Theory Series

Up to index of Isabelle/HOL/HOL-Complex

theory Series
imports SEQ
begin

(*  Title       : Series.thy
    Author      : Jacques D. Fleuriot
    Copyright   : 1998  University of Cambridge

Converted to Isar and polished by lcp
Converted to setsum and polished yet more by TNN
Additional contributions by Jeremy Avigad
*) 

header{*Finite Summation and Infinite Series*}

theory Series
imports SEQ
begin

definition
   sums  :: "(nat => 'a::real_normed_vector) => 'a => bool"
     (infixr "sums" 80) where
   "f sums s = (%n. setsum f {0..<n}) ----> s"

definition
   summable :: "(nat => 'a::real_normed_vector) => bool" where
   "summable f = (∃s. f sums s)"

definition
   suminf   :: "(nat => 'a::real_normed_vector) => 'a" where
   "suminf f = (THE s. f sums s)"

syntax
  "_suminf" :: "idt => 'a => 'a" ("∑_. _" [0, 10] 10)
translations
  "∑i. b" == "CONST suminf (%i. b)"


lemma sumr_diff_mult_const:
 "setsum f {0..<n} - (real n*r) = setsum (%i. f i - r) {0..<n::nat}"
by (simp add: diff_minus setsum_addf real_of_nat_def)

lemma real_setsum_nat_ivl_bounded:
     "(!!p. p < n ==> f(p) ≤ K)
      ==> setsum f {0..<n::nat} ≤ real n * K"
using setsum_bounded[where A = "{0..<n}"]
by (auto simp:real_of_nat_def)

(* Generalize from real to some algebraic structure? *)
lemma sumr_minus_one_realpow_zero [simp]:
  "(∑i=0..<2*n. (-1) ^ Suc i) = (0::real)"
by (induct "n", auto)

(* FIXME this is an awful lemma! *)
lemma sumr_one_lb_realpow_zero [simp]:
  "(∑n=Suc 0..<n. f(n) * (0::real) ^ n) = 0"
by (rule setsum_0', simp)

lemma sumr_group:
     "(∑m=0..<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {0 ..< n * k}"
apply (subgoal_tac "k = 0 | 0 < k", auto)
apply (induct "n")
apply (simp_all add: setsum_add_nat_ivl add_commute)
done

lemma sumr_offset3:
  "setsum f {0::nat..<n+k} = (∑m=0..<n. f (m+k)) + setsum f {0..<k}"
apply (subst setsum_shift_bounds_nat_ivl [symmetric])
apply (simp add: setsum_add_nat_ivl add_commute)
done

lemma sumr_offset:
  fixes f :: "nat => 'a::ab_group_add"
  shows "(∑m=0..<n. f(m+k)) = setsum f {0..<n+k} - setsum f {0..<k}"
by (simp add: sumr_offset3)

lemma sumr_offset2:
 "∀f. (∑m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k} - setsum f {0..<k}"
by (simp add: sumr_offset)

lemma sumr_offset4:
  "∀n f. setsum f {0::nat..<n+k} = (∑m=0..<n. f (m+k)::real) + setsum f {0..<k}"
by (clarify, rule sumr_offset3)

(*
lemma sumr_from_1_from_0: "0 < n ==>
      (∑n=Suc 0 ..< Suc n. if even(n) then 0 else
             ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n =
      (∑n=0..<Suc n. if even(n) then 0 else
             ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n"
by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto)
*)

subsection{* Infinite Sums, by the Properties of Limits*}

(*----------------------
   suminf is the sum   
 ---------------------*)
lemma sums_summable: "f sums l ==> summable f"
by (simp add: sums_def summable_def, blast)

lemma summable_sums: "summable f ==> f sums (suminf f)"
apply (simp add: summable_def suminf_def sums_def)
apply (blast intro: theI LIMSEQ_unique)
done

lemma summable_sumr_LIMSEQ_suminf: 
     "summable f ==> (%n. setsum f {0..<n}) ----> (suminf f)"
by (rule summable_sums [unfolded sums_def])

(*-------------------
    sum is unique                    
 ------------------*)
lemma sums_unique: "f sums s ==> (s = suminf f)"
apply (frule sums_summable [THEN summable_sums])
apply (auto intro!: LIMSEQ_unique simp add: sums_def)
done

lemma sums_split_initial_segment: "f sums s ==> 
  (%n. f(n + k)) sums (s - (SUM i = 0..< k. f i))"
  apply (unfold sums_def);
  apply (simp add: sumr_offset); 
  apply (rule LIMSEQ_diff_const)
  apply (rule LIMSEQ_ignore_initial_segment)
  apply assumption
done

lemma summable_ignore_initial_segment: "summable f ==> 
    summable (%n. f(n + k))"
  apply (unfold summable_def)
  apply (auto intro: sums_split_initial_segment)
done

