TiMBL: Tilburg Memory-Based Learner
version 6.1

API Reference Guide

ILK Technical Report — ILK 07-08

Ko van der Sloot
Induction of Linguistic Knowledge
Computational Linguistics
Tilburg University
P.O. Box 90153, NL-5000 LE, Tilburg, The Netherlands
URL: http://ilk.uvt.nl

December 10, 2007

Contents

1 Changes 4
1.1 Fromversion5.1to6.1 4

12 Fromversion5.0to5.1 L 4

2 Quick-start 5
2.1 Settingupanexperiment. o 5
2.2 Running anexperiment o 5
221 Training 6

222 Testing e 6

2.2.3 special cases of Learing and Testing 6

2.3 Moreaboutsettings L L 6
2.4 Storing and retrieving intermediateresults 0 o0 7

3 Getting the details 9
3.1 Classify functions: elementary. 9
3.2 Classify functions: advanced L oL 10
3.3 Classify functions: neighborSets 11
3.3.1 How to getresults from aneighborSet 11

3.3.2 Usefull operations on neighborSet objects 12

4 Advanced Functions 13
41 Modifying the InstanceBase 13
4.2 Getting more informationoutof Timbl 13

5 Server Mode 15

6 Annotated example programs

6.0.1
6.0.2
6.0.3
6.0.4
6.0.5
6.0.6

example 1, api
example 2, api
example 3, api
example 4, api
example 5, api

example 6, api

_testl.cxx
_test2.cxx
_test3.cxx
_test4.cxx
_test5.cxx

_test6.cxx

Preface

This is a brief description of the TimblAPI class and its main functions. Not everything found
in TimbIAPL.Lh is described. Some functions are still “work in progress” and some others are
artefacts to simplify the implementation of the TiIMBL main program®. To learn more about using
the API, you should study programs like classify.cxx ,tse.cxx , and the examples given in
this manual, which can be found in the demos directory of this distribution.

As you can learn from these examples, all you need to get access to the TimblAPI functions, is to
include TImbIAPL.h in the program, and to include libTimbl.a in your linking path.

Important note: The described functions return a result (mostly a bool) to indicate succes or
failure. To simplify the examples, we ignore these return values. This is, of course, bad practice,
to be avoided in real life programming.?

Warning: Although the TIMBL internals perform some sanity checking, it is quite possible to
combine API functions such that some undetermined state is reached, or even a conflict arises.
The effect of the SetOptions() function, for instance, might be quite surprising. If you have
created your own program with the API it might be wise to test against well-know data to see if
the results make sense.

ITimbl.cxx is therefore not a good example of how to use the APL
2as stated by commandment 6 of “The Ten Commandments for C Programmers”’ by Henry Spencer:
If a function be advertised to return an error code in the event of difficulties, thou shalt check for that code, yea, even
though the checks triple the size of thy code and produce aches in thy typing fingers, for if thou thinkest “it cannot
happen to me”, the gods shall surely punish thee for thy arrogance.

”r

Chapter 1

Changes

1.1 From version 5.1 to 6.1

The major change in 6.0 is the introduction of the neighborSet class, with some special Classify
functions. We added Classify functions that deliver pointers into Timbl’s internal data. This is
fast, but dangerous. Also, a WritelnstanceBaseXml() function is added, which comes in
handy when you want to know more about the instance base. Two more examples demonstrating
neighborSets and such are added in Appendix B. From version 6.0 to 6.1, the APl has not changed.

1.2 From version 5.0 to 5.1

The API is quite stable at the moment. Most TIMBL changes did not affect the API. The only
real API change is in the GetWeights() function. (see the section on Storing and retrieving
intermediate results). A few options were added to Timbl, influencing the table in Appendix A.
We have also changed and enhanced the examples in Appendix B.

Chapter 2

Quick-start

2.1 Setting up an experiment

There is just one way to start a TiIMBL experiment, which is to call the TimblAPI constructor:

TimbIAPI(const std::string& args, const std::string& nam e =");

args is used as a “command line” and is parsed for all kind of options which are used to create
the right kind of experiment with the desired settings for metric, weighting etc. If something is
wrong with the settings, no object is created.

The most important option is -a to set the kind of algorithm, e.g. -a IB1 to get an IB1 experi-
ment or -a IGTREE to get an IGTREE experiment. A list of possible options is give in Appendix
A.

The optional name can be useful if you have multiple experiments. In case of warnings or errors,
this name is appended to the message.

For example:

TimblAPI *My_Experiment = new TimblAPI("-a IGTREE +vDI+DB",
"testl");

My_Experiment is created as an IGTREE experiment with the name “testl” and the verbosity is
set to DI+DB, meaning that the output will contain DIstance and DistriBution information.

The counterpart to creation is the "TimbIAPI() destructor, which is called when you delete an
experiment:

delete My_Experiment;

2.2 Running an experiment

Assuming that we have appropriate datafiles (such as dimin.train and dimin.test in the
TiMBL package), we can get started right away with the functions Learn() and Test()

2.21 Training

bool Learn(const std::string& f);

This function takes a file with name ’f’, and gathers information such as: number of features,
number and frequency of feature values and the same for class names. After that, these data
are used to calculate a lot of statistical information, which will be used for testing. Finally, an
InstanceBase is created, tuned to the current algorithm.

2.2.2 Testing

bool Test(const std::string& in,
const std::string& out,
const std::string& perc = "™);

Test a file given by in” and write results to ‘out’. If ‘perc’ is not empty, then a percentage score is
written to file "perc’.

For example:

My_Experiment->Learn("dimin.train");
My_Experiment->Test("dimin.test", "my_first_test");

An InstanceBase will be created from dimin.train, then dimin.test is tested against that Instance-
Base and output is written to my_first_test.

2.2.3 special cases of Learing and Testing

There are special cases where Learn() behaves differently:

e When the algorithm is IB2, Learn() will automatically take the first n lines of f (set with
the -b n option) to bootstrap itself, and then the rest of f for IB2-learning. After Learning
IB2, you can use Test() as usual.

e When the algorithm is CV, Learn() is not defined, and all work is done in a special version
of Test() . ’f’ is assumed to give the name of a file, which, on separate lines, gives the
names of the files to be cross-validated.

See Appendix B for a complete CV example (program api _test3).

2.3 More about settings

After an experiment is set up with the TimblAPI constructor, many options can be changed “on
the fly” with:

bool SetOptions(const std::string& opts);

‘opts’ is interpreted as a list of options which are set, just like in the TimblAPI constructor. When
an error in the opts string is found, SetOptions() ~ returns false. Whether any options are really
set or changed in that case is undefined. Note that a few options can only be set once when
creating the experiment, most notably the algorithm. Any attempt to change these options will
result in a failure. See Appendix A for all valid options and information about the possibility to
change them within a running experiment.

Note: SetOptions() is “lazy”; changes are cached until the moment they are really needed, so
you can do several SetOptions() calls with even different values for the same option. Only
the last one seen will be used for running the experiment.

To see which options are in effect, you can use the calls ShowOptions() and ShowSettings()

bool ShowOptions(std::ostream&);

Shows all options with their possible and current values.

bool ShowSettings(std::ostream&);

Shows all options and their currect values.

