
λ →

∀
=Isa

be
lle

β
α

Isar

The Isabelle/Isar Reference Manual

Makarius Wenzel

With Contributions by Clemens Ballarin, Stefan Berghofer,
Lucas Dixon, Florian Haftmann, Gerwin Klein,

Alexander Krauss, Tobias Nipkow, David von Oheimb,
Larry Paulson, and Sebastian Skalberg

8 June 2008

Contents

1 Introduction 1
1.1 Overview . 1
1.2 User interfaces . 2

1.2.1 Terminal sessions . 2
1.2.2 Emacs Proof General 2

1.3 Isabelle/Isar theories . 4
1.4 How to write Isar proofs anyway? 5

2 Outer syntax 6
2.1 Lexical matters . 7
2.2 Common syntax entities . 8

2.2.1 Names . 8
2.2.2 Comments . 9
2.2.3 Type classes, sorts and arities 9
2.2.4 Types and terms . 10
2.2.5 Mixfix annotations . 11
2.2.6 Proof methods . 12
2.2.7 Attributes and theorems 14
2.2.8 Term patterns and declarations 16

3 Theory specifications 18
3.1 Defining theories . 18
3.2 Local theory targets . 19
3.3 Basic specification elements 20
3.4 Generic declarations . 22
3.5 Locales . 23

3.5.1 Locale specifications 23
3.5.2 Interpretation of locales 27

3.6 Classes . 30
3.6.1 The class target . 32
3.6.2 Old-style axiomatic type classes 33

3.7 Unrestricted overloading . 34
3.8 Incorporating ML code . 34
3.9 Primitive specification elements 36

i

CONTENTS ii

3.9.1 Type classes and sorts 36
3.9.2 Types and type abbreviations 37
3.9.3 Constants and definitions 38

3.10 Axioms and theorems . 40
3.11 Oracles . 41
3.12 Name spaces . 41
3.13 Syntax and translations . 42
3.14 Syntax translation functions 44

4 Proofs 46
4.1 Context elements . 46
4.2 Facts and forward chaining . 48
4.3 Goal statements . 50
4.4 Initial and terminal proof steps 53
4.5 Fundamental methods and attributes 55
4.6 Term abbreviations . 58
4.7 Block structure . 59
4.8 Emulating tactic scripts . 60
4.9 Omitting proofs . 61
4.10 Generalized elimination . 62
4.11 Calculational reasoning . 64
4.12 Proof by cases and induction 66

4.12.1 Rule contexts . 66
4.12.2 Proof methods . 68
4.12.3 Declaring rules . 72

5 Document preparation 74
5.1 Markup commands . 75
5.2 Antiquotations . 77
5.3 Tagged commands . 81
5.4 Draft presentation . 82

6 Other commands 84
6.1 Diagnostics . 84
6.2 Inspecting the context . 86
6.3 History commands . 88
6.4 System commands . 89

7 Generic tools and packages 90
7.1 Configuration options . 90
7.2 Basic proof tools . 91

CONTENTS iii

7.2.1 Miscellaneous methods and attributes 91
7.2.2 Low-level equational reasoning 93
7.2.3 Further tactic emulations 94

7.3 The Simplifier . 97
7.3.1 Simplification methods 97
7.3.2 Declaring rules . 99
7.3.3 Simplification procedures 99
7.3.4 Forward simplification 100

7.4 The Classical Reasoner . 101
7.4.1 Basic methods . 101
7.4.2 Automated methods 102
7.4.3 Combined automated methods 103
7.4.4 Declaring rules . 105
7.4.5 Classical operations . 106

7.5 Object-logic setup . 106

8 Isabelle/HOL 108
8.1 Primitive types . 108
8.2 Adhoc tuples . 109
8.3 Records . 110

8.3.1 Basic concepts . 110
8.3.2 Record specifications 111
8.3.3 Record operations . 112
8.3.4 Derived rules and proof tools 113

8.4 Datatypes . 114
8.5 Recursive functions . 115

8.5.1 Proof methods related to recursive definitions 117
8.5.2 Old-style recursive function definitions (TFL) 118

8.6 Inductive and coinductive definitions 120
8.6.1 Derived rules . 121
8.6.2 Monotonicity theorems 122

8.7 Arithmetic proof support . 122
8.8 Cases and induction: emulating tactic scripts 123
8.9 Executable code . 124
8.10 Definition by specification . 133

9 Isabelle/HOLCF 135
9.1 Mixfix syntax for continuous operations 135
9.2 Recursive domains . 135

CONTENTS iv

10 Isabelle/ZF 137
10.1 Type checking . 137
10.2 (Co)Inductive sets and datatypes 137

10.2.1 Set definitions . 137
10.2.2 Primitive recursive functions 139
10.2.3 Cases and induction: emulating tactic scripts 140

A Isabelle/Isar quick reference 141
A.1 Proof commands . 141

A.1.1 Primitives and basic syntax 141
A.1.2 Abbreviations and synonyms 142
A.1.3 Derived elements . 142
A.1.4 Diagnostic commands 142

A.2 Proof methods . 143
A.3 Attributes . 144
A.4 Rule declarations and methods 144
A.5 Emulating tactic scripts . 145

A.5.1 Commands . 145
A.5.2 Methods . 145

B ML tactic expressions 146
B.1 Resolution tactics . 146
B.2 Simplifier tactics . 147
B.3 Classical Reasoner tactics . 147
B.4 Miscellaneous tactics . 147
B.5 Tacticals . 148

Chapter 1

Introduction

1.1 Overview

The Isabelle system essentially provides a generic infrastructure for building
deductive systems (programmed in Standard ML), with a special focus on
interactive theorem proving in higher-order logics. In the olden days even
end-users would refer to certain ML functions (goal commands, tactics, tac-
ticals etc.) to pursue their everyday theorem proving tasks [14, 15].

In contrast Isar provides an interpreted language environment of its own,
which has been specifically tailored for the needs of theory and proof devel-
opment. Compared to raw ML, the Isabelle/Isar top-level provides a more
robust and comfortable development platform, with proper support for the-
ory development graphs, single-step transactions with unlimited undo, etc.
The Isabelle/Isar version of the Proof General user interface [1, 2] provides
an adequate front-end for interactive theory and proof development in this
advanced theorem proving environment.

Apart from the technical advances over bare-bones ML programming,
the main purpose of the Isar language is to provide a conceptually differ-
ent view on machine-checked proofs [22, 23]. “Isar” stands for “Intelligible
semi-automated reasoning”. Drawing from both the traditions of informal
mathematical proof texts and high-level programming languages, Isar offers a
versatile environment for structured formal proof documents. Thus properly
written Isar proofs become accessible to a broader audience than unstruc-
tured tactic scripts (which typically only provide operational information for
the machine). Writing human-readable proof texts certainly requires some
additional efforts by the writer to achieve a good presentation, both of formal
and informal parts of the text. On the other hand, human-readable formal
texts gain some value in their own right, independently of the mechanic
proof-checking process.

Despite its grand design of structured proof texts, Isar is able to assimilate
the old tactical style as an “improper” sub-language. This provides an easy
upgrade path for existing tactic scripts, as well as additional means for in-
teractive experimentation and debugging of structured proofs. Isabelle/Isar

1

CHAPTER 1. INTRODUCTION 2

supports a broad range of proof styles, both readable and unreadable ones.

The Isabelle/Isar framework [20] is generic and should work reasonably
well for any Isabelle object-logic that conforms to the natural deduction
view of the Isabelle/Pure framework. Specific language elements introduced
by the major object-logics are described in chapter 8 (Isabelle/HOL), chap-
ter 9 (Isabelle/HOLCF), and chapter 10 (Isabelle/ZF). The main language
elements are already provided by the Isabelle/Pure framework. Nevertheless,
examples given in the generic parts will usually refer to Isabelle/HOL as well.

Isar commands may be either proper document constructors, or improper
commands. Some proof methods and attributes introduced later are classified
as improper as well. Improper Isar language elements, which are marked
by “∗” in the subsequent chapters; they are often helpful when developing
proof documents, but their use is discouraged for the final human-readable
outcome. Typical examples are diagnostic commands that print terms or
theorems according to the current context; other commands emulate old-
style tactical theorem proving.

1.2 User interfaces

1.2.1 Terminal sessions

The Isabelle tty tool provides a very interface for running the Isar interaction
loop, with some support for command line editing. For example:

isatool tty

Welcome to Isabelle/HOL (Isabelle2008)

theory Foo imports Main begin;
definition foo :: nat where "foo == 1";
lemma "0 < foo" by (simp add: foo_def);
end;

Any Isabelle/Isar command may be retracted by undo. See the
Isabelle/Isar Quick Reference (appendix A) for a comprehensive overview
of available commands and other language elements.

1.2.2 Emacs Proof General

Plain TTY-based interaction as above used to be quite feasible with tradi-
tional tactic based theorem proving, but developing Isar documents really
demands some better user-interface support. The Proof General environ-
ment by David Aspinall [1, 2] offers a generic Emacs interface for interactive

CHAPTER 1. INTRODUCTION 3

theorem provers that organizes all the cut-and-paste and forward-backward
walk through the text in a very neat way. In Isabelle/Isar, the current po-
sition within a partial proof document is equally important than the actual
proof state. Thus Proof General provides the canonical working environment
for Isabelle/Isar, both for getting acquainted (e.g. by replaying existing Isar
documents) and for production work.

Proof General as default Isabelle interface

The Isabelle interface wrapper script provides an easy way to invoke
Proof General (including XEmacs or GNU Emacs). The default configuration
of Isabelle is smart enough to detect the Proof General distribution in several
canonical places (e.g. $ISABELLE_HOME/contrib/ProofGeneral). Thus the
capital Isabelle executable would already refer to the ProofGeneral/isar

interface without further ado. The Isabelle interface script provides several
options; pass -? to see its usage.

With the proper Isabelle interface setup, Isar documents may now be
edited by visiting appropriate theory files, e.g.

Isabelle 〈isabellehome〉/src/HOL/Isar_examples/Summation.thy

Beginners may note the tool bar for navigating forward and backward
through the text (this depends on the local Emacs installation). Consult
the Proof General documentation [1] for further basic command sequences,
in particular “C-c C-return” and “C-c u”.

Proof General may be also configured manually by giving Isabelle settings
like this (see also [24]):

ISABELLE_INTERFACE=$ISABELLE_HOME/contrib/ProofGeneral/isar/interface
PROOFGENERAL_OPTIONS=""

You may have to change $ISABELLE_HOME/contrib/ProofGeneral to the
actual installation directory of Proof General.

Apart from the Isabelle command line, defaults for interface options may
be given by the PROOFGENERAL_OPTIONS setting. For example, the Emacs
executable to be used may be configured in Isabelle’s settings like this:

PROOFGENERAL_OPTIONS="-p xemacs-mule"

Occasionally, a user’s ~/.emacs file contains code that is incompatible
with the (X)Emacs version used by Proof General, causing the interface
startup to fail prematurely. Here the -u false option helps to get the in-
terface process up and running. Note that additional Lisp customization
code may reside in proofgeneral-settings.el of $ISABELLE_HOME/etc or
$ISABELLE_HOME_USER/etc.

CHAPTER 1. INTRODUCTION 4

The X-Symbol package

Proof General incorporates a version of the Emacs X-Symbol package [19],
which handles proper mathematical symbols displayed on screen. Pass option
-x true to the Isabelle interface script, or check the appropriate Proof Gen-
eral menu setting by hand. The main challenge of getting X-Symbol to work
properly is the underlying (semi-automated) X11 font setup.

Using proper mathematical symbols in Isabelle theories can be very con-
venient for readability of large formulas. On the other hand, the plain ASCII
sources easily become somewhat unintelligible. For example, =⇒ would ap-
pear as \<Longrightarrow> according the default set of Isabelle symbols.
Nevertheless, the Isabelle document preparation system (see chapter 5) will
be happy to print non-ASCII symbols properly. It is even possible to invent
additional notation beyond the display capabilities of Emacs and X-Symbol.

1.3 Isabelle/Isar theories

Isabelle/Isar offers the following main improvements over classic Isabelle.

1. A theory format that integrates specifications and proofs, supporting
interactive development and unlimited undo operation.

2. A formal proof document language designed to support intelligible semi-
automated reasoning. Instead of putting together unreadable tactic
scripts, the author is enabled to express the reasoning in way that is
close to usual mathematical practice. The old tactical style has been
assimilated as “improper” language elements.

3. A simple document preparation system, for typesetting formal de-
velopments together with informal text. The resulting hyper-linked
PDF documents are equally well suited for WWW presentation and as
printed copies.

The Isar proof language is embedded into the new theory format as a
proper sub-language. Proof mode is entered by stating some theorem or
lemma at the theory level, and left again with the final conclusion (e.g. via
qed). A few theory specification mechanisms also require some proof, such
as HOL’s typedef which demands non-emptiness of the representing sets.

CHAPTER 1. INTRODUCTION 5

1.4 How to write Isar proofs anyway?

This is one of the key questions, of course. First of all, the tactic script emu-
lation of Isabelle/Isar essentially provides a clarified version of the very same
unstructured proof style of classic Isabelle. Old-time users should quickly
become acquainted with that (slightly degenerative) view of Isar.

Writing proper Isar proof texts targeted at human readers is quite dif-
ferent, though. Experienced users of the unstructured style may even have
to unlearn some of their habits to master proof composition in Isar. In con-
trast, new users with less experience in old-style tactical proving, but a good
understanding of mathematical proof in general, often get started easier.

The present text really is only a reference manual on Isabelle/Isar, not a
tutorial. Nevertheless, we will attempt to give some clues of how the concepts
introduced here may be put into practice. Especially note that appendix A
provides a quick reference card of the most common Isabelle/Isar language
elements.

Further issues concerning the Isar concepts are covered in the literature
[22, 25, 3, 4]. The author’s PhD thesis [23] presently provides the most
complete exposition of Isar foundations, techniques, and applications. A
number of example applications are distributed with Isabelle, and available
via the Isabelle WWW library (e.g. http://isabelle.in.tum.de/library/). The
“Archive of Formal Proofs” http://afp.sourceforge.net/ also provides plenty
of examples, both in proper Isar proof style and unstructured tactic scripts.

http://isabelle.in.tum.de/library/
http://afp.sourceforge.net/

Chapter 2

Outer syntax

The rather generic framework of Isabelle/Isar syntax emerges from three
main syntactic categories: commands of the top-level Isar engine (covering
theory and proof elements), methods for general goal refinements (analogous
to traditional “tactics”), and attributes for operations on facts (within a
certain context). Subsequently we give a reference of basic syntactic entities
underlying Isabelle/Isar syntax in a bottom-up manner. Concrete theory and
proof language elements will be introduced later on.

In order to get started with writing well-formed Isabelle/Isar documents,
the most important aspect to be noted is the difference of inner versus outer
syntax. Inner syntax is that of Isabelle types and terms of the logic, while
outer syntax is that of Isabelle/Isar theory sources (specifications and proofs).
As a general rule, inner syntax entities may occur only as atomic entities
within outer syntax. For example, the string "x + y" and identifier z are
legal term specifications within a theory, while x + y without quotes is not.

Printed theory documents usually omit quotes to gain readability (this
is a matter of LATEX macro setup, say via \isabellestyle, see also [24]).
Experienced users of Isabelle/Isar may easily reconstruct the lost technical
information, while mere readers need not care about quotes at all.

Isabelle/Isar input may contain any number of input termination char-
acters “;” (semicolon) to separate commands explicitly. This is particularly
useful in interactive shell sessions to make clear where the current command
is intended to end. Otherwise, the interpreter loop will continue to issue a
secondary prompt “#” until an end-of-command is clearly recognized from
the input syntax, e.g. encounter of the next command keyword.

More advanced interfaces such as Proof General [1] do not require explicit
semicolons, the amount of input text is determined automatically by inspect-
ing the present content of the Emacs text buffer. In the printed presentation
of Isabelle/Isar documents semicolons are omitted altogether for readability.

! Proof General requires certain syntax classification tables in order to achieve
properly synchronized interaction with the Isabelle/Isar process. These tables

need to be consistent with the Isabelle version and particular logic image to be used

6

CHAPTER 2. OUTER SYNTAX 7

in a running session (common object-logics may well change the outer syntax). The
standard setup should work correctly with any of the “official” logic images derived
from Isabelle/HOL (including HOLCF etc.). Users of alternative logics may need
to tell Proof General explicitly, e.g. by giving an option -k ZF (in conjunction with
-l ZF, to specify the default logic image). Note that option -L does both of this
at the same time.

2.1 Lexical matters

The Isabelle/Isar outer syntax provides token classes as presented below;
most of these coincide with the inner lexical syntax as presented in [15].

ident = letter quasiletter ∗

longident = ident(.ident)+

symident = sym+ | \<ident>
nat = digit+

var = ident | ?ident | ?ident.nat
typefree = ’ident
typevar = typefree | ?typefree | ?typefree.nat

string = " . . . "
altstring = ‘ . . . ‘
verbatim = {* . . . *}

letter = latin | \<latin> | \<latin latin> | greek |
\<^isub> | \<^isup>

quasiletter = letter | digit | _ | ’
latin = a | . . . | z | A | . . . | Z
digit = 0 | . . . | 9
sym = ! | # | $ | % | & | * | + | - | / |

< | = | > | ? | @ | ^ | _ | | | ~
greek = \<alpha> | \<beta> | \<gamma> | \<delta> |

\<epsilon> | \<zeta> | \<eta> | \<theta> |
\<iota> | \<kappa> | \<mu> | \<nu> |
\<xi> | \<pi> | \<rho> | \<sigma> | \<tau> |
\<upsilon> | \<phi> | \<chi> | \<psi> |
\<omega> | \<Gamma> | \<Delta> | \<Theta> |
\<Lambda> | \<Xi> | \<Pi> | \<Sigma> |
\<Upsilon> | \<Phi> | \<Psi> | \<Omega>

The syntax of string admits any characters, including newlines; “"”
(double-quote) and “\” (backslash) need to be escaped by a backslash; arbi-
trary character codes may be specified as “\ddd”, with three decimal digits.

CHAPTER 2. OUTER SYNTAX 8

Alternative strings according to altstring are analogous, using single back-
quotes instead. The body of verbatim may consist of any text not containing
“*}”; this allows convenient inclusion of quotes without further escapes. The
greek letters do not include \<lambda>, which is already used differently in
the meta-logic.

Common mathematical symbols such as ∀ are represented in Isabelle as
\<forall>. There are infinitely many Isabelle symbols like this, although
proper presentation is left to front-end tools such as LATEX or Proof General
with the X-Symbol package. A list of standard Isabelle symbols that work
well with these tools is given in [24, appendix A].

Source comments take the form (* . . . *) and may be nested, although
user-interface tools might prevent this. Note that this form indicates source
comments only, which are stripped after lexical analysis of the input. The
Isar document syntax also provides formal comments that are considered as
part of the text (see §2.2.2).

2.2 Common syntax entities

We now introduce several basic syntactic entities, such as names, terms, and
theorem specifications, which are factored out of the actual Isar language
elements to be described later.

2.2.1 Names

Entity name usually refers to any name of types, constants, theorems etc.
that are to be declared or defined (so qualified identifiers are excluded here).
Quoted strings provide an escape for non-identifier names or those ruled out
by outer syntax keywords (e.g. quoted "let"). Already existing objects are
usually referenced by nameref .

name

ident
�� �
�

� symident
�� �
� string
�� �
�nat
�� �

�

parname

(
���
name

�� �
)
���

CHAPTER 2. OUTER SYNTAX 9

nameref

name
�� �
�

� longident
�� �

�

int

nat
�� �
�

� -
���
nat

�� �

�

2.2.2 Comments

Large chunks of plain text are usually given verbatim, i.e. enclosed in
{* . . . *}. For convenience, any of the smaller text units conforming to
nameref are admitted as well. A marginal comment is of the form -- text.
Any number of these may occur within Isabelle/Isar commands.

text

verbatim
�� �
�

�nameref
�� �

�

comment

--
�� �
text

�� �

2.2.3 Type classes, sorts and arities

Classes are specified by plain names. Sorts have a very simple inner syntax,
which is either a single class name c or a list {c1, . . ., cn} referring to the
intersection of these classes. The syntax of type arities is given directly at
the outer level.

classdecl

name
�� �
�

� <
���
�

�⊆
�� �

�

nameref
�� �
�

� ,
���

�

�

CHAPTER 2. OUTER SYNTAX 10

sort

nameref
�� �

arity

�
� (

���
 sort�
� ,

���

�

)
���

�

sort

2.2.4 Types and terms

The actual inner Isabelle syntax, that of types and terms of the logic, is far
too sophisticated in order to be modelled explicitly at the outer theory level.
Basically, any such entity has to be quoted to turn it into a single token (the
parsing and type-checking is performed internally later). For convenience, a
slightly more liberal convention is adopted: quotes may be omitted for any
type or term that is already atomic at the outer level. For example, one
may just write x instead of quoted "x". Note that symbolic identifiers (e.g.
++ or ∀ are available as well, provided these have not been superseded by
commands or other keywords already (such as = or +).

type

nameref
�� �
�

� typefree
�� �
� typevar
�� �

�

term

nameref
�� �
�

�var
�� �

�

prop

term
�� �

Positional instantiations are indicated by giving a sequence of terms, or
the placeholder “ ” (underscore), which means to skip a position.

CHAPTER 2. OUTER SYNTAX 11

inst

_
���
�

� term
�� �

�

insts

�
� inst

�

Type declarations and definitions usually refer to typespec on the left-hand
side. This models basic type constructor application at the outer syntax level.
Note that only plain postfix notation is available here, but no infixes.

typespec

�
� typefree

�� �
� (
���
 typefree

�� �
�
� ,

���

�

)
���

�

name
�� �

2.2.5 Mixfix annotations

Mixfix annotations specify concrete inner syntax of Isabelle types and terms.
Some commands such as types (see §3.9.2) admit infixes only, while consts
(see §3.9.3) and syntax (see §3.13) support the full range of general mixfixes
and binders.

infix

(
���
 infix

�� �
�
�infixl

�� �
�infixr
�� �

�

�
� string

�� �

�

nat
�� �
)

���

CHAPTER 2. OUTER SYNTAX 12

mixfix

infix�
� (

���
string
�� �
�

�prios

�

�
�nat

�� �

�

)
���

� (
���
binder

�� �
string
�� �
�

�prios

�

nat
�� �
)

���

�

structmixfix

mixfix�
� (

���
structure
�� �
)

���

�

prios

[
���
 nat

�� �
�
� ,

���

�

]
���

Here the string specifications refer to the actual mixfix template (see also
[15]), which may include literal text, spacing, blocks, and arguments (denoted
by “ ”); the special symbol “\<index>” (printed as “ı”) represents an index
argument that specifies an implicit structure reference (see also §3.5). Infix
and binder declarations provide common abbreviations for particular mixfix
declarations. So in practice, mixfix templates mostly degenerate to literal
text for concrete syntax, such as “++” for an infix symbol, or “++ı” for an
infix of an implicit structure.

2.2.6 Proof methods

Proof methods are either basic ones, or expressions composed of methods
via “,” (sequential composition), “|” (alternative choices), “?” (try), “+”
(repeat at least once), “[n]” (restriction to first n sub-goals, with default
n = 1). In practice, proof methods are usually just a comma separated list
of nameref args specifications. Note that parentheses may be dropped for
single method specifications (with no arguments).

CHAPTER 2. OUTER SYNTAX 13

method

nameref
�� �
�

� (
���
methods)

���

�

�
� ?

���
� +
���
� [
���
�

�nat
�� �

�

]
���

�

methods

nameref
�� �
args�

�method

�

�
� ,

���
�
� |

���

�

�

Proper Isar proof methods do not admit arbitrary goal addressing, but
refer either to the first sub-goal or all sub-goals uniformly. The goal restric-
tion operator “[n]” evaluates a method expression within a sandbox consist-
ing of the first n sub-goals (which need to exist). For example, the method
“simp all [3]” simplifies the first three sub-goals, while “(rule foo, simp all)[]”
simplifies all new goals that emerge from applying rule foo to the originally
first one.

Improper methods, notably tactic emulations, offer a separate low-level
goal addressing scheme as explicit argument to the individual tactic being
involved. Here “[!]” refers to all goals, and “[n−]” to all goals starting from
n.

goalspec

[
���
 nat

�� �
-
���
nat

�� �
�
�nat

�� �
-
���
�nat

�� �
� !
���

�

]
���

CHAPTER 2. OUTER SYNTAX 14

2.2.7 Attributes and theorems

Attributes (and proof methods, see §2.2.6) have their own “semi-inner” syn-
tax, in the sense that input conforming to args below is parsed by the at-
tribute a second time. The attribute argument specifications may be any
sequence of atomic entities (identifiers, strings etc.), or properly bracketed
argument lists. Below atom refers to any atomic entity, including any key-
word conforming to symident.

atom

nameref
�� �
�

� typefree
�� �
� typevar
�� �
�var
�� �
�nat
�� �
�keyword
�� �

�

arg

atom
�� �
�

� (
���
args)

���
� [
���
args]

���

�

args

�
�arg

�

attributes

[
���
�

� nameref
�� �
args�

� ,
���

�

�

]
���

Theorem specifications come in several flavors: axmdecl and thmdecl usu-
ally refer to axioms, assumptions or results of goal statements, while thmdef

CHAPTER 2. OUTER SYNTAX 15

collects lists of existing theorems. Existing theorems are given by thmref and
thmrefs , the former requires an actual singleton result.