lemma suminf_minus_initial_segment: "summable f ==>
    suminf f = s ==> suminf (%n. f(n + k)) = s - (SUM i = 0..< k. f i)"
  apply (frule summable_ignore_initial_segment)
  apply (rule sums_unique [THEN sym])
  apply (frule summable_sums)
  apply (rule sums_split_initial_segment)
  apply auto
done

lemma suminf_split_initial_segment: "summable f ==> 
    suminf f = (SUM i = 0..< k. f i) + suminf (%n. f(n + k))"
by (auto simp add: suminf_minus_initial_segment)

lemma series_zero: 
     "(∀m. n ≤ m --> f(m) = 0) ==> f sums (setsum f {0..<n})"
apply (simp add: sums_def LIMSEQ_def diff_minus[symmetric], safe)
apply (rule_tac x = n in exI)
apply (clarsimp simp add:setsum_diff[symmetric] cong:setsum_ivl_cong)
done

lemma sums_zero: "(λn. 0) sums 0"
unfolding sums_def by (simp add: LIMSEQ_const)

lemma summable_zero: "summable (λn. 0)"
by (rule sums_zero [THEN sums_summable])

lemma suminf_zero: "suminf (λn. 0) = 0"
by (rule sums_zero [THEN sums_unique, symmetric])
  
lemma (in bounded_linear) sums:
  "(λn. X n) sums a ==> (λn. f (X n)) sums (f a)"
unfolding sums_def by (drule LIMSEQ, simp only: setsum)

lemma (in bounded_linear) summable:
  "summable (λn. X n) ==> summable (λn. f (X n))"
unfolding summable_def by (auto intro: sums)

lemma (in bounded_linear) suminf:
  "summable (λn. X n) ==> f (∑n. X n) = (∑n. f (X n))"
by (intro sums_unique sums summable_sums)

lemma sums_mult:
  fixes c :: "'a::real_normed_algebra"
  shows "f sums a ==> (λn. c * f n) sums (c * a)"
by (rule mult_right.sums)

lemma summable_mult:
  fixes c :: "'a::real_normed_algebra"
  shows "summable f ==> summable (%n. c * f n)"
by (rule mult_right.summable)

lemma suminf_mult:
  fixes c :: "'a::real_normed_algebra"
  shows "summable f ==> suminf (λn. c * f n) = c * suminf f";
by (rule mult_right.suminf [symmetric])

lemma sums_mult2:
  fixes c :: "'a::real_normed_algebra"
  shows "f sums a ==> (λn. f n * c) sums (a * c)"
by (rule mult_left.sums)

lemma summable_mult2:
  fixes c :: "'a::real_normed_algebra"
  shows "summable f ==> summable (λn. f n * c)"
by (rule mult_left.summable)

lemma suminf_mult2:
  fixes c :: "'a::real_normed_algebra"
  shows "summable f ==> suminf f * c = (∑n. f n * c)"
by (rule mult_left.suminf)

lemma sums_divide:
  fixes c :: "'a::real_normed_field"
  shows "f sums a ==> (λn. f n / c) sums (a / c)"
by (rule divide.sums)

lemma summable_divide:
  fixes c :: "'a::real_normed_field"
  shows "summable f ==> summable (λn. f n / c)"
by (rule divide.summable)

lemma suminf_divide:
  fixes c :: "'a::real_normed_field"
  shows "summable f ==> suminf (λn. f n / c) = suminf f / c"
by (rule divide.suminf [symmetric])

lemma sums_add: "[|X sums a; Y sums b|] ==> (λn. X n + Y n) sums (a + b)"
unfolding sums_def by (simp add: setsum_addf LIMSEQ_add)

lemma summable_add: "[|summable X; summable Y|] ==> summable (λn. X n + Y n)"
unfolding summable_def by (auto intro: sums_add)

lemma suminf_add:
  "[|summable X; summable Y|] ==> suminf X + suminf Y = (∑n. X n + Y n)"
by (intro sums_unique sums_add summable_sums)

lemma sums_diff: "[|X sums a; Y sums b|] ==> (λn. X n - Y n) sums (a - b)"
unfolding sums_def by (simp add: setsum_subtractf LIMSEQ_diff)

lemma summable_diff: "[|summable X; summable Y|] ==> summable (λn. X n - Y n)"
unfolding summable_def by (auto intro: sums_diff)

lemma suminf_diff:
  "[|summable X; summable Y|] ==> suminf X - suminf Y = (∑n. X n - Y n)"
by (intro sums_unique sums_diff summable_sums)

lemma sums_minus: "X sums a ==> (λn. - X n) sums (- a)"
unfolding sums_def by (simp add: setsum_negf LIMSEQ_minus)

