
Compiler Application (COMPILER)

version 4.3

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 Compiler Reference Manual 1

1.1 compile . 2

iiiCompiler Application (COMPILER)

iv Compiler Application (COMPILER)

Compiler Reference Manual

Short Summaries

� Erlang Module compile [page 2] – Erlang Compiler

compile

The following functions are exported:

� file(File)
[page 2] Compile a file

� file(File, Options) -> CompRet
[page 2] Compile a file

� forms(Forms)
[page 5] Compile a list of forms

� forms(Forms, Options) -> CompRet
[page 5] Compile a list of forms

� format error(ErrorDescriptor) -> string()
[page 6] Format an error descriptor

1Compiler Application (COMPILER)

compile Compiler Reference Manual

compile
Erlang Module

This module provides an interface to the standard Erlang compiler. It can generate
either a new file which contains the object code, or return a binary which can be loaded
directly.

Exports

file(File)

Is the same as file(File, [verbose,report errors,report warnings]).

file(File, Options) -> CompRet

Types:

� CompRet = ModRet | BinRet | ErrRet
� ModRet = fok,ModuleNameg | fok,ModuleName,Warningsg
� BinRet = fok,ModuleName,Binaryg | fok,ModuleName,Binary,Warningsg
� ErrRet = error | ferror,Errors,Warningsg

Compiles the code in the file File, which is an Erlang source code file without the .erl
extension. Options determine the behavior of the compiler.

Returns fok,ModuleNameg if successful, or error if there are errors. An object code file
is created if the compilation succeeds with no errors.

Here follows first all elements of Options that in some way control the behavior of the
compiler.

basic validation This option is fast way to test whether a module will compile
successfully (mainly useful for code generators that want to verify the code they
emit). No code will generated. If warnings are enabled, warnings generated by the
erl lint module (such as warnings for unused variables and functions) will be
returned too.
Use the strong validation option to generate all warnings that the compiler
would generate.

strong validation Similar to the basic validation option, no code will be
generated, but more compiler passes will be run to ensure also warnings generated
by the optimization passes are generated (such as clauses that will not match or
expressions that are guaranteed to fail with an exception at run-time).

binary Causes the compiler to return the object code in a binary instead of creating an
object file. If successful, the compiler returns fok,ModuleName,Binaryg

2 Compiler Application (COMPILER)

Compiler Reference Manual compile

debug info Include debug information in the compiled beam module. Examle of
Erlang/OTP applications that can use the debug information are Debugger, Xref,
and Cover.
Warning: Note that the source code can be reconstructed from the abstract code.
If it is important to keep the source code secret, use the debug info key option
(described next) to encrypt the debug information, or strip the debug information
using the [beam lib] module before shipping your code.

fdebug info key,KeyStringg

fdebug info key,fMode,KeyStringgg Include debug information, but encrypt it, so
that it cannot be accessed without supplying the key. (To give the debug info
option as well is allowed, but is not necessary.) Using this option is a good way to
always have the debug information available during testing, yet protect the source
code.
Mode is the type of crypto algorithm to be used for encrypting the debug
information. The default mode, and currently the only, is des3 cbc (three rounds
of DES). The KeyString will be scrambled (using erlang:md5) to generate the
actual keys used for des3 cbc. It is recommended that the key string contains at
least 32 characters, and that both upper and lower case letters as well as digits and
special characters are used.
Note: As far as we know by the time of writing, it is infeasible to break des3 cbc
encryption without any knowledge of the key. Therefore, as long as the key is kept
safe and is unguessable, the encrypted debug information should be safe from
intruders.
See the [beam lib] module on how to register a key so that utilities such as Xref or
the Debugger can access the debug information.

encrypt debug info Like the debug info key option above, except that the key will
be read from an .erlang.crypt file. See the [beam lib] module for syntax of the
.erlang.crypt file.

’P’ Produces a listing of the parsed code after preprocessing and parse transforms, in
the file <File>.P. No object file is produced.

’E’ Produces a listing of the code after all source code transformations have been
performed, in the file <File>.E. No object file is produced.

