members is a list of structmember records. For
EnumDef: Members is a list of strings describing the enumerations. Sets the members
attribute, which are the constituent parts of the exception.

get discriminator type(Objref) -> Return

Types:

� Objref = #IFR UnionDef objref
� Return = tuple() (a typecode tuple)

Returns the discriminator typecode of an IFR object of the type UnionDef.

get discriminator type def(Objref) -> Return

Types:

� Objref = #IFR UnionDef objref
� Return = #IFR IDLType objref

Returns an IFR object of the type IDLType describing the discriminator type of an IFR
object of the type UnionDef.

set discriminator type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR UnionDef objref
� Return = #IFR IDLType objref

Sets the attribute discriminator type def, an IFR object of the type IDLType describing
the discriminator type of an IFR object of the type UnionDef.

get original type def(Objref) -> Return

Types:

� Objref = #IFR AliasDef objref
� Return = #IFR IDLType objref

Returns an IFR object of the type IDLType describing the original type.

set original type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR AliasDef objref
� Typedef = #IFR IDLType objref
� Return = ok | fexception, g

Sets the original type def attribute which describes the original type.

get kind(Objref) -> Return

Types:

� Objref = #IFR PrimitiveDef objref
� Return = atom()

164 Orber Application

Orber Reference Manual orber ifr

Returns an atom describing the primitive type (See CORBA 2.0 p 6-21).

get bound(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = integer (unsigned long)

Objref is an IFR object the kind StringDef or SequenceDef. For StringDef: returns the
maximum number of characters in the string. For SequenceDef: Returns the maximum
number of elements in the sequence. Zero indicates an unbounded sequence.

set bound(Objref,Bound) -> Return

Types:

� Objref = #IFR objref
� Bound = integer (unsigned long)
� Return = ok | fexception, g

Objref is an IFR object the kind StringDef or SequenceDef. For StringDef: Sets the
maximum number of characters in the string. Bound must not be zero. For
SequenceDef: Sets the maximum number of elements in the sequence. Zero indicates
an unbounded sequence.

get element type(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = tuple() (a typecode tuple)

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns the typecode of the
elements in the IFR object.

get element type def(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = #IFR IDLType objref

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns an IFR object of the
type IDLType describing the type of the elements in Objref.

set element type def(Objref,TypeDef) -> Return

Types:

� Objref = #IFR objref
� TypeDef = #IFR IDLType objref
� Return = ok | fexception, g

Objref is an IFR object the kind SequenceDef or ArrayDef. Sets the element type def
attribute, an IFR object of the type IDLType describing the type of the elements in
Objref.

get length(Objref) -> Return

165Orber Application

orber ifr Orber Reference Manual

Types:

� Objref = #IFR ArrayDef objref
� Return = integer() (unsigned long)

Returns the number of elements in the array.

set length(Objref,Length) -> Return

Types:

� Objref = #IFR ArrayDef objref
� Length = integer() (unsigned long)

Sets the number of elements in the array.

get mode(Objref) -> Return

Types:

� Objref = #IFR objref
� Return = atom()

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef:
Return is an atom ('ATTR NORMAL' or 'ATTR READONLY') specifying the
read/write access for this attribute. For OperationDef: Return is an atom
('OP NORMAL' or 'OP ONEWAY') specifying the mode of the operation.

set mode(Objref,Mode) -> Return

Types:

� Objref = #IFR objref
� Mode = atom()
� Return = ok | fexception, g

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Sets
the read/write access for this attribute. Mode is an atom ('ATTR NORMAL' or
'ATTR READONLY'). For OperationDef: Sets the mode of the operation. Mode is an
atom ('OP NORMAL' or 'OP ONEWAY').

get result(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = tuple() (a typecode tuple)

Returns a typecode describing the type of the value returned by the operation.

get result def(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = #IFR IDLType objref

Returns an IFR object of the type IDLType describing the type of the result.

set result def(Objref,ResultDef) -> Return

166 Orber Application

Orber Reference Manual orber ifr

Types:

� Objref = #IFR OperationDef objref
� ResultDef = #IFR IDLType objref
� Return = ok | fexception, g

Sets the type def attribute, an IFR Object of the type IDLType describing the result.

get params(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = list() (list of parameter description records)

Returns a list of parameter description records, which describes the parameters of the
OperationDef.

set params(Objref,Params) -> Return

Types:

� Objref = #IFR OperationDef objref
� Params = list() (list of parameterdescription records)
� Return = ok | fexception, g

Sets the params attribute, a list of parameterdescription records.

get contexts(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = list() (list of strings)

Returns a list of context identifiers for the operation.

set contexts(Objref,Contexts) -> Return

Types:

� Objref = #IFR OperationDef objref
� Contexts = list() (list of strings)
� Return = ok | fexception, g

Sets the context attribute for the operation.

get exceptions(Objref) -> Return

Types:

� Objref = #IFR OperationDef objref
� Return = list() (list of #IFR ExceptionDef objrefs)

Returns a list of exception types that can be raised by this operation.

set exceptions(Objref,Exceptions) -> Return

Types:

� Objref = #IFR OperationDef objref
� Exceptions = list() (list of #IFR ExceptionDef objrefs)

167Orber Application

orber ifr Orber Reference Manual

� Return = ok | fexception, g

Sets the exceptions attribute for this operation.

get base interfaces(Objref) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Return = list() (list of #IFR InterfaceDef objrefs)

Returns a list of InterfaceDefs from which this InterfaceDef inherits.

set base interfaces(Objref,BaseInterfaces) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� BaseInterfaces = list() (list of #IFR InterfaceDef objrefs)
� Return = ok | fexception, g

Sets the BaseInterfaces attribute.

is a(Objref,Interface id) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Interface id = #IFR InterfaceDef objref
� Return = atom() (true or false)

Returns true if the InterfaceDef either is identical to or inherits from Interface id.

describe interface(Objref) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Return = tuple() (a fullinterfacedescription record)

Returns a full inter face description record describing the InterfaceDef.

create attribute(Objref,Id,Name,Version,Type,Mode) -> Return

Types:

� Objref = #IFR InterfaceDef objref
� Id = string()
� Name = string()
� Version = string()
� Type = #IFR IDLType objref
� Mode = atom() ('ATTR NORMAL' or 'ATTR READONLY')
� Return = #IFR AttributeDef objref

Creates an IFR object of the type AttributeDef contained in this InterfaceDef.

create operation(Objref,Id,Name,Version,Result,Mode,Params, Exceptions,Contexts) ->
Return

Types:

168 Orber Application

Orber Reference Manual orber ifr

� Objref = #IFR InterfaceDef objref
� Id = string()
� Name = string()
� Version = string()
� Result = #IFR IDLType objref
� Mode = atom() ('OP NORMAL' or 'OP ONEWAY')
� Params = list() (list of parameterdescription records)
� Exceptions = list() (list of #IFR ExceptionDef objrefs)
� Contexts = list() (list of strings)
� Return = #IFR OperationDef objref

Creates an IFR object of the type OperationDef contained in this InterfaceDef.

169Orber Application

orber tc Orber Reference Manual

orber tc
Erlang Module

This module contains some functions that gives support in creating IDL typecodes that
can be used in for example the any types typecode field. For the simple types it is
meaningless to use this API but the functions exist to get the interface complete.

The type TC used below describes an IDL type and is a tuple according to the to the
Erlang language mapping.

Exports

null() -> TC

void() -> TC

short() -> TC

unsigned short() -> TC

long() -> TC

unsigned long() -> TC

long long() -> TC

unsigned long long() -> TC

wchar() -> TC

float() -> TC

double() -> TC

boolean() -> TC

char() -> TC

octet() -> TC

any() -> TC

typecode() -> TC

principal() -> TC

These functions return the IDL typecodes for simple types.

object reference(Id, Name) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the object

Function returns the IDL typecode for object reference.

struct(Id, Name, ElementList) -> TC

170 Orber Application

Orber Reference Manual orber tc

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the struct

� ElementList = [fMemberName, TCg]
a list of the struct elements

� MemberName = string()
the element name

Function returns the IDL typecode for struct.

union(Id, Name, DiscrTC, Default, ElementList) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the union

� DiscrTC = TC
the typecode for the unions discriminant

� Default = integer()
a value that indicates which tuple in the element list that is default (value < 0 means
no default)

� ElementList = [fLabel, MemberName, TCg]
a list of the union elements

� Label = term()
the label value should be of the DiscrTC type

� MemberName = string()
the element name

Function returns the IDL typecode for union.

enum(Id, Name, ElementList) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the enum

� ElementList = [MemberName]
a list of the enums elements

� MemberName = string()
the element name

Function returns the IDL typecode for enum.

string(Length) -> TC

Types:

� Length = integer()
the length of the string (0 means unbounded)

171Orber Application

orber tc Orber Reference Manual

Function returns the IDL typecode for string.

wstring(Length) -> TC

Types:

� Length = integer()
the length of the wstring (0 means unbounded)

Function returns the IDL typecode for wstring.

fixed(Digits, Scale) -> TC

Types:

� Digits = Scale = integer()
the digits and scale parameters of a Fixed type

Function returns the IDL typecode for fixed.

sequence(ElemTC, Length) -> TC

Types:

� ElemTC = TC
the typecode for the sequence elements

� Length = integer()
the length of the sequence (0 means unbounded)

Function returns the IDL typecode for sequence.

array(ElemTC, Length) -> TC

Types:

� ElemTC = TC
the typecode for the array elements

� Length = integer()
the length of the array

Function returns the IDL typecode for array.

alias(Id, Name, AliasTC) -> TC

Types:

� Id = string()
the repository ID

� Name = string()
the type name of the alias

� AliasTC = TC
the typecode for the type which the alias refer to

Function returns the IDL typecode for alias.

exception(Id, Name, ElementList) -> TC

Types:

� Id = string()
the repository ID

172 Orber Application

Orber Reference Manual orber tc

� Name = string()
the type name of the exception

� ElementList = [fMemberName, TCg]
a list of the exception elements

� MemberName = string()
the element name

Function returns the IDL typecode for exception.

get tc(Object) -> TC

get tc(Id) -> TC

Types:

� Object = record()
an IDL specified struct, union or exception

� Id = string()
the repository ID

If the get tc/1 gets a record that is and IDL specified struct, union or exception as a
parameter it returns the typecode.

