Theory T

Up to index of Isabelle/Sequents

theory T
imports Modal0
begin

(*  Title:      Modal/T.thy
    ID:         $Id: T.thy,v 1.4 2006/11/29 14:44:57 wenzelm Exp $
    Author:     Martin Coen
    Copyright   1991  University of Cambridge
*)

theory T
imports Modal0
begin

axioms
(* Definition of the star operation using a set of Horn clauses *)
(* For system T:  gamma * == {P | []P : gamma}                  *)
(*                delta * == {P | <>P : delta}                  *)

  lstar0:         "|L>"
  lstar1:         "$G |L> $H ==> []P, $G |L> P, $H"
  lstar2:         "$G |L> $H ==>   P, $G |L>    $H"
  rstar0:         "|R>"
  rstar1:         "$G |R> $H ==> <>P, $G |R> P, $H"
  rstar2:         "$G |R> $H ==>   P, $G |R>    $H"

(* Rules for [] and <> *)

  boxR:
   "[| $E |L> $E';  $F |R> $F';  $G |R> $G';
               $E'        |- $F', P, $G'|] ==> $E          |- $F, []P, $G"
  boxL:     "$E, P, $F  |-         $G    ==> $E, []P, $F |-          $G"
  diaR:     "$E         |- $F, P,  $G    ==> $E          |- $F, <>P, $G"
  diaL:
   "[| $E |L> $E';  $F |L> $F';  $G |R> $G';
               $E', P, $F'|-         $G'|] ==> $E, <>P, $F |-          $G"

ML {*
structure T_Prover = Modal_ProverFun
(
  val rewrite_rls = thms "rewrite_rls"
  val safe_rls = thms "safe_rls"
  val unsafe_rls = thms "unsafe_rls" @ [thm "boxR", thm "diaL"]
  val bound_rls = thms "bound_rls" @ [thm "boxL", thm "diaR"]
  val aside_rls = [thm "lstar0", thm "lstar1", thm "lstar2", thm "rstar0",
    thm "rstar1", thm "rstar2"]
)
*}

method_setup T_solve =
  {* Method.no_args (Method.SIMPLE_METHOD (T_Prover.solve_tac 2)) *} "T solver"


(* Theorems of system T from Hughes and Cresswell and Hailpern, LNCS 129 *)

lemma "|- []P --> P" by T_solve
lemma "|- [](P-->Q) --> ([]P-->[]Q)" by T_solve   (* normality*)
lemma "|- (P--<Q) --> []P --> []Q" by T_solve
lemma "|- P --> <>P" by T_solve

lemma "|-  [](P & Q) <-> []P & []Q" by T_solve
lemma "|-  <>(P | Q) <-> <>P | <>Q" by T_solve
lemma "|-  [](P<->Q) <-> (P>-<Q)" by T_solve
lemma "|-  <>(P-->Q) <-> ([]P--><>Q)" by T_solve
lemma "|-        []P <-> ~<>(~P)" by T_solve
lemma "|-     [](~P) <-> ~<>P" by T_solve
lemma "|-       ~[]P <-> <>(~P)" by T_solve
lemma "|-      [][]P <-> ~<><>(~P)" by T_solve
lemma "|- ~<>(P | Q) <-> ~<>P & ~<>Q" by T_solve

lemma "|- []P | []Q --> [](P | Q)" by T_solve
lemma "|- <>(P & Q) --> <>P & <>Q" by T_solve
lemma "|- [](P | Q) --> []P | <>Q" by T_solve
lemma "|- <>P & []Q --> <>(P & Q)" by T_solve
lemma "|- [](P | Q) --> <>P | []Q" by T_solve
lemma "|- <>(P-->(Q & R)) --> ([]P --> <>Q) & ([]P--><>R)" by T_solve
lemma "|- (P--<Q) & (Q--<R) --> (P--<R)" by T_solve
lemma "|- []P --> <>Q --> <>(P & Q)" by T_solve

end

lemma

   |- []P --> P

lemma

   |- [](P --> Q) --> []P --> []Q

lemma

   |- (P --< Q) --> []P --> []Q

lemma

   |- P --> <>P

lemma

   |- [](PQ) <-> []P ∧ []Q

lemma

   |- <>(PQ) <-> <>P ∨ <>Q

lemma

   |- [](P <-> Q) <-> P >-< Q

lemma

   |- <>(P --> Q) <-> []P --> <>Q

lemma

   |- []P <-> ¬ <>(¬ P)

lemma

   |- [](¬ P) <-> ¬ <>P

lemma

   |- ¬ []P <-> <>(¬ P)

lemma

   |- [][]P <-> ¬ <><>(¬ P)

lemma

   |- ¬ <>(PQ) <-> ¬ <>P ∧ ¬ <>Q

lemma

   |- []P ∨ []Q --> [](PQ)

lemma

   |- <>(PQ) --> <>P ∧ <>Q

lemma

   |- [](PQ) --> []P ∨ <>Q

lemma

   |- <>P ∧ []Q --> <>(PQ)

lemma

   |- [](PQ) --> <>P ∨ []Q

lemma

   |- <>(P --> QR) --> ([]P --> <>Q) ∧ ([]P --> <>R)

lemma

   |- (P --< Q) ∧ (Q --< R) --> P --< R

lemma

   |- []P --> <>Q --> <>(PQ)