Theory UpperPD

Up to index of Isabelle/HOLCF

theory UpperPD
imports CompactBasis
begin

(*  Title:      HOLCF/UpperPD.thy
    ID:         $Id: UpperPD.thy,v 1.8 2008/05/19 21:49:23 huffman Exp $
    Author:     Brian Huffman
*)

header {* Upper powerdomain *}

theory UpperPD
imports CompactBasis
begin

subsection {* Basis preorder *}

definition
  upper_le :: "'a pd_basis => 'a pd_basis => bool" (infix "≤\<sharp>" 50) where
  "upper_le = (λu v. ∀y∈Rep_pd_basis v. ∃x∈Rep_pd_basis u. x \<sqsubseteq> y)"

lemma upper_le_refl [simp]: "t ≤\<sharp> t"
unfolding upper_le_def by fast

lemma upper_le_trans: "[|t ≤\<sharp> u; u ≤\<sharp> v|] ==> t ≤\<sharp> v"
unfolding upper_le_def
apply (rule ballI)
apply (drule (1) bspec, erule bexE)
apply (drule (1) bspec, erule bexE)
apply (erule rev_bexI)
apply (erule (1) trans_less)
done

interpretation upper_le: preorder [upper_le]
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)

lemma upper_le_minimal [simp]: "PDUnit compact_bot ≤\<sharp> t"
unfolding upper_le_def Rep_PDUnit by simp

lemma PDUnit_upper_mono: "x \<sqsubseteq> y ==> PDUnit x ≤\<sharp> PDUnit y"
unfolding upper_le_def Rep_PDUnit by simp

lemma PDPlus_upper_mono: "[|s ≤\<sharp> t; u ≤\<sharp> v|] ==> PDPlus s u ≤\<sharp> PDPlus t v"
unfolding upper_le_def Rep_PDPlus by fast

lemma PDPlus_upper_less: "PDPlus t u ≤\<sharp> t"
unfolding upper_le_def Rep_PDPlus by fast

lemma upper_le_PDUnit_PDUnit_iff [simp]:
  "(PDUnit a ≤\<sharp> PDUnit b) = a \<sqsubseteq> b"
unfolding upper_le_def Rep_PDUnit by fast

lemma upper_le_PDPlus_PDUnit_iff:
  "(PDPlus t u ≤\<sharp> PDUnit a) = (t ≤\<sharp> PDUnit a ∨ u ≤\<sharp> PDUnit a)"
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast

lemma upper_le_PDPlus_iff: "(t ≤\<sharp> PDPlus u v) = (t ≤\<sharp> u ∧ t ≤\<sharp> v)"
unfolding upper_le_def Rep_PDPlus by fast

lemma upper_le_induct [induct set: upper_le]:
  assumes le: "t ≤\<sharp> u"
  assumes 1: "!!a b. a \<sqsubseteq> b ==> P (PDUnit a) (PDUnit b)"
  assumes 2: "!!t u a. P t (PDUnit a) ==> P (PDPlus t u) (PDUnit a)"
  assumes 3: "!!t u v. [|P t u; P t v|] ==> P t (PDPlus u v)"
  shows "P t u"
using le apply (induct u arbitrary: t rule: pd_basis_induct)
apply (erule rev_mp)
apply (induct_tac t rule: pd_basis_induct)
apply (simp add: 1)
apply (simp add: upper_le_PDPlus_PDUnit_iff)
apply (simp add: 2)
apply (subst PDPlus_commute)
apply (simp add: 2)
apply (simp add: upper_le_PDPlus_iff 3)
done

lemma approx_pd_upper_mono1:
  "i ≤ j ==> approx_pd i t ≤\<sharp> approx_pd j t"
apply (induct t rule: pd_basis_induct)
apply (simp add: compact_approx_mono1)
apply (simp add: PDPlus_upper_mono)
done

lemma approx_pd_upper_le: "approx_pd i t ≤\<sharp> t"
apply (induct t rule: pd_basis_induct)
apply (simp add: compact_approx_le)
apply (simp add: PDPlus_upper_mono)
done

lemma approx_pd_upper_mono:
  "t ≤\<sharp> u ==> approx_pd n t ≤\<sharp> approx_pd n u"
apply (erule upper_le_induct)
apply (simp add: compact_approx_mono)
apply (simp add: upper_le_PDPlus_PDUnit_iff)
apply (simp add: upper_le_PDPlus_iff)
done