If the parameter is a repository ID it uses the Interface Repository to get the typecode.

check tc(TC) -> boolean()

Function checks the syntax of an IDL typecode.

173Orber Application

orber tc Orber Reference Manual

174 Orber Application

Chapter 12

Orber Release Notes

12.1 Orber 3.5.3, Release Notes

12.1.1 Improvements and new features

� To avoid malicious attacks, it is now possible to configure Orber to only accept incoming requests
up to a certain size. To be able to use this option, it must be supported by inet and SSL.
Own id: OTP-5129

12.1.2 Fixed bugs and malfunctions

-

12.1.3 Incompatibilities

-

12.1.4 Known bugs and problems

� The same as in the last release.

12.2 Orber 3.5.2, Release Notes

12.2.1 Improvements and new features

-

175Orber Application

Chapter 12: Orber Release Notes

12.2.2 Fixed bugs and malfunctions

� If a client tried to connect to Orber and immediately closed the connection, then the process
accepting new connections could end up with a message in the queue that would never be
removed.
Own id: OTP-5105

� The INS corbaloc/corbaname URL:s did only accept DNS style host names. Now it is also
possible to use, none compressed, IPv6 addresses.
Own id: OTP-5108

� When Orber was configured to use IPv6 for inter-ORB communication, exported IOR:s did not
contain a correct IPv6 address. This did not cause any problems if Orber was configured to use
DNS style hostname instead.
Own id: OTP-5109

� Orber used external operations not exported in R9B.
Own id: OTP-5111

12.2.3 Incompatibilities

-

12.2.4 Known bugs and problems

� The same as in the last release.

12.3 Orber 3.5.1, Release Notes

12.3.1 Improvements and new features

-

12.3.2 Fixed bugs and malfunctions

� When using Light IFR it was not possible unregister data (i.e., invoking
'MyModule':oe unregister()). Introduced in Orber-3.5.0.1.
Own id: OTP-5034

12.3.3 Incompatibilities

-

12.3.4 Known bugs and problems

� The same as in the last release.

176 Orber Application

12.4: Orber 3.5.0.1, Release Notes

12.4 Orber 3.5.0.1, Release Notes

12.4.1 Improvements and new features

-

12.4.2 Fixed bugs and malfunctions

� orber ifr:contents/3 always returned an empty list when using Light IFR. Little or no effect.
Own id: OTP-5018

12.4.3 Incompatibilities

-

12.4.4 Known bugs and problems

� The same as in the last release.

12.5 Orber 3.5, Release Notes

12.5.1 Improvements and new features

� It is now possible to configure Orber to use NAT (Network Address Translation) friendly
parameters. A new section in the User's Guide describes how to handle communication via
firewalls.
Own id: OTP-4698

� A new module called orber diagnostics have been added, which is intended to aid a user
during the test and development phase. For more information, see the reference manual.
Own id: OTP-4699

� IPv6 supported.
Own id: OTP-4937

� Possible to configure Orber so that exported IOR:s contain multiple IIOP components for
different interfaces.
Own id: OTP-4938

� Improved typechecking of typecode supplied to the operations orber tc:check tc/1,
any:create/2 and any:set typecode/2.
Own id: OTP-4939

� Server objects can now be started as EXIT tolerant.
Own id: OTP-4940

� Possible to use interceptors for local invocations as well.
Own id: OTP-4941

� If the IFR is not explicitly used, Orber can be configured to use a minimal IFR to reduce memory
usage and installation time.
Own id: OTP-5001

177Orber Application

Chapter 12: Orber Release Notes

� To avoid malicious attacks it is now possible to configure Orber to limit the number of concurrent
connections and requests and the amount of IIOP fragments.
Own id: OTP-5002

� The operation orber:iiop connections/0 now also include incoming connections.
Own id: OTP-5004

� The function orber:add node/2 now accepts more options.
Own id: OTP-5006

� The module orber diagnostics now exports a function which list missing modules generated by
IC and required by Orber.
Own id: OTP-5007

12.5.2 Fixed bugs and malfunctions

� Orber's NameService did not return a NIL object reference if the total number of existing
bindings was less than, or equal to, the HowMany parameter passed to
’CosNaming NamingContext’:list/2 operation. This have now been changed to be compliant
with the OMG standard. Furthermore, the operation ’CosNaming BindingIterator’:next n/2
did not handle the index correctly in all situations.
Own id: OTP-4700

� If the Orber internal gen server orber iiop pm was stopped in such a way that the terminate
function was not invoked, then ghost processes would appear.
Own id: OTP-5003

12.5.3 Incompatibilities

� The work-around introduced in version 3.4.1 (OTP-4608) has now been removed. Make sure you
are using IC-4.2 or later.

