(* Title: HOL/Induct/LList.thy ID: $Id: LList.thy,v 1.20 2008/05/07 08:56:35 berghofe Exp $ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Shares NIL, CONS, List_case with List.thy Still needs flatten function -- hard because it need bounds on the amount of lookahead required. Could try (but would it work for the gfp analogue of term?) LListD_Fun_def "LListD_Fun(A) == (%Z. diag({Numb(0)}) <++> diag(A) <**> Z)" A nice but complex example would be [ML for the Working Programmer, page 176] from(1) = enumerate (Lmap (Lmap(pack), makeqq(from(1),from(1)))) Previous definition of llistD_Fun was explicit: llistD_Fun_def "llistD_Fun(r) == {(LNil,LNil)} Un (UN x. (split(%l1 l2.(LCons(x,l1),LCons(x,l2))))`r)" *) header {*Definition of type llist by a greatest fixed point*} theory LList imports SList begin coinductive_set llist :: "'a item set => 'a item set" for A :: "'a item set" where NIL_I: "NIL ∈ llist(A)" | CONS_I: "[| a ∈ A; M ∈ llist(A) |] ==> CONS a M ∈ llist(A)" coinductive_set LListD :: "('a item * 'a item)set => ('a item * 'a item)set" for r :: "('a item * 'a item)set" where NIL_I: "(NIL, NIL) ∈ LListD(r)" | CONS_I: "[| (a,b) ∈ r; (M,N) ∈ LListD(r) |] ==> (CONS a M, CONS b N) ∈ LListD(r)" typedef (LList) 'a llist = "llist(range Leaf) :: 'a item set" by (blast intro: llist.NIL_I) definition list_Fun :: "['a item set, 'a item set] => 'a item set" where --{*Now used exclusively for abbreviating the coinduction rule*} "list_Fun A X = {z. z = NIL | (∃M a. z = CONS a M & a ∈ A & M ∈ X)}" definition LListD_Fun :: "[('a item * 'a item)set, ('a item * 'a item)set] => ('a item * 'a item)set" where "LListD_Fun r X = {z. z = (NIL, NIL) | (∃M N a b. z = (CONS a M, CONS b N) & (a, b) ∈ r & (M, N) ∈ X)}" definition LNil :: "'a llist" where --{*abstract constructor*} "LNil = Abs_LList NIL" definition LCons :: "['a, 'a llist] => 'a llist" where --{*abstract constructor*} "LCons x xs = Abs_LList(CONS (Leaf x) (Rep_LList xs))" definition llist_case :: "['b, ['a, 'a llist]=>'b, 'a llist] => 'b" where "llist_case c d l = List_case c (%x y. d (inv Leaf x) (Abs_LList y)) (Rep_LList l)" definition LList_corec_fun :: "[nat, 'a=> ('b item * 'a) option, 'a] => 'b item" where "LList_corec_fun k f == nat_rec (%x. {}) (%j r x. case f x of None => NIL | Some(z,w) => CONS z (r w)) k" definition LList_corec :: "['a, 'a => ('b item * 'a) option] => 'b item" where "LList_corec a f = (\<Union>k. LList_corec_fun k f a)" definition llist_corec :: "['a, 'a => ('b * 'a) option] => 'b llist" where "llist_corec a f = Abs_LList(LList_corec a (%z. case f z of None => None | Some(v,w) => Some(Leaf(v), w)))" definition llistD_Fun :: "('a llist * 'a llist)set => ('a llist * 'a llist)set" where "llistD_Fun(r) = prod_fun Abs_LList Abs_LList ` LListD_Fun (diag(range Leaf)) (prod_fun Rep_LList Rep_LList ` r)" text{* The case syntax for type @{text "'a llist"} *} syntax (* FIXME proper case syntax!? *) LNil :: logic LCons :: logic translations "case p of LNil => a | LCons x l => b" == "CONST llist_case a (%x l. b) p" subsubsection{* Sample function definitions. Item-based ones start with @{text L} *} definition Lmap :: "('a item => 'b item) => ('a item => 'b item)" where "Lmap f M = LList_corec M (List_case None (%x M'. Some((f(x), M'))))" definition lmap :: "('a=>'b) => ('a llist => 'b llist)" where "lmap f l = llist_corec l (%z. case z of LNil => None | LCons y z => Some(f(y), z))" definition iterates :: "['a => 'a, 'a] => 'a llist" where "iterates f a = llist_corec a (%x. Some((x, f(x))))" definition Lconst :: "'a item => 'a item" where "Lconst(M) == lfp(%N. CONS M N)" definition Lappend :: "['a item, 'a item] => 'a item" where "Lappend M N = LList_corec (M,N) (split(List_case (List_case None (%N1 N2. Some((N1, (NIL,N2))))) (%M1 M2 N. Some((M1, (M2,N))))))" definition lappend :: "['a llist, 'a llist] => 'a llist" where "lappend l n = llist_corec (l,n) (split(llist_case (llist_case None (%n1 n2. Some((n1, (LNil,n2))))) (%l1 l2 n. Some((l1, (l2,n))))))" text{*Append generates its result by applying f, where f((NIL,NIL)) = None f((NIL, CONS N1 N2)) = Some((N1, (NIL,N2)) f((CONS M1 M2, N)) = Some((M1, (M2,N)) *} text{* SHOULD @{text LListD_Fun_CONS_I}, etc., be equations (for rewriting)? *} lemmas UN1_I = UNIV_I [THEN UN_I, standard] subsubsection{* Simplification *} declare option.split [split] text{*This justifies using llist in other recursive type definitions*} lemma