Theory WordExamples

Up to index of Isabelle/HOL/HOL-Word/Examples

theory WordExamples
imports WordMain
begin

(* 
  ID:     $Id: WordExamples.thy,v 1.4 2008/02/17 05:49:55 huffman Exp $
  Author: Gerwin Klein, NICTA

  Examples demonstrating and testing various word operations.
*)

header "Examples of word operations"

theory WordExamples imports WordMain
begin

-- "modulus"

lemma "(27 :: 4 word) = -5" by simp

lemma "(27 :: 4 word) = 11" by simp

lemma "27 ≠ (11 :: 6 word)" by simp

-- "signed"
lemma "(127 :: 6 word) = -1" by simp

-- "number ring simps"
lemma 
  "27 + 11 = (38::'a::len word)"
  "27 + 11 = (6::5 word)"
  "7 * 3 = (21::'a::len word)"
  "11 - 27 = (-16::'a::len word)"
  "- -11 = (11::'a::len word)"
  "-40 + 1 = (-39::'a::len word)"
  by simp_all

lemma "word_pred 2 = 1" by simp

lemma "word_succ -3 = -2" by simp
  
lemma "23 < (27::8 word)" by simp
lemma "23 ≤ (27::8 word)" by simp
lemma "¬ 23 < (27::2 word)" by simp
lemma "0 < (4::3 word)" by simp

-- "ring operations"

lemma "a + 2 * b + c - b = (b + c) + (a :: 32 word)" by simp

-- "casting"

lemma "uint (234567 :: 10 word) = 71" by simp
lemma "uint (-234567 :: 10 word) = 953" by simp
lemma "sint (234567 :: 10 word) = 71" by simp
lemma "sint (-234567 :: 10 word) = -71" by simp

lemma "unat (-234567 :: 10 word) = 953" by simp

lemma "ucast (0b1010 :: 4 word) = (0b10 :: 2 word)" by simp
lemma "ucast (0b1010 :: 4 word) = (0b1010 :: 10 word)" by simp
lemma "scast (0b1010 :: 4 word) = (0b111010 :: 6 word)" by simp

-- "reducing goals to nat or int and arith:"
lemma "i < x ==> i < (i + 1 :: 'a :: len word)" by unat_arith
lemma "i < x ==> i < (i + 1 :: 'a :: len word)" by uint_arith

-- "bool lists"

lemma "of_bl [True, False, True, True] = (0b1011::'a::len word)" by simp

lemma "to_bl (0b110::4 word) = [False, True, True, False]" by simp

-- "this is not exactly fast, but bearable"
lemma "of_bl (replicate 32 True) = (0xFFFFFFFF::32 word)" by simp

-- "this works only for replicate n True"
lemma "of_bl (replicate 32 True) = (0xFFFFFFFF::32 word)"
  by (unfold mask_bl [symmetric]) (simp add: mask_def)


-- "bit operations"

lemma "0b110 AND 0b101 = (0b100 :: 32 word)" by simp

lemma "0b110 OR 0b011 = (0b111 :: 8 word)" by simp

lemma "0xF0 XOR 0xFF = (0x0F :: byte)" by simp

lemma "NOT (0xF0 :: 16 word) = 0xFF0F" by simp

lemma "(-1 :: 32 word) = 0xFFFFFFFF" by simp

lemma "(0b0010 :: 4 word) !! 1" by simp
lemma "¬ (0b0010 :: 4 word) !! 0" by simp
lemma "¬ (0b1000 :: 3 word) !! 4" by simp

lemma "(0b11000 :: 10 word) !! n = (n = 4 ∨ n = 3)" 
  by (auto simp add: bin_nth_Bit0 bin_nth_Bit1)

lemma "set_bit 55 7 True = (183::'a::len0 word)" by simp
lemma "set_bit 0b0010 7 True = (0b10000010::'a::len0 word)" by simp
lemma "set_bit 0b0010 1 False = (0::'a::len0 word)" by simp