lemma summable_minus: "summable X ==> summable (λn. - X n)"
unfolding summable_def by (auto intro: sums_minus)

lemma suminf_minus: "summable X ==> (∑n. - X n) = - (∑n. X n)"
by (intro sums_unique [symmetric] sums_minus summable_sums)

lemma sums_group:
     "[|summable f; 0 < k |] ==> (%n. setsum f {n*k..<n*k+k}) sums (suminf f)"
apply (drule summable_sums)
apply (simp only: sums_def sumr_group)
apply (unfold LIMSEQ_def, safe)
apply (drule_tac x="r" in spec, safe)
apply (rule_tac x="no" in exI, safe)
apply (drule_tac x="n*k" in spec)
apply (erule mp)
apply (erule order_trans)
apply simp
done

text{*A summable series of positive terms has limit that is at least as
great as any partial sum.*}

lemma series_pos_le:
  fixes f :: "nat => real"
  shows "[|summable f; ∀m≥n. 0 ≤ f m|] ==> setsum f {0..<n} ≤ suminf f"
apply (drule summable_sums)
apply (simp add: sums_def)
apply (cut_tac k = "setsum f {0..<n}" in LIMSEQ_const)
apply (erule LIMSEQ_le, blast)
apply (rule_tac x="n" in exI, clarify)
apply (rule setsum_mono2)
apply auto
done

lemma series_pos_less:
  fixes f :: "nat => real"
  shows "[|summable f; ∀m≥n. 0 < f m|] ==> setsum f {0..<n} < suminf f"
apply (rule_tac y="setsum f {0..<Suc n}" in order_less_le_trans)
apply simp
apply (erule series_pos_le)
apply (simp add: order_less_imp_le)
done

lemma suminf_gt_zero:
  fixes f :: "nat => real"
  shows "[|summable f; ∀n. 0 < f n|] ==> 0 < suminf f"
by (drule_tac n="0" in series_pos_less, simp_all)

lemma suminf_ge_zero:
  fixes f :: "nat => real"
  shows "[|summable f; ∀n. 0 ≤ f n|] ==> 0 ≤ suminf f"
by (drule_tac n="0" in series_pos_le, simp_all)

lemma sumr_pos_lt_pair:
  fixes f :: "nat => real"
  shows "[|summable f;
        ∀d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))|]
      ==> setsum f {0..<k} < suminf f"
apply (subst suminf_split_initial_segment [where k="k"])
apply assumption
apply simp
apply (drule_tac k="k" in summable_ignore_initial_segment)
apply (drule_tac k="Suc (Suc 0)" in sums_group, simp)
apply simp
apply (frule sums_unique)
apply (drule sums_summable)
apply simp
apply (erule suminf_gt_zero)
apply (simp add: add_ac)
done

text{*Sum of a geometric progression.*}

lemmas sumr_geometric = geometric_sum [where 'a = real]

lemma geometric_sums:
  fixes x :: "'a::{real_normed_field,recpower}"
  shows "norm x < 1 ==> (λn. x ^ n) sums (1 / (1 - x))"
proof -
  assume less_1: "norm x < 1"
  hence neq_1: "x ≠ 1" by auto
  hence neq_0: "x - 1 ≠ 0" by simp
  from less_1 have lim_0: "(λn. x ^ n) ----> 0"
    by (rule LIMSEQ_power_zero)
  hence "(λn. x ^ n / (x - 1) - 1 / (x - 1)) ----> 0 / (x - 1) - 1 / (x - 1)"
    using neq_0 by (intro LIMSEQ_divide LIMSEQ_diff LIMSEQ_const)
  hence "(λn. (x ^ n - 1) / (x - 1)) ----> 1 / (1 - x)"
    by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib)
  thus "(λn. x ^ n) sums (1 / (1 - x))"
    by (simp add: sums_def geometric_sum neq_1)
qed

lemma summable_geometric:
  fixes x :: "'a::{real_normed_field,recpower}"
  shows "norm x < 1 ==> summable (λn. x ^ n)"
by (rule geometric_sums [THEN sums_summable])

text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*}

lemma summable_convergent_sumr_iff:
 "summable f = convergent (%n. setsum f {0..<n})"
by (simp add: summable_def sums_def convergent_def)

lemma summable_LIMSEQ_zero: "summable f ==> f ----> 0"
apply (drule summable_convergent_sumr_iff [THEN iffD1])
apply (drule convergent_Cauchy)
apply (simp only: Cauchy_def LIMSEQ_def, safe)
apply (drule_tac x="r" in spec, safe)
apply (rule_tac x="M" in exI, safe)
apply (drule_tac x="Suc n" in spec, simp)
apply (drule_tac x="n" in spec, simp)
done

