Theory Reach

Up to index of Isabelle/HOL/UNITY

theory Reach
imports UNITY_Main
begin

(*  Title:      HOL/UNITY/Reach.thy
    ID:         $Id: Reach.thy,v 1.14 2008/05/07 08:59:40 berghofe Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1998  University of Cambridge

Reachability in Directed Graphs.  From Chandy and Misra, section 6.4.
        [this example took only four days!]
*)

theory Reach imports "../UNITY_Main" begin

typedecl vertex

types    state = "vertex=>bool"

consts
  init ::  "vertex"

  edges :: "(vertex*vertex) set"

constdefs

  asgt  :: "[vertex,vertex] => (state*state) set"
    "asgt u v == {(s,s'). s' = s(v:= s u | s v)}"

  Rprg :: "state program"
    "Rprg == mk_total_program ({%v. v=init}, \<Union>(u,v)∈edges. {asgt u v}, UNIV)"

  reach_invariant :: "state set"
    "reach_invariant == {s. (∀v. s v --> (init, v) ∈ edges^*) & s init}"

  fixedpoint :: "state set"
    "fixedpoint == {s. ∀(u,v)∈edges. s u --> s v}"

  metric :: "state => nat"
    "metric s == card {v. ~ s v}"


text{**We assume that the set of vertices is finite*}
axioms 
  finite_graph:  "finite (UNIV :: vertex set)"
  



(*TO SIMPDATA.ML??  FOR CLASET??  *)
lemma ifE [elim!]:
    "[| if P then Q else R;     
        [| P;   Q |] ==> S;     
        [| ~ P; R |] ==> S |] ==> S"
by (simp split: split_if_asm) 


declare Rprg_def [THEN def_prg_Init, simp]

declare asgt_def [THEN def_act_simp,simp]

text{*All vertex sets are finite*}
declare finite_subset [OF subset_UNIV finite_graph, iff]

declare reach_invariant_def [THEN def_set_simp, simp]

lemma reach_invariant: "Rprg ∈ Always reach_invariant"
apply (rule AlwaysI, force) 
apply (unfold Rprg_def, safety) 
apply (blast intro: rtrancl_trans)
done


(*** Fixedpoint ***)

(*If it reaches a fixedpoint, it has found a solution*)
lemma fixedpoint_invariant_correct: 
     "fixedpoint ∩ reach_invariant = { %v. (init, v) ∈ edges^* }"
apply (unfold fixedpoint_def)
apply (rule equalityI)
apply (auto intro!: ext)
apply (erule rtrancl_induct, auto)
done

lemma lemma1: 
     "FP Rprg ⊆ fixedpoint"
apply (simp add: FP_def fixedpoint_def Rprg_def mk_total_program_def)
apply (auto simp add: stable_def constrains_def)
apply (drule bspec, assumption)
apply (simp add: Image_singleton image_iff)
apply (drule fun_cong, auto)
done

lemma lemma2: 
     "fixedpoint ⊆ FP Rprg"
apply (simp add: FP_def fixedpoint_def Rprg_def mk_total_program_def)
apply (auto intro!: ext simp add: stable_def constrains_def)
done

lemma FP_fixedpoint: "FP Rprg = fixedpoint"
by (rule equalityI [OF lemma1 lemma2])


(*If we haven't reached a fixedpoint then there is some edge for which u but
  not v holds.  Progress will be proved via an ENSURES assertion that the
  metric will decrease for each suitable edge.  A union over all edges proves
  a LEADSTO assertion that the metric decreases if we are not at a fixedpoint.
  *)

lemma Compl_fixedpoint: "- fixedpoint = (\<Union>(u,v)∈edges. {s. s u & ~ s v})"
apply (simp add: FP_fixedpoint [symmetric] Rprg_def mk_total_program_def)
apply (rule subset_antisym)
apply (auto simp add: Compl_FP UN_UN_flatten del: subset_antisym)
 apply (rule fun_upd_idem, force)
apply (force intro!: rev_bexI simp add: fun_upd_idem_iff)
done

lemma Diff_fixedpoint:
     "A - fixedpoint = (\<Union>(u,v)∈edges. A ∩ {s. s u & ~ s v})"
by (simp add: Diff_eq Compl_fixedpoint, blast)