For example:

My_Experiment->SetOptions("-w2 -m:M");
My_Experiment->SetOptions("-w3 -v:DB");
My_Experiment->ShowSettings(cout)

See Appendix B (program api _testl) for the output.

2.4 Storing and retrieving intermediate results

To speed up testing, or to manipulate what is happening internally, we can store and retrieve
several important parts of our experiment: The InstanceBase, the FeatureWeights, and the Prob-
abilityArrays.

Saving is done with:

bool WritelnstanceBase(const std::string& f);
bool SaveWeights(const std::string& f);
bool WriteArrays(const std::string& f);

Retrieve with their counterparts:

bool GetlnstanceBase(const std::string& f);
bool GetWeights(const std::string& f, Weighting w);
bool GetArrays(const std::string& f);

All use ‘f” as a filename for storing/retrieving. GetWeights needs information to decide which
weighting to retrieve. Weighting is defined as the enumerated type:

enum Weighting { UNKNOWN_W, UD, NW, GR, IG, X2, SV }

Some notes:

1. The InstanceBase is stored in a internal format, with or without hashing, depending on the
-H option. The format is described in the TIMBL manual. Remember that it is a bad idea to
edit this file in any way.

2. GetWeights() can be used to override the weights that Learn() calculated. UNKNOWW
should not be used.

3. The Probability arrays are described in the TiMBL manual. They can be manipulated to
tune MVDM testing.

If you like you may dump the Instancebase in XML format. No Retrieve function is available for
this format.

bool WritelnstanceBaseXml(const std::string& f);

Chapter 3

Getting the details

3.1 Classify functions: elementary

After an experiment is trained with Learn() , we do not have to use Test() to do bulk-testing
on a file. We can create our own tests with the Classify functions:

bool Classify(const std::string& Line, std::string& resu It);

bool Classify(const std::string& Line, std::string& resu It,
double& distance);

bool Classify(const std::string& Line, std::string& resu It,

std::string& Distrib, double& distance);

Results are stored in ‘result’ (the assigned class). ‘distance” will get the calculated distance, and
"Distrib” the distribution at ‘distance” which is used to calculate ‘result’. Distrib will be a string
like “{ NP 2, PP 6 }”. Itis up to you to parse and interpret this. (In this case: There were 8 classes
assigned at “distance’, 2 NP’s and 6 PP’s, giving a 'result’ of “PP”)

If you want to perform analyses on these distributions, it might be a good idea to read the next
section about the other range of Classify() functions.

A main disadvantage compared to using Test() is that Test() is optimized. Classify() has
to test for sanity of its input and also whether a SetOptions() has been performed. This slows
down the process.

A good example of the use of Classify() is the classify.cxx program in the TiMBL Distri-
bution.

Depending on the Algorithm and Verbosity setting, it may be possible to get some extra informa-
tion on the details of each classification using:

const bool ShowBestNeighbors(std::ostream& os, bool dist r) const;

Provided that the option +v n or +v K is set and we use IB1 or IB2, output is produced similar
to what we see in the TIMBL program. When ’distr” is true, their distributions are also displayed.
Bear in mind: The +vn option is expensive in time and memory and does not work for IGTREE,
TRIBL, and TRIBL-2.

3.2 Classify functions: advanced

A faster, but more dangerous version of Classify is also available. It is faster because it returns
pointers into Timbl’s internal datastructures. It is dangerous because it returns pointers into
Timbl’s internal datastructures (using ‘const’ pointers, so it is fortunately difficult te really dam-
age Timbl)

const TargetValue * Classify(const std::string&);
const TargetValue * Classify(const std::string&,
const ValueDistribution *&);
const TargetValue * Classify(const std::string&, double&);
const TargetValue * Classify(const std::string&,
const ValueDistribution * &,
double&);

A ValueDistribution is a list-like object (but it is not a real list!) that contains TargetValues objects
and weights. It is the result of combining all nearest neighbors and applying the desired weight-
ings. Timbl chooses a best TargetValue from this ValueDistribution and the Classify functions
return that as their main result.

Important: Because these functions return pointers into Timbl’s internal representation, the re-
sults are only valid until the next Classify function is called. (or the experiment is deleted).

Both the TargetValue and ValueDistribution objects have output operators defined, so you can
print them. TargetValue also has a Name() function, which returns a std::string so you can collect
results. ValueDistribution has an iterator-like interface which makes it possible to walk through
the Distribution.

An iterator on a ValueDistribution xvd is created like this:

ValueDistribution::dist_iterator it=vd->begin();

Unfortunately, the iterator cannot be printed or used directly. It walks throuhg a map like struc-
ture with pairs of values, of which only the second part is of interest to you. You may print it, or
extractits Value() (which happens to be a TargetValue pointer) or extract its Weight() , which
is a double .

Like this:

while (it = vd->end() ¥
cout << it->second << " has a value: ";
cout << jt->second->Value() << " an a weight of "
<< jt->second->Weight() << endl;
++it;

}
Printing it->second is in fact nothing else than printing the TargetValue plus its Weight.

In the demos directory you will find a complete example in api_test6.

Warning; it is possible to search the Timbl code for the internal representation of the TargetValue
and ValueDistribution objects, but please DON'T DO THAT. The representation might change
between Timbl versions.

10

3.3 Classify functions: neighborSets

A more flexible way of classifying is to use one of these functions:

const neighborSet * classifyNS(const std::string&);
bool classifyNS(const std::string&, neighborSet&);

The first function will classify an instance and return a pointer to a neighborSet object. This
object may be seen as an container which holds both distances and distributions up to a certain
depth, (which is at least the number of neighbors (-k option) that was used for the classifying
task.) It is a const object, so you cannot directly manipulate its internals, but there are some
functions defined to get useful information out of the neighborSet.

Important: The neighborSet will be overwritten on the next call to any of the classify functions. Be
sure to get all the results out before that happens.

To make life easy, a second variant can be used, which fills a neighborSet object that you provide
(the same could be achieved by a copy of the result of the first function).

Note: NeighborSets can be large, and copying therefore expensive, so you should only do this if
you really have to.

3.3.1 How to get results from a neighborSet

No metric functions (such as exponential decay and the like) are performed on the neighborSet.
You are free to insert your own metrics, or use Timbls built-in metrics.

double getDistance(size_t n) const;

double bestDistance() const;

const ValueDistribution * getDistribution(size_t n) const;

ValueDistribution * bestDistribution(const decayStruct * ds=0,
size_t n=0) const ;

getDistance(n) will return the distance of the neighbor(s) at n. bestDistance() is sim-
ply getDistance(0)

getDistribution(n) will return the distribution of neighbor(s) at n.

bestDistribution() will return the Weighted distribution calculated using the first n ele-
ments in the container and a metric specified by the decayStruct . The default n=0, means: use
the whole container. An empty decay struct means zeroDecay.

The returned ValueDistribution object is handed to you, and you are responsible for deleting it
after using it (see the previous section for more details about ValueDistributions).