lemma summable_Cauchy:
     "summable (f::nat => 'a::banach) =  
      (∀e > 0. ∃N. ∀m ≥ N. ∀n. norm (setsum f {m..<n}) < e)"
apply (simp only: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def, safe)
apply (drule spec, drule (1) mp)
apply (erule exE, rule_tac x="M" in exI, clarify)
apply (rule_tac x="m" and y="n" in linorder_le_cases)
apply (frule (1) order_trans)
apply (drule_tac x="n" in spec, drule (1) mp)
apply (drule_tac x="m" in spec, drule (1) mp)
apply (simp add: setsum_diff [symmetric])
apply simp
apply (drule spec, drule (1) mp)
apply (erule exE, rule_tac x="N" in exI, clarify)
apply (rule_tac x="m" and y="n" in linorder_le_cases)
apply (subst norm_minus_commute)
apply (simp add: setsum_diff [symmetric])
apply (simp add: setsum_diff [symmetric])
done

text{*Comparison test*}

lemma norm_setsum:
  fixes f :: "'a => 'b::real_normed_vector"
  shows "norm (setsum f A) ≤ (∑i∈A. norm (f i))"
apply (case_tac "finite A")
apply (erule finite_induct)
apply simp
apply simp
apply (erule order_trans [OF norm_triangle_ineq add_left_mono])
apply simp
done

lemma summable_comparison_test:
  fixes f :: "nat => 'a::banach"
  shows "[|∃N. ∀n≥N. norm (f n) ≤ g n; summable g|] ==> summable f"
apply (simp add: summable_Cauchy, safe)
apply (drule_tac x="e" in spec, safe)
apply (rule_tac x = "N + Na" in exI, safe)
apply (rotate_tac 2)
apply (drule_tac x = m in spec)
apply (auto, rotate_tac 2, drule_tac x = n in spec)
apply (rule_tac y = "∑k=m..<n. norm (f k)" in order_le_less_trans)
apply (rule norm_setsum)
apply (rule_tac y = "setsum g {m..<n}" in order_le_less_trans)
apply (auto intro: setsum_mono simp add: abs_less_iff)
done

lemma summable_norm_comparison_test:
  fixes f :: "nat => 'a::banach"
  shows "[|∃N. ∀n≥N. norm (f n) ≤ g n; summable g|]
         ==> summable (λn. norm (f n))"
apply (rule summable_comparison_test)
apply (auto)
done

lemma summable_rabs_comparison_test:
  fixes f :: "nat => real"
  shows "[|∃N. ∀n≥N. ¦f n¦ ≤ g n; summable g|] ==> summable (λn. ¦f n¦)"
apply (rule summable_comparison_test)
apply (auto)
done

text{*Summability of geometric series for real algebras*}

lemma complete_algebra_summable_geometric:
  fixes x :: "'a::{real_normed_algebra_1,banach,recpower}"
  shows "norm x < 1 ==> summable (λn. x ^ n)"
proof (rule summable_comparison_test)
  show "∃N. ∀n≥N. norm (x ^ n) ≤ norm x ^ n"
    by (simp add: norm_power_ineq)
  show "norm x < 1 ==> summable (λn. norm x ^ n)"
    by (simp add: summable_geometric)
qed

text{*Limit comparison property for series (c.f. jrh)*}

lemma summable_le:
  fixes f g :: "nat => real"
  shows "[|∀n. f n ≤ g n; summable f; summable g|] ==> suminf f ≤ suminf g"
apply (drule summable_sums)+
apply (simp only: sums_def, erule (1) LIMSEQ_le)
apply (rule exI)
apply (auto intro!: setsum_mono)
done

lemma summable_le2:
  fixes f g :: "nat => real"
  shows "[|∀n. ¦f n¦ ≤ g n; summable g|] ==> summable f ∧ suminf f ≤ suminf g"
apply (subgoal_tac "summable f")
apply (auto intro!: summable_le)
apply (simp add: abs_le_iff)
apply (rule_tac g="g" in summable_comparison_test, simp_all)
done

(* specialisation for the common 0 case *)
lemma suminf_0_le:
  fixes f::"nat=>real"
  assumes gt0: "∀n. 0 ≤ f n" and sm: "summable f"
  shows "0 ≤ suminf f"
proof -
  let ?g = "(λn. (0::real))"
  from gt0 have "∀n. ?g n ≤ f n" by simp
  moreover have "summable ?g" by (rule summable_zero)
  moreover from sm have "summable f" .
  ultimately have "suminf ?g ≤ suminf f" by (rule summable_le)
  then show "0 ≤ suminf f" by (simp add: suminf_zero)
qed 