subsection {* Type definition *}

cpodef (open) 'a upper_pd =
  "{S::'a::profinite pd_basis set. upper_le.ideal S}"
apply (simp add: upper_le.adm_ideal)
apply (fast intro: upper_le.ideal_principal)
done

lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd x)"
by (rule Rep_upper_pd [unfolded mem_Collect_eq])

definition
  upper_principal :: "'a pd_basis => 'a upper_pd" where
  "upper_principal t = Abs_upper_pd {u. u ≤\<sharp> t}"

lemma Rep_upper_principal:
  "Rep_upper_pd (upper_principal t) = {u. u ≤\<sharp> t}"
unfolding upper_principal_def
apply (rule Abs_upper_pd_inverse [unfolded mem_Collect_eq])
apply (rule upper_le.ideal_principal)
done

interpretation upper_pd:
  ideal_completion [upper_le approx_pd upper_principal Rep_upper_pd]
apply unfold_locales
apply (rule approx_pd_upper_le)
apply (rule approx_pd_idem)
apply (erule approx_pd_upper_mono)
apply (rule approx_pd_upper_mono1, simp)
apply (rule finite_range_approx_pd)
apply (rule ex_approx_pd_eq)
apply (rule ideal_Rep_upper_pd)
apply (rule cont_Rep_upper_pd)
apply (rule Rep_upper_principal)
apply (simp only: less_upper_pd_def less_set_eq)
done

lemma upper_principal_less_iff [simp]:
  "upper_principal t \<sqsubseteq> upper_principal u <-> t ≤\<sharp> u"
by (rule upper_pd.principal_less_iff)

lemma upper_principal_eq_iff:
  "upper_principal t = upper_principal u <-> t ≤\<sharp> u ∧ u ≤\<sharp> t"
by (rule upper_pd.principal_eq_iff)

lemma upper_principal_mono:
  "t ≤\<sharp> u ==> upper_principal t \<sqsubseteq> upper_principal u"
by (rule upper_pd.principal_mono)

lemma compact_upper_principal: "compact (upper_principal t)"
by (rule upper_pd.compact_principal)

lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
by (induct ys rule: upper_pd.principal_induct, simp, simp)

instance upper_pd :: (bifinite) pcpo
by intro_classes (fast intro: upper_pd_minimal)

lemma inst_upper_pd_pcpo: "⊥ = upper_principal (PDUnit compact_bot)"
by (rule upper_pd_minimal [THEN UU_I, symmetric])


subsection {* Approximation *}

instantiation upper_pd :: (profinite) profinite
begin

definition
  approx_upper_pd_def: "approx = upper_pd.completion_approx"

instance
apply (intro_classes, unfold approx_upper_pd_def)
apply (simp add: upper_pd.chain_completion_approx)
apply (rule upper_pd.lub_completion_approx)
apply (rule upper_pd.completion_approx_idem)
apply (rule upper_pd.finite_fixes_completion_approx)
done

end

instance upper_pd :: (bifinite) bifinite ..

lemma approx_upper_principal [simp]:
  "approx n·(upper_principal t) = upper_principal (approx_pd n t)"
unfolding approx_upper_pd_def
by (rule upper_pd.completion_approx_principal)

lemma approx_eq_upper_principal:
  "∃t∈Rep_upper_pd xs. approx n·xs = upper_principal (approx_pd n t)"
unfolding approx_upper_pd_def
by (rule upper_pd.completion_approx_eq_principal)

lemma compact_imp_upper_principal:
  "compact xs ==> ∃t. xs = upper_principal t"
apply (drule bifinite_compact_eq_approx)
apply (erule exE)
apply (erule subst)
apply (cut_tac n=i and xs=xs in approx_eq_upper_principal)
apply fast
done

lemma upper_principal_induct:
  "[|adm P; !!t. P (upper_principal t)|] ==> P xs"
by (rule upper_pd.principal_induct)

lemma upper_principal_induct2:
  "[|!!ys. adm (λxs. P xs ys); !!xs. adm (λys. P xs ys);
    !!t u. P (upper_principal t) (upper_principal u)|] ==> P xs ys"
apply (rule_tac x=ys in spec)
apply (rule_tac xs=xs in upper_principal_induct, simp)
apply (rule allI, rename_tac ys)
apply (rule_tac xs=ys in upper_principal_induct, simp)
apply simp
done