� Since the OMG has defined a default port number (2809), Orber no longer support the boostrap
port.
Own id: OTP-5005

12.5.4 Known bugs and problems

� The same as in the last release.

12.6 Orber 3.4.2.2, Release Notes

12.6.1 Improvements and new features

-

12.6.2 Fixed bugs and malfunctions

� Due to IFR DB lock mechanisms, concurrent creation of non-anonymous IFR types could still
result in duplicated entries.
Own id: OTP-4781

178 Orber Application

12.7: Orber 3.4.2.1, Release Notes

12.6.3 Incompatibilities

-

12.6.4 Known bugs and problems

� The same as in the last release.

12.7 Orber 3.4.2.1, Release Notes

12.7.1 Improvements and new features

-

12.7.2 Fixed bugs and malfunctions

� The operation orber:start() could return before all Mnesia tables were accessible.
Own id: OTP-4780

� Concurrent creation of non-anonymous IFR types could result in duplicates in the DB.
Own id: OTP-4781

12.7.3 Incompatibilities

-

12.7.4 Known bugs and problems

� The same as in the last release.

12.8 Orber 3.4.2, Release Notes

12.8.1 Improvements and new features

� Improved type tests for string, wide string and sequence when passed via IIOP.
Own id: OTP-4759

� Less (internal) processes are needed when Orber act as client-side ORB and communicate with
another ORB. Due to this change, closed connections and socket errors are dealt with in a more
gentle way. If the latter occurs, the error logger application is used to generate an error report
containing a description of what went wrong.
Own id: OTP-4655

179Orber Application

Chapter 12: Orber Release Notes

12.8.2 Fixed bugs and malfunctions

� When communicating with another ORB, via SSL, and a socket error occured, Orber did not
recognize the error message. This occured when Orber acted as client-side ORB.
Own id: OTP-4656

� If an out-going connection was closed and the receiving process had not been scheduled yet, the
close connection message was delivered before the correct message.
Own id: OTP-4657

12.8.3 Incompatibilities

� Since strstream is deprecated and not accepted by gcc-3.3, Orber no longer includes the
InitalReference lib. The source code is still included.
Own id: OTP-4767

12.8.4 Known bugs and problems

� The same as in the last release.

12.9 Orber 3.4.1, Release Notes

12.9.1 Improvements and new features

� It is now possible to use IC-versions older than 4.2. But, this is only temporary so it is still
necessary upgrade to a correct version.
Own id: OTP-4608

12.9.2 Fixed bugs and malfunctions

-

12.9.3 Incompatibilities

-

12.9.4 Known bugs and problems

� The same as in the last release.

180 Orber Application

12.10: Orber 3.4, Release Notes

12.10 Orber 3.4, Release Notes

12.10.1 Improvements and new features

� If a call-back module illegally caused an EXIT, clients residing on another ORB was not notified
(hanged).
Own id: OTP-4577

� The stub/skeleton-files generated by IC have been improved, i.e., depending on the IDL-files,
reduced the size of the erl- and beam-files and decreased dependencies off Orber's Interface
Repository. It is necessary to re-compile all IDL-files and use COS-applications, including Orber,
compiled with IC-4.2.
Own id: OTP-4576

� It is now possible to configure Orber to use the host name in exported IOR:s instead of the
IP-number.
Own id: OTP-4541

12.10.2 Fixed bugs and malfunctions

� When Orber acted as server-side ORB and one tried to setup a SSL-connection and using native
Interceptors at the same time it failed.
Own Id: OTP-4542

� Oneway operations, using a multi-node Orber, failed for inter-node communication.
Own Id: OTP-4543

12.10.3 Incompatibilities

-

12.10.4 Known bugs and problems

� The same as in the last release.

For information about older versions see release notes history1.