’S’ Produces a listing of the assembler code in the file <File>.S. No object file is
produced.

report errors/report warnings Causes errors/warnings to be printed as they occur.
report This is a short form for both report errors and report warnings.

return errors If this flag is set, then ferror,ErrorList,WarningListg is returned
when there are errors.

return warnings If this flag is set, then an extra field containing WarningList is added
to the tuples returned on success.

return This is a short form for both return errors and return warnings.
verbose Causes more verbose information from the compiler describing what it is

doing.

foutdir,Dirg Sets a new directory for the object code. The current directory is used
for output, except when a directory has been specified with this option.

export all Causes all functions in the module to be exported.

fi,Dirg Add Dir to the list of directories to be searched when including a file. When
encountering an -include or -include dir directive, the compiler searches for
header files in the following directories:

3Compiler Application (COMPILER)

compile Compiler Reference Manual

1. ".", the current working directory of the file server;
2. the base name of the compiled file;
3. the directories specified using the i option. The directory specified last is

searched first.

fd,Macrog

fd,Macro,Valueg Defines a macro Macro to have the value Value. The default is
true).

fparse transform,Moduleg Causes the parse transformation function
Module:parse transform/2 to be applied to the parsed code before the code is
checked for errors.

asm The input file is expected to be assembler code (default file suffix “.S”). Note that
the format of assembler files is not documented, and may change between releases
- this option is primarily for internal debugging use.

ignore try try is a reserved keyword from the R9 release and may not be used as
atom names or field names in records (unless single-quoted). To compile old code
where try is used, the ignore try option can be given.

ignore cond cond is a reserved keyword starting with the R9 release and may not be
used as atom names or field names in records (unless single-quoted). To compile
old code where cond is used, the ignore cond option can be given.

If warnings are turned on (the report warnings option described above), the following
options control what type of warnings that will be generated. With the exception of
fwarn format,Verbosityg all options below have two forms; one warn xxx form to
turn on the warning and one nowarn xxx form to turn off the warning. In the
description that follows, the form that is used to change the default value is listed.

fwarn format, Verbosityg Causes warnings to be emitted for malformed format
strings as arguments to io:format and similar functions. Verbosity selects the
amount of warnings: 0 = no warnings; 1 = warnings for invalid format strings and
incorrect number of arguments; 2 = warnings also when the validity could not be
checked (for example, when the format string argument is a variable). The default
verbosity is 1. Verbosity 0 can also be selected by the option nowarn format.

nowarn bif clash By default, a warning will be emitted when a module contains an
exported function with the same name as an auto-imported BIF (such as size/1)
AND there is a call to it without a qualifying module name. The reason is that the
BIF will be called, not the function in the same module. The recommended way to
eliminate that warning is to use a call with a module name - either erlang to call
the BIF or ?MODULE to call the function in the same module. The warning can also
be turned off using nowarn bif clash, but that is not recommended.

warn export vars Causes warnings to be emitted for all implicitly exported variables
referred to after the primitives where they were first defined. No warnings for
exported variables unless they are referred to in some pattern, which is the default,
can be selected by the option nowarn export vars.

warn shadow vars Causes warnings to be emitted for “fresh” variables in functional
objects or list comprehensions with the same name as some already defined
variable. The default is to warn for such variables. No warnings for shadowed
variables can be selected by the option nowarn shadow vars.

nowarn unused function Turns off warnings for unused local functions. By default
(warn unused function), warnings are emitted for all local functions that are not
called directly or indirectly by an exported function. The compiler does include

4 Compiler Application (COMPILER)

Compiler Reference Manual compile

unused local functions in the generated beam file, but the warning is still useful to
keep the source code cleaner.

warn unused import Causes warnings to be emitted for unused imported functions.
No warnings for imported functions, which is the default, can be selected by the
option nowarn unused import.

nowarn unused vars By default, warnings are emitted for variables which are not used,
with the exception of variables beginning with an underscore (“Prolog style
warnings”). Use this option to turn off this kind of warnings.