A decayStruct is one of:

class zeroDecay();

class invLinDecay();

class invDistDecay();

class expDecay(double alpha);

class expDecay(double alpha, double beta);

11

For example, to get a ValueDistribution form a neighborSet nb, using 3 neighbors and exponen-
tial decay with alpha=0.3, you can do:

decayStruct *dc = new expDecay(0.3);
ValueDistribution xvd = nb->bestDistribution(dc, 3);

3.3.2 Usefull operations on neighborSet objects
You can print neighborSet objects:

std::ostreamé& operator<<(std::ostream&, const neighbor Set&);
std::ostream& operator<<(std::ostream&, const neighbor Set *);

You may create a neighborSet yourself, and assign and delete them:

neighborSet();

neighborSet(const neighborSet&);
neighborSet& operator=(const neighborSet&);
“neighborSet();

If you create an neighborSet, you might want to reserve space for it, to avoid needless realloca-
tions. Also it can be cleared, and you can ask the size (just like with normal containers):

void reserve(size_t);
void clear();
size_t size() const;

Two neighborSets can be merged:
void merge(const neighborSet&);

A neighborSet can be truncated at a certain level. This is useful after merging neighborSets.
Merging sets with depth k and n will result in a set with a depth somewhere within the range
[max(k,n), k + n].

void truncate(size_t);

12

Chapter 4

Advanced Functions

4.1 Modifying the InstanceBase

The instanceBase can be modified with the functions:

bool Increment(const std::string& Line);
bool Decrement(const std::string& Line);

These functions add an Instance (as described by Line) to the InstanceBase, or remove it. This
can only be done for IB1-like experiments (IB1, IB2, CV and LOO), and enforces a lot of statistical
recalculations.

More sophisticated are:

bool Expand(const std::string& File);
bool Remove(const std::string& File);

which use the contents of File to do a bulk of Increments or Decrements, and recalculate after-
wards.

4.2 Getting more information out of Timbl

There are a few convenience functions to get extra information on TiMBL and its behaviour:
bool WriteNamesFile(const std::string& f);

Create a file which resembles a C4.5 namesfile.
Algorithm Algo()

Give the current algorithm as a type enum Algorithm. First, the declaration of the Algorithm
type:

13

enum Algorithm { UNKNOWN_ALG, IB1, I1B2, IGTREE,
TRIBL, TRIBL2, LOO, CV }

This can be printed with the helper function:
const std::string to_string(const Algorithm)

Weighting CurrentWeighting()

Gives the current weighting as a type enum Weighting.

Declaration of Weighting:

enum Weighting { UNKNOWN_W, UD, NW, GR, IG, X2, SV }
This can be printed with the helper function:

const std::string to_string(const Weighting)

Weighting CurrentWeightings(std::vector<double>& v)

Returns the current weighting as a type enum Weighting and also a vector v with all the current
values of this weighting.

std::string& ExpName()

Returns the value of ‘name’ given at the construction of the experiment

static std::string VersionInfo(bool full = false)

Returns a string containing the Version number, the Revision and the Revision string of the cur-
rent APl implementation. If full is true, also information about the date and time of compilation
is included.

14

Chapter 5

Server Mode

bool StartServer(const int port, const int max_c);

Starts a TimblServer on “port” with maximally ‘max_c’ concurrent connections to it. Starting a
server makes sense only after the experiment is trained.

15

Chapter 6

Annotated example programs

6.0.1 example 1, api _testl.cxx

#include "TimblAPIL.h"

int main(){
TimblAPI My_Experiment("-a IGTREE +vDI+DB+F", "testl");
My_Experiment.SetOptions("-w2 -mM");
My_Experiment.SetOptions("-w3 -vDB");
My_Experiment.ShowSettings(std::cout);
My_Experiment.Learn("dimin.train”);
My_Experiment.Test("dimin.test", "my_first_test.out"

}

Output:

Current Experiment Settings :
FLENGTH . 0
MAXBESTS : 500
TRIBL_OFFSET : 0
INPUTFORMAT : Unknown
TREE_ORDER . Unknown
ALL_WEIGHTS . false
WEIGHTING D X2
BIN_SIZE : 20
IB2_OFFSET : 0
DO_SILLY . false
DO_DIVERSIFY . false
DECAY 1 Z

SEED sl
DECAYPARAM_A : 1.00000
DECAYPARAM_B : 1.00000
NORMALISATION D1
NORMFACTOR : 1.00000
EXEMPLAR_WEIGHTS . false

IGNORE_EXEMPLAR_WEIGHTS : true
NO_EXEMPLAR_WEIGHTS_TEST : true

VERBOSITY : F+DI
EXACT_MATCH . false
DO_DOT_PRODUCT . false
DO_COSINE . false
HASHED_TREE : true
GLOBAL_METRIC M
METRICS :
MVD_LIMIT 01

MVD_DEFAULT+METRIC . 0

16

[Note 1]

[Note 2]

[Note 3]

NEIGHBORS 1
PROGRESS : 100000
CLIP_FACTOR 1 10

Examine datafile 'dimin.train’ gave the following results
Number of Features: 12

InputFormat : C45

-testl-Phase 1: Reading Datafile: dimin.train

-testl-Start: 0 @ Wed Jul 11 10:43:20 2007

-testl-Finished: 2999 @ Wed Jul 11 10:43:20 2007

-test1-Calculating Entropy Wed Jul 11 10:43:20 2007

Lines of data 1 2999

DB Entropy : 1.6178929

Number of Classes : 5

Feats Vals X-square Variance InfoGain GainRatio
1 3 128.41828 0.021410184 0.030971064 0.024891536
2 50 364.75812 0.030406645 0.060860038 0.027552191
3 19 212.29804 0.017697402 0.039562857 0.018676787
4 37 449.83823 0.037499019 0.052541227 0.052620750
5 3 288.87218 0.048161417 0.074523225 0.047699231
6 61 415.64113 0.034648310 0.10604433 0.024471911
7 20 501.33465 0.041791818 0.12348668 0.034953203
8 69 367.66021 0.030648567 0.097198760 0.043983864
9 2 169.36962 0.056475363 0.045752381 0.046816705
10 64 914.61906 0.076243669 0.21388759 0.042844587
11 18 2807.0418 0.23399815 0.66970458 0.18507018
12 43 7160.3682 0.59689631 1.2780762 0.32537181

Feature Permutation based on Chi-Squared :
< 12, 11, 10, 7, 4, 6, 8, 2, 5, 3, 9, 1 >
-testl-Phase 2: Building index on Datafile: dimin.train

-testl-Start: 0 @ Wed Jul 11 10:43:20 2007

-test1-Finished: 2999 @ Wed Jul 11 10:43:20 2007

-testl-

Phase 3: Learning from Datafile: dimin.train

-testl-Start: 0 @ Wed Jul 11 10:43:20 2007

-testl-Finished: 2999 @ Wed Jul 11 10:43:20 2007

Size of InstanceBase = 148 Nodes, (2960 bytes), 99.61 % compr ession
Warning:-testl-Metric set to Overlap for IGTree test. [Not e 1]

Examine datafile 'dimin.test’ gave the following results:
Number of Features: 12
InputFormat : C45