1URL: part notes history frame.html

181Orber Application

Chapter 12: Orber Release Notes

182 Orber Application

List of Figures

2.1 Figure 1: Orber Dependencies and Structure. 6

2.2 Figure 2: ORB interface between Java and Erlang Environment Nodes. 7

2.3 Figure 1: How the Object Request Broker works. 8

2.4 Figure 2: IIOP communication between domains and objects. 9

3.1 TCP Firewall With NAT . 19

5.1 Figure 1: Contextual object relationships using the Naming Service. 42

9.1 The Invocation Order of Interceptor Functions. 74

10.1 The Menu Frame. 80

10.2 Configuration Settings. 81

10.3 Select Type. 82

10.4 List Registered Exceptions. 83

10.5 Add a New Context. 84

10.6 Delete Context. 84

10.7 Object Stored in the NameService. 85

10.8 Object Data. 86

10.9 Create a New Object. 87

183Orber Application

List of Figures

184 Orber Application

List of Tables

3.1 Orber Environment Flags . 17

4.1 OMG IDL basic types . 23

4.2 OMG IDL Template and Complex Declarators . 23

4.3 OMG IDL constructed types . 26

4.4 OMG IDL keywords . 38

4.5 Type Code tuples . 40

5.1 Currently reserved key strings . 47

5.2 Stringified Name represenation . 47

8.1 Table 1: System Exceptions Status . 69

185Orber Application

List of Tables

186 Orber Application

Glossary

BindingIterator

The binding iterator (Like a book mark) indicates which objects have been read from the list.
Local for chapter 5.

CORBA

A specification of an architecture for a distributed object system

CORBA

Common Object Request Broker Architecture is a common communication standard developed by the
OMG (Object Management Group)
Local for chapter 2.

domains

A domain allows a more efficient communication protocol to be used between objects not on the same
node without the need of an ORB
Local for chapter 2.

IDL

Interface Definition Language - IDL is the OMG specified interface definition language, used to define
the CORBA object interfaces.
Local for chapter 2.

IIOP

Internet-Inter ORB Protocol
Local for chapter 2.

IOR

Interoperable Object Reference
Local for chapter 1.

187Orber Application

Glossary

ORB

Object Request Broker - ORB open software bus architecture specified by the OMG which allows
object components to communicate in a heterogeneous environment.
Local for chapter 2.

Orber domain

A domain containing several Erlang nodes, which are communicating by using the Erlang internal
format. An Orber domain looks as one ORB from the environment.
Local for chapter 3.

Orber installation

is the structure of the ORB or ORBs as defined during the install process is called the ”installation”.
Local for chapter 3.

Type Code

Type Code is a full definition of a type
Local for chapter 4.

Type Codes

Type codes give a complete description of the type including all its components and structure.
Local for chapter 4.

188 Orber Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

add/2
fixed , 136

add_alternate_iiop_address/3
corba , 131

add_initial_service/2
corba , 130

add_node/2
orber , 151

alias/3
orber tc , 172

any
create/0, 125
create/2, 125
get_typecode/1, 125
get_value/1, 126
set_typecode/2, 125
set_value/2, 126

any/0
orber tc , 170

array/2
orber tc , 172

bind/3
CosNaming NamingContext , 114

bind_context/3
CosNaming NamingContext , 114

bind_new_context/2
CosNaming NamingContext , 115

boolean/0
orber tc , 170

char/0
orber tc , 170

check_tc/1
orber tc , 173

closed_in_connection/1
interceptors , 138

closed_out_connection/1
interceptors , 138

configure/2
orber , 152

contents/3
orber ifr , 158

corba
add_alternate_iiop_address/3, 131
add_initial_service/2, 130
create/2, 127
create/3, 127
create/4, 127
create_link/2, 127
create_link/3, 127
create_link/4, 127
create_nil_objref/0, 128
create_subobject_key/2, 128
dispose/1, 128
get_pid/1, 129
get_subobject_key/1, 129
list_initial_services/0, 130
list_initial_services_remote/1, 130
object_to_string/1, 131
orb_init/1, 132
print_object/2, 131
raise/1, 129
remove_initial_service/1, 130
reply/2, 129
resolve_initial_references/1, 129
resolve_initial_references_remote/2,

130
string_to_object/1, 131

corba object
get_interface/1, 133
hash/2, 134
is_a/2, 133

189Orber Application

Index of Modules and Functions

is_equivalent/2, 134
is_nil/1, 133
is_remote/1, 133
non_existent/1, 134
not_existent/1, 134

CosNaming BindingIterator
destroy/1, 111
next_n/2, 111
next_one/1, 111

CosNaming NamingContext
bind/3, 114
bind_context/3, 114
bind_new_context/2, 115
destroy/1, 115
list/2, 115
new_context/1, 115
rebind/3, 114
rebind_context/3, 114
resolve/2, 114
unbind/2, 115

