Theory Heap

Up to index of Isabelle/HOL/Hoare

theory Heap
imports Main
begin

(*  Title:      HOL/Hoare/Heap.thy
    ID:         $Id: Heap.thy,v 1.4 2006/09/11 19:35:20 wenzelm Exp $
    Author:     Tobias Nipkow
    Copyright   2002 TUM

Pointers, heaps and heap abstractions.
See the paper by Mehta and Nipkow.
*)

theory Heap imports Main begin

subsection "References"

datatype 'a ref = Null | Ref 'a

lemma not_Null_eq [iff]: "(x ~= Null) = (EX y. x = Ref y)"
  by (induct x) auto

lemma not_Ref_eq [iff]: "(ALL y. x ~= Ref y) = (x = Null)"
  by (induct x) auto

consts addr :: "'a ref => 'a"
primrec "addr(Ref a) = a"


section "The heap"

subsection "Paths in the heap"

consts
 Path :: "('a => 'a ref) => 'a ref => 'a list => 'a ref => bool"
primrec
"Path h x [] y = (x = y)"
"Path h x (a#as) y = (x = Ref a ∧ Path h (h a) as y)"

lemma [iff]: "Path h Null xs y = (xs = [] ∧ y = Null)"
apply(case_tac xs)
apply fastsimp
apply fastsimp
done

lemma [simp]: "Path h (Ref a) as z =
 (as = [] ∧ z = Ref a  ∨  (∃bs. as = a#bs ∧ Path h (h a) bs z))"
apply(case_tac as)
apply fastsimp
apply fastsimp
done

lemma [simp]: "!!x. Path f x (as@bs) z = (∃y. Path f x as y ∧ Path f y bs z)"
by(induct as, simp+)

lemma Path_upd[simp]:
 "!!x. u ∉ set as ==> Path (f(u := v)) x as y = Path f x as y"
by(induct as, simp, simp add:eq_sym_conv)

lemma Path_snoc:
 "Path (f(a := q)) p as (Ref a) ==> Path (f(a := q)) p (as @ [a]) q"
by simp


subsection "Non-repeating paths"

constdefs
  distPath :: "('a => 'a ref) => 'a ref => 'a list => 'a ref => bool"
  "distPath h x as y   ≡   Path h x as y  ∧  distinct as"

text{* The term @{term"distPath h x as y"} expresses the fact that a
non-repeating path @{term as} connects location @{term x} to location
@{term y} by means of the @{term h} field. In the case where @{text "x
= y"}, and there is a cycle from @{term x} to itself, @{term as} can
be both @{term "[]"} and the non-repeating list of nodes in the
cycle. *}

lemma neq_dP: "p ≠ q ==> Path h p Ps q ==> distinct Ps ==>
 EX a Qs. p = Ref a & Ps = a#Qs & a ∉ set Qs"
by (case_tac Ps, auto)


lemma neq_dP_disp: "[| p ≠ q; distPath h p Ps q |] ==>
 EX a Qs. p = Ref a ∧ Ps = a#Qs ∧ a ∉ set Qs"
apply (simp only:distPath_def)
by (case_tac Ps, auto)


subsection "Lists on the heap"

subsubsection "Relational abstraction"

constdefs
 List :: "('a => 'a ref) => 'a ref => 'a list => bool"
"List h x as == Path h x as Null"

lemma [simp]: "List h x [] = (x = Null)"
by(simp add:List_def)

lemma [simp]: "List h x (a#as) = (x = Ref a ∧ List h (h a) as)"
by(simp add:List_def)

lemma [simp]: "List h Null as = (as = [])"
by(case_tac as, simp_all)

lemma List_Ref[simp]: "List h (Ref a) as = (∃bs. as = a#bs ∧ List h (h a) bs)"
by(case_tac as, simp_all, fast)

theorem notin_List_update[simp]:
 "!!x. a ∉ set as ==> List (h(a := y)) x as = List h x as"
apply(induct as)
apply simp
apply(clarsimp simp add:fun_upd_apply)
done

lemma List_unique: "!!x bs. List h x as ==> List h x bs ==> as = bs"
by(induct as, simp, clarsimp)

lemma List_unique1: "List h p as ==> ∃!as. List h p as"
by(blast intro:List_unique)

lemma List_app: "!!x. List h x (as@bs) = (∃y. Path h x as y ∧ List h y bs)"
by(induct as, simp, clarsimp)

lemma List_hd_not_in_tl[simp]: "List h (h a) as ==> a ∉ set as"
apply (clarsimp simp add:in_set_conv_decomp)
apply(frule List_app[THEN iffD1])
apply(fastsimp dest: List_unique)
done

lemma List_distinct[simp]: "!!x. List h x as ==> distinct as"
apply(induct as, simp)
apply(fastsimp dest:List_hd_not_in_tl)
done

