Bio::Tools::Phylo::PAML HOWTO

Aaron Mackey
University of Virginia [http://www.virginia.edu]

<amackey@i r gi ni a. edu>

Jason Stajich
Duke University [http://www.duke.edu]
University Program in Genetics [http://upg.duke.edu]Center for Genome
Technology [http://cgt.genetics.duke.edu]

Duke University Medical Center
Box 3568
Durham,
North Carolina
27710-3568
USA

<j ason- at - bi oper| . org>

This document is copyright Aaron Mackey, 2002. For reproduction other than personal use please contact me at
amackey@virginia.edu

2002-08-01
Revision History
Revision 0.1 2002-08-01 ajm
first draft
Revision 0.2 2003-03-01 jes

Added pairwise Ka,Ks example code and running code

paml is a package of C programs that implement Phylogenetic Analyses using Maximum Likelihood, written by
Dr. Ziheng Yang, University College London. These programs implement a wide variety of models to explore
the evolutionary relationships between sequences at either the protein, codon or raw DNA level. This docu-
ment's aim is to explore and document how the BioPerl pam! parser and result objects "work".

Table of Contents

L.BACKGIOUNG ...eiietiii ettt e et e e et e e e e e e et e et aeaaaaanas 2
2. ACCESSING PAMITESUILS ittt ettt e e et et et et e e e e e e e e e aeen e 2
3. Running PAML from within BIOper]oiiiiiiiiiiiiiie e 3

http://www.virginia.edu
http://www.virginia.edu
http://www.virginia.edu
http://www.duke.edu
http://www.duke.edu
http://www.duke.edu
http://upg.duke.edu
http://upg.duke.edu
http://upg.duke.edu
http://upg.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu

Bio::Tools::Phylo::PAML HOWTO

1. Background

The paml package consists of many different executable programs, but the BioPerl Bio::Tools::Phylo::PAML
object (hereafter referred to as simply the paml object) focuses on dealing with the output of the main analysis
programs "baseml", "codeml" (sometimes called "aaml") and "codemlsites" (a batch version of "codeml"). All
of these programs use maximum likelihood methods to fit a mathematical model of evolution to sequence data
provided by the user. The main difference between these programs is the type of sequence on which they oper-
ate (baseml for raw DNA, codeml for DNA organized as codons, aaml for amino acids).

While the general maximum likelihood approach used by the paml! programs is the same for all of them, the spe-
cific evolutionary models available for each sequence type vary greatly, as do the parameters specific to each
model. The programs function in a handful of disparate modes, each requiring slight variations of inputs that can
possibly include:

1. multiply-aligned sequences. representing 1 or more distinct genes [pam! parameter Mgene =1], in 1 or
more distinct datasets [paml ndata > 1])

2. auser-provided tree topology (or multiple tree topologies to be evaluated and contrasted)

3. aset of instructions in a control file that specify the model (or models) to be used, various options to spec-
ify how to handle the sequence data (e.g. whether to dismiss columns with gaps or not [cleandata = 1]),
initial or fixed values for model parameters, and the filenames for other input data.

The output from paml is directed to multiple "targets": data is written to the user-specified primary output file

(conventionally named with an .mlc extension), as well as various accessory files with fixed names (e.g. 2M.. t,

2M.. dN, 2M.. dS for pairwise Maximum Likelihood calculations) that appear in the same directory that the out-

put file is found.

The upshot of these comments is that one pam! program "run" can potentially generate results for many genes,
many datasets, many tree toplogies and many evolutionary models, spread across multiple output files. Cur-
rently, the paml programs deal with the various categories of multiple analyses in the following "top-down" or-
der: datasets, genes, models, tree topologies. So how shall the BioPerl pam!/ module treat these sources of multi-
ple results?

2. Accessing paml results

The BioPerl paml result parser takes the view that a distinct "recordset" or single, top-level PAML::Result ob-
ject represents a single dataset. Each PAML::Result object may therefore contain data from multiple genes,
models, and/or tree topologies. To parse the output from a multiple-dataset pam! run, the familiar "next_result"
iterator common to other BioPerl modules is invoked.

Example 1. Iterating over results with next_result

use Bio:: Tool s:: Phyl o:: PAM;

my $parser = new Bio::Tools::Phylo::PAML (-file => "./output.mc",
-dir => "
-ctlf =>"./codenm .ctl");

whil e(nmy $result

= $parser->next_result) {
do sonething w
}

th the results fromthis dataset

In this example, we've created a new top-level paml! parser, specifying paml's primary output file, the directory
in which any other accessory files may be found, and the control file. We then trigger the parser to begin parsing
the data, returning a new PAML::Result object for each dataset found in the output.