CosNaming NamingContextExt
resolve_str/2, 117
to_name/2, 117
to_string/2, 117
to_url/3, 117

create/0
any , 125
lname , 142
lname component , 144

create/2
any , 125
corba , 127

create/3
corba , 127
fixed , 136

create/4
corba , 127

create_alias/5
orber ifr , 160

create_array/3
orber ifr , 162

create_attribute/6
orber ifr , 168

create_constant/6
orber ifr , 159

create_enum/5
orber ifr , 160

create_exception/5
orber ifr , 161

create_fixed/3
orber ifr , 162

create_idltype/2
orber ifr , 162

create_interface/5
orber ifr , 160

create_link/2
corba , 127

create_link/3
corba , 127

create_link/4
corba , 127

create_module/4
orber ifr , 159

create_nil_objref/0
corba , 128

create_operation/9
orber ifr , 168

create_sequence/3
orber ifr , 162

create_string/2
orber ifr , 161

create_struct/5
orber ifr , 159

create_subobject_key/2
corba , 128

create_union/6
orber ifr , 160

create_wstring/2
orber ifr , 162

delete_component/2
lname , 143

describe/1
orber ifr , 157

describe_contents/4
orber ifr , 159

describe_interface/1
orber ifr , 168

destroy/1
CosNaming BindingIterator , 111
CosNaming NamingContext , 115

190 Orber Application

Index of Modules and Functions

orber ifr , 156

dispose/1
corba , 128

divide/2
fixed , 136

domain/0
orber , 148

double/0
orber tc , 170

enum/3
orber tc , 171

equal/2
lname , 143

exception/3
orber tc , 172

exception_info/1
orber , 147

find_repository/0
orber ifr , 155

fixed
add/2, 136
create/3, 136
divide/2, 136
get_typecode/1, 136
multiply/2, 136
subtract/2, 136
unary_minus/1, 136

fixed/2
orber tc , 172

float/0
orber tc , 170

from_idl_form/1
lname , 143

get_absolute_name/1
orber ifr , 157

get_base_interfaces/1
orber ifr , 168

get_bound/1
orber ifr , 165

get_component/2
lname , 142

get_containing_repository/1

orber ifr , 157

get_contexts/1
orber ifr , 167

get_def_kind/1
orber ifr , 156

get_defined_in/1
orber ifr , 157

get_discriminator_type/1
orber ifr , 164

get_discriminator_type_def/1
orber ifr , 164

get_element_type/1
orber ifr , 165

get_element_type_def/1
orber ifr , 165

get_exceptions/1
orber ifr , 167

get_id/1
lname component , 144
orber ifr , 156

get_interface/1
corba object , 133

get_kind/1
lname component , 144
orber ifr , 164

get_length/1
orber ifr , 165

get_lightweight_nodes/0
orber , 147

get_members/1
orber ifr , 163

get_mode/1
orber ifr , 166

get_name/1
orber ifr , 156

get_ORBDefaultInitRef/0
orber , 148

get_ORBInitRef/0
orber , 147

get_original_type_def/1
orber ifr , 164

get_params/1
orber ifr , 167

191Orber Application

Index of Modules and Functions

get_pid/1
corba , 129

get_primitive/2
orber ifr , 161

get_result/1
orber ifr , 166

get_result_def/1
orber ifr , 166

get_subobject_key/1
corba , 129

get_tables/0
orber , 147

get_tc/1
orber tc , 173

get_type/1
orber ifr , 161

get_type_def/1
orber ifr , 162

get_typecode/1
any , 125
fixed , 136

get_value/1
any , 126
orber ifr , 163

get_version/1
orber ifr , 157

hash/2
corba object , 134

iiop_connection_timeout/0
orber , 148

iiop_connections/0
orber , 149

iiop_connections/1
orber , 149

iiop_connections_pending/0
orber , 149

iiop_in_connection_timeout/0
orber , 149

iiop_out_ports/0
orber , 148

iiop_port/0
orber , 148

iiop_ssl_port/0
orber , 148

iiop_timeout/0
orber , 148

in_reply/6
interceptors , 139

in_reply_encoded/6
interceptors , 139

in_request/6
interceptors , 139

in_request_encoded/6
interceptors , 139

info/0
orber , 147

info/1
orber , 147

init/2
orber ifr , 155

insert_component/3
lname , 142

install/1
orber , 151

install/2
orber , 151

interceptors
closed_in_connection/1, 138
closed_out_connection/1, 138
in_reply/6, 139
in_reply_encoded/6, 139
in_request/6, 139
in_request_encoded/6, 139
new_in_connection/3, 138
new_out_connection/3, 138
out_reply/6, 140
out_reply_encoded/6, 140
out_request/6, 140
out_request_encoded/6, 140

is_a/2
corba object , 133
orber ifr , 168

is_equivalent/2
corba object , 134

is_lightweight/0
orber , 147

is_nil/1

192 Orber Application

Index of Modules and Functions

corba object , 133

is_remote/1
corba object , 133

jump_start/1
orber , 147

less_than/2
lname , 143

list/2
CosNaming NamingContext , 115

list_initial_services/0
corba , 130

list_initial_services_remote/1
corba , 130

lname
create/0, 142
delete_component/2, 143
equal/2, 143
from_idl_form/1, 143
get_component/2, 142
insert_component/3, 142
less_than/2, 143
num_components/1, 143
to_idl_form/1, 143

lname component
create/0, 144
get_id/1, 144
get_kind/1, 144
set_id/2, 144
set_kind/2, 145

long/0
orber tc , 170

long_long/0
orber tc , 170

lookup/2
orber ifr , 158

lookup_id/2
orber ifr , 161

lookup_name/5
orber ifr , 158

missing_modules/0
orber diagnostics , 154

Module Interface
Module_Interface:oe_create/0, 120

Module_Interface:oe_create/1, 120
Module_Interface:oe_create/2, 120
Module_Interface:oe_create_link/0,