text{*Absolute convergence imples normal convergence*}
lemma summable_norm_cancel:
  fixes f :: "nat => 'a::banach"
  shows "summable (λn. norm (f n)) ==> summable f"
apply (simp only: summable_Cauchy, safe)
apply (drule_tac x="e" in spec, safe)
apply (rule_tac x="N" in exI, safe)
apply (drule_tac x="m" in spec, safe)
apply (rule order_le_less_trans [OF norm_setsum])
apply (rule order_le_less_trans [OF abs_ge_self])
apply simp
done

lemma summable_rabs_cancel:
  fixes f :: "nat => real"
  shows "summable (λn. ¦f n¦) ==> summable f"
by (rule summable_norm_cancel, simp)

text{*Absolute convergence of series*}
lemma summable_norm:
  fixes f :: "nat => 'a::banach"
  shows "summable (λn. norm (f n)) ==> norm (suminf f) ≤ (∑n. norm (f n))"
by (auto intro: LIMSEQ_le LIMSEQ_norm summable_norm_cancel
                summable_sumr_LIMSEQ_suminf norm_setsum)

lemma summable_rabs:
  fixes f :: "nat => real"
  shows "summable (λn. ¦f n¦) ==> ¦suminf f¦ ≤ (∑n. ¦f n¦)"
by (fold real_norm_def, rule summable_norm)

subsection{* The Ratio Test*}

lemma norm_ratiotest_lemma:
  fixes x y :: "'a::real_normed_vector"
  shows "[|c ≤ 0; norm x ≤ c * norm y|] ==> x = 0"
apply (subgoal_tac "norm x ≤ 0", simp)
apply (erule order_trans)
apply (simp add: mult_le_0_iff)
done

lemma rabs_ratiotest_lemma: "[| c ≤ 0; abs x ≤ c * abs y |] ==> x = (0::real)"
by (erule norm_ratiotest_lemma, simp)

lemma le_Suc_ex: "(k::nat) ≤ l ==> (∃n. l = k + n)"
apply (drule le_imp_less_or_eq)
apply (auto dest: less_imp_Suc_add)
done

lemma le_Suc_ex_iff: "((k::nat) ≤ l) = (∃n. l = k + n)"
by (auto simp add: le_Suc_ex)

(*All this trouble just to get 0<c *)
lemma ratio_test_lemma2:
  fixes f :: "nat => 'a::banach"
  shows "[|∀n≥N. norm (f (Suc n)) ≤ c * norm (f n)|] ==> 0 < c ∨ summable f"
apply (simp (no_asm) add: linorder_not_le [symmetric])
apply (simp add: summable_Cauchy)
apply (safe, subgoal_tac "∀n. N < n --> f (n) = 0")
 prefer 2
 apply clarify
 apply(erule_tac x = "n - 1" in allE)
 apply (simp add:diff_Suc split:nat.splits)
 apply (blast intro: norm_ratiotest_lemma)
apply (rule_tac x = "Suc N" in exI, clarify)
apply(simp cong:setsum_ivl_cong)
done

lemma ratio_test:
  fixes f :: "nat => 'a::banach"
  shows "[|c < 1; ∀n≥N. norm (f (Suc n)) ≤ c * norm (f n)|] ==> summable f"
apply (frule ratio_test_lemma2, auto)
apply (rule_tac g = "%n. (norm (f N) / (c ^ N))*c ^ n" 
       in summable_comparison_test)
apply (rule_tac x = N in exI, safe)
apply (drule le_Suc_ex_iff [THEN iffD1])
apply (auto simp add: power_add field_power_not_zero)
apply (induct_tac "na", auto)
apply (rule_tac y = "c * norm (f (N + n))" in order_trans)
apply (auto intro: mult_right_mono simp add: summable_def)
apply (simp add: mult_ac)
apply (rule_tac x = "norm (f N) * (1/ (1 - c)) / (c ^ N)" in exI)
apply (rule sums_divide) 
apply (rule sums_mult) 
apply (auto intro!: geometric_sums)
done

subsection {* Cauchy Product Formula *}

(* Proof based on Analysis WebNotes: Chapter 07, Class 41
http://www.math.unl.edu/~webnotes/classes/class41/prp77.htm *)

lemma setsum_triangle_reindex:
  fixes n :: nat
  shows "(∑(i,j)∈{(i,j). i+j < n}. f i j) = (∑k=0..<n. ∑i=0..k. f i (k - i))"
proof -
  have "(∑(i, j)∈{(i, j). i + j < n}. f i j) =
    (∑(k, i)∈(SIGMA k:{0..<n}. {0..k}). f i (k - i))"
  proof (rule setsum_reindex_cong)
    show "inj_on (λ(k,i). (i, k - i)) (SIGMA k:{0..<n}. {0..k})"
      by (rule inj_on_inverseI [where g="λ(i,j). (i+j, i)"], auto)
    show "{(i,j). i + j < n} = (λ(k,i). (i, k - i)) ` (SIGMA k:{0..<n}. {0..k})"
      by (safe, rule_tac x="(a+b,a)" in image_eqI, auto)
    show "!!a. (λ(k, i). f i (k - i)) a = split f ((λ(k, i). (i, k - i)) a)"
      by clarify
  qed
  thus ?thesis by (simp add: setsum_Sigma)
qed