Starting to test, Testfile: dimin.test

Writing output in: my_first_test.out
Algorithm : IGTree

Weighting . Chi-square

Feature 1 1 128.418283576224439

Feature 2 1 364.758115277811896

Feature 3 1 212.298037236345095

Feature 4 1 449.838231470681876

Feature 5 . 288.872176256387263

Feature 6 1 415.641126446691771

Feature 7 : 501.334653478280984

Feature 8 1 367.660212489714240

Feature 9 : 169.369615106487458

Feature 10 : 914.619058199288816

Feature 11 : 2807.041753278295346

Feature 12 : 7160.368151902808677
-testl-Tested: 1 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 2 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 3 @ Wed Jul 11 10:43:20 2007

17

-testl-Tested: 4 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 5 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 6 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 7 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 8 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 9 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 10 @ Wed Jul 11 10:43:20 2007
-testl-Tested: 100 @ Wed Jul 11 10:43:20 2007

-testl-Ready: 950 @ Wed Jul 11 10:43:20 2007
Seconds taken: 0.1331 (7135.13 p/s)

overall accuracy: 0.962105 (914/950)

Notes:

1. The -w2 of the first SetOptions() is overruled with -w3 from the second SetOptions()
resulting in a weighting of 3 or Chi-Square.

2. The first SetOptions() sets the verbosity with +F+DI+DB. The second SetOptions() ,
however, sets the verbosity with -vDB , and the resulting verbosity is therefore F+DI .

3. Due to the second SetOptions() , the default metric is set to MVDM — this is however
not applicable to IGTREE. This raises a warning later on, when we start to test and the API
informs us that Overlap is used instead.

Result in my_first_test.out (first 20 lines):

6619.8512628162
2396.8557978603

+m|, -d,AG,-d}t,J,J
-1.@,=,-1,=-.G,@nT,T
-,=1,n,-,stry,=,+,m,E,nt,J,J

,=,5,5,+,2ZW, A,—,-,m @ r T,T
=,-fu=+dralTT
====54Lew, T, T
==+, K N,- k,a,rt,J,J
=+,=,0,=,-,p,u,=T,T

===5+1,AmEE

l:’:’:,:‘:’+’|,A’p"]"]
===,====5=,+5X,E, |m P.P
+l,a,=,-,d,@,=,-,kA,st,J,J
S, f,E,r,-,st,0,k,J,J
= ==,5,5,+,5p,a,N0T,T
= =,=,=,+,st,0,t,3,J
==,==+sp,a,r,-,b,u,k,J,J
+,h,IN,- k@,l,-,bl,0,k,J,J

6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
13780.219414719
6619.8512628162
3812.8095095379
3812.8095095379
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162
6619.8512628162

18

6.0.2 example 2, api _test2.cxx
This demonstrates IB2 learning. Our example program:

#include "TimblAPI.h"

int main(){
TimblAPI *My_Experiment = new TimblAPI("-a |IB2 +vF+DI+DB" ,
"test2");
My_Experiment->SetOptions("-b100");
My_Experiment->ShowSettings(std::cout);
My_Experiment->Learn("dimin.train");
My_Experiment->Test("dimin.test", "my_second_test.ou t");
delete My_Experiment;
exit(1);

We create an experiment for the IB2 algorithm, with the -b option set to 100, so the first 100 lines
of dimin.train will be used to bootstrap the learning, as we can see from the output:

Current Experiment Setting

LENGTH ;0
MAXBESTS : 500
TRIBL_OFFSET ;0
INPUTFORMAT : Unknown
TREE_ORDER : GIV
ALL_WEIGHTS . false
WEIGHTING Lar
BIN_SIZE 1 20
IB2_OFFSET : 100
KEEP_DISTRIBUTIONS : false
DO_SLOPPY_LOO . false
TARGET_POS 1 4294967295
DO_SILLY . false
DO_DIVERSIFY . false
DECAY VA

SEED c-1
BEAM_SIZE : 0
DECAYPARAM_A : 1.00000
DECAYPARAM_B : 1.00000
NORMALISATION c-1
NORM_FACTOR : 1.00000
EXEMPLAR_WEIGHTS : false

IGNORE_EXEMPLAR_WEIGHTS : true
NO_EXEMPLAR_WEIGHTS_TEST : true

VERBOSITY . F+DI+DB
EXACT_MATCH . false
DO_DOT_PRODUCT . false
DO_COSINE . false
HASHED_TREE : true
GLOBAL_METRIC : O
METRICS :
MVD_LIMIT 01
MVD_DEFAULT_METRIC : O
NEIGHBORS 01
PROGRESS : 100000
CLIP_FACTOR ;10

Examine datafile 'dimin.train’ gave the following results
Number of Features: 12

InputFormat : C45

-test2-Phase 1: Reading Datafile: dimin.train

-test2-Start: 0 @ Wed Jul 11 10:50:47 2007
-test2-Finished: 100 @ Wed Jul 11 10:50:47 2007

19

-test2-Calculating Entropy

Wed Jul 11 10:50:47 2007

Lines of data : 100

DB Entropy : 1.7148291

Number of Classes : 5

Feats Vals InfoGain GainRatio
1 3 0.059969698 0.041607175
2 16 0.31505423 0.14385015
3 13 0.28508033 0.11717175
4 12 0.29549424 0.20791549
5 3 0.081665925 0.053303154
6 25 0.52671728 0.13537479
7 15 0.35043203 0.10312857
8 21 0.33767640 0.14930809
9 2 0.031832973 0.033768474
10 29 0.70753849 0.15973455
11 14 0.90357639 0.25337382
12 22 1.3841139 0.34375881

Feature Permutation based on GainRatio/Values :
<11, 5, 4,9, 12, 1, 3, 2,8, 7, 10, 6 >
-test2-Phase 2: Learning from Datafile: dimin.train
0 @ Wed Jul 11 10:50:47 2007
100 @ Wed Jul 11 10:50:47 2007

-test2-Start:
-test2-Finished:

Size of InstanceBase = 991 Nodes, (19820 bytes), 23.77 % comp
-test2-Phase 2: Appending from Datafile: dimin.train (sta

101 @ Wed Jul 11 10:50:47 2007
2999 @ Wed Jul 11 10:50:48 2007

-test2-Start:
-test2-Finished:

added 243 new entries
Size of InstanceBase = 2816 Nodes, (56320 bytes), 32.52 % com

DB Entropy 1 2.06102214
Number of Classes : 5

Feats Vals InfoGain GainRatio

©CoO~NOO U WNPE

10
11
12

3
26
15
16

3
32
18
30

2
42
16
40

0.04554767
0.21712128
0.16940288
0.13396509
0.07680154
0.30386439
0.26978935
0.18332100
0.07760376
0.45192062
0.63364433
1.34781701

0.03383515
0.09871036
0.07558872
0.11878590
0.04866030
0.07867154
0.08149390
0.09408395
0.07785647
0.09432288
0.17494936
0.31742342

Examine datafile 'dimin.test’
Number of Features: 12
InputFormat : C45

gave the following results:

Starting to test, Testfile: dimin.test

Writing output in: my_second_test.out
Algorithm 1 1B2

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting . GainRatio

Feature 1 : 0.033835145963271
Feature 2 : 0.098710361953118
Feature 3 : 0.075588723963477
Feature 4 : 0.118785903920912
Feature 5 : 0.048660299116492
Feature 6 : 0.078671538452017

20

ression
rting at line 101)

[Note 1]

pression

Feature 7 : 0.081493895194308
Feature 8 : 0.094083953380450
Feature 9 : 0.077856473802927
Feature 10 : 0.094322883333513
Feature 11 : 0.174949363233078
Feature 12 : 0.317423417741858

-test2-Tested: 1 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 2 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 3 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 4 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 5 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 6 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 7 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 8 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 9 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 10 @ Wed Jul 11 10:50:48 2007

-test2-Tested: 100 @ Wed Jul 11 10:50:48 2007

-test2-Ready: 950 @ Wed Jul 11 10:50:48 2007

Seconds taken: 0.1129 (8416.99 p/s)

overall accuracy: 0.935789 (889/950), of which 15 exact mat ches
[Note 2]

There were 58 ties of which 48 (82.76%) were correctly resolv ed

Notes:

1. As we see here, 243 entries from the input file had a mismatch, and were therefore entered
in the Instancebase.

2. We see that IB2 scores 93.58 %, compared to 96.21 % for IGTREE in our first example. For
this data, IB2 is not a good algorithm. However, it saves a lot of space, and is faster than
IB1. Yet, IGTREE is both faster and better. Had we used IB1, the score would have been
96.84 %.

21

6.0.3 example 3, api _test3.cxx
This demonstrates Cross Validation. Let’s try the following program:

#include "TimblAPIL.h"
using Timbl::TimblAPI,

int main(){
TimblAPI *My_Experiment = new TimblAPI("-t cross_validate");
My_Experiment->Test(“cross_val.test");
delete My_Experiment;
exit(0);

This program creates an experiment, which defaults to IB1 and because of the special option “-t
cross_validate” will start a CrossValidation experiment.
Learn() is not possible now. We must use a special form of Test().

“cross_val.test” is a file with the following content:

small_1.train
small_2.train
small_3.train
small_4.train
small_5.train

All these files contain an equal part of a bigger dataset, and My_Experiment will run a CrossVal-
idation test between these files. Note that output filenames are generated and that you cannot
influence that.

The output of this program is:

Starting Cross validation test on files:

small_1.train

small_2.train

small_3.train

small_4.train

small_5.train

Examine datafile 'small_1.train’ gave the following resul ts:
Number of Features: 8

InputFormat : C45

Starting to test, Testfile: small_1.train
Writing output in: small_1.train.cv
Algorithm : CV

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting . GainRatio

Tested: 1 @ Wed Jul 11 10:56:03 2007
Tested: 2 @ Wed Jul 11 10:56:03 2007
Tested: 3 @ Wed Jul 11 10:56:03 2007
Tested: 4 @ Wed Jul 11 10:56:03 2007
Tested: 5 @ Wed Jul 11 10:56:03 2007
Tested: 6 @ Wed Jul 11 10:56:03 2007
Tested: 7 @ Wed Jul 11 10:56:03 2007
Tested: 8 @ Wed Jul 11 10:56:03 2007
Tested: 9 @ Wed Jul 11 10:56:03 2007
Tested: 10 @ Wed Jul 11 10:56:03 2007
Ready: 10 @ Wed Jul 11 10:56:03 2007

22

Seconds taken: 0.0022 (4508.57 p/s)
overall accuracy: 0.800000 (8/10)

Examine datafile 'small_2.train’ gave the following resul

Number of Features: 8
InputFormat . C45

Starting to test, Testfile: small_2.train
Writing output in: small_2.train.cv
Algorithm : CV

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting . GainRatio

Tested: 1 @ Wed Jul 11 10:56:03 2007
Tested: 2 @ Wed Jul 11 10:56:03 2007
Tested: 3 @ Wed Jul 11 10:56:03 2007
Tested: 4 @ Wed Jul 11 10:56:03 2007
Tested: 5 @ Wed Jul 11 10:56:03 2007
Tested: 6 @ Wed Jul 11 10:56:03 2007
Tested: 7 @ Wed Jul 11 10:56:03 2007
Tested: 8 @ Wed Jul 11 10:56:03 2007
Tested: 9 @ Wed Jul 11 10:56:03 2007
Tested: 10 @ Wed Jul 11 10:56:03 2007
Ready: 10 @ Wed Jul 11 10:56:03 2007
Seconds taken: 0.0021 (4777.83 p/s)

overall accuracy: 0.800000 (8/10)

Examine datafile 'small_3.train’ gave the following resul

Number of Features: 8
InputFormat : C45

Starting to test, Testfile: small_3.train
Writing output in: small_3.train.cv
Algorithm : CV

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting . GainRatio

Tested: 1 @ Wed Jul 11 10:56:03 2007
Tested: 2 @ Wed Jul 11 10:56:03 2007
Tested: 3 @ Wed Jul 11 10:56:03 2007
Tested: 4 @ Wed Jul 11 10:56:03 2007
Tested: 5 @ Wed Jul 11 10:56:03 2007
Tested: 6 @ Wed Jul 11 10:56:03 2007
Tested: 7 @ Wed Jul 11 10:56:03 2007
Tested: 8 @ Wed Jul 11 10:56:03 2007
Tested: 9 @ Wed Jul 11 10:56:03 2007
Tested: 10 @ Wed Jul 11 10:56:03 2007
Ready: 10 @ Wed Jul 11 10:56:03 2007
Seconds taken: 0.0021 (4863.81 p/s)

overall accuracy: 0.900000 (9/10)

Examine datafile 'small_4.train’ gave the following resul

Number of Features: 8
InputFormat : C45

Starting to test, Testfile: small_4.train
Writing output in: small_4.train.cv
Algorithm : CV

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting . GainRatio

Tested: 1 @ Wed Jul 11 10:56:03 2007
Tested: 2 @ Wed Jul 11 10:56:03 2007
Tested: 3 @ Wed Jul 11 10:56:03 2007

23

Tested: 4 @ Wed Jul 11 10:56:03 2007
Tested: 5 @ Wed Jul 11 10:56:03 2007
Tested: 6 @ Wed Jul 11 10:56:03 2007
Tested: 7 @ Wed Jul 11 10:56:03 2007
Tested: 8 @ Wed Jul 11 10:56:03 2007
Tested: 9 @ Wed Jul 11 10:56:03 2007
Tested: 10 @ Wed Jul 11 10:56:03 2007
Ready: 10 @ Wed Jul 11 10:56:03 2007
Seconds taken: 0.0021 (4837.93 p/s)

overall accuracy: 0.800000 (8/10)
Examine datafile 'small_5.train’ gave the following resul ts:
Number of Features: 8

InputFormat : C45

Starting to test, Testfile: small_5.train
Writing output in: small_5.train.cv
Algorithm : CV

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting . GainRatio

Tested: 1 @ Wed Jul 11 10:56:03 2007
Tested: 2 @ Wed Jul 11 10:56:03 2007
Tested: 3 @ Wed Jul 11 10:56:03 2007
Tested: 4 @ Wed Jul 11 10:56:03 2007
Tested: 5 @ Wed Jul 11 10:56:03 2007
Tested: 6 @ Wed Jul 11 10:56:03 2007
Tested: 7 @ Wed Jul 11 10:56:03 2007
Tested: 8 @ Wed Jul 11 10:56:03 2007
Ready: 8 @ Wed Jul 11 10:56:03 2007
Seconds taken: 0.0018 (4415.01 p/s)

overall accuracy: 1.000000 (8/8)
What has happened here?

