
Distel: Distributed Emacs Lisp
3.0, updated 29 August 2002

Luke Gorrie

i

Table of Contents

1 Overview . 1

2 Data Types. 2
2.1 Type Mapping . 2

3 Processes. 3
3.1 Process State . 3
3.2 Current Process . 3

4 Programming Interface . 4
4.1 Spawning and Running . 4
4.2 Pattern Matching . 5
4.3 BIFs . 6
4.4 Tuples . 7
4.5 PIDs . 8

5 Scheduler Internals . 9

6 Tips and Tricks . 10
6.1 Common Pitfalls . 10

7 Hacking Distel . 11
7.1 Hitch Hikers Guide . 11
7.2 Documents . 11
7.3 Related Work . 11
7.4 Contact . 12
7.5 Document Revision History . 12

Chapter 1: Overview 1

1 Overview

Distel extends Emacs Lisp with Erlang’s processes and message passing. Processes are
spawned and scheduled, they send and receive messages, link with one another, crash, and
so on, all within Emacs. They also use Erlang’s distribution protocol to communicate with
other processes in real Erlang nodes, just as other nodes would. This integration makes
Emacs Lisp suitable for writing clients and front-ends to Erlang programs.

For example, this is an Emacs process that brutally terminates a remote Erlang node,
via the RPC server that all nodes run by default:

(erl-spawn
(erl-send [rex mynode@myhost]

‘[,erl-self [call erlang halt () ,erl-group-leader]]))

The equivalent Erlang program is:
spawn(fun() -> {rex, mynode@myhost} !

{self(), {call, erlang, halt, [], group_leader()}}
end).

You can see that the Emacs Lisp process has much the same structure as the Erlang
one. Of course, not just any Erlang program can be translated into Emacs Lisp, because
only an “essential” subset of Erlang is implemented. This subset includes pattern matching,
messages, process links, registered names, and distribution. It excludes the “bit syntax”,
ports, and so on.

The overall intention is to make Emacs a suitable user-interface toolkit for Erlang pro-
grams, especially development and debugging tools. Distel currently includes several such
tools, and their implementation is straight-forward.

Here’s a more meaty example to whet your appetite:
(defun spawn-math-server ()
"Start a server process for doing simple calculations."
(erl-spawn
(erl-register ’math)
(&math-server-loop)))

(defun &math-server-loop ()
(erl-receive ()

(([’calculate who what]
(erl-send who (mcase what

([’add x y] (+ x y))
([’sub x y] (- x y))
(other ‘[bad_operation ,other]))))

(other (message "Unexpected message: %S" other)))
(&math-server-loop)))

Chapter 2: Data Types 2

2 Data Types

Since processes in Emacs and in Erlang can exchange messages, it’s necessary to map
data structures between the languages. Fortunately, there are very natural translations of
most types.

2.1 Type Mapping

The following table summarises the mapping of Erlang types onto Emacs Lisp:

Atom Symbol.

Integer Integer. Because Emacs Lisp only supports signed 28-bit integers, this is a
partial mapping.

List List.

Tuple Vector. For example,
{1, 2, 3} ⇒ [1 2 3]

Binary String.

PID Vector of [TYPE erl-pid node id serial creation]

Port Vector of [TYPE erl-port node id creation]

The TYPE field is an uninterned symbol, and is used to distinguish tuple-vectors from
PIDs other other datatypes.

The Erlang External Term Format also includes a “string” type, which is has no clear
meaning for Erlang. In general, sending strings from Erlang might not do what you want,
for example the empty string will come out in emacs as NIL. When you really want to give
Emacs a string, you should send it as a binary.

Some types aren’t mapped yet, such as Float, Function, and Ref. It is an error to send
these types to an Emacs Lisp node!

Chapter 3: Processes 3

3 Processes

Processes are buffers that have PIDs and can send and receive messages. In other respects
they are like normal buffers – they can contain text, have key bindings, use modes, etc.

Some processes may do nothing interesting with their buffers, like the example RPC
client. User-interface processes can be more interesting by displaying information in their
buffer, binding keys to commands that do work and send messages, and updating the buffer
contents when messages are received.

3.1 Process State

The state of a process is recorded in buffer-local variables. Such variables make up all
of the process’s identity and state, so “context switching” is simply a matter of changing to
another process’s buffer. Although some variables are “internal”, these ones can be accessed
directly:

Variableerl-self
This variable is bound to the PID of the current process.