(*** Progress ***)

lemma Suc_metric: "~ s x ==> Suc (metric (s(x:=True))) = metric s"
apply (unfold metric_def)
apply (subgoal_tac "{v. ~ (s (x:=True)) v} = {v. ~ s v} - {x}")
 prefer 2 apply force
apply (simp add: card_Suc_Diff1 del:card_Diff_insert)
done

lemma metric_less [intro!]: "~ s x ==> metric (s(x:=True)) < metric s"
by (erule Suc_metric [THEN subst], blast)

lemma metric_le: "metric (s(y:=s x | s y)) ≤ metric s"
apply (case_tac "s x --> s y")
apply (auto intro: less_imp_le simp add: fun_upd_idem)
done

lemma LeadsTo_Diff_fixedpoint:
     "Rprg ∈ ((metric-`{m}) - fixedpoint) LeadsTo (metric-`(lessThan m))"
apply (simp (no_asm) add: Diff_fixedpoint Rprg_def)
apply (rule LeadsTo_UN, auto)
apply (ensures_tac "asgt a b")
 prefer 2 apply blast
apply (simp (no_asm_use) add: linorder_not_less)
apply (drule metric_le [THEN order_antisym]) 
apply (auto elim: less_not_refl3 [THEN [2] rev_notE])
done

lemma LeadsTo_Un_fixedpoint:
     "Rprg ∈ (metric-`{m}) LeadsTo (metric-`(lessThan m) ∪ fixedpoint)"
apply (rule LeadsTo_Diff [OF LeadsTo_Diff_fixedpoint [THEN LeadsTo_weaken_R]
                             subset_imp_LeadsTo], auto)
done


(*Execution in any state leads to a fixedpoint (i.e. can terminate)*)
lemma LeadsTo_fixedpoint: "Rprg ∈ UNIV LeadsTo fixedpoint"
apply (rule LessThan_induct, auto)
apply (rule LeadsTo_Un_fixedpoint)
done

lemma LeadsTo_correct: "Rprg ∈ UNIV LeadsTo { %v. (init, v) ∈ edges^* }"
apply (subst fixedpoint_invariant_correct [symmetric])
apply (rule Always_LeadsTo_weaken [OF reach_invariant LeadsTo_fixedpoint], auto)
done

end

lemma ifE:

  [| if P then Q else R; [| P; Q |] ==> S; [| ¬ P; R |] ==> S |] ==> S

lemma reach_invariant:

  Rprg ∈ Always reach_invariant

lemma fixedpoint_invariant_correct:

  fixedpoint ∩ reach_invariant = {λv. (init, v) ∈ edges*}

lemma lemma1:

  FP Rprg  fixedpoint

lemma lemma2:

  fixedpoint  FP Rprg

lemma FP_fixedpoint:

  FP Rprg = fixedpoint

lemma Compl_fixedpoint:

  - fixedpoint = (UN (u, v):edges. {s. s u ∧ ¬ s v})

lemma Diff_fixedpoint:

  A - fixedpoint = (UN (u, v):edges. A ∩ {s. s u ∧ ¬ s v})

lemma Suc_metric:

  ¬ s x ==> Suc (metric (s(x := True))) = metric s

lemma metric_less:

  ¬ s x ==> metric (s(x := True)) < metric s

lemma metric_le:

  metric (s(y := s xs y))  metric s

lemma LeadsTo_Diff_fixedpoint:

  Rprg ∈ metric -` {m} - fixedpoint LeadsTo metric -` {..<m}

lemma LeadsTo_Un_fixedpoint:

  Rprg ∈ metric -` {m} LeadsTo metric -` {..<m} ∪ fixedpoint

lemma LeadsTo_fixedpoint:

  Rprg ∈ UNIV LeadsTo fixedpoint

lemma LeadsTo_correct:

  Rprg ∈ UNIV LeadsTo {λv. (init, v) ∈ edges*}