1. TiMBL trained itself with inputfiles small 2.train through small_5.train. (in fact using the
Expand() API call.

2. Then TiMBL tested small_1.train against the InstanceBase.

3. Next, small_2.train is removed from the database (API call Remove()) and small_1.train is
added.

4. Then small_2.train is tested against the InstanceBase.

5. And so forth with small_3.train . ..

24

6.0.4 example 4, api _test4.cxx

This program demonstrates adding and deleting of the InstanceBase. It also proves that weights
are (re)calculated correctly each time (which also explains why this is a time-consuming thing to
do). After running this program, wg.1 should be equal to wg.5 and wg.2 eq to wg.4. Important
to note is also, that while we do not use a weighting of X2 or SV here, only the “simple” weights
are calculated and stored.

First the program:

#include <iostream>
#include "TimblAPI.h"

int main(){

TimblAPlI *My_Experiment = new TimblAPI("-a IB1 +vDI+DB +mM" ,
"test4");

My_Experiment->ShowSettings(std::cout);
My_Experiment->Learn("dimin.train");
My_Experiment->Test("dimin.test", "incl.out");
My_Experiment->SaveWeights("wg.1");
My_Experiment->WriteArrays("arr.1");
My_Experiment->Increment("=,==,=,+Kk,e,=-r@,T ")
My_Experiment->Test("dimin.test", "inc2.out");
My_Experiment->SaveWeights("wg.2");
My_Experiment->WriteArrays("arr.2");
My_Experiment->Increment("+,zw,A rt,- k,0O,p,-,n,0O,n E"),
My_Experiment->Test(“dimin.test", "inc3.out");
My_Experiment->SaveWeights("wg.3");
My_Experiment->WriteArrays(“arr.3");
My_Experiment->Decrement("+,zw,A,rt,-,k,0,p,-,n,0,n E")
My_Experiment->Test(“dimin.test", "inc4.out");
My_Experiment->SaveWeights("wg.4");
My_Experiment->WriteArrays(“arr.4");
My_Experiment->Decrement("=,=,=,=,+k,e,=,-r,@,,T ")
My_Experiment->Test("dimin.test”, "inc5.out");
My_Experiment->SaveWeights("wg.5");
My_Experiment->WriteArrays("arr.5");
delete My_Experiment;
exit(1);

This produces the following output:

Current Experiment Settings :

FLENGTH : 0
MAXBESTS . 500
TRIBL_OFFSET : 0
INPUTFORMAT : Unknown
TREE_ORDER . GIV
ALL_WEIGHTS . false
WEIGHTING Lar
BIN_SIZE 1 20
IB2_OFFSET : 0
KEEP_DISTRIBUTIONS : false
DO_SLOPPY_LOO . false
TARGET_POS : 4294967295
DO_SILLY . false
DO_DIVERSIFY . false
DECAY 1 Z

SEED c-1
BEAM_SIZE : 0
DECAYPARAM_A : 1.00000
DECAYPARAM_B : 1.00000

25

NORMALISATION D1
NORM_FACTOR © 1.00000
EXEMPLAR_WEIGHTS . false
IGNORE_EXEMPLAR_WEIGHTS : true
NO_EXEMPLAR_WEIGHTS_TEST : true

VERBOSITY : DI+DB
EXACT_MATCH . false
DO_DOT_PRODUCT . false
DO_COSINE . false
HASHED_TREE . true
GLOBAL_METRIC M
METRICS :
MVD_LIMIT 01
MVD_DEFAULT_METRIC : O
NEIGHBORS 01
PROGRESS : 100000
CLIP_FACTOR 1 10

Examine datafile 'dimin.train’ gave the following results
Number of Features: 12

InputFormat . C45

-test4-Phase 1: Reading Datafile: dimin.train

-test4-Start: 0 @ Wed Jul 11 11:00:02 2007
-test4-Finished: 2999 @ Wed Jul 11 11:00:02 2007
-test4-Calculating Entropy Wed Jul 11 11:00:02 2007

Feature Permutation based on GainRatio/Values :
<95 11, 1, 12, 7, 4, 3, 10, 8, 2, 6 >

-test4-Phase 2: Learning from Datafile: dimin.train
-test4-Start: 0 @ Wed Jul 11 11:00:02 2007
-test4-Finished: 2999 @ Wed Jul 11 11:00:02 2007

Size of InstanceBase = 19231 Nodes, (384620 bytes), 49.77 % c ompression
Examine datafile 'dimin.test’ gave the following results:

Number of Features: 12

InputFormat : C45

Starting to test, Testfile: dimin.test

Writing output in: incl.out

Algorithm : 1Bl

Global metric : Value Difference, Prestored matrix
Deviant Feature Metrics:(none)

Size of value-matrix[1] = 96 Bytes
Size of value-matrix[2] = 704 Bytes
Size of value-matrix[3] 704 Bytes
Size of value-matrix[4] = 96 Bytes

Size of value-matrix[5] = 96 Bytes

Size of value-matrix[6] 1496 Bytes
Size of value-matrix[7] 1496 Bytes
Size of value-matrix[8] = 336 Bytes

Size of value-matrix[9] = 56 Bytes

Size of value-matrix[10] = 2376 Bytes
Size of value-matrix[11] = 1344 Bytes
Size of value-matrix[12] = 936 Bytes

Total Size of value-matrices 9736 Bytes
Weighting . GainRatio

Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007
Wed Jul 11 11:00:02 2007

-test4-Tested:
-test4-Tested:
-test4-Tested:
-test4-Tested:
-test4-Tested:
-test4-Tested:
-test4-Tested:
-test4-Tested:

O~NOUAWN R
SISISISISOIONSIO)

26

-test4-Tested: 9 @ Wed Jul 11 11:00:02 2007

-test4-Tested: 10 @ Wed Jul 11 11:00:02 2007

-test4-Tested: 100 @ Wed Jul 11 11:00:02 2007

-test4-Ready: 950 @ Wed Jul 11 11:00:02 2007

Seconds taken: 0.1529 (6211.75 p/s)

overall accuracy: 0.964211 (916/950), of which 62 exact mat

There were 6 ties of which 6 (100.00%) were correctly resolve
-test4-Saving Weights in wg.1.wgt

-test4-Saving Probability Arrays in arr.l.arr

Examine datafile 'dimin.test’ gave the following results:

Number of Features: 12

InputFormat : C45

Starting to test, Testfile: dimin.test

Writing output in: inc2.out

Algorithm : 1Bl

Global metric : Value Difference, Prestored matrix
Deviant Feature Metrics:(none)