Variableerl-group-leader
This variable contains the PID of the group leader process, which handles all I/O of
the process.1

Variableerl-trap-exits
This variable can be set to true to achieve the effect of:

process_flag(trap_exit, true)

3.2 Current Process

There is always some “current process” bound to erl-self, which is either a process that
has been scheduled, or otherwise “the null process”. The null process is a pseudo-process
that never dies and is never scheduled, but is used when BIFs are called from non-process
buffers. This means that any buffer can invoke BIFs, though only process buffers with their
own PIDs are able to receive messages, be scheduled, create links, etc.

Variableerl-null-pid
PID of the null process. All messages sent to this PID are written to the
‘*erl-lost-msgs*’ buffer and then discarded. When Emacs is not in the buffer of
any particular process, erl-self is bound to erl-null-pid.

1 The I/O protocol differs from the native Erlang one. See the bottom of ‘erl.el’.

Chapter 4: Programming Interface 4

4 Programming Interface

The programming interface is very much like Erlang’s, and most functions do just what
you would expect. There are however some important differences.

The most important difference is that when a process “schedules out” it has to return
from its current function to the “scheduler loop”, with a note saying what it wants to do the
next time it gets scheduled (unless it’s finished). This returning up the Elisp stack means
that scheduling out causes all of the process’s dynamic variable bindings to be undone, its
unwind-protect’s executed, and the functions on its stack returned to (actually – bypassed
by throw). The overall effect is that variable bindings and control state have to be explicitly
passed between schedules.

In practice this is not a great imposition, since the only time a process needs to reschedule
is when it blocks in “receive”. The erl-receive construct is conveniently extended to save
and restore specific variable bindings for when the process is rescheduled, and to accept
series of forms to execute after the matching clause runs.

See Chapter 5 [Scheduler Internals], page 9 for more details on the scheduler’s internal
workings.

4.1 Spawning and Running

Emacs Lisp processes, like Erlang ones, are created by being “spawned” with some code
to execute.

Macroerl-spawn &rest forms
Create a new process to execute forms, and return its PID. The process is run imme-
diately in its own buffer, using the current dynamic environment. This means that
the caller’s let bindings are visible to the new process.
A simple example,

(erl-spawn (message "New PID: %S" erl-self))
a New PID: [erl-pid erlmacs@kookaburra 188 0 0]
⇒ [erl-pid erlmacs@kookaburra 188 0 0]

(See Chapter 2 [Data Types], page 2, for details of the PID data structure.)

Macroerl-spawn-link &rest forms
Create a new process like erl-spawn, but link it with the current process before
executing.

Macroerl-spawn-async &rest forms
Create a new process to execute forms, and return its PID. The process may be
scheduled to run later, and thus is not guaranteed to run in the present dynamic
environment.

Macroerl-spawn-link-async &rest forms
Create a new process like erl-spawn-async, but link it with the current process
before executing.

Chapter 4: Programming Interface 5

Macroerl-receive saved-vars clauses &rest after
Receive a message from the process mailbox, like Erlang’s receive. The complete
syntax is similar to mcase (See Section 4.2 [Pattern Matching], page 5):

(erl-receive (saved-var ...)
((pattern body...)
...)

after...)

The first message matching a pattern is removed from the process mailbox, the corre-
sponding body forms are executed, and then the after forms are executed regardless
of which pattern matched. If necessary the process waits until a matching message
arrives. Receiving a message involves a return to the scheduler (via throw), so dy-
namic variable bindings will not be preserved, except for the saved-vars which are
saved and then restored before the body is executed. Variables that are matched by
value in a pattern must also be included is saved-vars.
Here’s a complete example, excerpted from ‘erl-example.el’:

(defun spawn-counter ()
(erl-spawn

(erl-register ’counter)
(&counter-loop 1)))

(defun &counter-loop (count)
(erl-receive (count)

((msg (message "Got message #%S: %S" count msg)))
(&counter-loop (1+ count))))

Important Note: Because the caller’s stack is throw’n away by scheduling out, all
calls to erl-receive, or to functions that will lead to its being called, should be in
tail-position. In aid of this, all functions that lead to erl-receive are prefixed with an
&, which makes them stand out in the code. With this convention, we must ensure
that all calls to &-functions are in tail-position, and then we are safe from accidentally
losing important state on the stack.
See Section 6.1 [Common Pitfalls], page 10 for important tips, either now or when
you start wondering “why the fuck isn’t X getting called?!” ;-)

4.2 Pattern Matching

There are macros for pattern matching, roughly equivalent to Erlang’s (minus guards).
The following summarises the pattern syntax:

Trivial: t, nil, 42, []
Numbers, and atomic types other than symbols of variables are matched literally
with equal.

Constant: ’symbol, ’(a b c)
Quoted constants are matched literally with equal.

Pattern Variable: my-variable
Symbols denote variables. Pattern variables take on the value of the corre-
sponding object, and are bound to lisp variables if the match succeeds. If the

Chapter 4: Programming Interface 6

same pattern variable occurs more than once, then all of its bindings must
agree, as in Erlang.