llist_mono: assumes subset: "A ⊆ B" shows "llist A ⊆ llist B" proof fix x assume "x ∈ llist A" then show "x ∈ llist B" proof coinduct case llist then show ?case using subset by cases blast+ qed qed lemma llist_unfold: "llist(A) = usum {Numb(0)} (uprod A (llist A))" by (fast intro!: llist.intros [unfolded NIL_def CONS_def] elim: llist.cases [unfolded NIL_def CONS_def]) subsection{* Type checking by coinduction *} text {* {\dots} using @{text list_Fun} THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS! *} lemma llist_coinduct: "[| M ∈ X; X ⊆ list_Fun A (X Un llist(A)) |] ==> M ∈ llist(A)" apply (simp add: list_Fun_def) apply (erule llist.coinduct) apply (blast intro: elim:); done lemma list_Fun_NIL_I [iff]: "NIL ∈ list_Fun A X" by (simp add: list_Fun_def NIL_def) lemma list_Fun_CONS_I [intro!,simp]: "[| M ∈ A; N ∈ X |] ==> CONS M N ∈ list_Fun A X" by (simp add: list_Fun_def CONS_def) text{*Utilise the ``strong'' part, i.e. @{text "gfp(f)"}*} lemma list_Fun_llist_I: "M ∈ llist(A) ==> M ∈ list_Fun A (X Un llist(A))" apply (unfold list_Fun_def) apply (erule llist.cases) apply auto done subsection{* @{text LList_corec} satisfies the desired recurion equation *} text{*A continuity result?*} lemma CONS_UN1: "CONS M (\<Union>x. f(x)) = (\<Union>x. CONS M (f x))" apply (simp add: CONS_def In1_UN1 Scons_UN1_y) done lemma CONS_mono: "[| M⊆M'; N⊆N' |] ==> CONS M N ⊆ CONS M' N'" apply (simp add: CONS_def In1_mono Scons_mono) done declare LList_corec_fun_def [THEN def_nat_rec_0, simp] LList_corec_fun_def [THEN def_nat_rec_Suc, simp] subsubsection{* The directions of the equality are proved separately *} lemma LList_corec_subset1: "LList_corec a f ⊆ (case f a of None => NIL | Some(z,w) => CONS z (LList_corec w f))" apply (unfold LList_corec_def) apply (rule UN_least) apply (case_tac k) apply (simp_all (no_asm_simp)) apply (rule allI impI subset_refl [THEN CONS_mono] UNIV_I [THEN UN_upper])+ done lemma LList_corec_subset2: "(case f a of None => NIL | Some(z,w) => CONS z (LList_corec w f)) ⊆ LList_corec a f" apply (simp add: LList_corec_def) apply (simp add: CONS_UN1, safe) apply (rule_tac a="Suc(?k)" in UN_I, simp, simp)+ done text{*the recursion equation for @{text LList_corec} -- NOT SUITABLE FOR REWRITING!*} lemma LList_corec: "LList_corec a f = (case f a of None => NIL | Some(z,w) => CONS z (LList_corec w f))" by (rule equalityI LList_corec_subset1 LList_corec_subset2)+ text{*definitional version of same*} lemma def_LList_corec: "[| !!x. h(x) = LList_corec x f |] ==> h(a) = (case f a of None => NIL | Some(z,w) => CONS z (h w))" by (simp add: LList_corec) text{*A typical use of co-induction to show membership in the @{text gfp}. Bisimulation is @{text "range(%x. LList_corec x f)"} *} lemma LList_corec_type: "LList_corec a f ∈ llist UNIV" apply (rule_tac X = "range (%x. LList_corec x ?g)" in llist_coinduct) apply (rule rangeI, safe) apply (subst LList_corec, simp) done subsection{* @{text llist} equality as a @{text gfp}; the bisimulation principle *} text{*This theorem is actually used, unlike the many similar ones in ZF*} lemma LListD_unfold: "LListD r = dsum (diag {Numb 0}) (dprod r (LListD r))" by (fast intro!: LListD.intros [unfolded NIL_def CONS_def] elim: LListD.cases [unfolded NIL_def CONS_def]) lemma LListD_implies_ntrunc_equality [rule_format]: "∀M N. (M,N) ∈ LListD(diag A) --> ntrunc k M = ntrunc k N" apply (induct_tac "k" rule: nat_less_induct) apply (safe del: equalityI) apply (erule LListD.cases) apply (safe del: equalityI) apply (case_tac "n", simp) apply (rename_tac "n'") apply (case_tac "n'") apply (simp_all add: CONS_def less_Suc_eq) done text{*The domain of the @{text LListD} relation*} lemma Domain_LListD: "Domain (LListD(diag A)) ⊆ llist(A)" apply (rule subsetI) apply (erule llist.coinduct) apply (simp add: NIL_def CONS_def) apply (drule_tac P = "%x. xa ∈ Domain x" in LListD_unfold [THEN subst], auto) done text{*This inclusion justifies the use of coinduction to show @{text "M = N"}*} lemma LListD_subset_diag: "LListD(diag A) ⊆ diag(llist(A))" apply (rule subsetI) apply (rule_tac p = x in PairE, safe) apply (rule diag_eqI) apply (rule LListD_implies_ntrunc_equality [THEN ntrunc_equality], assumption) apply (erule DomainI [THEN Domain_LListD [THEN subsetD]]) done subsubsection{* Coinduction, using @{text LListD_Fun} *} text {* THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS! *} lemma LListD_Fun_mono: "A⊆B ==> LListD_Fun r A ⊆ LListD_Fun r B" apply (simp add: LListD_Fun_def) apply (assumption | rule basic_monos)+ done lemma LListD_coinduct: "[| M ∈ X; X ⊆ LListD_Fun r (X Un LListD(r)) |] ==> M ∈ LListD(r)" apply (cases M) apply (simp add: LListD_Fun_def) apply (erule LListD.coinduct) apply (auto ); done lemma LListD_Fun_NIL_I: "(NIL,NIL) ∈ LListD_Fun r s" by (simp add: LListD_Fun_def NIL_def) lemma LListD_Fun_CONS_I: "[| x∈A; (M,N):s |] ==> (CONS x M, CONS x N) ∈ LListD_Fun (diag A) s" by (simp add: LListD_Fun_def CONS_def, blast) text{*Utilise the "strong" part, i.e. @{text "gfp(f)"}*} lemma LListD_Fun_LListD_I: "M ∈ LListD(r) ==> M ∈ LListD_Fun r (X Un LListD(r))" apply (cases M) apply (simp add: LListD_Fun_def) apply (erule LListD.cases) apply auto done text{*This converse inclusion helps to strengthen @{text LList_equalityI}*} lemma diag_subset_LListD: "diag(llist(A)) ⊆ LListD(diag A)" apply (rule subsetI) apply (erule LListD_coinduct) apply (rule subsetI) apply (erule diagE) apply (erule ssubst) apply (erule llist.cases) apply (simp_all add: diagI LListD_Fun_NIL_I LListD_Fun_CONS_I) done lemma LListD_eq_diag: "LListD(diag A) = diag(llist(A))" apply (rule equalityI LListD_subset_diag diag_subset_LListD)+ done lemma LListD_Fun_diag_I: "M ∈ llist(A) ==> (M,M) ∈ LListD_Fun (diag A) (X Un diag(llist(A)))" apply (rule LListD_eq_diag [THEN subst]) apply (rule LListD_Fun_LListD_I) apply (simp add: LListD_eq_diag diagI) done subsubsection{* To show two LLists are equal, exhibit a bisimulation! [also admits true equality] Replace @{text A} by some particular set, like @{text "{x. True}"}??? *} lemma LList_equalityI: "[| (M,N) ∈ r; r ⊆ LListD_Fun (diag A) (r Un diag(llist(A))) |] ==> M=N" apply (rule LListD_subset_diag [THEN subsetD, THEN diagE]) apply (erule LListD_coinduct) apply (simp add: LListD_eq_diag, safe) done subsection{* Finality of @{text "llist(A)"}: Uniqueness of functions defined by corecursion *} text{*We must remove @{text Pair_eq} because it may turn an instance of reflexivity @{text "(h1 b, h2 b) = (h1 ?x17, h2 ?x17)"} into a conjunction! (or strengthen the Solver?) *} declare Pair_eq [simp del] text{*abstract proof using a bisimulation*} lemma LList_corec_unique: "[| !!x. h1(x) = (case f x of None => NIL | Some(z,w) => CONS z (h1 w)); !!x. h2(x) = (case f x of None => NIL | Some(z,w) => CONS z (h2 w)) |] ==> h1=h2" apply (rule ext) txt{*next step avoids an unknown (and flexflex pair) in simplification*} apply (rule_tac A = UNIV and r = "range(%u. (h1 u, h2 u))" in LList_equalityI) apply (rule rangeI, safe) apply (simp add: LListD_Fun_NIL_I UNIV_I [THEN LListD_Fun_CONS_I]) done lemma equals_LList_corec: "[| !!x. h(x) = (case f x of None => NIL | Some(z,w) => CONS z (h w)) |] ==> h = (%x. LList_corec x f)" by (simp add: LList_corec_unique LList_corec) subsubsection{*Obsolete proof of @{text LList_corec_unique}: complete induction, not coinduction *} lemma ntrunc_one_CONS [simp]: "ntrunc (Suc 0) (CONS M N) = {}" by (simp add: CONS_def ntrunc_one_In1) lemma ntrunc_CONS [simp]: "ntrunc (Suc(Suc(k))) (CONS M N) = CONS (ntrunc k M) (ntrunc k N)" by (simp add: CONS_def) lemma assumes prem1: "!!x. h1 x = (case f x of None => NIL | Some(z,w) => CONS z (h1 w))" and prem2: "!!x. h2 x = (case f x of None => NIL | Some(z,w) => CONS z (h2 w))" shows "h1=h2" apply (rule ntrunc_equality [THEN ext]) apply (rule_tac x = x in spec) apply (induct_tac "k" rule: nat_less_induct) apply (rename_tac "n") apply (rule allI) apply (subst prem1) apply (subst prem2, simp) apply (intro strip) apply (case_tac "n") apply (rename_tac [2] "m") apply (case_tac [2] "m", simp_all) done subsection{*Lconst: defined directly by @{text lfp} *} text{*But it could be defined by corecursion.*} lemma Lconst_fun_mono: "mono(CONS(M))" apply (rule monoI subset_refl CONS_mono)+ apply assumption done text{* @{text "Lconst(M) = CONS M (Lconst M)"} *} lemmas Lconst = Lconst_fun_mono [THEN Lconst_def [THEN def_lfp_unfold]] text{*A typical use of co-induction to show membership in the gfp. The containing set is simply the singleton @{text "{Lconst(M)}"}. *} lemma Lconst_type: "M∈A ==> Lconst(M): llist(A)" apply (rule singletonI [THEN llist_coinduct], safe) apply (rule_tac P = "%u. u ∈ ?A" in Lconst [THEN ssubst]) apply (assumption | rule list_Fun_CONS_I singletonI UnI1)+ done lemma Lconst_eq_LList_corec: "Lconst(M) = LList_corec M (%x. Some(x,x))" apply (rule equals_LList_corec [THEN fun_cong], simp) apply (rule Lconst) done text{*Thus we could have used gfp in the definition of Lconst*} lemma gfp_Lconst_eq_LList_corec: "gfp(%N. CONS M N) = LList_corec M (%x. Some(x,x))" apply (rule equals_LList_corec [THEN fun_cong], simp) apply (rule Lconst_fun_mono [THEN gfp_unfold]) done subsection{* Isomorphisms *} lemma LListI: "x ∈ llist (range Leaf) ==> x ∈ LList" by (simp add: LList_def) lemma LListD: "x ∈ LList ==> x ∈ llist (range Leaf)" by (simp add: LList_def) subsubsection{* Distinctness of constructors *} lemma LCons_not_LNil [iff]: "~ LCons x xs = LNil" apply (simp add: LNil_def LCons_def) apply (subst Abs_LList_inject) apply (rule llist.intros CONS_not_NIL rangeI LListI Rep_LList [THEN LListD])+ done lemmas LNil_not_LCons [iff] = LCons_not_LNil [THEN not_sym, standard] subsubsection{* llist constructors *} lemma Rep_LList_LNil: "Rep_LList LNil = NIL" apply (simp add: LNil_def) apply (rule llist.NIL_I [THEN LListI, THEN Abs_LList_inverse]) done lemma Rep_LList_LCons: "Rep_LList(LCons x l) = CONS (Leaf x) (Rep_LList l)" apply (simp add: LCons_def) apply (rule llist.CONS_I [THEN LListI, THEN Abs_LList_inverse] rangeI Rep_LList [THEN LListD])+ done subsubsection{* Injectiveness of @{text CONS} and @{text LCons} *} lemma CONS_CONS_eq2: "(CONS M N=CONS M' N') = (M=M' & N=N')" apply (simp add: CONS_def) done lemmas CONS_inject = CONS_CONS_eq [THEN iffD1, THEN conjE, standard] text{*For reasoning about abstract llist constructors*} declare Rep_LList [THEN LListD, intro] LListI [intro] declare llist.intros [intro] lemma LCons_LCons_eq [iff]: "(LCons x xs=LCons y ys) = (x=y & xs=ys)" apply (simp add: LCons_def) apply (subst Abs_LList_inject) apply (auto simp add: Rep_LList_inject) done lemma CONS_D2: "CONS M N ∈ llist(A) ==> M ∈ A & N ∈ llist(A)" apply (erule llist.cases) apply (erule CONS_neq_NIL, fast) done subsection{* Reasoning about @{text "llist(A)"} *} text{*A special case of @{text list_equality} for functions over lazy lists*} lemma LList_fun_equalityI: "[| M ∈ llist(A); g(NIL): llist(A); f(NIL)=g(NIL); !!x l. [| x∈A; l ∈ llist(A) |] ==> (f(CONS x l),g(CONS x l)) ∈ LListD_Fun (diag A) ((%u.(f(u),g(u)))`llist(A) Un diag(llist(A))) |] ==> f(M) = g(M)" apply (rule LList_equalityI) apply (erule imageI) apply (rule image_subsetI) apply (erule_tac a=x in llist.cases) apply (erule ssubst, erule ssubst, erule LListD_Fun_diag_I, blast) done subsection{* The functional @{text Lmap} *} lemma Lmap_NIL [simp]: "Lmap f NIL = NIL" by (rule Lmap_def [THEN def_LList_corec, THEN trans], simp) lemma Lmap_CONS [simp]: "Lmap f (CONS M N) = CONS (f M) (Lmap f N)" by (rule Lmap_def [THEN def_LList_corec, THEN trans], simp) text{*Another type-checking proof by coinduction*} lemma Lmap_type: "[| M ∈ llist(A); !!x. x∈A ==> f(x):B |] ==> Lmap f M ∈ llist(B)" apply (erule imageI [THEN llist_coinduct], safe) apply (erule llist.cases, simp_all) done text{*This type checking rule synthesises a sufficiently large set for @{text f}*} lemma Lmap_type2: "M ∈ llist(A) ==> Lmap f M ∈ llist(f`A)" apply (erule Lmap_type) apply (erule imageI) done subsubsection{* Two easy results about @{text Lmap} *} lemma Lmap_compose: "M ∈ llist(A) ==> Lmap (f o g) M = Lmap f (Lmap g M)" apply (simp add: o_def) apply (drule imageI) apply (erule LList_equalityI, safe) apply (erule llist.cases, simp_all) apply (rule LListD_Fun_NIL_I imageI UnI1 rangeI [THEN LListD_Fun_CONS_I, of _ _ _ f])+ apply assumption done lemma Lmap_ident: "M ∈ llist(A) ==> Lmap (%x. x) M = M" apply (drule imageI) apply (erule LList_equalityI, safe) apply (erule llist.cases, simp_all) apply (rule LListD_Fun_NIL_I imageI UnI1 rangeI [THEN LListD_Fun_CONS_I, of _ _ _ "%x. x"])+ apply assumption done subsection{* @{text Lappend} -- its two arguments cause some complications! *} lemma Lappend_NIL_NIL [simp]: "Lappend NIL NIL = NIL" apply (simp add: Lappend_def) apply (rule LList_corec [THEN trans], simp) done lemma Lappend_NIL_CONS [simp]: "Lappend NIL (CONS N N') = CONS N (Lappend NIL N')" apply (simp add: Lappend_def) apply (rule LList_corec [THEN trans], simp) done lemma Lappend_CONS [simp]: "Lappend (CONS M M') N = CONS M (Lappend M' N)" apply (simp add: Lappend_def) apply (rule LList_corec [THEN trans], simp) done declare llist.intros [simp] LListD_Fun_CONS_I [simp] range_eqI [simp] image_eqI [simp] lemma Lappend_NIL [simp]: "M ∈ llist(A) ==> Lappend