lemma Cauchy_product_sums:
  fixes a b :: "nat => 'a::{real_normed_algebra,banach}"
  assumes a: "summable (λk. norm (a k))"
  assumes b: "summable (λk. norm (b k))"
  shows "(λk. ∑i=0..k. a i * b (k - i)) sums ((∑k. a k) * (∑k. b k))"
proof -
  let ?S1 = "λn::nat. {0..<n} × {0..<n}"
  let ?S2 = "λn::nat. {(i,j). i + j < n}"
  have S1_mono: "!!m n. m ≤ n ==> ?S1 m ⊆ ?S1 n" by auto
  have S2_le_S1: "!!n. ?S2 n ⊆ ?S1 n" by auto
  have S1_le_S2: "!!n. ?S1 (n div 2) ⊆ ?S2 n" by auto
  have finite_S1: "!!n. finite (?S1 n)" by simp
  with S2_le_S1 have finite_S2: "!!n. finite (?S2 n)" by (rule finite_subset)

  let ?g = "λ(i,j). a i * b j"
  let ?f = "λ(i,j). norm (a i) * norm (b j)"
  have f_nonneg: "!!x. 0 ≤ ?f x"
    by (auto simp add: mult_nonneg_nonneg)
  hence norm_setsum_f: "!!A. norm (setsum ?f A) = setsum ?f A"
    unfolding real_norm_def
    by (simp only: abs_of_nonneg setsum_nonneg [rule_format])

  have "(λn. (∑k=0..<n. a k) * (∑k=0..<n. b k))
           ----> (∑k. a k) * (∑k. b k)"
    by (intro LIMSEQ_mult summable_sumr_LIMSEQ_suminf
        summable_norm_cancel [OF a] summable_norm_cancel [OF b])
  hence 1: "(λn. setsum ?g (?S1 n)) ----> (∑k. a k) * (∑k. b k)"
    by (simp only: setsum_product setsum_Sigma [rule_format]
                   finite_atLeastLessThan)

  have "(λn. (∑k=0..<n. norm (a k)) * (∑k=0..<n. norm (b k)))
       ----> (∑k. norm (a k)) * (∑k. norm (b k))"
    using a b by (intro LIMSEQ_mult summable_sumr_LIMSEQ_suminf)
  hence "(λn. setsum ?f (?S1 n)) ----> (∑k. norm (a k)) * (∑k. norm (b k))"
    by (simp only: setsum_product setsum_Sigma [rule_format]
                   finite_atLeastLessThan)
  hence "convergent (λn. setsum ?f (?S1 n))"
    by (rule convergentI)
  hence Cauchy: "Cauchy (λn. setsum ?f (?S1 n))"
    by (rule convergent_Cauchy)
  have "Zseq (λn. setsum ?f (?S1 n - ?S2 n))"
  proof (rule ZseqI, simp only: norm_setsum_f)
    fix r :: real
    assume r: "0 < r"
    from CauchyD [OF Cauchy r] obtain N
    where "∀m≥N. ∀n≥N. norm (setsum ?f (?S1 m) - setsum ?f (?S1 n)) < r" ..
    hence "!!m n. [|N ≤ n; n ≤ m|] ==> norm (setsum ?f (?S1 m - ?S1 n)) < r"
      by (simp only: setsum_diff finite_S1 S1_mono)
    hence N: "!!m n. [|N ≤ n; n ≤ m|] ==> setsum ?f (?S1 m - ?S1 n) < r"
      by (simp only: norm_setsum_f)
    show "∃N. ∀n≥N. setsum ?f (?S1 n - ?S2 n) < r"
    proof (intro exI allI impI)
      fix n assume "2 * N ≤ n"
      hence n: "N ≤ n div 2" by simp
      have "setsum ?f (?S1 n - ?S2 n) ≤ setsum ?f (?S1 n - ?S1 (n div 2))"
        by (intro setsum_mono2 finite_Diff finite_S1 f_nonneg
                  Diff_mono subset_refl S1_le_S2)
      also have "… < r"
        using n div_le_dividend by (rule N)
      finally show "setsum ?f (?S1 n - ?S2 n) < r" .
    qed
  qed
  hence "Zseq (λn. setsum ?g (?S1 n - ?S2 n))"
    apply (rule Zseq_le [rule_format])
    apply (simp only: norm_setsum_f)
    apply (rule order_trans [OF norm_setsum setsum_mono])
    apply (auto simp add: norm_mult_ineq)
    done
  hence 2: "(λn. setsum ?g (?S1 n) - setsum ?g (?S2 n)) ----> 0"
    by (simp only: LIMSEQ_Zseq_iff setsum_diff finite_S1 S2_le_S1 diff_0_right)