lemma Path_is_List:
  "[|Path h b Ps (Ref a); a ∉ set Ps|] ==> List (h(a := Null)) b (Ps @ [a])"
apply (induct Ps arbitrary: b)
apply (auto simp add:fun_upd_apply)
done


subsection "Functional abstraction"

constdefs
 islist :: "('a => 'a ref) => 'a ref => bool"
"islist h p == ∃as. List h p as"
 list :: "('a => 'a ref) => 'a ref => 'a list"
"list h p == SOME as. List h p as"

lemma List_conv_islist_list: "List h p as = (islist h p ∧ as = list h p)"
apply(simp add:islist_def list_def)
apply(rule iffI)
apply(rule conjI)
apply blast
apply(subst some1_equality)
  apply(erule List_unique1)
 apply assumption
apply(rule refl)
apply simp
apply(rule someI_ex)
apply fast
done

lemma [simp]: "islist h Null"
by(simp add:islist_def)

lemma [simp]: "islist h (Ref a) = islist h (h a)"
by(simp add:islist_def)

lemma [simp]: "list h Null = []"
by(simp add:list_def)

lemma list_Ref_conv[simp]:
 "islist h (h a) ==> list h (Ref a) = a # list h (h a)"
apply(insert List_Ref[of h])
apply(fastsimp simp:List_conv_islist_list)
done

lemma [simp]: "islist h (h a) ==> a ∉ set(list h (h a))"
apply(insert List_hd_not_in_tl[of h])
apply(simp add:List_conv_islist_list)
done

lemma list_upd_conv[simp]:
 "islist h p ==> y ∉ set(list h p) ==> list (h(y := q)) p = list h p"
apply(drule notin_List_update[of _ _ h q p])
apply(simp add:List_conv_islist_list)
done

lemma islist_upd[simp]:
 "islist h p ==> y ∉ set(list h p) ==> islist (h(y := q)) p"
apply(frule notin_List_update[of _ _ h q p])
apply(simp add:List_conv_islist_list)
done

end

References

lemma not_Null_eq:

  (x  Null) = (∃y. x = Ref y)

lemma not_Ref_eq:

  (∀y. x  Ref y) = (x = Null)

The heap

Paths in the heap

lemma

  Path h Null xs y = (xs = [] ∧ y = Null)

lemma

  Path h (Ref a) as z =
  (as = [] ∧ z = Ref a ∨ (∃bs. as = a # bs ∧ Path h (h a) bs z))

lemma

  Path f x (as @ bs) z = (∃y. Path f x as y ∧ Path f y bs z)

lemma Path_upd:

  u  set as ==> Path (f(u := v)) x as y = Path f x as y

lemma Path_snoc:

  Path (f(a := q)) p as (Ref a) ==> Path (f(a := q)) p (as @ [a]) q

Non-repeating paths

lemma neq_dP:

  [| p  q; Path h p Ps q; distinct Ps |]
  ==> ∃a Qs. p = Ref aPs = a # Qsa  set Qs

lemma neq_dP_disp:

  [| p  q; distPath h p Ps q |] ==> ∃a Qs. p = Ref aPs = a # Qsa  set Qs

Lists on the heap

Relational abstraction

lemma

  List h x [] = (x = Null)

lemma

  List h x (a # as) = (x = Ref a ∧ List h (h a) as)

lemma

  List h Null as = (as = [])

lemma List_Ref:

  List h (Ref a) as = (∃bs. as = a # bs ∧ List h (h a) bs)

theorem notin_List_update:

  a  set as ==> List (h(a := y)) x as = List h x as

lemma List_unique:

  [| List h x as; List h x bs |] ==> as = bs

lemma List_unique1:

  List h p as ==> ∃!as. List h p as

lemma List_app:

  List h x (as @ bs) = (∃y. Path h x as y ∧ List h y bs)

lemma List_hd_not_in_tl:

  List h (h a) as ==> a  set as

lemma List_distinct:

  List h x as ==> distinct as

lemma Path_is_List:

  [| Path h b Ps (Ref a); a  set Ps |] ==> List (h(a := Null)) b (Ps @ [a])

Functional abstraction

lemma List_conv_islist_list:

  List h p as = (islist h pas = list h p)

lemma

  islist h Null

lemma

  islist h (Ref a) = islist h (h a)

lemma

  list h Null = []

lemma list_Ref_conv:

  islist h (h a) ==> list h (Ref a) = a # list h (h a)

lemma

  islist h (h a) ==> a  set (list h (h a))

lemma list_upd_conv:

  [| islist h p; y  set (list h p) |] ==> list (h(y := q)) p = list h p

lemma islist_upd:

  [| islist h p; y  set (list h p) |] ==> islist (h(y := q)) p