NIL M = M" by (erule LList_fun_equalityI, simp_all) lemma Lappend_NIL2: "M ∈ llist(A) ==> Lappend M NIL = M" by (erule LList_fun_equalityI, simp_all) subsubsection{* Alternative type-checking proofs for @{text Lappend} *} text{*weak co-induction: bisimulation and case analysis on both variables*} lemma Lappend_type: "[| M ∈ llist(A); N ∈ llist(A) |] ==> Lappend M N ∈ llist(A)" apply (rule_tac X = "\<Union>u∈llist (A) . \<Union>v ∈ llist (A) . {Lappend u v}" in llist_coinduct) apply fast apply safe apply (erule_tac a = u in llist.cases) apply (erule_tac a = v in llist.cases, simp_all, blast) done text{*strong co-induction: bisimulation and case analysis on one variable*} lemma Lappend_type': "[| M ∈ llist(A); N ∈ llist(A) |] ==> Lappend M N ∈ llist(A)" apply (rule_tac X = "(%u. Lappend u N) `llist (A)" in llist_coinduct) apply (erule imageI) apply (rule image_subsetI) apply (erule_tac a = x in llist.cases) apply (simp add: list_Fun_llist_I, simp) done subsection{* Lazy lists as the type @{text "'a llist"} -- strongly typed versions of above *} subsubsection{* @{text llist_case}: case analysis for @{text "'a llist"} *} declare LListI [THEN Abs_LList_inverse, simp] declare Rep_LList_inverse [simp] declare Rep_LList [THEN LListD, simp] declare rangeI [simp] inj_Leaf [simp] lemma llist_case_LNil [simp]: "llist_case c d LNil = c" by (simp add: llist_case_def LNil_def) lemma llist_case_LCons [simp]: "llist_case c d (LCons M N) = d M N" by (simp add: llist_case_def LCons_def) text{*Elimination is case analysis, not induction.*} lemma llistE: "[| l=LNil ==> P; !!x l'. l=LCons x l' ==> P |] ==> P" apply (rule Rep_LList [THEN LListD, THEN llist.cases]) apply (simp add: Rep_LList_LNil [symmetric] Rep_LList_inject, blast) apply (erule LListI [THEN Rep_LList_cases], clarify) apply (simp add: Rep_LList_LCons [symmetric] Rep_LList_inject, blast) done subsubsection{* @{text llist_corec}: corecursion for @{text "'a llist"} *} text{*Lemma for the proof of @{text llist_corec}*} lemma LList_corec_type2: "LList_corec a (%z. case f z of None => None | Some(v,w) => Some(Leaf(v),w)) ∈ llist(range Leaf)" apply (rule_tac X = "range (%x. LList_corec x ?g)" in llist_coinduct) apply (rule rangeI, safe) apply (subst LList_corec, force) done lemma llist_corec: "llist_corec a f = (case f a of None => LNil | Some(z,w) => LCons z (llist_corec w f))" apply (unfold llist_corec_def LNil_def LCons_def) apply (subst LList_corec) apply (case_tac "f a") apply (simp add: LList_corec_type2) apply (force simp add: LList_corec_type2) done text{*definitional version of same*} lemma def_llist_corec: "[| !!x. h(x) = llist_corec x f |] ==> h(a) = (case f a of None => LNil | Some(z,w) => LCons z (h w))" by (simp add: llist_corec) subsection{* Proofs about type @{text "'a llist"} functions *} subsection{* Deriving @{text llist_equalityI} -- @{text llist} equality is a bisimulation *} lemma LListD_Fun_subset_Times_llist: "r ⊆ (llist A) <*> (llist A) ==> LListD_Fun (diag A) r ⊆ (llist A) <*> (llist A)" by (auto simp add: LListD_Fun_def) lemma subset_Times_llist: "prod_fun Rep_LList Rep_LList ` r ⊆ (llist(range Leaf)) <*> (llist(range Leaf))" by (blast intro: Rep_LList [THEN LListD]) lemma prod_fun_lemma: "r ⊆ (llist(range Leaf)) <*> (llist(range Leaf)) ==> prod_fun (Rep_LList o Abs_LList) (Rep_LList o Abs_LList) ` r ⊆ r" apply safe apply (erule subsetD [THEN SigmaE2], assumption) apply (simp add: LListI [THEN Abs_LList_inverse]) done lemma prod_fun_range_eq_diag: "prod_fun Rep_LList Rep_LList ` range(%x. (x, x)) = diag(llist(range Leaf))" apply (rule equalityI, blast) apply (fast elim: LListI [THEN Abs_LList_inverse, THEN subst]) done text{*Used with @{text lfilter}*} lemma llistD_Fun_mono: "A⊆B ==> llistD_Fun A ⊆ llistD_Fun B" apply (simp add: llistD_Fun_def prod_fun_def, auto) apply (rule image_eqI) prefer 2 apply (blast intro: rev_subsetD [OF _ LListD_Fun_mono], force) done subsubsection{* To show two llists are equal, exhibit a bisimulation! [also admits true equality] *} lemma llist_equalityI: "[| (l1,l2) ∈ r; r ⊆ llistD_Fun(r Un range(%x.