Size of value-matrix[1] = 96 Bytes
Size of value-matrix[2] = 704 Bytes
Size of value-matrix[3] 704 Bytes
Size of value-matrix[4] = 96 Bytes

Size of value-matrix[5] = 96 Bytes

Size of value-matrix[6] 1496 Bytes
Size of value-matrix[7] 1496 Bytes
Size of value-matrix[8] = 336 Bytes

Size of value-matrix[9] = 56 Bytes

Size of value-matrix[10] = 2376 Bytes
Size of value-matrix[11] = 1344 Bytes
Size of value-matrix[12] = 936 Bytes

Total Size of value-matrices 9736 Bytes

Weighting . GainRatio

-test4-Tested: 1 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 2 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 3 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 4 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 5 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 6 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 7 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 8 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 9 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 10 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 100 @ Wed Jul 11 11:00:02 2007
-test4-Ready: 950 @ Wed Jul 11 11:00:02 2007
Seconds taken: 0.2206 (4305.52 p/s)

overall accuracy: 0.964211 (916/950), of which 62 exact mat

There were 6 ties of which 6 (100.00%) were correctly resolve
-test4-Saving Weights in wg.2.wgt

-test4-Saving Probability Arrays in arr.2.arr

Examine datafile 'dimin.test’ gave the following results:

Number of Features: 12

InputFormat : C45

Starting to test, Testfile: dimin.test

Writing output in: inc3.out

Algorithm : 1Bl

Global metric : Value Difference, Prestored matrix
Deviant Feature Metrics:(none)

Size of value-matrix[1] = 96 Bytes

Size of value-matrix[2] = 704 Bytes

Size of value-matrix[3] = 704 Bytes

27

ches

ches

Size of value-matrix[4]
Size of value-matrix[5]
Size of value-matrix[6]
Size of value-matrix[7]
Size of value-matrix[8]
Size of value-matrix[9]
Size of value-matrix[10]
Size of value-matrix[11]
Size of value-matrix[12]
Total Size of value-matric

96 Bytes

96 Bytes
1496 Bytes
1496 Bytes
336 Bytes

56 Bytes
2376 Bytes
1344 Bytes
936 Bytes
es 9736 Bytes

Weighting . GainRatio

-test4-Tested: 1 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 2 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 3 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 4 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 5 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 6 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 7 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 8 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 9 @ Wed Jul 11 11:00:02 2007
-test4-Tested: 10 @ Wed Jul 11 11:00:02 2007

-test4-Tested: 100 @

Wed Jul 11 11:00:02 2007

-test4-Ready: 950 @ Wed Jul 11 11:00:03 2007
Seconds taken: 0.1681 (5652.84 p/s)
overall accuracy: 0.964211 (916/950), of which 62 exact mat

There were 6 ties of which 6 (100.00%) were correctly resolve
-test4-Saving Weights in wg.3.wgt
-test4-Saving Probability Arrays in arr.3.arr

Examine datafile 'dimin.test’ gave the following results:

Number of Features: 12

InputFormat : C45

Starting to test, Testfile: dimin.test

Writing output in:
Algorithm : 1Bl

inc4.out

Global metric : Value Difference, Prestored matrix
Deviant Feature Metrics:(none)

Size of value-matrix[1] =
Size of value-matrix[2] =
Size of value-matrix[3] =
Size of value-matrix[4] =
Size of value-matrix[5] =
Size of value-matrix[6] =
Size of value-matrix[7] =
Size of value-matrix[8] =
Size of value-matrix[9] =
Size of value-matrix[10] =
Size of value-matrix[11] =
Size of value-matrix[12] =
Total Size of value-matric

96 Bytes
704 Bytes
704 Bytes
96 Bytes
96 Bytes
1496 Bytes
1496 Bytes
336 Bytes
56 Bytes
2376 Bytes
1344 Bytes
936 Bytes
es 9736 Bytes

Weighting . GainRatio

-test4-Tested: 1 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 2 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 3 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 4 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 5 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 6 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 7 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 8 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 9 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 10 @ Wed Jul 11 11:00:03 2007

28

ches

-test4-Tested: 100 @ Wed Jul 11 11:00:03 2007

-test4-Ready: 950 @ Wed Jul 11 11:00:03 2007
Seconds taken: 0.1755 (5414.06 p/s)
overall accuracy: 0.964211 (916/950), of which 62 exact mat

There were 6 ties of which 6 (100.00%) were correctly resolve
-test4-Saving Weights in wg.4.wgt

-test4-Saving Probability Arrays in arr.4.arr

Examine datafile 'dimin.test’ gave the following results:

Number of Features: 12

InputFormat : C45

Starting to test, Testfile: dimin.test

Writing output in: inc5.out

Algorithm : 1Bl

Global metric : Value Difference, Prestored matrix
Deviant Feature Metrics:(none)

Size of value-matrix[1] = 96 Bytes
Size of value-matrix[2] = 704 Bytes
Size of value-matrix[3] = 704 Bytes
Size of value-matrix[4] = 96 Bytes
Size of value-matrix[5] = 96 Bytes
Size of value-matrix[6] = 1496 Bytes
Size of value-matrix[7] = 1496 Bytes
Size of value-matrix[8] = 336 Bytes
Size of value-matrix[9] = 56 Bytes
Size of value-matrix[10] = 2376 Bytes

Size of value-matrix[11] = 1344 Bytes
Size of value-matrix[12] = 936 Bytes
Total Size of value-matrices 9736 Bytes

Weighting . GainRatio

-test4-Tested: 1 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 2 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 3 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 4 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 5 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 6 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 7 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 8 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 9 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 10 @ Wed Jul 11 11:00:03 2007
-test4-Tested: 100 @ Wed Jul 11 11:00:03 2007
-test4-Ready: 950 @ Wed Jul 11 11:00:03 2007
Seconds taken: 0.1656 (5737.44 p/s)

overall accuracy: 0.964211 (916/950), of which 62 exact mat

There were 6 ties of which 6 (100.00%) were correctly resolve
-test4-Saving Weights in wg.5.wgt
-test4-Saving Probability Arrays in arr.5.arr

29

ches

ches

6.0.5 example 5, api _test5.cxx

This program demonstrates the use of neighborSets to classify and store results. It also demon-
strates some neighborSet basics.