Bound Variable: ,bound-var
Symbol preceeded by an comma. Matches the value of the (already bound) lisp
variable bound-var with equal.

Wildcard: _ (underscore)
As in Erlang, a wildcard matches anything without creating a binding.

Sequence: (pat1 ...), [pat1 ...]
List or vector of patterns. Matches the “shape” (type and length) of the se-
quence, as well as each subpattern.

This pattern syntax is used for the macros that follow, as well as erl-receive.

Macromlet pattern object &rest body
Match pattern with object, and execute body with all pattern variable bindings in
effect. If pattern doesn’t match, an error is signaled. For example,

(mlet [value Key] my-tuple
(message "The key is %S" key))

Macromcase object &rest clauses
Pattern matching “case” expression. The full syntax is:

(mcase expr
(pattern body...)
...)

For example, we can translate Erlang case expressions into Emacs mcase:
case X of

{add, X, Y} -> X + Y;
{sub, X, Y} -> X - Y;
_ -> error

end.
⇒

(mcase x
([’add x y] (+ x y))
([’sub x y] (- x y))
(_ ’error))

4.3 BIFs

Functionerl-send who message
Send the term message to the process who. As in Erlang, who can be any of the
following:

• The PID of a process, either local or remote.
• A symbol, interpreted as the registered name of a local process.
• A tuple of the form [name node], indicating a remote registered process.

Chapter 4: Programming Interface 7

Functionerl-link pid
Link the current process with pid.

Functionerl-unlink pid
Unlink the current process from pid.

Functionerl-exit why
Terminate the current process, with why as the exit reason.

Functionerl-exit/2 pid why
Terminate the process pid, with why as exit reason.

Functionerl-register name &optional process
Register process as name. If process is unspecified, the current process is registered.

Functionerl-whereis name
Return the PID of the process registered with name, or nil if the name is unregistered.

Functionerl-term-to-binary object
Encode object into the external term format, and return the result as a string.

Functionerl-binary-to-term string
Decode string from the external term format into a data structure.

4.4 Tuples

Functiontuple &rest elements
Construct a tuple from elements. For example,

(tuple 1 2 3) ⇒ [1 2 3]

Functiontuple-elt tuple n
Access the nth element of tuple. As in Erlang, indexing starts from 1.

Functiontuplep object
Type predicate for tuples.

Functiontuple-to-list tuple
Convert tuple to a list. For example,

(tuple-to-list (tuple 1 2 3)) ⇒ (1 2 3)

Functiontuple-arity tuple
Return the number of elements in tuple.

Chapter 4: Programming Interface 8

4.5 PIDs

Functionerl-pid-p object
Type predicate for PIDs.

Functionerl-local-pid-p object
Predicate for PIDs of processes inside this Emacs.

Functionerl-remote-pid-p object
Predicate for PIDs on remote nodes.

Functionerl-pid-node pid
Return the node name (a symbol) of the pid.

Chapter 5: Scheduler Internals 9

5 Scheduler Internals

Because Emacs Lisp has no built-in concurrency, a custom scheduler is used to run
processes. This scheduler is based on a technique called Trampolined Style (See Section 7.3
[Related Work], page 11), which is related to continuation-passing style. The gist is that
each process has a “continuation” variable containing its “next function” – the function to
call when the process is next scheduled. Initially, the process’s continuation function will
execute the code given in the erl-spawn call.

To run a process, the scheduler simply switches into the process’s buffer and calls its
continuation function. The function does a finite amount of processing and then either
simply returns, or makes a “blocking” call to erl-receive which sets up a next contin-
uation to wait for the right message. If the process just returned without setting a next
continuation, it is exited with reason normal. Otherwise the process is marked as “waiting”
and left alive. Waiting processes become runnable when they receive a message, and are
then invoked again with their new continuation, and so on. erl-receive works by contin-
ually installing itself as the next continuation until a matching message arrives, and then
executing the appropriate body clause.

The scheduler itself is event-driven: the only events that can cause a process to become
runnable are process creation and message delivery. On each of these events, the scheduler
loop runs until no processes are left runnable, and then returns control to Emacs.

The pattern-matching erl-receive is not actually built into the scheduler, but is im-
plemented in terms of the primitive function erl-continue.

Functionerl-continue function &rest args
Set the “next continuation” of the process, such that the next time it is scheduled
it will apply function to args. This will not occur in the same dynamic environment
– the let bindings in effect when erl-continue is called won’t be available to the
continuation. Important state and bindings should be passed in args (much like an
Erlang function call), or stored in a buffer local variable (much like the Erlang process
dictionary).