There are three forms of theorem references:

1. named facts a,

2. selections from named facts a(i) or a(j − k),

3. literal fact propositions using altstring syntax ‘ϕ‘ (see also method
fact in §4.5).

Any kind of theorem specification may include lists of attributes both
on the left and right hand sides; attributes are applied to any immediately
preceding fact. If names are omitted, the theorems are not stored within the
theorem database of the theory or proof context, but any given attributes
are applied nonetheless.

An extra pair of brackets around attributes (like “[[simproc a]]”) abbre-
viates a theorem reference involving an internal dummy fact, which will be
ignored later on. So only the effect of the attribute on the background con-
text will persist. This form of in-place declarations is particularly useful with
commands like declare and using.

axmdecl

name
�� �
�

�attributes

�

:
���

thmdecl

thmbind :
���

thmdef

thmbind =
���

thmref

nameref
�� �
�

� selection

�

�
�altstring

�

�
�attributes

�

�

� [
���
attributes]

���

�

CHAPTER 2. OUTER SYNTAX 16

thmrefs

thmref�
�

�

thmbind

name
�� �
attributes�

�name
�� �
�attributes

�

selection

(
���
 nat

�� �
�
�nat

�� �
-
���
�

�nat
�� �

�

�

�

� ,
���

�

)
���

2.2.8 Term patterns and declarations

Wherever explicit propositions (or term fragments) occur in a proof text,
casual binding of schematic term variables may be given specified via patterns
of the form “(is p1 . . . pn)”. This works both for term and prop.

termpat

(
���
 is

�� �
term
�� �
�

�
�

)
���

proppat

(
���
 is

�� �
prop
�� �
�

�
�

)
���

Declarations of local variables x :: τ and logical propositions a : ϕ rep-
resent different views on the same principle of introducing a local scope. In
practice, one may usually omit the typing of vars (due to type-inference),

CHAPTER 2. OUTER SYNTAX 17

and the naming of propositions (due to implicit references of current facts).
In any case, Isar proof elements usually admit to introduce multiple such
items simultaneously.

vars

name
�� �
�

�
�

�
�::

�� �
type
�� �

�

props

�
� thmdecl

�

prop
�� �
�

�proppat

�

�
�

�

The treatment of multiple declarations corresponds to the complementary
focus of vars versus props . In “x 1 . . . xn :: τ” the typing refers to all variables,
while in a: ϕ1 . . . ϕn the naming refers to all propositions collectively. Isar
language elements that refer to vars or props typically admit separate typings
or namings via another level of iteration, with explicit and separators; e.g.
see fix and assume in §4.1.

Chapter 3

Theory specifications

3.1 Defining theories

theory : toplevel → theory
end : theory → toplevel

Isabelle/Isar theories are defined via theory file, which contain both spec-
ifications and proofs; occasionally definitional mechanisms also require some
explicit proof. The theory body may be sub-structered by means of local
theory target mechanisms, notably locale and class.

The first “real” command of any theory has to be theory, which starts a
new theory based on the merge of existing ones. Just preceding the theory
keyword, there may be an optional header declaration, which is relevant
to document preparation only; it acts very much like a special pre-theory
markup command (cf. §5.1). The end command concludes a theory devel-
opment; it has to be the very last command of any theory file loaded in
batch-mode.

theory
�� �
name

�� �
imports
�� �
 name

�� �
�
�

�

�
�uses

�

begin
�� �

uses

uses
�� �
 name

�� �
�
�parname

�

�
�

�

theory A imports B1 . . . Bn begin starts a new theory A based on the
merge of existing theories B1 . . . Bn .

Due to inclusion of several ancestors, the overall theory structure
emerging in an Isabelle session forms a directed acyclic graph (DAG).

18

CHAPTER 3. THEORY SPECIFICATIONS 19

Isabelle’s theory loader ensures that the sources contributing to the
development graph are always up-to-date. Changed files are automat-
ically reloaded when processing theory headers.

The optional uses specification declares additional dependencies on
extra files (usually ML sources). Files will be loaded immediately (as
ML), unless the name is put in parentheses, which merely documents
the dependency to be resolved later in the text (typically via explicit
use in the body text, see §3.8).

end concludes the current theory definition.

3.2 Local theory targets

A local theory target is a context managed separately within the enclosing
theory. Contexts may introduce parameters (fixed variables) and assump-
tions (hypotheses). Definitions and theorems depending on the context may
be added incrementally later on. Named contexts refer to locales (cf. §3.5)
or type classes (cf. §3.6); the name “−” signifies the global theory context.

context : theory → local-theory
end : local-theory → theory

context
�� �
name

�� �
begin
�� �

target

(
���
in

�� �
name
�� �
)

���

context c begin recommences an existing locale or class context c. Note

that locale and class definitions allow to include the begin keyword as
well, in order to continue the local theory immediately after the initial
specification.

end concludes the current local theory and continues the enclosing global
theory. Note that a global end has a different meaning: it concludes
the theory itself (§3.1).

CHAPTER 3. THEORY SPECIFICATIONS 20

(in c) given after any local theory command specifies an immediate target,
e.g. “definition (in c) . . .” or “theorem (in c) . . .”. This works both
in a local or global theory context; the current target context will be
suspended for this command only. Note that “(in −)” will always
produce a global result independently of the current target context.

The exact meaning of results produced within a local theory context
depends on the underlying target infrastructure (locale, type class etc.). The
general idea is as follows, considering a context named c with parameter x
and assumption A[x].

Definitions are exported by introducing a global version with additional
arguments; a syntactic abbreviation links the long form with the abstract
version of the target context. For example, a ≡ t [x] becomes c.a ?x ≡ t [?x]
at the theory level (for arbitrary ?x), together with a local abbreviation c ≡
c.a x in the target context (for the fixed parameter x).

Theorems are exported by discharging the assumptions and generalizing
the parameters of the context. For example, a: B [x] becomes c.a: A[?x] =⇒
B [?x], again for arbitrary ?x.

3.3 Basic specification elements

axiomatization : local-theory → local-theory (axiomatic!)
definition : local-theory → local-theory

defn : attribute
abbreviation : local-theory → local-theory

print abbrevs∗ : theory | proof → theory | proof
notation : local-theory → local-theory

no notation : local-theory → local-theory

These specification mechanisms provide a slightly more abstract view
than the underlying primitives of consts, defs (see §3.9.3), and axioms (see
§3.10). In particular, type-inference is commonly available, and result names
need not be given.

axiomatization
�� �
�

� target

�

�
�fixes

�

�
�where

�� �
specs

�

definition
�� �
�

� target

�

�
�decl where

�� �

�

�
� thmdecl

�

prop
�� �

CHAPTER 3. THEORY SPECIFICATIONS 21

abbreviation
�� �
�

� target

�

�
�mode

�

�
�decl where

�� �

�

prop
�� �

notation
�� �
�

�no notation
�� �

�

�
� target

�

�
�mode

�

nameref
�� �
structmixfix�

� and
�� �

�

fixes

name
�� �
�

�::
�� �
type

�� �

�

�
�mixfix

�

�
�vars

�

�

� and
�� �

�

specs

�
� thmdecl

�

props�
� and

�� �

�

decl

name
�� �
�

�::
�� �
type

�� �

�

�
�mixfix

�

axiomatization c1 . . . cm where ϕ1 . . . ϕn introduces several constants
simultaneously and states axiomatic properties for these. The con-
stants are marked as being specified once and for all, which prevents
additional specifications being issued later on.

Note that axiomatic specifications are only appropriate when declaring
a new logical system. Normal applications should only use definitional
mechanisms!

definition c where eq produces an internal definition c ≡ t according to
the specification given as eq, which is then turned into a proven fact.
The given proposition may deviate from internal meta-level equality
according to the rewrite rules declared as defn by the object-logic.

CHAPTER 3. THEORY SPECIFICATIONS 22

This usually covers object-level equality x = y and equivalence A ↔
B. End-users normally need not change the defn setup.

Definitions may be presented with explicit arguments on the LHS, as
well as additional conditions, e.g. f x y = t instead of f ≡ λx y . t and
y 6= 0 =⇒ g x y = u instead of an unrestricted g ≡ λx y . u.

abbreviation c where eq introduces a syntactic constant which is associ-
ated with a certain term according to the meta-level equality eq.

Abbreviations participate in the usual type-inference process, but are
expanded before the logic ever sees them. Pretty printing of terms in-
volves higher-order rewriting with rules stemming from reverted abbre-
viations. This needs some care to avoid overlapping or looping syntactic
replacements!

The optional mode specification restricts output to a particular print
mode; using “input” here achieves the effect of one-way abbreviations.
The mode may also include an “output” qualifier that affects the con-
crete syntax declared for abbreviations, cf. syntax in §3.13.

print abbrevs prints all constant abbreviations of the current context.

notation c (mx) associates mixfix syntax with an existing constant or fixed
variable. This is a robust interface to the underlying syntax primitive
(§3.13). Type declaration and internal syntactic representation of the
given entity is retrieved from the context.

no notation is similar to notation, but removes the specified syntax an-
notation from the present context.

All of these specifications support local theory targets (cf. §3.2).

3.4 Generic declarations

Arbitrary operations on the background context may be wrapped-up as
generic declaration elements. Since the underlying concept of local theories
may be subject to later re-interpretation, there is an additional dependency
on a morphism that tells the difference of the original declaration context
wrt. the application context encountered later on. A fact declaration is an
important special case: it consists of a theorem which is applied to the con-
text by means of an attribute.

declaration : local-theory → local-theory
declare : local-theory → local-theory

CHAPTER 3. THEORY SPECIFICATIONS 23

declaration
�� �
�

� target

�

text
�� �

declare
�� �
�

� target

�

thmrefs�
� and

�� �

�

declaration d adds the declaration function d of ML type declaration,
to the current local theory under construction. In later application
contexts, the function is transformed according to the morphisms being
involved in the interpretation hierarchy.

declare thms declares theorems to the current local theory context. No
theorem binding is involved here, unlike theorems or lemmas (cf.
§3.10), so declare only has the effect of applying attributes as included
in the theorem specification.

3.5 Locales

Locales are named local contexts, consisting of a list of declaration elements
that are modeled after the Isar proof context commands (cf. §4.1).

3.5.1 Locale specifications

locale : theory → local-theory
print locale∗ : theory | proof → theory | proof

print locales∗ : theory | proof → theory | proof
intro locales : method

unfold locales : method

locale
�� �
�

�(open)
�� �

�

name
�� �
�

� =
���
localeexpr

�

�
�begin

�� �

�

print locale
�� �
�

� !
���

�

localeexpr

CHAPTER 3. THEORY SPECIFICATIONS 24

localeexpr

contextexpr +
���
 contextelem�

�
�

�
� contextexpr

� contextelem�
�

�

�

contextexpr

nameref
�� �
�

� (
���
contextexpr)

���
� contextexpr name
�� �
�

�mixfix

�

�
�

�

� contextexpr�
� +

���

�

�

contextelem

fixes�
� constrains

�assumes

�defines

�notes

�

fixes

fixes
�� �
 name

�� �
�
�::

�� �
type
�� �

�

�
� structmixfix

�

�
�vars

�

�

� and
�� �

�

CHAPTER 3. THEORY SPECIFICATIONS 25

constrains

constrains
�� �
 name

�� �
::
�� �
type

�� �
�
� and

�� �

�

assumes

assumes
�� �
 �

� thmdecl

�

props�
� and

�� �

�

defines

defines
�� �
 �

� thmdecl

�

prop
�� �
�

�proppat

�

�
� and

�� �

�

notes

notes
�� �
 �

� thmdef

�

thmrefs�
� and

�� �

�

includes

includes
�� �
contextexpr

locale loc = import + body defines a new locale loc as a context consisting
of a certain view of existing locales (import) plus some additional ele-
ments (body). Both import and body are optional; the degenerate form
locale loc defines an empty locale, which may still be useful to collect
declarations of facts later on. Type-inference on locale expressions au-
tomatically takes care of the most general typing that the combined
context elements may acquire.

The import consists of a structured context expression, consisting of
references to existing locales, renamed contexts, or merged contexts.
Renaming uses positional notation: c x 1 . . . xn means that (a pre-
fix of) the fixed parameters of context c are named x 1, . . ., xn ; a
“ ” (underscore) means to skip that position. Renaming by default

CHAPTER 3. THEORY SPECIFICATIONS 26

deletes concrete syntax, but new syntax may by specified with a mix-
fix annotation. An exeption of this rule is the special syntax declared
with “(structure)” (see below), which is neither deleted nor can it be
changed. Merging proceeds from left-to-right, suppressing any dupli-
cates stemming from different paths through the import hierarchy.

The body consists of basic context elements, further context expressions
may be included as well.

fixes x :: τ (mx) declares a local parameter of type τ and mixfix an-
notation mx (both are optional). The special syntax declaration
“(structure)” means that x may be referenced implicitly in this
context.

constrains x :: τ introduces a type constraint τ on the local parame-
ter x.

assumes a: ϕ1 . . . ϕn introduces local premises, similar to assume
within a proof (cf. §4.1).

defines a: x ≡ t defines a previously declared parameter. This is sim-
ilar to def within a proof (cf. §4.1), but defines takes an equa-
tional proposition instead of variable-term pair. The left-hand side
of the equation may have additional arguments, e.g. “defines f x 1

. . . xn ≡ t”.

notes a = b1 . . . bn reconsiders facts within a local context. Most
notably, this may include arbitrary declarations in any attribute
specifications included here, e.g. a local simp rule.

includes c copies the specified context in a statically scoped manner.
Only available in the long goal format of §4.3.

In contrast, the initial import specification of a locale expression
maintains a dynamic relation to the locales being referenced (ben-
efiting from any later fact declarations in the obvious manner).

Note that “(is p1 . . . pn)” patterns given in the syntax of assumes and
defines above are illegal in locale definitions. In the long goal format
of §4.3, term bindings may be included as expected, though.

By default, locale specifications are “closed up” by turning the given
text into a predicate definition loc axioms and deriving the original
assumptions as local lemmas (modulo local definitions). The predicate
statement covers only the newly specified assumptions, omitting the
content of included locale expressions. The full cumulative view is only

CHAPTER 3. THEORY SPECIFICATIONS 27

provided on export, involving another predicate loc that refers to the
complete specification text.

In any case, the predicate arguments are those locale parameters that
actually occur in the respective piece of text. Also note that these
predicates operate at the meta-level in theory, but the locale packages
attempts to internalize statements according to the object-logic setup
(e.g. replacing

∧
by ∀ , and =⇒ by −→ in HOL; see also §7.5). Separate

introduction rules loc axioms .intro and loc.intro are provided as well.

The (open) option of a locale specification prevents both the current
loc axioms and cumulative loc predicate constructions. Predicates are
also omitted for empty specification texts.

print locale import + body prints the specified locale expression in a flat-
tened form. The notable special case print locale loc just prints the
contents of the named locale, but keep in mind that type-inference will
normalize type variables according to the usual alphabetical order. The
command omits notes elements by default. Use print locale! to get
them included.

print locales prints the names of all locales of the current theory.

intro locales and unfold locales repeatedly expand all introduction rules of
locale predicates of the theory. While intro locales only applies the
loc.intro introduction rules and therefore does not decend to assump-
tions, unfold locales is more aggressive and applies loc axioms .intro as
well. Both methods are aware of locale specifications entailed by the
context, both from target and includes statements, and from interpre-
tations (see below). New goals that are entailed by the current context
are discharged automatically.

3.5.2 Interpretation of locales

Locale expressions (more precisely, context expressions) may be instantiated,
and the instantiated facts added to the current context. This requires a proof
of the instantiated specification and is called locale interpretation. Interpre-
tation is possible in theories and locales (command interpretation) and also
within a proof body (command interpret).

interpretation : theory → proof (prove)
interpret : proof (state) | proof (chain) → proof (prove)

print interps∗ : theory | proof → theory | proof

CHAPTER 3. THEORY SPECIFICATIONS 28

interpretation
�� �
 interp�

�name
�� �
 <

���
�
�⊆

�� �

�

contextexpr

�

interpret
�� �
interp

print interps
�� �
�

� !
���

�

name
�� �

instantiation

�
� [

���
 inst�
�

�

]
���

�

interp

�
� thmdecl

�

�

�

� contextexpr instantiation�
�name

�� �
instantiation where
�� �
 �

� thmdecl

�

prop
�� �
�

� and
�� �

�

�

interpretation expr insts where eqns The first form of interpretation
interprets expr in the theory. The instantiation is given as a list of
terms insts and is positional. All parameters must receive an instanti-
ation term — with the exception of defined parameters. These are, if
omitted, derived from the defining equation and other instantiations.
Use “ ” to omit an instantiation term.

The command generates proof obligations for the instantiated specifi-
cations (assumes and defines elements). Once these are discharged by

CHAPTER 3. THEORY SPECIFICATIONS 29

the user, instantiated facts are added to the theory in a post-processing
phase.

Additional equations, which are unfolded in facts during post-
processing, may be given after the keyword where. This is useful
for interpreting concepts introduced through definition specification el-
ements. The equations must be proved. Note that if equations are
present, the context expression is restricted to a locale name.

The command is aware of interpretations already active in the theory.
No proof obligations are generated for those, neither is post-processing
applied to their facts. This avoids duplication of interpreted facts, in
particular. Note that, in the case of a locale with import, parts of the
interpretation may already be active. The command will only generate
proof obligations and process facts for new parts.

The context expression may be preceded by a name and/or attributes.
These take effect in the post-processing of facts. The name is used to
prefix fact names, for example to avoid accidental hiding of other facts.
Attributes are applied after attributes of the interpreted facts.

Adding facts to locales has the effect of adding interpreted facts to
the theory for all active interpretations also. That is, interpretations
dynamically participate in any facts added to locales.

interpretation name ⊆ expr This form of the command interprets expr in
the locale name. It requires a proof that the specification of name
implies the specification of expr. As in the localized version of the
theorem command, the proof is in the context of name. After the
proof obligation has been dischared, the facts of expr become part of
locale name as derived context elements and are available when the
context name is subsequently entered. Note that, like import, this
is dynamic: facts added to a locale part of expr after interpretation
become also available in name. Like facts of renamed context elements,
facts obtained by interpretation may be accessed by prefixing with the
parameter renaming (where the parameters are separated by “ ”).

Unlike interpretation in theories, instantiation is confined to the re-
naming of parameters, which may be specified as part of the context
expression expr. Using defined parameters in name one may achieve
an effect similar to instantiation, though.

Only specification fragments of expr that are not already part of name
(be it imported, derived or a derived fragment of the import) are con-
sidered by interpretation. This enables circular interpretations.

CHAPTER 3. THEORY SPECIFICATIONS 30

If interpretations of name exist in the current theory, the command
adds interpretations for expr as well, with the same prefix and at-
tributes, although only for fragments of expr that are not interpreted
in the theory already.

interpret expr insts where eqns interprets expr in the proof context and
is otherwise similar to interpretation in theories.

print interps loc prints the interpretations of a particular locale loc that
are active in the current context, either theory or proof context. The
exclamation point argument triggers printing of witness theorems jus-
tifying interpretations. These are normally omitted from the output.

! Since attributes are applied to interpreted theorems, interpretation may mod-
ify the context of common proof tools, e.g. the Simplifier or Classical Reasoner.

Since the behavior of such automated reasoning tools is not stable under interpre-
tation morphisms, manual declarations might have to be issued.

! An interpretation in a theory may subsume previous interpretations. This
happens if the same specification fragment is interpreted twice and the instan-

tiation of the second interpretation is more general than the interpretation of the
first. A warning is issued, since it is likely that these could have been general-
ized in the first place. The locale package does not attempt to remove subsumed
interpretations.

3.6 Classes

A class is a particular locale with exactly one type variable α. Beyond the
underlying locale, a corresponding type class is established which is inter-
preted logically as axiomatic type class [21] whose logical content are the
assumptions of the locale. Thus, classes provide the full generality of locales
combined with the commodity of type classes (notably type-inference). See
[6] for a short tutorial.

class : theory → local-theory
instantiation : theory → local-theory

instance : local-theory → local-theory
subclass : local-theory → local-theory

print classes∗ : theory | proof → theory | proof
intro classes : method

CHAPTER 3. THEORY SPECIFICATIONS 31

class
�� �
name

�� �
=
���
 superclassexpr +

���
 contextelem�
�

�

�
� superclassexpr

� contextelem�
�

�

�

�

�
��

�begin
�� �

�

instantiation
�� �
 nameref

�� �
�
� and

�� �

�

::
�� �
arity begin

�� �

instance
�� �

subclass

�� �
�
� target

�

nameref
�� �

print classes
�� �

superclassexpr

nameref
�� �
�

�nameref
�� �
+

���
superclassexpr

�

class c = superclasses + body defines a new class c, inheriting from super-
classes. This introduces a locale c with import of all locales super-
classes.

Any fixes in body are lifted to the global theory level (class opera-
tions f 1, . . ., f n of class c), mapping the local type parameter α to a
schematic type variable ?α :: c.

Likewise, assumes in body are also lifted, mapping each local parame-
ter f :: τ [α] to its corresponding global constant f :: τ [?α :: c]. The cor-
responding introduction rule is provided as c class axioms .intro. This

CHAPTER 3. THEORY SPECIFICATIONS 32

rule should be rarely needed directly — the intro classes method takes
care of the details of class membership proofs.

instantiation t :: (s1, . . ., sn) s begin opens a theory target (cf. §3.2)
which allows to specify class operations f 1, . . ., f n corresponding to
sort s at the particular type instance (α1 :: s1, . . ., αn :: sn) t. A plain
instance command in the target body poses a goal stating these type
arities. The target is concluded by an end command.

Note that a list of simultaneous type constructors may be given;
this corresponds nicely to mutual recursive type definitions, e.g. in
Isabelle/HOL.

instance in an instantiation target body sets up a goal stating the type
arities claimed at the opening instantiation. The proof would usually
proceed by intro classes , and then establish the characteristic theorems
of the type classes involved. After finishing the proof, the background
theory will be augmented by the proven type arities.

subclass c in a class context for class d sets up a goal stating that class c is
logically contained in class d. After finishing the proof, class d is proven
to be subclass c and the locale c is interpreted into d simultaneously.

print classes prints all classes in the current theory.

intro classes repeatedly expands all class introduction rules of this theory.
Note that this method usually needs not be named explicitly, as it is
already included in the default proof step (e.g. of proof). In particular,
instantiation of trivial (syntactic) classes may be performed by a single
“..” proof step.

3.6.1 The class target

A named context may refer to a locale (cf. §3.2). If this locale is also a class
c, apart from the common locale target behaviour the following happens.

• Local constant declarations g [α] referring to the local type parameter
α and local parameters f [α] are accompanied by theory-level constants
g [?α :: c] referring to theory-level class operations f [?α :: c].

• Local theorem bindings are lifted as are assumptions.

CHAPTER 3. THEORY SPECIFICATIONS 33

• Local syntax refers to local operations g [α] and global operations g [?α
:: c] uniformly. Type inference resolves ambiguities. In rare cases,
manual type annotations are needed.

3.6.2 Old-style axiomatic type classes

axclass : theory → theory
instance : theory → proof (prove)

Axiomatic type classes are Isabelle/Pure’s primitive definitional interface
to type classes. For practical applications, you should consider using classes
(cf. §3.9.1) which provide high level interface.

axclass
�� �
classdecl axmdecl prop

�� �
�
�

�

instance
�� �
 nameref

�� �
 <
���
�

�⊆
�� �

�

nameref
�� �
�

�nameref
�� �
::

�� �
arity

�

axclass c ⊆ c1, . . ., cn axms defines an axiomatic type class as the inter-
section of existing classes, with additional axioms holding. Class ax-
ioms may not contain more than one type variable. The class axioms
(with implicit sort constraints added) are bound to the given names.
Furthermore a class introduction rule is generated (being bound as c
class .intro); this rule is employed by method intro classes to support
instantiation proofs of this class.

The “class axioms” are stored as theorems according to the given name
specifications, adding c class as name space prefix; the same facts are
also stored collectively as c class .axioms.

instance c1 ⊆ c2 and instance t :: (s1, . . ., sn) s setup a goal stating a
class relation or type arity. The proof would usually proceed by
intro classes , and then establish the characteristic theorems of the type
classes involved. After finishing the proof, the theory will be augmented
by a type signature declaration corresponding to the resulting theorem.

CHAPTER 3. THEORY SPECIFICATIONS 34

3.7 Unrestricted overloading

Isabelle/Pure’s definitional schemes support certain forms of overloading (see
§3.9.3). At most occassions overloading will be used in a Haskell-like fashion
together with type classes by means of instantiation (see §3.6). Sometimes
low-level overloading is desirable. The overloading target provides a con-
venient view for end-users.

overloading : theory → local-theory

overloading
�� �
�

�
� string

�� �
 ==
�� �
�

�≡
�� �

�

term
�� �
�

� (
���
unchecked

�� �
)
���

�

�
�

�

begin
�� �

overloading x 1 ≡ c1 :: τ 1 and . . . xn ≡ cn :: τn begin opens a theory
target (cf. §3.2) which allows to specify constants with overloaded
definitions. These are identified by an explicitly given mapping from
variable names x i to constants ci at particular type instances. The def-
initions themselves are established using common specification tools,
using the names x i as reference to the corresponding constants. The
target is concluded by end.

A (unchecked) option disables global dependency checks for the corre-
sponding definition, which is occasionally useful for exotic overloading.
It is at the discretion of the user to avoid malformed theory specifica-
tions!