2

Bio::Tools::Phylo::PAML HOWTO

The PAML::Result object provides access to the wide variety of data found in the output files. The specific
kinds of data available depends on which pam/ analysis program was run, and the mode and models employed.
Generally, these include a recapitulation of the input sequences and their multiple alignment (which may differ
slightly from the original input sequences due to the data "cleansing" pam!/ performs), descriptive statistics of the
input sequences (e.g. codon usage tables, nucleotide or amino acid composition), pairwise Nei and Gojobori
(NG) calculation matrices (for codon models), fitted model parameter values (including branch-specific parame-
ters associated with any provided tree topology), reconstructed ancestral sequences (again, associated with an
accompanying tree topology), or statistical comparisons of multiple tree topologies.

3. Running PAML from within Bioperl

Bioperl also has facilities for runnning pam! from within a Perl script. This allows you to compute Ka and Ks
estimations from within an analysis pipeline. The following section will describe the process of getting data into
Bioperl, running the alignment process, and setting up a paml process. This code is focusing on estimations of
all the pairwise Ka and Ks values however it can be used to easily compute more sophisticated questions about
variable rates, etc.

This code below is an excerpt from scripts/utilities/pairwise_kaks.PLS which will calculate all pairwise Ka,Ks
values for a set of cDNA sequences stored in a file. It will first translate the cDNA into protein and align the
protein sequences. This is a simple way to insure gaps only occur at codon boundaries and amino acid substitu-
tion rates are applied when calculating the MSA. The protein alignment is them projected back into cDNA coor-
dinates using a method called aa_to_dna_aln. Finally the cDNA alignment is provided to a pam/ executing mod-
ule which sets up the running parameters and converts the alignment to the appropriate format.

use Bi o::Tool s:: Run:: Phyl o:: PAM.: : Coden ;
use Bio::Tools::Run::Aignnment::Custalw

for projecting alignnents fromprotein to R DNA space
use Bio::Align::Uilities gwaa_to_dna_al n);

for input of the sequence data
use Bio::Seql G
use Bio::AlignlQ

ny $aln_factory = new Bio::Tools::Run::Alignnent::Custal wW);
ny $seqdata = 'cdna.fa';

ny $seql O = new Bio::SeqlQ(-file => $seqdata,
-format => 'fasta');
ny %eqs;
ny @rots;
process each sequence
while(my $seq = $seqi n->next_seq) {
$seqs{ $seq- >di splay_i d} = $seq;
translate theminto protein
my $protein = $seqg->translate();
my $pseq = $protein->seq();
if($pseq =~ /*/ &&
$pseq '~ /*$/) {
warn("provi ded a cDNA sequence with a stop codon, PAML will choke!");
exit(0);

}

Tcoffee can't handle '*' even if it is trailing
$pseq =~ s/*//g;

$pr ot ei n- >seq($pseq) ;

push @rots, $protein;

if(@rots <2)
warn(" Need at | east 2 cDNA sequences to proceed");
exit(0);

Bio::Tools::Phylo::PAML HOWTO

open(QUT, ">align_output.txt") ||
di e("cannot open output $output for witing");
Align the sequences with clustalw
ny $aa_aln = $al n_factory->align(\ @rots);
project the protein alignment back to cDNA coordi nates
ny $dna_aln = &a_to_dna_al n($aa_al n, \%eqs);

my @ach = $dna_al n- >each_seq();

my $kaks_factory = new Bio:: Tool s:: Run:: Phyl o: : PAM.: : Coden
(-params => { 'runnode' => -2,
‘seqtype’ => 1,

)

set the alignnent object
$kaks_factory-=>alignnent($dna_al n);

run the KaKs anal ysis

ny ($rc, $parser) = $kaks_factory->run();
ny $result = $parser->next_result;

my $Menmatrix = $resul t->get _Mnatrix();

ny @tus = $result->get_seqs();
this gives us a mapping fromthe PAM. order of sequences back to
the input order (since names get truncated)
nmy @os = map {
ny $c= 1;
foreach ny $s (@ach) {
last 1 f($s->display_id eq $_->display_id);
$c++;
}
$c;
} @t us;

print OUT join("\t", gw(SEQL SEQ Ka Ks Ka/Ks PROT_PERCENTI D CDNA PERCENTI D)),
for(ny $i = 0; $i < (scalar @tus -1) ; S$i++) {
for(ny §§ = $i+1; $j < (scalar @tus); $++) {
ny $sub_aa_aln = $aa_al n->sel ect _noncont ($pos[$i], $pos[$j])
ny $sub_dna_al n = $dna_al n- >sel ect _noncont ($pos[$i], $pos[$j |
print QUT join("\t",
$ot us[$i] - >di spl ay_i d,
$otus[$j]->display_id, SMmatrix->[$i]->[$j]1->{"dN},
SMematri x->[$i]->[$j]->{"'dS },
SMLmatri x->[$i]->[$)]->{' onega'},
sprintf("%2f", $sub_aa_al n- >percentage_i dentity),
)spri Ct f("% 2f", $sub_dna_al n- >percent age_i dentity),
Y

)i

"\ -

	Bio::Tools::Phylo::PAML HOWTO
	Table of Contents
	1. Background
	2. Accessing paml results
	3. Running PAML from within Bioperl