120
Module_Interface:oe_create_link/1,

120
Module_Interface:oe_create_link/2,

121
Module_Interface:own_functions/4,

122
Module_Interface:own_functions/5,

122
Module_Interface:typeID/0, 120
Module_Interface_impl:code_change/3,

122
Module_Interface_impl:handle_info/2,

123
Module_Interface_impl:init/1, 122
Module_Interface_impl:own_functions/4,

123
Module_Interface_impl:own_functions/5,

123, 124
Module_Interface_impl:own_functions/6,

123
Module_Interface_impl:terminate/2,

122

Module_Interface:oe_create/0
Module Interface , 120

Module_Interface:oe_create/1
Module Interface , 120

Module_Interface:oe_create/2
Module Interface , 120

Module_Interface:oe_create_link/0
Module Interface , 120

Module_Interface:oe_create_link/1
Module Interface , 120

Module_Interface:oe_create_link/2
Module Interface , 121

Module_Interface:own_functions/4
Module Interface , 122

Module_Interface:own_functions/5
Module Interface , 122

Module_Interface:typeID/0
Module Interface , 120

Module_Interface_impl:code_change/3
Module Interface , 122

Module_Interface_impl:handle_info/2
Module Interface , 123

193Orber Application

Index of Modules and Functions

Module_Interface_impl:init/1
Module Interface , 122

Module_Interface_impl:own_functions/4
Module Interface , 123

Module_Interface_impl:own_functions/5
Module Interface , 123, 124

Module_Interface_impl:own_functions/6
Module Interface , 123

Module_Interface_impl:terminate/2
Module Interface , 122

move/4
orber ifr , 158

multiply/2
fixed , 136

nameservice/0
orber diagnostics , 154

nameservice/1
orber diagnostics , 154

new_context/1
CosNaming NamingContext , 115

new_in_connection/3
interceptors , 138

new_out_connection/3
interceptors , 138

next_n/2
CosNaming BindingIterator , 111

next_one/1
CosNaming BindingIterator , 111

non_existent/1
corba object , 134

not_existent/1
corba object , 134

null/0
orber tc , 170

num_components/1
lname , 143

object_reference/2
orber tc , 170

object_to_string/1
corba , 131

objectkeys_gc_time/0
orber , 150

octet/0
orber tc , 170

orb_init/1
corba , 132

orber
add_node/2, 151
configure/2, 152
domain/0, 148
exception_info/1, 147
get_lightweight_nodes/0, 147
get_ORBDefaultInitRef/0, 148
get_ORBInitRef/0, 147
get_tables/0, 147
iiop_connection_timeout/0, 148
iiop_connections/0, 149
iiop_connections/1, 149
iiop_connections_pending/0, 149
iiop_in_connection_timeout/0, 149
iiop_out_ports/0, 148
iiop_port/0, 148
iiop_ssl_port/0, 148
iiop_timeout/0, 148
info/0, 147
info/1, 147
install/1, 151
install/2, 151
is_lightweight/0, 147
jump_start/1, 147
objectkeys_gc_time/0, 150
orber_nodes/0, 150
remove_node/1, 152
secure/0, 149
set_ssl_client_certfile/1, 149
set_ssl_client_depth/1, 150
set_ssl_client_verify/1, 150
ssl_client_certfile/0, 149
ssl_client_depth/0, 150
ssl_client_verify/0, 150
ssl_server_certfile/0, 149
ssl_server_depth/0, 150
ssl_server_verify/0, 150
start/0, 146
start/1, 146
start_lightweight/0, 146
start_lightweight/1, 146
stop/0, 147
uninstall/0, 151

orber diagnostics
missing_modules/0, 154
nameservice/0, 154
nameservice/1, 154

194 Orber Application

Index of Modules and Functions

orber ifr
contents/3, 158
create_alias/5, 160
create_array/3, 162
create_attribute/6, 168
create_constant/6, 159
create_enum/5, 160
create_exception/5, 161
create_fixed/3, 162
create_idltype/2, 162
create_interface/5, 160
create_module/4, 159
create_operation/9, 168
create_sequence/3, 162
create_string/2, 161
create_struct/5, 159
create_union/6, 160
create_wstring/2, 162
describe/1, 157
describe_contents/4, 159
describe_interface/1, 168
destroy/1, 156
find_repository/0, 155
get_absolute_name/1, 157
get_base_interfaces/1, 168
get_bound/1, 165
get_containing_repository/1, 157
get_contexts/1, 167
get_def_kind/1, 156
get_defined_in/1, 157
get_discriminator_type/1, 164
get_discriminator_type_def/1, 164
get_element_type/1, 165
get_element_type_def/1, 165
get_exceptions/1, 167
get_id/1, 156
get_kind/1, 164
get_length/1, 165
get_members/1, 163
get_mode/1, 166
get_name/1, 156
get_original_type_def/1, 164
get_params/1, 167
get_primitive/2, 161
get_result/1, 166
get_result_def/1, 166
get_type/1, 161
get_type_def/1, 162
get_value/1, 163
get_version/1, 157
init/2, 155
is_a/2, 168
lookup/2, 158