3.8 Incorporating ML code

use : theory | local-theory → theory | local-theory
ML : theory | local-theory → theory | local-theory

ML val : · → ·
ML command : · → ·

setup : theory → theory
method setup : theory → theory

CHAPTER 3. THEORY SPECIFICATIONS 35

use
�� �
name

�� �

ML

�� �
�
�ML val

�� �
�ML command
�� �
�setup
�� �

�

text
�� �

method setup
�� �
name

�� �
=
���
text

�� �
text
�� �

use file reads and executes ML commands from file. The current theory
context is passed down to the ML toplevel and may be modified, using
"Context.>>" or derived ML commands. The file name is checked
with the uses dependency declaration given in the theory header (see
also §3.1).

ML text is similar to use, but executes ML commands directly from the
given text.

ML val and ML command are diagnostic versions of ML, which means
that the context may not be updated. ML val echos the bindings
produced at the ML toplevel, but ML command is silent.

setup text changes the current theory context by applying text, which refers
to an ML expression of type "theory -> theory". This enables to
initialize any object-logic specific tools and packages written in ML,
for example.

method setup name = text description defines a proof method in the cur-
rent theory. The given text has to be an ML expression of type
"Args.src ->

Proof.context -> Proof.method". Parsing concrete method syn-
tax from Args.src input can be quite tedious in general. The following
simple examples are for methods without any explicit arguments, or a
list of theorems, respectively.

Method.no_args (Method.METHOD (fn facts => foobar_tac))
Method.thms_args (fn thms => Method.METHOD (fn facts => foobar_tac))
Method.ctxt_args (fn ctxt => Method.METHOD (fn facts => foobar_tac))
Method.thms_ctxt_args (fn thms => fn ctxt =>

Method.METHOD (fn facts => foobar_tac))

CHAPTER 3. THEORY SPECIFICATIONS 36

Note that mere tactic emulations may ignore the facts parameter above.
Proper proof methods would do something appropriate with the list of
current facts, though. Single-rule methods usually do strict forward-
chaining (e.g. by using Drule.multi_resolves), while automatic ones
just insert the facts using Method.insert_tac before applying the
main tactic.

3.9 Primitive specification elements

3.9.1 Type classes and sorts

classes : theory → theory
classrel : theory → theory (axiomatic!)

defaultsort : theory → theory
class deps∗ : theory | proof → theory | proof

classes
�� �
 classdecl�

�
�

classrel
�� �
 nameref

�� �
 <
���
�

�⊆
�� �

�

nameref
�� �
�

� and
�� �

�

defaultsort
�� �
sort

classes c ⊆ c1, . . ., cn declares class c to be a subclass of existing classes
c1, . . ., cn . Cyclic class structures are not permitted.

classrel c1 ⊆ c2 states subclass relations between existing classes c1 and
c2. This is done axiomatically! The instance command (see §3.6.2)
provides a way to introduce proven class relations.

defaultsort s makes sort s the new default sort for any type variables
given without sort constraints. Usually, the default sort would be only
changed when defining a new object-logic.

class deps visualizes the subclass relation, using Isabelle’s graph browser
tool (see also [24]).

CHAPTER 3. THEORY SPECIFICATIONS 37

3.9.2 Types and type abbreviations

types : theory → theory
typedecl : theory → theory

nonterminals : theory → theory
arities : theory → theory (axiomatic!)

types
�� �
 typespec =

���
type
�� �
�

� infix

�

�
�

�

typedecl
�� �
typespec �

� infix

�

nonterminals
�� �
 name

�� �
�
�

�

arities
�� �
 nameref

�� �
::
�� �
arity�

�
�

types (α1, . . ., αn) t = τ introduces type synonym (α1, . . ., αn) t for ex-
isting type τ . Unlike actual type definitions, as are available in
Isabelle/HOL for example, type synonyms are just purely syntactic ab-
breviations without any logical significance. Internally, type synonyms
are fully expanded.

typedecl (α1, . . ., αn) t declares a new type constructor t, intended as an
actual logical type (of the object-logic, if available).

nonterminals c declares type constructors c (without arguments) to act
as purely syntactic types, i.e. nonterminal symbols of Isabelle’s inner
syntax of terms or types.

arities t :: (s1, . . ., sn) s augments Isabelle’s order-sorted signature of
types by new type constructor arities. This is done axiomatically!
The instance command (see §3.6.2) provides a way to introduce
proven type arities.

CHAPTER 3. THEORY SPECIFICATIONS 38

3.9.3 Constants and definitions

Definitions essentially express abbreviations within the logic. The simplest
form of a definition is c :: σ ≡ t, where c is a newly declared constant.
Isabelle also allows derived forms where the arguments of c appear on the
left, abbreviating a prefix of λ-abstractions, e.g. c ≡ λx y . t may be written
more conveniently as c x y ≡ t. Moreover, definitions may be weakened by
adding arbitrary pre-conditions: A =⇒ c x y ≡ t.

The built-in well-formedness conditions for definitional specifications are:

• Arguments (on the left-hand side) must be distinct variables.

• All variables on the right-hand side must also appear on the left-hand
side.

• All type variables on the right-hand side must also appear on the left-
hand side; this prohibits 0 :: nat ≡ length ([] :: α list) for example.

• The definition must not be recursive. Most object-logics provide defi-
nitional principles that can be used to express recursion safely.

Overloading means that a constant being declared as c :: α decl may
be defined separately on type instances c :: (β1, . . ., βn) t decl for each
type constructor t. The right-hand side may mention overloaded constants
recursively at type instances corresponding to the immediate argument types
β1, . . ., βn . Incomplete specification patterns impose global constraints on all
occurrences, e.g. d :: α × α on the left-hand side means that all corresponding
occurrences on some right-hand side need to be an instance of this, general
d :: α × β will be disallowed.

consts : theory → theory
defs : theory → theory

constdefs : theory → theory

consts
�� �
 name

�� �
::
�� �
type

�� �
�
�mixfix

�

�
�

�

CHAPTER 3. THEORY SPECIFICATIONS 39

defs
�� �
�

� (
���
�

�unchecked
�� �

�

�
�overloaded

�� �

�

)
���

�

�

�
� axmdecl prop

�� �
�
�

�

constdefs
�� �
�

� structs

�

�
� constdecl

�

constdef�
�

�

structs

(
���
structure

�� �
 vars�
� and

�� �

�

)
���

constdecl

name
�� �
::

�� �
type
�� �
mixfix�

�name
�� �
::

�� �
type
�� �
�name

�� �
mixfix

�

�
�where

�� �

�

�

�name
�� �
where

�� �

�

constdef

�
� thmdecl

�

prop
�� �

consts c :: σ declares constant c to have any instance of type scheme σ.
The optional mixfix annotations may attach concrete syntax to the
constants declared.

defs name: eqn introduces eqn as a definitional axiom for some existing con-
stant.

CHAPTER 3. THEORY SPECIFICATIONS 40

The (unchecked) option disables global dependency checks for this def-
inition, which is occasionally useful for exotic overloading. It is at the
discretion of the user to avoid malformed theory specifications!

The (overloaded) option declares definitions to be potentially over-
loaded. Unless this option is given, a warning message would be issued
for any definitional equation with a more special type than that of the
corresponding constant declaration.

constdefs provides a streamlined combination of constants declarations and
definitions: type-inference takes care of the most general typing of the
given specification (the optional type constraint may refer to type-
inference dummies “ ” as usual). The resulting type declaration needs
to agree with that of the specification; overloading is not supported
here!

The constant name may be omitted altogether, if neither type nor
syntax declarations are given. The canonical name of the definitional
axiom for constant c will be c def, unless specified otherwise. Also note
that the given list of specifications is processed in a strictly sequential
manner, with type-checking being performed independently.

An optional initial context of (structure) declarations admits use of
indexed syntax, using the special symbol \<index> (printed as “ı”).
The latter concept is particularly useful with locales (see also §3.5).

3.10 Axioms and theorems

axioms : theory → theory (axiomatic!)
lemmas : local-theory → local-theory

theorems : local-theory → local-theory

axioms
�� �
 axmdecl prop

�� �
�
�

�

lemmas
�� �
�

�theorems
�� �

�

�
� target

�

�
� thmdef

�

thmrefs�
� and

�� �

�

CHAPTER 3. THEORY SPECIFICATIONS 41

axioms a: ϕ introduces arbitrary statements as axioms of the meta-logic.
In fact, axioms are “axiomatic theorems”, and may be referred later
just as any other theorem.

Axioms are usually only introduced when declaring new logical systems.
Everyday work is typically done the hard way, with proper definitions
and proven theorems.

lemmas a = b1 . . . bn retrieves and stores existing facts in the theory con-
text, or the specified target context (see also §3.2). Typical applications
would also involve attributes, to declare Simplifier rules, for example.

theorems is essentially the same as lemmas, but marks the result as a
different kind of facts.

3.11 Oracles

oracle : theory → theory

The oracle interface promotes a given ML function theory -> T -> term

to theory -> T -> thm, for some type T given by the user. This acts like an
infinitary specification of axioms – there is no internal check of the correctness
of the results! The inference kernel records oracle invocations within the
internal derivation object of theorems, and the pretty printer attaches “[!]”
to indicate results that are not fully checked by Isabelle inferences.

oracle
�� �
name

�� �
(
���
type

�� �
)
���
=

���
text
�� �

oracle name (type) = text turns the given ML expression text of
type theory -> type -> term into an ML function of type
theory -> type -> thm, which is bound to the global identifier name.

3.12 Name spaces

global : theory → theory
local : theory → theory
hide : theory → theory

CHAPTER 3. THEORY SPECIFICATIONS 42

hide
�� �
�

�(open)
�� �

�

name
�� �
 nameref

�� �
�
�

�

Isabelle organizes any kind of name declarations (of types, constants,
theorems etc.) by separate hierarchically structured name spaces. Normally
the user does not have to control the behavior of name spaces by hand, yet
the following commands provide some way to do so.

global and local change the current name declaration mode. Initially, theo-
ries start in local mode, causing all names to be automatically qualified
by the theory name. Changing this to global causes all names to be
declared without the theory prefix, until local is declared again.

Note that global names are prone to get hidden accidently later, when
qualified names of the same base name are introduced.

hide space names fully removes declarations from a given name space
(which may be class, type, const, or fact); with the (open) option,
only the base name is hidden. Global (unqualified) names may never
be hidden.

Note that hiding name space accesses has no impact on logical dec-
larations – they remain valid internally. Entities that are no longer
accessible to the user are printed with the special qualifier “??” pre-
fixed to the full internal name.

3.13 Syntax and translations

syntax : theory → theory
no syntax : theory → theory

translations : theory → theory
no translations : theory → theory

syntax
�� �
�

�no syntax
�� �

�

�
�mode

�

constdecl�
�

�

CHAPTER 3. THEORY SPECIFICATIONS 43

translations
�� �
�

�no translations
�� �

�

transpat ==
�� �
�

�=>
�� �
�<=
�� �
�⇀↽
�� �
�⇀
�� �
�↽
�� �

�

transpat�

�

�

mode

(
���
 name

�� �
�
�output

�� �
�name
�� �
output

�� �

�

)
���

transpat

�
� (

���
nameref
�� �
)

���

�

string
�� �

syntax (mode) decls is similar to consts decls, except that the actual logi-
cal signature extension is omitted. Thus the context free grammar of
Isabelle’s inner syntax may be augmented in arbitrary ways, indepen-
dently of the logic. The mode argument refers to the print mode that
the grammar rules belong; unless the output indicator is given, all
productions are added both to the input and output grammar.

no syntax (mode) decls removes grammar declarations (and translations)
resulting from decls, which are interpreted in the same manner as for
syntax above.

translations rules specifies syntactic translation rules (i.e. macros): parse /
print rules (⇀↽), parse rules (⇀), or print rules (↽). Translation pat-
terns may be prefixed by the syntactic category to be used for parsing;
the default is logic.

no translations rules removes syntactic translation rules, which are inter-
preted in the same manner as for translations above.

CHAPTER 3. THEORY SPECIFICATIONS 44

3.14 Syntax translation functions

parse ast translation : theory → theory
parse translation : theory → theory
print translation : theory → theory

typed print translation : theory → theory
print ast translation : theory → theory

token translation : theory → theory

parse ast translation
�� �
�

�parse translation
�� �
�print translation
�� �
�typed print translation
�� �
�print ast translation
�� �

�

�
�(advanced)

�� �

�

text
�� �

token translation
�� �
text

�� �

Syntax translation functions written in ML admit almost arbitrary ma-

nipulations of Isabelle’s inner syntax. Any of the above commands have a
single text argument that refers to an ML expression of appropriate type,
which are as follows by default:

val parse_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation :
(string * (bool -> typ -> term list -> term)) list

val print_ast_translation : (string * (ast list -> ast)) list
val token_translation :
(string * string * (string -> string * real)) list

If the (advanced) option is given, the corresponding translation functions
may depend on the current theory or proof context. This allows to implement
advanced syntax mechanisms, as translations functions may refer to specific
theory declarations or auxiliary proof data.

See also [15, §8] for more information on the general concept of syntax
transformations in Isabelle.

CHAPTER 3. THEORY SPECIFICATIONS 45

val parse_ast_translation:
(string * (Proof.context -> ast list -> ast)) list

val parse_translation:
(string * (Proof.context -> term list -> term)) list

val print_translation:
(string * (Proof.context -> term list -> term)) list

val typed_print_translation:
(string * (Proof.context -> bool -> typ -> term list -> term)) list

val print_ast_translation:
(string * (Proof.context -> ast list -> ast)) list

Chapter 4

Proofs

Proof commands perform transitions of Isar/VM machine configurations,
which are block-structured, consisting of a stack of nodes with three main
components: logical proof context, current facts, and open goals. Isar/VM
transitions are typed according to the following three different modes of op-
eration:

proof (prove) means that a new goal has just been stated that is now to be
proven; the next command may refine it by some proof method, and
enter a sub-proof to establish the actual result.

proof (state) is like a nested theory mode: the context may be augmented by
stating additional assumptions, intermediate results etc.

proof (chain) is intermediate between proof (state) and proof (prove): exist-
ing facts (i.e. the contents of the special “this” register) have been just
picked up in order to be used when refining the goal claimed next.

The proof mode indicator may be read as a verb telling the writer what
kind of operation may be performed next. The corresponding typings of
proof commands restricts the shape of well-formed proof texts to particular
command sequences. So dynamic arrangements of commands eventually turn
out as static texts of a certain structure. Appendix A gives a simplified
grammar of the overall (extensible) language emerging that way.

4.1 Context elements

fix : proof (state) → proof (state)
assume : proof (state) → proof (state)

presume : proof (state) → proof (state)
def : proof (state) → proof (state)

The logical proof context consists of fixed variables and assumptions. The
former closely correspond to Skolem constants, or meta-level universal quan-
tification as provided by the Isabelle/Pure logical framework. Introducing

46

CHAPTER 4. PROOFS 47

some arbitrary, but fixed variable via “fix x” results in a local value that may
be used in the subsequent proof as any other variable or constant. Further-
more, any result ` ϕ[x] exported from the context will be universally closed
wrt. x at the outermost level: ` ∧

x . ϕ[x] (this is expressed in normal form
using Isabelle’s meta-variables).

Similarly, introducing some assumption χ has two effects. On the one
hand, a local theorem is created that may be used as a fact in subsequent
proof steps. On the other hand, any result χ ` ϕ exported from the context
becomes conditional wrt. the assumption: ` χ =⇒ ϕ. Thus, solving an
enclosing goal using such a result would basically introduce a new subgoal
stemming from the assumption. How this situation is handled depends on
the version of assumption command used: while assume insists on solving
the subgoal by unification with some premise of the goal, presume leaves
the subgoal unchanged in order to be proved later by the user.

Local definitions, introduced by “def x ≡ t”, are achieved by combining
“fix x” with another version of assumption that causes any hypothetical
equation x ≡ t to be eliminated by the reflexivity rule. Thus, exporting
some result x ≡ t ` ϕ[x] yields ` ϕ[t].

fix
�� �
 vars�

� and
�� �

�

assume
�� �
�

�presume
�� �

�

props�
� and

�� �

�

def
�� �
 def�

�and
�� �

�

def

�
� thmdecl

�

�

�

�name
�� �
 ==

�� �
�
�≡

�� �

�

term
�� �
�

� termpat

�

CHAPTER 4. PROOFS 48

fix x introduces a local variable x that is arbitrary, but fixed.

assume a: ϕ and presume a: ϕ introduce a local fact ϕ ` ϕ by assump-
tion. Subsequent results applied to an enclosing goal (e.g. by show) are
handled as follows: assume expects to be able to unify with existing
premises in the goal, while presume leaves ϕ as new subgoals.

Several lists of assumptions may be given (separated by and; the re-
sulting list of current facts consists of all of these concatenated.

def x ≡ t introduces a local (non-polymorphic) definition. In results ex-
ported from the context, x is replaced by t. Basically, “def x ≡ t”
abbreviates “fix x assume x ≡ t”, with the resulting hypothetical
equation solved by reflexivity.

The default name for the definitional equation is x def. Several simul-
taneous definitions may be given at the same time.

The special name prems refers to all assumptions of the current context
as a list of theorems. This feature should be used with great care! It is better
avoided in final proof texts.

4.2 Facts and forward chaining

note : proof (state) → proof (state)
then : proof (state) → proof (chain)
from : proof (state) → proof (chain)
with : proof (state) → proof (chain)

using : proof (prove) → proof (prove)
unfolding : proof (prove) → proof (prove)

New facts are established either by assumption or proof of local state-
ments. Any fact will usually be involved in further proofs, either as explicit
arguments of proof methods, or when forward chaining towards the next
goal via then (and variants); from and with are composite forms involving
note. The using elements augments the collection of used facts after a goal
has been stated. Note that the special theorem name this refers to the most
recently established facts, but only before issuing a follow-up claim.

note
�� �
 �

� thmdef

�

thmrefs�
� and

�� �

�

CHAPTER 4. PROOFS 49

from
�� �
�

�with
�� �
�using
�� �
�unfolding
�� �

�

thmrefs�
� and

�� �

�

note a = b1 . . . bn recalls existing facts b1, . . ., bn , binding the result as a.
Note that attributes may be involved as well, both on the left and right
hand sides.

then indicates forward chaining by the current facts in order to establish the
goal to be claimed next. The initial proof method invoked to refine that
will be offered the facts to do “anything appropriate” (see also §4.4).
For example, method rule (see §4.5) would typically do an elimination
rather than an introduction. Automatic methods usually insert the
facts into the goal state before operation. This provides a simple scheme
to control relevance of facts in automated proof search.

from b abbreviates “note b then”; thus then is equivalent to “from this”.

with b1 . . . bn abbreviates “from b1 . . . bn and this”; thus the forward
chaining is from earlier facts together with the current ones.

using b1 . . . bn augments the facts being currently indicated for use by a
subsequent refinement step (such as apply or proof).

unfolding b1 . . . bn is structurally similar to using, but unfolds definitional
equations b1, . . . bn throughout the goal state and facts.

Forward chaining with an empty list of theorems is the same as not
chaining at all. Thus “from nothing” has no effect apart from entering
prove(chain) mode, since nothing is bound to the empty list of theorems.

Basic proof methods (such as rule) expect multiple facts to be given
in their proper order, corresponding to a prefix of the premises of the rule
involved. Note that positions may be easily skipped using something like
from and a and b, for example. This involves the trivial rule PROP ψ
=⇒ PROP ψ, which is bound in Isabelle/Pure as “ ” (underscore).

Automated methods (such as simp or auto) just insert any given facts
before their usual operation. Depending on the kind of procedure involved,
the order of facts is less significant here.

CHAPTER 4. PROOFS 50

4.3 Goal statements

lemma : local-theory → proof (prove)
theorem : local-theory → proof (prove)
corollary : local-theory → proof (prove)

have : proof (state) | proof (chain) → proof (prove)
show : proof (state) | proof (chain) → proof (prove)

hence : proof (state) → proof (prove)
thus : proof (state) → proof (prove)

print statement∗ : theory | proof → theory | proof

From a theory context, proof mode is entered by an initial goal command
such as lemma, theorem, or corollary. Within a proof, new claims may
be introduced locally as well; four variants are available here to indicate
whether forward chaining of facts should be performed initially (via then),
and whether the final result is meant to solve some pending goal.

Goals may consist of multiple statements, resulting in a list of facts even-
tually. A pending multi-goal is internally represented as a meta-level con-
junction (printed as &&), which is usually split into the corresponding num-
ber of sub-goals prior to an initial method application, via proof (§4.4) or
apply (§4.8). The induct method covered in §4.12 acts on multiple claims
simultaneously.

Claims at the theory level may be either in short or long form. A short
goal merely consists of several simultaneous propositions (often just one). A
long goal includes an explicit context specification for the subsequent conclu-
sion, involving local parameters and assumptions. Here the role of each part
of the statement is explicitly marked by separate keywords (see also §3.5); the
local assumptions being introduced here are available as assms in the proof.
Moreover, there are two kinds of conclusions: shows states several simul-
taneous propositions (essentially a big conjunction), while obtains claims
several simultaneous simultaneous contexts of (essentially a big disjunction
of eliminated parameters and assumptions, cf. §4.10).

lemma
�� �
�

�theorem
�� �
�corollary
�� �

�

�
� target

�

goal�
� longgoal

�

CHAPTER 4. PROOFS 51

have
�� �
�

�show
�� �
�hence
�� �
�thus
�� �

�

goal

print statement
�� �
�

�modes

�

thmrefs

goal

props�
� and

�� �

�

longgoal

�
� thmdecl

�

�
� contextelem

�

conclusion

conclusion

shows
�� �
goal�

�obtains
�� �
 �

�parname

�

case�
� |

���

�

�

case

vars�
� and

�� �

�

where
�� �
 props�

� and
�� �

�

lemma a: ϕ enters proof mode with ϕ as main goal, eventually resulting in
some fact ` ϕ to be put back into the target context. An additional
context specification may build up an initial proof context for the sub-
sequent claim; this includes local definitions and syntax as well, see the
definition of contextelem in §3.5.

CHAPTER 4. PROOFS 52

theorem a: ϕ and corollary a: ϕ are essentially the same as lemma a: ϕ,
but the facts are internally marked as being of a different kind. This
discrimination acts like a formal comment.

have a: ϕ claims a local goal, eventually resulting in a fact within the cur-
rent logical context. This operation is completely independent of any
pending sub-goals of an enclosing goal statements, so have may be
freely used for experimental exploration of potential results within a
proof body.

show a: ϕ is like have a: ϕ plus a second stage to refine some pending sub-
goal for each one of the finished result, after having been exported into
the corresponding context (at the head of the sub-proof of this show
command).

To accommodate interactive debugging, resulting rules are printed be-
fore being applied internally. Even more, interactive execution of show
predicts potential failure and displays the resulting error as a warning
beforehand. Watch out for the following message:

Problem! Local statement will fail to solve any pending goal

hence abbreviates “then have”, i.e. claims a local goal to be proven by
forward chaining the current facts. Note that hence is also equivalent
to “from this have”.

thus abbreviates “then show”. Note that thus is also equivalent to
“from this show”.

print statement a prints facts from the current theory or proof context in
long statement form, according to the syntax for lemma given above.

Any goal statement causes some term abbreviations (such as ?thesis) to
be bound automatically, see also §4.6.

The optional case names of obtains have a twofold meaning: (1) during
the of this claim they refer to the the local context introductions, (2) the
resulting rule is annotated accordingly to support symbolic case splits when
used with the cases method (cf. §4.12).

! Isabelle/Isar suffers theory-level goal statements to contain unbound schematic
variables, although this does not conform to the aim of human-readable proof

documents! The main problem with schematic goals is that the actual outcome is

CHAPTER 4. PROOFS 53

usually hard to predict, depending on the behavior of the proof methods applied
during the course of reasoning. Note that most semi-automated methods heavily
depend on several kinds of implicit rule declarations within the current theory
context. As this would also result in non-compositional checking of sub-proofs,
local goals are not allowed to be schematic at all. Nevertheless, schematic goals
do have their use in Prolog-style interactive synthesis of proven results, usually
by stepwise refinement via emulation of traditional Isabelle tactic scripts (see also
§4.8). In any case, users should know what they are doing.

4.4 Initial and terminal proof steps

proof : proof (prove) → proof (state)
qed : proof (state) → proof (state) | theory
by : proof (prove) → proof (state) | theory
.. : proof (prove) → proof (state) | theory
. : proof (prove) → proof (state) | theory

sorry : proof (prove) → proof (state) | theory

Arbitrary goal refinement via tactics is considered harmful. Structured
proof composition in Isar admits proof methods to be invoked in two places
only.

1. An initial refinement step proof m1 reduces a newly stated goal to a
number of sub-goals that are to be solved later. Facts are passed to m1

for forward chaining, if so indicated by proof (chain) mode.

2. A terminal conclusion step qed m2 is intended to solve remaining goals.
No facts are passed to m2.

The only other (proper) way to affect pending goals in a proof body is by
show, which involves an explicit statement of what is to be solved eventually.
Thus we avoid the fundamental problem of unstructured tactic scripts that
consist of numerous consecutive goal transformations, with invisible effects.

As a general rule of thumb for good proof style, initial proof methods
should either solve the goal completely, or constitute some well-understood
reduction to new sub-goals. Arbitrary automatic proof tools that are prone
leave a large number of badly structured sub-goals are no help in continuing
the proof document in an intelligible manner.

Unless given explicitly by the user, the default initial method is “rule”,
which applies a single standard elimination or introduction rule according to
the topmost symbol involved. There is no separate default terminal method.
Any remaining goals are always solved by assumption in the very last step.