(x,x))) |] ==> l1=l2" apply (simp add: llistD_Fun_def) apply (rule Rep_LList_inject [THEN iffD1]) apply (rule_tac r = "prod_fun Rep_LList Rep_LList `r" and A = "range (Leaf)" in LList_equalityI) apply (erule prod_fun_imageI) apply (erule image_mono [THEN subset_trans]) apply (rule image_compose [THEN subst]) apply (rule prod_fun_compose [THEN subst]) apply (subst image_Un) apply (subst prod_fun_range_eq_diag) apply (rule LListD_Fun_subset_Times_llist [THEN prod_fun_lemma]) apply (rule subset_Times_llist [THEN Un_least]) apply (rule diag_subset_Times) done subsubsection{* Rules to prove the 2nd premise of @{text llist_equalityI} *} lemma llistD_Fun_LNil_I [simp]: "(LNil,LNil) ∈ llistD_Fun(r)" apply (simp add: llistD_Fun_def LNil_def) apply (rule LListD_Fun_NIL_I [THEN prod_fun_imageI]) done lemma llistD_Fun_LCons_I [simp]: "(l1,l2):r ==> (LCons x l1, LCons x l2) ∈ llistD_Fun(r)" apply (simp add: llistD_Fun_def LCons_def) apply (rule rangeI [THEN LListD_Fun_CONS_I, THEN prod_fun_imageI]) apply (erule prod_fun_imageI) done text{*Utilise the "strong" part, i.e. @{text "gfp(f)"}*} lemma llistD_Fun_range_I: "(l,l) ∈ llistD_Fun(r Un range(%x.(x,x)))" apply (simp add: llistD_Fun_def) apply (rule Rep_LList_inverse [THEN subst]) apply (rule prod_fun_imageI) apply (subst image_Un) apply (subst prod_fun_range_eq_diag) apply (rule Rep_LList [THEN LListD, THEN LListD_Fun_diag_I]) done text{*A special case of @{text list_equality} for functions over lazy lists*} lemma llist_fun_equalityI: "[| f(LNil)=g(LNil); !!x l. (f(LCons x l),g(LCons x l)) ∈ llistD_Fun(range(%u. (f(u),g(u))) Un range(%v. (v,v))) |] ==> f(l) = (g(l :: 'a llist) :: 'b llist)" apply (rule_tac r = "range (%u. (f (u),g (u)))" in llist_equalityI) apply (rule rangeI, clarify) apply (rule_tac l = u in llistE) apply (simp_all add: llistD_Fun_range_I) done subsection{* The functional @{text lmap} *} lemma lmap_LNil [simp]: "lmap f LNil = LNil" by (rule lmap_def [THEN def_llist_corec, THEN trans], simp) lemma lmap_LCons [simp]: "lmap f (LCons M N) = LCons (f M) (lmap f N)" by (rule lmap_def [THEN def_llist_corec, THEN trans], simp) subsubsection{* Two easy results about @{text lmap} *} lemma lmap_compose [simp]: "lmap (f o g) l = lmap f (lmap g l)" by (rule_tac l = l in llist_fun_equalityI, simp_all) lemma lmap_ident [simp]: "lmap (%x. x) l = l" by (rule_tac l = l in llist_fun_equalityI, simp_all) subsection{* iterates -- @{text llist_fun_equalityI} cannot be used! *} lemma iterates: "iterates f x = LCons x (iterates f (f x))" by (rule iterates_def [THEN def_llist_corec, THEN trans], simp) lemma lmap_iterates [simp]: "lmap f (iterates f x) = iterates f (f x)" apply (rule_tac r = "range (%u. (lmap f (iterates f u),iterates f (f u)))" in llist_equalityI) apply (rule rangeI, safe) apply (rule_tac x1 = "f (u)" in iterates [THEN ssubst]) apply (rule_tac x1 = u in iterates [THEN ssubst], simp) done lemma iterates_lmap: "iterates f x = LCons x (lmap f (iterates f x))" apply (subst lmap_iterates) apply (rule iterates) done subsection{* A rather complex proof about iterates -- cf Andy Pitts *} subsubsection{* Two lemmas about @{text "natrec n x (%m. g)"}, which is essentially @{text "(g^n)(x)"} *} lemma fun_power_lmap: "nat_rec (LCons b l) (%m. lmap(f)) n = LCons (nat_rec b (%m. f) n) (nat_rec l (%m. lmap(f)) n)" by (induct_tac "n", simp_all) lemma fun_power_Suc: "nat_rec (g x) (%m. g) n = nat_rec x (%m. g) (Suc n)" by (induct_tac "n", simp_all) lemmas Pair_cong = refl [THEN cong, THEN cong, of concl: Pair] text{*The bisimulation consists of @{text "{(lmap(f)^n (h(u)), lmap(f)^n (iterates(f,u)))}"} for all @{text u} and all @{text "n::nat"}.*} lemma iterates_equality: "(!!x. h(x) = LCons x (lmap f (h x))) ==> h = iterates(f)" apply (rule ext) apply (rule_tac r = "\<Union>u. range (%n. (nat_rec (h u) (%m y. lmap f y) n, nat_rec (iterates f u) (%m y. lmap f y) n))" in llist_equalityI) apply (rule UN1_I range_eqI Pair_cong nat_rec_0 [symmetric])+ apply clarify apply (subst iterates, atomize) apply (drule_tac x=u in spec) apply (erule ssubst) apply (subst fun_power_lmap) apply (subst fun_power_lmap) apply (rule llistD_Fun_LCons_I) apply (rule lmap_iterates [THEN subst]) apply (subst fun_power_Suc) apply (subst fun_power_Suc, blast) done subsection{* @{text lappend} -- its two arguments cause some complications! *} lemma lappend_LNil_LNil [simp]: "lappend LNil LNil = LNil" apply (simp add: lappend_def) apply (rule llist_corec [THEN trans], simp) done lemma lappend_LNil_LCons [simp]: "lappend LNil (LCons l l') = LCons l (lappend LNil l')" apply (simp add: lappend_def) apply (rule llist_corec [THEN trans], simp) done lemma lappend_LCons [simp]: "lappend (LCons l l') N = LCons l (lappend l' N)" apply (simp add: lappend_def) apply (rule llist_corec [THEN trans], simp) done lemma lappend_LNil [simp]: "lappend LNil l = l" by (rule_tac l = l in llist_fun_equalityI, simp_all) lemma lappend_LNil2 [simp]: "lappend l LNil = l" by (rule_tac l = l in llist_fun_equalityI, simp_all) text{*The infinite first argument blocks the second*} lemma lappend_iterates [simp]: "lappend (iterates f x) N = iterates f x" apply (rule_tac r = "range (%u. (lappend (iterates f u) N,iterates f u))" in llist_equalityI) apply (rule rangeI, safe) apply (subst (1 2) iterates) apply simp done subsubsection{* Two proofs that @{text lmap} distributes over lappend *} text{*Long proof requiring case analysis on both both arguments*} lemma lmap_lappend_distrib: "lmap f (lappend l n) = lappend (lmap f l) (lmap f n)" apply (rule_tac r = "\<Union>n. range (%l. (lmap f (lappend l n), lappend (lmap f l) (lmap f n)))" in llist_equalityI) apply (rule UN1_I) apply (rule rangeI, safe) apply (rule_tac l = l in llistE) apply (rule_tac l = n in llistE, simp_all) apply (blast intro: llistD_Fun_LCons_I) done text{*Shorter proof of theorem above using @{text llist_equalityI} as strong coinduction*} lemma lmap_lappend_distrib': "lmap f (lappend l n) = lappend (lmap f l) (lmap f n)" by (rule_tac l = l in llist_fun_equalityI, auto) text{*Without strong coinduction, three case analyses might be needed*} lemma lappend_assoc': "lappend (lappend l1 l2) l3 = lappend l1 (lappend l2 l3)" by (rule_tac l = l1 in llist_fun_equalityI, auto) end
lemma UN1_I:
b ∈ B a ==> b ∈ (UN x. B x)
lemma llist_mono:
A ⊆ B ==> llist A ⊆ llist B
lemma llist_unfold:
llist A = usum {Numb 0} (uprod A (llist A))
lemma llist_coinduct:
[| M ∈ X; X ⊆ list_Fun A (X ∪ llist A) |] ==> M ∈ llist A
lemma list_Fun_NIL_I:
NIL ∈ list_Fun A X
lemma list_Fun_CONS_I:
[| M ∈ A; N ∈ X |] ==> CONS M N ∈ list_Fun A X
lemma list_Fun_llist_I:
M ∈ llist A ==> M ∈ list_Fun A (X ∪ llist A)
lemma CONS_UN1:
CONS M (UN x. f x) = (UN x. CONS M (f x))
lemma CONS_mono:
[| M ⊆ M'; N ⊆ N' |] ==> CONS M N ⊆ CONS M' N'
lemma LList_corec_subset1:
LList_corec a f
⊆ (case f a of None => NIL | Some (z, w) => CONS z (LList_corec w f))
lemma LList_corec_subset2:
(case f a of None => NIL | Some (z, w) => CONS z (LList_corec w f))
⊆ LList_corec a f
lemma LList_corec:
LList_corec a f =
(case f a of None => NIL | Some (z, w) => CONS z (LList_corec w f))
lemma def_LList_corec:
(!!x. h x = LList_corec x f)
==> h a = (case f a of None => NIL | Some (z, w) => CONS z (h w))
lemma LList_corec_type:
LList_corec a f ∈ llist UNIV
lemma LListD_unfold:
LListD r = dsum (diag {Numb 0}) (dprod r (LListD r))
lemma LListD_implies_ntrunc_equality:
(M, N) ∈ LListD (diag A) ==> ntrunc k M = ntrunc k N
lemma Domain_LListD:
Domain (LListD (diag A)) ⊆ llist A
lemma LListD_subset_diag:
LListD (diag A) ⊆ diag (llist A)
lemma LListD_Fun_mono:
A ⊆ B ==> LListD_Fun r A ⊆ LListD_Fun r B
lemma LListD_coinduct:
[| M ∈ X; X ⊆ LListD_Fun r (X ∪ LListD r) |] ==> M ∈ LListD r
lemma LListD_Fun_NIL_I:
(NIL, NIL) ∈ LListD_Fun r s
lemma LListD_Fun_CONS_I:
[| x ∈ A; (M, N) ∈ s |] ==> (CONS x M, CONS x N) ∈ LListD_Fun (diag A) s
lemma LListD_Fun_LListD_I:
M ∈ LListD r ==> M ∈ LListD_Fun r (X ∪ LListD r)
lemma diag_subset_LListD:
diag (llist A) ⊆ LListD (diag A)
lemma LListD_eq_diag:
LListD (diag A) = diag (llist A)
lemma LListD_Fun_diag_I:
M ∈ llist A ==> (M, M) ∈ LListD_Fun (diag A) (X ∪ diag (llist A))
lemma LList_equalityI:
[| (M, N) ∈ r; r ⊆ LListD_Fun (diag A) (r ∪ diag (llist A)) |] ==> M = N
lemma LList_corec_unique:
[| !!x. h1.0 x = (case f x of None => NIL | Some (z, w) => CONS z (h1.0 w));
!!x. h2.0 x = (case f x of None => NIL | Some (z, w) => CONS z (h2.0 w)) |]
==> h1.0 = h2.0
lemma equals_LList_corec:
(!!x. h x = (case f x of None => NIL | Some (z, w) => CONS z (h w)))
==> h = (λx. LList_corec x f)
lemma ntrunc_one_CONS:
ntrunc (Suc 0) (CONS M N) = {}
lemma ntrunc_CONS:
ntrunc (Suc (Suc k)) (CONS M N) = CONS (ntrunc k M) (ntrunc k N)
lemma
[| !!x. h1.0 x = (case f x of None => NIL | Some (z, w) => CONS z (h1.0 w));
!!x. h2.0 x = (case f x of None => NIL | Some (z, w) => CONS z (h2.0 w)) |]
==> h1.0 = h2.0
lemma Lconst_fun_mono:
mono (CONS M)
lemma Lconst:
Lconst M1 = CONS M1 (Lconst M1)
lemma Lconst_type:
M ∈ A ==> Lconst M ∈ llist A
lemma Lconst_eq_LList_corec:
Lconst M = LList_corec M (λx. Some (x, x))
lemma gfp_Lconst_eq_LList_corec:
gfp (CONS M) = LList_corec M (λx. Some (x, x))
lemma LListI:
x ∈ llist (range Leaf) ==> x ∈ LList
lemma LListD:
x ∈ LList ==> x ∈ llist (range Leaf)
lemma LCons_not_LNil:
LCons x xs ≠ LNil
lemma LNil_not_LCons:
LNil ≠ LCons x xs
lemma Rep_LList_LNil:
Rep_LList LNil = NIL
lemma Rep_LList_LCons:
Rep_LList (LCons x l) = CONS (Leaf x) (Rep_LList l)
lemma CONS_CONS_eq2:
(CONS M N = CONS M' N') = (M = M' ∧ N = N')
lemma CONS_inject:
[| CONS K M = CONS L N; [| K = L; M = N |] ==> R |] ==> R
lemma LCons_LCons_eq:
(LCons x xs = LCons y ys) = (x = y ∧ xs = ys)
lemma CONS_D2:
CONS M N ∈ llist A ==> M ∈ A ∧ N ∈ llist A
lemma LList_fun_equalityI:
[| M ∈ llist A; g NIL ∈ llist A; f NIL = g NIL;
!!x l. [| x ∈ A; l ∈ llist A |]
==> (f (CONS x l), g (CONS x l))
∈ LListD_Fun (diag A)
((λu. (f u, g u)) ` llist A ∪ diag (llist A)) |]
==> f M = g M
lemma Lmap_NIL:
Lmap f NIL = NIL
lemma Lmap_CONS:
Lmap f (CONS M N) = CONS (f M) (Lmap f N)
lemma Lmap_type:
[| M ∈ llist A; !!x. x ∈ A ==> f x ∈ B |] ==> Lmap f M ∈ llist B
lemma Lmap_type2:
M ∈ llist A ==> Lmap f M ∈ llist (f ` A)
lemma Lmap_compose:
M ∈ llist A ==> Lmap (f o g) M = Lmap f (Lmap g M)
lemma Lmap_ident:
M ∈ llist A ==> Lmap (λx. x) M = M
lemma Lappend_NIL_NIL:
Lappend NIL NIL = NIL
lemma Lappend_NIL_CONS:
Lappend NIL (CONS N N') = CONS N (Lappend NIL N')
lemma Lappend_CONS:
Lappend (CONS M M') N = CONS M (Lappend M' N)
lemma Lappend_NIL:
M ∈ llist A ==> Lappend NIL M = M
lemma Lappend_NIL2:
M ∈ llist A ==> Lappend M NIL = M
lemma Lappend_type:
[| M ∈ llist A; N ∈ llist A |] ==> Lappend M N ∈ llist A
lemma Lappend_type':
[| M ∈ llist A; N ∈ llist A |] ==> Lappend M N ∈ llist A
lemma llist_case_LNil:
llist_case c d LNil = c
lemma llist_case_LCons:
llist_case c d (LCons M N) = d M N
lemma llistE:
[| l = LNil ==> P; !!x l'. l = LCons x l' ==> P |] ==> P
lemma LList_corec_type2:
LList_corec a (λz. case f z of None => None | Some (v, w) => Some (Leaf v, w))
∈ llist (range Leaf)
lemma llist_corec:
llist_corec a f =
(case f a of None => LNil | Some (z, w) => LCons z (llist_corec w f))
lemma def_llist_corec:
(!!x. h x = llist_corec x f)
==> h a = (case f a of None => LNil | Some (z, w) => LCons z (h w))
lemma LListD_Fun_subset_Times_llist:
r ⊆ llist A × llist A ==> LListD_Fun (diag A) r ⊆ llist A × llist A
lemma subset_Times_llist:
prod_fun Rep_LList Rep_LList ` r ⊆ llist (range Leaf) × llist (range Leaf)
lemma prod_fun_lemma:
r ⊆ llist (range Leaf) × llist (range Leaf)
==> prod_fun (Rep_LList o Abs_LList) (Rep_LList o Abs_LList) ` r ⊆ r
lemma prod_fun_range_eq_diag:
prod_fun Rep_LList Rep_LList ` range (λx. (x, x)) = diag (llist (range Leaf))
lemma llistD_Fun_mono:
A ⊆ B ==> llistD_Fun A ⊆ llistD_Fun B
lemma llist_equalityI:
[| (l1.0, l2.0) ∈ r; r ⊆ llistD_Fun (r ∪ range (λx. (x, x))) |] ==> l1.0 = l2.0
lemma llistD_Fun_LNil_I:
(LNil, LNil) ∈ llistD_Fun r
lemma llistD_Fun_LCons_I:
(l1.0, l2.0) ∈ r ==> (LCons x l1.0, LCons x l2.0) ∈ llistD_Fun r
lemma llistD_Fun_range_I:
(l, l) ∈ llistD_Fun (r ∪ range (λx. (x, x)))
lemma llist_fun_equalityI:
[| f LNil = g LNil;
!!x l. (f (LCons x l), g (LCons x l))
∈ llistD_Fun (range (λu. (f u, g u)) ∪ range (λv. (v, v))) |]
==> f l = g l
lemma lmap_LNil:
lmap f LNil = LNil
lemma lmap_LCons:
lmap f (LCons M N) = LCons (f M) (lmap f N)
lemma lmap_compose:
lmap (f o g) l = lmap f (lmap g l)
lemma lmap_ident:
lmap (λx. x) l = l
lemma iterates:
iterates f x = LCons x (iterates f (f x))
lemma lmap_iterates:
lmap f (iterates f x) = iterates f (f x)
lemma iterates_lmap:
iterates f x = LCons x (lmap f (iterates f x))
lemma fun_power_lmap:
nat_rec (LCons b l) (λm. lmap f) n =
LCons (nat_rec b (λm. f) n) (nat_rec l (λm. lmap f) n)
lemma fun_power_Suc:
nat_rec (g x) (λm. g) n = nat_rec x (λm. g) (Suc n)
lemma Pair_cong:
[| x1 = y1; x = y |] ==> (x1, x) = (y1, y)
lemma iterates_equality:
(!!x. h x = LCons x (lmap f (h x))) ==> h = iterates f
lemma lappend_LNil_LNil:
lappend LNil LNil = LNil
lemma lappend_LNil_LCons:
lappend LNil (LCons l l') = LCons l (lappend LNil l')
lemma lappend_LCons:
lappend (LCons l l') N = LCons l (lappend l' N)
lemma lappend_LNil:
lappend LNil l = l
lemma lappend_LNil2:
lappend l LNil = l
lemma lappend_iterates:
lappend (iterates f x) N = iterates f x
lemma lmap_lappend_distrib:
lmap f (lappend l n) = lappend (lmap f l) (lmap f n)
lemma lmap_lappend_distrib':
lmap f (lappend l n) = lappend (lmap f l) (lmap f n)
lemma lappend_assoc':
lappend (lappend l1.0 l2.0) l3.0 = lappend l1.0 (lappend l2.0 l3.0)