#include <iostream>
#include <string>
#include "TimblAPI.h"

using std::endl;
using std::cout;
using std::string;
using namespace Timbl;

int main(){
TimblAPI = My_Experiment = new TimblAPI("-a IB1 +vDI+DB+n +mM +k4 " ,
"tests");
My_Experiment->Learn("dimin.train");

string line = "====+ke,=-r@,T"
const neighborSet *neighboursl = My_Experiment->classifyNS(line);
if (neighboursl){

cout << "Classify OK on " << line << endl;

cout << neighboursl;
} else

cout << "Classify failed on
neighborSet neighbours2;
line = "+zw,A rt,-k,0,p,-,n,0,n,E";
if (My_Experiment->classifyNS(line, neighbours2)){

cout << "Classify OK on " << line << endl;

cout << neighbours2;
} else

cout << "Classify failed on " << line << endl;
line = "+,z,0,n,-,d,AXs,-,=,A,rm,P";
const neighborSet *neighbours3 = My_Experiment->classifyNS(line
if (neighbours3){

cout << "Classify OK on " << line << endl;

cout << neighbours3;
} else

cout << "Classify failed on
neighborSet uit2;

{

<< line << endl;

~

<< line << endl;

neighborSet uit;

cout << " before first merge " << endl;
cout << uit;

uit.merge(*neighboursl);

cout << " after first merge
cout << uit;

uit.merge(* neighbours3);
cout << " after second merge
cout << uit;

uit.merge(neighbours2);

cout << " after third merge " << endl;
cout << uit;

uit.truncate(3);

cout << " after truncate " << endl;
cout << uit;

cout << " test assignment" << endl;
uit2 = =*neighboursl;

<< endl;

<< endl;

}

cout << "assignment result: " << endl,

cout << uit2;

{
cout << " test copy construction" << endl;
neighborSet uit(uit2);
cout << "result: " << endl;

30

cout << uit;

}

cout << "almost done!" << endl;

}
delete My_Experiment;
cout << "done!" << endl;

Its expected output is (without further comment):

Examine datafile 'dimin.train’ gave the following results
Number of Features: 12

InputFormat . C45

-testb-Phase 1: Reading Datafile: dimin.train

-test5-Start: 0 @ Wed Jul 11 11:07:31 2007
-test5-Finished: 2999 @ Wed Jul 11 11:07:31 2007
-test5-Calculating Entropy Wed Jul 11 11:07:31 2007

Feature Permutation based on GainRatio/Values :
<95 11, 1, 12, 7, 4, 3, 10, 8, 2, 6 >

-test5-Phase 2: Learning from Datafile: dimin.train
-test5-Start: 0 @ Wed Jul 11 11:07:31 2007
-test5-Finished: 2999 @ Wed Jul 11 11:07:31 2007

Size of InstanceBase = 19231 Nodes, (384620 bytes), 49.77 % c ompression
Classify OK on =,==,=,+ke,=-r@,T

k=1 { T 1.00000 } 0.0000000000000

2 { T 1.00000 } 0.0031862902473388

{ T 1.00000 } 0.0034182315118303

{ T 1.00000 } 0.0037433772844615

ify OK on +,zw,A,rt,-k,0,p,-,n,0,n,E

{ E 1.00000 } 0.0000000000000

{ E 1.00000 } 0.056667880327190

{ E 1.00000 } 0.062552636617742

{ E 1.00000 } 0.064423860361889

ify OK on +,z,0,n,-,d,Axs,-,=A,rm,P

{ P 1.00000 } 0.059729836255170

{ P 1.00000 } 0.087740769132651

{ P 1.00000 } 0.088442788919723

{ P 1.00000 } 0.097058649951429

fore first merge

er first merge

{ P 1.00000 } 0.059729836255170

{ P 1.00000 } 0.087740769132651
{ P 1.00000 } 0.088442788919723
{ P 1.00000 } 0.097058649951429
second merge

{ 2.00000 } 0.059729836255170
{ 2.00000 } 0.087740769132651
{ 2.00000 } 0.088442788919723
{ 2.00000 } 0.097058649951429
hird merge

{ E 1.00000 } 0.0000000000000
{E

{

{

{

{

{

{

HERFQOQHFEHRFQOQHE R
D xxxx D xxx
SN2l

DN AN N)

X XXX
oo

A WOWN P

b
al

H* #H H R

Q
[¢]

H* #H HH

—

1.00000 } 0.056667880327190
2.00000 } 0.059729836255170
E 1.00000 } 0.062552636617742
E 1.00000 } 0.064423860361889
2.00000 } 0.087740769132651
2.00000 } 0.088442788919723
2.00000 } 0.097058649951429
truncate

{ E 1.00000 } 0.0000000000000

{ E 1.00000 } 0.056667880327190
{ P 2.00000 } 0.059729836255170
test assignment

assignment result:

HHHH R HHH

WNREP,T-T0O0O~NOOOAORWNESBRAWONREPE T BMAMWONPR

]]
;\—x;\—:r;\—x;\—xxxz—xgxxxx:rxxxx:rm

[¢]

H* #

31

k=1 { P 1.00000 } 0.059729836255170
k=2 { P 1.00000 } 0.087740769132651
k=3 { P 1.00000 } 0.088442788919723
k=4 { P 1.00000 } 0.097058649951429
test copy construction

result:

k=1 { P 1.00000 } 0.059729836255170
k=2 { P 1.00000 } 0.087740769132651
k=3 { P 1.00000 } 0.088442788919723
k=4 { P 1.00000 } 0.097058649951429
almost done!

done!

32

6.0.6 example 6, api _test6.cxx

This program demonstrates the use of ValueDistributions, TargetValues an neighborSets for clas-

sification.

#include <iostream>
#include "TimblAPI.h"

using std::cout;
using std::endl;
using namespace Timbl;

int main(){
TimblAPI My_Experiment("-a IB1 +vDI+DB -k3", "test6");
My_Experiment.Learn("dimin.train");
const ValueDistribution *vd,
const TargetValue *tv
= My_Experiment.Classify("-,=,0,m,+,h,K,=,-,n,[,N,K"
cout << "resulting target: " << tv << endl;
cout << "resulting Distribution: " << vd << endl;
ValueDistribution::dist_iterator it=vd->begin();
while (it = vd->end() X
cout << it->second << " OR "
cout << it->second->Value() << " " << it->second->Weight()
++it;

}

cout << "the same with neighborSets" << endl;

, vd);

<< endl;

const neighborSet *nb = My_Experiment.classifyNS("-,=,0,m,+,h,K,=-,n,l, N,K");

ValueDistribution xvd2 = nb->bestDistribution();
cout << "default answer " << vd2 << endl,
decayStruct *dc = new expDecay(0.3);

delete vd2;

vd2 = nb->bestDistribution(dc);

delete dc;

cout << "with exponenial decay, alpha = 0.3 " << vd2 << endl;

delete vd2;

This is the output produced:

Examine datafile 'dimin.train’ gave the following results
Number of Features: 12
InputFormat : C45

-test6-Phase 1: Reading Datafile: dimin.train

-test6-Start: 0 @ Wed Jul 11 11:12:07 2007
-test6-Finished: 2999 @ Wed Jul 11 11:12:07 2007
-test6-Calculating Entropy Wed Jul 11 11:12:07 2007
Feature Permutation based on GainRatio/Values :

<9 5 11, 1, 12, 7, 4, 3, 10, 8, 2, 6 >

-test6-Phase 2: Learning from Datafile: dimin.train

-test6-Start: 0 @ Wed Jul 11 11:12:07 2007
-test6-Finished: 2999 @ Wed Jul 11 11:12:08 2007

Size of InstanceBase = 19231 Nodes, (384620 bytes), 49.77 % c
resulting target: K

resulting Distribution: { E 1.00000, K 7.00000 }

E1O0REI]1

K7O0RK?Y

the same with neighborSets

default answer { E 1.00000, K 7.00000 }

with exponenial decay, alpha = 0.3 { E 0.971556, K 6.69810 }

33

ompression