CHAPTER 4. PROOFS 54

proof
�� �
�

�method

�

qed
�� �
�

�method

�

by
�� �
method �

�method

�

.
���
�

�..
�� �
�sorry
�� �

�

proof m1 refines the goal by proof method m1; facts for forward chaining
are passed if so indicated by proof (chain) mode.

qed m2 refines any remaining goals by proof method m2 and concludes the
sub-proof by assumption. If the goal had been show (or thus), some
pending sub-goal is solved as well by the rule resulting from the result
exported into the enclosing goal context. Thus qed may fail for two
reasons: either m2 fails, or the resulting rule does not fit to any pend-
ing goal1 of the enclosing context. Debugging such a situation might
involve temporarily changing show into have, or weakening the local
context by replacing occurrences of assume by presume.

by m1 m2 is a terminal proof ; it abbreviates proof m1 qed m2, but with
backtracking across both methods. Debugging an unsuccessful by m1

m2 command can be done by expanding its definition; in many cases
proof m1 (or even apply m1) is already sufficient to see the problem.

“..” is a default proof ; it abbreviates by rule.

“.” is a trivial proof ; it abbreviates by this.

1This includes any additional “strong” assumptions as introduced by assume.

CHAPTER 4. PROOFS 55

sorry is a fake proof pretending to solve the pending claim without fur-
ther ado. This only works in interactive development, or if the
quick_and_dirty flag is enabled (in ML). Facts emerging from fake
proofs are not the real thing. Internally, each theorem container is
tainted by an oracle invocation, which is indicated as “[!]” in the printed
result.

The most important application of sorry is to support experimentation
and top-down proof development.

4.5 Fundamental methods and attributes

The following proof methods and attributes refer to basic logical operations
of Isar. Further methods and attributes are provided by several generic and
object-logic specific tools and packages (see chapter 7 and chapter 8).

− : method
fact : method

assumption : method
this : method
rule : method

iprover : method

intro : attribute
elim : attribute
dest : attribute
rule : attribute

OF : attribute
of : attribute

where : attribute

fact
�� �
�

� thmrefs

�

rule
�� �
�

� thmrefs

�

CHAPTER 4. PROOFS 56

iprover
�� �
�

� !
���

�

�
� rulemod

�

rulemod

intro
�� �
�

�elim
�� �
�dest
�� �

�

!
���
�

�
� ?

���

�

�
�nat

�� �

�

�

�del
�� �

�

:
���
thmrefs

intro
�� �
�

�elim
�� �
�dest
�� �

�

!
���
�

�
� ?

���

�

�
�nat

�� �

�

rule
�� �
del

�� �

OF

�� �
thmrefs

of
�� �
insts �

�concl
�� �
:

���
insts

�

where
�� �
�

� name
�� �
�

�var
�� �
� typefree
�� �
� typevar
�� �

�

=
���
 type

�� �
�
� term

�� �

�

�

� and
�� �

�

�

“−” (minus) does nothing but insert the forward chaining facts as premises
into the goal. Note that command proof without any method actually

CHAPTER 4. PROOFS 57

performs a single reduction step using the rule method; thus a plain
do-nothing proof step would be “proof −” rather than proof alone.

fact a1 . . . an composes some fact from a1, . . ., an (or implicitly from the
current proof context) modulo unification of schematic type and term
variables. The rule structure is not taken into account, i.e. meta-level
implication is considered atomic. This is the same principle underlying
literal facts (cf. §2.2.7): “have ϕ by fact” is equivalent to “note ‘ϕ‘”
provided that ` ϕ is an instance of some known ` ϕ in the proof
context.

assumption solves some goal by a single assumption step. All given facts are
guaranteed to participate in the refinement; this means there may be
only 0 or 1 in the first place. Recall that qed (§4.4) already concludes
any remaining sub-goals by assumption, so structured proofs usually
need not quote the assumption method at all.

this applies all of the current facts directly as rules. Recall that “.” (dot)
abbreviates “by this”.

rule a1 . . . an applies some rule given as argument in backward manner;
facts are used to reduce the rule before applying it to the goal. Thus
rule without facts is plain introduction, while with facts it becomes
elimination.

When no arguments are given, the rule method tries to pick appropriate
rules automatically, as declared in the current context using the intro,
elim, dest attributes (see below). This is the default behavior of proof
and “..” (double-dot) steps (see §4.4).

iprover performs intuitionistic proof search, depending on specifically de-
clared rules from the context, or given as explicit arguments. Chained
facts are inserted into the goal before commencing proof search;
“iprover !” means to include the current prems as well.

Rules need to be classified as intro, elim, or dest ; here the “!” indica-
tor refers to “safe” rules, which may be applied aggressively (without
considering back-tracking later). Rules declared with “?” are ignored
in proof search (the single-step rule method still observes these). An
explicit weight annotation may be given as well; otherwise the number
of rule premises will be taken into account here.

intro, elim, and dest declare introduction, elimination, and destruct rules,
to be used with the rule and iprover methods. Note that the latter will
ignore rules declared with “?”, while “!” are used most aggressively.

CHAPTER 4. PROOFS 58

The classical reasoner (see §7.4) introduces its own variants of these
attributes; use qualified names to access the present versions of
Isabelle/Pure, i.e. Pure.intro.

rule del undeclares introduction, elimination, or destruct rules.

OF a1 . . . an applies some theorem to all of the given rules a1, . . ., an (in
parallel). This corresponds to the "op MRS" operation in ML, but note
the reversed order. Positions may be effectively skipped by including
“ ” (underscore) as argument.

of t1 . . . tn performs positional instantiation of term variables. The terms
t1, . . ., tn are substituted for any schematic variables occurring in a
theorem from left to right; “ ” (underscore) indicates to skip a position.
Arguments following a “concl :” specification refer to positions of the
conclusion of a rule.

where x 1 = t1 and . . . xn = tn performs named instantiation of schematic
type and term variables occurring in a theorem. Schematic variables
have to be specified on the left-hand side (e.g. ?x1.3). The question
mark may be omitted if the variable name is a plain identifier without
index. As type instantiations are inferred from term instantiations,
explicit type instantiations are seldom necessary.

4.6 Term abbreviations

let : proof (state) → proof (state)
is : syntax

Abbreviations may be either bound by explicit let p ≡ t statements, or
by annotating assumptions or goal statements with a list of patterns “(is
p1 . . . pn)”. In both cases, higher-order matching is invoked to bind extra-
logical term variables, which may be either named schematic variables of the
form ?x, or nameless dummies “ ” (underscore). Note that in the let form
the patterns occur on the left-hand side, while the is patterns are in postfix
position.

Polymorphism of term bindings is handled in Hindley-Milner style, similar
to ML. Type variables referring to local assumptions or open goal statements
are fixed, while those of finished results or bound by let may occur in arbitrary
instances later. Even though actual polymorphism should be rarely used in

CHAPTER 4. PROOFS 59

practice, this mechanism is essential to achieve proper incremental type-
inference, as the user proceeds to build up the Isar proof text from left to
right.

Term abbreviations are quite different from local definitions as introduced
via def (see §4.1). The latter are visible within the logic as actual equations,
while abbreviations disappear during the input process just after type check-
ing. Also note that def does not support polymorphism.

let
�� �
 term

�� �
�
� and

�� �

�

=
���
term

�� �
�
� and

�� �

�

The syntax of is patterns follows termpat or proppat (see §2.2.8).

let p1 = t1 and . . . pn = tn binds any text variables in patterns p1, . . ., pn

by simultaneous higher-order matching against terms t1, . . ., tn .

(is p1 . . . pn) resembles let, but matches p1, . . ., pn against the preceding
statement. Also note that is is not a separate command, but part of
others (such as assume, have etc.).

Some implicit term abbreviations for goals and facts are available as well.
For any open goal, thesis refers to its object-level statement, abstracted over
any meta-level parameters (if present). Likewise, this is bound for fact state-
ments resulting from assumptions or finished goals. In case this refers to
an object-logic statement that is an application f t, then t is bound to the
special text variable “. . .” (three dots). The canonical application of this
convenience are calculational proofs (see §4.11).

4.7 Block structure

next : proof (state) → proof (state)
{ : proof (state) → proof (state)
} : proof (state) → proof (state)

While Isar is inherently block-structured, opening and closing blocks is
mostly handled rather casually, with little explicit user-intervention. Any lo-
cal goal statement automatically opens two internal blocks, which are closed
again when concluding the sub-proof (by qed etc.). Sections of different

CHAPTER 4. PROOFS 60

context within a sub-proof may be switched via next, which is just a single
block-close followed by block-open again. The effect of next is to reset the
local proof context; there is no goal focus involved here!

For slightly more advanced applications, there are explicit block paren-
theses as well. These typically achieve a stronger forward style of reasoning.

next switches to a fresh block within a sub-proof, resetting the local context
to the initial one.

{ and } explicitly open and close blocks. Any current facts pass through
“{” unchanged, while “}” causes any result to be exported into the
enclosing context. Thus fixed variables are generalized, assumptions
discharged, and local definitions unfolded (cf. §4.1). There is no differ-
ence of assume and presume in this mode of forward reasoning — in
contrast to plain backward reasoning with the result exported at show
time.

4.8 Emulating tactic scripts

The Isar provides separate commands to accommodate tactic-style proof
scripts within the same system. While being outside the orthodox Isar proof
language, these might come in handy for interactive exploration and debug-
ging, or even actual tactical proof within new-style theories (to benefit from
document preparation, for example). See also §7.2.3 for actual tactics, that
have been encapsulated as proof methods. Proper proof methods may be
used in scripts, too.

apply∗ : proof (prove) → proof (prove)
apply end∗ : proof (state) → proof (state)

done∗ : proof (prove) → proof (state)
defer∗ : proof → proof

prefer∗ : proof → proof
back∗ : proof → proof

apply
�� �
�

�apply end
�� �

�

method

defer
�� �
�

�nat
�� �

�

CHAPTER 4. PROOFS 61

prefer
�� �
nat

�� �

apply m applies proof method m in initial position, but unlike proof it

retains “proof (prove)” mode. Thus consecutive method applications
may be given just as in tactic scripts.

Facts are passed to m as indicated by the goal’s forward-chain mode,
and are consumed afterwards. Thus any further apply command would
always work in a purely backward manner.

apply end m applies proof method m as if in terminal position. Basically,
this simulates a multi-step tactic script for qed, but may be given
anywhere within the proof body.

No facts are passed to m here. Furthermore, the static context is that of
the enclosing goal (as for actual qed). Thus the proof method may not
refer to any assumptions introduced in the current body, for example.

done completes a proof script, provided that the current goal state is solved
completely. Note that actual structured proof commands (e.g. “.” or
sorry) may be used to conclude proof scripts as well.

defer n and prefer n shuffle the list of pending goals: defer puts off sub-
goal n to the end of the list (n = 1 by default), while prefer brings
sub-goal n to the front.

back does back-tracking over the result sequence of the latest proof com-
mand. Basically, any proof command may return multiple results.

Any proper Isar proof method may be used with tactic script commands
such as apply. A few additional emulations of actual tactics are provided as
well; these would be never used in actual structured proofs, of course.

4.9 Omitting proofs

oops : proof → theory

The oops command discontinues the current proof attempt, while con-
sidering the partial proof text as properly processed. This is conceptually
quite different from “faking” actual proofs via sorry (see §4.4): oops does
not observe the proof structure at all, but goes back right to the theory
level. Furthermore, oops does not produce any result theorem — there is no
intended claim to be able to complete the proof anyhow.

CHAPTER 4. PROOFS 62

A typical application of oops is to explain Isar proofs within the system
itself, in conjunction with the document preparation tools of Isabelle de-
scribed in [24]. Thus partial or even wrong proof attempts can be discussed
in a logically sound manner. Note that the Isabelle LATEX macros can be
easily adapted to print something like “. . .” instead of the keyword “oops”.

The oops command is undo-able, unlike kill (see §6.3). The effect is to
get back to the theory just before the opening of the proof.

4.10 Generalized elimination

obtain : proof (state) → proof (prove)
guess∗ : proof (state) → proof (prove)

Generalized elimination means that additional elements with certain
properties may be introduced in the current context, by virtue of a locally
proven “soundness statement”. Technically speaking, the obtain language
element is like a declaration of fix and assume (see also see §4.1), together
with a soundness proof of its additional claim. According to the nature of
existential reasoning, assumptions get eliminated from any result exported
from the context later, provided that the corresponding parameters do not
occur in the conclusion.

obtain
�� �
�

�parname

�

vars�
� and

�� �

�

where
�� �
 props�

� and
�� �

�

guess
�� �
 vars�

� and
�� �

�

The derived Isar command obtain is defined as follows (where b1, . . ., bk

CHAPTER 4. PROOFS 63

shall refer to (optional) facts indicated for forward chaining).

〈using b1 . . . bk〉 obtain x 1 . . . xm where a: ϕ1 . . . ϕn 〈proof 〉 ≡
have

∧
thesis . (

∧
x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis) =⇒ thesis

proof succeed
fix thesis
assume that [Pure.intro?]:

∧
x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis

then show thesis
apply −
using b1 . . . bk 〈proof 〉

qed
fix x 1 . . . xm assume∗ a: ϕ1 . . . ϕn

Typically, the soundness proof is relatively straight-forward, often just by
canonical automated tools such as “by simp” or “by blast”. Accordingly, the
“that” reduction above is declared as simplification and introduction rule.

In a sense, obtain represents at the level of Isar proofs what would be
meta-logical existential quantifiers and conjunctions. This concept has a
broad range of useful applications, ranging from plain elimination (or in-
troduction) of object-level existential and conjunctions, to elimination over
results of symbolic evaluation of recursive definitions, for example. Also note
that obtain without parameters acts much like have, where the result is
treated as a genuine assumption.

An alternative name to be used instead of “that” above may be given in
parentheses.

The improper variant guess is similar to obtain, but derives the obtained
statement from the course of reasoning! The proof starts with a fixed goal
thesis. The subsequent proof may refine this to anything of the form like∧

x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis, but must not introduce new subgoals.
The final goal state is then used as reduction rule for the obtain scheme
described above. Obtained parameters x 1, . . ., xm are marked as internal
by default, which prevents the proof context from being polluted by ad-hoc
variables. The variable names and type constraints given as arguments for
guess specify a prefix of obtained parameters explicitly in the text.

It is important to note that the facts introduced by obtain and guess
may not be polymorphic: any type-variables occurring here are fixed in the
present context!

CHAPTER 4. PROOFS 64

4.11 Calculational reasoning

also : proof (state) → proof (state)
finally : proof (state) → proof (chain)

moreover : proof (state) → proof (state)
ultimately : proof (state) → proof (chain)

print trans rules∗ : theory | proof → theory | proof
trans : attribute
sym : attribute

symmetric : attribute

Calculational proof is forward reasoning with implicit application of tran-
sitivity rules (such those of =, ≤, <). Isabelle/Isar maintains an auxil-
iary fact register calculation for accumulating results obtained by transitiv-
ity composed with the current result. Command also updates calculation
involving this , while finally exhibits the final calculation by forward chain-
ing towards the next goal statement. Both commands require valid current
facts, i.e. may occur only after commands that produce theorems such as
assume, note, or some finished proof of have, show etc. The moreover
and ultimately commands are similar to also and finally, but only collect
further results in calculation without applying any rules yet.

Also note that the implicit term abbreviation “. . .” has its canonical appli-
cation with calculational proofs. It refers to the argument of the preceding
statement. (The argument of a curried infix expression happens to be its
right-hand side.)

Isabelle/Isar calculations are implicitly subject to block structure in the
sense that new threads of calculational reasoning are commenced for any
new block (as opened by a local goal, for example). This means that, apart
from being able to nest calculations, there is no separate begin-calculation
command required.

The Isar calculation proof commands may be defined as follows:2

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this]

finally ≡ also from calculation

moreover ≡ note calculation = calculation this
ultimately ≡ moreover from calculation

2We suppress internal bookkeeping such as proper handling of block-structure.

CHAPTER 4. PROOFS 65

also
�� �
�

�finally
�� �

�

�
� (

���
thmrefs)
���

�

trans
�� �
�

�add
�� �
�del
�� �

�

also (a1 . . . an) maintains the auxiliary calculation register as follows.
The first occurrence of also in some calculational thread initializes
calculation by this . Any subsequent also on the same level of block-
structure updates calculation by some transitivity rule applied to
calculation and this (in that order). Transitivity rules are picked from
the current context, unless alternative rules are given as explicit argu-
ments.

finally (a1 . . . an) maintaining calculation in the same way as also, and
concludes the current calculational thread. The final result is ex-
hibited as fact for forward chaining towards the next goal. Basi-
cally, finally just abbreviates also from calculation. Typical idioms
for concluding calculational proofs are “finally show ?thesis .” and
“finally have ϕ .”.

moreover and ultimately are analogous to also and finally, but collect
results only, without applying rules.

print trans rules prints the list of transitivity rules (for calculational com-
mands also and finally) and symmetry rules (for the symmetric oper-
ation and single step elimination patters) of the current context.

trans declares theorems as transitivity rules.

sym declares symmetry rules, as well as Pure.elim? rules.

symmetric resolves a theorem with some rule declared as sym in the cur-
rent context. For example, “assume [symmetric]: x = y” produces a
swapped fact derived from that assumption.

In structured proof texts it is often more appropriate to use an explicit
single-step elimination proof, such as “assume x = y then have y =
x ..”.

CHAPTER 4. PROOFS 66

4.12 Proof by cases and induction

4.12.1 Rule contexts

case : proof (state) → proof (state)
print cases∗ : proof → proof

case names : attribute
case conclusion : attribute

params : attribute
consumes : attribute

The puristic way to build up Isar proof contexts is by explicit language
elements like fix, assume, let (see §4.1). This is adequate for plain natural
deduction, but easily becomes unwieldy in concrete verification tasks, which
typically involve big induction rules with several cases.

The case command provides a shorthand to refer to a local context sym-
bolically: certain proof methods provide an environment of named “cases” of
the form c: x 1, . . ., xm , ϕ1, . . ., ϕn ; the effect of “case c” is then equivalent
to “fix x 1 . . . xm assume c: ϕ1 . . . ϕn”. Term bindings may be covered as
well, notably ?case for the main conclusion.

By default, the “terminology” x 1, . . ., xm of a case value is marked as
hidden, i.e. there is no way to refer to such parameters in the subsequent
proof text. After all, original rule parameters stem from somewhere outside
of the current proof text. By using the explicit form “case (c y1 . . . ym)”
instead, the proof author is able to chose local names that fit nicely into the
current context.

It is important to note that proper use of case does not provide means
to peek at the current goal state, which is not directly observable in Isar!
Nonetheless, goal refinement commands do provide named cases goal i for
each subgoal i = 1, . . ., n of the resulting goal state. Using this extra fea-
ture requires great care, because some bits of the internal tactical machinery
intrude the proof text. In particular, parameter names stemming from the
left-over of automated reasoning tools are usually quite unpredictable.

Under normal circumstances, the text of cases emerge from standard elim-
ination or induction rules, which in turn are derived from previous theory
specifications in a canonical way (say from inductive definitions).

Proper cases are only available if both the proof method and the rules
involved support this. By using appropriate attributes, case names, conclu-
sions, and parameters may be also declared by hand. Thus variant versions
of rules that have been derived manually become ready to use in advanced
case analysis later.

CHAPTER 4. PROOFS 67

case
�� �
 caseref�

� (
���
caseref name

�� �
�
� _

���

�

�
�

�

)
���

�

caseref

nameref
�� �
�

�attributes

�

case names
�� �
 name

�� �
�
�

�

case conclusion
�� �
name

�� �
�
�name

�� �

�

params
�� �
 �

�name
�� �

�

�
� and

�� �

�

consumes
�� �
�

�nat
�� �

�

case (c x 1 . . . xm) invokes a named local context c: x 1, . . ., xm , ϕ1, . . .,
ϕm , as provided by an appropriate proof method (such as cases and
induct). The command “case (c x 1 . . . xm)” abbreviates “fix x 1 . . .
xm assume c: ϕ1 . . . ϕn”.

print cases prints all local contexts of the current state, using Isar proof
language notation.

case names c1 . . . ck declares names for the local contexts of premises of a
theorem; c1, . . ., ck refers to the suffix of the list of premises.

CHAPTER 4. PROOFS 68

case conclusion c d1 . . . d k declares names for the conclusions of a named
premise c; here d1, . . ., d k refers to the prefix of arguments of a logical
formula built by nesting a binary connective (e.g. ∨).

Note that proof methods such as induct and coinduct already provide
a default name for the conclusion as a whole. The need to name sub-
formulas only arises with cases that split into several sub-cases, as in
common co-induction rules.

params p1 . . . pm and . . . q1 . . . qn renames the innermost parameters of
premises 1, . . ., n of some theorem. An empty list of names may be
given to skip positions, leaving the present parameters unchanged.

Note that the default usage of case rules does not directly expose pa-
rameters to the proof context.

consumes n declares the number of “major premises” of a rule, i.e. the num-
ber of facts to be consumed when it is applied by an appropriate proof
method. The default value of consumes is n = 1, which is appropriate
for the usual kind of cases and induction rules for inductive sets (cf.
§8.6). Rules without any consumes declaration given are treated as if
consumes 0 had been specified.

Note that explicit consumes declarations are only rarely needed; this is
already taken care of automatically by the higher-level cases , induct ,
and coinduct declarations.

4.12.2 Proof methods

cases : method
induct : method

coinduct : method

The cases , induct , and coinduct methods provide a uniform interface
to common proof techniques over datatypes, inductive predicates (or sets),
recursive functions etc. The corresponding rules may be specified and in-
stantiated in a casual manner. Furthermore, these methods provide named
local contexts that may be invoked via the case proof command within the
subsequent proof text. This accommodates compact proof texts even when
reasoning about large specifications.

The induct method also provides some additional infrastructure in or-
der to be applicable to structure statements (either using explicit meta-level

CHAPTER 4. PROOFS 69

connectives, or including facts and parameters separately). This avoids cum-
bersome encoding of “strengthened” inductive statements within the object-
logic.

cases
�� �
�

� insts�
� and

�� �

�

�

�
� rule

�

induct
�� �
�

� definsts�
� and

�� �

�

�

�

�
��

�arbitrary

�

�
� taking

�

�
� rule

�

coinduct
�� �
insts taking �

� rule

�

rule

type
�� �
�

�pred
�� �
�set
�� �

�

:
���
 nameref

�� �
�
�

�

�

�rule
�� �
:

���
 thmref�
�

�

�

definst

name
�� �
 ==

�� �
�
�≡

�� �

�

term
�� �
�

� inst

�

CHAPTER 4. PROOFS 70

definsts

�
�definst

�

arbitrary

arbitrary
�� �
:

���
 �
� term

�� �

�

and
�� �
�

�
�

taking

taking
�� �
:

���
insts

cases insts R applies method rule with an appropriate case distinction theo-
rem, instantiated to the subjects insts. Symbolic case names are bound
according to the rule’s local contexts.

The rule is determined as follows, according to the facts and arguments
passed to the cases method:

facts arguments rule
cases classical case split
cases t datatype exhaustion (type of t)

` A t cases . . . inductive predicate/set elimination (of A)
. . . cases . . . rule: R explicit rule R

Several instantiations may be given, referring to the suffix of premises of
the case rule; within each premise, the prefix of variables is instantiated.
In most situations, only a single term needs to be specified; this refers
to the first variable of the last premise (it is usually the same for all
cases).

induct insts R is analogous to the cases method, but refers to induction
rules, which are determined as follows:

facts arguments rule
induct P x datatype induction (type of x)

` A x induct . . . predicate/set induction (of A)
. . . induct . . . rule: R explicit rule R

CHAPTER 4. PROOFS 71

Several instantiations may be given, each referring to some part of a
mutual inductive definition or datatype — only related partial induc-
tion rules may be used together, though. Any of the lists of terms
P , x , . . . refers to the suffix of variables present in the induction rule.
This enables the writer to specify only induction variables, or both
predicates and variables, for example.

Instantiations may be definitional: equations x ≡ t introduce local defi-
nitions, which are inserted into the claim and discharged after applying
the induction rule. Equalities reappear in the inductive cases, but have
been transformed according to the induction principle being involved
here. In order to achieve practically useful induction hypotheses, some
variables occurring in t need to be fixed (see below).

The optional “arbitrary : x 1 . . . xm” specification generalizes variables
x 1, . . ., xm of the original goal before applying induction. Thus in-
duction hypotheses may become sufficiently general to get the proof
through. Together with definitional instantiations, one may effectively
perform induction over expressions of a certain structure.

The optional “taking : t1 . . . tn” specification provides additional in-
stantiations of a prefix of pending variables in the rule. Such schematic
induction rules rarely occur in practice, though.

coinduct inst R is analogous to the induct method, but refers to coinduction
rules, which are determined as follows:

goal arguments rule
coinduct x type coinduction (type of x)

A x coinduct . . . predicate/set coinduction (of A)
. . . coinduct . . . rule: R explicit rule R

Coinduction is the dual of induction. Induction essentially eliminates
A x towards a generic result P x, while coinduction introduces A x
starting with B x, for a suitable “bisimulation” B. The cases of a coin-
duct rule are typically named after the predicates or sets being covered,
while the conclusions consist of several alternatives being named after
the individual destructor patterns.

The given instantiation refers to the suffix of variables occurring in
the rule’s major premise, or conclusion if unavailable. An additional
“taking : t1 . . . tn” specification may be required in order to specify the
bisimulation to be used in the coinduction step.