subsection {* Monadic unit and plus *}

definition
  upper_unit :: "'a -> 'a upper_pd" where
  "upper_unit = compact_basis.basis_fun (λa. upper_principal (PDUnit a))"

definition
  upper_plus :: "'a upper_pd -> 'a upper_pd -> 'a upper_pd" where
  "upper_plus = upper_pd.basis_fun (λt. upper_pd.basis_fun (λu.
      upper_principal (PDPlus t u)))"

abbreviation
  upper_add :: "'a upper_pd => 'a upper_pd => 'a upper_pd"
    (infixl "+\<sharp>" 65) where
  "xs +\<sharp> ys == upper_plus·xs·ys"

syntax
  "_upper_pd" :: "args => 'a upper_pd" ("{_}\<sharp>")

translations
  "{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>"
  "{x}\<sharp>" == "CONST upper_unit·x"

lemma upper_unit_Rep_compact_basis [simp]:
  "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
unfolding upper_unit_def
by (simp add: compact_basis.basis_fun_principal
    upper_principal_mono PDUnit_upper_mono)

lemma upper_plus_principal [simp]:
  "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)"
unfolding upper_plus_def
by (simp add: upper_pd.basis_fun_principal
    upper_pd.basis_fun_mono PDPlus_upper_mono)

lemma approx_upper_unit [simp]:
  "approx n·{x}\<sharp> = {approx n·x}\<sharp>"
apply (induct x rule: compact_basis_induct, simp)
apply (simp add: approx_Rep_compact_basis)
done

lemma approx_upper_plus [simp]:
  "approx n·(xs +\<sharp> ys) = (approx n·xs) +\<sharp> (approx n·ys)"
by (induct xs ys rule: upper_principal_induct2, simp, simp, simp)

lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)"
apply (induct xs ys arbitrary: zs rule: upper_principal_induct2, simp, simp)
apply (rule_tac xs=zs in upper_principal_induct, simp)
apply (simp add: PDPlus_assoc)
done

lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs"
apply (induct xs ys rule: upper_principal_induct2, simp, simp)
apply (simp add: PDPlus_commute)
done

lemma upper_plus_absorb: "xs +\<sharp> xs = xs"
apply (induct xs rule: upper_principal_induct, simp)
apply (simp add: PDPlus_absorb)
done

interpretation aci_upper_plus: ab_semigroup_idem_mult ["op +\<sharp>"]
  by unfold_locales
    (rule upper_plus_assoc upper_plus_commute upper_plus_absorb)+

lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)"
by (rule aci_upper_plus.mult_left_commute)

lemma upper_plus_left_absorb: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys"
by (rule aci_upper_plus.mult_left_idem)

lemmas upper_plus_aci = aci_upper_plus.mult_ac_idem

lemma upper_plus_less1: "xs +\<sharp> ys \<sqsubseteq> xs"
apply (induct xs ys rule: upper_principal_induct2, simp, simp)
apply (simp add: PDPlus_upper_less)
done

lemma upper_plus_less2: "xs +\<sharp> ys \<sqsubseteq> ys"
by (subst upper_plus_commute, rule upper_plus_less1)

lemma upper_plus_greatest: "[|xs \<sqsubseteq> ys; xs \<sqsubseteq> zs|] ==> xs \<sqsubseteq> ys +\<sharp> zs"
apply (subst upper_plus_absorb [of xs, symmetric])
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
done

lemma upper_less_plus_iff:
  "xs \<sqsubseteq> ys +\<sharp> zs <-> xs \<sqsubseteq> ys ∧ xs \<sqsubseteq> zs"
apply safe
apply (erule trans_less [OF _ upper_plus_less1])
apply (erule trans_less [OF _ upper_plus_less2])
apply (erule (1) upper_plus_greatest)
done

