Theory Denotational

Up to index of Isabelle/HOLCF/IMP

theory Denotational
imports HOLCF Natural
begin

(*  Title:      HOLCF/IMP/Denotational.thy
    ID:         $Id: Denotational.thy,v 1.15 2008/03/27 16:21:41 wenzelm Exp $
    Author:     Tobias Nipkow and Robert Sandner, TUM
    Copyright   1996 TUM
*)

header "Denotational Semantics of Commands in HOLCF"

theory Denotational imports HOLCF "../../HOL/IMP/Natural" begin

subsection "Definition"

definition
  dlift :: "(('a::type) discr -> 'b::pcpo) => ('a lift -> 'b)" where
  "dlift f = (LAM x. case x of UU => UU | Def y => f·(Discr y))"

consts D :: "com => state discr -> state lift"

primrec
  "D(\<SKIP>) = (LAM s. Def(undiscr s))"
  "D(X :== a) = (LAM s. Def((undiscr s)[X \<mapsto> a(undiscr s)]))"
  "D(c0 ; c1) = (dlift(D c1) oo (D c0))"
  "D(\<IF> b \<THEN> c1 \<ELSE> c2) =
        (LAM s. if b (undiscr s) then (D c1)·s else (D c2)·s)"
  "D(\<WHILE> b \<DO> c) =
        fix·(LAM w s. if b (undiscr s) then (dlift w)·((D c)·s)
                      else Def(undiscr s))"

subsection
  "Equivalence of Denotational Semantics in HOLCF and Evaluation Semantics in HOL"

lemma dlift_Def [simp]: "dlift f·(Def x) = f·(Discr x)"
  by (simp add: dlift_def)

lemma cont_dlift [iff]: "cont (%f. dlift f)"
  by (simp add: dlift_def)

lemma dlift_is_Def [simp]:
    "(dlift f·l = Def y) = (∃x. l = Def x ∧ f·(Discr x) = Def y)"
  by (simp add: dlift_def split: lift.split)

lemma eval_implies_D: "⟨c,s⟩ -->c t ==> D c·(Discr s) = (Def t)"
  apply (induct set: evalc)
        apply simp_all
   apply (subst fix_eq)
   apply simp
  apply (subst fix_eq)
  apply simp
  done

lemma D_implies_eval: "!s t. D c·(Discr s) = (Def t) --> ⟨c,s⟩ -->c t"
  apply (induct c)
      apply simp
     apply simp
    apply force
   apply (simp (no_asm))
   apply force
  apply (simp (no_asm))
  apply (rule fix_ind)
    apply (fast intro!: adm_lemmas adm_chfindom ax_flat)
   apply (simp (no_asm))
  apply (simp (no_asm))
  apply safe
  apply fast
  done

theorem D_is_eval: "(D c·(Discr s) = (Def t)) = (⟨c,s⟩ -->c t)"
  by (fast elim!: D_implies_eval [rule_format] eval_implies_D)

end

Definition

Equivalence of Denotational Semantics in HOLCF and Evaluation Semantics in HOL

lemma dlift_Def:

  dlift f·(Def x) = f·(Discr x)

lemma cont_dlift:

  cont dlift

lemma dlift_is_Def:

  (dlift f·l = Def y) = (∃x. l = Def xf·(Discr x) = Def y)

lemma eval_implies_D:

  c,s -->c t ==> D c·(Discr s) = Def t

lemma D_implies_eval:

  s t. D c·(Discr s) = Def t --> c,s -->c t

theorem D_is_eval:

  (D c·(Discr s) = Def t) = c,s -->c t