Above methods produce named local contexts, as determined by the in-
stantiated rule as given in the text. Beyond that, the induct and coinduct

CHAPTER 4. PROOFS 72

methods guess further instantiations from the goal specification itself. Any
persisting unresolved schematic variables of the resulting rule will render the
the corresponding case invalid. The term binding ?case for the conclusion
will be provided with each case, provided that term is fully specified.

The print cases command prints all named cases present in the current
proof state.

Despite the additional infrastructure, both cases and coinduct merely
apply a certain rule, after instantiation, while conforming due to the usual
way of monotonic natural deduction: the context of a structured statement∧

x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ . . . reappears unchanged after the case split.
The induct method is fundamentally different in this respect: the meta-

level structure is passed through the “recursive” course involved in the in-
duction. Thus the original statement is basically replaced by separate copies,
corresponding to the induction hypotheses and conclusion; the original goal
context is no longer available. Thus local assumptions, fixed parameters and
definitions effectively participate in the inductive rephrasing of the original
statement.

In induction proofs, local assumptions introduced by cases are split into
two different kinds: hyps stemming from the rule and prems from the goal
statement. This is reflected in the extracted cases accordingly, so invoking
“case c” will provide separate facts c.hyps and c.prems, as well as fact c to
hold the all-inclusive list.

Facts presented to either method are consumed according to the number
of “major premises” of the rule involved, which is usually 0 for plain cases
and induction rules of datatypes etc. and 1 for rules of inductive predicates
or sets and the like. The remaining facts are inserted into the goal verbatim
before the actual cases, induct, or coinduct rule is applied.

4.12.3 Declaring rules

print induct rules∗ : theory | proof → theory | proof
cases : attribute

induct : attribute
coinduct : attribute

cases
�� �
spec

induct
�� �
spec

CHAPTER 4. PROOFS 73

coinduct
�� �
spec

spec

type
�� �
�

�pred
�� �
�set
�� �

�

:
���
nameref

�� �

print induct rules prints cases and induct rules for predicates (or sets)
and types of the current context.

cases , induct , and coinduct (as attributes) augment the corresponding con-
text of rules for reasoning about (co)inductive predicates (or sets) and
types, using the corresponding methods of the same name. Certain def-
initional packages of object-logics usually declare emerging cases and
induction rules as expected, so users rarely need to intervene.

Manual rule declarations usually refer to the case names and params
attributes to adjust names of cases and parameters of a rule; the
consumes declaration is taken care of automatically: consumes 0 is
specified for “type” rules and consumes 1 for “predicate” / “set” rules.

Chapter 5

Document preparation

Isabelle/Isar provides a simple document preparation system based on ex-
isting PDF-LATEX technology, with full support of hyper-links (both local
references and URLs) and bookmarks. Thus the results are equally well
suited for WWW browsing and as printed copies.

Isabelle generates LATEX output as part of the run of a logic session (see
also [24]). Getting started with a working configuration for common situa-
tions is quite easy by using the Isabelle mkdir and make tools. First invoke

isatool mkdir Foo

to initialize a separate directory for session Foo — it is safe to experi-
ment, since isatool mkdir never overwrites existing files. Ensure that
Foo/ROOT.ML holds ML commands to load all theories required for this ses-
sion; furthermore Foo/document/root.tex should include any special LATEX
macro packages required for your document (the default is usually sufficient
as a start).

The session is controlled by a separate IsaMakefile (with crude source
dependencies by default). This file is located one level up from the Foo

directory location. Now invoke

isatool make Foo

to run the Foo session, with browser information and document preparation
enabled. Unless any errors are reported by Isabelle or LATEX, the output
will appear inside the directory ISABELLE_BROWSER_INFO, as reported by the
batch job in verbose mode.

You may also consider to tune the usedir options in IsaMakefile, for
example to change the output format from pdf to dvi, or activate the -D

option to retain a second copy of the generated LATEX sources.

See The Isabelle System Manual [24] for further details on Isabelle logic
sessions and theory presentation. The Isabelle/HOL tutorial [13] also covers
theory presentation issues.

74

CHAPTER 5. DOCUMENT PREPARATION 75

5.1 Markup commands

header : toplevel → toplevel

chapter : local-theory → local-theory
section : local-theory → local-theory

subsection : local-theory → local-theory
subsubsection : local-theory → local-theory

text : local-theory → local-theory
text raw : local-theory → local-theory

sect : proof → proof
subsect : proof → proof

subsubsect : proof → proof
txt : proof → proof

txt raw : proof → proof

Apart from formal comments (see §2.2.2), markup commands provide a
structured way to insert text into the document generated from a theory (see
[24] for more information on Isabelle’s document preparation tools).

chapter
�� �
�

�section
�� �
�subsection
�� �
�subsubsection
�� �
�text
�� �

�

�
� target

�

text
�� �

header
�� �
�

�text raw
�� �
�sect
�� �
�subsect
�� �
�subsubsect
�� �
�txt
�� �
�txt raw
�� �

�

text
�� �

CHAPTER 5. DOCUMENT PREPARATION 76

header text provides plain text markup just preceding the formal begin-
ning of a theory. In actual document preparation the corresponding
LATEX macro \isamarkupheader may be redefined to produce chapter
or section headings.

chapter, section, subsection, and subsubsection mark chapter and
section headings. The corresponding LATEX macros are
\isamarkupchapter, \isamarkupsection etc.

text and txt specify paragraphs of plain text.

text raw and txt raw insert LATEX source into the output, without addi-
tional markup. Thus the full range of document manipulations becomes
available.

The text argument of these markup commands (except for text raw)
may contain references to formal entities (“antiquotations”, see also §5.2).
These are interpreted in the present theory context, or the named target.

Any of these markup elements corresponds to a LATEX command with the
name prefixed by \isamarkup. For the sectioning commands this is a plain
macro with a single argument, e.g. \isamarkupchapter{. . .} for chapter.
The text markup results in a LATEX environment \begin{isamarkuptext}

. . . \end{isamarkuptext}, while text raw causes the text to be inserted
directly into the LATEX source.

The proof markup commands closely resemble those for theory specifica-
tions, but have a different formal status and produce different LATEX macros.
Also note that the header declaration (see §3.1) admits to insert section
markup just preceding the actual theory definition.

CHAPTER 5. DOCUMENT PREPARATION 77

5.2 Antiquotations

theory : antiquotation
thm : antiquotation
prop : antiquotation
term : antiquotation
const : antiquotation

abbrev : antiquotation
typeof : antiquotation

typ : antiquotation
thm style : antiquotation

term style : antiquotation
text : antiquotation

goals : antiquotation
subgoals : antiquotation

prf : antiquotation
full prf : antiquotation

ML : antiquotation
ML type : antiquotation

ML struct : antiquotation

The text body of formal comments (see also §2.2.2) may contain antiquo-
tations of logical entities, such as theorems, terms and types, which are to be
presented in the final output produced by the Isabelle document preparation
system.

Thus embedding of “@{term [show types] f x = a + x}” within a text
block would cause (f :: ′a ⇒ ′a) (x :: ′a) = (a:: ′a) + x to appear in the fi-
nal LATEX document. Also note that theorem antiquotations may involve
attributes as well. For example, @{thm sym [no vars]} would print the the-
orem’s statement where all schematic variables have been replaced by fixed
ones, which are easier to read.

@
���
{

���
antiquotation }
���

CHAPTER 5. DOCUMENT PREPARATION 78

antiquotation

theory
�� �
options name

�� �
�
�thm

�� �
options thmrefs

�prop
�� �
options prop

�� �
�term
�� �
options term

�� �
�const
�� �
options term

�� �
�abbrev
�� �
options term

�� �
�typeof
�� �
options term

�� �
�typ
�� �
options type

�� �
�thm style
�� �
options name

�� �
thmref

�term style
�� �
options name

�� �
term
�� �
�text

�� �
options name
�� �
�goals

�� �
options

�subgoals
�� �
options

�prf
�� �
options thmrefs

�full prf
�� �
options thmrefs

�ML
�� �
options name

�� �
�ML type
�� �
options name

�� �
�ML struct
�� �
options name

�� �

�

options

[
���
�

� option�
� ,

���

�

�

]
���

CHAPTER 5. DOCUMENT PREPARATION 79

option

name
�� �
�

�name
�� �
=

���
name
�� �

�

Note that the syntax of antiquotations may not include source comments
(* . . . *) or verbatim text {* . . . *}.

@{theory A} prints the name A, which is guaranteed to refer to a valid an-
cestor theory in the current context.

@{thm a1 . . . an} prints theorems a1 . . . an . Note that attribute specifica-
tions may be included as well (see also §2.2.7); the no vars rule (see
§7.2.1) would be particularly useful to suppress printing of schematic
variables.

@{prop ϕ} prints a well-typed proposition ϕ.

@{term t} prints a well-typed term t.

@{const c} prints a logical or syntactic constant c.

@{abbrev c x 1 . . . xn} prints a constant abbreviation c x 1 . . . xn ≡ rhs as
defined in the current context.

@{typeof t} prints the type of a well-typed term t.

@{typ τ} prints a well-formed type τ .

@{thm style s a} prints theorem a, previously applying a style s to it (see
below).

@{term style s t} prints a well-typed term t after applying a style s to it
(see below).

@{text s} prints uninterpreted source text s. This is particularly useful to
print portions of text according to the Isabelle LATEX output style,
without demanding well-formedness (e.g. small pieces of terms that
should not be parsed or type-checked yet).

@{goals} prints the current dynamic goal state. This is mainly for support
of tactic-emulation scripts within Isar — presentation of goal states
does not conform to actual human-readable proof documents.

Please do not include goal states into document output unless you really
know what you are doing!

CHAPTER 5. DOCUMENT PREPARATION 80

@{subgoals} is similar to @{goals}, but does not print the main goal.

@{prf a1 . . . an} prints the (compact) proof terms corresponding to the the-
orems a1 . . . an . Note that this requires proof terms to be switched
on for the current object logic (see the “Proof terms” section of the
Isabelle reference manual for information on how to do this).

@{full prf a1 . . . an} is like @{prf a1 . . . an}, but displays the full proof
terms, i.e. also displays information omitted in the compact proof term,
which is denoted by “ ” placeholders there.

@{ML s}, @{ML type s}, and @{ML struct s} check text s as ML value,
type, and structure, respectively. The source is displayed verbatim.

The following standard styles for use with thm style and term style are
available:

lhs extracts the first argument of any application form with at least two
arguments – typically meta-level or object-level equality, or any other
binary relation.

rhs is like lhs, but extracts the second argument.

concl extracts the conclusion C from a rule in Horn-clause normal form A1

=⇒ . . . An =⇒ C.

prem1, . . . , prem9 extract premise number 1, . . ., 9, respectively, from from
a rule in Horn-clause normal form A1 =⇒ . . . An =⇒ C

The following options are available to tune the output. Note that most
of these coincide with ML flags of the same names (see also [15]).

show types = bool and show sorts = bool control printing of explicit type
and sort constraints.

show structs = bool controls printing of implicit structures.

long names = bool forces names of types and constants etc. to be printed in
their fully qualified internal form.

short names = bool forces names of types and constants etc. to be printed
unqualified. Note that internalizing the output again in the current
context may well yield a different result.

CHAPTER 5. DOCUMENT PREPARATION 81

unique names = bool determines whether the printed version of qualified
names should be made sufficiently long to avoid overlap with names
declared further back. Set to false for more concise output.

eta contract = bool prints terms in η-contracted form.

display = bool indicates if the text is to be output as multi-line “display
material”, rather than a small piece of text without line breaks (which
is the default).

break = bool controls line breaks in non-display material.

quotes = bool indicates if the output should be enclosed in double quotes.

mode = name adds name to the print mode to be used for presentation (see
also [15]). Note that the standard setup for LATEX output is already
present by default, including the modes latex and xsymbols.

margin = nat and indent = nat change the margin or indentation for pretty
printing of display material.

source = bool prints the source text of the antiquotation arguments, rather
than the actual value. Note that this does not affect well-formedness
checks of thm, term, etc. (only the text antiquotation admits arbitrary
output).

goals limit = nat determines the maximum number of goals to be printed.

locale = name specifies an alternative locale context used for evaluating and
printing the subsequent argument.

For boolean flags, “name = true” may be abbreviated as “name”. All of
the above flags are disabled by default, unless changed from ML.

Note that antiquotations do not only spare the author from tedious typing
of logical entities, but also achieve some degree of consistency-checking of
informal explanations with formal developments: well-formedness of terms
and types with respect to the current theory or proof context is ensured here.

5.3 Tagged commands

Each Isabelle/Isar command may be decorated by presentation tags:

CHAPTER 5. DOCUMENT PREPARATION 82

tags

�
� tag

�

tag

%
���
 ident

�� �
�
� string

�� �

�

The tags theory, proof, ML are already pre-declared for certain classes of
commands:

theory theory begin/end
proof all proof commands
ML all commands involving ML code

The Isabelle document preparation system (see also [24]) allows tagged
command regions to be presented specifically, e.g. to fold proof texts, or drop
parts of the text completely.

For example “by %invisible auto” would cause that piece of proof to be
treated as invisible instead of proof (the default), which may be either show
or hidden depending on the document setup. In contrast, “by %visible auto”
would force this text to be shown invariably.

Explicit tag specifications within a proof apply to all subsequent com-
mands of the same level of nesting. For example, “proof %visible . . . qed”
would force the whole sub-proof to be typeset as visible (unless some of its
parts are tagged differently).

5.4 Draft presentation

display drafts∗ : · → ·
print drafts∗ : · → ·

display drafts
�� �
�

�print drafts
�� �

�

name
�� �
�

�
�

display drafts paths and print drafts paths perform simple output of a
given list of raw source files. Only those symbols that do not require
additional LATEX packages are displayed properly, everything else is left
verbatim.

CHAPTER 5. DOCUMENT PREPARATION 83

Chapter 6

Other commands

6.1 Diagnostics

pr∗ : · → ·
thm∗ : theory | proof → theory | proof

term∗ : theory | proof → theory | proof
prop∗ : theory | proof → theory | proof

typ∗ : theory | proof → theory | proof
prf∗ : theory | proof → theory | proof

full prf∗ : theory | proof → theory | proof

These diagnostic commands assist interactive development. Note that
undo does not apply here, the theory or proof configuration is not changed.

pr
�� �
�

�modes

�

�
�nat

�� �

�

�
� ,

���
nat
�� �

�

thm
�� �
�

�modes

�

thmrefs

term
�� �
�

�modes

�

term
�� �

prop
�� �
�

�modes

�

prop
�� �

typ
�� �
�

�modes

�

type
�� �

84

CHAPTER 6. OTHER COMMANDS 85

prf
�� �
�

�modes

�

�
� thmrefs

�

full prf
�� �
�

�modes

�

�
� thmrefs

�

modes

(
���
 name

�� �
�
�

�

)
���

pr goals , prems prints the current proof state (if present), including the
proof context, current facts and goals. The optional limit arguments
affect the number of goals and premises to be displayed, which is ini-
tially 10 for both. Omitting limit values leaves the current setting
unchanged.

thm a1 . . . an retrieves theorems from the current theory or proof context.
Note that any attributes included in the theorem specifications are
applied to a temporary context derived from the current theory or
proof; the result is discarded, i.e. attributes involved in a1, . . ., an do
not have any permanent effect.

term t and prop ϕ read, type-check and print terms or propositions ac-
cording to the current theory or proof context; the inferred type of t is
output as well. Note that these commands are also useful in inspecting
the current environment of term abbreviations.

typ τ reads and prints types of the meta-logic according to the current the-
ory or proof context.

prf displays the (compact) proof term of the current proof state (if present),
or of the given theorems. Note that this requires proof terms to be
switched on for the current object logic (see the “Proof terms” section
of the Isabelle reference manual for information on how to do this).

full prf is like prf , but displays the full proof term, i.e. also displays in-
formation omitted in the compact proof term, which is denoted by “ ”
placeholders there.

CHAPTER 6. OTHER COMMANDS 86

All of the diagnostic commands above admit a list of modes to be spec-
ified, which is appended to the current print mode (see also [15]). Thus
the output behavior may be modified according particular print mode fea-
tures. For example, pr (latex xsymbols symbols) would print the current
proof state with mathematical symbols and special characters represented in
LATEX source, according to the Isabelle style [24].

Note that antiquotations (cf. §5.2) provide a more systematic way to
include formal items into the printed text document.

6.2 Inspecting the context

print commands∗ : · → ·
print theory∗ : theory | proof → theory | proof
print syntax∗ : theory | proof → theory | proof

print methods∗ : theory | proof → theory | proof
print attributes∗ : theory | proof → theory | proof
print theorems∗ : theory | proof → theory | proof
find theorems∗ : theory | proof → theory | proof

thm deps∗ : theory | proof → theory | proof
print facts∗ : proof → proof

print binds∗ : proof → proof

print theory
�� �
�

� !
���

�

find theorems
�� �
�

� (
���
�

�nat
�� �

�

�
�with dups

�� �

�

)
���

�

�
� criterion

�

CHAPTER 6. OTHER COMMANDS 87

criterion

�
� -

���

�

name
�� �
:

���
nameref
�� �
�

�intro
�� �
�elim
�� �
�dest
�� �
�simp
�� �
:

���
term
�� �
� term

�� �

�

thm deps
�� �
thmrefs

These commands print certain parts of the theory and proof context.
Note that there are some further ones available, such as for the set of rules
declared for simplifications.

print commands prints Isabelle’s outer theory syntax, including keywords
and command.

print theory prints the main logical content of the theory context; the “!”
option indicates extra verbosity.

print syntax prints the inner syntax of types and terms, depending on the
current context. The output can be very verbose, including grammar
tables and syntax translation rules. See [15, §7, §8] for further infor-
mation on Isabelle’s inner syntax.

print methods prints all proof methods available in the current theory con-
text.

print attributes prints all attributes available in the current theory con-
text.

print theorems prints theorems resulting from the last command.

find theorems criteria retrieves facts from the theory or proof context
matching all of given search criteria. The criterion name: p selects
all theorems whose fully qualified name matches pattern p, which may
contain “∗” wildcards. The criteria intro, elim, and dest select theo-
rems that match the current goal as introduction, elimination or de-
struction rules, respectively. The criterion simp: t selects all rewrite

CHAPTER 6. OTHER COMMANDS 88

rules whose left-hand side matches the given term. The criterion term
t selects all theorems that contain the pattern t – as usual, patterns
may contain occurrences of the dummy “ ”, schematic variables, and
type constraints.

Criteria can be preceded by “−” to select theorems that do not match.
Note that giving the empty list of criteria yields all currently known
facts. An optional limit for the number of printed facts may be given;
the default is 40. By default, duplicates are removed from the search
result. Use with dups to display duplicates.

thm deps a1 . . . an visualizes dependencies of facts, using Isabelle’s graph
browser tool (see also [24]).

print facts prints all local facts of the current context, both named and
unnamed ones.

print binds prints all term abbreviations present in the context.

6.3 History commands

undo∗∗ : · → ·
redo∗∗ : · → ·

kill∗∗ : · → ·

The Isabelle/Isar top-level maintains a two-stage history, for theory and
proof state transformation. Basically, any command can be undone using
undo, excluding mere diagnostic elements. Its effect may be revoked via
redo, unless the corresponding undo step has crossed the beginning of a
proof or theory. The kill command aborts the current history node alto-
gether, discontinuing a proof or even the whole theory. This operation is not
undo-able.

! History commands should never be used with user interfaces such as Proof Gen-
eral [1, 2], which takes care of stepping forth and back itself. Interfering by

manual undo, redo, or even kill commands would quickly result in utter confu-
sion.

CHAPTER 6. OTHER COMMANDS 89

6.4 System commands

cd∗ : · → ·
pwd∗ : · → ·

use thy∗ : · → ·

cd
�� �
�

�use thy
�� �
�update thy
�� �

�

name
�� �

cd path changes the current directory of the Isabelle process.

pwd prints the current working directory.

use thy A preload theory A. These system commands are scarcely used
when working interactively, since loading of theories is done automati-
cally as required.

Chapter 7

Generic tools and packages

7.1 Configuration options

Isabelle/Pure maintains a record of named configuration options within the
theory or proof context, with values of type bool, int, or string. Tools may
declare options in ML, and then refer to these values (relative to the context).
Thus global reference variables are easily avoided. The user may change the
value of a configuration option by means of an associated attribute of the
same name. This form of context declaration works particularly well with
commands such as declare or using.

For historical reasons, some tools cannot take the full proof context into
account and merely refer to the background theory. This is accommodated by
configuration options being declared as “global”, which may not be changed
within a local context.

print configs : theory | proof → theory | proof

name
�� �
�

� =
���
 true

�� �
�
�false

�� �
� int

�name
�� �

�

�

print configs prints the available configuration options, with names, types,
and current values.

name = value as an attribute expression modifies the named option, with
the syntax of the value depending on the option’s type. For bool the
default value is true. Any attempt to change a global option in a local
context is ignored.

90

CHAPTER 7. GENERIC TOOLS AND PACKAGES 91

7.2 Basic proof tools

7.2.1 Miscellaneous methods and attributes

unfold : method
fold : method

insert : method

erule∗ : method
drule∗ : method
frule∗ : method

succeed : method
fail : method

fold
�� �
�

�unfold
�� �
�insert
�� �

�

thmrefs

erule
�� �
�

�drule
�� �
�frule
�� �

�

�
� (

���
nat
�� �
)

���

�

thmrefs

unfold a1 . . . an and fold a1 . . . an expand (or fold back) the given defini-
tions throughout all goals; any chained facts provided are inserted into
the goal and subject to rewriting as well.

insert a1 . . . an inserts theorems as facts into all goals of the proof state.
Note that current facts indicated for forward chaining are ignored.

erule a1 . . . an , drule a1 . . . an , and frule a1 . . . an are similar to the basic
rule method (see §4.5), but apply rules by elim-resolution, destruct-
resolution, and forward-resolution, respectively [15]. The optional nat-
ural number argument (default 0) specifies additional assumption steps
to be performed here.

Note that these methods are improper ones, mainly serving for ex-
perimentation and tactic script emulation. Different modes of basic
rule application are usually expressed in Isar at the proof language
level, rather than via implicit proof state manipulations. For example,
a proper single-step elimination would be done using the plain rule
method, with forward chaining of current facts.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 92

succeed yields a single (unchanged) result; it is the identity of the “,” method
combinator (cf. §2.2.6).

fail yields an empty result sequence; it is the identity of the “|” method
combinator (cf. §2.2.6).

tagged : attribute
untagged : attribute

THEN : attribute
COMP : attribute

unfolded : attribute
folded : attribute

rotated : attribute
elim format : attribute

standard∗ : attribute
no vars∗ : attribute

tagged
�� �
nameref

�� �

untagged

�� �
name
�� �

THEN
�� �
�

�COMP
�� �

�

�
� [

���
nat
�� �
]

���

�

thmref

unfolded
�� �
�

�folded
�� �

�

thmrefs

rotated
�� �
�

� int

�

tagged name arg and untagged name add and remove tags of some theorem.
Tags may be any list of string pairs that serve as formal comment. The
first string is considered the tag name, the second its argument. Note
that untagged removes any tags of the same name.

THEN a and COMP a compose rules by resolution. THEN resolves with
the first premise of a (an alternative position may be also specified);

CHAPTER 7. GENERIC TOOLS AND PACKAGES 93

the COMP version skips the automatic lifting process that is normally
intended (cf. "op RS" and "op COMP" in [15, §5]).

unfolded a1 . . . an and folded a1 . . . an expand and fold back again the
given definitions throughout a rule.

rotated n rotate the premises of a theorem by n (default 1).

elim format turns a destruction rule into elimination rule format, by resolv-
ing with the rule PROP A =⇒ (PROP A =⇒ PROP B) =⇒ PROP
B.

Note that the Classical Reasoner (§7.4) provides its own version of this
operation.

standard puts a theorem into the standard form of object-rules at the out-
ermost theory level. Note that this operation violates the local proof
context (including active locales).

no vars replaces schematic variables by free ones; this is mainly for tuning
output of pretty printed theorems.

7.2.2 Low-level equational reasoning

subst : method
hypsubst : method

split : method

subst
�� �
�

� (
���
asm

�� �
)
���

�

�
� (

���
 nat
�� �
�

�
�

)
���

�

thmref

split
�� �
�

� (
���
asm

�� �
)
���

�

thmrefs

These methods provide low-level facilities for equational reasoning that
are intended for specialized applications only. Normally, single step calcu-
lations would be performed in a structured text (see also §4.11), while the
Simplifier methods provide the canonical way for automated normalization
(see §7.3).

CHAPTER 7. GENERIC TOOLS AND PACKAGES 94

subst eq performs a single substitution step using rule eq, which may be
either a meta or object equality.

subst (asm) eq substitutes in an assumption.

subst (i . . . j) eq performs several substitutions in the conclusion. The num-
bers i to j indicate the positions to substitute at. Positions are ordered
from the top of the term tree moving down from left to right. For exam-
ple, in (a + b) + (c + d) there are three positions where commutativity
of + is applicable: 1 refers to a + b, 2 to the whole term, and 3 to c
+ d.

If the positions in the list (i . . . j) are non-overlapping (e.g. (2 3) in
(a + b) + (c + d)) you may assume all substitutions are performed
simultaneously. Otherwise the behaviour of subst is not specified.

subst (asm) (i . . . j) eq performs the substitutions in the assumptions. The
positions refer to the assumptions in order from left to right. For ex-
ample, given in a goal of the form P (a + b) =⇒ P (c + d) =⇒ . . .,
position 1 of commutativity of + is the subterm a + b and position 2
is the subterm c + d.

hypsubst performs substitution using some assumption; this only works for
equations of the form x = t where x is a free or bound variable.

split a1 . . . an performs single-step case splitting using the given rules. By
default, splitting is performed in the conclusion of a goal; the (asm)
option indicates to operate on assumptions instead.