lemma upper_plus_less_unit_iff:
  "xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> <-> xs \<sqsubseteq> {z}\<sharp> ∨ ys \<sqsubseteq> {z}\<sharp>"
 apply (rule iffI)
  apply (subgoal_tac
    "adm (λf. f·xs \<sqsubseteq> f·{z}\<sharp> ∨ f·ys \<sqsubseteq> f·{z}\<sharp>)")
   apply (drule admD, rule chain_approx)
    apply (drule_tac f="approx i" in monofun_cfun_arg)
    apply (cut_tac xs="approx i·xs" in compact_imp_upper_principal, simp)
    apply (cut_tac xs="approx i·ys" in compact_imp_upper_principal, simp)
    apply (cut_tac x="approx i·z" in compact_imp_Rep_compact_basis, simp)
    apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff)
   apply simp
  apply simp
 apply (erule disjE)
  apply (erule trans_less [OF upper_plus_less1])
 apply (erule trans_less [OF upper_plus_less2])
done

lemma upper_unit_less_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> <-> x \<sqsubseteq> y"
 apply (rule iffI)
  apply (rule bifinite_less_ext)
  apply (drule_tac f="approx i" in monofun_cfun_arg, simp)
  apply (cut_tac x="approx i·x" in compact_imp_Rep_compact_basis, simp)
  apply (cut_tac x="approx i·y" in compact_imp_Rep_compact_basis, simp)
  apply (clarify, simp add: compact_le_def)
 apply (erule monofun_cfun_arg)
done

lemmas upper_pd_less_simps =
  upper_unit_less_iff
  upper_less_plus_iff
  upper_plus_less_unit_iff

lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> <-> x = y"
unfolding po_eq_conv by simp

lemma upper_unit_strict [simp]: "{⊥}\<sharp> = ⊥"
unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp

lemma upper_plus_strict1 [simp]: "⊥ +\<sharp> ys = ⊥"
by (rule UU_I, rule upper_plus_less1)

lemma upper_plus_strict2 [simp]: "xs +\<sharp> ⊥ = ⊥"
by (rule UU_I, rule upper_plus_less2)

lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = ⊥ <-> x = ⊥"
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)

lemma upper_plus_strict_iff [simp]:
  "xs +\<sharp> ys = ⊥ <-> xs = ⊥ ∨ ys = ⊥"
apply (rule iffI)
apply (erule rev_mp)
apply (rule upper_principal_induct2 [where xs=xs and ys=ys], simp, simp)
apply (simp add: inst_upper_pd_pcpo upper_principal_eq_iff
                 upper_le_PDPlus_PDUnit_iff)
apply auto
done

lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> <-> compact x"
unfolding bifinite_compact_iff by simp

lemma compact_upper_plus [simp]:
  "[|compact xs; compact ys|] ==> compact (xs +\<sharp> ys)"
apply (drule compact_imp_upper_principal)+
apply (auto simp add: compact_upper_principal)
done


subsection {* Induction rules *}

lemma upper_pd_induct1:
  assumes P: "adm P"
  assumes unit: "!!x. P {x}\<sharp>"
  assumes insert: "!!x ys. [|P {x}\<sharp>; P ys|] ==> P ({x}\<sharp> +\<sharp> ys)"
  shows "P (xs::'a upper_pd)"
apply (induct xs rule: upper_principal_induct, rule P)
apply (induct_tac t rule: pd_basis_induct1)
apply (simp only: upper_unit_Rep_compact_basis [symmetric])
apply (rule unit)
apply (simp only: upper_unit_Rep_compact_basis [symmetric]
                  upper_plus_principal [symmetric])
apply (erule insert [OF unit])
done

lemma upper_pd_induct:
  assumes P: "adm P"
  assumes unit: "!!x. P {x}\<sharp>"
  assumes plus: "!!xs ys. [|P xs; P ys|] ==> P (xs +\<sharp> ys)"
  shows "P (xs::'a upper_pd)"
apply (induct xs rule: upper_principal_induct, rule P)
apply (induct_tac t rule: pd_basis_induct)
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
apply (simp only: upper_plus_principal [symmetric] plus)
done


subsection {* Monadic bind *}

definition
  upper_bind_basis ::
  "'a pd_basis => ('a -> 'b upper_pd) -> 'b upper_pd" where
  "upper_bind_basis = fold_pd
    (λa. Λ f. f·(Rep_compact_basis a))
    (λx y. Λ f. x·f +\<sharp> y·f)"

lemma ACI_upper_bind:
  "ab_semigroup_idem_mult (λx y. Λ f. x·f +\<sharp> y·f)"
apply unfold_locales
apply (simp add: upper_plus_assoc)
apply (simp add: upper_plus_commute)
apply (simp add: upper_plus_absorb eta_cfun)
done