Another class of warnings (introduced in the R10B release) are generated by the
compiler during optimization and code generation. They warn about patterns that will
never match (such as a=b), guards that will always evaluate to false, and expressions
that will always fail (such as atom+42). Currently, those warnings cannot be disabled
(except by disabling all warnings).

Warning:
Obviously, the absence of warnings does not mean that there are no remaining errors
in the code.

Note that all the options except the include path (fi,Dirg) can also be given in the file
with a -compile([Option,...]). attribute.

For debugging of the compiler, or for pure curiosity, the intermediate code generated by
each compiler pass can be inspected. A complete list of the options to produce list files
can be printed by typing compile:options() at the Erlang shell prompt. The options
will be printed in order that the passes are executed. If more than one listing option is
used, the one representing the earliest pass takes effect.

Unrecognized options are ignored.

Both WarningList and ErrorList have the following format:

[{FileName,[ErrorInfo]}].

ErrorInfo is described below. The file name has been included here as the compiler
uses the Erlang pre-processor epp, which allows the code to be included in other files.
For this reason, it is important to know to which file an error or warning line number
refers.

forms(Forms)

Is the same as forms(File, [verbose,report errors,report warnings]).

forms(Forms, Options) -> CompRet

Types:

� Forms = [Form]
� CompRet = BinRet | ErrRet
� BinRet = fok,ModuleName,BinaryOrCodeg |
fok,ModuleName,BinaryOrCode,Warningsg

� BinaryOrCode = binary() | term() <V>ErrRet = error | ferror,Errors,Warningsg

5Compiler Application (COMPILER)

compile Compiler Reference Manual

Analogous to file/1, but takes a list of forms (in the Erlang abstract format
representation) as first argument. The option binary is implicit; i.e., no object code file
is produced. Options that would ordinarily produce a listing file, such as 'E', will
instead cause the internal format for that compiler pass (an Erlang term; usually not a
binary) to be returned instead of a binary.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Uses an ErrorDescriptor and returns a string which describes the error. This function
is usually called implicitly when an ErrorInfo structure is processed. See below.

Default compiler options

The (host operating system) environment variable ERL COMPILER OPTIONS can be used
to give default compiler options. Its value must be a valid Erlang term. If the value is a
list, it will be used as is. If it is not a list, it will be put into a list. The list will be
appended to any options given to file/2 or forms/2.

Inlining

The compiler can now do function inlining within an Erlang module. Inlining means
that a call to a function is replaced with the function body with the arguments replaced
with the actual values. The semantics are preserved, except if exceptions are generated
in the inlined code. Exceptions will be reported as occurring in the function the body
was inlined into. Also, function clause exceptions will be converted to similar
case clause exceptions.

When a function is inlined, the original function may be kept as a separate function as
well, because there might still be calls to it. Therefore, inlining almost always increases
code size.

Inlining does not necessarily improve running time. For instance, inlining may increase
Beam stack usage which will probably be detrimental to performance for recursive
functions.

Inlining is never default; it must be explicitly enabled with a compiler option or a
'-compile()' attribute in the source module.

To enable inlining, use the 'inline' option.

Example:

-compile(inline).

The 'finline size,Sizeg' option controls how large functions that are allowed to be
inlined. Default is 24, which will keep the size of the inlined code roughly the same as
the un-inlined version (only relatively small functions will be inlined).

Example:

%% Aggressive inlining - will increase code size.
-compile(inline).
-compile(finline size,100g).

6 Compiler Application (COMPILER)

Compiler Reference Manual compile

Parse Transformations

Parse transformations are used when a programmer wants to use Erlang syntax but with
different semantics. The original Erlang code is then transformed into other Erlang code.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

[epp(3)], [erl id trans(3)], [erl lint(3)], [beam lib(3)]

7Compiler Application (COMPILER)

compile Compiler Reference Manual

8 Compiler Application (COMPILER)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

compile
file/1, 2
file/2, 2
format_error/1, 6
forms/1, 5
forms/2, 5

file/1
compile , 2

file/2
compile , 2

format_error/1
compile , 6

forms/1
compile , 5

forms/2
compile , 5

9Compiler Application (COMPILER)

10 Compiler Application (COMPILER)