Note that the simp method already involves repeated application of
split rules as declared in the current context.

7.2.3 Further tactic emulations

The following improper proof methods emulate traditional tactics. These
admit direct access to the goal state, which is normally considered harmful!
In particular, this may involve both numbered goal addressing (default 1),
and dynamic instantiation within the scope of some subgoal.

! Dynamic instantiations refer to universally quantified parameters of a subgoal
(the dynamic context) rather than fixed variables and term abbreviations of a

(static) Isar context.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 95

Tactic emulation methods, unlike their ML counterparts, admit simul-
taneous instantiation from both dynamic and static contexts. If names oc-
cur in both contexts goal parameters hide locally fixed variables. Likewise,
schematic variables refer to term abbreviations, if present in the static con-
text. Otherwise the schematic variable is interpreted as a schematic variable
and left to be solved by unification with certain parts of the subgoal.

Note that the tactic emulation proof methods in Isabelle/Isar are consis-
tently named foo tac. Note also that variable names occurring on left hand
sides of instantiations must be preceded by a question mark if they coincide
with a keyword or contain dots. This is consistent with the attribute where
(see §4.5).

rule tac∗ : method
erule tac∗ : method
drule tac∗ : method
frule tac∗ : method

cut tac∗ : method
thin tac∗ : method

subgoal tac∗ : method
rename tac∗ : method

rotate tac∗ : method
tactic∗ : method

rule tac
�� �
�

�erule tac
�� �
�drule tac
�� �
�frule tac
�� �
�cut tac
�� �
�thin tac
�� �

�

�
�goalspec

�

insts thmref�
� thmrefs

�

subgoal tac
�� �
�

�goalspec

�

prop
�� �
�

�
�

rename tac
�� �
�

�goalspec

�

name
�� �
�

�
�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 96

rotate tac
�� �
�

�goalspec

�

�
� int

�

tactic
�� �
text

�� �

insts

name
�� �
=

���
term
�� �
�

� and
�� �

�

in
�� �

rule tac etc. do resolution of rules with explicit instantiation. This works
the same way as the ML tactics res_inst_tac etc. (see [15, §3]).

Multiple rules may be only given if there is no instantiation; then
rule tac is the same as resolve_tac in ML (see [15, §3]).

cut tac inserts facts into the proof state as assumption of a subgoal, see also
cut_facts_tac in [15, §3]. Note that the scope of schematic variables
is spread over the main goal statement. Instantiations may be given as
well, see also ML tactic cut_inst_tac in [15, §3].

thin tac ϕ deletes the specified assumption from a subgoal; note that ϕ may
contain schematic variables. See also thin_tac in [15, §3].

subgoal tac ϕ adds ϕ as an assumption to a subgoal. See also subgoal_tac

and subgoals_tac in [15, §3].

rename tac x 1 . . . xn renames parameters of a goal according to the list x 1,
. . ., xn , which refers to the suffix of variables.

rotate tac n rotates the assumptions of a goal by n positions: from right to
left if n is positive, and from left to right if n is negative; the default
value is 1. See also rotate_tac in [15, §3].

tactic text produces a proof method from any ML text of type tactic. Apart
from the usual ML environment and the current implicit theory context,
the ML code may refer to the following locally bound values:

val ctxt : Proof.context
val facts : thm list
val thm : string -> thm
val thms : string -> thm list

CHAPTER 7. GENERIC TOOLS AND PACKAGES 97

Here ctxt refers to the current proof context, facts indicates any
current facts for forward-chaining, and thm / thms retrieve named facts
(including global theorems) from the context.

7.3 The Simplifier

7.3.1 Simplification methods

simp : method
simp all : method

simp
�� �
�

�simp all
�� �

�

�
� !

���

�

�
�opt

�

�
� simpmod

�

opt

(
���
 no asm

�� �
�
�no asm simp

�� �
�no asm use
�� �
�asm lr
�� �

�

)
���

simpmod

add
�� �
�

�del
�� �
�only
�� �
�cong
�� �
�

�add
�� �
�del
�� �

�

�split
�� �
�

�add
�� �
�del
�� �

�

�

:
���
thmrefs

CHAPTER 7. GENERIC TOOLS AND PACKAGES 98

simp invokes the Simplifier, after declaring additional rules according to the
arguments given. Note that the only modifier first removes all other
rewrite rules, congruences, and looper tactics (including splits), and
then behaves like add.

The cong modifiers add or delete Simplifier congruence rules (see also
[15]), the default is to add.

The split modifiers add or delete rules for the Splitter (see also [15]),
the default is to add. This works only if the Simplifier method has been
properly setup to include the Splitter (all major object logics such HOL,
HOLCF, FOL, ZF do this already).

simp all is similar to simp, but acts on all goals (backwards from the last to
the first one).

By default the Simplifier methods take local assumptions fully into ac-
count, using equational assumptions in the subsequent normalization process,
or simplifying assumptions themselves (cf. asm_full_simp_tac in [15, §10]).
In structured proofs this is usually quite well behaved in practice: just the lo-
cal premises of the actual goal are involved, additional facts may be inserted
via explicit forward-chaining (via then, from, using etc.). The full context
of premises is only included if the “!” (bang) argument is given, which should
be used with some care, though.

Additional Simplifier options may be specified to tune the behavior fur-
ther (mostly for unstructured scripts with many accidental local facts): “(no
asm)” means assumptions are ignored completely (cf. simp_tac), “(no asm
simp)” means assumptions are used in the simplification of the conclusion but
are not themselves simplified (cf. asm_simp_tac), and “(no asm use)” means
assumptions are simplified but are not used in the simplification of each other
or the conclusion (cf. full_simp_tac). For compatibility reasons, there is
also an option “(asm lr)”, which means that an assumption is only used for
simplifying assumptions which are to the right of it (cf. asm_lr_simp_tac).

The configuration option depth limit limits the number of recursive invo-
cations of the simplifier during conditional rewriting.

The Splitter package is usually configured to work as part of the Simplifier.
The effect of repeatedly applying split_tac can be simulated by “(simp
only : split : a1 . . . an)”. There is also a separate split method available for
single-step case splitting.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 99

7.3.2 Declaring rules

print simpset∗ : theory | proof → theory | proof
simp : attribute
cong : attribute
split : attribute

simp
�� �
�

�cong
�� �
�split
�� �

�

�
�add

�� �
�del
�� �

�

print simpset prints the collection of rules declared to the Simplifier, which
is also known as “simpset” internally [15].

simp declares simplification rules.

cong declares congruence rules.

split declares case split rules.

7.3.3 Simplification procedures

simproc setup : local-theory → local-theory
simproc : attribute

simproc setup
�� �
name

�� �
(
���
 term

�� �
�
� |

���

�

)
���
=

���
text
�� �
�

�
��

�identifier
�� �
 nameref

�� �
�
�

�

�

simproc
�� �
�

�add
�� �
:

���
�del
�� �
:

���

�

name
�� �
�

�
�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 100

simproc setup defines a named simplification procedure that is
invoked by the Simplifier whenever any of the given term
patterns match the current redex. The implementation,
which is provided as ML source text, needs to be of type
"morphism -> simpset -> cterm -> thm option", where the cterm
represents the current redex r and the result is supposed to be some
proven rewrite rule r ≡ r ′ (or a generalized version), or NONE to in-
dicate failure. The simpset argument holds the full context of the
current Simplifier invocation, including the actual Isar proof context.
The morphism informs about the difference of the original compilation
context wrt. the one of the actual application later on. The optional
identifier specifies theorems that represent the logical content of the
abstract theory of this simproc.

Morphisms and identifiers are only relevant for simprocs that are de-
fined within a local target context, e.g. in a locale.

simproc add : name and simproc del : name add or delete named simprocs to
the current Simplifier context. The default is to add a simproc. Note
that simproc setup already adds the new simproc to the subsequent
context.

7.3.4 Forward simplification

simplified : attribute

simplified
�� �
�

�opt

�

�
� thmrefs

�

opt

(
���
 no asm

�� �
�
�no asm simp

�� �
�no asm use
�� �

�

)
���

simplified a1 . . . an causes a theorem to be simplified, either by exactly the
specified rules a1, . . ., an , or the implicit Simplifier context if no ar-
guments are given. The result is fully simplified by default, including

CHAPTER 7. GENERIC TOOLS AND PACKAGES 101

assumptions and conclusion; the options no asm etc. tune the Simpli-
fier in the same way as the for the simp method.

Note that forward simplification restricts the simplifier to its most ba-
sic operation of term rewriting; solver and looper tactics [15] are not
involved here. The simplified attribute should be only rarely required
under normal circumstances.

7.4 The Classical Reasoner

7.4.1 Basic methods

rule : method
contradiction : method

intro : method
elim : method

rule
�� �
�

�intro
�� �
�elim
�� �

�

�
� thmrefs

�

rule as offered by the Classical Reasoner is a refinement over the primitive
one (see §4.5). Both versions essentially work the same, but the clas-
sical version observes the classical rule context in addition to that of
Isabelle/Pure.

Common object logics (HOL, ZF, etc.) declare a rich collection of
classical rules (even if these would qualify as intuitionistic ones), but
only few declarations to the rule context of Isabelle/Pure (§4.5).

contradiction solves some goal by contradiction, deriving any result from
both ¬ A and A. Chained facts, which are guaranteed to participate,
may appear in either order.

intro and elim repeatedly refine some goal by intro- or elim-resolution, after
having inserted any chained facts. Exactly the rules given as arguments
are taken into account; this allows fine-tuned decomposition of a proof
problem, in contrast to common automated tools.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 102

7.4.2 Automated methods

blast : method
fast : method

slow : method
best : method
safe : method

clarify : method

blast
�� �
�

� !
���

�

�
�nat

�� �

�

�
� clamod

�

fast
�� �
�

�slow
�� �
�best
�� �
�safe
�� �
�clarify
�� �

�

�
� !

���

�

�
� clamod

�

clamod

intro
�� �
�

�elim
�� �
�dest
�� �

�

!
���
�

�
� ?

���

�

�

�del
�� �

�

:
���
thmrefs

blast refers to the classical tableau prover (see blast_tac in [15, §11]). The
optional argument specifies a user-supplied search bound (default 20).

fast , slow , best , safe, and clarify refer to the generic classical reasoner. See
fast_tac, slow_tac, best_tac, safe_tac, and clarify_tac in [15,
§11] for more information.

Any of the above methods support additional modifiers of the context
of classical rules. Their semantics is analogous to the attributes given be-
fore. Facts provided by forward chaining are inserted into the goal before
commencing proof search. The “!” argument causes the full context of as-
sumptions to be included as well.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 103

7.4.3 Combined automated methods

auto : method
force : method

clarsimp : method
fastsimp : method

slowsimp : method
bestsimp : method

auto
�� �
�

� !
���

�

�
�nat

�� �
nat
�� �

�

�
� clasimpmod

�

force
�� �
�

�clarsimp
�� �
�fastsimp
�� �
�slowsimp
�� �
�bestsimp
�� �

�

�
� !

���

�

�
� clasimpmod

�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 104

clasimpmod

simp
�� �
�

�add
�� �
�del
�� �
�only
�� �

�

�

� cong
�� �
�

�split
�� �

�

�
�add

�� �
�del
�� �

�

�iff
�� �
 �

�add
�� �

�

�
� ?

���

�

�
�del

�� �

�

� intro
�� �
�

�elim
�� �
�dest
�� �

�

!
���
�

�
� ?

���

�

�

�del
�� �

�

�

:
���
thmrefs

auto, force, clarsimp, fastsimp, slowsimp, and bestsimp provide access to
Isabelle’s combined simplification and classical reasoning tactics. These
correspond to auto_tac, force_tac, clarsimp_tac, and Classical
Reasoner tactics with the Simplifier added as wrapper, see [15, §11] for
more information. The modifier arguments correspond to those given
in §7.3 and §7.4. Just note that the ones related to the Simplifier are
prefixed by simp here.

Facts provided by forward chaining are inserted into the goal before do-
ing the search. The “!” argument causes the full context of assumptions
to be included as well.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 105

7.4.4 Declaring rules

print claset∗ : theory | proof → theory | proof
intro : attribute
elim : attribute
dest : attribute
rule : attribute

iff : attribute

intro
�� �
�

�elim
�� �
�dest
�� �

�

!
���
�

�
� ?

���

�

�
�nat

�� �

�

rule
�� �
del

�� �

iff

�� �
 �
�add

�� �

�

�
� ?

���

�

�
�del

�� �

�

print claset prints the collection of rules declared to the Classical Reasoner,
which is also known as “claset” internally [15].

intro, elim, and dest declare introduction, elimination, and destruction
rules, respectively. By default, rules are considered as unsafe (i.e. not
applied blindly without backtracking), while “!” classifies as safe. Rule
declarations marked by “?” coincide with those of Isabelle/Pure, cf.
§4.5 (i.e. are only applied in single steps of the rule method). The op-
tional natural number specifies an explicit weight argument, which is
ignored by automated tools, but determines the search order of single
rule steps.

rule del deletes introduction, elimination, or destruction rules from the con-
text.

iff declares logical equivalences to the Simplifier and the Classical reasoner
at the same time. Non-conditional rules result in a “safe” introduc-
tion and elimination pair; conditional ones are considered “unsafe”.
Rules with negative conclusion are automatically inverted (using ¬-
elimination internally).

CHAPTER 7. GENERIC TOOLS AND PACKAGES 106

The “?” version of iff declares rules to the Isabelle/Pure context only,
and omits the Simplifier declaration.

7.4.5 Classical operations

swapped : attribute

swapped turns an introduction rule into an elimination, by resolving with
the classical swap principle (¬ B =⇒ A) =⇒ (¬ A =⇒ B).

7.5 Object-logic setup

judgment : theory → theory
atomize : method
atomize : attribute

rule format : attribute
rulify : attribute

The very starting point for any Isabelle object-logic is a “truth judg-
ment” that links object-level statements to the meta-logic (with its minimal
language of prop that covers universal quantification

∧
and implication =⇒).

Common object-logics are sufficiently expressive to internalize rule state-
ments over

∧
and =⇒ within their own language. This is useful in certain

situations where a rule needs to be viewed as an atomic statement from the
meta-level perspective, e.g.

∧
x . x ∈ A =⇒ P x versus ∀ x ∈ A. P x.

From the following language elements, only the atomize method and
rule format attribute are occasionally required by end-users, the rest is for
those who need to setup their own object-logic. In the latter case exist-
ing formulations of Isabelle/FOL or Isabelle/HOL may be taken as realistic
examples.

Generic tools may refer to the information provided by object-logic dec-
larations internally.

judgment
�� �
constdecl

atomize
�� �
�

� (
���
full

�� �
)
���

�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 107

rule format
�� �
�

� (
���
noasm

�� �
)
���

�

judgment c :: σ (mx) declares constant c as the truth judgment of the cur-
rent object-logic. Its type σ should specify a coercion of the category of
object-level propositions to prop of the Pure meta-logic; the mixfix an-
notation (mx) would typically just link the object language (internally
of syntactic category logic) with that of prop. Only one judgment
declaration may be given in any theory development.

atomize (as a method) rewrites any non-atomic premises of a sub-goal, us-
ing the meta-level equations declared via atomize (as an attribute)
beforehand. As a result, heavily nested goals become amenable to
fundamental operations such as resolution (cf. the rule method). Giv-
ing the “(full)” option here means to turn the whole subgoal into an
object-statement (if possible), including the outermost parameters and
assumptions as well.

A typical collection of atomize rules for a particular object-logic would
provide an internalization for each of the connectives of

∧
, =⇒, and ≡.

Meta-level conjunction should be covered as well (this is particularly
important for locales, see §3.5).

rule format rewrites a theorem by the equalities declared as rulify rules in
the current object-logic. By default, the result is fully normalized,
including assumptions and conclusions at any depth. The (no asm)
option restricts the transformation to the conclusion of a rule.

In common object-logics (HOL, FOL, ZF), the effect of rule format
is to replace (bounded) universal quantification (∀) and implication
(−→) by the corresponding rule statements over

∧
and =⇒.

Chapter 8

Isabelle/HOL

8.1 Primitive types

typedecl : theory → theory
typedef : theory → proof (prove)

typedecl
�� �
typespec �

� infix

�

typedef
�� �
�

�altname

�

abstype =
���
repset

altname

(
���
 name

�� �
�
�open

�� �
�open
�� �
name

�� �

�

)
���

abstype

typespec �
� infix

�

repset

term
�� �
�

�morphisms
�� �
name

�� �
name
�� �

�

typedecl (α1, . . ., αn) t is similar to the original typedecl of Isabelle/Pure
(see §3.9.2), but also declares type arity t :: (type, . . ., type) type, mak-
ing t an actual HOL type constructor.

108

CHAPTER 8. ISABELLE/HOL 109

typedef (α1, . . ., αn) t = A sets up a goal stating non-emptiness of the
set A. After finishing the proof, the theory will be augmented by a
Gordon/HOL-style type definition, which establishes a bijection be-
tween the representing set A and the new type t.

Technically, typedef defines both a type t and a set (term constant) of
the same name (an alternative base name may be given in parentheses).
The injection from type to set is called Rep t, its inverse Abs t (this
may be changed via an explicit morphisms declaration).

Theorems Rep t, Rep t inverse, and Abs t inverse provide the most
basic characterization as a corresponding injection/surjection pair (in
both directions). Rules Rep t inject and Abs t inject provide a slightly
more convenient view on the injectivity part, suitable for automated
proof tools (e.g. in simp or iff declarations). Rules Rep t cases/Rep t
induct, and Abs t cases/Abs t induct provide alternative views on sur-
jectivity; these are already declared as set or type rules for the generic
cases and induct methods.

An alternative name may be specified in parentheses; the default is
to use t as indicated before. The “(open)” declaration suppresses a
separate constant definition for the representing set.

Note that raw type declarations are rarely used in practice; the main
application is with experimental (or even axiomatic!) theory fragments. In-
stead of primitive HOL type definitions, user-level theories usually refer to
higher-level packages such as record (see §8.3) or datatype (see §8.4).

8.2 Adhoc tuples

split format∗ : attribute

split format
�� �
 �

�name
�� �

�

�
� and

�� �

�

�

� (
���
complete

�� �
)
���

�

split format p1 . . . pm and . . . and q1 . . . qn puts expressions of low-level

tuple types into canonical form as specified by the arguments given;

CHAPTER 8. ISABELLE/HOL 110

the i -th collection of arguments refers to occurrences in premise i of
the rule. The “(complete)” option causes all arguments in function ap-
plications to be represented canonically according to their tuple type
structure.

Note that these operations tend to invent funny names for new local
parameters to be introduced.

8.3 Records

In principle, records merely generalize the concept of tuples, where com-
ponents may be addressed by labels instead of just position. The logical
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
supporting truly extensible record schemes. This admits operations that are
polymorphic with respect to record extension, yielding “object-oriented” ef-
fects like (single) inheritance. See also [11] for more details on object-oriented
verification and record subtyping in HOL.

8.3.1 Basic concepts

Isabelle/HOL supports both fixed and schematic records at the level of terms
and types. The notation is as follows:

record terms record types
fixed (|x = a, y = b|) (|x :: A, y :: B |)
schematic (|x = a, y = b, . . . = m|) (|x :: A, y :: B , . . . :: M |)

The ASCII representation of (|x = a|) is (| x = a |).
A fixed record (|x = a, y = b|) has field x of value a and field y of value

b. The corresponding type is (|x :: A, y :: B |), assuming that a :: A and b ::
B.

A record scheme like (|x = a, y = b, . . . = m|) contains fields x and y
as before, but also possibly further fields as indicated by the “. . .” notation
(which is actually part of the syntax). The improper field “. . .” of a record
scheme is called the more part. Logically it is just a free variable, which is
occasionally referred to as “row variable” in the literature. The more part
of a record scheme may be instantiated by zero or more further components.
For example, the previous scheme may get instantiated to (|x = a, y = b, z
= c, . . . = m ′|), where m ′ refers to a different more part. Fixed records are
special instances of record schemes, where “. . .” is properly terminated by

CHAPTER 8. ISABELLE/HOL 111

the () :: unit element. In fact, (|x = a, y = b|) is just an abbreviation for (|x
= a, y = b, . . . = ()|).

Two key observations make extensible records in a simply typed language
like HOL work out:

1. the more part is internalized, as a free term or type variable,

2. field names are externalized, they cannot be accessed within the logic
as first-class values.

In Isabelle/HOL record types have to be defined explicitly, fixing their
field names and types, and their (optional) parent record. Afterwards,
records may be formed using above syntax, while obeying the canonical
order of fields as given by their declaration. The record package provides
several standard operations like selectors and updates. The common setup
for various generic proof tools enable succinct reasoning patterns. See also
the Isabelle/HOL tutorial [13] for further instructions on using records in
practice.

8.3.2 Record specifications

record : theory → theory

record
�� �
typespec =

���
�
� type

�� �
+
���

�

constdecl�
�

�

record (α1, . . ., αm) t = τ + c1 :: σ1 . . . cn :: σn defines extensible record
type (α1, . . ., αm) t, derived from the optional parent record τ by adding
new field components ci :: σi etc.

The type variables of τ and σi need to be covered by the (distinct)
parameters α1, . . ., αm . Type constructor t has to be new, while τ
needs to specify an instance of an existing record type. At least one
new field ci has to be specified. Basically, field names need to belong
to a unique record. This is not a real restriction in practice, since fields
are qualified by the record name internally.

The parent record specification τ is optional; if omitted t becomes
a root record. The hierarchy of all records declared within a theory
context forms a forest structure, i.e. a set of trees starting with a root
record each. There is no way to merge multiple parent records!

CHAPTER 8. ISABELLE/HOL 112

For convenience, (α1, . . ., αm) t is made a type abbreviation for the
fixed record type (|c1 :: σ1, . . ., cn :: σn |), likewise is (α1, . . ., αm , ζ)
t scheme made an abbreviation for (|c1 :: σ1, . . ., cn :: σn , . . . :: ζ|).

8.3.3 Record operations

Any record definition of the form presented above produces certain standard
operations. Selectors and updates are provided for any field, including the
improper one “more”. There are also cumulative record constructor func-
tions. To simplify the presentation below, we assume for now that (α1, . . .,
αm) t is a root record with fields c1 :: σ1, . . ., cn :: σn .

Selectors and updates are available for any field (including “more”):

ci :: (|c :: σ, . . . :: ζ|) ⇒ σi

ci update :: σi ⇒ (|c :: σ, . . . :: ζ|) ⇒ (|c :: σ, . . . :: ζ|)

There is special syntax for application of updates: r(|x := a|) abbreviates
term x update a r. Further notation for repeated updates is also available:
r(|x := a|)(|y := b|)(|z := c|) may be written r(|x := a, y := b, z := c|). Note
that because of postfix notation the order of fields shown here is reverse than
in the actual term. Since repeated updates are just function applications,
fields may be freely permuted in (|x := a, y := b, z := c|), as far as logical
equality is concerned. Thus commutativity of independent updates can be
proven within the logic for any two fields, but not as a general theorem.

The make operation provides a cumulative record constructor function:

t .make :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)

We now reconsider the case of non-root records, which are derived of
some parent. In general, the latter may depend on another parent as well,
resulting in a list of ancestor records. Appending the lists of fields of all
ancestors results in a certain field prefix. The record package automatically
takes care of this by lifting operations over this context of ancestor fields.
Assuming that (α1, . . ., αm) t has ancestor fields b1 :: %1, . . ., bk :: %k , the
above record operations will get the following types:

ci :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ σi

ci update :: σi ⇒ (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t .make :: %1 ⇒ . . . %k ⇒ σ1 ⇒ . . . σn ⇒ (|b :: %, c :: σ|)

CHAPTER 8. ISABELLE/HOL 113

Some further operations address the extension aspect of a derived record
scheme specifically: t .fields produces a record fragment consisting of exactly
the new fields introduced here (the result may serve as a more part elsewhere);
t .extend takes a fixed record and adds a given more part; t .truncate restricts
a record scheme to a fixed record.

t .fields :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)
t .extend :: (|b :: %, c :: σ|) ⇒ ζ ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t .truncate :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ|)

Note that t .make and t .fields coincide for root records.

8.3.4 Derived rules and proof tools

The record package proves several results internally, declaring these facts to
appropriate proof tools. This enables users to reason about record structures
quite conveniently. Assume that t is a record type as specified above.

1. Standard conversions for selectors or updates applied to record con-
structor terms are made part of the default Simplifier context; thus
proofs by reduction of basic operations merely require the simp method
without further arguments. These rules are available as t .simps, too.

2. Selectors applied to updated records are automatically reduced by an
internal simplification procedure, which is also part of the standard
Simplifier setup.

3. Inject equations of a form analogous to (x , y) = (x ′, y ′) ≡ x = x ′ ∧ y
= y ′ are declared to the Simplifier and Classical Reasoner as iff rules.
These rules are available as t .iffs.

4. The introduction rule for record equality analogous to x r = x r ′ =⇒
y r = y r ′ . . . =⇒ r = r ′ is declared to the Simplifier, and as the basic
rule context as “intro?”. The rule is called t .equality.