lookup_id/2, 161
lookup_name/5, 158
move/4, 158
set_base_interfaces/2, 168
set_bound/2, 165
set_contexts/2, 167
set_discriminator_type_def/2, 164
set_element_type_def/2, 165
set_exceptions/2, 167
set_id/2, 156
set_length/2, 166
set_members/2, 163
set_mode/2, 166
set_name/2, 156
set_original_type_def/2, 164
set_params/2, 167
set_result_def/2, 166
set_type_def/2, 163
set_value/2, 163
set_version/2, 157

orber_nodes/0
orber , 150

orber tc
alias/3, 172
any/0, 170
array/2, 172
boolean/0, 170
char/0, 170
check_tc/1, 173
double/0, 170
enum/3, 171
exception/3, 172
fixed/2, 172
float/0, 170
get_tc/1, 173
long/0, 170
long_long/0, 170
null/0, 170
object_reference/2, 170
octet/0, 170
principal/0, 170
sequence/2, 172
short/0, 170
string/1, 171
struct/3, 170
typecode/0, 170
union/5, 171
unsigned_long/0, 170
unsigned_long_long/0, 170
unsigned_short/0, 170
void/0, 170
wchar/0, 170

195Orber Application

Index of Modules and Functions

wstring/1, 172

out_reply/6
interceptors , 140

out_reply_encoded/6
interceptors , 140

out_request/6
interceptors , 140

out_request_encoded/6
interceptors , 140

principal/0
orber tc , 170

print_object/2
corba , 131

raise/1
corba , 129

rebind/3
CosNaming NamingContext , 114

rebind_context/3
CosNaming NamingContext , 114

remove_initial_service/1
corba , 130

remove_node/1
orber , 152

reply/2
corba , 129

resolve/2
CosNaming NamingContext , 114

resolve_initial_references/1
corba , 129

resolve_initial_references_remote/2
corba , 130

resolve_str/2
CosNaming NamingContextExt , 117

secure/0
orber , 149

sequence/2
orber tc , 172

set_base_interfaces/2
orber ifr , 168

set_bound/2
orber ifr , 165

set_contexts/2
orber ifr , 167

set_discriminator_type_def/2
orber ifr , 164

set_element_type_def/2
orber ifr , 165

set_exceptions/2
orber ifr , 167

set_id/2
lname component , 144
orber ifr , 156

set_kind/2
lname component , 145

set_length/2
orber ifr , 166

set_members/2
orber ifr , 163

set_mode/2
orber ifr , 166

set_name/2
orber ifr , 156

set_original_type_def/2
orber ifr , 164

set_params/2
orber ifr , 167

set_result_def/2
orber ifr , 166

set_ssl_client_certfile/1
orber , 149

set_ssl_client_depth/1
orber , 150

set_ssl_client_verify/1
orber , 150

set_type_def/2
orber ifr , 163

set_typecode/2
any , 125

set_value/2
any , 126
orber ifr , 163

set_version/2
orber ifr , 157

short/0

196 Orber Application

Index of Modules and Functions

orber tc , 170

ssl_client_certfile/0
orber , 149

ssl_client_depth/0
orber , 150

ssl_client_verify/0
orber , 150

ssl_server_certfile/0
orber , 149

ssl_server_depth/0
orber , 150

ssl_server_verify/0
orber , 150

start/0
orber , 146

start/1
orber , 146

start_lightweight/0
orber , 146

start_lightweight/1
orber , 146

stop/0
orber , 147

string/1
orber tc , 171

string_to_object/1
corba , 131

struct/3
orber tc , 170

subtract/2
fixed , 136

to_idl_form/1
lname , 143

to_name/2
CosNaming NamingContextExt , 117

to_string/2
CosNaming NamingContextExt , 117

to_url/3
CosNaming NamingContextExt , 117

typecode/0
orber tc , 170

unary_minus/1

fixed , 136

unbind/2
CosNaming NamingContext , 115

uninstall/0
orber , 151

union/5
orber tc , 171

unsigned_long/0
orber tc , 170

unsigned_long_long/0
orber tc , 170

unsigned_short/0
orber tc , 170

void/0
orber tc , 170

wchar/0
orber tc , 170

wstring/1
orber tc , 172

197Orber Application

Index of Modules and Functions

198 Orber Application