Chapter 6: Tips and Tricks 10

6 Tips and Tricks

Processes’ buffers are usually named either ‘*pid <0.ID.0>*’, though these names can
be changed to anything. Special significance is given to the pattern ‘*reg name*’, which
is a registered process. If you want to kill off some zombie processes, you can find their
buffers (e.g. with M-x list-buffers) kill them with 〈C-x k〉 just like any other buffer. This
is equivalent to the interrupt feature of the Erlang shell, and the process’s kill-buffer-hook
will still propagate the exit signal.

All messages between distributed nodes are recorded in trace buffers named ‘*trace
nodename*’, which you can look in to see the actual messages being exchanged between
nodes. The buffers associated with sockets to other nodes are named ‘*derl nodename’,
and killing these buffers will safely sever connections.

6.1 Common Pitfalls

An easy mistake to make when “thinking in Erlang” is to make a call to erl-receive
that is not in tail position. For example:

(defun &server-loop-bad ()
"DO NOT WRITE CODE LIKE THIS!"
(erl-receive ()

((msg (message "Got %S" msg))))
(&server-loop-bad))

The erl-receive is not in tail position because more code (the recursion) is supposed
to run after it returns. What actually happens is that erl-receive throw’s back up the
stack to the scheduler loop, so the recursive call to server-loop-bad is never reached. The
process just terminates after processing the first message.

The correct way to write the function is this:
(defun &server-loop-good ()
"This function is fine."
(erl-receive ()

((msg (message "Got %S" msg)))
(&server-loop-good)))

Or alternatively,
(defun &server-loop-good2 ()
"This function is also fine."
(erl-receive ()

((msg (message "Got %S" msg)
(&server-loop-good2)))))

Here the recursion is explicit in the body of a receive clause or in the “after” code, rather
than implicit in the caller’s stack.

You must always be careful to place calls to erl-receive in tail position. The same
applies to calling any function that can in turn call erl-receive. If you forget, then code
that looks like it should run will get skipped.

Chapter 7: Hacking Distel 11

7 Hacking Distel

7.1 Hitch Hikers Guide

‘erl.el’ The process runtime system, which is the core of the system.

‘erl-service.el’
“High-level” Emacs commands for viewing process lists, process tracing, and
so on.

‘derl.el’ The distribution protocol module.

‘erlext.el’
External term format encoding and decoding.

‘epmd.el’ Client for epmd, for looking up node ports.

‘net-fsm.el’
Generalised framework for network state machines, used to implement ‘derl’
and ‘epmd’.

‘erl-test.el’
A few test cases.

‘erl-example.el’
Example code for doing nothing-in-particular.

7.2 Documents

Various goodies are described in text files in the OTP distribution:
‘erts/emulator/internal_doc/erl_ext_dist.txt’ describes the distribution protocol,
epmd protocol, and term format. The authentication “handshake” protocol for connecting
to a node is documented in ‘lib/kernel/internal_doc/distribution_handshake.txt’.

7.3 Related Work

Related libraries in OTP versions past or present are erl interface, JInterface, and JIVE,
as well as the distribution code in the emulator itself.

Distel is also similar to ETOS, the Erlang to Scheme compiler, in a modest sort of a
way – both systems implement Erlang runtime systems in Lisp. It’s pretty interesting to
see just how neatly this can be done in Scheme, using first-class continuations. ETOS is
available from http://www.iro.umontreal.ca/~etos/. For some reason the latest version
is only available in binary form, but the source to an older version is there. I don’t know
why it’s so.

The method of scheduling processes in Distel comes from the paper Trampolined
Style by Steven Ganz, Daniel Friedman, and Mitchell Wand. You can find a copy at
http://citeseer.nj.nec.com/217102.html. It’s a very pleasant read if you’re familiar
with Scheme.

Chapter 7: Hacking Distel 12

7.4 Contact

The Distel homepage is at http://www.bluetail.com/~luke/distel/. Send feedback
and patches to luke@bluetail.com.

7.5 Document Revision History

2.0 Major additions are pattern matching and erl-receive. This has simplified
the programming interface a lot, causing fundamentals like erl-mailbox to
become undocumented and erl-continue to be reclassified as an “internal”
function.
Added a reference to Trampolined Style.

1.0 First version.

mailto:luke@bluetail.com

	Overview
	Data Types
	Type Mapping

	Processes
	Process State
	Current Process

	Programming Interface
	Spawning and Running
	Pattern Matching
	BIFs
	Tuples
	PIDs

	Scheduler Internals
	Tips and Tricks
	Common Pitfalls

	Hacking Distel
	Hitch Hikers Guide
	Documents
	Related Work
	Contact
	Document Revision History