5. Representations of arbitrary record expressions as canonical construc-
tor terms are provided both in cases and induct format (cf. the generic
proof methods of the same name, §4.12). Several variations are avail-
able, for fixed records, record schemes, more parts etc.

The generic proof methods are sufficiently smart to pick the most sensi-
ble rule according to the type of the indicated record expression: users
just need to apply something like “(cases r)” to a certain proof prob-
lem.

CHAPTER 8. ISABELLE/HOL 114

6. The derived record operations t .make, t .fields, t .extend, t .truncate are
not treated automatically, but usually need to be expanded by hand,
using the collective fact t .defs.

8.4 Datatypes

datatype : theory → theory
rep datatype : theory → theory

datatype
�� �
 dtspec�

� and
�� �

�

rep datatype
�� �
�

�name
�� �

�

dtrules

dtspec

�
�parname

�

typespec �
� infix

�

=
���
 cons�

� |
���

�

cons

name
�� �
�

� type
�� �

�

�
�mixfix

�

dtrules

distinct
�� �
thmrefs inject

�� �
thmrefs induction
�� �
thmrefs

datatype defines inductive datatypes in HOL.

rep datatype represents existing types as inductive ones, generating the
standard infrastructure of derived concepts (primitive recursion etc.).

The induction and exhaustion theorems generated provide case names
according to the constructors involved, while parameters are named after
the types (see also §4.12).

CHAPTER 8. ISABELLE/HOL 115

See [12] for more details on datatypes, but beware of the old-style theory
syntax being used there! Apart from proper proof methods for case-analysis
and induction, there are also emulations of ML tactics case tac and induct tac
available, see §8.8; these admit to refer directly to the internal structure of
subgoals (including internally bound parameters).

8.5 Recursive functions

primrec : local-theory → local-theory
fun : local-theory → local-theory

function : local-theory → proof (prove)
termination : local-theory → proof (prove)

primrec
�� �
�

� target

�

fixes where
�� �
equations

equations

�
� thmdecl

�

prop
�� �
�

� |
���

�

fun
�� �
�

�function
�� �

�

�
� target

�

�
� functionopts

�

fixes where
�� �
clauses

clauses

�
� thmdecl

�

prop
�� �
�

� (
���
otherwise

�� �
)
���

�

�
� |

���

�

CHAPTER 8. ISABELLE/HOL 116

functionopts

(
���
 sequential

�� �
�
�domintros

�� �
�tailrec
�� �
�default
�� �
term

�� �

�

�

� ,
���

�

)
���

termination
�� �
�

� term
�� �

�

primrec defines primitive recursive functions over datatypes, see also [12].

function defines functions by general wellfounded recursion. A detailed
description with examples can be found in [7]. The function is specified
by a set of (possibly conditional) recursive equations with arbitrary
pattern matching. The command generates proof obligations for the
completeness and the compatibility of patterns.

The defined function is considered partial, and the resulting simplifica-
tion rules (named f .psimps) and induction rule (named f .pinduct) are
guarded by a generated domain predicate f dom. The termination
command can then be used to establish that the function is total.

fun is a shorthand notation for “function (sequential), followed by auto-
mated proof attempts regarding pattern matching and termination.
See [7] for further details.

termination f commences a termination proof for the previously defined
function f. If this is omitted, the command refers to the most recent
function definition. After the proof is closed, the recursive equations
and the induction principle is established.

Recursive definitions introduced by both the primrec and the function
command accommodate reasoning by induction (cf. §4.12): rule c.induct
(where c is the name of the function definition) refers to a specific induction
rule, with parameters named according to the user-specified equations. Case
names of primrec are that of the datatypes involved, while those of function
are numbered (starting from 1).

CHAPTER 8. ISABELLE/HOL 117

The equations provided by these packages may be referred later as the-
orem list f .simps, where f is the (collective) name of the functions defined.
Individual equations may be named explicitly as well.

The function command accepts the following options.

sequential enables a preprocessor which disambiguates overlapping patterns
by making them mutually disjoint. Earlier equations take precedence
over later ones. This allows to give the specification in a format very
similar to functional programming. Note that the resulting simplifica-
tion and induction rules correspond to the transformed specification,
not the one given originally. This usually means that each equation
given by the user may result in several theroems. Also note that this
automatic transformation only works for ML-style datatype patterns.

domintros enables the automated generation of introduction rules for the
domain predicate. While mostly not needed, they can be helpful in
some proofs about partial functions.

tailrec generates the unconstrained recursive equations even without a termi-
nation proof, provided that the function is tail-recursive. This currently
only works

default d allows to specify a default value for a (partial) function, which will
ensure that f x = d x whenever x /∈ f dom.

8.5.1 Proof methods related to recursive definitions

pat completeness : method
relation : method

lexicographic order : method

relation
�� �
term

�� �

lexicographic order

�� �
�
� clasimpmod

�

pat completeness is a specialized method to solve goals regarding the com-
pleteness of pattern matching, as required by the function package (cf.
[7]).

CHAPTER 8. ISABELLE/HOL 118

relation R introduces a termination proof using the relation R. The resulting
proof state will contain goals expressing that R is wellfounded, and that
the arguments of recursive calls decrease with respect to R. Usually, this
method is used as the initial proof step of manual termination proofs.

lexicographic order attempts a fully automated termination proof by search-
ing for a lexicographic combination of size measures on the arguments
of the function. The method accepts the same arguments as the auto
method, which it uses internally to prove local descents. The same
context modifiers as for auto are accepted, see §7.4.3.

In case of failure, extensive information is printed, which can help to
analyse the situation (cf. [7]).

8.5.2 Old-style recursive function definitions (TFL)

The old TFL commands recdef and recdef tc for defining recursive are
mostly obsolete; function or fun should be used instead.

recdef : theory → theory
recdef tc∗ : theory → proof (prove)

recdef
�� �
�

� (
���
permissive

�� �
)
���

�

�

�

�name
�� �
term

�� �
 prop
�� �
�

�
�

�
�hints

�

recdeftc �
� thmdecl

�

tc

hints

(
���
hints

�� �
�
� recdefmod

�

)
���

CHAPTER 8. ISABELLE/HOL 119

recdefmod

recdef simp
�� �
�

�recdef cong
�� �
�recdef wf
�� �

�

�
�add

�� �
�del
�� �

�

:
���
thmrefs�

� clasimpmod

�

tc

nameref
�� �
�

� (
���
nat

�� �
)
���

�

recdef defines general well-founded recursive functions (using the TFL pack-
age), see also [12]. The “(permissive)” option tells TFL to recover from
failed proof attempts, returning unfinished results. The recdef simp,
recdef cong, and recdef wf hints refer to auxiliary rules to be used in
the internal automated proof process of TFL. Additional clasimpmod
declarations (cf. §7.4.3) may be given to tune the context of the Sim-
plifier (cf. §7.3) and Classical reasoner (cf. §7.4).

recdef tc c (i) recommences the proof for leftover termination condition
number i (default 1) as generated by a recdef definition of constant c.

Note that in most cases, recdef is able to finish its internal proofs
without manual intervention.

Hints for recdef may be also declared globally, using the following at-
tributes.

recdef simp : attribute
recdef cong : attribute

recdef wf : attribute

recdef simp
�� �
�

�recdef cong
�� �
�recdef wf
�� �

�

�
�add

�� �
�del
�� �

�

CHAPTER 8. ISABELLE/HOL 120

8.6 Inductive and coinductive definitions

An inductive definition specifies the least predicate (or set) R closed under
given rules: applying a rule to elements of R yields a result within R. For
example, a structural operational semantics is an inductive definition of an
evaluation relation.

Dually, a coinductive definition specifies the greatest predicate / set
R that is consistent with given rules: every element of R can be seen as
arising by applying a rule to elements of R. An important example is using
bisimulation relations to formalise equivalence of processes and infinite data
structures.

The HOL package is related to the ZF one, which is described in a separate
paper,1 which you should refer to in case of difficulties. The package is simpler
than that of ZF thanks to implicit type-checking in HOL. The types of the
(co)inductive predicates (or sets) determine the domain of the fixedpoint
definition, and the package does not have to use inference rules for type-
checking.

inductive : local-theory → local-theory
inductive set : local-theory → local-theory

coinductive : local-theory → local-theory
coinductive set : local-theory → local-theory

mono : attribute

inductive
�� �
�

�inductive set
�� �
�coinductive
�� �
�coinductive set
�� �

�

�
� target

�

fixes �
�for

�� �
fixes

�

�

�
��

�where
�� �
clauses

�

�
�monos

�� �
thmrefs

�

1It appeared in CADE [17]; a longer version is distributed with Isabelle.

CHAPTER 8. ISABELLE/HOL 121

clauses

�
� thmdecl

�

prop
�� �
�

� |
���

�

mono
�� �
�

�add
�� �
�del
�� �

�

inductive and coinductive define (co)inductive predicates from the intro-
duction rules given in the where part. The optional for part con-
tains a list of parameters of the (co)inductive predicates that remain
fixed throughout the definition. The optional monos section contains
monotonicity theorems, which are required for each operator applied
to a recursive set in the introduction rules. There must be a theorem
of the form A ≤ B =⇒ M A ≤ M B, for each premise M Ri t in an
introduction rule!

inductive set and coinductive set are wrappers for to the previous com-
mands, allowing the definition of (co)inductive sets.

mono declares monotonicity rules. These rule are involved in the automated
monotonicity proof of inductive.

8.6.1 Derived rules

Each (co)inductive definition R adds definitions to the theory and also proves
some theorems:

R.intros is the list of introduction rules as proven theorems, for the recursive
predicates (or sets). The rules are also available individually, using the
names given them in the theory file;

R.cases is the case analysis (or elimination) rule;

R.induct or R.coinduct is the (co)induction rule.

CHAPTER 8. ISABELLE/HOL 122

When several predicates R1, . . ., Rn are defined simultaneously, the list
of introduction rules is called R1 . . . Rn .intros, the case analysis rules are
called R1.cases , . . ., Rn .cases, and the list of mutual induction rules is called
R1 . . . Rn .inducts.

8.6.2 Monotonicity theorems

Each theory contains a default set of theorems that are used in monotonicity
proofs. New rules can be added to this set via the mono attribute. The
HOL theory Inductive shows how this is done. In general, the following
monotonicity theorems may be added:

• Theorems of the form A ≤ B =⇒ M A ≤ M B, for proving mono-
tonicity of inductive definitions whose introduction rules have premises
involving terms such as M Ri t.

• Monotonicity theorems for logical operators, which are of the general
form (. . . −→ . . .) =⇒ . . . (. . . −→ . . .) =⇒ . . . −→ For example,
in the case of the operator ∨, the corresponding theorem is

P1 −→ Q1 P2 −→ Q2

P1 ∨ P2 −→ Q1 ∨ Q2

• De Morgan style equations for reasoning about the “polarity” of ex-
pressions, e.g.

¬ ¬ P ←→ P ¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q

• Equations for reducing complex operators to more primitive ones whose
monotonicity can easily be proved, e.g.

(P −→ Q) ←→ ¬ P ∨ Q Ball A P ≡ ∀ x . x ∈ A −→ P x

8.7 Arithmetic proof support

arith : method
arith split : attribute

The arith method decides linear arithmetic problems (on types nat, int,
real). Any current facts are inserted into the goal before running the proce-
dure.

CHAPTER 8. ISABELLE/HOL 123

The arith split attribute declares case split rules to be expanded before
the arithmetic procedure is invoked.

Note that a simpler (but faster) version of arithmetic reasoning is already
performed by the Simplifier.

8.8 Cases and induction: emulating tactic

scripts

The following important tactical tools of Isabelle/HOL have been ported to
Isar. These should be never used in proper proof texts!

case tac∗ : method
induct tac∗ : method
ind cases∗ : method

inductive cases : theory → theory

case tac
�� �
�

�goalspec

�

term
�� �
�

� rule

�

induct tac
�� �
�

�goalspec

�

�
� insts�

� and
�� �

�

�

�
� rule

�

ind cases
�� �
 prop

�� �
�
�

�

�
�for

�� �
 name
�� �
�

�
�

�

inductive cases
�� �
 �

� thmdecl

�

prop
�� �
�

�
�

�
� and

�� �

�

rule

rule
�� �
:

���
thmref

CHAPTER 8. ISABELLE/HOL 124

case tac and induct tac admit to reason about inductive datatypes only (un-
less an alternative rule is given explicitly). Furthermore, case tac does
a classical case split on booleans; induct tac allows only variables to
be given as instantiation. These tactic emulations feature both goal
addressing and dynamic instantiation. Note that named rule cases are
not provided as would be by the proper induct and cases proof methods
(see §4.12).

ind cases and inductive cases provide an interface to the internal
mk_cases operation. Rules are simplified in an unrestricted forward
manner.

While ind cases is a proof method to apply the result immediately as
elimination rules, inductive cases provides case split theorems at the
theory level for later use. The for argument of the ind cases method
allows to specify a list of variables that should be generalized before
applying the resulting rule.

8.9 Executable code

Isabelle/Pure provides two generic frameworks to support code generation
from executable specifications. Isabelle/HOL instantiates these mechanisms
in a way that is amenable to end-user applications.

One framework generates code from both functional and relational pro-
grams to SML. See [12] for further information (this actually covers the
new-style theory format as well).

value∗ : theory | proof → theory | proof
code module : theory → theory
code library : theory → theory
consts code : theory → theory
types code : theory → theory

code : attribute

value
�� �
term

�� �

CHAPTER 8. ISABELLE/HOL 125

code module
�� �
�

�code library
�� �

�

�
�modespec

�

�
�name

�� �

�

�

�

��
�file

�� �
name
�� �

�

�
�imports

�� �
 name
�� �
�

�
�

�

�

�
�contains

�� �
 name
�� �
=

���
term
�� �
�

�
�

�
� term

�� �
�
�

�

�

modespec

(
���
�

�name
�� �

�

)
���

consts code
�� �
 codespec�

�
�

codespec

const template �
�attachment

�

types code
�� �
 tycodespec�

�
�

CHAPTER 8. ISABELLE/HOL 126

tycodespec

name
�� �
template �

�attachment

�

const

term
�� �

template

(
���
string

�� �
)
���

attachment

attach
�� �
�

�modespec

�

{*
�� �
text

�� �
*}
�� �

code
�� �
�

�name
�� �

�

value t evaluates and prints a term using the code generator.

The other framework generates code from functional programs (includ-
ing overloading using type classes) to SML [9], OCaml [8] and Haskell [18].
Conceptually, code generation is split up in three steps: selection of code
theorems, translation into an abstract executable view and serialization to a

CHAPTER 8. ISABELLE/HOL 127

specific target language. See [5] for an introduction on how to use it.

export code∗ : theory | proof → theory | proof
code thms∗ : theory | proof → theory | proof
code deps∗ : theory | proof → theory | proof

code datatype : theory → theory
code const : theory → theory
code type : theory → theory
code class : theory → theory

code instance : theory → theory
code monad : theory → theory

code reserved : theory → theory
code include : theory → theory

code modulename : theory → theory
code exception : theory → theory

print codesetup∗ : theory | proof → theory | proof
code : attribute

export code
�� �
�

� constexpr�
�

�

�

�

�
��

� in
�� �
target �

�module name
�� �
string

�� �

�

�

�

��
�file

�� �
 string
�� �
�

� -
���

�

�

�
� (

���
args)
���

�

��

�

�

�

CHAPTER 8. ISABELLE/HOL 128

code thms
�� �
�

� constexpr�
�

�

�

code deps
�� �
�

� constexpr�
�

�

�

const

term
�� �

constexpr

const�
�name.*

�� �
� *
���

�

typeconstructor

nameref
�� �

class

nameref
�� �

target

OCaml
�� �
�

�SML
�� �
�Haskell
�� �

�

code datatype
�� �
const�

�
�

CHAPTER 8. ISABELLE/HOL 129

code const
�� �
 const�

� and
�� �

�

�

�

� (
���
target �

� syntax

�

�
� and

�� �

�

)
���
�

�

�

code type

�� �
 typeconstructor�
� and

�� �

�

�

�

� (
���
target �

� syntax

�

�
� and

�� �

�

)
���
�

�

�

CHAPTER 8. ISABELLE/HOL 130

code class
�� �
 class�

� and
�� �

�

�

�

� (
���
target �

�
� �

� string
�� �
�

� where
�� �
�

�
� const ==

�� �
�
�≡

�� �

�

string
�� �

��

�

�

�

�

�

� and
�� �

�

)
���

��

�

�

code instance

�� �
 typeconstructor ::
�� �
class�

� and
�� �

�

�

�

� (
���
target �

� -
���

�

�
� and

�� �

�

)
���
�

�

�

code monad

�� �
const const target

CHAPTER 8. ISABELLE/HOL 131

code reserved
�� �
target string

�� �
�
�

�

code include
�� �
target string

�� �
 string
�� �
�

� -
���

�

code modulename
�� �
target string

�� �
string
�� �
�

�
�

code exception
�� �
 const�

�
�

syntax

string
�� �
�

� infix
�� �
�

�infixl
�� �
�infixr
�� �

�

nat
�� �
string

�� �

�

code
�� �
 func

�� �
�
�inline

�� �

�

�
�del

�� �

�

export code is the canonical interface for generating and serializing code:
for a given list of constants, code is generated for the specified target
languages. Abstract code is cached incrementally. If no constant is
given, the currently cached code is serialized. If no serialization in-
struction is given, only abstract code is cached.

Constants may be specified by giving them literally, referring to all exe-
cutable contants within a certain theory by giving name.∗, or referring
to all executable constants currently available by giving ∗.
By default, for each involved theory one corresponding name space
module is generated. Alternativly, a module name may be specified af-
ter the module name keyword; then all code is placed in this module.

CHAPTER 8. ISABELLE/HOL 132

For SML and OCaml, the file specification refers to a single file; for
Haskell, it refers to a whole directory, where code is generated in mul-
tiple files reflecting the module hierarchy. The file specification “−”
denotes standard output. For SML, omitting the file specification com-
piles code internally in the context of the current ML session.

Serializers take an optional list of arguments in parentheses. For Haskell
a module name prefix may be given using the “root :” argument; “string
classes” adds a “deriving (Read, Show)” clause to each appropriate
datatype declaration.

code thms prints a list of theorems representing the corresponding program
containing all given constants; if no constants are given, the currently
cached code theorems are printed.

code deps visualizes dependencies of theorems representing the correspond-
ing program containing all given constants; if no constants are given,
the currently cached code theorems are visualized.

code datatype specifies a constructor set for a logical type.

code const associates a list of constants with target-specific serializations;
omitting a serialization deletes an existing serialization.

code type associates a list of type constructors with target-specific serial-
izations; omitting a serialization deletes an existing serialization.

code class associates a list of classes with target-specific class names; in ad-
dition, constants associated with this class may be given target-specific
names used for instance declarations; omitting a serialization deletes
an existing serialization. This applies only to Haskell.

code instance declares a list of type constructor / class instance relations
as “already present” for a given target. Omitting a “−” deletes an
existing “already present” declaration. This applies only to Haskell.

code monad provides an auxiliary mechanism to generate monadic code.

code reserved declares a list of names as reserved for a given target, pre-
venting it to be shadowed by any generated code.

code include adds arbitrary named content (“include”) to generated code.
A as last argument “−” will remove an already added “include”.

code modulename declares aliasings from one module name onto another.

CHAPTER 8. ISABELLE/HOL 133

code exception declares constants which are not required to have a defini-
tion by a defining equations; these are mapped on exceptions instead.

code func explicitly selects (or with option “del :” deselects) a defining equa-
tion for code generation. Usually packages introducing defining equa-
tions provide a resonable default setup for selection.

codeinline declares (or with option “del :” removes) inlining theorems which
are applied as rewrite rules to any defining equation during preprocess-
ing.

print codesetup gives an overview on selected defining equations, code
generator datatypes and preprocessor setup.

8.10 Definition by specification

specification : theory → proof (prove)
ax specification : theory → proof (prove)

specification
�� �
�

�ax specification
�� �

�

(
���
 decl�

�
�

)
���
�

�
� �

� thmdecl

�

prop
�� �
�

�
�

decl

�
�name

�� �
:
���

�

term
�� �
(

���
overloaded
�� �
�

�)
���

�

specification decls ϕ sets up a goal stating the existence of terms with the
properties specified to hold for the constants given in decls. After fin-
ishing the proof, the theory will be augmented with definitions for the
given constants, as well as with theorems stating the properties for
these constants.

CHAPTER 8. ISABELLE/HOL 134

ax specification decls ϕ sets up a goal stating the existence of terms with
the properties specified to hold for the constants given in decls. After
finishing the proof, the theory will be augmented with axioms express-
ing the properties given in the first place.

decl declares a constant to be defined by the specification given. The defi-
nition for the constant c is bound to the name c def unless a theorem
name is given in the declaration. Overloaded constants should be de-
clared as such.

Whether to use specification or ax specification is to some extent a
matter of style. specification introduces no new axioms, and so by con-
struction cannot introduce inconsistencies, whereas ax specification does
introduce axioms, but only after the user has explicitly proven it to be safe.
A practical issue must be considered, though: After introducing two con-
stants with the same properties using specification, one can prove that the
two constants are, in fact, equal. If this might be a problem, one should use
ax specification.

Chapter 9

Isabelle/HOLCF

9.1 Mixfix syntax for continuous operations

consts : theory → theory

HOLCF provides a separate type for continuous functions α → β, with
an explicit application operator f · x. Isabelle mixfix syntax normally refers
directly to the pure meta-level function type α ⇒ β, with application f x.

The HOLCF variant of consts modifies that of Pure Isabelle (cf. §3.9.3)
such that declarations involving continuous function types are treated specif-
ically. Any given syntax template is transformed internally, generating trans-
lation rules for the abstract and concrete representation of continuous appli-
cation. Note that mixing of HOLCF and Pure application is not supported!

9.2 Recursive domains

domain : theory → theory

domain
�� �
�

�parname

�

dmspec�
� and

�� �

�

dmspec

typespec =
���
 cons�

� |
���

�

cons

name
�� �
�

� type
�� �

�

�
�mixfix

�

135

CHAPTER 9. ISABELLE/HOLCF 136

dtrules

distinct
�� �
thmrefs inject

�� �
thmrefs induction
�� �
thmrefs

Recursive domains in HOLCF are analogous to datatypes in classical
HOL (cf. §8.4). Mutual recursion is supported, but no nesting nor arbitrary
branching. Domain constructors may be strict (default) or lazy, the latter
admits to introduce infinitary objects in the typical LCF manner (e.g. lazy
lists). See also [10] for a general discussion of HOLCF domains.

Chapter 10

Isabelle/ZF

10.1 Type checking

The ZF logic is essentially untyped, so the concept of “type checking” is
performed as logical reasoning about set-membership statements. A special
method assists users in this task; a version of this is already declared as a
“solver” in the standard Simplifier setup.

print tcset∗ : theory | proof → theory | proof
typecheck : method

TC : attribute

TC
�� �
�

�add
�� �
�del
�� �

�

print tcset prints the collection of typechecking rules of the current context.

typecheck attempts to solve any pending type-checking problems in subgoals.

TC adds or deletes type-checking rules from the context.

10.2 (Co)Inductive sets and datatypes

10.2.1 Set definitions

In ZF everything is a set. The generic inductive package also provides a spe-
cific view for “datatype” specifications. Coinductive definitions are available
in both cases, too.

inductive : theory → theory
coinductive : theory → theory

datatype : theory → theory
codatatype : theory → theory

137

CHAPTER 10. ISABELLE/ZF 138

inductive
�� �
�

�coinductive
�� �

�

domains intros hints

domains

domains
�� �
 term

�� �
�
� +

���

�

<=
�� �
�

�⊆
�� �

�

term
�� �

intros

intros
�� �
 �

� thmdecl

�

prop
�� �
�

�
�

hints

�
�monos

�

�
� condefs

�

�
� typeintros

�

�
� typeelims

�

monos

�
�monos

�� �
thmrefs

�

condefs

�
�con defs

�� �
thmrefs

�

typeintros

�
�type intros

�� �
thmrefs

�

typeelims

�
�type elims

�� �
thmrefs

�

CHAPTER 10. ISABELLE/ZF 139

In the following syntax specification monos, typeintros, and typeelims are
the same as above.

datatype
�� �
�

�codatatype
�� �

�

�
�domain

�

dtspec�
� and

�� �

�

hints

domain

<=
�� �
�

�⊆
�� �

�

term
�� �

dtspec

term
�� �
=

���
 con�
� |

���

�

con

name
�� �
�

� (
���
 term

�� �
,
���
�

�
�

)
���

�

hints

�
�monos

�

�
� typeintros

�

�
� typeelims

�

See [16] for further information on inductive definitions in ZF, but note
that this covers the old-style theory format.