  with 1 have "(λn. setsum ?g (?S2 n)) ----> (∑k. a k) * (∑k. b k)"
    by (rule LIMSEQ_diff_approach_zero2)
  thus ?thesis by (simp only: sums_def setsum_triangle_reindex)
qed

lemma Cauchy_product:
  fixes a b :: "nat => 'a::{real_normed_algebra,banach}"
  assumes a: "summable (λk. norm (a k))"
  assumes b: "summable (λk. norm (b k))"
  shows "(∑k. a k) * (∑k. b k) = (∑k. ∑i=0..k. a i * b (k - i))"
using a b
by (rule Cauchy_product_sums [THEN sums_unique])

end

lemma sumr_diff_mult_const:

  setsum f {0..<n} - real n * r = (∑i = 0..<n. f i - r)

lemma real_setsum_nat_ivl_bounded:

  (!!p. p < n ==> f p  K) ==> setsum f {0..<n}  real n * K

lemma sumr_minus_one_realpow_zero:

  (∑i = 0..<2 * n. -1 ^ Suc i) = 0

lemma sumr_one_lb_realpow_zero:

  (∑n = Suc 0..<n. f n * 0 ^ n) = 0

lemma sumr_group:

  (∑m = 0..<n. setsum f {m * k..<m * k + k}) = setsum f {0..<n * k}

lemma sumr_offset3:

  setsum f {0..<n + k} = (∑m = 0..<n. f (m + k)) + setsum f {0..<k}

lemma sumr_offset:

  (∑m = 0..<n. f (m + k)) = setsum f {0..<n + k} - setsum f {0..<k}

lemma sumr_offset2:

  f. (∑m = 0..<n. f (m + k)) = setsum f {0..<n + k} - setsum f {0..<k}

lemma sumr_offset4:

  n f. setsum f {0..<n + k} = (∑m = 0..<n. f (m + k)) + setsum f {0..<k}

Infinite Sums, by the Properties of Limits

lemma sums_summable:

  f sums l ==> summable f

lemma summable_sums:

  summable f ==> f sums suminf f

lemma summable_sumr_LIMSEQ_suminf:

  summable f ==> (λn. setsum f {0..<n}) ----> suminf f

lemma sums_unique:

  f sums s ==> s = suminf f

lemma sums_split_initial_segment:

  f sums s ==> (λn. f (n + k)) sums (s - setsum f {0..<k})

lemma summable_ignore_initial_segment:

  summable f ==> summablen. f (n + k))

lemma suminf_minus_initial_segment:

  [| summable f; suminf f = s |] ==> (∑n. f (n + k)) = s - setsum f {0..<k}

lemma suminf_split_initial_segment:

  summable f ==> suminf f = setsum f {0..<k} + (∑n. f (n + k))

lemma series_zero:

  mn. f m = (0::'a) ==> f sums setsum f {0..<n}

lemma sums_zero:

  n. 0::'a) sums (0::'a)

lemma summable_zero:

  summablen. 0::'a)

lemma suminf_zero:

  (∑n. (0::'a)) = (0::'a)

lemma sums:

  X sums a ==> (λn. f (X n)) sums f a

lemma summable:

  summable X ==> summablen. f (X n))

lemma suminf:

  summable X ==> f (suminf X) = (∑n. f (X n))

lemma sums_mult:

  f sums a ==> (λn. c * f n) sums (c * a)

lemma summable_mult:

  summable f ==> summablen. c * f n)

lemma suminf_mult:

  summable f ==> (∑n. c * f n) = c * suminf f

lemma sums_mult2:

  f sums a ==> (λn. f n * c) sums (a * c)

lemma summable_mult2:

  summable f ==> summablen. f n * c)

lemma suminf_mult2:

  summable f ==> suminf f * c = (∑n. f n * c)

lemma sums_divide:

  f sums a ==> (λn. f n / c) sums (a / c)

lemma summable_divide:

  summable f ==> summablen. f n / c)

lemma suminf_divide:

  summable f ==> (∑n. f n / c) = suminf f / c

lemma sums_add:

  [| X sums a; Y sums b |] ==> (λn. X n + Y n) sums (a + b)

lemma summable_add:

  [| summable X; summable Y |] ==> summablen. X n + Y n)

lemma suminf_add:

  [| summable X; summable Y |] ==> suminf X + suminf Y = (∑n. X n + Y n)

lemma sums_diff:

  [| X sums a; Y sums b |] ==> (λn. X n - Y n) sums (a - b)

lemma summable_diff:

  [| summable X; summable Y |] ==> summablen. X n - Y n)

lemma suminf_diff:

  [| summable X; summable Y |] ==> suminf X - suminf Y = (∑n. X n - Y n)

lemma sums_minus:

  X sums a ==> (λn. - X n) sums - a

lemma summable_minus:

  summable X ==> summablen. - X n)

lemma suminf_minus:

  summable X ==> (∑n. - X n) = - suminf X

lemma sums_group:

  [| summable f; 0 < k |] ==> (λn. setsum f {n * k..<n * k + k}) sums suminf f

lemma series_pos_le:

  [| summable f; ∀mn. 0  f m |] ==> setsum f {0..<n}  suminf f

lemma series_pos_less:

  [| summable f; ∀mn. 0 < f m |] ==> setsum f {0..<n} < suminf f

lemma suminf_gt_zero:

  [| summable f; ∀n. 0 < f n |] ==> 0 < suminf f

lemma suminf_ge_zero:

  [| summable f; ∀n. 0  f n |] ==> 0  suminf f

lemma sumr_pos_lt_pair:

  [| summable f;
     ∀d. 0 < f (k + Suc (Suc 0) * d) + f (k + (Suc (Suc 0) * d + 1)) |]
  ==> setsum f {0..<k} < suminf f

lemma sumr_geometric:

  x  1 ==> setsum (op ^ x) {0..<n} = (x ^ n - 1) / (x - 1)

lemma geometric_sums:

  norm x < 1 ==> op ^ x sums ((1::'a) / ((1::'a) - x))

lemma summable_geometric:

  norm x < 1 ==> summable (op ^ x)

lemma summable_convergent_sumr_iff:

  summable f = convergentn. setsum f {0..<n})

lemma summable_LIMSEQ_zero:

  summable f ==> f ----> (0::'a)

lemma summable_Cauchy:

  summable f = (∀e>0. ∃N. ∀mN. ∀n. norm (setsum f {m..<n}) < e)

lemma norm_setsum:

  norm (setsum f A)  (∑iA. norm (f i))

lemma summable_comparison_test:

  [| ∃N. ∀nN. norm (f n)  g n; summable g |] ==> summable f

lemma summable_norm_comparison_test:

  [| ∃N. ∀nN. norm (f n)  g n; summable g |] ==> summablen. norm (f n))

lemma summable_rabs_comparison_test:

  [| ∃N. ∀nN. ¦f n¦  g n; summable g |] ==> summablen. ¦f n¦)

lemma complete_algebra_summable_geometric:

  norm x < 1 ==> summable (op ^ x)

lemma summable_le:

  [| ∀n. f n  g n; summable f; summable g |] ==> suminf f  suminf g

lemma summable_le2:

  [| ∀n. ¦f n¦  g n; summable g |] ==> summable fsuminf f  suminf g

lemma suminf_0_le:

  [| ∀n. 0  f n; summable f |] ==> 0  suminf f

lemma summable_norm_cancel:

  summablen. norm (f n)) ==> summable f

lemma summable_rabs_cancel:

  summablen. ¦f n¦) ==> summable f

lemma summable_norm:

  summablen. norm (f n)) ==> norm (suminf f)  (∑n. norm (f n))

lemma summable_rabs:

  summablen. ¦f n¦) ==> ¦suminf f¦  (∑n. ¦f n¦)

The Ratio Test

lemma norm_ratiotest_lemma:

  [| c  0; norm x  c * norm y |] ==> x = (0::'a)

lemma rabs_ratiotest_lemma:

  [| c  0; ¦x¦  c * ¦y¦ |] ==> x = 0

lemma le_Suc_ex:

  k  l ==> ∃n. l = k + n

lemma le_Suc_ex_iff:

  (k  l) = (∃n. l = k + n)

lemma ratio_test_lemma2:

  nN. norm (f (Suc n))  c * norm (f n) ==> 0 < csummable f

lemma ratio_test:

  [| c < 1; ∀nN. norm (f (Suc n))  c * norm (f n) |] ==> summable f

Cauchy Product Formula

lemma setsum_triangle_reindex:

  (∑(i, j)∈{(i, j). i + j < n}. f i j) = (∑k = 0..<n. ∑i = 0..k. f i (k - i))

lemma Cauchy_product_sums:

  [| summablek. norm (a k)); summablek. norm (b k)) |]
  ==> (λk. ∑i = 0..k. a i * b (k - i)) sums (suminf a * suminf b)

lemma Cauchy_product:

  [| summablek. norm (a k)); summablek. norm (b k)) |]
  ==> suminf a * suminf b = (∑k. ∑i = 0..k. a i * b (k - i))