lemma upper_bind_basis_simps [simp]:
  "upper_bind_basis (PDUnit a) =
    (Λ f. f·(Rep_compact_basis a))"
  "upper_bind_basis (PDPlus t u) =
    (Λ f. upper_bind_basis t·f +\<sharp> upper_bind_basis u·f)"
unfolding upper_bind_basis_def
apply -
apply (rule fold_pd_PDUnit [OF ACI_upper_bind])
apply (rule fold_pd_PDPlus [OF ACI_upper_bind])
done

lemma upper_bind_basis_mono:
  "t ≤\<sharp> u ==> upper_bind_basis t \<sqsubseteq> upper_bind_basis u"
unfolding expand_cfun_less
apply (erule upper_le_induct, safe)
apply (simp add: compact_le_def monofun_cfun)
apply (simp add: trans_less [OF upper_plus_less1])
apply (simp add: upper_less_plus_iff)
done

definition
  upper_bind :: "'a upper_pd -> ('a -> 'b upper_pd) -> 'b upper_pd" where
  "upper_bind = upper_pd.basis_fun upper_bind_basis"

lemma upper_bind_principal [simp]:
  "upper_bind·(upper_principal t) = upper_bind_basis t"
unfolding upper_bind_def
apply (rule upper_pd.basis_fun_principal)
apply (erule upper_bind_basis_mono)
done

lemma upper_bind_unit [simp]:
  "upper_bind·{x}\<sharp>·f = f·x"
by (induct x rule: compact_basis_induct, simp, simp)

lemma upper_bind_plus [simp]:
  "upper_bind·(xs +\<sharp> ys)·f = upper_bind·xs·f +\<sharp> upper_bind·ys·f"
by (induct xs ys rule: upper_principal_induct2, simp, simp, simp)

lemma upper_bind_strict [simp]: "upper_bind·⊥·f = f·⊥"
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)


subsection {* Map and join *}

definition
  upper_map :: "('a -> 'b) -> 'a upper_pd -> 'b upper_pd" where
  "upper_map = (Λ f xs. upper_bind·xs·(Λ x. {f·x}\<sharp>))"

definition
  upper_join :: "'a upper_pd upper_pd -> 'a upper_pd" where
  "upper_join = (Λ xss. upper_bind·xss·(Λ xs. xs))"

lemma upper_map_unit [simp]:
  "upper_map·f·{x}\<sharp> = {f·x}\<sharp>"
unfolding upper_map_def by simp

lemma upper_map_plus [simp]:
  "upper_map·f·(xs +\<sharp> ys) = upper_map·f·xs +\<sharp> upper_map·f·ys"
unfolding upper_map_def by simp

lemma upper_join_unit [simp]:
  "upper_join·{xs}\<sharp> = xs"
unfolding upper_join_def by simp

lemma upper_join_plus [simp]:
  "upper_join·(xss +\<sharp> yss) = upper_join·xss +\<sharp> upper_join·yss"
unfolding upper_join_def by simp

lemma upper_map_ident: "upper_map·(Λ x. x)·xs = xs"
by (induct xs rule: upper_pd_induct, simp_all)

lemma upper_map_map:
  "upper_map·f·(upper_map·g·xs) = upper_map·(Λ x. f·(g·x))·xs"
by (induct xs rule: upper_pd_induct, simp_all)

lemma upper_join_map_unit:
  "upper_join·(upper_map·upper_unit·xs) = xs"
by (induct xs rule: upper_pd_induct, simp_all)

lemma upper_join_map_join:
  "upper_join·(upper_map·upper_join·xsss) = upper_join·(upper_join·xsss)"
by (induct xsss rule: upper_pd_induct, simp_all)

lemma upper_join_map_map:
  "upper_join·(upper_map·(upper_map·f)·xss) =
   upper_map·f·(upper_join·xss)"
by (induct xss rule: upper_pd_induct, simp_all)

lemma upper_map_approx: "upper_map·(approx n)·xs = approx n·xs"
by (induct xs rule: upper_pd_induct, simp_all)

end

Basis preorder

lemma upper_le_refl:

  t ≤\<sharp> t

lemma upper_le_trans:

  [| t ≤\<sharp> u; u ≤\<sharp> v |] ==> t ≤\<sharp> v

lemma upper_le_minimal:

  PDUnit compact_bot ≤\<sharp> t

lemma PDUnit_upper_mono:

  x << y ==> PDUnit x ≤\<sharp> PDUnit y

lemma PDPlus_upper_mono:

  [| s ≤\<sharp> t; u ≤\<sharp> v |] ==> PDPlus s u ≤\<sharp> PDPlus t v

lemma PDPlus_upper_less:

  PDPlus t u ≤\<sharp> t

lemma upper_le_PDUnit_PDUnit_iff:

  (PDUnit a ≤\<sharp> PDUnit b) = a << b

lemma upper_le_PDPlus_PDUnit_iff:

  (PDPlus t u ≤\<sharp> PDUnit a) = (t ≤\<sharp> PDUnit au ≤\<sharp> PDUnit a)

lemma upper_le_PDPlus_iff:

  (t ≤\<sharp> PDPlus u v) = (t ≤\<sharp> ut ≤\<sharp> v)

lemma upper_le_induct:

  [| t ≤\<sharp> u; !!a b. a << b ==> P (PDUnit a) (PDUnit b);
     !!t u a. P t (PDUnit a) ==> P (PDPlus t u) (PDUnit a);
     !!t u v. [| P t u; P t v |] ==> P t (PDPlus u v) |]
  ==> P t u

lemma approx_pd_upper_mono1:

  i  j ==> approx_pd i t ≤\<sharp> approx_pd j t

lemma approx_pd_upper_le:

  approx_pd i t ≤\<sharp> t

lemma approx_pd_upper_mono:

  t ≤\<sharp> u ==> approx_pd n t ≤\<sharp> approx_pd n u

Type definition

lemma ideal_Rep_upper_pd:

  preorder.ideal op ≤\<sharp> (Rep_upper_pd x)

lemma Rep_upper_principal:

  Rep_upper_pd (upper_principal t) = {u. u ≤\<sharp> t}

lemma upper_principal_less_iff:

  upper_principal t << upper_principal u = (t ≤\<sharp> u)

lemma upper_principal_eq_iff:

  (upper_principal t = upper_principal u) = (t ≤\<sharp> uu ≤\<sharp> t)

lemma upper_principal_mono:

  t ≤\<sharp> u ==> upper_principal t << upper_principal u

lemma compact_upper_principal:

  compact (upper_principal t)

lemma upper_pd_minimal:

  upper_principal (PDUnit compact_bot) << ys

lemma inst_upper_pd_pcpo:

  UU = upper_principal (PDUnit compact_bot)

Approximation

lemma approx_upper_principal:

  approx n·(upper_principal t) = upper_principal (approx_pd n t)

lemma approx_eq_upper_principal:

  t∈Rep_upper_pd xs. approx n·xs = upper_principal (approx_pd n t)

lemma compact_imp_upper_principal:

  compact xs ==> ∃t. xs = upper_principal t

lemma upper_principal_induct:

  [| adm P; !!t. P (upper_principal t) |] ==> P xs

lemma upper_principal_induct2:

  [| !!ys. admxs. P xs ys); !!xs. adm (P xs);
     !!t u. P (upper_principal t) (upper_principal u) |]
  ==> P xs ys

Monadic unit and plus

lemma upper_unit_Rep_compact_basis:

  {Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)

lemma upper_plus_principal:

  upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)

lemma approx_upper_unit:

  approx n·{x}\<sharp> = {approx n·x}\<sharp>

lemma approx_upper_plus:

  approx n·(xs +\<sharp> ys) = approx n·xs +\<sharp> approx n·ys

lemma upper_plus_assoc:

  xs +\<sharp> ys +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)

lemma upper_plus_commute:

  xs +\<sharp> ys = ys +\<sharp> xs

lemma upper_plus_absorb:

  xs +\<sharp> xs = xs

lemma upper_plus_left_commute:

  xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)

lemma upper_plus_left_absorb:

  xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys

lemma upper_plus_aci:

  a +\<sharp> b +\<sharp> c = a +\<sharp> (b +\<sharp> c)
  a +\<sharp> b = b +\<sharp> a
  a +\<sharp> (b +\<sharp> c) = b +\<sharp> (a +\<sharp> c)
  x +\<sharp> x = x
  x +\<sharp> (x +\<sharp> y) = x +\<sharp> y

lemma upper_plus_less1:

  xs +\<sharp> ys << xs

lemma upper_plus_less2:

  xs +\<sharp> ys << ys

lemma upper_plus_greatest:

  [| xs << ys; xs << zs |] ==> xs << ys +\<sharp> zs

lemma upper_less_plus_iff:

  xs << ys +\<sharp> zs = (xs << ysxs << zs)

lemma upper_plus_less_unit_iff:

  xs +\<sharp> ys << {z}\<sharp> = (xs << {z}\<sharp> ∨ ys << {z}\<sharp>)

lemma upper_unit_less_iff:

  {x}\<sharp> << {y}\<sharp> = x << y

lemma upper_pd_less_simps:

  {x}\<sharp> << {y}\<sharp> = x << y
  xs << ys +\<sharp> zs = (xs << ysxs << zs)
  xs +\<sharp> ys << {z}\<sharp> = (xs << {z}\<sharp> ∨ ys << {z}\<sharp>)

lemma upper_unit_eq_iff:

  ({x}\<sharp> = {y}\<sharp>) = (x = y)

lemma upper_unit_strict:

  {UU}\<sharp> = UU

lemma upper_plus_strict1:

  UU +\<sharp> ys = UU

lemma upper_plus_strict2:

  xs +\<sharp> UU = UU

lemma upper_unit_strict_iff:

  ({x}\<sharp> = UU) = (x = UU)

lemma upper_plus_strict_iff:

  (xs +\<sharp> ys = UU) = (xs = UUys = UU)

lemma compact_upper_unit_iff:

  compact {x}\<sharp> = compact x

lemma compact_upper_plus:

  [| compact xs; compact ys |] ==> compact (xs +\<sharp> ys)

Induction rules

lemma upper_pd_induct1:

  [| adm P; !!x. P {x}\<sharp>;
     !!x ys. [| P {x}\<sharp>; P ys |] ==> P ({x}\<sharp> +\<sharp> ys) |]
  ==> P xs

lemma upper_pd_induct:

  [| adm P; !!x. P {x}\<sharp>;
     !!xs ys. [| P xs; P ys |] ==> P (xs +\<sharp> ys) |]
  ==> P xs

Monadic bind

lemma ACI_upper_bind:

  ab_semigroup_idem_multx y. LAM f. x·f +\<sharp> y·f)

lemma upper_bind_basis_simps:

  upper_bind_basis (PDUnit a) = (LAM f. f·(Rep_compact_basis a))
  upper_bind_basis (PDPlus t u) =
  (LAM f. upper_bind_basis t·f +\<sharp> upper_bind_basis u·f)

lemma upper_bind_basis_mono:

  t ≤\<sharp> u ==> upper_bind_basis t << upper_bind_basis u

lemma upper_bind_principal:

  upper_bind·(upper_principal t) = upper_bind_basis t

lemma upper_bind_unit:

  upper_bind·{x}\<sharp>·f = f·x

lemma upper_bind_plus:

  upper_bind·(xs +\<sharp> ysf = upper_bind·xs·f +\<sharp> upper_bind·ys·f

lemma upper_bind_strict:

  upper_bind·UU·f = f·UU

Map and join

lemma upper_map_unit:

  upper_map·f·{x}\<sharp> = {f·x}\<sharp>

lemma upper_map_plus:

  upper_map·f·(xs +\<sharp> ys) = upper_map·f·xs +\<sharp> upper_map·f·ys

lemma upper_join_unit:

  upper_join·{xs}\<sharp> = xs

lemma upper_join_plus:

  upper_join·(xss +\<sharp> yss) = upper_join·xss +\<sharp> upper_join·yss

lemma upper_map_ident:

  upper_map·(LAM x. xxs = xs

lemma upper_map_map:

  upper_map·f·(upper_map·g·xs) = upper_map·(LAM x. f·(g·x))·xs

lemma upper_join_map_unit:

  upper_join·(upper_map·upper_unit·xs) = xs

lemma upper_join_map_join:

  upper_join·(upper_map·upper_join·xsss) = upper_join·(upper_join·xsss)

lemma upper_join_map_map:

  upper_join·(upper_map·(upper_map·fxss) = upper_map·f·(upper_join·xss)

lemma upper_map_approx:

  upper_map·(approx nxs = approx n·xs