10.2.2 Primitive recursive functions

primrec : theory → theory

primrec
�� �
 �

� thmdecl

�

prop
�� �
�

�
�

CHAPTER 10. ISABELLE/ZF 140

10.2.3 Cases and induction: emulating tactic scripts

The following important tactical tools of Isabelle/ZF have been ported to
Isar. These should not be used in proper proof texts.

case tac∗ : method
induct tac∗ : method
ind cases∗ : method

inductive cases : theory → theory

case tac
�� �
�

�induct tac
�� �

�

�
�goalspec

�

name
�� �

indcases prop
�� �
�

�
�

inductivecases �
� thmdecl

�

prop
�� �
�

�
�

�
� and

�� �

�

Appendix A

Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

fix x augment context by
∧

x . 2

assume a: ϕ augment context by ϕ =⇒ 2

then indicate forward chaining of facts
have a: ϕ prove local result
show a: ϕ prove local result, refining some goal
using a indicate use of additional facts
unfolding a unfold definitional equations
proof m1 . . . qed m2 indicate proof structure and refinements
{ . . . } indicate explicit blocks
next switch blocks
note a = b reconsider facts
let p = t abbreviate terms by higher-order matching

theory-stmt = theorem name: props proof | definition . . . | . . .
proof = prfx ∗ proof method stmt∗ qed method

| prfx ∗ done

prfx = apply method
| using facts
| unfolding facts

stmt = { stmt∗ }
| next
| note name = facts
| let term = term
| fix var+

| assume name: props
| then? goal

goal = have name: props proof
| show name: props proof

141

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 142

A.1.2 Abbreviations and synonyms

by m1 m2 ≡ proof m1 qed m2

.. ≡ by rule
. ≡ by this

hence ≡ then have
thus ≡ then show

from a ≡ note a then
with a ≡ from a and this

from this ≡ then
from this have ≡ hence
from this show ≡ thus

A.1.3 Derived elements

also0 ≈ note calculation = this
alson+1 ≈ note calculation = trans [OF calculation this]
finally ≈ also from calculation

moreover ≈ note calculation = calculation this
ultimately ≈ moreover from calculation

presume a: ϕ ≈ assume a: ϕ
def a: x ≡ t ≈ fix x assume a: x ≡ t

obtain x where a: ϕ ≈ . . . fix x assume a: ϕ
case c ≈ fix x assume c: ϕ
sorry ≈ by cheating

A.1.4 Diagnostic commands

pr print current state
thm a print fact
term t print term
prop ϕ print meta-level proposition
typ τ print meta-level type

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 143

A.2 Proof methods

Single steps (forward-chaining facts)

assumption apply some assumption
this apply current facts
rule a apply some rule
rule apply standard rule (default for proof)
contradiction apply ¬ elimination rule (any order)
cases t case analysis (provides cases)
induct x proof by induction (provides cases)

Repeated steps (inserting facts)

− no rules
intro a introduction rules
intro classes class introduction rules
elim a elimination rules
unfold a definitional rewrite rules

Automated proof tools (inserting facts)

iprover intuitionistic proof search
blast , fast Classical Reasoner
simp, simp all Simplifier (+ Splitter)
auto, force Simplifier + Classical Reasoner
arith Arithmetic procedures

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 144

A.3 Attributes

Operations

OF a rule resolved with facts (skipping “ ”)
of t rule instantiated with terms (skipping “ ”)
where x = t rule instantiated with terms, by variable name
symmetric resolution with symmetry rule
THEN b resolution with another rule
rule format result put into standard rule format
elim format destruct rule turned into elimination rule format

Declarations

simp Simplifier rule
intro, elim, dest Pure or Classical Reasoner rule
iff Simplifier + Classical Reasoner rule
split case split rule
trans transitivity rule
sym symmetry rule

A.4 Rule declarations and methods

rule iprover blast simp auto
fast simp all force

Pure.elim! Pure.intro! × ×
Pure.elim Pure.intro × ×
elim! intro! × × ×
elim intro × × ×
iff × × × ×
iff ? ×
elim? intro? ×
simp × ×
cong × ×
split × ×

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 145

A.5 Emulating tactic scripts

A.5.1 Commands

apply m apply proof method at initial position
apply end m apply proof method near terminal position
done complete proof
defer n move subgoal to end
prefer n move subgoal to beginning
back backtrack last command

A.5.2 Methods

rule tac insts resolution (with instantiation)
erule tac insts elim-resolution (with instantiation)
drule tac insts destruct-resolution (with instantiation)
frule tac insts forward-resolution (with instantiation)
cut tac insts insert facts (with instantiation)
thin tac ϕ delete assumptions
subgoal tac ϕ new claims
rename tac x rename innermost goal parameters
rotate tac n rotate assumptions of goal
tactic text arbitrary ML tactic
case tac t exhaustion (datatypes)
induct tac x induction (datatypes)
ind cases t exhaustion + simplification (inductive predicates)

Appendix B

ML tactic expressions

Isar Proof methods closely resemble traditional tactics, when used in un-
structured sequences of apply commands. Isabelle/Isar provides emulations
for all major ML tactics of classic Isabelle — mostly for the sake of easy
porting of existing developments, as actual Isar proof texts would demand
much less diversity of proof methods.

Unlike tactic expressions in ML, Isar proof methods provide proper con-
crete syntax for additional arguments, options, modifiers etc. Thus a typi-
cal method text is usually more concise than the corresponding ML tactic.
Furthermore, the Isar versions of classic Isabelle tactics often cover several
variant forms by a single method with separate options to tune the behav-
ior. For example, method simp replaces all of simp_tac / asm_simp_tac /
full_simp_tac / asm_full_simp_tac, there is also concrete syntax for aug-
menting the Simplifier context (the current “simpset”) in a convenient way.

B.1 Resolution tactics

Classic Isabelle provides several variant forms of tactics for single-step rule
applications (based on higher-order resolution). The space of resolution tac-
tics has the following main dimensions.

1. The “mode” of resolution: intro, elim, destruct, or forward (e.g.
resolve_tac, eresolve_tac, dresolve_tac, forward_tac).

2. Optional explicit instantiation (e.g. resolve_tac vs. res_inst_tac).

3. Abbreviations for singleton arguments (e.g. resolve_tac vs. rtac).

Basically, the set of Isar tactic emulations rule tac, erule tac, drule tac,
frule tac (see §7.2.3) would be sufficient to cover the four modes, either with
or without instantiation, and either with single or multiple arguments. Al-
though it is more convenient in most cases to use the plain rule method (see
§4.5), or any of its “improper” variants erule, drule, frule (see §7.2.1). Note
that explicit goal addressing is only supported by the actual rule tac version.

146

APPENDIX B. ML TACTIC EXPRESSIONS 147

With this in mind, plain resolution tactics correspond to Isar methods as
follows.

rtac a 1 rule a
resolve_tac [a1, . . .] 1 rule a1 . . .
res_inst_tac [(x 1, t1), . . .] a 1 rule tac x 1 = t1 and . . . in a

rtac a i rule tac [i] a
resolve_tac [a1, . . .] i rule tac [i] a1 . . .
res_inst_tac [(x 1, t1), . . .] a i rule tac [i] x 1 = t1 and . . . in a

Note that explicit goal addressing may be usually avoided by changing
the order of subgoals with defer or prefer (see §4.8).

B.2 Simplifier tactics

The main Simplifier tactics simp_tac and variants (cf. [15]) are all covered
by the simp and simp all methods (see §7.3). Note that there is no individual
goal addressing available, simplification acts either on the first goal (simp)
or all goals (simp all).

asm_full_simp_tac @{simpset} 1 simp
ALLGOALS (asm_full_simp_tac @{simpset}) simp all

simp_tac @{simpset} 1 simp (no asm)
asm_simp_tac @{simpset} 1 simp (no asm simp)
full_simp_tac @{simpset} 1 simp (no asm use)
asm_lr_simp_tac @{simpset} 1 simp (asm lr)

B.3 Classical Reasoner tactics

The Classical Reasoner provides a rather large number of variations of au-
tomated tactics, such as blast_tac, fast_tac, clarify_tac etc. (see [15]).
The corresponding Isar methods usually share the same base name, such as
blast , fast , clarify etc. (see §7.4).

B.4 Miscellaneous tactics

There are a few additional tactics defined in various theories of Isabelle/HOL,
some of these also in Isabelle/FOL or Isabelle/ZF. The most common ones
of these may be ported to Isar as follows.

APPENDIX B. ML TACTIC EXPRESSIONS 148

stac a 1 subst a
hyp_subst_tac 1 hypsubst
strip_tac 1 ≈ intro strip
split_all_tac 1 simp (no asm simp) only : split tupled all

≈ simp only : split tupled all
� clarify

B.5 Tacticals

Classic Isabelle provides a huge amount of tacticals for combination and
modification of existing tactics. This has been greatly reduced in Isar, pro-
viding the bare minimum of combinators only: “,” (sequential composition),
“|” (alternative choices), “?” (try), “+” (repeat at least once). These are
usually sufficient in practice; if all fails, arbitrary ML tactic code may be
invoked via the tactic method (see §7.2.3).

Common ML tacticals may be expressed directly in Isar as follows:

tac1 THEN tac2 meth1, meth2

tac1 ORELSE tac2 meth1 | meth2

TRY tac meth?
REPEAT1 tac meth+
REPEAT tac (meth+)?
EVERY [tac1, . . .] meth1, . . .
FIRST [tac1, . . .] meth1 | . . .

CHANGED (see [15]) is usually not required in Isar, since most basic proof
methods already fail unless there is an actual change in the goal state. Nev-
ertheless, “?” (try) may be used to accept unchanged results as well.

ALLGOALS, SOMEGOAL etc. (see [15]) are not available in Isar, since there
is no direct goal addressing. Nevertheless, some basic methods address all
goals internally, notably simp all (see §7.3). Also note that ALLGOALS can
be often replaced by “+” (repeat at least once), although this usually has a
different operational behavior, such as solving goals in a different order.

Iterated resolution, such as REPEAT (FIRSTGOAL

(resolve_tac \<dots>)), is usually better expressed using the intro
and elim methods of Isar (see §7.4).

Bibliography

[1] David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[2] David Aspinall. Proof General: A generic tool for proof development. In
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1785 of Lecture Notes in Computer Science, pages 38–42.
Springer-Verlag, 2000.

[3] Gertrud Bauer and Markus Wenzel. Computer-assisted mathematics at
work — the Hahn-Banach theorem in Isabelle/Isar. In Thierry Coquand,
Peter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs
and Programs: TYPES’99, LNCS, 2000.

[4] Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. J. Boulton and P. B. Jackson, editors,
Theorem Proving in Higher Order Logics: TPHOLs 2001, volume 2152 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[5] Florian Haftmann. Code generation from Isabelle theories.
http://isabelle.in.tum.de/doc/codegen.pdf.

[6] Florian Haftmann. Haskell-style type classes with Isabelle/Isar.
http://isabelle.in.tum.de/doc/classes.pdf.

[7] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/doc/functions.pdf.

[8] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[9] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[10] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–223,
1999.

[11] Wolfgang Naraschewski and Markus Wenzel. Object-oriented verification
based on record subtyping in higher-order logic. In Jim Grundy and Malcom
Newey, editors, Theorem Proving in Higher Order Logics: TPHOLs ’98,
volume 1479 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

149

http://proofgeneral.inf.ed.ac.uk/
http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/classes.pdf
http://isabelle.in.tum.de/doc/functions.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/

BIBLIOGRAPHY 150

[12] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle’s Logics:
HOL. http://isabelle.in.tum.de/doc/logics-HOL.pdf.

[13] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS 2283.

[14] Lawrence C. Paulson. Introduction to Isabelle.
http://isabelle.in.tum.de/doc/intro.pdf.

[15] Lawrence C. Paulson. The Isabelle Reference Manual.
http://isabelle.in.tum.de/doc/ref.pdf.

[16] Lawrence C. Paulson. Isabelle’s Logics: FOL and ZF.
http://isabelle.in.tum.de/doc/logics-ZF.pdf.

[17] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In Alan Bundy, editor, Automated Deduction — CADE-12
International Conference, LNAI 814, pages 148–161. Springer, 1994.

[18] Simon Peyton Jones et al. The Haskell 98 language and libraries: The
revised report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[19] Christoph Wedler. Emacs package “X-Symbol”.
http://x-symbol.sourceforge.net.

[20] Makarius Wenzel. Isabelle/Isar — a generic framework for human-readable
proof documents. In R. Matuszewski and A. Zalewska, editors, From Insight
to Proof — Festschrift in Honour of Andrzej Trybulec, volume 10(23) of
Studies in Logic, Grammar, and Rhetoric. University of Bia lystok, 2007.
http://www.in.tum.de/∼wenzelm/papers/isar-framework.pdf.

[21] Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[22] Markus Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs ’99,
volume 1690 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[23] Markus Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Institut für Informatik, Technische
Universität München, 2002.
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.

http://isabelle.in.tum.de/doc/logics-HOL.pdf
http://isabelle.in.tum.de/doc/intro.pdf
http://isabelle.in.tum.de/doc/ref.pdf
http://isabelle.in.tum.de/doc/logics-ZF.pdf
http://www.haskell.org/definition/
http://x-symbol.sourceforge.net
http://www.in.tum.de/~wenzelm/papers/isar-framework.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

BIBLIOGRAPHY 151

[24] Markus Wenzel and Stefan Berghofer. The Isabelle System Manual.
http://isabelle.in.tum.de/doc/system.pdf.

[25] Freek Wiedijk. The mathematical vernacular. Unpublished paper, 2000.
http://www.cs.kun.nl/∼freek/notes/mv.ps.gz.

http://isabelle.in.tum.de/doc/system.pdf
http://www.cs.kun.nl/~freek/notes/mv.ps.gz

Index

- (method), 55
. (command), 53
.. (command), 53
?thesis (variable), 52

(fact), 49
{ (command), 59
} (command), 59

abbrev (antiquotation), 77
abbreviation (command), 20
also (command), 64
altstring (syntax), 7, 15
and (keyword), 17, 48
apply (command), 49, 50, 60
apply end (command), 60
args (syntax), 14
arith (HOL method), 122
arith split (HOL attribute), 122
arities (command), 37
arity (syntax), 9
assms (fact), 50
assume (command), 46
assumes (element), 23
assumption (method), 55
atom (syntax), 14
atomize (attribute), 106
atomize (method), 106
attributes (syntax), 14
auto (method), 103
ax specification (HOL command),

133
axclass (command), 33
axiomatization (command), 20
axioms (command), 40
axmdecl (syntax), 15

back (command), 60
best (method), 102
bestsimp (method), 103
blast (method), 102
by (command), 53

calculation (fact), 64
case (command), 66
case conclusion (attribute), 66
case names (attribute), 66
case tac (HOL method), 123
case tac (ZF method), 140
cases (attribute), 72
cases (method), 52, 67, 68
cd (command), 89
chapter (command), 75
clamod (syntax), 102
clarify (method), 102
clarsimp (method), 103
clasimpmod (syntax), 103
class (command), 30
class deps (command), 36
classdecl (syntax), 9
classes (command), 36
classrel (command), 36
codatatype (ZF command), 137
code (HOL attribute), 124, 127
code class (HOL command), 127
code const (HOL command), 127
code datatype (HOL command), 127
code deps (HOL command), 127
code exception (HOL command),

127
code include (HOL command), 127
code instance (HOL command), 127

152

INDEX 153

code library (HOL command), 124
code module (HOL command), 124
code modulename (HOL command),

127
code monad (HOL command), 127
code reserved (HOL command), 127
code thms (HOL command), 127
code type (HOL command), 127
coinduct (attribute), 72
coinduct (method), 68
coinductive (HOL command), 120
coinductive (ZF command), 137
coinductive set (HOL command),

120
comment (syntax), 9
COMP (attribute), 92
cong (attribute), 99
const (antiquotation), 77
constdefs (command), 38
constrains (element), 23
consts (command), 38
consts (HOLCF command), 135
consts code (HOL command), 124
consumes (attribute), 66
context (command), 19
contextelem (syntax), 23
contextexpr (syntax), 23
contradiction (method), 101
corollary (command), 50
cut tac (method), 95

datatype (HOL command), 114
datatype (ZF command), 137
declaration (command), 22
declare (command), 22
def (command), 46
defaultsort (command), 36
defer (command), 60
defines (element), 23
definition (command), 20
defn (attribute), 20

defs (command), 38
dest (attribute), 105
dest (Pure attribute), 55
display drafts (command), 82
domain (HOLCF command), 135
done (command), 60
drule (method), 91
drule tac (method), 95

elim (attribute), 105
elim (method), 101
elim (Pure attribute), 55
elim format (Pure attribute), 92
end (global command), 18
end (local command), 19, 32
erule (method), 91
erule tac (method), 95
export code (HOL command), 127

fact (method), 15, 55
fail (method), 91
fast (method), 102
fastsimp (method), 103
finally (command), 64
find theorems (command), 86
fix (command), 46
fixes (element), 23
fold (method), 91
folded (attribute), 92
force (method), 103
from (command), 48
frule (method), 91
frule tac (method), 95
full prf (antiquotation), 77
full prf (command), 84
fun (HOL command), 115
function (HOL command), 115

global (command), 41
goals (antiquotation), 77
goalspec (syntax), 13
guess (command), 62

INDEX 154

have (command), 50
header (command), 75, 76
hence (command), 50
hide (command), 41
hypsubst (method), 93

ident (syntax), 7
iff (attribute), 105
includes (element), 23
ind cases (HOL method), 123
ind cases (ZF method), 140
induct (attribute), 72
induct (method), 50, 67, 68
induct tac (HOL method), 123
induct tac (ZF method), 140
inductive (HOL command), 120
inductive (ZF command), 137
inductive cases (HOL command),

123
inductive cases (ZF command), 140
inductive set (HOL command), 120
infix (syntax), 11
insert (method), 91
inst (syntax), 10
instance (command), 30, 33, 36, 37
instantiation (command), 30
insts (syntax), 10
int (syntax), 8
interp (syntax), 27
interpret (command), 27
interpretation (command), 27
intro (attribute), 105
intro (method), 101
intro (Pure attribute), 55
intro classes (method), 30
intro locales (method), 23
iprover (method), 55
is (keyword), 58

judgment (command), 106

kill (command), 62, 88

lemma (command), 50
lemmas (command), 40
let (command), 58
lexicographic order (HOL method),

117
local (command), 41
locale (command), 23
longident (syntax), 7

method (syntax), 12
method setup (command), 34
mixfix (syntax), 11
ML (antiquotation), 77
ML (command), 34
ML command (command), 34
ML struct (antiquotation), 77
ML type (antiquotation), 77
ML val (command), 34
mono (HOL attribute), 120
moreover (command), 64

name (syntax), 8
nameref (syntax), 8
nat (syntax), 7
next (command), 59
no notation (command), 20
no syntax (command), 42
no translations (command), 42
no vars (attribute), 79, 92
nonterminals (command), 37
notation (command), 20
note (command), 48
notes (element), 23
nothing (fact), 49

obtain (command), 62
obtains (element), 50, 52
OF (attribute), 55
of (attribute), 55
oops (command), 61
oracle (command), 41
output (keyword), 43

INDEX 155

overloading (command), 34

params (attribute), 66
parname (syntax), 8
parse ast translation (command), 44
parse translation (command), 44
pat completeness (HOL method),

117
pr (command), 84
prefer (command), 60
prems (fact), 48
presume (command), 46
prf (antiquotation), 77
prf (command), 84
primrec (HOL command), 115
primrec (ZF command), 139
print abbrevs (command), 20
print ast translation (command), 44
print attributes (command), 86
print binds (command), 86
print cases (command), 66
print claset (command), 105
print classes (command), 30
print codesetup (HOL command),

127
print commands (command), 86
print configs (command), 90
print drafts (command), 82
print facts (command), 86
print induct rules (command), 72
print interps (command), 27
print locale (command), 23
print locales (command), 23
print methods (command), 86
print simpset (command), 99
print statement (command), 50
print syntax (command), 86
print tcset (ZF command), 137
print theorems (command), 86
print theory (command), 86
print trans rules (command), 64

print translation (command), 44
proof

default, 54
fake, 55
terminal, 54
trivial, 54

proof (command), 49, 50, 53, 53, 56
prop (antiquotation), 77
prop (command), 84
prop (syntax), 10
proppat (syntax), 16
props (syntax), 17
pwd (command), 89

qed (command), 53, 53

recdef (HOL command), 118
recdef cong (HOL attribute), 119
recdef simp (HOL attribute), 119
recdef tc (HOL command), 118
recdef wf (HOL attribute), 119
record (HOL command), 111
redo (command), 88
relation (HOL method), 117
rename tac (method), 95
rep datatype (HOL command), 114
rotate tac (method), 95
rotated (attribute), 92
rule (attribute), 55, 105
rule (method), 49, 53, 55, 57, 101
rule format (attribute), 106
rule tac (method), 95
rulify (attribute), 106

safe (method), 102
sect (command), 75
section (command), 75
selection (syntax), 15
setup (command), 34
show (command), 48, 50, 53
shows (element), 50
simp (attribute), 99

INDEX 156

simp (method), 97
simp all (method), 97
simplified (attribute), 100
simpmod (syntax), 97
simproc setup (command), 99
slow (method), 102
slowsimp (method), 103
sorry (command), 53, 61
sort (syntax), 9
specification (HOL command), 133
split (attribute), 99
split (method), 93
standard (attribute), 92
string (syntax), 7
structmixfix (syntax), 11
subclass (command), 30
subgoal tac (method), 95
subgoals (antiquotation), 77
subsect (command), 75
subsection (command), 75
subst (method), 93
subsubsect (command), 75
subsubsection (command), 75
succeed (method), 91
swapped (attribute), 106
symident (syntax), 7
syntax (command), 42

tactic (method), 95
tagged (attribute), 92
tags (syntax), 81
target (syntax), 19
TC (ZF attribute), 137
term (antiquotation), 77
term (command), 84
term (syntax), 10
term abbreviations, 59
term style (antiquotation), 77
termination (HOL command), 115
termpat (syntax), 16
text (antiquotation), 77

text (command), 75
text (syntax), 9
text raw (command), 75
THEN (attribute), 92
then (command), 48, 50
theorem (command), 50
theorems (command), 40
theory (antiquotation), 77
theory (command), 18
thesis (variable), 59
thin tac (method), 95
this (fact), 46, 48
this (method), 55
this (variable), 59
thm (antiquotation), 77
thm (command), 84
thm deps (command), 86
thm style (antiquotation), 77
thmdecl (syntax), 15
thmdef (syntax), 15
thmref (syntax), 15
thmrefs (syntax), 15
thus (command), 50
token translation (command), 44
translations (command), 42
txt (command), 75
txt raw (command), 75
typ (antiquotation), 77
typ (command), 84
type (syntax), 10
typecheck (ZF method), 137
typed print translation (command),

44
typedecl (command), 37
typedecl (HOL command), 108
typedef (HOL command), 108
typefree (syntax), 7
typeof (antiquotation), 77
types (command), 37
types code (HOL command), 124
typespec (syntax), 11

INDEX 157

typevar (syntax), 7

ultimately (command), 64
undo (command), 88
unfold (method), 91
unfold locales (method), 23
unfolded (attribute), 92
unfolding (command), 48
untagged (attribute), 92
use (command), 19, 34
use thy (command), 89
uses (keyword), 19, 35
using (command), 48

value (HOL command), 124
var (syntax), 7
vars (syntax), 17
verbatim (syntax), 7

where (attribute), 55
with (command), 48

	Introduction
	Overview
	User interfaces
	Terminal sessions
	Emacs Proof General

	Isabelle/Isar theories
	How to write Isar proofs anyway?

	Outer syntax
	Lexical matters
	Common syntax entities
	Names
	Comments
	Type classes, sorts and arities
	Types and terms
	Mixfix annotations
	Proof methods
	Attributes and theorems
	Term patterns and declarations

	Theory specifications
	Defining theories
	Local theory targets
	Basic specification elements
	Generic declarations
	Locales
	Locale specifications
	Interpretation of locales

	Classes
	The class target
	Old-style axiomatic type classes

	Unrestricted overloading
	Incorporating ML code
	Primitive specification elements
	Type classes and sorts
	Types and type abbreviations
	Constants and definitions

	Axioms and theorems
	Oracles
	Name spaces
	Syntax and translations
	Syntax translation functions

	Proofs
	Context elements
	Facts and forward chaining
	Goal statements
	Initial and terminal proof steps
	Fundamental methods and attributes
	Term abbreviations
	Block structure
	Emulating tactic scripts
	Omitting proofs
	Generalized elimination
	Calculational reasoning
	Proof by cases and induction
	Rule contexts
	Proof methods
	Declaring rules

	Document preparation
	Markup commands
	Antiquotations
	Tagged commands
	Draft presentation

	Other commands
	Diagnostics
	Inspecting the context
	History commands
	System commands

	Generic tools and packages
	Configuration options
	Basic proof tools
	Miscellaneous methods and attributes
	Low-level equational reasoning
	Further tactic emulations

	The Simplifier
	Simplification methods
	Declaring rules
	Simplification procedures
	Forward simplification

	The Classical Reasoner
	Basic methods
	Automated methods
	Combined automated methods
	Declaring rules
	Classical operations

	Object-logic setup

	Isabelle/HOL
	Primitive types
	Adhoc tuples
	Records
	Basic concepts
	Record specifications
	Record operations
	Derived rules and proof tools

	Datatypes
	Recursive functions
	Proof methods related to recursive definitions
	Old-style recursive function definitions (TFL)

	Inductive and coinductive definitions
	Derived rules
	Monotonicity theorems

	Arithmetic proof support
	Cases and induction: emulating tactic scripts
	Executable code
	Definition by specification

	Isabelle/HOLCF
	Mixfix syntax for continuous operations
	Recursive domains

	Isabelle/ZF
	Type checking
	(Co)Inductive sets and datatypes
	Set definitions
	Primitive recursive functions
	Cases and induction: emulating tactic scripts

	Isabelle/Isar quick reference
	Proof commands
	Primitives and basic syntax
	Abbreviations and synonyms
	Derived elements
	Diagnostic commands

	Proof methods
	Attributes
	Rule declarations and methods
	Emulating tactic scripts
	Commands
	Methods

	ML tactic expressions
	Resolution tactics
	Simplifier tactics
	Classical Reasoner tactics
	Miscellaneous tactics
	Tacticals