lemma "lsb (0b0101::'a::len word)" by simp
lemma "¬ lsb (0b1000::'a::len word)" by simp

lemma "¬ msb (0b0101::4 word)" by simp
lemma   "msb (0b1000::4 word)" by simp

lemma "word_cat (27::4 word) (27::8 word) = (2843::'a::len word)" by simp
lemma "word_cat (0b0011::4 word) (0b1111::6word) = (0b0011001111 :: 10 word)" 
  by simp

lemma "0b1011 << 2 = (0b101100::'a::len0 word)" by simp
lemma "0b1011 >> 2 = (0b10::8 word)" by simp
lemma "0b1011 >>> 2 = (0b10::8 word)" by simp

lemma "slice 3 (0b101111::6 word) = (0b101::3 word)" by simp

lemma "word_rotr 2 0b0110 = (0b1001::4 word)" by simp
lemma "word_rotl 1 0b1110 = (0b1101::4 word)" by simp
lemma "word_roti 2 0b1110 = (0b1011::4 word)" by simp
lemma "word_roti -2 0b0110 = (0b1001::4 word)" by simp

lemma "(x AND 0xff00) OR (x AND 0x00ff) = (x::16 word)"
proof -
  have "(x AND 0xff00) OR (x AND 0x00ff) = x AND (0xff00 OR 0x00ff)"
    by (simp only: word_ao_dist2)
  also have "0xff00 OR 0x00ff = (-1::16 word)"
    by simp
  also have "x AND -1 = x"
    by simp
  finally show ?thesis .
qed

end

lemma

  27 = -5

lemma

  27 = 11

lemma

  27  11

lemma

  127 = -1

lemma

  27 + 11 = 38
  27 + 11 = 6
  7 * 3 = 21
  11 - 27 = -16
  - -11 = 11
  -40 + 1 = -39

lemma

  word_pred 2 = 1

lemma

  word_succ -3 = -2

lemma

  23 < 27

lemma

  23  27

lemma

  ¬ 23 < 27

lemma

  0 < 4

lemma

  a + 2 * b + c - b = b + c + a

lemma

  uint 234567 = 71

lemma

  uint -234567 = 953

lemma

  sint 234567 = 71

lemma

  sint -234567 = -71

lemma

  unat -234567 = 953

lemma

  ucast 10 = 2

lemma

  ucast 10 = 10

lemma

  scast 10 = 58

lemma

  i < x ==> i < i + 1

lemma

  i < x ==> i < i + 1

lemma

  of_bl [True, False, True, True] = 11

lemma

  to_bl 6 = [False, True, True, False]

lemma

  of_bl (replicate 32 True) = 4294967295

lemma

  of_bl (replicate 32 True) = 4294967295

lemma

  6 AND 5 = 4

lemma

  6 OR 3 = 7

lemma

  240 XOR 255 = 15

lemma

  NOT 240 = 65295

lemma

  -1 = 4294967295

lemma

  2 !! 1

lemma

  ¬ 2 !! 0

lemma

  ¬ 8 !! 4

lemma

  24 !! n = (n = 4 ∨ n = 3)

lemma

  set_bit 55 7 True = 183

lemma

  set_bit 2 7 True = 130

lemma

  set_bit 2 1 False = 0

lemma

  lsb 5

lemma

  ¬ lsb 8

lemma

  ¬ msb 5

lemma

  msb 8

lemma

  word_cat 27 27 = 2843

lemma

  word_cat 3 15 = 207

lemma

  11 << 2 = 44

lemma

  11 >> 2 = 2

lemma

  11 >>> 2 = 2

lemma

  slice 3 47 = 5

lemma

  word_rotr 2 6 = 9

lemma

  word_rotl 1 14 = 13

lemma

  word_roti 2 14 = 11

lemma

  word_roti -2 6 = 9

lemma

  x AND 65280 OR x AND 255 = x